
Optimizing Exit Queues for Proof-Of-Stake
Blockchains: A Mechanism Design Approach
Michael Neuder #

Ethereum Foundation, New York, NY, USA

Mallesh Pai #

Special Mechanisms Group, Consensys Inc, Dallas, TX, USA
Rice University, Houston, TX, USA

Max Resnick #

Special Mechanisms Group, Consensys Inc, Dallas, TX, USA

Abstract
Byzantine fault-tolerant consensus protocols have provable safety and liveness properties for static
validator sets. In practice, however, the validator set changes over time, potentially eroding the
protocol’s security guarantees. For example, systems with accountable safety may lose some of that
accountability over time as adversarial validators exit. As a result, protocols must rate limit entry
and exit so that the set changes slowly enough to ensure security. Here, the system designer faces
a fundamental trade-off. The harder it is to exit the system, the less attractive staking becomes;
alternatively, the easier it is to exit the system, the less secure the protocol will be.

This paper provides the first systematic study of exit queues for Proof-of-Stake blockchains. Given
a collection of validator-set consistency constraints imposed by the protocol, the social planner’s
goal is to provide a constrained-optimal mechanism that minimizes disutility for the participants.
We introduce the MINSLACK mechanism, a dynamic capacity first-come-first-served queue in which
the amount of stake that can exit in a period depends on the number of previous exits and the
consistency constraints. We show that MINSLACK is optimal when stakers equally value the processing
of their withdrawal. When stakers values are heterogeneous, the optimal mechanism resembles a
priority queue with dynamic capacity. However, this mechanism must reserve exit capacity for the
future in case a staker with a much higher need for liquidity arrives. We conclude with a survey of
known consistency constraints and highlight the diversity of existing exit mechanisms.

2012 ACM Subject Classification Information systems

Keywords and phrases Mechanism Design, Market Design, Accountable Safety, Proof-of-Stake,
Blockchain

Digital Object Identifier 10.4230/LIPIcs.AFT.2024.20

Related Version Full Version: https://arxiv.org/pdf/2406.05124

Supplementary Material
Software (Source Code for simiulations): https://github.com/michaelneuder/withdrawals

Acknowledgements The authors thank Aditya Asgaonkar, Vitalik Buterin, Francesco D’Amato,
Barnabé Monnot, and Tim Roughgarden for helpful discussions.

1 Introduction

In Proof-of-Stake networks, validators use tokens to participate in the consensus protocol.
These staked tokens serve two purposes. First, they solve the problem of Sybil resistance:
agents who operate two validators must procure twice as much stake as those who only
manage one. Second, they allow the protocol to hold validators accountable for violating
the predefined rules. A validator’s stake can be slashed if adversarial behavior is detected,

© Michael Neuder, Mallesh Pai, and Max Resnick;
licensed under Creative Commons License CC-BY 4.0

6th Conference on Advances in Financial Technologies (AFT 2024).
Editors: Rainer Böhme and Lucianna Kiffer; Article No. 20; pp. 20:1–20:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael.neuder@ethereum.org
mailto:mallesh.pai@rice.edu
https://orcid.org/0000-0001-9989-6676
mailto:max.resnick@mechanism.org
https://doi.org/10.4230/LIPIcs.AFT.2024.20
https://arxiv.org/pdf/2406.05124
https://github.com/michaelneuder/withdrawals
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Optimizing Exit Queues for Proof-Of-Stake Blockchains

providing crypto-economic security to the system.1 Most modern blockchains (e.g., Ethereum
and Solana) implement a version of Proof-of-Stake and the principles of staking have been
extended beyond base-layer chains and into the smart contract layer (e.g., re-staking as
popularized by EigenLayer).

The literature typically treats the set of stakers as static to establish positive results;
however, in practice, staking protocols have a validator set that changes over time. New
agents may arrive and wish to stake, while existing stakers may want to withdraw their
tokens for use elsewhere (see, e.g., [18]). How should a stake-based protocol design this egress
procedure?2 There are two competing desiderata. The first is the security of the underlying
protocol. For example, if a malicious validator can corrupt the service for personal gain
but then withdraw their stake before the corruption is detected, the validator is immune to
punishment, and the protocol is not secure. We describe these concerns in more detail in
Section 6. The second desideratum is ensuring that validators can quickly enter and exit
the system since delays decrease the utility of participation. Offering fast withdrawals also
indirectly benefits the protocol since, ceteris paribus, a more rigid protocol must offer higher
rewards in the form of emissions to compensate users for the decrease in their optionality.
While these general principles are well understood, the design of the exit procedures in
the context of blockchains has yet to attract much formal attention.3 As a consequence,
the optimal queue designs we suggest in Sections 4 and 5 perform much better than those
currently used in practice, which we survey in Section 6.

The first contribution of this paper is to formally define the designer’s dilemma as a
constrained optimization problem: minimizing the adverse effects of withdrawal delays while
satisfying the protocol’s safety constraints. In the setting where all validators have the same
time sensitivity, we show that a stateful, first-come-first-served queue where the amount of
stake withdrawn in each period depends on the history of previous periods is constrained
optimal.

However, even among honest validators, the desire to exit can be heterogeneous – for
example, a capital-constrained validator might need to withdraw urgently to meet a margin
call elsewhere. In this setting, a first-come-first-served queue may no longer be optimal, as
the time-sensitive validator may have a sizeable negative utility if their withdrawal is not
processed promptly. Instead, the mechanism must allow more time-sensitive stakers to cut
the line to achieve efficiency. Further, in some cases, the optimal mechanism reserves capacity
for the future in case more time-sensitive agents arrive. We formally define this mechanism
as the solution to a Markov Decision Process (MDP) and show that an appropriately defined
dynamic Vickrey-Clark-Groves (VCG) mechanism can implement the efficient outcome.

We complement these results with a survey to connect our theoretical model to practice.
First, we discuss the exit mechanisms in use today by popular blockchains. Our results
suggest that some of these mechanisms are either (highly) sub-optimal or the designers
believed the mechanism should satisfy additional constraints external to our model. Further,
we should note that no protocol that we are aware of uses a payment-for-priority mechanism.4
Combined with our theoretical results, this collection may be helpful for blockchains and
staking protocols more generally to design or improve their exit procedures.

1 See [20] for an extended definition of crypto-economic security.
2 Similar considerations apply to the design of deposit (ingress) procedures; we focus on withdrawals

(egress) in the present paper.
3 We defer a discussion of the related literature to Section 2.
4 Priority payment is standard in other congested parts of blockchains, notably in the context of transaction

fees, and a substantial literature explores the design of such fees, see, e.g., [37, 24].

M. Neuder, M. Pai, and M. Resnick 20:3

Organization. Section 2 presents the related literature. Section 3 defines the model and
outlines the form of the security constraints of a staking system. Section 4 studies the
common-value setting by defining MINSLACK and proving its optimality. Section 5 introduces
heterogeneous values, formalizes the extended problem as an MDP, and presents numerical
results quantifying the performance of various algorithms. Section 6 justifies the form of
the constraints, presents the intricacies of the Ethereum design, and surveys other staking
withdrawal procedures. Section 7 concludes.

2 Literature Review

Early in the development of Ethereum, Vitalik outlined concerns about a long-range attack
on a Proof-of-Stake blockchain [9]. In particular, he described how a malicious staker could
withdraw his ETH while building a competing fork starting from a historical epoch before
he withdrew. This way, the staker cannot be punished for creating the fork because he has
exited from the consensus mechanism. The solution, he argued, was weak subjectivity, where
nodes locally store a subjectivity “checkpoint” block and ignore any messages from before
that epoch [1]. Weak-subjectivity checkpoints prevent long-range attacks but require the
validator set to change slowly enough to reach a subjectivity checkpoint without a long-range
attack. The naïve approach simply delays all withdrawals for the weak-subjectivity period,
guaranteeing the chain’s safety. Buterin argued in [10] that this imposed too strict a penalty
on validators who wanted to withdraw under normal circumstances when there was no
evidence of an attack, arguing for an exit queue model instead. [12] gave a formal case for
why the consistency imposed by the exit queue was enough to safely last until the next weak-
subjectivity checkpoint through an inductive argument. As detailed in Section 6, the FCFS
exit queue has been used in Ethereum since April 2023, when the Shanghai/Capella hard
fork enabled beacon chain validators to withdraw. More generally, Buterin was concerned
with preserving the formal property known as accountable safety [14]. Accountable safety
guarantees that in the case of a safety violation, the fault is attributable to a subset of
validators (because they must have signed conflicting attestations).

[28, 8] formalized the economic limits of consensus mechanisms and showed that no
partially synchronous protocol can fully implement slashing rules without bounding the
resolution time of communication between honest nodes. Given some bound on this overhead,
protocols could implement slashing against an attacker with < 2/3 of the total stake, a positive
result that justifies using the weak-subjectivity period as a heuristic for preventing long-range
attacks. [30] formalized the relationship between accountable safety and finality, while [2]
introduced a new confirmation rule for potentially improving the pre-finality guarantees for
transactions in Ethereum. [25] proposed allowing some withdrawals to be processed ahead of
others by the nature of originating from a different source that required payment.

Systematic attention to the design of exit procedures in blockchains has been sparse;
however, mechanism design has proved useful for blockchain designers in other contexts,
particularly in designing transaction-fee mechanisms. The question here is similar: if there is
a finite supply of block space and demand may exceed supply, how should the block space
be allocated? Bitcoin used a simple “pay-as-bid” mechanism, which was fruitfully studied
using tools from queueing theory in [24]. Pay-as-bid mechanisms result in strategic bidding,
contributing to poor user experience. In 2021, Ethereum adopted a dynamic reserve price
mechanism, EIP-1559, which was comprehensively studied in the seminal [37] (see also [38]).
There has been recent interest in studying dynamic mechanism design in this setting – see
e.g., [31, 32]. In a different context, a few market design papers have studied the design of
queues, mainly in organ transplantation–see, e.g., [27] and [40].

AFT 2024

20:4 Optimizing Exit Queues for Proof-Of-Stake Blockchains

3 Model

Time is discrete, and each period corresponds to a point during which a validator may
request a withdrawal and be removed from the active set – for example, Ethereum processes
withdrawals at epoch boundaries. Denote the set of possible validators, V , and at each time
t, let S(v, t) ∈ {0, 1} denote whether validator v is currently staked or not.5 Thus the total
amount staked at period t is S(t) =

∑
v S(v, t).

At the end of each period, any validator may signal their desire to withdraw their stake
by joining a waiting list W (t). For now, we model every element of the waiting list as a
tuple (v, t′), where v is the validator identity and t′ is the period at which they initiated
their withdraw. Note that we must have that t′ ≤ t, as any element in the waiting list must
have joined in the past. Let R(t) be the set of exit requests arriving in period t.6

An exit mechanism M in each period t, given a waiting list W (t), selects a subset
P (t) ⊆ W (t) of withdrawal requests to process. We allow the exit mechanism’s choices to
depend on past choices. Formally, let us define a history of previous withdrawal requests as:

H(t) = (P (1), P (2) . . . , P (t− 1)),

and the set of all possible histories as H. A mechanism then formally is:

M : H×W (t) 7→ {0, 1}|W (t)|,

where the binary string is an indicator function for the withdrawals processed during each
period. The system follows the rules of motion:

W (t) = W (t− 1) \ P (t− 1) ∪R(t),
P (t) =M(H(t), W (t)),
H(t + 1) = H(t) ∪ P (t).

The stake distribution S(·, t) is then updated based on the exits and fresh entries. In words,
W (t) is the waiting list of withdraw requests at the beginning of period t, P (t) is the subset of
waiting to withdraw requests that are processed in period t. H(t) is the history of processed
requests up to and including period t.

The number of withdrawals allowed over various time horizons constrains the protocol
designer. We model this as a finite set of constraints, each described by a tuple (δ, T) ∈
[0, 1]× N. A constraint of (δ, T) means that if, in any period t, the total stake is S(t), then
the maximum number of withdrawals processed over the following T periods (from t + 1
thru t + T) is bounded above by δ × S(t). We take the constraints as given, motivating
this construction in Section 6.1. Formally, the designer faces some k constraints given by
C = {(δ1, T1), . . . , (δk, Tk)} and aims to maximize the utility of the validators withdrawing
from the staking system. Calculating this utility depends on validators having differing
values for exiting the system; we begin by examining the simplest case, where each validator
has a common value.

5 For simplicity, we assume that each validator has the same quantity of tokens staked, normalized to 1.
This can easily be relaxed.

6 Most blockchains also limit entry to have a stable validator set for consensus. In this paper, we focus
on the design of exit queues and consider entry unrestricted.

M. Neuder, M. Pai, and M. Resnick 20:5

4 Homogeneous Values

To begin our analysis, we consider the case where all agents have the same value for
withdrawing or equivalently face the same economic penalty for each period between when
they make a withdrawal request and when that request is fulfilled. In this case, the social
planner cannot increase efficiency by reordering withdrawal requests, so efficiency demands
that exit requests be processed as quickly as possible without violating the established
constraints.

Given the constraint set C, the following algorithm, which we call MINSLACK, greedily
processes the maximum amount of withdrawals allowed within the bounds of the constraints.
In other words, for every constraint (δi, Ti), calculate the difference between δiS(t− Ti) and
the amount withdrawn in periods t− Ti thru t− 1.7 This difference is the maximum number
of withdrawals constraint i allows in period t given the previous history. It follows that the
lowest of these slacks is the maximum amount that can withdrawn in this period without
violating constraints. Since the protocol is indifferent about the withdrawal order, if there is
more demand for withdrawing than the allowed quantity, a natural solution is to use the
FCFS rule to tie-break. We present this algorithm as Algorithm 1.

Algorithm 1 MINSLACK.

1: Input: Constraints C = {(δ1, T1), . . . , (δk, Tk)}.
2: Input: Initial staking S(·, 0).
3: S(0)←

∑
v S(v, 0).

4: Initialize: H(0), W (0), P (0)← NULL.
5: Initialize: P (0) = 0.
6: for each period t ≥ 1 do
7: W (t)←W (t− 1) \ P (t− 1) ∪R(t).
8: for each constraint i ≤ k do
9: SLACKi ← δiS(t− Ti)−

∑t−1
τ=t−Ti+1 P (τ).

10: end for
11: MINSLACK ← min{SLACKi : 1 ≤ i ≤ k}.
12: P (t)← Largest prefix of W(t) such that total withdrawn ≤ MINSLACK
13: P (t) ← Total withdrawn in P (t)
14: H(t + 1)← H(t) ∪ P (t)
15: Update: S(v, t) based on P (t).
16: end for

Proving that this algorithm is feasible and optimal is straightforward: as designed, it
processes the maximum amount allowed by the protocol constraints, but never more. Before
presenting this result, we explain why such a queue design may be helpful. As we describe in
Section 6.2, the relevant constraints are that a given fraction of stake cannot withdraw over an
extended period (e.g., O(weeks)). Nevertheless, the actual queue implemented on Ethereum
allows the withdrawal of at most eight validators per epoch (a value set in EIP-7514, [29]). In
practice, validators must wait longer than required during periods with higher-than-expected
withdrawals. For example, in January 2024, the withdrawal queue on Ethereum rose to

7 For expositional simplicity, we elide over the difficulties caused by the fact that δiS(·) may not be a
whole number. In what follows we implicitly assume that this is a whole number, alternately, we could
allow for fractional withdrawals at the cost of significantly messier notation.

AFT 2024

20:6 Optimizing Exit Queues for Proof-Of-Stake Blockchains

Figure 1 A visual example of the calculation of SLACKi used in Algorithm 1 (MINSLACK). The
example constraints C =⇒ {(3, 4), (5, 10), (15, 20)} are read as, e.g., (3, 4) =⇒ “at most three
withdrawals over the next four consecutive time steps.” In the diagrammed example, the blue
vertical lines represent the timestamps of processed withdrawals. With SLACK2 = 1, the MINSLACK
algorithm can process at most one withdrawal during the current period while still conforming to
the constraints.

about 16,000 validators or about 5.5 days at peak due to Celsius bankruptcy proceedings.8
However, there were about 900k total validators during this period, so processing these
withdrawal requests immediately would not have violated the consistency constraints defined
by the “weak-subjectivity period” [1]. With this motivation, we present a formal treatment
of MINSLACK.

▶ Theorem 1. Given any sequence of withdrawal requests R(·), let P (·) be the processed
withdrawal requests and P (·) be the resulting total amount withdrawn in each period by
Algorithm 1. Then:
1. Feasibility: P (·) is feasible with respect to the protocol constraints.
2. Optimality: For any other feasible withdrawal decisions with total withdrawn in each

period given by P
′(·), it must be the case that:

∀t ≥ 1 :
t∑

τ=1
P

′(τ) ≤
t∑

τ=1
P (τ). (1)

Proof. To show that the withdrawal resulting from MINSLACK is feasible, observe that in
each period, the withdrawal amount is less than min{SLACKi : 1 ≤ i ≤ k} so it necessarily
satisfies all of the constraints. Since each withdrawal satisfies the constraints given the
history, applying the algorithm always results in a history that is feasible by construction.

For optimality, consider for the sake of contradiction that there exists a feasible P
′(·)

that violates (1). Let t be the earliest time such that:

t∑
τ=1

P
′(τ) >

t∑
τ=1

P (τ).

8 See https://www.validatorqueue.com/ for historical data about the withdrawal queue.

https://www.validatorqueue.com/

M. Neuder, M. Pai, and M. Resnick 20:7

Since t is the earliest time to violate condition (1), we must have that for all t′ < t,

∀t′ < t :
t′∑

τ=1
P

′(τ) ≤
t′∑

τ=1
P (τ). (2)

Analogous to the algorithm, let us term SLACK′
i(·) as the maximum withdrawable amount

in a given period given process P ′(·), with MINSLACK′(·) defined as the smallest constraint
i ∈ 1, . . . k. Note that by feasibility, we must have the following:

P
′(t) ≤ MINSLACK′(·).

Conversely, we know that by construction (see Algorithm 1),

P (t) = MINSLACK(t).

For the contradiction, it is sufficient to show that

MINSLACK′(t)− MINSLACK(t) ≤
t−1∑
τ=1

P (τ)−
t−1∑
τ=1

P
′(τ). (3)

In other words, we must show that the additional slack available at time t under P ′

relative to P is, at most, the difference between the amount withdrawn up to time t − 1
under P than P ′. Feasibility of the withdrawals under P ′ then contradicts the claim that∑t′

τ=1 P
′(τ) ≤

∑t′

τ=1 P (τ). To see (3) it is sufficient to show that for each 1 ≤ k :

SLACK′
i(t)− SLACK(t) ≤

t−1∑
τ=1

P (τ)−
t−1∑
τ=1

P
′(τ). (4)

The left-hand side of (4) can be rewritten as:

SLACK′
i(t)− SLACK(t) = δiS

′(t− Ti)−
t−1∑

τ=t−Ti+1
P

′(τ)−
(

δiS(t− Ti)−
t−1∑

τ=t−Ti+1
P (τ)

)

≤

(
t−Ti∑
τ=1

P (τ) +
t−1∑

τ=t−Ti+1
P (τ)

)
−

(
t−Ti∑
τ=1

P
′(τ)−

t−1∑
τ=t−Ti+1

P
′(τ)

)

=
t−1∑
τ=1

P (τ)−
t−1∑
τ=1

P
′(τ).

where the penultimate inequality follows since δi ∈ [0, 1], and we have (2). ◀

Thus, MINSLACK is optimal for the common value setting. Still, in reality, stakers may have
disparate values for accessing their stake, motivating the need to explore how a withdrawal
mechanism could account for heterogeneous values.

5 Heterogeneous Values and Paying for Priority

While Theorem 1 shows that Algorithm 1 provides an optimal solution for the case when all
stakers have a homogeneous value for withdrawing, in reality, they may have different values
for getting access to their staked assets. A staking pool, for example, might be withdrawing
some validators gradually to rotate the cryptographic keys used for participating in consensus.

AFT 2024

20:8 Optimizing Exit Queues for Proof-Of-Stake Blockchains

In this case, the pool has a relatively low value for their withdrawal because the underlying
reason to withdraw is not highly time-sensitive. On the other hand, a hedge fund trying to
withdraw staked capital in time to meet a margin call to avoid a forced liquidation may have
an extremely high value for the liquidity from the withdrawal processing.

Each validator looking to exit has a delay cost per unit time c. The net payoff of a
validator of type c whose withdrawal occurs after a delay ∆ for a price (bid) of b is:9

U(∆, b, c) = −c∆− b.

In other words, their utility is linear in time according to their per-period disutility of waiting,
less the amount they pay. We consider this canonical linear form for simplicity. More
generally, one can consider other forms for the utility, including the time-varying disutility of
waiting, see, e.g., [5].

As described below, the efficient mechanism will be more complicated: efficiency requires
agents to express their disutility of waiting in the mechanism and managing agents’ incentives
involve payments. As in the previous section, we will consider the planner’s objective to be
efficiency, which is defined formally below.

▶ Observation 2. When values are heterogeneous, Algorithm 1, MINSLACK, may not be
efficient.

Recall that in every period, MINSLACK greedily processes as many withdrawal requests as
possible, given the constraints. However, there are unknown future withdrawal requests at
the time of processing. With heterogeneous values, it is possible that highly time-sensitive
stakers with a high disutility of waiting may arrive in future periods. Suppose the current
withdrawal requests have very low time sensitivity (i.e., very low c). In that case, the
optimal behavior could be to withhold processing withdrawals in this period and reserve this
capacity for the future. Intuitively, an efficient withdrawal mechanism must balance between
processing withdrawals now while reserving some slack for hypothetical future withdrawals.

5.1 Efficient withdrawals under heterogeneity
This section describes a withdrawal algorithm based on the Vickrey-Clarke-Groves (VCG)
mechanism. VCG in such dynamic settings is not novel – see [33] or [26]; it generalizes the
second-price sealed-bid auction in static settings and has two desirable properties, namely,
(i) it is incentive compatible for each agent to report their cost, c, and (ii) the mechanism is
constrained-efficient.

As is standard in mechanism design, we first describe the efficient allocation rule, i.e., the
optimal rule for a planner, in a setting where the planner observes the delay costs of stakers
as they arrive. Then, we describe payment rules that make it incentive compatible for stakers
to report their values truthfully.

Since this is a dynamic setting, as alluded to above, the mechanism must have a forecast
of future arrivals to decide whether to process withdrawals or to reserve withdrawal slots for
future arrivals. In this section, therefore, we assume that there is a known stochastic process
behind the withdrawals. The number of withdrawal requests in each period is randomly
distributed (for example, this may be the Poisson distribution with known parameter λ).
Each withdrawal request has a type that is an i.i.d. draw according to a known probability
distribution on ℜ+.

9 This is a standard model in the context of transaction fees, where users face a similar trade-off between
paying for inclusion and suffering a delay – see, e.g., [24].

M. Neuder, M. Pai, and M. Resnick 20:9

5.1.1 The Efficient Allocation Rule
For now, suppose each agent truthfully states, at the time of joining the waiting list, their
private cost, c. Each element of the waiting list is now a 4-tuple (v, s, t′, c). Modulo this
change, however, the system can be described just as in Section 3.

Given that some set of withdrawal requests P (t) is processed in period t from a waiting
list of W (t), the system collects a penalty (net disutility) of:

Penalty =
∑

(v,s,t′,c)∈W (t)\P (t)

sc.

In other words, the planner in period t collects a penalty equal to the disutility cost of every
staker in the waiting list whose withdrawal is not processed. As before, the planner faces
some constraints C on exits. The system aims to minimize expected discounted penalties
over feasible exit plans, where ρ ∈ [0, 1] is the planner’s discount rate.

This is a dynamic program where the state of the problem at the beginning of period t is
(S(t), W (t), H(t− 1)). We can recursively define the value function of the planner as follows:

V (S(t), W (t), H(t− 1)) ≡ (5)

min
P (t)

(∑
(v,s,t′,c)∈W (t)\P (t)

sc + δE[V (S(t + 1), W (t) \ P (t)

∪R(t + 1), H(t) ∪ P (t)]
)

,

s.t. P (t) ⊆W (t),
P (t) feasible wrt C.

Here, expectations are taken over the next period withdrawal requests R(t + 1): both the
number of withdrawal requests and the corresponding waiting disutility is unknown at
period t.

This framing is an infinite horizon Markov Decision Problem (MDP). Given the previous
history, there is a maximum number of feasible withdrawals in every period. For any
withdrawal processed from the waiting list, it is intuitive that the planner will remove the
ones with the highest disutility of waiting first. However, as described above, the marginal
value of holding onto a withdrawal slot can exceed the penalty of making a current staker on
the list wait an extra period. Of course, the precise details depend on the arrival process
and the system’s current state. The algorithm is described in Program 5.

Algorithm 2 OPTIMAL.

1: . . . {same as MINSLACK}
2: for each period t ≥ 1 do
3: W (t)←W (t− 1) \ P (t− 1) ∪R(t).
4: P(t) ← Solution of Program 5
5: P (t) ← Total withdrawn in P(t)
6: H(t+1) ← H(t) ∪ P(t)
7: Update: S(v,t) based on P(t), E(t).
8: end for

AFT 2024

20:10 Optimizing Exit Queues for Proof-Of-Stake Blockchains

OPTIMAL is nearly identical to MINSLACK; it only replaces the process for calculating the
set of withdrawals to process in a current period, P (t) (shown in brown text in Algorithm 2).
The optimization problem in Program 5 must be solved to determine the policy of how many
withdrawals to process at each period.

Algorithm 3 PRIO-MINSLACK.

1: . . . {same as MINSLACK}
2: Sort W(t) in decreasing order of waiting disutility.
3: for each constraint i ≤ k do
4: SLACKi ← δiS(t− Ti)−

∑t−1
τ=t−Ti+1 P (τ).

5: end for
6: MINSLACK ← min{SLACKi : 1 ≤ i ≤ k}.
7: . . . {same as MINSLACK}

Another candidate withdrawal algorithm, which we refer to as PRIO-MINSLACK, modifies
MINSLACK to process withdrawals in order of priority fees. Algorithm 3 represents this one-line
change in blue text.

5.1.2 Pricing Rule
So far, we have described the problem as an optimization problem where the planner knows
the disutility from waiting suffered by the stakers in the queue. These are private, and there
must be an incentive for stakers to report truthfully. Achieving this is straightforward (albeit
computationally inefficient): every staker withdrawn in a period t should pay the expected
delay costs imposed on the system by their presence. Existing theorems (see [33], [5]) show
that such a pricing rule results in a Bayes-Nash equilibrium, where each buyer reports their
values truthfully.

5.1.3 Optimal policy
If new withdrawal arrival and value distributions are known, we can calculate the optimal
withdrawal policy by solving the resulting MDP associated with Program 5.

A tractable instantiation. Consider the withdrawal problem with a single constraint of
(t0, S̄δ0) = (5, 5) (no more than five withdrawals are allowed over five time periods).10 Let
the number of new withdrawals per period be distributed as Y ∼ {0, 1, 5} w.p. {0.5, 0.4, 0.1}
and the value of these distributions be distributed as X ∼ {1, 10}
w.p. {0.9, 0.1}. We need only two values to represent the state of pending withdrawals,

W (t). Let wℓ and wh denote the number of pending “low” (c = 1) and “high” (c = 10)
withdrawals, respectively. Further, let h−1, h−2, h−3, h−4 denote the history of withdrawals
processed (called H(t− 1) above) in each of the last four periods (with a (5, 5) constraint,
this is the extent of the history that we must consider when deciding what withdrawals to
process in this period). This leads the definition of each state

s = [wℓ, wh, h−1, h−2, h−3, h−4] ∈ S.

10 For our numerical exercises, for simplicity, we model the constraints as corresponding to an absolute
number of validators that can withdraw over some window of periods.

M. Neuder, M. Pai, and M. Resnick 20:11

Table 1 Performance over 10,000 simulations for OPTIMAL and PRIO-MINSLACK under different
configurations of arrival distributions (Y), value distributions (X), and discount factors. The
performance metric is the discounted value of the rewards starting in the initial state [0, 0, 0, 0, 0, 0];
higher values (smaller disutility) are better. Top three pairs: varying discount factors. We use
n = 225, 350, 700 for simulation steps for the discount factors of γ = 0.85, 0.90, 0.95 respectively
(each selected so that the end of the trial has a weighting of ≈ 10−16). Middle three pairs: varying
the value distribution. Bottom three pairs: varying the arrival distribution.

Algorithm Arrival dist. Value dist. Discount Performance

OPTIMAL
0.85

−2.374
PRIO-MINSLACK −2.413

OPTIMAL Y ∼ [0, 1, 5] X ∼ [1, 10]
0.9

−2.933
PRIO-MINSLACK w.p. [0.5, 0.4, 0.1] w.p. [0.9, 0.1] −2.982

OPTIMAL
0.95

−3.964
PRIO-MINSLACK −3.999

OPTIMAL X ∼ [1, 5] −2.428
PRIO-MINSLACK w.p. [0.9, 0.1] −2.422

OPTIMAL Y ∼ [0, 1, 5] X ∼ [1, 10]
0.9

−2.959
PRIO-MINSLACK w.p. [0.5, 0.4, 0.1] w.p. [0.9, 0.1] −3.005

OPTIMAL X ∼ [1, 20] −3.902
PRIO-MINSLACK w.p. [0.9, 0.1] −4.151

OPTIMAL Y ∼ [0, 1, 2] −1.637
PRIO-MINSLACK w.p. [0.4, 0.4, 0.2] −1.638

OPTIMAL Y ∼ [0, 1, 5] X ∼ [1, 10]
0.9

−2.925
PRIO-MINSLACK w.p. [0.5, 0.4, 0.1] w.p. [0.9, 0.1] −2.969

OPTIMAL Y ∼ [0, 1, 10] −3.610
PRIO-MINSLACK w.p. [0.6, 0.35, 0.05] −3.620

The action space in this MDP is A = {0, 1, 2, 3, 4, 5}, where the action ai is legal if
∑

hj +ai ≤
5. To limit the size of the action space, we only consider states where wℓ, wh < 10. Even
with this extremely reduced setup, there are still |A| × |S| × |S| = 6 · 152462 = 1394643096
probabilities and rewards to encode. Nevertheless, this is feasible since the transition and
reward matrices are sparse.

Using value iteration, we numerically solve for the optimal policy, which determines,
“given a state, how many withdrawals should we process during this period.” We now compare
the performance of OPTIMAL (Algorithm 2 (under an assumed discount factor of 0.9)) and
PRIO-MINSLACK (Algorithm 3).11 Recall that PRIO-MINSLACK is a much simpler heuristic,
where it looks at the history and takes action ai = 5−

∑
hj . While this works well generally,

there are situations where it is “overly aggressive” and can result in large disutitlities. For
example, consider the state.

[10, 0, 0, 0, 0, 0] =⇒ 10 pending lows, 0 pending highs, empty history.

11 Table 1 considers other discount factors, arrival processes, and distributions of value.

AFT 2024

20:12 Optimizing Exit Queues for Proof-Of-Stake Blockchains

Figure 2 Performance comparison of PRIO-MINSLACK and OPTIMAL over 10,000 samples calculating
the discounted reward following each policy from the initial state s0 = [0, 0, 0, 0, 0, 0] for 350 steps
with a discount factor of 0.9. The density of each histogram shows the probability a given trial ends
in that range of values. When examining the raw density, the performance seems comparable, but
the Log-Density plot demonstrates that the long tail performance of PRIO-MINSLACK is significantly
worse than OPTIMAL. Intuitively, PRIO-MINSLACK is more of a “gambler” – the algorithm takes big
risks by greedily processing as fast as possible. These risks are rewarded in the median case but
occasionally have large disutilities by burning the capacity on low-value withdrawals. See Table 1
for more numerical comparisons between the two algorithms under different parameterizations.

In this situation, PRIO-MINSLACK observes that it can process five low withdrawals imme-
diately and does so (ai = 5). The optimal policy, however, chooses ai = 3 instead. By
processing five withdrawals in a single period, PRIO-MINSLACK forces a state where no more
withdrawals are possible for the following four periods. Using the available capacity, the
mechanism runs the risk of a high withdrawal arriving and needing to wait, resulting in a large
disutility. The optimal algorithm is “more cautious” by reserving two withdrawal slots for
the future, protecting for the possibility that a high-value withdrawal comes in the following
few periods. Figure 2 shows a performance comparison of PRIO-MINSLACK and OPTIMAL.
There are ten states (i.e., configurations of the current queue and history of withdrawals) in
which the action dictated by the optimal policy differs from PRIO-MINSLACK by two (e.g.,
optimal processes two fewer withdrawals than PRIO-MINSLACK) and 338 states in which the
optimal action differs from PRIO-MINSLACK by one. Table 1 compares the performance of
OPTIMAL and PRIO-MINSLACK under a few variations of (i) arrival distributions, (ii) value
distributions, and (iii) discount factors from simulating the two policies.

5.2 Practical considerations for the heterogeneous value setting
The previous section outlines dynamic VCG, the optimal withdrawal mechanism given known
stationary arrival and value distributions. In practice, the social planner may not know
these distributions, and further, the expected number of withdrawals or urgency of the
demand for liquidity could change over time. Beyond this, implementing dynamic VCG
would require solving the dynamic program outlined in Program 5 and holding funds in
escrow to execute the VCG payment rule – both of which seem possible on paper but present
significant engineering challenges.

M. Neuder, M. Pai, and M. Resnick 20:13

Algorithm 4 α-MINSLACK.

1: . . . {same as MINSLACK}
2: Sort W(t) in decreasing order of waiting disutility.
3: for each constraint i ≤ k do
4: SLACKi ← δiS(t− Ti)−

∑t−1
τ=t−Ti+1 P (τ).

5: end for
6: MINSLACK ← min{SLACKi : 1 ≤ i ≤ k}.
7: P(t) ← Largest prefix of W(t) such that total withdrawn ≤ α· MINSLACK
8: . . . {same as MINSLACK}

PRIO-MINSLACK is much simpler to implement, but may suffer under value heterogeneity
because it is too eager to process withdrawals. The problem arises when PRIO-MINSLACK
receives a burst of low-value withdrawals, in which case it consumes all the available capacity
on the low-priority withdrawals and leaves potentially higher-value incoming withdrawals
pending longer. These bursts induce a natural question: can we modify PRIO-MINSLACK to
be slightly more conservative with its remaining capacity while preserving its simplicity?
One solution is to modify PRIO-MINSLACK to consume only an α ∈ (0, 1] proportion12 of the
SLACK available at each period.

Algorithm 4, which we call α-MINSLACK, makes the one-line modification (shown in red)
to PRIO-MINSLACK by scaling the amount of processed withdrawals by α. By tuning α, we
can make α-MINSLACK more or less aggressive in how much withdrawal capacity it uses now
versus saving. At α = 1, we reduce to the “maximally aggressive” version (PRIO-MINSLACK).
In contrast, as α→ 0, α-MINSLACK becomes increasingly conservative. The outcome here is
that the slack continues to build up across the constraints, and you end up processing at
the rate α · δi/Ti per-unit time, where (δi, Ti) ∈ C s.t., δi/Ti = minj δj/Tj . In other words,
process at a constant rate proportional to the “most restrictive” constraint in C. More
moderate values, e.g., α = 0.5, present a more balanced version of α-MINSLACK where the
algorithm functions on the heuristic of “using half of the remaining slack at each period.”

While α-MINSLACK is not necessarily optimal, it does eliminate the need for arrival
distribution knowledge, which the optimal mechanisms rely on. Further, its simplicity
makes it much more feasible for an actual production system. We justify this statement by
numerically comparing the performance of various mechanisms under different withdrawal
distributions. Note that we can expand the set of value distributions compared to the optimal
analysis because we are no longer constructing the entire state space of the MDP.

Table 2 compares the performance of four different algorithms across a constant arrival
distribution and under three different value distributions. These results demonstrate that
the PRIO- and α- versions of MINSLACK far outperform either the CONSTANT mechanism
or regular MINSLACK (which serves as an FCFS-queue rather than a priority queue based
on the value of the withdrawal). These results motivate that, under some distributions,
α-MINSLACK may be preferable to PRIO-MINSLACK. Further work could be done to study
adaptive algorithms that aim to learn the optimal value of α in an on-line fashion. Again,
these heuristic rules for determining the withdrawal policy of the staking system are far
more straightforward to construct and implement than the optimal versions described in
Section 5.1.3.

12 The interval is left-open because α = 0 implies no withdrawals are ever processed.

AFT 2024

20:14 Optimizing Exit Queues for Proof-Of-Stake Blockchains

Table 2 Numerical results for algorithm performance under a fixed withdrawal arrival distribution
and three different value distributions. The performance metric measures the average disutility
over the withdrawals and thus should be minimized (to maximize the utility). We calculate the
mean disutility over ten independent samples of 10,000 steps each, with the first 1,000 steps of each
sample discarded to allow the system to settle into a steady state. The single constraint was set
as (δ, T) = (5, 5): “a maximum of five withdrawals may be processed over five periods.” CONSTANT
processes one withdrawal per time step. MINSLACK and PRIO-MINSLACK follow the descriptions
in Algorithms 1 and 3 respectively. For α-MINSLACK (Algorithm 4), we use α = 0.9, which
produces the following mapping for calculating how much slack to consume in a given time slot
[0, 1, 2, 3, 4, 5] 7→ [0, 1, 2, 3, 4, 4]. We can describe this simply as: “If the slack is exactly 5, use only
four (reserving one for a potentially high-value arrival). If the slack is less than 5, use it entirely.”
The arrival distribution mimics occasional bursts of withdrawal requests while maintaining an
expected value E[Y] = 0.9, less than the average capacity of one derived by the (5, 5) constraint. The
withdrawal values were sampled from Uniform, Exponential, and Pareto distributions to demonstrate
that under some conditions, α-MINSLACK can outperform PRIO-MINSLACK. In all cases, CONSTANT and
MINSLACK perform far worse than the PRIO- and α- variants.

Algorithm Arrival dist. Value dist. Performance

CONSTANT (1)

X ∼ Uniform(0, 1)

−5.768
MINSLACK −5.464

PRIO-MINSLACK −2.019
α-MINSLACK (α = 0.9) −2.002

CONSTANT (1)
Y ∼ [0, 1, 5]

X ∼ Exp(0.1)

−12.249
MINSLACK

w.p. [0.5, 0.4, 0.1]
−11.648

PRIO-MINSLACK −2.951
α-MINSLACK (α = 0.9) −2.986

CONSTANT (1)

X ∼ Pareto(2, 5)

−114.913
MINSLACK −109.354

PRIO-MINSLACK −67.687
α-MINSLACK (α = 0.9) −63.070

6 Theory and Practice

Why limit withdrawals in the first place? A thought experiment. Assume that withdrawals
are not limited. An attacker, Eve, accumulates 1/3 of the total stake in the PoS mechanism
and invests heavily in networking infrastructure. Eve contacts Alice to inquire about buying
a Tesla Cybertruck©. Alice, who is feeling both cyber- and cypherpunk enough to accept ETH
for the transaction, sees txn 0xcb on Etherscan as finalized, giving her confidence to hand
the (car) keys to Eve. From Alice’s perspective, the settlement assurance of 1/3 of all staked
ETH (> 33 billion USD as of May 2024) is more than sufficient economic security for her
transaction. However, using her networking prowess, Eve had tricked the honest validators
into finalizing two conflicting blocks, one which included txn 0xcb and another that didn’t
by partitioning the honest validators into two separate p2p groups and sharing conflicting
attestations with each group. If withdrawals are not limited, she can fully withdraw her
stake from both chains by the time honest validators reconnect (once Eve’s network-level
attack ends) and try to slash her. Alice has no Telsa Cybertruck© nor the ETH originally
sent in txn 0xcb.

M. Neuder, M. Pai, and M. Resnick 20:15

In light of this, blockchains place limits on withdrawals. However, as described below,
there is substantial variation in the limits placed and the withdrawal procedure, with little
systematic study.

6.1 Accountable Safety and Limiting Withdrawals
We begin with the following simple observation.

▶ Observation 3. The accountable safety of a finalized block decreases as time passes
because the stake participating in the finalization of the block can withdraw from the system.

This (rather counter-intuitive) fact means protocol designers must decide: “How quickly
should validators be able to withdraw their stake from the system?” Let D denote the
“maximum-tolerable decay” in the accountable safety of a finalized block. For example, if
D = 1/6, then a finalized block may have accountable safety (in terms of proportion of the
total stake that is slashable in case the transaction history changes) of 1/3−D = 1/6. The
security decay modifies the statement to, “any transaction in a finalized block will have
accountable safety of at least 1/6 of all stake.” This remains incomplete because over a
sufficiently long time horizon, with withdrawals enabled, more than D stake may be removed
from the system. Thus, we define an amount of time, denoted δ, over which the stake
withdrawn must not exceed D. This period can serve multiple purposes. One such usage is
the weak-subjectivity period [9], where the delay is an upper bound on the communication
delay between all honest parties in the partially-synchronous protocol; this value is O(weeks)
to account for the natural overhead incurred when social coordination is required to come to
consensus.13 Other constraints might be over much shorter time horizons, e.g., O(minutes),
to ensure a bound on the rate at which the economic security of a block changes in short
windows. Thus, the accountable safety of a Proof-of-Stake mechanism parameterized by D
and δ is “any block finalized more than δ time ago is immutable (only social consensus could
reverse it), and any block finalized within the past δ time has accountable safety of at least
1/3−D.”

6.2 Ethereum
Withdrawals in Ethereum Proof-of-Stake were fully activated in the Shanghai/Capella
Hardfork14 on April 12, 2023. While the full withdrawal process is quite involved, we dig
into the details to demonstrate how much engineering can shape the withdrawal mechanisms
in use today. Figure 3 demonstrates the full flow of an Ethereum withdrawal, which is split
into three distinct phases.

Phase 1: Exit queue. When an Ethereum validator wants to withdraw their 32 ETH
from the consensus mechanism, they trigger a “Voluntary Exit” [4]. This process sets
the validator’s exit_epoch based on the rate-limited first-come-first-served exit queue;
during each epoch, at most min(4, ⌊# validators/216⌋) are processed [4] (though this was
changed in EIP-7514 to cap the churn limit at 8 validators per-epoch [29], making the
new function max(8, min(4, ⌊# validators/216⌋))). The CHURN_LIMIT_QUOTIENT = 216 was

13 By ignoring any blocks published prior to the weak-subjectivity checkpoint, validators can also eliminate
the risk of long-range attacks (in practice, validators treat their latest finalized block as a ‘genesis‘ or
irreversible block by simply rejecting any block that conflicts with it).

14 https://ethereum.org/en/history/#shapella

AFT 2024

https://ethereum.org/en/history/#shapella

20:16 Optimizing Exit Queues for Proof-Of-Stake Blockchains

Figure 3 The withdrawal flow for Ethereum validators. Each phase has differing lengths and
validator properties. The top row of tan labels demonstrate what determines the length of each
phase. The middle row of tan labels annotate the timeline of events as described in the [15]. The
bottom row of colored labels indicate the activity and slashability of the validator over time.

selected15 according to the rough heuristic that it should take approximately one month for
10% of the stake to exit (or equivalently, about 100 days for 33% of the stake to exit) [13].
For the entire time a validator is in the exit queue (this phase), they are both “active”
(meaning they must continue performing their consensus duties) and “slashable” (meaning
their stake is still accountable for their behavior). Keeping the validator active while in the
exit queue minimizes the economic cost of a very long exit queue because they continue
earning rewards [11].

Phase 2: Withdrawalability delay. Once the validator’s exit_epoch has passed, they incur
a constant delay of 256 epochs (27 hours) before their withdrawable_epoch [4]. This fixed
delay is a significant safety buffer to provide ample time for the protocol to include any
slashing proof on chain. During this time, the validator is no longer active (and thus not
earning any rewards), but they remain slashable (to avoid committing a slashing violation
immediately before the withdrawal). The enforcement of this delay ensures that, even if the
exit queue is empty, there is a period where the validator’s stake is still accountable for their
actions.

Phase 3: Validator sweep. Once past the validator’s withdrawable_epoch, the function
is_fully_withdrawable_validator returns true indicating that the withdrawal delay has
passed and the validator is no longer slashable [15]. The last delay comes from the amount
of time it takes for the actual withdrawal requests to send the ETH to the corresponding
withdrawal address. All withdrawals are processed by looping through the validator set in
order of validator index. This validator “sweep” can only process 16 withdrawals per block,

15 Powers of two common for specification constants due to their compact binary representation.

M. Neuder, M. Pai, and M. Resnick 20:17

corresponding to 8.8 days to iterate through the entire validator set (thus a 4.4-day additional
delay on average).16 This 8.8-day delay is present regardless of the length of the exit queues
because “full” withdrawals (where a validator wants to leave the consensus layer altogether)
are inter-mixed with “partial” withdrawals (where a small amount of validator rewards are
involuntarily swept from each validator). While the original specification implemented the
queues directly into the protocol, [36] changes this only to store the validator index and
perform the sweep by mixing partial and full withdrawals.

This withdrawal mechanism is quite complex; the minimum time to exit the system is
27 hours. Due to the validator sweep, if the validator doesn’t strategically time their exit
request, the withdrawal will take over 5.5 days on average to fully clear, even if the exit queue
is empty. This complexity highlights how engineering decisions can inform the exit queue
mechanism design. Beyond Ethereum, there are many additional staking systems, though
their withdrawal mechanisms are much simpler and thus presented in Table 3 & Table 4.

6.3 Other Proof-of-Stake Blockchains

Table 3 compares several other blockchain protocols and how they handle withdrawals.
Ethereum is the only protocol that implements a dynamic queue, and in this regard, Ethereum
takes on additional complexity to improve the efficiency of the withdrawal mechanism.
Cosmos, Polygon, and Polkadot each implement the simple, fixed-duration withdrawal
mechanism with delays of 21, 2, and 28 days, respectively. This mechanism is simple and easy
to reason about. Still, it is much less efficient because each withdrawal takes the maximal
amount of time regardless of the history of the mechanism [6, 35, 34]. Solana, Cardano, and
Avalanche do not have in-protocol slashing, so staking serves only as an anti-Sybil mechanism
in their systems; the stake can exit the system without a rate-limiting step and not change
their security model [39, 16, 3].

6.4 Other applications of staking

Beyond other blockchains, some applications have implemented staking and slashing mecha-
nisms at the application layer of Ethereum. Table 4 performs the same high-level analysis of
two such mechanisms.

EigenLayer and Chainlink use stake for slightly different purposes than the chains outlined
in Table 3. EigenLayer creates a platform for buying and selling “economic security”; services
built on EigenLayer (called “Actively Validated Services” or “AVSs”) purchase this security
by incentivizing capital to delegate to an operator running their service. Because EigenLayer
encumbers capital with additional slashing conditions, it also enforces a protocol-wide escrow
period for stake removal. It is worth noting that the Ethereum withdrawal period can occur
concurrently with the EigenLayer escrow period [22]. Further, services buying security from
EigenLayer can impose further constraints on the capital allocated to their system. Chainlink,
on the other hand, uses stake to provide security for the data feeds supplied by their oracle
network [7]. This stake may be slashed for “less objective” faults (e.g., slashing for being
offline and not providing a price feed), which was recently dubbed “inter-subjective slashing”
in [21] and may grow to play a significant role in the future designs of slashing protocols.

16 https://www.validatorqueue.com/

AFT 2024

https://www.validatorqueue.com/

20:18 Optimizing Exit Queues for Proof-Of-Stake Blockchains

Table 3 Comparing staking and withdrawal mechanisms across L1 protocols and sidechains.

Protocol Staking purpose Withdrawal
mechanism

One-line analysis

Ethereum [4] Consensus safety Rate-limited FCFS
queue with minimum
duration.

Aims to be fast in the
average case, but
partial withdrawals
induce high-variance
delay.

Cosmos [19] Consensus safety Fixed 21-day
unbonding period.

Simple but inefficient.

Solana [39] Sybil resistance All deactivations
happen at epoch
boundaries. A
maximum of 25% of
stake can deactivate at
any given epoch
boundary.

With no slashing,
stake does not provide
accountable safety to
the protocol. Limiting
withdrawals ensures
the entire stake cannot
exit in a single epoch.

Cardano [16] Sybil resistance Immediate
withdrawals.

With no slashing,
stake does not provide
accountable safety to
the protocol.
Withdrawals are
immediately processed.

Polygon [35] Consensus safety Fixed ≈ 40 hour
unbonding period.

Simple but inefficient.
It benefits from the
fact that, as a
sidechain, state
updates are posted to
Ethereum and are thus
immutable – allowing
for a relatively shorter
fixed duration.

Polkadot [34] Consensus safety Fixed 28-day
unbonding period.

Simple but inefficient.

Avalanche [3] Sybil resistance Validators dictate the
duration of their
staking before
becoming active. The
minimum duration is
two weeks. After time
has elapsed, the stake
is immediately
withdrawn.

With no slashing,
stake does not provide
accountable safety to
the protocol.
Withdrawals are
immediately processed.

M. Neuder, M. Pai, and M. Resnick 20:19

Table 4 Comparing staking and withdrawal mechanisms between EigenLayer and Chainlink, two
app-layer protocols with slashing.

Protocol Staking purpose Withdrawal
mechanism

One-line analysis

EigenLayer [22] Economic security
guarantees

Fixed 7-day escrow
period for all
ETH-denominated
withdrawals. Staked
EIGEN has a fixed
24-day escrow
period.

Withdrawals need to
be limited because
EigenLayer
introduces new
slashing conditions.
Native restaked ETH
may be withdrawn
from the beacon
chain during the
EigenLayer escrow
period. Each AVS
could add its rate
limiting in addition
to the system-wide
minimums.

Chainlink [17] Oracle safety Fixed 28-day
cool-down period
before LINK is
claimable.

Staking provides
safety and
availability
conditions for data
feeds. Withdrawals
are rate-limited to
ensure slashing has
time to take place.

6.5 Liquid staking & restaking tokens
Liquid staking tokens (LSTs) make a design trade-off when choosing how much of the capital
in their system to deploy into consensus mechanisms. If they deploy too much of it, the
withdrawals will be rate-limited by the underlying protocol, leading to a more capital-efficient
protocol at the cost of a worse UX (slower withdrawals). Keeping some liquidity available
for immediate redemption improves the UX, but any capital in that state is not cash-flowing.
LSTs are fully collateralized and thus do not face insolvency risk, but holders face the
duration risk of holding the LST for however long the withdrawal takes. Liquid restaking
tokens (LRTs) have a more complex design space, where they must balance withdrawals
against various underlying protocols and services. Their withdrawal mechanisms are plagued
by the nature of various protocol rewards denominated in different tokens and emissions
rates. [23] explores some design trade-offs, including a market for withdrawals. Overall, this
design space is extensive and out-of-scope for the modeling of this paper, but it presents an
exciting avenue for future research.

7 Conclusion

System designers of staking and restaking protocols face a fundamental trade-off between
the security and utility. Based on the mechanisms we surveyed in Section 6, the mechanisms
currently in production maximally flexible given the rigidity they claim to require. In other

AFT 2024

20:20 Optimizing Exit Queues for Proof-Of-Stake Blockchains

words, nobody seems to be on the production-possibilities frontier of egress mechanisms in
practice; we acknowledge that the practical engineering constraints, e.g., as described in the
design of Ethereum’s withdrawal mechanism in Section 6.2, may play a significant role in the
decision making of existing protocols.

By formalizing this trade-off as a constrained optimization problem over mechanisms, we
aim to improve the state of withdrawal systems more broadly. For blockchain designers, we
distill our results into three pieces of advice. First, suppose your consistency constraints
are over a longer time horizon than a single epoch. In that case, a queue with dynamic
capacity can significantly reduce average wait times without sacrificing security – MINSLACK
(Algorithm 1) is a simple example of maximally processing the rate of withdrawals given a set
of constraints. Second, if you believe that participants in the system may have heterogeneous
disutility from waiting in the exit queue, their welfare would be improved by implementing
a priority queue – PRIO-MINSLACK (Algorithm 3) can quickly decrease the overall disutility.
Third, if you think that the time-sensitivity or arrival process of future withdrawal requests is
particularly fat-tailed, be sure to reserve some capacity in the system to allow the processing
of highly time-sensitive withdrawals during periods of congestion – α-MINSLACK (Algorithm 4)
is an example of this reservation.

We point to a few intriguing directions in terms of future work. Firstly, several empirical
questions have been raised by this study. Assessing the actual staker surplus lost from
sub-optimal queue designs would be helpful. The protocol may care about this staker surplus
because reducing the staker disutility may lessen the emissions needed to incentivize token
holders to stake in the first place. Further study on the heterogeneity in time preferences
among stakers would help determine whether pay-for-priority systems are worth considering.
Lastly, validator utility functions that are non-linear (e.g., a validator who needs their
withdrawal within the next week but doesn’t care when) may lead to different design
considerations and optimal withdrawal mechanisms.

On the theoretical side, note that some of the pay-for-priority systems we have proposed
serve as benchmarks and are unlikely to be implementable in practice (e.g., the dynamic
programming-based efficient allocation in Algorithm 2, which is both computationally difficult
and requires knowledge of the distribution of withdrawal requests). Other mechanisms (e.g.,
PRIO-MINSLACK, Algorithm 3) are feasible as a pay-your-bid mechanism – reminiscent of
the Bitcoin (and Ethereum before EIP-1559) transaction-fee mechanisms. Similar concerns
faced in those contexts, users having to choose an appropriate bid, may apply in withdrawal
mechansims too. The natural question is whether designs with better user experience,
analogous to EIP-1559, exist in this setting.

References
1 Aditya Ansgaonkar. Weak subjectivity in ethereum 2.0, 2020. URL: https://notes.ethereum.

org/@adiasg/weak-subjectvity-eth2.
2 Aditya Asgaonkar, Francesco D’Amato, Roberto Saltini, Luca Zanolini, and Chenyi Zhang.

A confirmation rule for the ethereum consensus protocol. arXiv preprint, 2024. arXiv:
2405.00549.

3 Avalanche-Documentation. How to stake on avalanche, 2024. URL: https://docs.avax.
network/nodes/validate/how-to-stake.

4 Beacon-Chain-Specifications. Phase 0 – the beacon chain, 2020. URL: https://github.com/
ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md.

5 Dirk Bergemann and Juuso Välimäki. The dynamic pivot mechanism. Econometrica, 78(2):771–
789, 2010.

https://notes.ethereum.org/@adiasg/weak-subjectvity-eth2
https://notes.ethereum.org/@adiasg/weak-subjectvity-eth2
https://arxiv.org/abs/2405.00549
https://arxiv.org/abs/2405.00549
https://docs.avax.network/nodes/validate/how-to-stake
https://docs.avax.network/nodes/validate/how-to-stake
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md

M. Neuder, M. Pai, and M. Resnick 20:21

6 Gavin Birch. The staking module, 2020. URL: https://github.com/gavinly/
CosmosParametersWiki/blob/master/Staking.md#1-unbondingtime.

7 Lorenz Breidenbach, Christian Cachin, Benedict Chan, Alex Coventry, Steve Ellis, Ari Juels,
Farinaz Koushanfar, Andrew Miller, Brendan Magauran, Daniel Moroz, et al. Chainlink 2.0:
Next steps in the evolution of decentralized oracle networks, 2021.

8 Eric Budish, Andrew Lewis-Pye, and Tim Roughgarden. The economic limits of permissionless
consensus. arXiv e-prints, 2024. arXiv:2405.09173.

9 Vitalik Buterin. Proof of stake: How i learned to love weak subjectivity. 2014, 2014. URL: https:
//blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity.

10 Vitalik Buterin. Suggested average-case improvements to reduce capital costs of be-
ing a casper validator, 2018. URL: https://ethresear.ch/t/suggested-average-case-
improvements-to-reduce-capital-costs-of-being-a-casper-validator/3844.

11 Vitalik Buterin. Rate-limiting entry/exits, not withdrawals, 2019. URL: https://ethresear.
ch/t/rate-limiting-entry-exits-not-withdrawals/4942.

12 Vitalik Buterin. Weak subjectivity under the exit queue model, 2019. URL: https://
ethresear.ch/t/weak-subjectivity-under-the-exit-queue-model/5187.

13 Vitalik Buterin. Vitalik’s annotated ethereum 2.0 spec, 2020. URL: https://github.com/
ethereum/annotated-spec/blob/master/phase0/beacon-chain.md.

14 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint, 2017.
arXiv:1710.09437.

15 Capella-Specifications. Capella – the beacon chain, 2023. URL: https://github.com/
ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md.

16 Cardano-Undelegation. Cardano (ada) undelegation period, 2023. URL: https://p2p.org/
faq/en/articles/5253938-cardano-ada-undelegation-period.

17 Chainlink-Docs. Introducing the chainlink staking platform: v0.2 upgrade and launch details,
2024. URL: https://blog.chain.link/chainlink-staking-v0-2-overview/#unbonding_
mechanism.

18 Tarun Chitra. Competitive equilibria between staking and on-chain lending. CryptoEcononmic
Systems (CES), 2021.

19 Cosmos-Staking-Module. x/staking, 2023. URL: https://docs.cosmos.network/v0.47/
build/modules/staking.

20 Soubhik Deb, Robert Raynor, and Sreeram Kannan. Stakesure: Proof of stake mechanisms
with strong cryptoeconomic safety, 2024. arXiv:2401.05797.

21 EigenLabs. Eigen: The universal intersubjective work token, 2024. URL: https://github.
com/Layr-Labs/whitepaper/blob/master/EIGEN_Token_Whitepaper.pdf.

22 EigenLayer-Documentation. Escrow period (withdrawal delay), 2023. URL: https://docs.
eigenlayer.xyz/eigenlayer/restaking-guides/restaking-user-guide/#escrow-period-
withdrawal-delay.

23 Sam Hart and Max Einhorn. Building a liquid restaking token from first principles, 2024.
URL: https://timewave.computer/liquid-restaking-token.

24 Gur Huberman, Jacob D Leshno, and Ciamac Moallemi. Monopoly without a monopolist:
An economic analysis of the bitcoin payment system. The Review of Economic Studies,
88(6):3011–3040, 2021.

25 Oisin Kyne. Eip-7002: Execution layer triggerable exits, 2023. URL: https://
ethereum-magicians.org/t/eip-7002-execution-layer-triggerable-exits/14195/6.

26 Ron Lavi and Noam Nisan. Competitive analysis of incentive compatible on-line auctions. In
Proceedings of the 2nd ACM Conference on Electronic Commerce, pages 233–241, 2000.

27 Jacob D Leshno. Dynamic matching in overloaded waiting lists. American Economic Review,
112(12):3876–3910, 2022.

28 Andrew Lewis-Pye and Tim Roughgarden. Permissionless consensus, 2024. arXiv:2304.14701.
29 dApp Lion and Tim Bieko. Eip-7514: Add max epoch churn limit, 2023. URL: https:

//eips.ethereum.org/EIPS/eip-7514.

AFT 2024

https://github.com/gavinly/CosmosParametersWiki /blob/master/Staking.md#1-unbondingtime
https://github.com/gavinly/CosmosParametersWiki /blob/master/Staking.md#1-unbondingtime
https://arxiv.org/abs/2405.09173
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity
https://ethresear.ch/t/suggested-average-case-improvements-to-reduce-capital-costs-of-being-a-casper-validator/3844
https://ethresear.ch/t/suggested-average-case-improvements-to-reduce-capital-costs-of-being-a-casper-validator/3844
https://ethresear.ch/t/rate-limiting-entry-exits-not-withdrawals/4942
https://ethresear.ch/t/rate-limiting-entry-exits-not-withdrawals/4942
https://ethresear.ch/t/weak-subjectivity-under-the-exit-queue-model/5187
https://ethresear.ch/t/weak-subjectivity-under-the-exit-queue-model/5187
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
https://arxiv.org/abs/1710.09437
https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md
https://p2p.org/faq/en/articles/5253938-cardano-ada-undelegation-period
https://p2p.org/faq/en/articles/5253938-cardano-ada-undelegation-period
https://blog.chain.link/chainlink-staking-v0-2-overview/#unbonding_mechanism
https://blog.chain.link/chainlink-staking-v0-2-overview/#unbonding_mechanism
https://docs.cosmos.network/v0.47/build/modules/staking
https://docs.cosmos.network/v0.47/build/modules/staking
https://arxiv.org/abs/2401.05797
https://github.com/Layr-Labs/whitepaper/blob/master/EIGEN_Token_Whitepaper.pdf
https://github.com/Layr-Labs/whitepaper/blob/master/EIGEN_Token_Whitepaper.pdf
https://docs.eigenlayer.xyz/eigenlayer/restaking-guides/restaking-user-guide/#escrow-period-withdrawal-delay
https://docs.eigenlayer.xyz/eigenlayer/restaking-guides/restaking-user-guide/#escrow-period-withdrawal-delay
https://docs.eigenlayer.xyz/eigenlayer/restaking-guides/restaking-user-guide/#escrow-period-withdrawal-delay
https://timewave.computer/liquid-restaking-token
https://ethereum-magicians.org/t/eip-7002-execution-layer-triggerable-exits/14195/6
https://ethereum-magicians.org/t/eip-7002-execution-layer-triggerable-exits/14195/6
https://arxiv.org/abs/2304.14701
https://eips.ethereum.org/EIPS/eip-7514
https://eips.ethereum.org/EIPS/eip-7514

20:22 Optimizing Exit Queues for Proof-Of-Stake Blockchains

30 Joachim Neu, Ertem Nusret Tas, and David Tse. Short paper: Accountable safety implies
finality. Cryptology ePrint Archive, 2023.

31 Noam Nisan. Serial monopoly on blockchains, 2023. arXiv:2311.12731.
32 Mallesh Pai and Max Resnick. Dynamic transaction fee mechanism design. arXiv preprint,

2023.
33 David C Parkes and Satinder Singh. An mdp-based approach to online mechanism design.

Advances in neural information processing systems, 16, 2003.
34 Polkadot-Validator-Guide. Run a validator (polkadot), 2024. URL: https://wiki.polkadot.

network/docs/maintain-guides-how-to-validate-polkadot.
35 Polygon-Knowledge-Layer. How to delegate, 2023. URL: https://docs.polygon.technology/

pos/how-to/delegate/#unbond-from-a-validator.
36 Potuz. Withdrawals without queues, 2022. URL: https://github.com/ethereum/

consensus-specs/pull/3068.
37 Tim Roughgarden. Transaction fee mechanism design for the ethereum blockchain: An

economic analysis of eip-1559. arXiv preprint, 2020. arXiv:2012.00854.
38 Tim Roughgarden. Transaction fee mechanism design. ACM SIGecom Exchanges, 19(1):52–55,

2021.
39 Solana-Documentation. Delegation timing considerations, 2023. URL: https://solana.com/

staking#delegation-timing-considerations.
40 Xuanming Su and Stefanos A Zenios. Recipient choice can address the efficiency-equity trade-off

in kidney transplantation: A mechanism design model. Management science, 52(11):1647–1660,
2006.

https://arxiv.org/abs/2311.12731
https://wiki.polkadot.network/docs/maintain-guides-how-to-validate-polkadot
https://wiki.polkadot.network/docs/maintain-guides-how-to-validate-polkadot
https://docs.polygon.technology/pos/how-to/delegate/#unbond-from-a-validator
https://docs.polygon.technology/pos/how-to/delegate/#unbond-from-a-validator
https://github.com/ethereum/consensus-specs/pull/3068
https://github.com/ethereum/consensus-specs/pull/3068
https://arxiv.org/abs/2012.00854
https://solana.com/staking#delegation-timing-considerations
https://solana.com/staking#delegation-timing-considerations

	1 Introduction
	2 Literature Review
	3 Model
	4 Homogeneous Values
	5 Heterogeneous Values and Paying for Priority
	5.1 Efficient withdrawals under heterogeneity
	5.1.1 The Efficient Allocation Rule
	5.1.2 Pricing Rule
	5.1.3 Optimal policy

	5.2 Practical considerations for the heterogeneous value setting

	6 Theory and Practice
	6.1 Accountable Safety and Limiting Withdrawals
	6.2 Ethereum
	6.3 Other Proof-of-Stake Blockchains
	6.4 Other applications of staking
	6.5 Liquid staking & restaking tokens

	7 Conclusion

