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Abstract
We study the amount of maximal extractable value (MEV) captured by validators, as a function of
searcher (or order flow provider) competition in blockchains with competitive block building markets
such as Ethereum. We argue that the core is a suitable solution concept in this context that makes
robust predictions that are independent of implementation details or specific mechanisms chosen.
We characterize how much value validators extract in the core and quantify the surplus share of
validators as a function of searcher competition. Searchers can obtain at most the marginal value
increase of the winning block relative to the best block that can be built without their bundles.
Dually this gives a lower bound on the value extracted by the validator. If arbitrages are easy
to find and many searchers find similar bundles, the validator gets paid all value almost surely,
while searchers can capture most value if there is little searcher competition per arbitrage. For the
case of passive block-proposers we study, moreover, mechanisms that implement core allocations
in dominant strategies and find that for submodular value, there is a unique dominant-strategy
incentive compatible core-selecting mechanism that gives each searcher exactly their marginal value
contribution to the winning block.
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1 Introduction

Blockchains that support smart contracts frequently run decentralized finance (DeFi) applic-
ations. This in turn gives rise to the phenomenon of miner/maximal extractable value, [5]:
Blockchain protocols give validators, sometimes called proposers, the right to order transac-
tions for a particular block. This effectively means that validators have a local monopoly
to include or exclude transactions or to order transactions in a particular way, in order to
generate value for themselves from this privileged position. However, since extracting value
from transaction ordering in an optimal way is a difficult task, more specialized actors such
as block builders and (arbitrage) searchers participate in the value extraction process in
smart contract blockchains such as Ethereum. Block builders aggregate different arbitrage
opportunities, liquidations or “sandwiches” in one block, using transactions from the pub-
lic mempool, different private mempools, order flow auctions or other transaction sources
together with their own transactions. Then, they bid against other builders, to get their
block published in a canonical chain of blocks. The bid is paid to the current block proposer.
Arbitrage opportunities are typically found by more specialized players, searchers and passed
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21:2 Searcher Competition in Block Building

to the builders. The resulting strategic interaction between searchers, builders and the
validator lead to a value distribution of the arbitrage gains between these players. Empirical
evidence shows that the majority of the total observable MEV is captured by validators. 2

In this paper, we analyze the competition between searchers (more generally order-flow
providers) in order to explain the value distribution between the proposer (or block builder)
and the searchers. Different searchers may capture different value from different opportunities
and may or may not find unique opportunities that are not found by competing searchers.
This competition and specialization should in turn explain the value capture by different
searchers in the MEV supply chain. Our model abstracts away from the intermediate layer
of block building where block builders aggregate searcher bundles to blocks and compete in
a bidding procedure. However, the ability for different combination of searchers or order flow
providers to jointly generate different blocks is captured implicitly by the solution concept we
focus on: We consider core allocation where different combinations of players can construct
blocks of different values and distribute the value among themselves. The core constraints
require that no coalition of players should be able to generate more value for themselves
(produce a more valuable block) than they get paid in the realized allocation. Thus, while we
generically talk about searchers, our model can for example also capture the case where some
searchers act as block builders. The core is a natural solution concept in the context of block
building and MEV capture as it captures the competition and possibility of collaboration
of different players while abstracting away from any particular mechanisms that would
intermediate between searchers, builders and proposers. Thus, it provides robust predictions
on the set of plausible value distributions that can arise in any sufficiently competitive block
building market. As a next step, one can then look into mechanism that implement particular
core allocations through elicitating privately held information of searchers about the value
they can generate from different blocks.

Our first result, shows that searchers can at most obtain their marginal contribution to
the winning block (the difference in value between the best block that can be built with their
transactions and without their transactions) and if value is submodular, then giving each
searcher their marginal contribution is in the core.3 A straightforward calculation shows that
in a world with passive block producers, this particular core allocation coincides with the
Vickrey-Clark-Growes (VCG) outcome ([11]) and hence can be implemented in dominant
strategies (Corollary 5). On the other hand (Proposition 6), no other core-selecting mechanism
is dominant-strategy incentive compatible. These result gives additional justification to
further study the searcher-optimal point in the core: the value obtained by the validator in
this point can be interpreted as the maximal extractable value he can obtain taking into
account information rents captured by the searchers.

As a next step, we consider a stochastic model of searcher competition to study the
value distribution between the searchers and the validator. Different (arbitrage or MEV)
opportunities have a fixed probability of being found by a searcher. The more searchers find
an opportunity, the more value can be extracted by the validator and the less value can
be extracted by the searchers. We show that if the probability of finding an opportunity is
bounded from below by p > log(n)/n, where n is the number of searchers actively searching
in the strategy, with high probability the validator captures all value in all core allocations.

2 See https://www.galaxy.com/insights/perspectives/distribution-of-mev-surplus/.
3 While transactions submitted to a builder might exhibit significant complementarities, submodularity

can be argued to be a reasonable assumption in a sufficiently consolidated market. Order flow providers
with complementary flow have an incentive to integrate to capture more value together. Thus, the
realizable value might be submodular in the contributions of the different (consolidated) players.

https://www.galaxy.com/insights/perspectives/distribution-of-mev-surplus/
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On the other hand, if the probability of sucessfully searching is very low, p ∈ Θ(1/n),
then with positive constant probability, searchers will be able to capture all value in the
searcher-optimal core allocation.

Related Literature
The phenomenon of miner extractable value has first been documented in [5]. Another early
contribution on front-running in decentralized finance is [6]. MEV has been documented
by a variety of public dashboards and data sets, see for example https://mevboost.pics/,
https://libmev.com/. Recently, also the magnitude of non-atomic arbitrage has been
empirically investigated, where searchers realize one lag of a trade on chain and one on a
different domain, see e.g.[8] and https://dune.com/flashbots/lol.

The block building market structure that has evolved in Ethereum since the change to
proof of stake, has been the topic of several recent contributions: The dashboard https://
orderflow.art/ documents empirically the supply chain through which transaction requests
land on chain. [1] studies whether MEV and Proof-of-Stake rewards capture leads to
centralization, discussing both validator and builder roles in the market formation. [12] argue
that in the current market structure searchers and builders have an incentive to vertically
integrate. [4] argue that the builder is prone to centralization. [15] provide descriptive
statistics on the level of decentralization on the builder landscape. [3] proposes a dynamic
MEV sharing mechanism that the authors argue results into better decentralization and fair
allocation.

[2] studies questions of implementation with active block producers. Our model is similar
to theirs, but we focus on the question of implied value distribution. Our positive results for
dominant-strategy incentive compatible core-selecting mechanisms for passive block builders
complement their negative result for active block builders. [2] also study the role of searchers
as intermediaries.

The notion of the core was first formally defined in [7]. For an overview of results around
the core and submodularity see e.g. [9].

2 Model

There is a finite set S of searchers that submit transactions for inclusion in the block.
Similarly as in [2] we will usually identify searchers with (bundles of) transactions they
have sent for inclusion. However, our model also allows for the interpretation that the same
searcher (address) sends multiple bundles for inclusion. There is one validator (proposer),
denoted by V . For each set of searchers A ⊆ S there is a finite set of feasible blocks B(A)
that can be built from bundles of transactions submitted by searchers in A. A searcher i

generates value vi(B) from a block B and the validator generates value vV (B) from block
B. Our model can capture externalities (searcher i’s realized value may not only depend
on her included transactions but also other transactions in the realized block) and active
validators/block producers (we may have vV (B) ̸= 0). We assume that utility is transferable
and the final utility realized by searcher i if block B is realized and she makes a payment of
pi (e.g. to the validator) is vi(B) − pi.

Since utility is transferable, we can define a coalitional value function v : 2S∪{V } → R+
by

v(S ∪ V ) := max
B∈B(S)

(∑
i∈S

vi(B) + vV (B)
)

,

AFT 2024
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and

v(S) = 0 if V /∈ S,

i.e. in case the validator is part of the coalition, the coalitional value is the value of the total
welfare maximizing block consisting of transactions from searchers in the coalition, and in
case the validator is not part of the coalition, no value can be generated, as the validator
is necessary to realize a block. It will be useful subsequently to introduce the short hand
notation

v̄(S) := v(S ∪ V )

for S ⊆ S to denote the value that searchers S can generate together with the validator.
Observe that by construction, the (collective) value function is monotonic,

v̄(A) ≤ v̄(B) for all A ⊆ B ⊆ S;

if we receive more bundles to build a block that will increase welfare weakly, since we can
always discard submitted bundles when building a block. Moreover, we make the following
assumption on the (collective) value function:

Submodularity. Let A, B ⊆ S. Then

v̄(A) + v̄(B) ≥ v̄(A ∪ B) + v̄(A ∩ B),

Submodularity states that the value of a block we can build from transactions from
searchers in A and B, is bounded by subtracting the value of a block we can build from
transactions in both A and B from the sum of values we can achieve from building a block
with transactions in A and a block with transactions in B.

Submodularity requires that there are not-too-strong complementarities between different
submitted bundles. We can justify this assumption in two ways: first, it may be that
complementarities are not strong and different MEV opportunities provide value that is
mostly independent from other opportunities. Second, it may be that the complementarities
are already absorbed by searchers, e.g. in the sense that searchers who provide complementary
flow have an incentive to integrate their operations and send their flow together to extract
more value. It is worth noting that our upper bound on searcher values holds also for
non-submodular value functions, but may be loose in that case.

It is easy to show that for monotone value functions, submodularity is equivalent to
requiring decreasing marginal value:

Decreasing Marginal Value. Let A ⊆ B ⊆ S and a ∈ A. Then

v̄(B) − v̄(B \ {a}) ≤ v̄(A) − v̄(A \ {a}).

A direct consequence of submodularity is the following lemma which will be useful
subsequently:

▶ Lemma 1. Let A ⊆ B ⊆ S. Then

v̄(B) − v̄(A) ≥
∑

i∈B\A

(v̄(B) − v̄(B \ {i})).
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Proof. We prove the result by induction on N := |B \A|. For N = 0 the result holds trivially.
Now suppose the result hold for N ≥ 0 and consider the case N + 1. Let j ∈ B \ A. By
induction assumption

v̄(B \ {j}) − v̄(A) ≥
∑

i∈B\(A∪{j})

(v̄(B \ {j}) − v̄(B \ {i, j})).

Adding v̄(B) − v̄(B \ {j}) on both sides and using submodularity (which implies decreasing
marginal value), we obtain

v̄(B) − v̄(A) ≥
∑

i∈B\(A∪{j})

(v̄(B \ {j}) − v̄(B \ {i, j})) + v̄(B) − v̄(B \ {j})

≥
∑

i∈B\(A∪{j})

(v̄(B) − v̄(B \ {i})). ◀

An allocation is a value distribution x : S ∪ V → R+ such that∑
j∈S∪V

xj ≤ v(S ∪ V ).

An allocation is in the core if the following inequality∑
j∈C

xj ≥ v(C) (1)

holds for any subset C ⊆ S ∪ V and all value is distributed:∑
j∈V ∪S

xj = v(S ∪ V ).

▶ Remark 2. As usual in the formulation of the core, the solution proposes a value al-
location without specifying an explicit implementation through a block and payments
between the searchers and the validator. Let B∗ ∈ B(S) be a welfare maximizing block,
i.e.

∑
i∈S∪V vi(B∗) = v(S ∪ V ). Then a core value allocation x can be implemented by

realizing the block B∗ and requiring that each individual searcher i makes a payment of
pi = vi(B∗) − xi to the validator.

Immediately from the requirement that without the validator no value can be realized, it
follows that the validator getting all gains is in the core.

▶ Observation 3. The core is always non-empty. The allocation where xV = v(S ∪ V ) and
xi = 0 for each i ∈ S is in the core.

3 Analysis

Our first main result states each searcher can at most capture their marginal contribution
to the realized block, and any allocation that gives each searcher at most their marginal
contribution is in the core. In particular, this implies that there is a searcher optimal core
allocation (giving each searcher exactly their marginal contribution to the realized block)
and a validator optimal allocation (giving the validator all realized value).

▶ Proposition 4. An allocation is in the core if and only

0 ≤ xi ≤ v̄(S) − v̄(S \ {i})

for each i ∈ S and xV = v̄(S) −
∑

i∈S xi.

AFT 2024
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Proof. First we show that xi ≤ v̄(S) − v̄(S \ {i}) for each i. Suppose not. In that case

xV +
∑

j∈S\{i}

xj = v̄(S) − xi < v̄(S \ {i}).

The previous inequality contradicts the core-stability of x which requires inequality (1) to
hold for C = S \ {i} ∪ V . The lower bound on xi is trivial. It remains to show that all
allocations with 0 ≤ xi ≤ v̄(S) − v̄(S \ {i}) are in the core. Let x be a vector satisfying these
inequalities. Let A ⊆ S and observe that

xV +
∑
j∈A

xj = v̄(S) −
∑

i∈S\A

xi ≥ v̄(A),

where the last inequality follows from Lemma 1. Thus, the core inequalities (1) are satisfied
for all coalitions A ∪ V with A ⊆ S. For coalitions without the validator the core inequalities
are trivially satisfied, as all agents get non-negative value in x. ◀

Implementation
In reality, the values that searchers obtain from different blocks is private information to
them. However, in a world with passive block producers4, we can implement the extreme
point in the core that gives maximal value to searchers in dominant strategies: Consider
the case where the block producer is passive i.e. vV (B) = 0 for each block B. Observe that
VCG-payments in this problem are defined by

pi := max
B∈B(S\{i})

∑
j ̸=i

vj(B) −
∑
j ̸=i

vj(B∗) = v̄(S \ {i}) −
∑
j ̸=i

vj(B∗),

for each i ∈ S where B∗ is the welfare-optimal block that can be produced. A straightforward
calculation shows that,

vi(B∗) − pi =
∑
j∈S

vj(B∗) − v̄(B \ {i}) = v̄(S) − v̄(S \ {i}),

i.e. the searcher-optimal core outcome coincides with the VCG outcome. We obtain the
following corollary of Proposition 4:

▶ Corollary 5. Under submodular value and with passive block-producers, the searcher-optimal
core-outcome can be implemented in dominant strategies.

On the other hand, it is straightforward to see that other selections from the core that not
always select the VCG outcome are not dominant-strategy incentive compatible.

▶ Proposition 6. Under submodular value and with passive block-producers, any core-
selecting mechanism that is not always choosing the searcher-optimal outcome in the core is
not dominant-strategy incentive compatible.

4 We know from [2] that with active block producers implementation of non-trivial solutions is not
possible. This in turn resembles previous results from other context where negative results prevail if
incomplete information in a two-sided markets is on both sides of the market [10, ]. In particular, for
assignment games [14], which can be re-interpreted as the special case of our model where the validator
has additively separable value, there is no mechanism that implements a core-allocation in dominant
strategies, for any domain of valuations when there is at least one profile of valuations for which a
core allocation that gives positive value to some searcher exists. For a proof of this “folk theorem” see
e.g. [13].
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Proof. Suppose for reported value functions (vi)i∈S , a block B∗ and payments (pi)i∈S are
chosen by the mechanism. By core-stability and Proposition 4, we have 0 ≤ vi(B∗) − pi ≤
v(S) − v(S \ {i}) for searcher i, or equivalently

vi(B∗) ≥ pi ≥ v̄(S \ {i}) −
∑
j ̸=i

vj(B∗)

Suppose for the sake of contradiction that the last inequality is strict and i reports different
values ṽi with ṽi(B) = vi(B) for B blocks not including transactions by i, and ṽi(B) ≤ ṽi(B∗)
for blocks including transactions by i (so that B∗ is still optimal) and

pi > ṽi(B∗) > v̄(S \ i) −
∑
j ̸=i

vj(B∗).

Note that this change in value preserves the submodularity of the coalitional value function
that the same block B∗ is optimal and that the payment p̃i for searcher i now satisfies

pi > ṽi(B∗) ≥ p̃i ≥ v̄(S \ i) −
∑
j ̸=i

vj(B∗),

which is stricly less. Therefore i gains from misreporting. ◀

The corollary and previous proposition motivate to further study the searcher-optimal
point in the core. The value that a (passive) builder/validator obtains in this point is the
maximal extractable value taken into account information rents that searchers can capture.
In the next sections, we study the particular case where the value of a block is derived from
independent (MEV) opportunities for which different searchers compete. For that case, we
derive results on when competition lets the core collapses to one point (in which the validator
captures all value) and when lack of competition allows searchers to generate positive value
in the searcher-optimal core allocation.

4 Independent Bundles and Competing Searchers

In this section, we consider the special case of additively separable value where the value of a
block is the sum of values derived from the individual (bundles) of transactions. Moreover, we
look at a scenario where multiple searchers may compete for the same (arbitrage) opportunities
so that their submitted bundles possibly “clash” with bundles submitted by other searchers.5
We denote opportunities by A and now can identify a block by a matrix B = (Bij)i∈A,j∈S
where Bij = 1 if searcher j’s bundle competing for opportunity i is included, Bij = 0 if it is
not included. We require that

∑
j∈S Bij ≤ 1 so that multiple clashing bundles cannot be

included in the same block. We can then write searcher j’s value from block B as

vj(B) =
∑
i∈A

vijBij ,

where vij is the value extracted by searcher j from opportunity i. We can add additional
constraints such as a capacity constraint on the total number of bundles. In the unconstrained
case, where all blocks are feasible, we have

v(S ∪ V ) = max
B∈B(S)

∑
i∈A

∑
j∈S

vijBij =
∑
i∈A

max
j∈S

vij . (2)

5 This matches the reality of searching where often different searchers compete in the same strategy and
find conflicting bundles among which the block builder chooses the most profitable one and includes it
in the block while discarding the less profitable competing bundles. Around one third of submitted
bundles to Ethereum block builders “clash”.

AFT 2024
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To get an intuition how the core looks like in this case, we start this section with few
examples and observations. Previously, in Observation 3 we had observed that giving all
value to the validator is always in the core. In the opposite direction, if there is no searcher
competition, i.e. no two searchers find the same opportunity, the validator can receive no
value in the core.

▶ Observation 7. There are examples of core allocations where the validator receives 0.

Proof. Suppose that for each opportunity i ∈ A there is at most one searcher submitting
a bundle of positive value, vij > 0 for at most one j. Then, the value allocation with
xj =

∑
i:vij>0 vij for each searcher j and xV = 0 is in the core. ◀

Next, we give an example where the maximum payment to the validator is enforced in
the core.

▶ Observation 8. There are examples where the validator gets the full value of the winning
block in any core allocation.

Proof. Suppose for each opportunity i ∈ A at least two searchers submit the same highest
value bundle (or no searcher finds the opportunity). Then for each searcher j we have
xj = v(S) − v(S \ {j}) = 0. The claim follows from Proposition 4. ◀

For a vector of non-negative numbers X, let SH(X) denote the second highest coordinate
of it. Then, let M denote the following sum:

M :=
∑
i∈A

Mi :=
∑
i∈A

SH((vij)j∈S). (3)

Additive value function as defined in (2) are submodular. Thus, we obtain the following
special case of Proposition 4.

▶ Corollary 9. The allocation in which the validator receives xV = M and searcher j receives
xj =

∑
i:j∈argmaxj∈S vij

(vij − Mi) is in the core.

This particular core allocation is the worst for the validator and the best for searchers
and can be implemented, see Corollary 5, in dominant strategies by a generalized second
price auction for bundles.

Stochastic Model
In this section, we analyze the core when searchers find bundles with some probability and
success is independent across searchers and opportunities. Let vij be a binary random
variable, which is 1 with probability p and 0 with probability 1 − p.6 Thus, p measures how
easy it is to find an arbitrage (bundle).

▶ Proposition 10. Let n := |S|. If p > 2 log n
n and m := |A| < n, then the validator receives

the entire block value with high probability in any core allocation.

6 Generalizations of the subsequent results to non unit value that can be different for different opportunities
are straightforward. The only assumption needed is that searchers conditional on finding the same
opportunity generate the same value from it. We could also accommodate heterogeneous value from the
same opportunity as long as the noise is sufficiently bounded.
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Proof. We show that there are at least 2 searchers who have positive value each arbitrage.
This can be done using direct computation of probabilities and an application of the union
bound inequality. Consider the following sum Yi :=

∑
j∈S vij . Thus, Yi is the number of

searchers that find opportunity i. Note that Yi is a Binomial random variable with parameters
n and p, that is Yi ∼ Bin(n, p).

P [Yi < 2] = P [Yi = 0] + P [Yi = 1] = (1 − p)n +
(

n

1

)
(1 − p)n−1p

≤ e−pn + npe−p(n−1) ≤ 1
n2 + 2 log n

1
n2 ≤ 2 log n

n2 , (4)

where the first inequality is obtained from the well known inequality: 1 − x ≤ e−x for any
x > 0. By the union bound, we have:

P [at least one Yi < 2] ≤ mP [Y1 < 2] ≤ n · log n

n2 = log n

n
.

The last inequality is by (4). For any ε > 0 there is a n large enough so that log n
n < ε and

therefore

P [Yi ≥ 2 for any i] ≥ 1 − ε.

Applying Proposition 4 shows the claim of the proposition. ◀

On the other hand, if the probability of discovering opportunities shrinks sufficiently fast
in the number of searchers, then searchers can capture value with positive non-vanishing
probability:

▶ Proposition 11. If p ∈ Θ( 1
n ) then with positive probability that is constant in n the

validator receives 0 in the searcher-optimal core allocation.

Proof. For each opportunity i ∈ A, with constant probability, there is exactly one searcher
that has a positive value, i.e., Yi = 1. Namely,

P [Yi = 1] =
(

n

1

)
(1 − p)n−1p → 1

e
Θ(1),

as n → ∞. Then, P [Yi = 1 for any i] → Θ
( 1

em

)
as n → ∞. That is, searchers complement

each other in finding different arbitrages. From Proposition 4, with probability Θ
( 1

em

)
, we

have M = 0. ◀

▶ Remark 12. The previous results discuss the value distribution for scenarios where the
block value is expected to be positive. If probability shrinks faster than 1/n as n grows,
then with high probability the produced block has value 0. However, conditional on the
block having positive value, all value is captured by searchers in the searcher-optimal core
allocation.
As remarked in footnote 5, block builders observe around ∼ 1/3 of submitted bundles clashing.
We can use this number to get approximate values of the parameters in our model: we use as
n = 125 which is the number of addresses that have placed at least 2 bundles in Ethereum
blocks within the last 30 days prior to writing this paper (excluding addresses that have
landed only one bundle gives us a crude way to identify addresses that have a high chance of
being the main address used by a searcher) according to the website https://libmev.com/.
Then

2/3 ≈ P [Yi < 2] = (1 − p)125 + 125(1 − p)124p ⇒ p ≈ 1%.

AFT 2024
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Capacity Constraints
The previous model can be easily adapted to the case of capacity constraints on blocks
where a block can only contain up to a fixed number of transactions, denoted by K. Note
that submodularity is maintained when adding a capacity constraint. Thus, Proposition 4
naturally extends to the case of capacity constraints. For the model with independent
bundles, we now can consider the value function

v̄K(S) = max
B∈B(S)

∑
i∈A

∑
j∈S

vijBij = max
A′⊆A,|A′|≤K

∑
i∈A′

max
j∈S

vij .

It follows immediately that Corollary 9 holds with

MK := max
A′⊆A,|A′|≤K

∑
i∈A′

Mi

and xK
j :=

∑
i:j∈A′∩argmaxjvij

(vij − Mi).
Next, we consider how the bounds on searcher and validator value capture for the

stochastic model change with capacity constraints on the block. We assume that only a
constant fraction of possible opportunities can be accommodated. With a bound on the
block size, the probability threshold above which the validator captures all value in all core
allocation becomes lower, and now matches the corresponding threshold from Proposition 11
where the probability is positive (Proposition 11 still holds with a bound on the block size).

▶ Proposition 13. Let n := |S|. assume the block has capacity to include (1−α)m transactions
where m := |A| and 1/m < α < 1 is a constant. Then, there is a decreasing function ϕ such
that if p ∈ ω( ϕ(α)

n ), the validator gets the entire block value with high probability in any core
allocation.

Proof. We show that there are at least 2 searchers who have positive value each arbitrage.
As in the proof of Proposition 10 defining Yi :=

∑
j∈S vij , we obtain

P [Yi < 2] ≤ e−pn + npe−p(n−1). (5)

Now consider the probability that for more than αm indices we have Yi < 2. This is bounded
by

P [Yi < 2 for at least αm indices i] ≤
(

m

αm

)
P [Y1 < 2]αm ≤

( 1
α

(
e1−pn + pne1−p(n−1)))αm

,

where the last inequality uses the well-known inequality
(

a
b

)
≤
(

ae
b

)b and the previously
obtained inequality (5). Choosing ϕ(α) to satisfy

(1 + ϕ(α))e−ϕ(α) = α

e
,

we have for p ∈ ω(ϕ(α)/n) that for any ϵ > 0 there is a n such that

e1−pn + pne1−p(n−1)

α
< ϵ

and therefore

P [Yi ≥ 2 for at least (1 − α)m indices i] ≥ 1 − εαm > 1 − ε.

Applying Proposition 4 shows the claim of the proposition. ◀

▶ Remark 14. The previous result is tight in the sense that the matching result Proposition 11
which holds for p ∈ Θ(1/n), still holds for the case of capacity constraints on the block.
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5 Conclusion

We have studied MEV extraction in block building as a function of searcher competition
and have argued that the core, and in particular the rule that selects the searcher-optimal
point within the core are suitable solution concepts that allow us to make robust prediction
about value distribution in MEV extraction. We have further identified a dominant-strategy
incentive compatible mechanism, giving searchers their marginal value contribution to the
realized block, which would be a theoretically appealing payment mechanism for searchers in
the case of passive proposers/builders.

The model and solution concept allowed us to make sense of stylized facts about the
Ethereum block building market: validators capture most of the value most of the time,
and searchers with unique edge that are less exposed to competition are able to capture
significant value. A natural extension of our model for further research would add correlation
between different MEV opportunities to our stochastic model. Such an enhanced model
would be particularly suitable to study the competition between different block builders and
would possibly make theoretical predictions about concentration and value capture in the
builder market.
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