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—— Abstract

BoLD is a new dispute resolution protocol that is designed to replace the originally deployed
Arbitrum dispute resolution protocol. Unlike that protocol, BoLD is resistant to delay attacks. It
achieves this resistance without a significant increase in onchain computation costs and with reduced
staking costs.
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1 Introduction

In this paper, we introduce BoLD, a dispute resolution protocol: it allows conflicting assertions
about the result of a computation to be resolved. It is designed for use in a Layer 2 (L2)
blockchain protocol, relying on a Layer 1 (L1) blockchain protocol for its security (more
generally, it may be used with any parent chain in place of L1 and any child chain in place
of L2).

In an optimistic rollup protocol such as Arbitrum, a dispute resolution protocol like BoLD
operates as a component of a broader “rollup” protocol, in which validators post claims about
the correct outcome of executing an agreed-upon sequence of transactions. These claims
are backed by stakes posted by the claimants. If multiple competing claims are posted, the
protocol must choose one of them to treat as correct. The goal of BoLD and comparable
protocols is to determine, among a set of competing claims about the correct outcome of
execution, which of the claims is correct.

Let us state more precisely the problem to be solved. We begin with a starting state, Sy,
on which all parties agree. We assume that a commitment to Sy has been posted to L1. (In
this paper, all commitments are non-hiding, deterministic commitments that will typically be
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implemented using some sort of Merkle tree.) There is also an agreed-upon state transition
function F, which maps state S;_; to S; = F(S;—1) for i = 1,...,n. In practice, the function
F may be determined by the state transition function of a specific virtual machine, together
with a specific sequence of transactions that has also been posted to L1; however, these
details are not important here.

Any party may then compute Si,...,S, and post an assertion to L1 that consists of
a commitment to S,. Of course, such an assertion may be incorrect, and the purpose of
a dispute resolution protocol is to allow several parties to post conflicting assertions and
identify the correct one. Such a dispute resolution protocol is an interactive protocol that
makes use of L1:

each “move” made by a party in the protocol is posted as an input to a smart contract

on L1;

this smart contract will process each move and eventually declare a “winner”; that is, it

will identify which one of the assertions made about the commitment to S,, is correct.

Participation in the protocol requires resources:

staking: tokens required for “staking”, as specified by the dispute resolution protocol;

gas: L1 tokens required to pay for “Li1 gas costs”, that is, the cost associated with posting

assertions and subsequent moves to L1;

computation: offchain compute costs incurred by the parties who participate in the dispute

resolution protocol.
As for staking, the dispute resolution protocol specifies exactly how much and when stakes
must be made. When the smart contract declares a winner, some stakes will be confiscated
(“slashed”) and some will be returned to the staking parties: corrupt parties may have some
or all of their stake confiscated, while honest parties should get all of their stake returned
to them. The staking requirement serves to discourage malicious behavior. In addition,
confiscated stakes may be redistributed to honest parties to cover their L1 gas costs and
offchain compute costs, or simply as a reward for participating in the protocol. These stakes
will be held in escrow by the smart contract.!

We make the following assumptions:

L1 provides both liveness and safety, that is, every transaction submitted to it is eventually

processed and is processed correctly;

at least one honest party participates in the dispute resolution protocol.

We wish to model the following types of attacks.

Censorship attacks. While we assume L1 provides liveness and safety, we assume that it
may be subject to intermittent censorship attacks. That is, an adversary may be able
to temporarily censor transactions submitted by honest parties to L1. During periods of
censorship, we assume the adversary may still submit its own transactions to L1.

Ordering attacks. Even if the adversary is not actively censoring, we assume that the
adversary may determine the order of transactions posted to L1 (for example, placing its
own transactions ahead of honest parties’ transactions in a given L1 block).

Resource exhaustion attacks. Even though a protocol might ensure that all honest parties
are “made whole” after the protocol succeeds, the adversary may try to simply exhaust
the resources of the honest parties (the staking, gas, and computation resources mentioned
above) so the honest parties can no longer afford to participate in the protocol.

! In a (typical) run of the protocol in which there are no challenges to a correct assertion, there will be
no confiscated stakes available, and so some other source of funds must be used to compensate honest
parties for their (minimal) costs in participating in the protocol.
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Delay attacks. The adversary may try to delay the dispute from being resolved within a
reasonable amount of time. In such a delay attack, the adversary might try to keep the
protocol running for a very large number of moves without resolution — such an attack
may become a resource exhaustion attack as well.

To mitigate against a resource exhaustion attack, a well-designed dispute resolution protocol

should force the adversary to marshal many more resources than required by the honest

parties. Similarly, to mitigate against a delay attack, a well-designed dispute resolution
protocol should force an adversary who attempts to delay the protocol to expend a huge
amount of resources.

The BoLD protocol is designed as a replacement of the originally deployed Arbitrum
dispute resolution protocol. It makes more efficient use of resources than the original Arbitrum
protocol while providing a much stronger defense against delay attacks.

The rest of the paper. Section 2 briefly reviews the original Arbitrum dispute resolution
protocol, sketches the main ideas of BoLD, and discusses how BoLD improves on the original
Arbitrum protocol. Section 3 describes a formal attack model for dispute resolution. Section 4
describes BoLD in its simplest form, which we call single-level BoLD. Section 5 describes
a version of BoLD, which we call multi-level BoLD, that reduces some of the offchain
computational costs of the honest parties. This is the version of BoLD that will replace
the originally deployed Arbitrum dispute resolution protocol. Section 6 discusses details
regarding gas, staking, and reimbursement.

2 Overview and Comparison to Prior Work

We provide a brief overview of BoLD and a comparison to prior approaches in this section.

More details can be found in the full version of the paper [1].

2.1 Arbitrum Classic

By Arbitrum Classic, we refer to the protocol deployed on Arbitrum in 2020. Note that this
version differs in some ways from the original 2018 paper [2].

Arbitrum classic allows parties to post assertions to L1 accompanied by some stake (up
until a designated staking deadline). Parties with conflicting assertions may then challenge
each other. In each such two-party challenge subprotocol instance, one party defends
their assertion against another party who challenges their assertion. When this subprotocol
instance finishes, one of the two parties will win and the other will lose. The dispute resolution
protocol allows many such subprotocol instances to proceed, even concurrently. The protocol
ends when all remaining parties are staked on the same assertion — which is declared to
be the “winner”. The challenge subprotocol guarantees that any honest party will win in
any instance of the subprotocol in which it participates. This ensures that the protocol will
eventually terminate and declare the correct assertion to be the winner.

In the two-party challenge subprotocol, also called the “bisection game”, one party
Daria, defends her assertion, against a challenger Charlie. Daria’s assertion is of the form
(0,n, So, Sp); this denotes the assertion that executing the state transition function F' n times
on state Sp leads to state S, (in practice, the assertion will include commitments to the state
rather than the state itself). WLG, we let n be a power of two. When Charlie challenges
this assertion, the subprotocol game requires Daria to “bisect” her assertion by posting two
smaller assertions (0,n/2, S0, S,/2) and (n/2,n,S,/2,Sy,) of half the size each. Following
this, Charlie is now required to pick one of these smaller assertions to challenge. The game
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continues in a similar fashion until Charlie’s challenge is one a “one-step” assertion — i.e.,
of the form (4,74 1,.5;,5;11). At this point, Daria must submit a proof that this one-step
assertion is correct which can be efficiently checked by the Layer 1 chain. If this proof is
valid, Daria wins the two-party challenge subprotocol and Charlie loses; otherwise, Charlie
wins and Daria loses.

The challenge subprotocol guarantees that any honest party will win whenever in which
it participates. However, a corrupt party may stake on the correct intial assertion, but still
intentionally lose a challenge. Because of this, and because honest parties cannot reliably
identify other honest parties, each honest party must stake on the correct assertion.

To maintain liveness, the protocol will enforce that the total time taken for each party’s
moves is smaller than some amount called the “challenge period.” This can be done using
a “chess-clock” approach where a party’s clock runs when it is her turn to make a move.
Note that each subprotocol will end within a maximum of 2 challenge periods. The challenge
period will be set to be large enough to accommodate any censorship.

There are a number of ways the dispute resolution protocol could orchestrate the challenge
subprotocols, depending on the amount of concurrency allowed. In the full concurrency
option, there is no limit on the concurrent execution of challenge subprotocol instances.
While this guarantees fast resolution, it is susceptible to a resource exhaustion attack.

The deployed version of Arbitrum Classic implements a less concurrent orchestration
method, by which each party is allowed to engage in at most one challenge subprotocol
instance at a time, although many such subprotocol instances may run concurrently. This
method reduces the risk of a resource exhaustion attack significantly, but is instead susceptible
to a delay attack. For this reason the deployed Arbitrum Classic has limited participation in
the protocol to a permissioned set of parties.

A complete description and discussion of Arbitrum Classic can be found in the full
version of the paper [1].

2.2 From Arbitrum Classic to BolLD

A primary motivation that separates BoLD was from Arbitrum Classic is to able to give the
following guarantees:
resolves disputes within a bounded amount of time (independent of the number of parties
or staked assertions),? unlike Arbitrum Classic and
has gas and staking costs that scale better than Arbitrum Classic.

BoLD achieves these goals using the following ideas.

2.2.1 Trustless cooperation

Instead of just committing to the final state S,,, parties must commit to the entire execution
history Si,...,S,. This can be done compactly using a Merkle tree whose leaves are the
individual commitments Com(S;) for i« = 1,...,n. With this approach, a similar type of
bisection game as in Arbitrum Classic can be designed with the property that there is
only one (feasibly computable) justifiable bisection move that can be made at any step. In
other words, if a party submits a correct initial assertion, all smaller assertions obtained by

2 “BoLD” is an acronym that stands for Bounded Liquidity Delay, emphasizing the fact that it is resistant
to delay attacks, unlike partially-concurrent Arbitrum Classic. The term “liquidity” refers to the fact
that once the protocol terminates, funds sent from L2 to L1 become available on L1.
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bisection must also be correct. This means that the correct assertion need only be staked
once, and that the honest parties can build on the work of any apparently honest parties
that make correct assertions, even if those parties turn out not to be honest parties after all.
In this sense, all honest parties can work together as a team, although they do not have to
trust each other or explicitly coordinate with one another.

With just this one idea, one could fairly easily modify Arbitrum Classic to get a protocol
with the following properties. The honest parties in aggregate need to make just one staked
assertion. If the corrupt parties together make N staked assertions, then within a bounded
amount of time (independent of Ny) the honest parties can disqualify all incorrect staked
assertions using L1 gas proportional to Na. Indeed, this protocol will terminate within two
challenge periods.

2.2.2 A streamlined protocol

BoLD takes the above idea and turns it into a more elegant and streamlined protocol. We
design a new execution pattern in which all assertions (both original assertions and “smaller”
assertions obtained from bisection) are organized as nodes in a dynamically growing graph.
The edges in the graph represent parent/child relationships corresponding to bisection. In
this approach, there are no explicit one-on-one challenges nor associated “chess clocks”.
Instead of “chess clocks”, each node in the graph has a “local” timer that ticks so long as
the corresponding assertion remains unchallenged by a competing assertion — so higher local
timer values indicate that the corresponding assertion is in some sense more likely to be
correct (or incorrect but irrelevant to the protocol’s outcome). The values of these local
timers are aggregated in a careful way to ultimately determine which of the original assertions
(which are roots in this graph) was correct. This idea yields the a version of BoLD that we
call single-level BoLD, which maintains the same fast termination time of two challenge
periods.

2.2.3 Multi-level refinement

The downside of the above approach to trustless cooperation is that the offchain compute cost
needed to compute the commitments Com(S;) for i = 1, ..., n and build a Merkle commitment
from them may be unacceptably high in practice when n is large. To address this, we introduce
a multi-level refinement strategy — the resulting protocol is called multi-level BoLD. For
example, suppose n = 2%°. Very roughly speaking, in two-level BoLD, we might execute
single-level BoLD using the “coarse” iterated state transition function F’ = F225, which only
requires 230
of F' which is equivalent to 22° iterations of F. A recursive invocation of single-level BoLD

state hashes, and narrow the disagreement with the adversary to one iteration

over those iterations of F would then “refine” the disagreement down to a single invocation
of F' which could then be proven using a one-step proof. Each such recursive invocation
would require just 225 state hashes. A naive realization of this rough idea would potentially
double the amount of time it would take to run the dispute resolution protocol to completion
— and even worse, for L-level BoLLD, the time would get multiplied by a factor of L. Most
of this time is due to the built-in safety margins that mitigate against censorship attacks.
However, by carefully generalizing the logic of single-level BoLD, and in particular the logic
around how timer data on nodes is aggregated, we obtain a protocol that enjoys the same
fast termination time as single-level BoLLD, namely, two challenge periods. Based on our
experience in implementing BoLLD, we find that setting L = 3 reduces the offchain compute
costs to a reasonable level.
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3 Formal attack model

In the real world, there may be many parties that participate in the protocol, but we formally
describe the attack model in terms of just two parties: the honest party and the adversary.

The honest party in our formal model represents the actions taken in aggregate in the
real world by honest individuals who are correctly following the protocol. While one
might consider protocols that require communication and coordination among honest
individuals, our protocol does not require this. That said, in our protocol, some amount of
coordination between honest individuals may be useful in terms of efficiently distributing
the resources necessary to carry out the protocol.

The adversary in our formal model represents the actions taken in aggregate in the real
world by corrupt individuals who may well be coordinating their actions with one another,
and may also be influencing the behavior of the L1 itself, at least in terms of L1 censorship
and ordering attacks.

At the beginning of the challenge protocol, we assume that both the honest party and
adversary are initialized with the initial state Sy and a description of the state transition
function F. We assume that a commitment to Sy and a description of F' are also recorded on
L1. The challenge protocol proceeds in rounds. While time plays a central role in our attack
model and our protocol, we shall simply measure time in terms of the number of elapsed
rounds. (As an example, if the L1 is Ethereum, a round might be an Ethereum block.)

In each round ¢ = 1,2, ..., the honest party submits a set Submit; of moves to L1. After
seeing the set Submit;, the adversary specifies the precise sequence Exec; of moves to be
executed on L1 in round ¢. The sequence Fxec; may contain moves submitted by the honest
party in this or any previous round, as well as arbitrary moves chosen by the adversary. The
sequence Fxec; is also given to the honest party, so that its value is available to the honest
party in its computation of Submit; ;. We do not place any limit on how many moves may
be submitted to or executed on L1 in a round. We assume that the appropriate party (either
the honest party or the adversary) is charged for the gas required to execute each move
on L1.

We introduce a nominal delay parameter § that models the maximum delay between
the submission of a move and its execution under normal circumstances, that is, without
censorship. An adversary may choose to censor any given round ¢. To model censorship, we
define the following rules that the adversary must follow. At the beginning of the attack, we
initialize Pool, a set of (move, round-number) pairs, to the empty set. In each round ¢:

For each move in Submit;, we set its due date to t +  and add the move, paired with
its due date, to the set Pool.

If ¢ is designated a censored round by the adversary, then we increment the due date of
every move in Pool (including those just added).

The adversary chooses some moves in pool to include in Ezec;, which are then removed
from Pool, subject to the rule:

any move in Pool whose due date is equal to t must be included in Ezecy.

We introduce another parameter, Cyax, which we call the censorship budget. We
require that the adversary censors at most Cp,.x rounds during the attack game. This is our
way of modeling the assumption that censorship attacks cannot be carried out indefinitely.
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4 The BoLD protocol: single-level version

In this section, we describe the BoLLD protocol in its purest form, which we call single-level
BoLD.

4.1 Preliminaries

To simplify things, we assume that the parties involved seek to prove a computation of
n = 2kmax steps, for kymayx > 0. We assume that a commitment to Sy is already stored on L1,
and we denote this by Hy.

The goal is to have a commitment to S, posted to L1 in such a way that the dispute

resolution protocol ensures that this commitment is correct (under well defined assumptions).

4.2 The protocol graph

As the protocol proceeds, a data structure will be built on L1 that represents a directed
acyclic graph G. The structure of G will be described below. Initially, the protocol graph G
is empty, and grows over time. Participants in the challenge protocol will make moves that
lead to the creation of new nodes and edges — the details of these moves are described below
in Section 4.3.

4.2.1 The syntax of a node

We begin by defining the syntax of a node. A node specifies a base commitment and a span
commitment. The base commitment is supposed to be (but may not be) a commitment to
an initial sequence of states, while the span commitment is supposed to be (but may not be)
a commitment to an adjacent sequence of states. A node also specifies the length of these
two sequences.

More precisely, a node is a tuple

(nodeType, lbase, lspan, base, span), (1)

where base and span are the base and span commitments of the node, while lbase and Ispan
specify the corresponding commitment lengths. As will become evident, the value lbase
will always be an integer in the range 0,...,n — 1, while the value lspan will always be a
power of two dividing n; moreover, it will always hold that lbase is a multiple of Ispan and
lbase + Ispan < n. The value nodeType is a flag, equal to either

regular, in which case we say the node is a regular node, or

proof, in which case we say the node is a proof node.
The role of this flag will be described below.

Correct construction. Suppose the correct sequence of states is Sg, S1,...,S,. We say the
node (1) is correctly constructed if the base commitment base is the root of a Merkle tree
whose leaves are commitments to

50,51, -+ + s Sibase (2)
and the span commitment span is the root of a Merkle tree whose leaves are commitments
to

Stbase+1 - - - s Stbase-+ispans (3)
where

2:7
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the Merkle tree rooted at span is a perfect binary tree (which is possible because Ispan is
always a power of two), and

the shape of the Merkle tree rooted at base is determined by the rules governing par-
ent /child relationships, given below.

Intuition. Intuitively, a party who makes a move that leads to the creation of a regular
node is implicitly claiming that this node is correctly constructed. The nodes created in
response to moves made by the honest party will always be correctly constructed. However,
the adversary may make moves that result in the creation of incorrectly constructed nodes.
The smart contract on L1 cannot distinguish between correctly and incorrrectly constructed
nodes (however, the honest party, or any entity with access to Sy, certainly can).

4.2.2 Root nodes

Since G is directed-acyclic, it will have some number of roots, i.e., nodes with in-degree zero.
Recall that Hy is the commitment to So. A root in G is a regular node of the form

r = (regular,0,n, Hy, span). (4)

Correct construction. By definition, r is correctly constructed if the span commitment
span is a commitment to Sq,...,S,.

Intuition. The party that makes a move that creates a root is claiming that span is a
commitment to Sy,...,S,.

4.2.3 Nonterminal nodes

We call a regular node in G of the form
v = (regular, lbase, Ispan, base, span), (5)

where Ispan > 1, a nonterminal node. If this node has any children, it will have exactly
two children. These children are of the form

v, = (regular, lbase, lspan/2, base, spang) (6)
and
vg = (regular, lbase + Ispan/2, lspan/2, H(base, span;,), spang), (7)

for some span;,, spany with
span = H (spany,, spang). (8)

Here, H is the hash function used to form the internal nodes of the Merkle trees. We call vy,
the left child of v and vg right child of v.
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Correct construction. Recall that v is correctly constructed if its base commitment base is
a commitment to (2) and its span commitment span is a commitment to (3). One sees that
vy, is correctly constructed if its base commitment is also a commitment to (2) and its span
commitment is a commitment to

Slbase+17 B SlbaseJrlspan/Q- (9)

Similarly, vg is correctly constructed if its base commitment is a commitment to

507 ey Slbase+lspan/2 (10)

and its span commitment is a commitment to

Slbase+lspan/2+17 sy SlbaseJrlspan- (11)

This definition also tells us the precise shape of the Merkle tree for the base commitment of
a correctly constructed node.

It is easy to see that if vy, and vg are correctly constructed, then so is v. Conversely,
assuming that H is collision resistant, if v is correctly constructed, then so are vy, and vg.

Intuition. The first implication (vr, and vg correctly constructed implies v correctly con-
structed) says the following: to prove the claim corresponding to the parent, it suffices
to prove the claims corresponding to both children. The second implication (v correctly
constructed implies vy, and vg correctly constructed) says the following: to disprove the
claim corresponding to the parent, it suffices to disprove the claim corresponding to one of
the children.

4.2.4 Terminal nodes and proof nodes

We call a node of the form
v = (regular, lbase, 1, base, span) (12)

a terminal node.
If v has any children, it must have exactly one child, and that child must be

vp = (proof, lbase, 1, base, span). (13)
Correct construction. Clearly, if v is correctly constructed, then so is vp.

Intuition. A terminal node v corresponds to a claim that base is a commitment to (2) and
that span is a commitment to Sppaser1. Assuming that the claim regarding base is true, the
presence of the child vp in the graph indicates that the one-step state transition from Sppgse
t0 Sipase+1 has been proven to be correct, that is, F'(Sipase) = Sibase+1, which means the
claim corresponding to v is also true.

4.2.5 Position, context, and rivals

For a given regular node (regular, lbase, lspan, base, span), we define its position to be
(lbase, Ispan), and we define its context to be (lbase, Ispan, base). We say two distinct regular
nodes are rivals if their contexts are equal. A node that has no rivals is called unrivaled.
Note that, by definition, proof nodes are unrivaled.

2:9
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Intuition. A rivalry between two nodes corresponds to a particular type of dispute between
the corresponding claims. If two nodes v and v’ are rivals, then their corresponding claims
agree with respect to the commitment base to the initial sequence (2), but disagree with
respect to the commitment span to the following sequence (3). If v and v’ are nonterminal
nodes with children, and v has children vy, and vg, and v’ has children v, and vg;, then either
v, and v, are rivals or vg and v are rivals, but not both (assuming collision resistance) —
see full version of the paper for further details [1]. Thus, the dispute between the claims
corresponding to v and v’ can be resolved by resolving the dispute between the claims
corresponding to either their left children or their right children.

4.2.6 Some general observations

A given node v in the protocol graph G may have several parents. However, the distance
between v and any root is the same, which we call the depth of v.

We also observe that any two nodes that are children of nonterminal nodes and that
have the same position are either both left children or both right children of their respective
parents. More generally, the position of any regular node implicitly encodes the complete
sequence of left /right steps along any path from the root to that node.

4.3 Types of Protocol Moves

There are three types of protocol moves. Each such move will supply some data, and when
the L1 protocol processes this data, it will add zero, one, or two nodes to the protocol graph
G. Whenever a new node or edge is added to G, the L1 protocol also records the round
number in which it was added.

4.3.1 Root creation

The first type of move in the protocol is root creation. Such a move supplies a commitment
span. The L1 protocol adds to G the root node r as in (4), unless this node already exists in
G. We say this move creates the root r.

4.3.2 Bisection

The second type of protocol move is bisection. Such a move supplies a nonterminal node v
as in (5) in Section 4.2.3, together with commitments span;, and spang. The L1 protocol
checks that

(a) v is already in G and rivaled, (b) v has no children, and (c) (8) holds,
and if so, adds to G

the node v, as in (6), unless it is already in G

the node vg as in (7), unless it is already in G, and

the edges v — v, and v — vR.
We say this move bisects the node v. Note that the precondition that v has no children
means that v has not been previously bisected. Also note that, in principle, a node may be
bisected in the same round in which it was added to G, so long as the preconditions hold at
the moment the bisection move is executed (as we will see, although the adversary is free to
do this, the honest party will not).
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4.3.3 One-step proof

The third and final type of protocol move is one-step proof. Such a move supplies a
terminal node v as in (12) and a proof m. The L1 protocol checks that (a) v is already in G
and rivaled, (b) v has no children, and (c) 7 is a valid proof (see details below),
and if so, adds to G the node vp as in (13) and the edge v — vp.

We say this move proves the node v. Note that, in principle, a node may be proved in
the same round in which it was added to G (as we will see, although the adversary is free to
do this, the honest party will not).

Some details on the proof system. We assume a proof system that is comprised of a
commitment scheme Com, a proof generator Prove, and a proof verifier Verify. The proof
generator should take as input a state S and output a proof p. The proof verifier takes as
input (h,h',p) and outputs accept or reject, and should always output accept on inputs
of the form (h, k', p) where h = Com(S), h' = Com(F(S)), and p = Prove(S). We may state
the required soundness property for the proof system as follows:

It should be infeasible for an adversary to construct a state S along with a triple
(h,h,p), such that h = Com(S), h' # Com(F(S)), and Verify(h,h',p) = accept.

Note that the proof 7 supplied in a proof move must actually include a proof p as above, as
well the commitment h = Com(Sppase) and a right-most Merkle path mp for this commitment
relative to the root base. To check the proof 7, the L1 protocol validates mp (relative to base
and h) and verifies that Verify(h, span,p) = accept — note that for a correctly constructed
node, we will have span = Com(Sipaset1)-

4.4 Timers

We are not quite done describing our dispute resolution protocol. However, before going
further, some intuition is in order. The ultimate goal of the protocol is to allow both the
honest party and the adversary to create root nodes and to make other moves in such a
way that the L1 protocol can determine which root node is correctly constructed. Now, one
trivial way to do this would be to have the honest party bisect the correctly constructed root,
bisect its children, bisect all of their children, and so on, creating n terminal nodes, and then

proving each of these terminal nodes. However, this trivial approach is extremely expensive.

Instead, we adopt the following approach. Whenever a node is created and remains unrivaled
for a period of time, the L1 protocol will take that as evidence that the claim corresponding
to that node cannot (or need not) be proven false — the more time that elapses, the stronger
the evidence. The L1 protocol has to then analyze all of this evidence and declare a “winner”,
that is, the root nodes that is most likely the correctly constructed one. The honest party
will then adopt a “lazy” strategy, and only defend claims (i.e., bisect nodes) that are disputed
(i.e., rivaled), and indeed the protocol is designed so that the honest party must defend all
disputed honest claims in order to guarantee victory. However, if its claim corresponding to
the correctly constructed root remains undisputed for a sufficiently long period of time, no
further moves need to be made.

Throughout the remainder of Section 4.4, we consider a fixed run of the protocol for
some number, say N, of rounds and let G be the resulting protocol graph.
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4.4.1 Creation and rival time

Recall that the L1 protocol keeps track of the round in which a given node v was created,
that is, added to the graph G. Let us call this the creation time of v, denoted ct(v),
defining ct(v) := oo if v was never created throughout the protocol execution.

Let us call the round in which a regular node v becomes rivaled its rival time, denoted
rt(v). More precisely, rt(v) is defined to be the first round in which both v and a rival of
v appear in G, defining rt(v) := oo if v was never created or was created but never rivaled
throughout the protocol execution. Clearly, rt(v) > ct(v).

4.4.2 Local timers

For any regular node v and round number ¢t = 1,..., N, we define the local timer of v
as of round t, denoted \,(t), to be the number of rounds in which v, as of round ¢, has
remained unrivaled since its creation. Formally, we define

Ay(t) == max ( min(¢, rt(v)) — ct(v), 0),

where the usual rules governing infinity arithmetic are used.
The following is an equivalent and perhaps more intuitive characterization of A, (¢):
if v was created in round ¢ or later, then A, (t) = 0;

otherwise, if v was unrivaled as of round ¢ — 1, then A\, (¢) = 1+ A\, (¢t — 1) and we may
say “v’s local timer ticks in round ¢”;

otherwise, A\, (t) = A, (t — 1) and we may say “v’s local timer does not tick in round ¢”.

We also define the local timer for a proof node v as follows:

Nolt) = 0 if ct(v) > ¢,
R oo otherwise.

Note that throughout the paper, whenever we say something happens “as of round t”, we
mean “after executing all moves in round ¢”.

4.4.3 Bottom-up timers

Recall that the L1 protocol keeps track of the round in which any given node is added to the
graph G. For any node v and round number ¢t = 1,..., N, let us define Child, (¢) as the set of
children of v as of round t. We define the bottom-up timer of v as of round t, denoted
By (t), recursively as follows:

min ({8, () : w € Child,(£)}), if Child,(t) # 0;

0, otherwise.

Bo(t) = Ap(t) + {

In other words:
if v was created later than round ¢, then 3,(t) = 0;
otherwise, if v has no children as of round ¢, then 3, (t) = A\, (¢);

otherwise, (,(t) is the sum of A, (¢) and min,, B, (), where the minimum is taken over
all children w of v as of round t.
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4.4.4 \Winners

We are finally in a position to define the condition under which the L1 protocol declares a

winner. To this end, we introduce a parameter T, which we call the confirmation threshold.

We say a root node r in the protocol graph is confirmed in round t if 5,.(t) > T. Suppose
that t* is the first round in which any root node is confirmed. If there is a unique root node
r* confirmed in round t* then r* is declared the winner; otherwise, “none” is declared
the winner.

4.4.5 Paths in the protocol graph

To better understand the role of bottom-up timers in the protocol, and the rule for confirming
root nodes, it is helpful to introduce some additional notions (which will also be useful in
the analysis of the protocol).

A path P is a sequence of nodes (vo,...,v4—1) in G such that G includes the edges
Vg — V1 = -+ — Vg—1. We define the length of P to be q. We define the weight of P to
be wp = Z;’:—Ol Av; (N). We say P is a complete path if it is nonempty and and v,_; has
no children in G.

Note that in defining paths, path weights, and complete paths, we are looking at the state
of affairs as of round IV, the last round of execution that led to the creation of the protocol
graph G. In particular, path weights are defined in terms of local timers as of round V.

We can now characterize bottom-up timers as of round N in terms of path weights.

Specifically, for any node v in G, we have

By(N) = mPi‘non, (14)
where the minimum is taken of all complete paths P starting at v. It follows that for any
given nonnegative integer W, we have:

Bu(N) > W if and only if every complete path starting at v has weight at least

- (15)
4.5 The honest strategy

So far, we have described the logic of the L1 smart contract that acts as a “referee” to ensure
that all moves are legal and to declare a winner. However, we have yet to describe the
(offchain) logic of the honest party. We do that here.

4.5.1 The honest party’s initial move

We assume that the honest party has the states Sg, S1,...,S, and begins by computing the
Merkle tree whose leaves are the commitments to Si,...,5,. Let span be the root of this

Merkle tree. The honest party submits a root creation move in round 1 using this value span.

This is the only move that the honest party submits in round 1. This move, when executed,
will add the honest root rf (which we defined in Section 4.4.5 as the correctly constructed
root node) to the protocol graph.

4.5.2 The honest party’s subsequent moves

Now suppose the protocol has executed rounds 1, ..., ¢ and no winner has been declared as of
round ¢. Consider the protocol graph G as of round ¢ (which the honest party can compute
for itself). Recall the confirmation threshold parameter T introduced in Section 4.4.4 and
the notions of paths and path weights introduced in Section 4.4.5. The honest party submits
moves in round t + 1 as follows:
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For each complete path P in G which starts at v’ and has weight less than T':
if P ends in a node v that is rivaled, then
if v is a nonterminal node, the honest party will submit a move to bisect v (if it
has not already done so),
otherwise, v must be a terminal node, and the honest party will submit a move
to prove v (again, if it has not already done so).

4.6 Execution Example

In this section we go over an example execution of single-level BoLD (see Fig. 1). Here, we
have n = 4. We assume in this example that the adversary’s base and span commitments
are valid commitments to sequences of states, but these sequences of states may be incorrect.
For brevity, we write a node as “[---][---]”, where first set of brackets encloses the sequence
of states committed to in the base commitment, while the second set of brackets encloses the
sequence of states committed to in the span commitment.

Initially, the honest party moves to create the honest root. As indicated in part (a) of
the figure, this move gets executed in round 5 of the protocol execution. We will annotate
each node with a superscipt indicating the current value of its local timer, adding a “+” to
that value if its timer is still ticking (meaning the node is unrivaled).

We see in part (b) that the adversary executes moves in round 12 to create a rival root
node and to bisect that node as well. We indicate the rivalry relation between nodes using
dashed lines. While the honest root’s local timer accumulated 7 rounds, it is now stopped
because it is rivaled. Seeing that the honest root is rivaled, the honest party submits a move
to bisect it. (The reader should note that in each part, new elements in the protocol graph,
both nodes and edges, are highlighted in red.)

We see in part (c) that the honest party’s bisection is executed in round 15. Note that
the left child of the honest root is actually identical to a node created by the adversary in
round 12. This illustrates how nodes can come to have multiple parents. While the left child
of the honest root is unrivaled, its right child is rivaled. So the honest party submits a move
to bisect that right child. (The reader should note that the edges of the honest tree are
highlighted with thicker arrows.)

We see in part (d) that in round 20, the honest party’s submitted bisection move has not
yet been executed. Instead, the adversary is able to execute moves to create another rival
root and to bisect that node as well. This bisection creates a node that rivals the left child of
the honest root. Seeing that this node is rivaled, the honest party submits a move to bisect
it. So now there are two bisection moves submitted by the honest party that are “in flight”.

We see in part (e) that in round 24 both these bisection moves are executed.

We see in part (f) that in round 29, the adversary bisects a node that creates a rival
of one of the honest node’s created in round 24. That node, denoted “[SyS152][S3]” in the
figure, is a terminal node. As such, the honest party submits a move to prove that node.

We see in part (g) that in round 35, the proof move submitted by the honest party is
executed. This created a proof node, which we also write as “[Sp.5152][S3]”, but one sees
that its local timer is co.

At this point, if no other moves are made by the adversary, the timers on all of the leaves
in the honest tree that are regular nodes will continue to tick. At the same time, for both
adversarial roots, there is at least one path along which all timers are stopped (while the
the local timer on the node denoted “[SyS755][S555]” will continue ticking and remain the
largest local timer in the graph, it will not help the adversary confirm an adversarial root).
Thus, so long as the confirmation threshold is high enough, the honest root will eventually
be confirmed while the adversarial roots will not be.
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Figure 1 An example execution.
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4.7 Main result

We first recall the various parameters introduced so far: the nominal delay bound § (see
Section 3), the censorship budget Cpnax (see Section 3), the length of a computation n = 2Fmax
(see Section 4.1), and the confirmation threshold T (see Section 4.4.4).

Given the above, we define

N~ ::T+Cmax+ <6+1)(kmax+2)a (16)
The main result of this section is:

» Theorem 1. Assume the hash function H used to build Merkle trees is collision resistant.
Consider an execution of the protocol using the honest strategy and an arbitrary (efficient)
adversary. Assume that Cpax + (0 + 1) (kmax +2) < T. Then (with overwhelming probability)
the honest root will be declared the winner at or before round N*.

The full proof of Theorem 1 can be found in the full version of the paper [1]. Below we
provide an informal proof overview.

Proof Overview. Recall that the protocol declares some root as a winner only when the
weight of every complete path starting at that root (equal to the sum of local timers of
the nodes along the path) reaches the confirmation threshold. Thus, to prove Theorem 1
it suffices to prove two main claims: the first asserts that by round N* the weight of every
complete path starting at the honest root will surpass the threshold. The second asserts that
by that round every adversarial root will have some complete path starting from it with
weight strictly less than the threshold.

The honest strategy is designed to achieve exactly this — all its moves aim to extend
complete paths starting at the honest root to allow them to accumulate more weight. These
honest moves serve the second goal as well, since the nodes created by them rival nodes on
paths starting at adversarial roots — this in turn prevents these paths from accumulating
weight. The honest party has advantage in this game in the long run, since it is always able
to provide one-step proofs to regular terminal nodes that are descendants of the honest root.

A bit more formally, in order to prove the first claim we observe that at any round of the
protocol, if a complete path starting at the honest root does not accumulate more weight, it
must be the case that all its nodes are rivaled. But in this case, the honest party will submit
a (legal) move to extend the path by either bisecting or proving the last node in the path.
Of course, once that move is executed the adversary can immediately submit a counter-move
to rival the new node in the path, preventing the local timer of the new node from ticking
by doing so. At this point the honest party will submit another move to extend the path,
followed by another adversary counter-move and so on. This process must end at some point
since the maximum depth of a path is bounded by kpax + 1, and once a proof node has been
added to a path, its weight becomes co by definition. The number of rounds N* is chosen
to account for all steps in this process and also to account for possible rounds in which the
honest party’s moves were delayed or censored.

To see why the second claim holds, consider any adversarial root r at round N*. A first
observation is that r rivals the honest root 77 (which must exist in the protocol graph by
this round). Another observation is that for any two nonterminal rival nodes, both with left
and right children nodes, either both left children are rivals or both right children are rivals.
An iterative application of this observation shows that there must exist two complete paths
P and P starting at r and rT (respectively), such that every node in the shorter path of the



M. M. Alvarez et al.

two has a matching rival node in some prefix of the longer path. We then make the crucial
observation that at any given round, only one node in the union of both paths can have its
local timer tick. It follows that the sum of weights of both paths is bounded by the number
of elapsed rounds since the beginning of the protocol. However, the first claim above gives
a lower bound on the weight of PT. The combination of these gives us the desired upper
bound on the weight of P, which proves the second claim.

4.8 A Practical Implementation

As a practical matter, our protocol as given requires too much from the L1 protocol.
Specifically, we are asking the L1 protocol to continuously track all of the local and bottom-
up timers round by round, which would be prohibitively expensive. A simple change to the
protocol and the honest party’s strategy can fix this. The idea is to use “lazy evaluation”
that computes bottom-up timer estimates “on demand”. These estimates will always be no
more than the true value of the timer. A detailed description and analysis of the modified
protocol is deferred to the full version of the paper [1].

5 Multi-level BoLD

Single-level BoLLD has a number of desirable properties, but for some use cases the offchain
compute cost of the honest party may be excessive, because of the amount of hashing required
by the honest strategy. For example, if n = 2°°, which is plausible for a dispute in Arbitrum,
the adversary will need to compute 2°° state commitments, each of them a Merkle hash of
a virtual machine state, and then do about 2°° additional hashes to build the Merkle tree.
This much hashing may be too time-consuming in practice.

An alternative is to use BoLD recursively. For example, we might execute BoLLD using
the iterated state transition function F’ = F225, thereby narrowing the disagreement with
the adversary to one iteration of F’ which is equivalent to 22°
invocation of BoLD over those iterations of F' would then narrow the disagreement down to
a single invocation of F' which could then be proven using the underlying proof system.

iterations of F'. A recursive

The (realized) hope is that if n = 2°5 and there are N adversarial roots, then the honest
party will have to do one iteration of BoLD with a “sequence length” of ny = 23° and a
“stride” of Ay = 22°, then at most N “sub-challenge” iterations of BoLD, each with a
“sequence length” of n; = 2%° and a “stride” of A; = 1. For realistic values of Nu, this
requires much less hashing than single-level BoLD.

The multi-level BoLD protocol generalizes this idea of applying single-level BoLD
recursively, to support more than two levels. To do this, we extend the single-level protocol
by introducing two new elements: refinement nodes and refinement moves. A refinement
move takes a node representing a claim about a single step of the iterated transition function
at a particular level — this would be a deepest node in that level, which we also call a terminal
node — and creates a child node representing the same computation but according to the
refined transition function, in a new, deeper level of the protocol. This new child node is
called a refinement node, and is analogous to a root of this next level.

Refinement moves are different than the bisection and proof moves in the sense that the
protocol cannot be directly convinced that the newly created refinement node is correctly
constructed (assuming the correct construction of its parent) — in the same way that the
single-level protocol cannot be directly convinced that some root is correctly constructed. To
deal with this, the protocol does not limit the amount of refinement nodes created from a
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single parent terminal node, and these nodes compete with each other in a recursive execution
of the protocol. Essentially, the goal of this recursive competition is to convince the protocol
which of the refinement nodes is the correctly constructed one.

The transition to multiple levels requires a significant change to the timer scheme.
Specifically, the bottom up timer of a node is defined exactly as in the single-level version —
except for terminal nodes at any level, for which it is defined as the local timer of that
terminal node plus the mazimum of the bottom-up timers of all of its children refinement
nodes. The reason for using maximum instead of minimum here is exactly the same as the
reason that the winner root is the one with the highest value bottom-up timer (and not
the lowest) — this definition ensures that the unique correctly constructed refinement node,
presumably the one with the highest bottom-up timer, will be the one to contribute to the
conviction that its parent is correctly constructed as well.

We then prove, as we did in the single-level version, that as long as the confirmation
threshold is set high enough, the honest root will be declared winner before any adversarial
root. Further details of the extended protocol are deferred to the full version of the paper [1].

6 Gas, staking, and reimbursement in BoLD

In this section, we summarize our analysis of the gas costs incurred by the honest party when
executing the BoLLD protocol. We introduce a staking requirement for participation and give
an overview of how staking can be used to reimburse the honest party for its efforts, and
to mitigate against resource exhaustion attacks. For further details, see full version of the

paper [1].

6.1 Single-Level BoLD

In single-level BoLLD, we require parties creating a root node to place a stake (locking up
funds on the parent chain) when doing so. When a root node is declared a winner, the stake
for the winner is reimbursed and the stake for the other root nodes is confiscated. In the
event of a challenge, some stakes will be confiscated; these can be used to reimburse honest
parties for their gas costs incurred while running the protocol.?. The value of the stake — S —
should be set high enough to ensure that confiscated stakes are sufficient to reimburse the
gas costs incurred by honest parties running the protocol. However, it should probably be set
much higher than this, to discourage an adversary from making any challenge at all, which
delays confirmation of the honest root, and to mitigate against resource exhaustion attacks.

In order to reimburse honest parties for their gas costs, it suffices to set S at least as
large as a certain fixed gas cost, G, which we can calculate (this is essentially the cost of
bisecting down a single path from the honest root to a terminal node and then making one
proof move).

To reason about resource exhaustion, we define the notion of a resource ratio or griefing
ratio (p). This is (as the name suggests) a ratio, whose numerator is the total staking and
gas cost paid by the adversary to mount an attack on BoLD, and whose denominator is
the total gas and staking cost paid by the honest party in the course of responding to that

3 If there is no challenge, BoLD does not have a built-in mechanism to refund the gas cost of the party
who creates the confirmed root; compensation for this party will need to come from some external
source.
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attack. The denominator does not include the staking and gas cost to create the honest root,
since the honest party must bear this cost regardless of what the adversary does to attack
the protocol (indeed, the honest party must pay this cost even if there is no challenge).

A tradeoff exists between the size of stake and the griefing ratio obtained from using that
size stake. A larger stake means that the capital cost for an honest party to create an honest
root is higher, but also leads to a larger resource ratio, meaning it is proportionally more
expensive for the adversary to impose additional costs on the honest party.

To achieve a target resource ratio p, we show that it suffices to set S to, roughly, p- G’,
for a fixed amount of gas G'.

For further details, see full version of the paper [1].

6.2 Multi-Level BoLD

In multi-level BoLD, we require stakes on refinement edges as well as root edges. The amount
of stake required can differ between levels, but at any given level, root or refinement edges
at that level all require the same amount of stake. That is, for each level ¢, we have a
parameter S;, giving the required stake to create a root or refinement node at that level.
The most effective staking schemes involve these stakes being larger at higher levels; that is,
S <...< 855

As in single-level BoLLD, in order to reimburse honest parties for their gas costs, it suffices
to set each S; at least as large as a certain fixed gas cost, GG, which we can calculate.

In order to obtain a target resource ratio of p, it turns out that we need exponentially
escalating stakes. That is, for some fixed amount of gas G’, we set S1 to G’, and then for
1 < ¢ < N, Spq1 will be set to (roughly) p-.S;. This is why it is important to limit the
number of levels in multi-level BoLD: stakes need to increase exponentially in the number of
levels in order to maintain the same griefing ratio.

We have also explored an alternate staking regime, which (roughly speaking) gives an
“asymptotically unbounded” resource ratio. Intuitively, in this regime, rather than being
bounded by a constant, the ratio of the adversary’s cost to the honest party’s cost tends
toward infinity as the honest party’s cost grows. However, as the number of levels grows, the
rate at which this ratio tends toward infinity becomes slower, and does so very quickly. This
approach is therefore only useful for single-level BoLD and 2-level BoLD (i.e., multi-level
BoLD with L=1or L =2).

For further details, see full version of the paper [1].
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