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Abstract
We study auction design in a setting where agents can communicate over a censorship-resistant
broadcast channel like the ones we can implement over a public blockchain. We seek to design
credible, strategyproof auctions in a model that differs from the traditional mechanism design
framework because communication is not centralized via the auctioneer. We prove this allows us
to design a larger class of credible auctions where the auctioneer has no incentive to be strategic.
Intuitively, a decentralized communication model weakens the auctioneer’s adversarial capabilities
because they can only inject messages into the communication channel but not delete, delay, or
modify the messages from legitimate buyers. Our main result is a separation in the following sense:
we give the first instance of an auction that is credible only if communication is decentralized.
Moreover, we construct the first two-round auction that is credible, strategyproof, and optimal when
bidder valuations are α-strongly regular, for α > 0. Our result relies on mild assumptions – namely,
the existence of a broadcast channel and cryptographic commitments.
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1 Introduction

Incentive compatibility for buyers is desirable in auctions due to improvements in user
experience. For example, in a second-price auction, if the highest bidder bids $10 and the
second highest bidder bids $5, the highest bidder wins and pays $5. Thus, for any buyer,
bidding the maximum they are willing to pay is an optimal strategy, independently of the
strategy of others. This differs from non-incentive compatible auctions, such as first-price
auctions, where optimal strategies are a complex balance between demand and the strategy
of competing buyers.

Extending incentive compatibility to auctioneers is increasingly becoming a topic of
interest in designing auctions within digital marketplaces. In online settings, it is challenging
to audit auctions and verify the identity of participants. Thus, a strategic auctioneer can
act simultaneously as the seller and a buyer to deviate from the promised auction. For
example, in the second-price auction above, buyers must trust the auctioneer can commit to
implementing the promised auction. Otherwise, a strategic auctioneer impersonating a buyer
can easily leverage their privileged position to submit a bid of $9, increasing revenue and
reducing the buyer’s welfare.
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19:2 Credible, Optimal Auctions via Public Broadcast

Credibility is a form of incentive compatibility for auctioneers that formalizes the incentives
for an auctioneer to follow their promised specifications. It is desirable for auctioning
objects ranging from Non-Fungible Tokens (NFTs) to online advertising because it ensures
auction outcomes are auditable. The US Department of Justice’s 2023 antitrust suit against
Google [17] effectively argues that Google’s manipulation of ad auctions from the privileged
position of auctioneer caused both buyers and users harm. Allegedly, the lack of market
transparency afforded Google “power to manipulate the quantity of ad inventory and auction
dynamics in ways that allowed it to charge advertisers more than it could in a competitive
market”. Thus, credibility is not only a compelling objective for regulators, but also for
sellers that wish to prove their auctions are fair.

Unfortunately, recent work has highlighted challenges in designing mechanisms that are
simultaneously incentive-compatible for both sellers and buyers. The pioneering work of [1]
considered a model where the auctioneer can modulate their private communication with
buyers to increase their revenue and potentially reduce buyer welfare via a safe deviation
from a promised auction. Informally, a safe deviation is any auctioneer deviation that passes
undetectable by any buyer alone. An auction is credible if safe deviations cannot increase
the auctioneer’s expected revenue. For example, an auctioneer waiting for the highest bidder
to bid $10 and impersonating a false buyer that bids $9 is a profitable, safe deviation
from a second-price auction. Unfortunately, [1] demonstrated that auctioneer credibility
could not coexist with buyer incentive compatibility unless the communication complexity is
unbounded: they showed that an ascending price auction is the only credible, strategyproof
optimal auction.

On the other hand, if one is willing to assume that the auctioneer and buyers are
computationally bounded – and thus cannot break known cryptographic assumptions – one
can get around the theoretical barriers of [1]. Concretely, [6] demonstrated that there
are cryptographic auctions that are credible, incentive compatible, and have bounded
communication complexity if buyer valuations satisfy a regularity condition. They proposed
the (centralized) Deferred Revelation Auctions (DRA), a two-round auction that is optimal,
strategyproof, and credible under the assumption buyer valuations are α-strongly regular
for any α ≥ 1. They also show their auction is not always credible if α < 1 and valuations
have unbounded support. This challenges adopting these auctions because they are only
credible if the buyer valuations have tails not heavier than the exponential distribution, i.e.,
α-strongly regular for α ≥ 1 does not contain the Pareto distribution, for example.

In the same line as [6], [4] proposed the Ascending Deferred Revelation Auction (ADRA),
which is strategyproof and credible without requiring any assumption on the distributions.
However, ADRA communication complexity is constant on expectation and unbounded in
the worst case. In contrast, we study auctions with bounded communication in the worst
case.

All results above consider a centralized communication model where buyers can only
exchange messages with the auctioneer. This assumption is motivated by the scenario where
one buyer does not have prior knowledge of the identity of a second buyer. Unfortunately, if
the communication is centralized, the auctioneer can launch a man-in-the-middle-like attack
by censoring, injecting, and modifying messages they were supposed to forward to other
participants. In contrast, our work explores the design of credible auctions when agents
can access a broadcast channel where any buyer can broadcast messages to all participants.
This assumption is well-motivated in an auction in a physical environment like a traditional
auction house. Further, this assumption has also become realistic for auctions implemented
over a communication network like the Internet due to the proliferation of censorship-resistant
public blockchains. Our main contribution shows a simple change in the communication
model (centralized vs. distributed) affects the design of credible auctions.
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We summarize our findings as follows:
Theorem 21. Assume buyer values are drawn independently from an α-strongly regular
distribution for α > 0. Then, the deferred revelation auction with public broadcast is
credible, strategyproof, and revenue optimal. Moreover, modifying the auction so buyers
can only communicate privately with the auctioneer makes the resulting auction not
credible.
Theorem 25. There is a 0-strongly regular buyer valuation that witnesses that deferred
revelation auction with public broadcast is not credible.

1.1 Related Work
We have already reviewed the most relevant prior work in our earlier discussion. Our model
is similar to [1] under the additional assumption of cryptographic primitives plus a public
broadcast channel.

The security of auctions using cryptography has been extensively studied in the literature
[15, 2]. Notably, Yao’s seminal work on multi-party computation [19] was initially motivated
by economic applications. Recent research has revisited the problem of secure auction
design, incorporating novel cryptographic tools such as homomorphic encryption and timed
encryption techniques [16] [9].

However, these approaches come with stronger trust assumptions. For instance, multi-
party computation assumes that a majority of participants are honest. In contrast, our
setting allows the auctioneer to create multiple identities. Furthermore, timed encryption,
although an intriguing concept, has seen limited practical applications due to its reliance
on stronger cryptographic assumptions. Importantly, our goal of reducing the number of
auction rounds aims to enhance auction speed, whereas timed encryption would counter this
objective by increasing the auction duration.

Credible mechanism design has applications beyond auctions such as in the design of
manipulation-resistant decentralized exchanges [18], blockchain transaction fee mechanisms [8,
5], and in Bayesian persuasion [12].

1.2 Technical overview
[1] does not consider the existence of a broadcast channel in their framework because they
envision auctions executing over the Internet (or over the telephone) and assume buyers
do not know the identity of each other beforehand. Implementing a broadcast channel in
this scenario is challenging and draws from years of research in consensus and cryptography,
starting from the Byzantine general’s problem of [11]. This line of research culminated with
the Bitcoin blockchain, which provides censorship-resistant consensus at large scale [14]. In
the framework of [1], the auctioneer promises to implement an auction and is the nexus of
communication with buyers. A buyer privately sends messages to the auctioneer and trusts
that the auctioneer will forward those messages to other buyers.

We propose a simple modification to this framework that, surprisingly, increases the
incentive for the auctioneer to commit to a promised auction. Concretely, rather than sending
messages privately to the auctioneer, we assume any agent can broadcast messages. Once an
agent broadcasts a message m, all other participants simultaneously learn about message m.

Under the new framework, our main contribution is the deferred revelation auction with
public broadcast. It is similar to the centralized deferred revelation auction of [6] with the
main difference that buyers can now broadcast messages. Our main result shows DRA with
public broadcast is a credible auction, assuming buyer valuations are α-strongly regular for
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19:4 Credible, Optimal Auctions via Public Broadcast

all α > 0. Recall [6] showed centralized DRA is not credible for these buyer valuations. This
has significant practical implications because it provides the first design of a communication-
efficient, credible, strategyproof, optimal auction when buyer value distributions have tails
as heavy as Pareto distributions.

Informally, the deferred revelation auction with public broadcast is a two-phase auction
(see §3) as follows:
1. In the bidding phase, each buyer broadcasts a cryptographic commitment of their bid

and deposits a collateral.
2. The auctioneer broadcasts the end of the commitment phase and the start of the revelation

phase.
3. In the revelation phase, each buyer broadcasts the opening of their commitment (e.g.,

their bid and the random seed used to generate the commitment).
4. The auctioneer marks a bid as revealed if the second phase message opens the cryptographic

commitment received in the first phase. Then, the auctioneer implements the second-price
auction with reserves using the revealed bids.

5. The auctioneer refunds the collateral if, and only if, a buyer reveals their bid. The
confiscated collateral is given to the winner of the auction.

As in [6], we consider a threat model where the auctioneer can shill bid (i.e., impersonate
false buyers that submit false bids). To argue the credibility of our auction, we must show
that under certain conditions, sufficiently large collateral incentivizes the auctioneer not
to impersonate false buyers. Central to our argument is observing that the security of our
cryptographic commitment scheme (see Definition 5) together with a broadcast channel
ensures the auctioneer cannot commit to a bid that depends on the bids of other buyers. This
is not the case for the centralized deferred revelation auction. To see, consider modifying the
auction above so that whenever a buyer broadcasts a message, the buyer sends that message
to the auctioneer, who “promises” to forward it to all other buyers. The following is a safe
deviation to centralized DRA where shill bids depends on bids from genuine buyers.

▶ Example 1. Suppose there are genuine buyers A and B as well as a false buyer C. Any
message the auctioneer receives from B, the auctioneer forwards to A. The auctioneer does
not forward any message from A to B which makes buyer B unaware that A exists. The
auctioneer asks buyer A to open their bid and after learning the bid bA of A, the auctioneer
impersonates a false buyer C that commits to bid bA + ∆ to buyer B. This deviation is
undetectable because buyer A believes only A and B participate in the auction. Moreover,
A cannot detect their messages were censored. On the other hand, B believes only B and C

participate in the auction. Moreover, B cannot detect that A’s messages were censored (in
fact, B is unaware of A). Finally, observe that B receives a bid from a false buyer correlated
with the bid of A.

This might seem like an innocent deviation, but Section 5 shows centralized DRA is not
credible for α-strongly regular valuations for any α ∈ [0, 1) if we adapt this strategy and
allow the auctioneer to submit shill bids that depend on genuine bids. Clearly this deviation
is not possible if a broadcast channel is available since the auctioneer cannot choose who gets
to observe A’s messages and the auctioneer cannot commit to shill bids after starting the
revelation phase. Our main technical contribution shows that safe deviations that leverage
shill bids correlated to genuine bids were the only strategies that prevented centralized DRA

from being a credible auction when buyer valuations are α-strongly regular for α > 0.
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1.3 Paper organization
We provide the necessary background in optimal auction theory in §2. We define the
implementation of the deferred revelation auction with public broadcasts in §3. We prove
our main result, Theorem 21, in §4 and our negative result, Theorem 25, in §6. §5 shows
that a broadcast channel is necessary for Theorem 21. We conclude in §7 and include future
directions.

2 Preliminaries

We consider a single item, n buyer auction. Buyer i ∈ [n] = {1, . . . , n} has private value
vi ∈ R+ and has quasilinear utility: if they receive the item and pay pi, then their utility
is vi − pi; if they do not receive the item, then their utility is 0. We assume vi is drawn
independently from a distribution D with CDF F and PDF f . The auctioneer knows the
distribution D, but not the values {vi}n

i=1. We refer to v⃗ = (v1, . . . , vn) as a value profile.
We write the value profile of all buyers except buyer i as v⃗−i = (v1, . . . , vi−1, vi+1, . . . , vn).

Communication model. Agents can communicate on a private channel or a broadcast
channel. If agent i sends a message m in a broadcast channel, then the message is immediately
received buy all other agents. If agent i sends a message m to agent j ̸= i in a private
channel, only agent j observes m.

Extensive-form game. An extensive-form game G consists of a tree (H, E) where the nodes
H are the set of histories and edges E ⊆ H × H are state transitions. The game starts at the
root of (H, E), has a set of players {0, 1, . . . , n}, and a collection of actions A(h) available at
each history h ∈ H. We refer to player 0 as the auctioneer and player i ∈ [n] as buyer i. Each
history h ∈ H has one owner P (h) ∈ {0, . . . , n} responsible for taking the next action when
the game is at state h. After taking action a ∈ A(h), the game moves to another history
h′ where (h, h′) ∈ E. We consider games of incomplete information where only agent P (h)
observes the action A(h) taken at h.

A strategy si for buyer i ∈ [n] on game G is a function that takes buyer i’s private type
vi and any history h ∈ H where i ∈ P (h) and outputs the agent’s action si(vi, h) ∈ A(h) at
h. Consider a strategy profile s⃗ = (s1, . . . , sn). An auction game (G, s⃗) is a communication
game on G when buyers follow strategy s⃗ that allocates the item and charges payments.

The outcome of auction game (G, s⃗) is a tuple (x⃗(G,s⃗)(v⃗), p⃗(G,s⃗)(v⃗)) where x
(G,s⃗)
i (v) and

p
(G,s⃗)
i (v⃗) denotes the probability that agent i receives the item and their payment respectively.

A strategy si is a best response to s⃗−i if for any strategy s′i for buyer i, for any v⃗,

vi · x
(G,s⃗)
i (v⃗) − p

(G,s⃗)
i (v⃗) ≥ vi · x

(G,s′
i,s⃗−i)

i (v⃗) − p
(G,s′

i,s⃗−i)
i (v⃗).

▶ Definition 2 (Ex-post Nash/Strategyproof/Individually Rational). Consider an auction (G, s⃗).
A strategy profile s⃗ forms an ex-post Nash equilibrium, if for any buyer i, strategy si is the
best response to s⃗−i. An auction is strategyproof if some strategy profile s⃗ forms an ex-post
Nash equilibrium. An auction is individually rational (IR) if there is a strategy for any buyer
that ensures such buyer receives non-negative utility.

The auctioneer’s expected revenue on auction game (G, s⃗) is Rev(G, s⃗) :=
Ev⃗

[∑n
i=1 p

(G,s⃗)
i (v⃗)

]
.
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19:6 Credible, Optimal Auctions via Public Broadcast

We assume the auctioneer can deviate from implementing (G, s⃗) as long as any buyer
cannot detect a deviation. These are a safe deviation from the promised auction (G, s⃗).
Formally, (G′, s) is a safe deviation from (G, s⃗) if for any buyer i ∈ [n], there is a strategy
profile si

−i = (si
1, . . . , si

i−1, si
i+1, . . . , si

ni
) for ni buyers where buyer i observes the same

messages in communication games (G′, s⃗) and (G, si, si
−i).

▶ Definition 3 (Credible Auction). An auction game (G, s⃗) is credible if for any safe deviation
(G′, s⃗) of (G, s⃗), Rev(G, s⃗) ≥ Rev(G′, s⃗).

Virtual values
Virtual values functions allow us to formalize optimal auctions. The virtual value function
associated with continuous CDF F and PDF f is φF (x) = x − 1−F (x)

f(x) . We write φ(·),
omitting the superscript F , when the distribution is clear from the context. We write
φ+(x) = max{0, φ(x)}. A distribution F is α-strongly regular for α ≥ 0 if for all x′ ≥ x,

φ(x′) − φ(x) ≥ α(x′ − x).

A distribution F has Monotone Hazard Rate (MHR), if F is 1-strongly regular. A distribution
is regular if F is 0-strongly regular. Note that MHR distributions have exponentially decaying
tails, whereas distributions with α ∈ (0, 1) have polynomially decaying tails.

▶ Theorem 4 (Myerson’s Theorem [13]). Consider a strategyproof auction that awards the
item to buyer i with probability xi(v⃗) and charges pi(v⃗) on bids v⃗. Then, the expected revenue
is

Ev⃗←D

[
n∑

i=1
pi(v⃗)

]
= Ev⃗←D

[
n∑

i=1
φ(vi) · xi(v⃗)

]
.

We refer to the right-hand side as the expected virtual welfare. For cases where D is regular,
φ is non-decreasing, and the optimal auction maximizes expected virtual welfare.

We define the inverse of a monotone function g(·) to be g−1(y) = infx{x| g(x) ≥ y}. We
define to r(D) := (φD)−1(0) as Myerson’s reserve price. From Myerson’s theorem, the
optimal auction only sells the item to buyers with the value vi ≥ r(D). We define Rev(Dn)
as the expected revenue of the optimal auction with n buyers with valuations drawn i.i.d.
from D. We provide facts about α-strongly regular distributions in Appendix A.

3 Deferred Revelation Auction (DRA) with Public Broadcast

This section defines the deferred revelation auction with public broadcast. The central
assumption is the existence of a perfectly hiding, computationally binding, and non-malleable
cryptographic commitment scheme as follows.

▶ Definition 5 (Commitment Scheme). A commitment scheme is a function Commit(·, ·)
that takes a message m ∈ {0, 1}∗, a random string r ∈ {0, 1}λ where λ ∈ N is the security
parameter and outputs a commitment c ∈ {0, 1}Poly(λ) where Poly(λ) is a polynomial with
variable λ.
Perfectly hiding. A commitment scheme is perfectly hiding if, for all m ≠ m′, Commit(m, r)

is identically distributed to Commit(m′, r′) provided that r and r′ are uniformly random.
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Computationally binding. A commitment scheme is computationally binding if for any
probabilistic polynomial time algorithm that takes the security parameter λ and terminates
in expected time Poly(λ), then the probability the algorithm outputs (m, r) ̸= (m′, r′)
such that Commit(m, r) = Commit(m′, r′) is at most 2−λ.

Non-malleable. Consider any communication game where a probabilistic polynomial time
adversary receives c = Commit(m, r) where m is drawn from a known distribution and r

is uniformly random. In the first round, the adversary must output some commitment
c′ ̸= c. In the second round, the attacker learns (m, r) and outputs (m′, r′) such that
Commit(m′, r′) = c. We say the commitment scheme is non-malleable if, for any such
game, the random variable (m′, r′) is independent of (m, r).

Some commitment schemes are malleable; for example, they allow a receiver that observes
Commit(b, r) to compute Commit(b − 1, r). This does not violate secrecy since the receiver
does not learn b or can open Commit(b − 1, r) before the sender opens (b, r)). Yet, this
malleability would pose serious security vulnerabilities in an auction. If a bidder commits
to bid b with Commit(b, r), the auctioneer can shill bid and commit to bidding b − 1 by
computing Commit(b − 1, r). Constructions of non-malleable commitment schemes are
involved and outside the scope of this work (see [10, 7] for a more general definition and
practical constructions).

▶ Definition 6 (Deferred Revelation Auction with Public Broadcast). Let Commit(·, ·) be a
perfectly hiding, perfectly binding, and non-malleable commitment scheme satisfying Defini-
tion 5. A collateral function f(·, ·) takes the number of buyers n and a distribution D and
outputs a collateral required from each buyer to bid in the auction. For a collateral function
f , DRA(f) with public broadcast is the following auction:
Commitment phase (1st round):

Each buyer i ∈ [n] picks a bid bi = vi, draws ri uniformly at random, and broadcast
(i, Commit(bi, ri)). Moreover, buyer i sends collateral f(n, D) to the auctioneer.
The auctioneer broadcasts “End of Commitment Phase”.

Revelation phase (2nd round):
Each buyer i broadcasts (i, b′i, r′i) where b′i = bi and r′i = ri.
The auctioneer broadcasts “End of Revelation Phase”.

Resolution phase:
Let S denote the set of buyers for which Commit(bi, ri) = Commit(b′i, r′i). Let
b′i := bi · 1(i ∈ S). Let i∗ := arg maxi∈S bi.
If bi∗ > r(D), award buyer i∗ the item. Charge them

max{r(D), max
i∈S\{i∗}

bi}.

The auctioneer refunds the collateral of buyer i ∈ S.
The auctioneer transfers the collateral of each buyer i ̸∈ S to buyer i∗.

Tie-breaking:
All ties are broken lexicographically, with the auctioneer treated as “buyer zero”.

Before discussing how our auction differs from centralized DRA(f), we quickly observe
that DRA(f) with public broadcast is indeed strategyproof and revenue optimal.

▶ Theorem 7. For all f , DRA(f) with public broadcast is a strategyproof optimal auction.
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19:8 Credible, Optimal Auctions via Public Broadcast

Proof. The definition for DRA(f) instructs each buyer i ∈ [n] to follow the strategy where
buyer i sets bi = vi; in the commitment phase, buyer i picks a uniformly random ri and
broadcasts a commitment Commit(vi, ri); and in the revelation phase, buyer i reveals (vi, ri).
Since DRA(f) implements the same outcome as a second-price auction, it follows this
strategy profile and is an ex-post Nash equilibrium, which proves the auction is strategyproof.
Moreover, because the auction maximizes expected virtual welfare, Theorem 4 (Myerson’s
Theorem) implies the auction is revenue optimal. ◀

Definition 8 provides a definition for centralized DRA(f) [6]. Lemma 9 shows that
centralized DRA(f) has strategy space for the auctioneer at least as ample as DRA(f) with
public broadcast. To be concrete, the lemma shows that any safe deviation to DRA(f) with
public broadcast maps to a safe deviation to centralized DRA(f).

▶ Definition 8 (Centralized Deferred Revelation Auction). The centralized DRA(f) is identical
to DRA(f) with public broadcast except under the following cases:

In DRA(f) with public broadcast, consider a history h where buyer i broadcasts a message
m. In centralized DRA(f), instead of broadcasting m, buyer i sends m to the auctioneer
in a private channel. Then, the auctioneer sends m to each buyer j ̸= i in a private
channel.
In DRA(f) with public broadcast, consider a history h where the auctioneer broadcasts a
message m. In centralized DRA(f), instead of broadcasting m, the auctioneer sends m

to each buyer i ∈ [n] in a private channel.

▶ Lemma 9. Let (G, s⃗) be a safe deviation to DRA(f) with public broadcast, then there is a
safe deviation (G′, s⃗′) to centralized DRA(f) where Rev(G′, s⃗′) = Rev(G, s)

Proof. Let (G′, s⃗′) be a communication game identical to (G, s⃗) except on the following
scenario:

Whenever buyer i ∈ [n] broadcasts message m in (G, s⃗), in (G′, s⃗′), buyer i sends m to
the auctioneer. After receiving m, the auctioneer sends m to each buyer j ̸= i.
Whenever the auctioneer broadcasts message m in (G, s⃗), in (G′, s⃗′), the auctioneer sends
m to each buyer i ∈ [n].

The deviation (G′, s⃗′) is safe assuming (G, s⃗) is safe. Moreover, it induces the same
allocation/payment rules, meaning it obtains the same revenue as (G, s⃗). This concludes the
proof. ◀

Unfortunately, the converse of Lemma 9 is untrue. There are safe deviations to centralized
DRA(f) that do not map to any safe deviation in DRA(f) with public broadcast. We give
the following examples to illustrate this fact.

▶ Example 10. In DRA(f) with public broadcast, buyer i sends (i, ci) to all buyers. On
the other hand, in centralized DRA(f), buyer i must send (i, ci) to the auctioneer, and the
auctioneer “promises” to forward (i, ci) to all buyers j ≠ i. Unfortunately, buyer i cannot
verify whether the auctioneer forwards their message to any buyer j ̸= i. This allows the
auctioneer to share (i, ci) with a strict subset of buyers.

▶ Example 11. In DRA(f) with public broadcast, the auctioneer broadcasts the end of the
commitment phase to all buyers. On the other hand, on centralized DRA(f), the auctioneer
“promises” to simultaneously announce the end of the commitment for each buyer. Suppose
the auctioneer announces the end of the commitment phase to buyer i at 10:00 p.m. but
only sends this announcement to buyer j at 11:00 p.m. This deviation is safe because buyer
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i does not know which messages buyer j received and vice-versa. Thus, at 10:10 p.m., the
auctioneer requests buyer i to reveal (bi, ri). Then, the auctioneer impersonates a false buyer
z that bids bz(bi) that might depend on bi. Buyer z sends Commit(bz(bi), rz) only to buyer
j at 10:20 p.m.

These examples do not prove there are safe deviations to centralized DRA(f) that are
more profitable than any safe deviation to DRA(f) with public broadcast. They aim to
showcase additional manipulations the auctioneer can perform that they cannot perform when
a broadcast channel is present. Our main result will formally prove that these manipulations
strictly improve the auctioneer’s revenue relative to deviations that do not manipulate the
order and time of messages.

Note some deviations are still possible even when buyers communicate in a broadcast
channel, which makes arguing about the credibility of DRA(f) with public broadcast non-
trivial – namely, the addition of false bids and the refusal to reveal false bids.

Broadcasting false bids. In the commitment phase, the auctioneer can impersonate a false
buyer – agents that submit bids not coming from any real buyer i ∈ [n] – which broadcast
a false bid Commit(b̂, r̂) where r̂ is uniformly random. We refer to b̃(n, D) as the highest
bid among all false buyers. Set b̃(n, D) = 0 if the auctioneer does not impersonate any false
buyer.

▶ Lemma 12. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast. If, during the commitment phase, a false buyer broadcasts Commit(b, r), and, in
the revelation phase, the false buyer reveals (b, r), then b is a random variable independent
of v⃗.

Proof. Suppose for contradiction the false buyer broadcasts Commit(b, r) and later reveals
(b, r) where b is not independent of v⃗. Use this auction to construct an adversary that
outputs Commit(b, r) whenever the false buyer does. Once the false buyer reveals (b, r), the
adversary reveals (b, r). Because b is correlated to v⃗, this implies the commitment scheme is
malleable, a contradiction. ◀

Withhold false bids. In the revelation phase, the auctioneer can refuse to reveal any bid b̂

submitted from a false buyer. The decision to reveal or withhold a bid from a false buyer
might depend on the real bids b⃗.

Next, we highlight a few relevant facts about our protocol. In the commitment phase,
buyer i observes commitments {Commit(di

j , ri
j)}j from both real buyers and false buyers

(excluding their bid bi). That is, di
j is the j-th bid buyer i observes excluding their own bid.

Let βi(⃗b) = max{r(D), maxj{di
j}} be the highest bid buyer i observed in the commitment

phase (including the reserve price r(D) and excluding their bid bi) when real buyers bid b⃗. It
is possible maxi∈[n] βi(⃗b) > max{r(D), maxi∈[n]{bi}} if the highest bid is from a false buyer.

▶ Observation 13. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast. Then for all value profiles b⃗, bi > βi(⃗b) for at most one buyer i ∈ [n].

Proof. Suppose for contradiction there are distinct buyers i and j such that bi > βi(⃗b) and
bj > βj (⃗b). Observe that buyer i receives the bid of buyer j and buyer j receives the bid of
buyer i which implies βi(⃗b) ≥ bj and βj (⃗b) ≥ bi. The inequalities implies bi > bj and bj > bi,
a contradiction. This proves there is at most one buyer i such that bi > βi(⃗b). ◀
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▶ Observation 14. Suppose the auctioneer follows a safe deviation to DRA(f) with public
broadcast. If bi > βi(⃗b), then buyer i receives the item and pays βi(⃗b).

Proof. Buyer i can observe that their bid is above the reserve price and they are the highest
bidder in the auction. If the auctioneer’s deviation is safe, it must allocate the item to bi

and charge βi(⃗b). ◀

The following Lemma 15 shows that under certain conditions, it is optimal for the
auctioneer to reveal any bids from false buyers.

▶ Lemma 15. Consider any safe deviation (G, s⃗) of DRA(f) where, in the commitment
phase, the auctioneer impersonates a false buyer that bids 0 < b ≤ f(n, D), and, in the
revelation phase, the auctioneer withholds b. Let h be the history where the auctioneer reveals
or withholds b. Let (G′, s⃗) be a new deviation identical to (G, s⃗) except at history h the
auctioneer reveals b. Then G′ is a safe deviation and Rev(G′, s⃗) ≥ Rev(G, s⃗).

Proof. The fact (G′, s⃗) is a safe deviation follows directly from the fact (G, s⃗) is a safe
deviation. Next, we argue Rev(G′, s⃗) ≥ Rev(G, s⃗).

First, consider the case where no real buyer receives the item at (G, s⃗). Then, no real
buyer will receive the item at (G′, s⃗). Moreover, (G′, s⃗) improves the auctioneer’s revenue
relative to (G, s⃗) because the auctioneer receives no payments but pays fewer penalties for
revealing b.

Next, consider the case where some buyer i ∈ [n] receives the item and pays p at (G, s⃗).
For the case where b ≤ p, buyer i remains the highest bidder and pays p while the auctioneer
pays fewer penalties for revealing b at (G′, s⃗). For the case where b > p, by assumption
f(n, D) ≥ b. Then, the auctioneer receives negative profits at (G, s⃗) since the penalty for
withholding b is higher than the payment they receive from buyer i. On the other hand, at
(G′, s⃗), the revenue loss for revealing b is lower than the penalties for withholding b. ◀

4 DRA with Public Broadcast is Credible for α-Strongly Regular
Distributions

In this section, we show that for any α-strongly regular distributions for α > 0, there is a
f(·, ·) that makes DRA(f) with public broadcast credible. Recall that b̃(n, D) is the most
significant bid from a false buyer. From Lemma 12 b̃(n, D) is independent of v⃗.

For the case where α ≥ 1, [6] proved Theorem 16 stating centralized DRA(f) is a credible
auction if we set the collateral to be at least the optimal reserve price. Extending their
result for our auction is a simple observation that any safe deviation for DRA(f) with public
broadcast is also a safe deviation for centralized DRA(f).

▶ Theorem 16 (Theorem 4.1 in [6]). Assume buyer valuations are α-strongly regular for any
α ≥ 1. If f(n, D) ≥ r(D), then centralized DRA(f) is a credible auction.

▶ Theorem 17. Assume buyer valuations are α-strongly regular for any α ≥ 1. If f(n, D) ≥
r(D), then DRA(f) with public broadcast is a credible auction.

Proof. Suppose for contradiction DRA(f) with public broadcast is not a credible auction
when f(n, D) ≥ r(D). There is a safe deviation (G, s⃗) to DRA(f) with public broadcast
where Rev(G, s⃗) > Rev(Dn). From Lemma 9, there is a safe deviation (G′, s⃗′) to centralized
DRA(f) where Rev(G′, s⃗′) = Rev(G, s) > Rev(Dn). Thus, centralized DRA(f) is not a
credible auction, a contradiction to Theorem 16. ◀
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The challenging case is to argue DRA(f) with public broadcast is credible for some
f(n, D) for the case where α ∈ (0, 1). We first show that any safe deviation where false buyers
only broadcast bids smaller than the collateral cannot improve the auctioneer’s revenue.

▶ Lemma 18. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast. Let b̃(n, D) be the highest bid from a false buyer (or zero if there are no false
buyers). If f(n, D) ≥ b̃(n, D), the auctioneer’s revenue is at most Rev(Dn).

Proof. From Lemma 15 and the fact the highest false buyer bids k, it is without loss of
generality to assume the auctioneer always will reveal b̃(n, D).

Suppose the reserve price is r and let r̂ = max{r(D), b̃(n, D)}. Note that r̂ is independent
of v⃗ because r(D) depends only on D and b(n, D) depends only on n and D. Thus, the
allocation/payment rule is equivalent to a second-price auction with reserve r̂. Since the
second-price auction with reserve r̂ is a strategyproof auction, Myerson’s theorem implies
the revenue is at most:

Ev←D

[
n∑

i=1
pi(v⃗)

]
= Ev←D

[
n∑

i=1
φ(vi) · xi(v⃗)

]
≤ E

[
max

i
φ+(vi)

]
.

The first equality is Theorem 4. The second inequality observes
∑n

i=1 xi(v⃗) ≤ 1. From
Myerson’s theorem, the optimal auction maximizes virtual surplus or equivalently, Rev(Dn) =
E [maxi φ(vi)]. This concludes the proof. ◀

Next, we consider the case where false buyers might broadcast bids higher than the
collateral. Our first Lemma will bound the revenue for events where vj > βj(v⃗) for some
buyer j. The second Lemma bounds the revenue for events where vj < βj(v⃗) for all buyers.

▶ Lemma 19. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast. Let R(v⃗) be the auctioneer’s revenue when buyers have value profile v⃗. Then

Ev⃗←D [R(v⃗) · 1(∃j, vj > βj(v⃗))] ≤ Ev⃗←D

[
n∑

i=1
φ(vi) · 1(vi > βi(v⃗))

]
Proof. From Observation 13, there is at most one buyer i such that vi > βi(v⃗) for any v⃗.
Moreover, when vi > βi(v⃗), buyer i wins the item and pay βi(v⃗). Since βi(v⃗) is independent
of vi, this payment/allocation rule is strategyproof. From Myerson’s theorem, the revenue is
the expected virtual surplus Ev⃗←D [φ(vi) · 1(vi > βi(v⃗))]. We obtain

Ev⃗←D [R(v⃗) · 1(∃j, vj > βj(v⃗))] = Ev⃗←D

[
n∑

i=1
βi(v⃗) · 1(vi > βi(v⃗))

]

= Ev⃗←D

[
n∑

i=1
φ(vi) · 1(vi > βi(v⃗))

]
{By Theorem 4}

as desired. ◀

▶ Lemma 20. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast. Assume D is α-strongly regular for α ∈ (0, 1). Let b̃(n, D) be the highest bid from

a false buyer (or zero if there are no false buyers). Assume f(n, D) ≥ r(D)
(

n
α

) 1−α
α

(
1

1−α

) 1
α

and b̃(n, D) > f(n, D). Let R(v⃗) be the auctioneer’s revenue when buyers have value profile
v⃗. Then, the auctioneer’s expected revenue is at most

Ev⃗←D [R(v⃗) · 1(∀j, vj < βj)] ≤ Rev(Dn) − Ev⃗←D

[
n∑

i=1
φ(vi) · 1(vi > βi(v⃗))

]
.
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Proof. When vj < βj(v⃗) for all buyers, a false buyer is the highest bidder. Therefore,
maxj βj(v⃗) = b̃(n, D) > f(n, D) where the inequality is a statement assumption. In this
case, any buyer j can receive the item as long as the auctioneer withholds at least one bid.
Because buyer j pays at most vj , the auctioneer receives negative revenue if vj < f(n, D).
Recall xi(v⃗) is an indicator variable taking value 1 if and only if buyer i receives the item.
This gives

Ev⃗←D [R(v⃗) · 1(∀j, vj < βj(v⃗))]

≤ Ev←D

[
n∑

i=1

(vi − f(n, D)) · xi(v⃗) · 1(∀j, vj < βj(v⃗)) · 1(vi ≥ f(n, D))

]

≤ Ev⃗←D

[
n∑

i=1

( 1
α

φ(vi) + r(D) − f(n, D)
)

· xi(v⃗) · 1(∀j, vj < βj(v⃗)) · 1(vi ≥ f(n, D))

]

≤ Ev⃗←D

[
n∑

i=1

1
α

φ(vi) · xi(v⃗) · 1(∀j, vj < βj(v⃗)) · 1(vi ≥ f(n, D))

]

= Ev⃗←D

[
n∑

i=1

1
α

φ(vi) · xi(v⃗) · 1(∀j ̸= i, vj < βj(v⃗)) · 1(f(n, D) ≤ vi < βi(v⃗))

]

= Ev⃗←D

[
n∑

i=1

φ(vi)
α

· xi(v⃗) · 1(∀j ̸= i, vj < βj(v⃗)) · (1(vi ≥ f(n, D)) − 1(vi > βi(v⃗)))

]

< Ev⃗←D

[
n∑

i=1

φ(vi)
α

· 1(vi ≥ f(n, D))

]
− Ev⃗←D

[
n∑

i=1

φ(vi) · 1(vi > βi(v⃗))

]
The second line observes that if buyer i receives the item, they pay at most vi, and the
auctioneer loses a collateral of f(n, D) by withholding at least one bid. The third line invokes
Lemma 26. To see that the assumptions for the Lemma are satisfied, let E be the event
where vi ≥ f(n, D) and observe that f(n, D) ≥ r(D) for all n ≥ 1 and α ∈ (0, 1). The
fourth line observes f(n, D) ≥ r(D). The fifth line observes the event {∀j, vj < βj(v⃗)}
implies {vi < βi(v⃗)} and uses the fact βi(v⃗) > f(n, D). The sixth line uses the fact
1(a ≤ X < b) = 1(X ≥ a) − 1(X ≥ b) for any random variable X and constants a > b. The
seventh line uses the fact α > 1 and Observation 13 which states the event {vi > βi} implies
xi(v⃗) and vj < βj(v⃗) for all j ̸= i since vi expects to win the item. Moreover, we use the fact

xi(v⃗) · 1(∀j ̸= i, vj < βj(v⃗)) · 1(vi ≥ f(n, D)) ≤ 1(vi ≥ f(n, D)).

To conclude, we must show that

Ev⃗←D

[
n∑

i=1

φ(vi)
α

· 1(vi ≥ f(n, D))
]

≤ Rev(Dn).

From Lemma 28,

Ev⃗←D

[
n∑

i=1

φ(vi)
α

· 1(vi ≥ f(n, D))
]

= 1
α

(
1

1 − α

) 1
1−α

(
r(D)

f(n, D)

) α
1−α

Ev⃗←D

[
n∑

i=1
φ(vi) · 1(vi ≥ r(D))

]

≤ α

αn
Ev⃗←D

[
n∑

i=1
φ(vi) · 1(vi ≥ r(D))

]
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= αn

αn
Ev1←D [φ(v1) · 1(v1 ≥ r(D))]

= Rev(D)
≤ Rev(Dn)

The second line observes f(n, D) ≥ r(D) and applies Lemma 28. The third line

uses the assumption f(n, D) ≥ r(D)
(

n
α

) 1−α
α

(
1

1−α

) 1
α . The fourth line observes

φ(v1), . . . , φ(vn) are i.i.d.. The fifth line observes r(D) is the optimal reserve price, and so
Ev1←D [φ(v1) · 1(v1 ≥ r(D))] is the optimal revenue for the single buyer auction (Theorem 4).
The last line observes the revenue is non-decreasing in the number of buyers. ◀

Next, we prove our main result.

▶ Theorem 21. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast and assume all buyer valuations are α-strongly regular for α > 0. Then, there is
an f such that DRA(f) with public broadcast is a credible auction.

Proof. Set f(n, D) = r(D)
(

n
α

) 1−α
α

(
1

1−α

) 1
α . Observe for all n ≥ 1 and α > 0, f(n, D) ≥

r(D). For the case where α ≥ 1, the proof follows directly from Theorem 17 because
f(n, D) ≥ r(D). Next, consider the case where α ∈ (0, 1). Recall b̃(n, D) refers to the highest
bid among false buyers (or zero if no false buyer exists). R(v⃗) refers to the auctioneer’s
revenue when buyers have value v⃗. For the case where f(n, D) ≥ b̃(n, D), Lemma 18 states the
auctioneer’s revenue is at most Rev(Dn). Next, consider the case where f(n, D) < b̃(n, D).
We can write the revenue as

Ev⃗←D [R(v⃗)] = Ev⃗←D [R(v⃗) · 1(∃j, vj > βj(v⃗))] + Ev⃗←D [R(v⃗) · 1(∀j, vj < βj(v⃗))]

≤ Ev⃗←D

[
n∑

i=1

φ(vi) · 1(vi > βi(v⃗))

]
+ Rev(Dn) − Ev⃗←D

[
n∑

i=1

φ(vi) · 1(vi > βi(v⃗))

]
= Rev(Dn)

The second line is due to Lemma 20 and Lemma 19. This shows the auctioneer’s revenue is
at most Rev(Dn) and proves there is a f such that DRA(f) is a credible auction. ◀

5 Public Broadcast is Necessary

This section revisits the fact centralized DRA(f) is not a credible auction for certain
α-strongly regular valuations when α ∈ (0, 1).

▶ Theorem 22 (Theorem 4.4 in [6]). For all f , α ∈ (0, 1), there exists a Dn that is α-strongly
regular such that centralized DRA(f) is not credible for instance Dn.

The following is a special case for the instance given in the proof of Theorem 22. By
inspection, this strategy is a safe deviation for centralized DRA(f) since, in the view of
each buyer, the strategy is indistinguishable from the promised auction. In this strategy the
auctioneer only sends a shill bids to buyer B that depend on the bid of buyer A. This would
not be possible if, rather than relying on the auctioneer to forward messages, messages were
sent in a broadcast channel because any message one buyer receives is also received by other
buyers.

▶ Definition 23 (Adaptive Reserve Price). Consider an auctioneer who promises to implement
centralized DRA(f) on an instance with two buyers A and B. The adaptive reserve price
deviation is the following deviation:
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A sends (A, cA) to the auctioneer.
B sends (B, cB) to the auctioneer.
The auctioneer sends (B, cB) to A and (A, cA) to B

The auctioneer sends “End of the Commitment Phase” to buyer A, then requests A to
reveal their bid. A complies and reveals (bA, rA) such that cA = Commit(bA, rA).
The auctioneer picks a large threshold T :

If bA < T , the auctioneer sends “End of Commitment Phase” to buyer B, then
requests B to reveal their bid (who complies by revealing (bB , rB) such that cB =
Commit(bB , rB)). The auctioneer implements the allocation/payment rule for the
second-price auction with reserve r(D) on bids {bA, bB}.
If bA ≥ T , the auctioneer impersonates a false buyer C. Let rC be uniformly random
and bC = bA + f(2, D). Then, the auctioneer sends (C, Commit(bC , rC)) to B. The
auctioneer sends “End of Commitment Phase” to buyer B, then request B to reveal
their bid. B complies and reveal (bB , rB) such that cB = Commit(bB , rB). Next, the
auctioneer proceeds as follows:
∗ If r(D) ≥ max{bA, bB}, the auctioneer reveals all bids. No one receives the item.
∗ If bB < bA and bA > r(D), the auctioneer reveals all bids and allocates the item to

A and charges max{r(D), bB}.
∗ If bB ∈ [bA, bC ] and bB > r(D), the auctioneer reveals bA and hides bC from B.

Then, the auctioneer allocates the item to B and charges max{bA, r(D)}.
∗ If bB > bC , the auctioneer reveals all bids and allocates the item to B who pays bC .

6 DRA over Public Broadcast for Regular Distributions

Although DRA with public broadcast extends the class of distributions where it is credible,
it is not a magic bullet. Indeed, Theorem 25 states there is an instance with a single buyer
drawn from a regular distribution that witnesses DRA(f) with public broadcast is not
credible. The proof relies on a similar negative result in [6].

▶ Theorem 24 (Theorem 4.4 in [6]). There is a regular distribution D such that for all f(·, ·),
centralized DRA(f) is not credible even when there is a single buyer with valuation drawn
from D.

▶ Theorem 25. There is a regular distribution D such that for all f(·, ·), DRA(f) over
public broadcast is not credible even when there is a single buyer with a valuation drawn
from D.

Proof. We will argue for any instance with a single buyer, any safe deviation to centralized
DRA(f) maps to a safe deviation to DRA(f) over public broadcast. To see, let (G, s⃗) be a
safe deviation to centralized DRA(f). Let (G′, s⃗′) be a deviation to DRA(f) with public
broadcast identical to (G, s⃗) except on the following cases:

Whenever the buyer sends m to the auctioneer in (G, s⃗), the buyer broadcast m in (G′, s⃗′).
Whenever the auctioneer sends m to the buyer in (G, s⃗), the auctioneer broadcast m in
(G′, s⃗′).

(G′, s⃗′) is a safe deviation because (G, s⃗) is a safe deviation. Moreover, (G′, s⃗′) induces the
same allocation/payment rule as (G, s⃗); therefore, Rev(G′, s⃗′) = Rev(G, s⃗).

From Theorem 24, there is a D such that for all f(·, ·), there is a safe deviation (G, s⃗)
to centralized DRA(f) where Rev(G, s⃗) > Rev(D). The mapping above proves there is a
safe deviation (G′, s⃗′) to DRA(f) with public broadcast where Rev(G′, s⃗′) = Rev(G, s⃗) >

Rev(D). This proves DRA(f) with public broadcast is not a credible auction on instance D

as desired. ◀
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7 Conclusion

Improving the transparency and fairness in Internet platforms is becoming an essential concern
for regulators, as observed by the US Department of Justice lawsuit against Google [17].
It is unlikely that customers could unilaterally detect and, more importantly, prove the
sophisticated market manipulations alleged in the complaint. Credible auctions formalize
the notion that an auction is “auditable” by its participants: the auctioneer has no incentive
to deviate from running the promised mechanism in earnest. However, existing credible
auctions suffer from restrictive assumptions on valuation distributions and exclude valuations
with tails thicker than the exponential distribution.

This work shows that censorship-resistant broadcast channels like blockchains are helpful
to circumvent this problem. We propose the deferred revelation auction with public broadcast,
a natural modification of the centralized deferred revelation auction of [6]. Although our
auction represents a simple modification of a known auction, the resulting auction is credible
in instances where no known communication-efficient auctions were known to be credible.
This work builds on the emerging line of research that attempts to improve the performance
of economic mechanisms by appending cryptographic primitives to them. The need for large
collateral is a limitation of our work. Minimizing collateral is an important objective to make
these auctions practical which we leave as future direction.
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A Mathematical Background

▶ Lemma 26 (Lemma 7.1 in [6]). Let D be α-strongly regular for α > 0. Let E be an event
such that v ≥ r(D) with probability 1 conditioned on E. Then

E [v|E] ≤ 1
α
E

[
φD(v)|E

]
+ r(D).

Proof. Because D is α-strongly regular, for all x′ > x,

φD(x′) − φD(x) ≥ α(x′ − x)

Then for any x′ ≥ r(D), x′ ≤ 1
α (φD(v) − φD(r(D))) + r(D). By definition φD(r(D)) = 0.

Conditioned on event E, we have that v ≥ r(D) for all v. We conclude Ev⃗←D [v|E] ≤
1
αE

[
φD(v)|E

]
+ r(D) as desired. ◀

▶ Lemma 27 (Lemma 7.2 in [6]). Let D be a α-strongly regular distribution. Then for all
p ≥ r(D),

p · Prv⃗←D [v ≥ p] ≤ r(D) · Prv⃗←D0 [v ≥ r(D)]
(

1
1 − α

) 1
1−α

(
r

p

) α
1−α

.

▶ Lemma 28. Let D be a α-strongly regular for α > 0. Then for all p ≥ r(D),

Ev⃗←D [φ(v) · 1(v ≥ p)] ≤ Ev⃗←D [φ(v) · 1(v ≥ r(D))]
(

1
1 − α

) 1
1−α

(
r

p

) α
1−α

.

Proof. Consider a single item, single bidder posted-price mechanism that offers the item at
a price p. The bidder value is drawn from D. The revenue is pPrv⃗←D [v ≥ p] because the
buyer purchases whenever their value exceeds p. From Myerson’s theorem, pPrv⃗←D [v ≥ p] =
Ev⃗←D [φ(v) · 1(v ≥ p)]. The result follows directly by applying Lemma 27 to the left-hand
side of the inequality. ◀
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http://www.bitcoin.org/bitcoin.pdf
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