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Abstract
Decentralized finance (DeFi) borrowing and lending platforms are crucial to the decentralized
economy, involving two main participants: lenders who provide assets for interest and borrowers
who offer collateral exceeding their debt and pay interest. Collateral volatility necessitates over-
collateralization to protect lenders and ensure competitive returns. Traditional DeFi platforms use a
fixed interest rate curve based on the utilization rate (the fraction of available assets borrowed) and
determine over-collateralization offline through simulations to manage risk. This method doesn’t
adapt well to dynamic market changes, such as price fluctuations and evolving user needs, often
resulting in losses for lenders or borrowers. In this paper, we introduce an adaptive, data-driven
protocol for DeFi borrowing and lending. Our approach includes a high-frequency controller that
dynamically adjusts interest rates to maintain market stability and competitiveness with external
markets. Unlike traditional protocols, which rely on user reactions and often adjust slowly, our
controller uses a learning-based algorithm to quickly find optimal interest rates, reducing the
opportunity cost for users during periods of misalignment with external rates. Additionally, we
use a low-frequency planner that analyzes user behavior to set an optimal over-collateralization
ratio, balancing risk reduction with profit maximization over the long term. This dual approach is
essential for adaptive markets: the short-term component maintains market stability, preventing
exploitation, while the long-term planner optimizes market parameters to enhance profitability and
reduce risks. We provide theoretical guarantees on the convergence rates and adversarial robustness
of the short-term component and the long-term effectiveness of our protocol. Empirical validation
confirms our protocol’s theoretical benefits.
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1 Introduction

Decentralized Finance (DeFi) has revolutionized lending and borrowing by eliminating
centralized intermediaries. The main paradigm shift has been around moving away from
opaque financial entities such as banks, that use proprietary models and data to match
deposits with borrowers [31], to transparent pools with published algorithms to change
interest rates, and borrowing conditions. Major DeFi lending platforms like Aave [2] and
Compound [14] function through these liquidity pools, where lenders provide capital that
borrowers can access. These protocols ensure that borrowers pledge enough collateral to
cover their debt, along with an additional safety buffer.

The simplest variable of interest that any lending protocol seeks to control is the supply-
demand ratio of the pool, referred to as “utilization.” The objective is to maintain a stable
utilization around a designated “optimal utilization” threshold. A coarse rule of thumb
is that when the utilization is low, interest rates remain low to encourage borrowing [5].
As utilization increases, interest rates rise to balance demand with supply and to prevent
excessively high utilization, which could restrict lenders’ ability to withdraw their funds, thus
rendering the market less attractive.

Besides the interest rate, other parameters like the over-collateralization ratio, also known
as the “collateral factor,” govern the long-term risks and profits of the market [30]. In
particular, the cash flow that any lender gets from the protocol is at risk of liquidation, and
in the more severe cases, default. This risk can be minimized by demanding a large amount
of collateral from borrowers, which makes the risk vanishingly small while making the lending
market incredibly inefficient and unattractive for borrowers, especially if the asset used as
the collateral does not suffer frequent price fluctuations. Thus, the collateral factor needs to
be determined based on a careful analysis of recent historic behavior of the collateral asset
price, and the risk appetite of the lender.

Present DeFi platforms fix the interest rate as a static function of the utilization [3, 15].
Choosing utilization as the primary indicator of both supply/demand dynamics and market
risk/attractiveness and employing a fixed interest rate curve to manage these aspects is very
arbitrary and manually determined. Furthermore, traditional DeFi borrowing and lending
markets set the collateral factor through a comprehensive process involving community
proposals and review phases [1, 13]. However, this method is notably slow and struggles to
adapt quickly to rapid market changes, potentially leading to losses and excessive risks due
to the delayed adjustment of parameters in response to market fluctuations and experiencing
long periods of extreme low liquidity or market inefficiencies. For instance, the authors of [21]
have found that the markets for DAI and USDC frequently exhibit periods of extreme low
liquidity with utilization exceeding 80% and 90%, respectively, which further highlights the
inadequacy of current interest rate models.

In this study, we propose an adaptive, automated, and data-driven approach for designing
a borrowing/lending protocol. We begin by modeling the behaviors of borrowers and lenders
based on their incentives in a principled manner and examine how external factors alter these
behaviors over time. We then define market equilibrium (Definition 2), where the market
remains stable within a broader external market, and rates offered by our protocol do not allow
borrowers or lenders to gain an advantage over external market rates. Achieving equilibrium
is crucial in a market with conflicting interests, as instability tends to disproportionately
benefit one group over another, reducing overall fairness and attractiveness of the market [23].
If a protocol cannot dynamically adjust to achieve equilibrium, it risks losing liquidity and
users. Market stability must be promptly restored after disruptions, which may be caused by
changes in external market conditions or shifts in price distributions that affect the market’s
risk and profit structure.
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Traditional stationary-curve borrowing/lending markets depend on user interactions to
push towards equilibrium – for instance, high interest rates prompt borrowers to repay loans,
reducing utilization and interest rates. However, this process is slow and often results in
impermanent loss [36], especially for users with less flexibility in managing their assets. In
order to address this problem, our protocol includes an “interest rate controller” submodule
that learns the equilibrium interest rate from user behaviors, providing a faster convergence
rate, even in the presence of uninformed users who lack precise information on competitive
rates. Unlike traditional methods, our approach does not solely rely on user actions but
actively learns from them to accurately assess and adapt to market conditions. Moreover, we
provide an adversarial robust version of our interest rate controller as well which learns the
equilibrium interest rate as long as the adversary controls less than 50% of the borrowing
demand.

In addition to promptly restoring stability following market disruptions, it is essential for
a protocol to adaptively optimize hyperparameters that enhance long-term system efficiency
and manage risk. Our protocol features a long-term planner that uses the collateralization
ratio as a control variable to adapt to market changes and stabilize the market at a desired
level (Section 3.2). The collateralization ratio is critical for managing long-term risks and
rewards in the system. This ratio has a complex relationship with user behavior and the
overall risk and profitability of the market, which we explore in detail in our paper (Section 4).
The objectives of the protocol within this long-term planner can be defined in many different
ways; In this paper our focus is on maintaining long-term utilization at a target level and
controlling default, however more complex objective functions could be implemented to
address specific market needs or objectives. Our approach provides a general framework for
designing adaptive markets with heterogeneous users who may have varying incentives.

Additionally, we implemented our protocol and tested it with simulated borrowers and
lenders, empirically comparing its performance against fixed-curve baselines. We evaluated
the correctness of our theoretical guarantees in practice and demonstrated that our interest
rate controller can quickly learn the equilibrium interest rate after each market disruption,
regardless of borrowers’ and lenders’ elasticity. In contrast, the baseline protocol fails to find
the equilibrium interest rate when user elasticity is low due to its reliance on user reactions
to push the market toward equilibrium. Moreover, we showed that in the presence of major
market changes, our protocol’s collateral factor planner adaptively activates. By learning
new price and market parameters, it sets the collateral factor to maintain utilization near a
predefined optimal level in the long term.

Related work

Various models on lender and borrower behavior and their equilibria have been explored.
[12] assume parametrized supply and demand curves based on interest rates, approximating
the curve around equilibrium to recommend rates, but they ignore external markets and
default risk minimization. [33] consider external markets, measuring protocol efficiency by
interest rate differences, but their models lack long-term decision-making and liquidation
considerations. [10] examines Nash equilibrium in a model with independent quality shocks,
showing that exogenous asset prices yield one equilibrium, while protocol-influenced prices
cause oscillation and propose ad-hoc contract adjustments. Empirical studies on lender/bor-
rower behavior [19, 20, 34] inform our parameter values. [35] discusses borrower trading
strategies with market makers. Adversarial attacks on lending protocols have also been
highlighted [9, 11, 8].

AFT 2024
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Several recent works in the mechanism design of financial systems have been advocating
for the use of automated adaptivity [40]. The presence of impermanent loss and arbitrage loss
in the design of market makers has also spawned multiple works in adaptive market making
[18, 27, 29]. We seek to bring similar automated methods to lending in DeFi. Platforms such
as Morpho [28] and Ajna [4] provide lenders and borrowers more flexibility when it comes to
equilibrium interest rate discovery via an order-book like structure. However, such protocols
require constant monitoring on the part of the participants for fairness and optimality. Our
objective is to bring these notions of fairness/optimality to more passive pool-based lending
protocols.

The methods used in this work are based on optimal control and filtering literature using
the least squares method [22]. This method has been used in the estimation of underlying
dynamics, given a noisy access to measurements [25, 39]. Several recent works have provided
extensions of this algorithm to ensure adversarial robustness [7, 37, 26], which use hard
thresholding and concentration inequalities to weed out adversarial data.

2 Problem formulation

2.1 Market actors
The DeFi borrowing and lending market includes four key participants: lenders, borrowers,
liquidators, and the protocol, here called P. These actors interact within a shared pool.
This subsection briefly clarifies each participant’s role and the mechanisms protocols use to
regulate their interactions.

To prevent defaults during price declines, the protocol employs liquidation. This occurs
when a borrower’s loan-to-value ratio (debt-to-collateral value) exceeds a threshold liquidation
threshold (LT ), set between 0 and 1 and higher than the initial loan-to-value ratio c. When
this threshold is surpassed, liquidators can claim a portion of the borrower’s collateral to
repay the debt, reducing the loan-to-value ratio. Liquidators receive a fee LI from the
borrower’s collateral. Liquidations enhance system safety but are unfavorable for borrowers
due to the incentive fee. This prompts borrowers to increase their collateral preemptively.
Despite liquidation mechanisms, defaults can occur if collateral prices drop abruptly or if
liquidators lack sufficient incentives to act.

The protocol must adjust parameters {rt, ct, LTt, LIt} over time to stabilize the pool.
Objectives include stabilizing loan supply and demand by setting an interest rate rt and
optimizing parameters to minimize defaults and liquidations while maintaining an ideal
utilization rate. Our paper focuses on creating a competitive DeFi protocol with efficient
rates, not on revenue maximization. The openness of DeFi protocols and minimal fees should
ensure that the most competitive protocol eventually dominates the market.

The lending pool consists of two assets: a stable asset, Al, provided by lenders for interest,
and a volatile asset, Ac, used by borrowers as collateral. Borrowers can only borrow a
fraction collateral factor (c) of their collateral, set by the protocol. At timeslot t, the overall
pool’s assets of type Al, considering both lent-out funds and available liquidity, are denoted
by Lt. Note that Lt increases over time as lenders accrue interest on the lent-out portion.
The asset of a particular lender i is represented by Lt(i).

The interest rate rt is set by the protocol at each block. Borrowers pay this rate, but
lenders earn interest only on the utilized fraction Ut of their deposit, defined as Ut = Bt

Lt
,

where Bt represents the overall debt across all borrowers, and Bt(i) represents the debt of
borrower i. The debt amount also increases over time due to accrued interest. The quantity
of the overall collateral posted by all borrowers is denoted by Ct, and Ct(i) denotes the
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collateral of borrower i. Hence, pt · Ct determines the value of the collateral in terms of
the lent-out asset, Al (for a thorough list of the notations and their description refer to
Appendix D of the full paper [6]). When borrowers repay, they return the loan plus interest
and retrieve their collateral. Lenders receive interest based on the protocol rate and fund
utilization. Defaults can affect the final interest rate for lenders. If collateral value drops
below the debt, the protocol cannot compel repayment of the insolvent debt, resulting in a
loss that impacts the lenders’ interest rate.

2.2 Environment model
Asset price model. We operate within discrete time intervals, denoted as ∆, each corres-
ponding to one blocktime. We use a discrete price model to monitor the collateral asset’s
price from one block to the next. For simplicity, we assume the lent-out asset is a stablecoin
with a relatively stable price, while the collateral asset’s price follows an exogenous geometric
Brownian motion with volatility σ. We assume constant volatility over short periods of
time, with occasional sporadic jumps, but no fluctuations from one timeslot to the next.
In particular, we assume that the price volatility is constant within timescales denoted by
Tm > 1 (m for market, denoting the timeframe within which the market is stable) which
consists of multiple timeslots and can change arbitrarily every Tm timeslots.

The price at time t, denoted as pt, follows a Geometric Brownian motion with drift µprice
and volatility σ. The initial price p0 is the starting point, for notation simplicity we normalize
and consider ∆ = 1 and hence formally, the model is:

pt = pt−1 exp (µ + σεt) , εt ∼ N (0, 1) (1)

where εt is the innovation term for the volatility.

External market competition. We assume the existence of an external competitor market
which offers risk-free borrow rate rb

o and risk-free lend rate rl
o. These rates are constant

during each market period Tm and can change arbitrarily between periods. This assumption
accounts for the competition and the broader market within which our protocol operates.
rl

o and rb
o might represent the existence of complex alternatives rather than simple risk-free

rates. In Appendix B of the full paper [6], we discuss interpreting these parameters based
on real-world strategies and competitors in the Defi ecosystem. Throughout the paper, we
abstract these concepts into rl

o and rb
o.

2.3 Protocol behaviour and pool logic
In this section, we establish the structure of a decentralized borrowing-lending protocol,
denoted by P. The protocol fulfills two primary roles: 1) P sets the pool’s parameters for
each block, denoted as {rt, ct, LTt, LIt}, by transmitting a transaction to the underlying
blockchain. These parameters govern the pool’s logic. 2) P updates the state variables Lt,
Bt, and Ct every block to apply interest rate accumulation and liquidation or default due to
price fluctuations.

Handling default. At the beginning of each timeslot t, P receives the latest price of Ac, pt,
from an oracle. The protocol calculates potential defaults accrued in the last timeslot for
each user. The default for borrower i at timeslot [t− 1, t] is:

πi
t−1(pt) := max {0, Bt−1(i)− Ct−1(i) · pt} (2)

AFT 2024
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The overall default, normalized by Lt−1, is:

πt−1(pt) := 1
Lt−1

∑
i∈borrowers

max {0, Bt−1(i)− Ct−1(i) · pt} (3)

The protocol seizes the remaining collateral of defaulted positions, exchanges it for Al, and
sets the debt of defaulted borrowers to zero. The gained Al assets are added back to the
pool. Moreover the underwater debt is deduced from the lender’s deposit accordingly:

Lt(i) = Lt−1(i)− πt−1(pt) · Lt−1(i), ∀ i ∈ Lenders (4)

For a more thorough explanation of why we handle defaults in this way rather than using a
safety reserve similar to most of the current working Defi borrow-lending platforms refer to
Appendix A of the full paper [6].

Interest update. The debt of non-defaulted borrowers is updated by:

Bt(i) = Bt−1(i) · (1 + rt−1) , ∀ i ∈ Borrowers

The interest rate on the utilized portion of the pool applies to the lenders as well:

Lt(i) = Lt(i) ·
(

1 + rt−1
Bt−1

Lt−1

)
, ∀ i ∈ Lenders

Liquidation. P tracks borrow positions exceeding the liquidation threshold. A position
i is eligible for liquidation if LTt−1 < Bt(i)

Ct(i)·pt
< 1. Liquidators reduce the user’s debt by

purchasing collateral, restoring the loan-to-value ratio below LTt−1. The debt and collateral
after liquidation are updated accordingly. The minimum liquidation amount that reduces
the user’s loan-to-value below LTt−1 is

λi
t−1(pt) := max

{
0,

Bt(i)− LTt−1 · Ct(i) · pt

1− LTt−1(1 + LIt−1)

}

Setting new parameters. P sets new parameters for the next timeslot: {rt, ct, LTt, LIt}.
These parameters determine the interest rate, maximum loan-to-value, and liquidation
parameters for the next timeslot.

Admitting new users. The protocol accepts all new lend and repay requests. Borrow
requests are accepted only if they adhere to the maximum collateralization factor ct and
there is sufficient Al in the pool to satisfy the request. Additionally, it processes withdrawal
requests from lenders as long as the withdrawal amount does not exceed the available Al in
the pool.

2.4 User behavior model
In this section, we establish the model that a rational user would use to interact with the
protocol. We consider a continuum of lenders and borrowers, each controlling a single unit
of demand or supply. In each timeslot, lenders can deposit or withdraw their unit, and
borrowers can borrow, repay, or adjust their loan-to-value ratio by sending a transaction to
the smart contract.
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2.4.1 Lender
We assume that a continuum lender with one unit of supply, planning for the next timeslot,
will calculate the following utility function at time t to decide whether to deposit into the
pool or, if already deposited, to withdraw and invest in another external alternative offering
rl

o.

Utilityl
t := rtUt − E [πt(pt+1)]− rl

o (5)

where the expectation is over the price at timeslot t + 1 price. The first term in 5 represents
the interest earned by the lender on the utilized portion of their deposit. Although the interest
rate is compounded, we approximate it linearly for simplicity. The second term denotes
the normalized defaulted debt deducted from the lender’s deposit. Finally, we subtract the
external interest rate rl

o to account for the lender’s opportunity cost.
We now describe the dynamics by which lenders add or withdraw their deposits based

on utility. We introduce a new parameter ηl, which reflects the average elasticity of lenders
at time t. This value can change over time (not faster than Tm) and is unknown to the
protocol. We assume that the relative rate at which lenders deposit or withdraw from the
pool is governed by the following model:

Lt+1 − Lt

Lt
= ηl ·Utilityl

t + εt

= ηl ·
(
rtUt − E[πt(pt+1)]− rl

o

)
+ εt, εt

i.i.d∼ N (0, ζ2) (6)

The noise term accounts for the behavior of uninformed or less informed users.

2.4.2 Borrower
From observing the real lending markets, we identify two types of DeFi borrowers, financing
and leveraged trading borrowers (see Appendix B.2 of the full paper [6] for more details).

The first type borrows an asset to use elsewhere, gaining value by leveraging it, e.g.,
for yield farming or real-world purposes. This group’s value from the borrowed asset is
represented as rb

o, measured as an interest rate. The utility function of a borrower of this
type controlling one unit of demand, considering the opportunity cost of locked collateral, is

Utilityb,1
t := rb

o − rt + E
[
πi

t(pt+1)
]
− E

[
λi

t(pt+1)
]
· LIt

+ Ct(i) · E
[
1pt+1−pt<0(pt+1 − pt)

]
(7)

This includes inherent value (rb
o), interest rate (−rt), default value (E

[
πi

t(pt+1)
]
), liquidation

cost (−E
[
λi

t(pt+1)
]
·LIt), and opportunity cost of locked collateral E

[
1pt+1−pt<0(pt+1 − pt)

]
.

The second type aims to take a long position on Ac. They borrow 1
pt

units of Ac from
an external provider Z, add more collateral to meet the over-collateralization requirement
ct, and borrow one unit of Al from P, then exchange it for Ac to repay Z. This borrowing
strategy is studies in details in [35]. Their utility function is:

Utilityb,2
t = −rt + E

[
πi

t(pt+1)
]
− E

[
λi

t(pt+1)
]
· LIt + E

[
pt+1 − pt

pt

]
(8)

This includes interest rate (−rt), default value (E
[
πi

t(pt+1)
]
), liquidation cost (−E

[
λi

t(pt+1)
]
·

LIt), and gain from a price change of the 1
pt

investment in Ac which was possible through

interacting with P i.e.,(E
[

pt+1−pt

pt

]
. Refer to Appendix B.2 of the full paper [6] for more

details.
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Assuming α fraction of borrowers are type 1 and the rest type 2, the rate of borrowing or
repaying is a linear function of borrower’s elasticity ηb and their average utility plus noise:

Bt+1 −Bt

Bt
= ηb ·

(
α ·Utilityb,1

t + (1− α) ·Utilityb,2
t

)
+ εt

= ηb ·
(

α · rb
o − rt + E

[
πi

t(pt+1)
]
− E

[
λi

t(pt+1)
]
· LIt

+ α · Ct(i)E
[
1pt+1−pt<0(pt+1 − pt)

]
+ (1− α) · E

[
pt+1 − pt

pt

])
+ εt, (9)

where εt
i.i.d∼ N (0, ζ2).

Throughout this paper, we assume that P efficiently sets the buffer between the collateral
factor and the liquidation threshold to ensure that the expected liquidation, E[λi

t(pt+1)], for
a borrower i who maintains the posted collateral factor, is negligible. This assumption differs
from the current borrowing and lending platforms, which experience significant liquidations
even among borrowers who adhere to the posted collateral factor. However, we believe that
a competent borrowing and lending protocol should set risk parameters to minimize this
risk. In Section 3.2, we explain how we determine the liquidation threshold and collateral
factor to ensure that the expected liquidations remain negligible. Moreover, throughout this
paper, we assume that the liquidation incentive, LIt, is set sufficiently high by the protocol
to encourage the borrowers to maintain the collateral factor, ct, and avoid liquidations.

▶ Lemma 1 (Maximum loan-to-value adoption). Consider the following conditions:
The collateral factor, ct, and the liquidation threshold, LTt, are chosen such that for a
given LTt, ct is the maximum collateral factor that ensures the expected liquidation, E[λi

t],
is approximately zero for a user i who maintains ct.
The liquidation incentive, LIt, is set high enough to incentivize rational borrowers to
avoid liquidation by ensuring that Bt(i)

Ct(i)pt
≤ ct.

Then rational borrowers will adopt the maximum loan to value allowed by the protocol i.e., ct.

Hence from now on, we assume that E[λi
t] for a rational continuum borrower is negligible

and for ease of notation, we denote it by λ(ct, LTt). The proof of all the lemmas and theorems
can be found in Appendix C of the full paper [6].

2.4.3 Liquidator
We assume that the liquidation incentive LI is set at a level that consistently incentivizes
liquidators, ensuring their prompt engagement and immediate liquidation up to the limit
allowed by P . Additionally, since we use an exogenous price model for collateral, phenomena
like liquidation spirals studied in previous works [24] are not considered in our analysis.

2.5 Equilibrium analysis
In this section, we will formally define the concept of equilibrium in the borrow-lending
framework we established. And we will analytically identify the set of equilibria of this
market when users follow the behaviour outlined in 2.4.

▶ Definition 2 (Market equilibrium). A lending pool governed by protocol P parameterized by
{rt, ct, LTt, LIt}, and lender’s and borrower’s behavior respectively governed by 6, and 9 is
in equilibrium if and only if:

E
[

Bt+1 −Bt

Bt

]
= 0 and E

[
Lt+1 − Lt

Lt

]
= 0

where the expectation is over the noise term in the user behavior model.
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▶ Lemma 3 (Simplified default and price change terms ). In the presence of rational continuum
lenders and rational continuum borrowers who follow collateral factor ct (due to Lemma 1)
we have:

π(ct) := E
[
πi

t(pt+1)
]

= Φ
(

log(ct)− µ

σ

)
−

exp ( σ2

2 + µ)
ct

· Φ
(
−µ + log(ct)− σ2

σ

)
(10)

E [πt(pt+1)] = Utπ(ct) (11)

Ct(i)E
[
1pt+Tu −pt<0(pt+Tu

− pt)
]

= 1
ct

eµ+ σ2
2

Φ
(

−µ−σ2

σ

)
Φ
(−µ

σ

) − 1

 (12)

E
[

pt+1 − pt

pt

]
= eµ+ σ2

2 − 1

Where ϕ(.) and Φ(.) denote the PDF and CDF, respectively, of the standard normal distribu-
tion.

Throughout the rest of the paper, we denote the expected default for one unit of debt by
π(ct). Conceptually, Lemma 3 implies that if the pool’s loan-to-value ratio is maintained
close to ct in each timeslot, the probability of default remains memoryless. This is due to
the Brownian motion of price, where the price ratio between consecutive timeslots follows a
stationary distribution. Therefore, the probability that the next timeslot’s price falls below
the default threshold is stationary and memoryless, changing only when the price distribution
itself changes.

▶ Theorem 4. Let the lender behavior be described by Equation 6, the borrower behavior by
Equation 9 (for ηb > 0), and the assumptions of Lemma 1 hold. A protocol with parameters
{rt, ct, LIt, LTt}, achieves a non-trivial equilibrium if and only if rt = r∗:

r∗ = α rb
o + π(ct) + α

ct

eµ+ σ2
2

Φ
(

−µ−σ2

σ

)
Φ
(−µ

σ

) − 1

+ (1− α)
(

eµ+ σ2
2 − 1

)
(13)

Furthermore, if ηl > 0, then the unique equilibrium utilization is:

U∗ =
{

rl
o

r∗−π(ct) if r∗ > π(ct)
1 otherwise

(14)

Equilibrium dynamics. In order to achieve the equilibrium point, The protocol first should
find the equilibrium interest rate, r∗, and set rt = r∗ to prevent borrowers from leaving
or joining the system. Once r∗ is set, if the utilization Ut is above U∗, lenders’ utility is
positive, so they keep lending until Ut reaches U∗, stabilizing the system. Conversely, if Ut is
below U∗, lenders’ utility is negative, causing them to withdraw until Ut = U∗. At this point,
lenders are indifferent between the pool and external competitors and remain fixed. The
equilibrium utilization is U∗ = 1 if, regardless of utilization, lenders’ utility under rt = r∗

remains non-positive. Consequently, they withdraw fully, yielding U∗ = 1, and they remain
trapped in an unfavorable equilibrium where they prefer external rates but since their fund
is being borrowed, they cannot leave the system.

AFT 2024
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2.6 Protocol objectives and evaluation metrics
In this section, we define three key metrics to evaluate a borrow-lending protocol. The
protocols considered follow the behavior outlined in 2.3. Each protocol selects a deterministic
or randomized interest rate function rt : Ht

1 → R+, a collateral factor function ct : Ht
1 → [0, 1]

and a liquidation threshold function LIt : Ht
1 → [0, 1] mapping the pool’s history to an

interest rate, a collateral factor and a liquidation threshold.

2.6.1 Rate of equilibrium convergence
Achieving market equilibrium is crucial for any DeFi application, as equilibrium points
represent the market’s most competitive state. At equilibrium, no participant is overpaid or
underpaid, ensuring all users are equally satisfied with P as with any external alternative. In
two-sided markets like borrow-lending, the time to achieve stability can disproportionately
benefit one side. Setting interest rates below what borrowers are willing to pay results in
lenders receiving less than in a competitive market. Conversely, if interest rates exceed the
equilibrium rate, borrowers pay more than in a stable market. The more elastic user benefits
at the expense of the less elastic user, who incurs an impermanent loss.

Adapting to market changes allows the protocol to stabilize the pool when user behavior
or price volatility changes. As these parameters change over time, the protocol must respond
dynamically to maintain system stability within a reasonable timeframe. In the borrow-
lending market framework, each time user behavior parameters (e.g., rb

o, rl
o, α) or price

volatility (σ) change, the market stabilizes at a new r∗ (refer to Theorem 4). One objective
of P is to rapidly identify and set this new equilibrium rate. We formalize this concept as
the rate of convergence, using it as a metric to evaluate our protocol against non-learning
baselines.

▶ Definition 5 (Rate of equilibrium convergence). Consider a stable borrow-lending pool with
the interest rate rt = r∗, where r∗ is the equilibrium interest rate determined by Equation 13.
At time t + 1, user behavior models adapt to new parameters {η̄l, r̄l

o, η̄b, r̄b
o, α}, and price

volatility changes to σ̄. Let rτ represent the interest rate set by P at time τ > t, and let
r̄∗ denote the new equilibrium interest rate for the updated market parameters. We define
the rate of equilibrium convergence of P, denoted by RP(δ, τ), as the infimum of functions
f(δ, τ), such that there exists some T(δ) for which, with probability 1− δ,

|rτ − r̄∗| < f(δ, τ), ∀ τ > T(δ),

for any initial and secondary set of parameters in the user model and price model. Probabilities
are calculated on the randomness of the protocol and the noise in the user behavior model.

2.6.2 Equilibrium Optimality Index
Any Defi borrow-lending market aims to meet specific long-term objectives. For instance, the
pool should maintain utilization at an optimal level; Because low utilization reduces capital
efficiency, requiring the protocol to pay higher interest rates to lenders, and high utilization
can make it difficult for lenders to withdraw and borrowers to secure loans. Moreover,
expected defaults and liquidations are risk metrics that the protocol aims to control. These
objectives operate on a different timescale than the interest rate adjustments discussed in
the convergence rate. For instance, we care about the average utilization or expected default
over a long period rather than their local values in each timeslot. To address this, we define
a metric called optimality index, which evaluates the desirability of the system’s equilibriums
during the timeslots when the pool has reached its equilibrium, denoting the set of these
timeslots by Te.
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▶ Definition 6 (Optimality Index). The Optimality Index of a protocol, denoted by OIP , is
defined as follows:

OIP := 1
|Te|

∑
t∈Te

E
[
−(Ut − Uopt)2 − γ

(
Ut π(ct) + λ(ct, LTt)

)]
, (15)

The expectation is taken over the protocol’s randomness and user behavior. Uopt and λ

are constant parameters.

While the first term in the OIP ensures that utilization is kept near a desired point, the
second term acts as a regularization term, controlling the expected default and liquidation.
Our definition of Optimality Index evaluates a specific notion of optimality, but it is just
one of many possible definitions. Our protocol design methodology can be applied to other
objective functions beyond Function 15. In this paper, we showcase our ideas for this specific
objective function and discuss how to extend the methodology to other objectives.

2.6.3 Adversarial robustness

Protocols in DeFi are always susceptible to adversarial behavior that can be used to manip-
ulate an adaptive algorithm to respond in a suboptimal manner. This behavior is usually
observed when some borrower/lender agents interact with protocols outside of P in con-
junction with P to achieve a profit. This can involve oracle manipulations attacks used to
run away with valuable assets while providing worthless collateral, or attacks that move
interest rates in the opposite direction of the equilibrium rates. We focus on the latter type
of adversarial behavior in this work. Moving interest rates away from equilibrium leads to
market inefficiencies. Further, undue hikes in these rates can be used to trigger unexpected
liquidations for profit.

We thus propose that the susceptibility of P to adversarial manipulation should also be
measured. To do that, we first assume that a fraction β of the population of lenders/borrowers
are adversarial. Thus, P will face an adversarial lender/borrower for an approximately β

fraction of time slots. In those time slots, the adversary can manipulate the borrow/lend
reserves arbitrarily. Let Tβ denote the set of time slots that the protocol faces an adversary.

We measure how susceptible a protocol is to adversarial manipulation using the following
metric.

▶ Definition 7 (Adversarial Susceptibility). The adversarial susceptibility of a protocol, denoted
by ASP , is defined as follows:

ASP := E

[∑
t∈Te

rt
P − rt

P|Tβ

]
.

The expectation is taken over the protocol’s randomness, user/adversarial behavior, where
rt

P denotes the interest rate recommended by the protocol and rt
P|Tβ

is the same, when the
indices of adversarial actions are known.

Since an adversary can manipulate the protocol arbitrarily, the above measure signifies how
adept the protocol is in weeding out historical data that has been manipulated, thus ensuring
a cleaner convergence to the true interest rate equilibrium.
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2.7 Baseline
For the baseline, we consider protocols akin to Compound, which utilize a piecewise linear
interest rate curve to ensure stability. These protocols dynamically adjust interest rates at
each block according to the model:

Rt =

R0 + Ut

Uopt
Rslope1, if Ut ≤ Uopt

R0 + Rslope1 +
(

Ut−Uopt
1−Uopt

)
Rslope2, if Ut > Uopt

In contrast to our proposed approach, these platforms generally set collateral factors and
other market parameters through offline simulations that attempt to forecast near-future
market conditions. Parameters are selected based on simulation outcomes and are subject to
decentralized governance voting. Since this phase happens in an offline and opaque manner
by centralized companies, we cannot compare this aspect of their protocol with ours.

Due to the piecewise linear nature of the interest rate as a function of utilization, these
protocols achieve market stability only when either borrowers or lenders, but not both,
exhibit elasticity [17]. To see why this is the case, note that according to Theorem 4, if
borrowers are elastic (ηb > 0), the equilibrium interest rate can be uniquely determined. And
if lenders are elastic too, the equilibrium utilization is determined by Equation 14 which is
not a linear function of r∗, hence a piecewise linear interest rate curve cannot satisfy the
equilibrium conditions if both sides are elastic. Traditional DeFi platforms typically monitor
the pool to identify the more elastic side of the market (usually borrowers) and design the
curve accordingly.

3 Fast-slow thinker protocol

In this section, we outline a design for the interest rate and collateral factor function of P
that aims to achieve both the best possible convergence rate and the optimal optimality
index. The protocol has the following two components.

A least squares estimator detects market disruptions that lead to instability and learns
the equilibrium interest rate from borrowers’ reactions, setting it agilely.

The long-term parameter planner consists of three parts: 1) A user behavior parameter
estimator, which estimates the user behaviour model parameters that are required to optimize
the optimality index. 2) An optimization module, which selects the optimal collateral factor
to maximize optimality index, assuming negligible expected liquidation. 3) A liquidation
threshold determination module, which sets the liquidation threshold as a function of the
collateral factor to ensure zero expected liquidation.

The canonical scenario we use to evaluate our protocol is the following: at the beginning
of the timeslot t, one or some of the market parameters (e.g., σ, rl

o, rb
o, α) change to a new

level and remain constant for a period Tm. The protocol must adapt to these new parameters
by setting the equilibrium interest rate and the optimal collateral factor that maximizes
the optimality index when the pool reaches equilibrium. Refer to Figure 1 for a visual
representation of the protocol and its interaction with the pool.

3.1 Online interest rate controller
We model the problem of finding r∗ using the linear regression method, where the borrow/re-
pay rate depends on the difference rt− r∗ (motivating factor for borrowers) and ηb (borrower
elasticity), with an added noise component; And use this model to estimate r∗ adaptively.
Here is the linear regression problem formulation:
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Bt+1 −Bt

Bt
= ηb ·

(
α rb

o − rt + π(ct) + α

ct
E
[
1pt+1−pt<0(pt+1 − pt

pt
)
]

+

(1− α) · E
[

pt+1 − pt

pt

])
13= ηb(r∗ − rt)

∆B = Pt
b ·Θb + ε (16)

where:
∆B =

[
B1−B0

B0
, B2−B1

B1
, . . . , Bt+1−Bt

Bt

]T

is the vector of normalized changes.
Pt

b is the matrix of pool variables that affect borrower’s behaviour:

(Pt
b)⊤ =

[
1 1 · · · 1
r0 r1 · · · rt

]
Θb = [ηb r∗ ,−ηb]T is the parameter vector
ε = [ε0, ε1, . . . , εt]T is the noise vector.

The interest rate controller algorithm, outlined in 1, activates when ∆Bt exceeds a threshold
δ, indicating rt ≠ r∗. The algorithm collects ∆B and Pt

b to estimate Θ̂b, setting rt as the
estimated r̂∗ according to r̂∗ = − Θ̂b(0)

Θ̂b(1) .

We cannot use vanilla LSE in this setting and simply output rt = r̂∗ = − Θ̂b(0)
Θ̂b(1) because

feeding back the estimated r̂∗ to the protocol may cause the rows of the Pb matrix to become
very close to each other. This happens when the estimator outputs an rt that has been
seen before, leading to redundant data points. Consequently, the theoretical guarantee of
LSE to converge to the correct Θ∗

b as the number of data points increases is impaired. To
mitigate this problem, with a small probability, we sample a random interest rate. Finally,
after running for a few iterations and accumulating a sufficiently large number of samples,
the estimator stops and outputs the estimated r∗.

Theoretical analysis
▶ Theorem 8 (LSE convergence rate). Assuming ηb > 0, the interest rate controller described
in Algorithm 1 with stopping time τ (taking τ samples), satisfies the following:

RP(δ, τ) ∼ O
( log 1

δ√
τ

)
.

Moreover, if ηb is known: E [rτ ] = r∗, ∀τ

▶ Theorem 9 (Baseline convergence rate). Under a piece-wise linear interest rate function
In the presence of elastic borrowers and inelastic lenders, we have:

E [rτ ] = r∗ + D(1−K ηb)τ , 0 < 1−K ηb < 1

RP(δ, τ) ∼ o

(
1√
δ

)
.

where K, D are constants determined from the specifications of the interest rate curve.
If lenders are elastic as well, the protocol never stabilizes with rate r∗.
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Our interest rate controller provides an unbiased estimation of the equilibrium interest
rate, with the estimation variance decreasing over time. In contrast, the baseline algorithm
is a biased estimator of the equilibrium rate, becoming unbiased only as τ →∞; And the
rate of convergence of the average error to zero is proportional to ηb, as the baseline protocol
relies heavily on user actions to adjust the rate toward equilibrium rather than actively
learning from user behavior. Additionally, the baseline algorithm maintains a constant error
relative to the equilibrium rate due to the noise in user behavior and its inability to filter
out this noise.

Algorithm 1 Interest rate controller, utilizing a least squares optimization approach.

1: Initialize: t← 0, δ ← stability threshold, tsleep ← sleep time, ν exploration probability
2: while True do
3: if Bt−Bt−1

Bt−1
< δ then

4: Sleep for tsleep
5: Reset matrices ∆B and Pb

6: else
7: Add the new row [1, rt−1] to Pt−2

b to construct Pt−1
b and

8: Add the new column [ Bt−Bt−1
Bt−1

] to ∆B
9: Perform least squares estimation to find Θ̂b ← ((Pt−1

b )T Pt−1
b )−1 (Pt−1

b )T ∆B
10: Parse Θ̂b as [η̂br̂∗,−η̂b] and extract r̂∗ and set rt = r̂∗

11: With probability ν, choose a random rt ∈ [rmin, rmax]
12: end if
13: t← t + 1
14: end while
15: end algorithm

3.2 Risk parameters planner

First, we examine the conditions that ensure zero expected liquidation. These conditions
provide the planner with the necessary bounds for setting the liquidation threshold.

▶ Lemma 10. The expected liquidation incurred at time t + 1, given that the loan-to-value
ratio at time t is ct, can be expressed as

λ(ct, LTt) := E[λi
t(pt+1)]

= 1
1− LTt

Φ

 ln
(

ct

LTt

)
− µ + σ2

σ

− LTt

ct
eµ+σ2

Φ

 ln
(

ct

LTt

)
− µ− σ2

σ


where Φ denotes the cumulative distribution function of the standard normal distribution.

To maintain the expected liquidation below a small threshold (nearly zero), this lemma
provides bounds on LTt and ct

LTt
. These bounds are used by the planner to set LTt and

constrain ct. With negligible expected liquidation, the optimality index is simplified to
include only the utilization error and the default term.
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▶ Corollary 11. Given a fixed set of parameters rl
o, rb

o, σ, µ and assuming that λ(LTt, ct) ≈ 0,
the maximization problem of OIP with respect to ct can be formulated as follows:

max
ct

OIP = min
ct

(
rl

o

b + a
ct

− Uopt

)2

+ γ
rl

o

b + a
ct

Φ
(

log(ct)− µ

σ

)
(17)

− γ
rl

o

b + a
ct

exp
(

σ2

2 + µ
)

ct
· Φ
(
−µ + log(ct)− σ2

σ

)
(18)

where a := α

eµ+ σ2
2

Φ
(

−µ−σ2
σ

)
Φ( −µ

σ ) − 1

 and b := αrb
o + (1− α)

(
eµ+ σ2

2 − 1
)

.

We can derive this corollary by substituting the default, expected price fall, and price change
terms from Lemma 3 into the definition of optimality index stated in Definition 6.

Borrower

Interest rate
controller

Lender

Borrow/lending Pool

Parameter
Estimator

collateral
factor

optimizer

Protocol

price

Figure 1 Protocol Overview. The interest rate controller observes borrower actions to estimate
r∗ and set rt = r̂∗. The collateral factor planner includes a parameter estimator and an optimizer:
the estimator finds rl

o, rb
o, and σ, while the optimizer uses these estimates to determine the optimal

collateral factor for the market.

The estimator module, described in Algorithm 2, uses a least squares estimator to analyze
user behavior. It integrates outputs from the interest rate controller to determine the
parameters rl

o and rb
o. Additionally, it learns the empirical price volatility σ and drift µ

from the recent price history. The optimizer component, detailed in Algorithm 3, utilizes
these parameters to tackle the optimization problem presented in Corollary 11 and output
the optimal collateral factor. To construct the estimator submodule, we model the lender’s
behavior using a linear regression approach, analogous to that of the borrower’s behavior.This
relationship is formulated as follows:

Lt+1 − Lt

Lt
= ηl ·

(
rtUt − Ut π(ct)− rl

o

)
+ εt (19)
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Algorithm 2 r̂l
o, r̂b

o - Estimator, auxiliary to the optimizer procedure.

1: Initialize: t← 1, Θ̂0
l ← 0, and read L0, U0, r0, c from the pool, δl ← stability threshold

2: Initialize: tsleep ← sleep time, δθ ← least square convergence threshold, Toptimizer ← the
minimum time interval between successive executions of the optimizer. α← fraction of
first type borrowers

3: while True do
4: if Lt−Lt−1

Lt−1
< δl then

5: Reset ∆L, Pl

6: Sleep for tsleep
7: else
8: Calculate σ, µ empirically from the recent price history and use them to calculate

π(ct)
9: Add the new row [1,−Ut−1 π(ct) + rt−1Ut−1] to Pl and [ Lt−Lt−1

Lt−1
] to ∆L

10: Perform least squares estimation to find Θ̂t
l ← (Pl

T Pl)−1 PT
l ∆L

11: Parse Θ̂t
l as [−η̂l r̂l

o , η̂l]T and extract r̂l
o

12: Read the latest r̂∗ from Algorithm 1, and extract r̂b
o as follows:

13: α r̂b
o ← r̂∗ − π(ct)− α

ct

eµ+ σ2
2

Φ
(

−µ−σ2
σ

)
Φ( −µ

σ ) − 1

− (1− α)
(

eµ+ σ2
2 − 1

)
14: if |Θ̂t

l − Θ̂t−1
l | < δθ then

15: c← Optimizer(r̂l
o, r̂b

o, σ)
16: Reset ∆L, Pl

17: sleep for Toptimizer
18: end if
19: end if
20: t← t + 1
21: end while
22: end algorithm

where π(ct) is defined as per the simplifications in Lemma 3. The linear regression model for
this behavior is represented by:

∆L = Pl ·Θl + ε, (20)

with:

∆L =
[

L1−L0
L0

, L2−L1
L1

, . . . , Lt+1−Lt

Lt

]T

capturing the normalized changes in lenders’ supply.

Pl =


1 −U0 π(c0) + r0U0
1 −U1 π(c1) + r1U1
...

...
1 −Ut π(ct) + rtUt

 as the matrix of pool variables at each time step.

Θl = [−ηl rl
o, ηl]T representing the parameter vector.

ε = [ε0, ε1, . . . , εt]T as the vector of noise terms.

Refer to Algorithm 2 and 3 to find a detailed description of the planner.
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Algorithm 3 Optimizer module.

1: procedure Optimizer(r̂l
o, r̂b

o, σ)
2: Initialize: α← fraction of first type borrowers, Uopt ← desired utilization level, initial

guess for collateral factor c(0) U∼ [0, 1], γ ← default regularization factor, κ← learning
rate, i← 0 the gradient descent iterator, δ ← gradient descent stop theshold.

3: Set a = α
(

exp
(

µ− σ2

2

)
− 1
)

and b = α r̂b
o + (1− α)

(
exp

(
µ + σ2

2

)
− 1
)

4: Ψ(c) :=
((

r̂l
o

b+ a
c
− Uopt

)2
+ γ

r̂l
o

b+ a
c

Φ
(

log(c)−µ
σ

)
− λ

rl
o

b+ a
c

exp ( σ2
2 +µ)
c · Φ

(
−µ+log(c)−σ2

σ

))
5: while |Ψ (c(i))−Ψ (c(i− 1)) | > δ do
6: i← i + 1
7: c(i)← c(i− 1)− κ d Ψ(c)

d c |c=c(i−1)
8: end while
9: return c(i)

10: end procedure

3.3 Adversarial Robustness
In this section, we employ a gradient descent-based approach to perform robust linear
regression, adapting the Torrent-GD method from the robust regression literature [7]. This
method leverages the resilience of gradient descent to sparse corruptions and is highly
efficient for large datasets, and helps us get an improved short-term algorithm for optimizing
Adversarial Susceptibility.

The Torrent-GD modification to Algorithm 1 proceeds by updating the regression coeffi-
cients iteratively, reducing the influence of corrupt data points effectively. The update rule
for the regression coefficients Θ̂b at each iteration t is given by:

Θ̂b(t + 1) = Θ̂b(t)− κ∇LS(Θ̂b(t)), (21)

where κ is the learning rate and ∇LS(Θ̂b(t)) represents the gradient of the loss function
computed only over the subset of data points S believed to be uncorrupted. This subset is
dynamically determined in each iteration based on the residual errors.

The gradient of the loss function with respect to the regression coefficients is computed
as:

∇LS(w) = (Pb
S)T (Pb)SΘ̂b −∆BS , (22)

where Pb
S and ∆BS are the features and responses of the uncorrupted subset, respectively.

The active set S, which includes indices of the data points assumed to be uncorrupted, is
updated using a hard thresholding operator that selects the points with the smallest residuals:

S(t+1) = HT
(

r(t), k
)

, (23)

where r(t) = ∆B − PbΘ̂b(t) represents the residuals at iteration t, and k is a threshold
parameter controlling the number of points included in S, and the hard thresholding operator
HT for a vector v ∈ Rn and a threshold τ is defined as follows:

HT(vi, τ) =
{

vi if |vi| ≥ τ,

0 otherwise.
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This operation retains only the components of v that are greater than or equal to the
threshold τ in absolute value, effectively zeroing out smaller coefficients.

The convergence of Torrent-GD is guaranteed under conditions that the noise and
corruptions are sparse [7]. The algorithm can tolerate arbitrary adversarial corruptions as
long as β < 50%.

3.4 Blockchain implementation
To implement this protocol on a blockchain, we can utilize an optimistic Rollup solution
like Arbitrum or Optimism. The core idea behind these Rollups is that the computation
is performed off-chain by a Rollup validator. Only the state update data is posted on the
blockchain, allowing challengers to validate the state update with the list of user transactions
and challenge the validators in case of discrepancies. Therefore, in an optimistic scenario, no
computation is performed on-chain.

Our online algorithm and the parameter estimator modules each have a computational
complexity of O(W ), where W is the sliding window used to collect and retain data for
estimation. In practice, using W ≈ 50 was sufficient in our implementation when the
user’s elasticity is not awfully low (An elasticity of approximately 10 is sufficient when the
noise standard deviation does not exceed 1). The optimizer module, in general, can be
computationally infeasible since its objective function is not necessarily convex. However,
since the range of possible collateral factors is limited, we can discretize the possible values
into approximately 100 levels and find the optimal collateral factor through brute force. The
calculation of the objective function itself is not computationally intensive.

Gas fee estimation

Even the Roll-up solution might necessitate running the computation on-chain in case of a
dispute, therefore we need to estimate the on-chain computation cost. To estimate the gas
cost for updating the protocol’s slow and fast parts, we consider the least squares estimator
(LSE) update of Algorithm 1 and 2. This update requires approximately 12W multiplications
and 10W additions, where W is the length of the history window. Given the gas costs (5 gas
per multiplication and 3 gas per addition based on [16]), for W = 50, we require 4500 gas for
multiplications and additions. Additionally, storing new rows of Pb and ∆B costs 20, 000 gas
per 32-byte storage, totaling 40, 000 gas. Thus, the overall gas needed for the LSE update and
storing new rows is 44, 500 gas. The slow planner additionally needs to store a table of the
optimality index values for different collateral factors and volatilities. Discretizing each into
100 and 10 values respectively, the storage cost for this table is 20, 000× 1000 = 20, 000, 000
gas. Additionally, storing a table of the CDF of Gaussian variables to calculate expected
defaults and liquidations requires 20, 000×100 = 2, 000, 000 gas for a reasonable discretization
with 100 points. While more opcodes are involved in each interest rate and collateral factor
update, they mainly consist of single arithmetic operations or multiple data storage, making
the cost manageable.

3.5 Limitations
User behaviour model. We build upon a specific model of lender and borrower behavior,
assuming that no single user controls a significant portion of the supply or demand. However,
prior research has shown that this assumption might be unrealistic for many current platforms
[32, 38]. In these scenarios, rational user strategies would differ from those assumed in our
model. While our model manages to capture the main factors driving both sides of the
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market in borrow-lending platforms, it fails to adapt to markets where a few entities control
the majority of the funds. Furthermore, we assume that liquidators are always available
to liquidate positions when protocols permit. However, real data indicates that this is not
always the case, especially when the collateral asset lacks liquidity, resulting in considerable
slippage when reselling the collateral [32].

Price distribution. Our choice of price model does not necessarily accurately describe
the actual price distribution. However, as long as the price distribution belongs to a
parameterized family of distributions with parameters that change slowly over time, the
protocol can learn risk terms from user behavior, similar to our designed protocol. However,
it may be challenging to analytically infer the price distribution parameters from user actions
or to analytically relate the price distribution to key risk metrics, such as expected default
or price fall.

Risk neutralily. In defining our utility functions, we assume users are risk-neutral and
perceive their utility as the sum of profit minus expected risk, accurately calculating expecta-
tions over the price distribution. However, this may not be realistic. Our protocol learns the
projection of user behavior onto our specific linear utility function and identifies parameters
that best describe this behavior. For more complex user behavior, neural networks can be
used to learn a vector representation of user behavior end-to-end. These user representation
vectors are then fed to the interest rate controller and collateral factor planner, which are
replaced by Deep Reinforcement Learning agents. These agents learn the optimal strategy
based on feedback from their reward function. A key challenge is designing reward functions
that best meet the protocol’s needs.

Adversarial robustness. The adversarial resistance model we use for the LSE algorithm may
be inadequate for permissionless blockchains. In such blockchains, any participant, including
miners who organize and submit transactions, can act as adversaries. These adversaries can
run the regression algorithm off-chain with different sets of transactions and find the set
and the order that benefits them the most. Our current notion of adversarial robustness
only protects against adversaries who control less than 50% of the funds and occasionally
send transactions that deviate from the system’s assumed supply and demand dynamics i.e.,
producing outlier data points.

Single equilibrium point. Our borrower behavior model assumes that there is always a
single, unique interest rate that all borrowers are willing to pay, and that this equilibrium
interest rate is known to all borrowers with some noise. However, in reality, this assumption
may not hold true. Different groups of borrowers may have varying perceptions of the interest
rate they are willing to pay. As a result, the system could have multiple equilibrium points,
each attracting a different subgroup of borrowers.

4 Evaluation

In this section, we test the interest rate controller and collateral factor planner described in
section 3 and demonstrate their robustness to the change of market and user behaviours,
moreover, we compare our interest rate controller with that of the baseline.
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4.1 Interest rate controller
Experiment set-up. In this experiment, we start a borrow-lending pool with an initial
borrow supply of 7× 1011 and an initial lend supply of 1012. Both the elasticity of borrowing
and lending are set to 50, and the standard deviation of the borrowed and supply dynamic
noise is 0.1. We assume very low price volatility, as it does not affect the determination of
the equilibrium interest rate in this experiment. Every 100 time slots, we change rb

o and
allow the interest rate controller to adjust to the new equilibrium interest rate based on
borrowers’ behavior. During the exploration phases, the interest rate is randomly selected
between rmin = 1 and rmax = 20 (outliers in figure 2a).

As shown in Figure 2a, the LSE-based controller adapts to the equilibrium interest rate
consistently across different user elasticities with a nearly identical convergence rate, aligning
with our theoretical guarantees. In contrast, the baseline controller, which sets the interest
rate as a piecewise linear function of utilization, heavily relies on elasticity. It struggles to
adapt to the new equilibrium interest rate in low elasticity scenarios and performs slightly
better as elasticity increases.

While the performance of the baseline controller improves as borrower’s elasticity increases,
the consequences of misadjustment are more severe, causing significant borrower capital
to leave the system when the interest rate is too high and to flood the system when it
is too low. Figure 2b illustrates how the borrowed value changes with market conditions.
The LSE-based controller consistently finds the stable interest rate, resulting in minimal
market disruption whenever changes occur. In contrast, the baseline controller’s inability to
quickly find the correct rate causes substantial borrower exit from the system. This issue
worsens with increased borrower elasticity due to higher repayment rates. Thus, even in high
elasticity markets, the baseline controller is ineffective in preventing excessive capital inflows
or outflows due to interest rate misadjustments.
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(a) The LSE-based controller adapts to the new
equilibrium interest rate quickly. In contrast, the
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the equilibrium interest rate when the borrower’s
elasticity is low.
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(b) The LSE controller prevents the exit of borrower
capital by setting a competitive interest rate, unlike
the baseline controller.

Figure 2 Comparing the LSE-based interest rate controller and the piecewise linear curve.

4.2 Collateral factor planner
We conducted an experiment to evaluate the performance of our collateral factor planner.
The optimality index is defined as in Definition 6 with λ = 0 and Uopt = 0.5. Initially, the
system starts with an unoptimized collateral factor of c = 0.95. At timeslot t = 200, the
optimizer activates and sets a new collateral factor of c = 0.84, which adjusts the utilization
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to the desired level of 0.5 soon after that (the pace of reaching the equilibrium is a function
of lenders’ elasticity). At timeslot t = 3000, a change in price volatility disrupts the system.
By timeslot t = 3200, the estimator accurately detects the new volatility and triggers the
optimizer. The optimizer then sets a new collateral factor of c = 0.64, which stabilizes the
utilization around 0.5 once again. This entire process is automated. The resulting utilization
curve is shown in Figure 3.
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Figure 3 The collateral factor planner adapts to volatility changes and optimizes the collateral
factor for achieving optimal utilization.

5 Conclusion and discussion

In this paper, we present a first-principles model of the behavior and incentives of borrowers
and lenders in a DeFi market. We consider their alternative strategies and analyze how to
achieve market equilibrium in the presence of price volatility. We mention empirical evidence
on the validity of our model.

We propose a data-driven, borrow-lending protocol that sets the interest rate and over-
collateralization ratio adaptively. By monitoring user reactions and learning from their
behavior, our protocol determines a competitive interest rates and optimal collateral factors.
The protocol consists of two components, 1) Fast interest rate controller: This component
reacts online to user behavior, ensuring competitive interest rates and preventing over- or
underpaying users. It has theoretical guarantees for fast convergence to the equilibrium
interest rate. 2) Slow collateral factor planner: This component uses accurate market
condition estimates to adjust the collateral factor, maintaining utilization at a desired
level while controlling default risk. Overall, our protocol ensures rapid convergence to the
equilibrium interest rate and optimal tuning of the collateral factor to achieve a desired
equilibrium.

We implement our protocol and test its performance using simulated users, including
uninformed ones. We compare our protocol with a baseline that uses piecewise linear functions
to set interest rates based on utilization. Our protocol demonstrates superior performance
compared to the baseline in practice.

AFT 2024
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