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Abstract
The incentive-compatibility properties of blockchain transaction fee mechanisms have been invest-
igated with passive block producers that are motivated purely by the net rewards earned at the
consensus layer. This paper introduces a model of active block producers that have their own private
valuations for blocks (representing, for example, additional value derived from the application layer).
The block producer surplus in our model can be interpreted as one of the more common colloquial
meanings of the phrase “maximal extractable value (MEV).”

We first prove that transaction fee mechanism design is fundamentally more difficult with
active block producers than with passive ones: With active block producers, no non-trivial or
approximately welfare-maximizing transaction fee mechanism can be incentive-compatible for both
users and block producers. These results can be interpreted as a mathematical justification for
augmenting transaction fee mechanisms with additional components such as order flow auctions,
block producer competition, trusted hardware, or cryptographic techniques.

We then consider a more fine-grained model of block production that more accurately reflects
current practice, in which we distinguish the roles of “searchers” (who actively identify opportunities
for value extraction from the application layer and compete for the right to take advantage of them)
and “proposers” (who participate directly in the blockchain protocol and make the final choice
of the published block). Searchers can effectively act as an “MEV oracle” for a transaction fee
mechanism, thereby enlarging the design space. Here, we first consider a TFM that is inspired by
how searchers have traditionally been incorporated into the block production process, with each
transaction effectively sold off to a searcher through a first-price auction. We then explore the
TFM design space with searchers more generally, and design a mechanism that circumvents our
impossibility results for TFMs without searchers. Our mechanism (the “SAKA” mechanism) is
incentive-compatible (for users, searchers, and the block producer), sybil-proof, and guarantees
roughly 50% of the maximum-possible welfare when transaction sizes are small relative to block
sizes. We conclude with a matching negative result: even when transaction sizes are small, no DSIC
and sybil-proof deterministic TFM can guarantee more than 50% of the maximum-possible welfare.
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29:2 Transaction Fee Mechanism Design in a Post-MEV World

1 Introduction

1.1 Transaction Fee Mechanisms for Allocating Blockspace
Blockchain protocols such as Bitcoin and Ethereum process transactions submitted by users,
with each transaction advancing the “state” of the protocol (e.g., the set of Bitcoin UTXOs,
or the state of the Ethereum Virtual Machine). Such protocols have finite processing power,
so when demand for transaction processing exceeds the available supply, a strict subset of
the submitted transactions must be chosen for processing. To encourage the selection of the
“most valuable” transactions, the transactions chosen for processing are typically charged
a transaction fee. The component of a blockchain protocol responsible for choosing the
transactions to process and what to charge for them is called its transaction fee mechanism
(TFM).

Previous academic work on TFM design (surveyed in Section 1.5) has focused on the
game-theoretic properties of different designs, such as incentive-compatibility from the
perspective of users (ideally, with a user motivated to bid its true value for the execution
of its transaction), of block producers (ideally, with a block producer motivated to select
transactions to process as suggested by the TFM), and of cartels of users and/or block
producers. Discussing incentive-compatibility requires defining utility functions for the
relevant participants. In most previous works on TFM design (and in this paper), users are
modeled as having a private value for transaction inclusion and a quasi-linear utility function
(i.e., value enjoyed minus price paid). In previous work – and, crucially, unlike in this work –
a block producer was modeled as passive, meaning its utility function was the net reward
earned (canonically, the unburned portion of the transaction fees paid by users, possibly plus
a block reward).

While this model is a natural one for the initial investigation of the basic properties of
TFMs, it effectively assumes that block producers are unaware of or unconcerned with the
semantics of the transactions that they process – that there is a clean separation between
users (who have value only for activity at the application layer) and block producers (who, if
passive, care only about payments received at the consensus layer).

1.2 MEV and Active Block Producers
It is now commonly accepted that, at least for blockchain protocols that support a decentral-
ized finance (“DeFi”) ecosystem, there are unavoidable interactions between the consensus
layer (block producers) and the application layer (users), and specifically with block producers
deriving value from the application layer that depends on which transactions they choose to
process (and in which order). For a canonical example, consider a transaction that executes a
trade on an automated market maker (AMM), exchanging one type of token for another (e.g.,
USDC for ETH). The spot price of a typical AMM moves with every trade, so by executing
such a transaction, a block producer may move the AMM’s spot price out of line with the
external market (e.g., on centralized exchanges (CEXs) like Coinbase), thereby opening up
an arbitrage opportunity (e.g., buying ETH on a CEX at the going market price and then
selling it on an AMM with a larger spot price). The block producer is uniquely positioned to
capture this arbitrage opportunity, by executing its own “backrunning” transaction (i.e., a
trade in the opposite direction) immediately after the submitted trade transaction.

The first goal of this paper is to generalize the existing models of TFM design in the
minimal way that accommodates active block producers, meaning block producers with a
utility function that depends on both the transactions in a block and the net fees earned.
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Specifically, in addition to the standard private valuations for transaction inclusion possessed
by users, the block producer will have its own private valuation, which is an abstract function
of the block that it publishes. We then assume that a block producer acts to maximize its
block producer surplus (BPS), meaning its private value for the published block plus any
additional profits (or losses) from fees (or burns). In the interests of a simple but general
model, we deliberately avoid microfounding the private valuation function of a block producer
or committing to any specifics of the application layer. Our model captures, in particular,
canonical on-chain DeFi opportunities such as arbitrage and liquidation opportunities, but
a block producer’s valuation can reflect arbitrary preferences, perhaps derived also from
off-chain activities (e.g., a bet with a friend that settles on-chain) or subjective considerations.

The extraction of application-layer value by block producers, in DeFi and more generally,
was first studied by Daian et al. [17] under the name “MEV” (for “maximal extractable
value”). At this point, the term has transcended any specific definition – in both the literature
and popular discourse, it is used, often informally, to refer to a number of related but different
concepts. For a brief survey see Section 1.5.4. We argue that our definition of BPS captures,
in a precise way and in a concrete economic model, one of the more common colloquial
meanings of the term “MEV.”

1.3 The Block Production Supply-Chain
In the first part of this paper, we treat a block producer as a single entity that publishes
a block based on the transactions that it is aware of. This would be an accurate model
of block production, as carried out by miners in proof-of-work protocols and validators in
proof-of-stake protocols, up until a few years ago. More recently, especially in the Ethereum
ecosystem, block production has evolved into a more complex process, typically involving
“searchers” (who identify opportunities for extraction from the application layer), “builders”
(who assemble such opportunities into a valid block), “relays” (who gather blocks from builders
and select the most profitable one for the proposer), and “proposers” (who participate directly
in the blockchain protocol and make the final choice of the published block), and several
others. One interpretation of a block producer in our model is as a vertically integrated
party performing the job of all these entities.

In the second part of the paper, we consider a more fine-grained model of the block
production process, in which the role of finding MEV extraction opportunities is decoupled
from the proposer’s role of participating in consensus and is instead performed by specialized
searchers. An interpretation of this model is that the proposer runs an open-source consensus
client to collect block rewards, while outsourcing the complicated task of finding MEV
opportunies to searchers. This is in the same spirit as mev-geth, which was a widely-used
Ethereum client written by Flashbots that proposers could run to allow for the submission
of both regular transactions by users and wrapped bundles of transactions by searchers.1
Prior to mev-geth, searchers and users were treated equally by proposers and competed with
each other for inclusion; among other issues, multiple searchers pursuing the same MEV
extraction opportunity would often have their extraction transactions included in a block,
with the first such transaction capturing the opportunity and the rest failing (but still paying
transaction fees for inclusion and wasting valuable blockspace). Mev-geth introduced an
explicit auction, upstream from the blockchain’s fee mechanism, in which searchers could
compete directly with each other to capture MEV extraction opportunities. Our model can
be viewed as formalizing this idea by allowing a TFM to treat searchers and users differently,
subject to different rules for inclusion and payment.

1 See https://github.com/flashbots/mev-geth/blob/master/README.md.
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1.4 Overview of Results
Our starting point is the model for transaction fee mechanism design defined in [45]. In
this model, each user has a private valuation for the inclusion of a transaction in a block,
and submits a bid along with its transaction. As in [45], we consider TFMs that choose the
included transactions and payments based solely on the bids of the pending transactions (as
opposed to, say, based also on something derived from the semantics of those transactions).
A block producer publishes any block that it wants, subject to feasibility (e.g., with the
total size of the included transactions respecting some maximum block size). A TFM is
said to be dominant-strategy incentive-compatible (DSIC) if every user has a dominant (i.e.,
always-optimal) bidding strategy. The DSIC property is often associated with a good “user
experience (UX),” in the sense that each user has an obvious optimal bid. In [45], a TFM
was said to be incentive-compatible for myopic miners (MMIC) if it expects a block producer
to publish a block that maximizes the net fees earned (at the consensus layer). Here, we
introduce an analogous definition that accommodates active block producers: We call a TFM
incentive-compatible for block producers (BPIC) if it expects a block producer to publish a
block that maximizes its private valuation plus the net fees earned. An ideal TFM would
satisfy, among other properties, both DSIC and BPIC.

1.4.1 Vertically Integrated Active Block Producers
We begin with a model in which there are only users and a single (vertically integrated) active
block producer, and show that there are fundamental barriers to designing ideal transaction
fee mechanisms in this case.

Our first result (Theorem 11) is a proof that with active block producers no non-trivial
TFM satisfies both DSIC and BPIC, where “non-trivial” means that users must at least
in some cases pay a nonzero amount for transaction inclusion2. (In contrast, with passive
block producers and no MEV, the “tipless mechanism” suggested in [45] is non-trivial and
satisfies both DSIC and BPIC; the same is true of the EIP-1559 mechanism of Buterin et
al. [12], provided the mechanism’s base fee is not excessively low [45].) In particular, the
EIP-1559 and tipless mechanisms fail to satisfy DSIC and BPIC when block producers can be
active. Intuitively, for these mechanisms, a user might be motivated to underbid in the hopes
of receiving an effective subsidy by the block producer (who may include the transaction
anyways, if it derives outside value from it).

Our second result (Theorem 13) formalizes the intuition that TFMs that do not charge
non-zero transaction fees – and in particular (by Theorem 11), TFMs that are both DSIC
and BPIC – cannot guarantee any approximation of the maximum-possible social welfare.
Intuitively, the issue is the lack of alignment between the preferences of users and of the
block producer: If a block producer earns no transaction fees from any block, it might choose
a block with non-zero private value but only very low-value transactions over one with no
private value but very high-value transactions.

1.4.2 TFMs with Competitive Searchers
We then consider a more fine-grained model of block production that more accurately
reflects current practice, where we distinguish the roles of “searchers” (who actively identify
opportunities for value extraction from the application layer and compete for the right to

2 We distinguish this result from surface level connections to previous impossibility theorems in mechanism
design in Section 1.5.5
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take advantage of them) and “proposers” (who participate directly in the blockchain protocol
and make the final choice of the published block). Searchers can effectively act as an “MEV
oracle” for a transaction fee mechanism, thereby enlarging the mechanism design space.

In this model, we first consider a TFM that is inspired by how searchers have traditionally
been incorporated into the block production process, and specifically by mev-geth (see
Section 2.5). Intuitively, this mechanism runs a first-price auction for each transaction among
the interested searchers; the winning bid then acts as estimate of the transaction’s MEV,
which the TFM can then use to charge prices to users in a way that recovers the DSIC
property for users (Theorem 16).

We then explore the TFM design space with searchers more generally, with a focus on
good approximate welfare guarantees. Our main contribution here is a mechanism, which we
call the SAKA mechanism, which is DSIC for users, DSIC for searchers, BPIC, sybil-proof,
and guarantees roughly 50% of the maximum-possible welfare when transaction sizes are small
relative to block sizes (as they are in practice); see Theorems 19 and 20. In particular, this
combination of guarantees shows that TFMs with searchers can evade impossibility results
that apply to TFMs without searchers (such as Theorem 13). We further show in Theorem 21
that, even when transaction sizes are small, no DSIC and sybil-proof deterministic TFM can
guarantee more than 50% of the maximum-possible welfare. (By “sybil-proof,” we mean that
no user or searcher can ever profit from creating additional user or searcher identities and
submitting fake transactions or bundles under those identities.)

1.5 Related Work
1.5.1 General TFM literature
The model in this paper is closest to the one used by Roughgarden [45] to analyze (with
passive block producers) the economic properties of the EIP-1559 mechanism [12], the TFM
used currently in the Ethereum blockchain. Precursors to that work (also with passive
block producers) include studies of a “monopolistic price” transaction fee mechanism [32, 51]
(also considered recently by Nisan [38]), and work of Basu et al. [10] that proposed a more
sophisticated variant of that mechanism. There have also been several follow-up works
to [45] that use similar models (again, with passive block producers). Chung and Shi [16]
proved impossibility results showing that the incentive-compatible guarantees of the EIP-
1559 mechanism are in some respects the best possible. There have also been attempts to
circumvent this impossibility result by relaxing the notion of incentive compatibility [16, 24],
using cryptography [47], considering a Bayesian setting [53], or mixtures of these ideas [49].
Other recent works [20, 33] study the dynamics of the base fee in the EIP-1559 mechanism.

1.5.2 MEV-aware mechanism design
There has been much interest among both researchers and practitioners in restructuring the
block production supply chain to address MEV [50, 26]. On the academic side, the bulk of
these approaches involve cryptographic techniques [29, 34, 52, 11] or changes at the consensus
layer [28, 27, 13, 31]. Relatively recently, there have been some initial studies on the impact of
economic mechanisms for mitigating MEV such as order-flow auctions [25] and mev-boost [2];
see [40, 43, 6]. In practice, to this point, economic approaches to addressing MEV have
been more popular than cryptographic ones; examples include, among others, mev-share [36],
UniswapX [3], and MEV Blocker [1]. The model in this paper aims to integrate some of
the ideas behind these deployed applications into the existing mathematical frameworks for
transaction fee mechanism design.

AFT 2024
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1.5.3 Credible mechanisms

Akbarpour and Li [4] introduce the notion of credible mechanisms, where any profitable
deviations by the auctioneer can be detected by at least one user. While similar in spirit to
the concept of BPIC introduced here (and the special case of MMIC introduced in [45]), there
are several important differences. For example, the theory of credible mechanisms assumes
fully private communication between bidders and the auctioneer and no communication
among bidders, whereas TFM bids are commonly collected from a public mempool. Another
difference is that a block producer in our model can manipulate only the allocation rule
of a mechanism (as the payment rule is enforced by the blockchain protocol), while in the
credible mechanisms framework the auctioneer can also manipulate the payment rule. In a
different direction, there is also a line of follow-up work that takes advantage of cryptographic
primitives to build credible auctions on the blockchain [22, 19, 15, 21].

1.5.4 Defining MEV

Daian et al. [17] introduced the notion of miner/maximal extractable value. They defined
MEV as the value that miners or validators could obtain by manipulating the transactions
in a block. Since this work, there have been many follow-up works attempting to formalize
MEV and analyze its effects in both theory and practice. Attempts to give exact theoretical
characterizations of MEV appear in [46, 39, 9, 5]. Broadly, these works define MEV by
defining sets of valid transaction sequences and allowing the block producer to maximize
their value over these sequences. These definitions are very general, but in exchange have to
this point proved analytically intractable. Several empirical papers study the impact and
magnitude of MEV using heuristics applied to on-chain data [41, 42, 48]. Another line of
work [30, 26, 8] studies MEV in specific contexts, such as for arbitrage in AMMs, in which
it is possible to characterize how much MEV can be realized from certain transactions. In
particular, Kulkarni et al. [30] give formal statements on how, under different AMM designs,
MEV affects the social welfare of the overall system.

1.5.5 Impossibility results in mechanism design

The impossibility results in Section 3 may appear superficially related to other such results
in mechanism design. For example, the classic Myerson-Satterwhaite Theorem [37] states
that there is no efficient, individually rational, Bayesian incentive compatible, and budget-
balanced mechanism for bilateral trade. Fundamentally, this result is driven by the tension
between welfare and budget-balance in the presence of incentive-compatibility constraints
on the participants. Our main impossibility result (Theorem 11), meanwhile, is driven by
the combination of incentive-compatibility constraints for users (analogous to the usual
participants of a mechanism design problem) and also such a constraint for a self-interested
party that is tasked with carrying out the allocation rule of the mechanism (the block
producer). As such, our setup more closely resembles that of credible mechanisms than more
traditional mechanism design settings. In particular, Theorem 11 holds even in the absence
of any welfare-maximization or exact budget-balance requirements (a non-zero burning rule
in the sense of Section 2.3 is tantamount to relaxing budget-balance).
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2 Model

This section defines transaction fee mechanisms, the relevant players and their objectives,
and the relevant incentive-compatibility notions. Sections 2.1–2.4 describe the basic model
(with vertically integrated, active block producers) that is considered in Section 3, while
Section 2.5 augments this model with searchers, which play a central role in Sections 4 and 5.

2.1 The Players and Their Objectives

2.1.1 Users
Users submit transactions to the blockchain protocol. The execution of a transaction
updates the state of the protocol (e.g., users’ account balances). The rules of the protocol
specify whether a given transaction is valid (e.g., whether it is accompanied by the required
cryptographic signatures). From now on, we assume that all transactions under consideration
are valid. Every transaction t has a publicly known size st (e.g., the gas limit of an Ethereum
transaction).

We assume that each user submits a single transaction t and has a nonnegative valuation vt,
denominated in a base currency like USD or ETH, for its execution in the next block. This
valuation is private, in the sense that it is initially unknown to all other parties. We assume
that the utility function of each user – the function that the user acts to maximize – is
quasi-linear, meaning that its utility is either 0 (if its transaction is not included in the next
block) or vt − p (if its transaction is included and it must pay a fee of p). We denote the set
of transactions submitted to the TFM by T .

2.1.2 Blocks
A block is a finite set of transactions. A feasible block is a block that respects any additional
constraints imposed by the protocol. For example, if the protocol specifies a maximum block
size, then feasible blocks might be defined as those that comprise only valid transactions and
also respect the block size limit.

2.1.3 Block producers (BPs)
We consider blockchain protocols for which the contents of each block are selected by a
single entity, which we call the block producer (BP). We focus on the decision-making of the
BP that has been chosen at a particular moment in time (perhaps using a proof-of-work or
proof-of-stake-based lottery) to produce the next block. We assume that whatever block the
BP chooses is in fact published, with all the included transactions finalized and executed.

A BP chooses a block B from some abstract non-empty set B of feasible blocks, called its
blockset. For example, the set B might consist of all the feasible blocks that comprise only
transactions that the BP knows about (perhaps from a public mempool, or perhaps from
private communications) along with transactions that the BP is in a position to create itself
(e.g., a backrunning transaction). As with users, we model the preferences of a BP with a
quasi-linear utility function, meaning the difference between its private value for a block
(again, denominated in a base currency like USD or ETH) minus the (possibly negative)
payment that it must make. Unlike with users, to avoid modeling any details of why a BP
might value a block (e.g., due to the extraction of value from the application layer), we allow
a BP to have essentially arbitrary preferences over blocks. More formally, we assume that a
BP has a private valuation that is an arbitrary (real-valued) function vBP over blocks, and
the BP acts to maximize its block producer surplus (BPS):

AFT 2024
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vBP (B) + net fees earned︸ ︷︷ ︸
block producer surplus (BPS)

.

2.1.4 Holders
The final category of participants, which are non-strategic in our model but relevant for
our definition of welfare in Section 2.2, are the holders of the blockchain protocol’s native
currency. As we’ll see in Section 2.3, TFMs are in a position to mint or burn this currency,
which corresponds to inflation or deflation, respectively. We treat TFM mints and burns as
transfers from and to, respectively, the existing holders of this currency. Formally, we define
the collective utility function of currency holders to be the net amount of currency burned
by a TFM.

2.2 Welfare
According to the principle of welfare-maximization, a scarce resource like blockspace should
be allocated to maximize the total utility of all the “relevant participants,” which in our case
includes the users, the BP, and the currency holders. Because all parties have quasi-linear
utility functions and all TFM transfers will be between members of this group (from users to
the BP, from the BP to holders, etc.), the welfare of a block is simply the sum of the user
and BP valuations for it:

W (B) := vBP (B) +
∑
t∈B

vt︸ ︷︷ ︸
welfare of B

. (1)

Holders are assumed to be passive and thus have no valuations to contribute to the sum.3

2.3 Transaction Fee Mechanisms
The outcome of a transaction fee mechanism is a block to publish and a set of transfers (user
payments, burns, etc.) that will be made upon the block’s publication. In line with the
preceding literature on TFMs and the currently deployed TFM designs, we assume that each
user that creates a transaction t submits along with it a nonnegative bid bt (i.e., willingness
to pay), and that a TFM bases its transfers on the set of available transactions and the
corresponding bids. (The BP submits nothing to the TFM.) A TFM is defined primarily by
its payment and burning rules, which specify the fees paid by users and the burned funds
implicitly received by holders (with the BP pocketing the difference).

2.3.1 Payment and burning rules
The payment rule specifies the payments made by users in exchange for transaction inclusion.

▶ Definition 1 (Payment Rule). A payment rule is a function p that specifies a nonnegative
payment pt(B, b) for each transaction t ∈ B in a block B, given the bids b of all known
transactions.

3 We stress that the welfare of a block (1) measures the “size of the pie” and says nothing about how
this welfare might be split between users, the BP, and holders (i.e., about the size of each slice).
Distributional considerations are important, of course, but they are outside the scope of this paper.
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The value of pt(B, b) indicates the payment from the creator of an included transaction t ∈ B

to the BP that published that block. (Or, if the rule is randomized, the expected payment.4)
We consider only individually rational payment rules, meaning that pt(B, b) ≤ bt for every
included transaction t ∈ B. We can interpret pt(B, b) as 0 whenever t /∈ B. Finally, we
assume that every creator of an included transaction has the funds available to pay its full
bid, if necessary (otherwise, the block B should be considered infeasible).

The burning rule specifies how much money must be burned by a BP along with the
publication of a given block.5

▶ Definition 2 (Burning Rule). A burning rule is a function q that specifies a nonnegative
burn q(B, b) for a block B, given the bids b of all known transactions.

The value of qt(B, b) indicates the amount of money burned (i.e., paid to currency holders)
by the BP upon publication of the block B. (Or, if the rule is randomized, the expected
amount.)6 We assume that, after receiving users’ payments for the block, the BP has sufficient
funds to pay the burn required of the block that it publishes (otherwise, the block B should
be considered infeasible).

We stress that the payment and burning rules of a TFM are hard-wired into a blockchain
protocol as part of its code. This is why their arguments – the transactions chosen for
execution and their bids, and perhaps (as in [16]) the bids of some additional, not-to-be-
executed transactions – must be publicly recorded as part of the blockchain’s history. (E.g.,
late arrivals should be able to reconstruct users’ balances, including any payments dictated
by a TFM, from this history.) A BP cannot manipulate the payment and burning rules of a
TFM, except inasmuch as it can choose which block B ∈ B to publish.

2.3.2 Allocation rules
In our model, a BP has unilateral control over the block that it chooses to publish. Thus,
a TFM’s allocation rule – which specifies the block that should be published, given all of
the relevant information – can only be viewed as a recommendation to a BP. Because the
(suggested) allocation rule would be carried out by the BP and not by the TFM directly, it
can sensibly depend on arguments not known to the TFM (but known to the BP), specifically
the BP’s valuation vBP and blockset B.

▶ Definition 3 (Allocation Rule). An allocation rule is a function x that specifies a block
x(b, vBP , B) ∈ B, given the bids b of all known transactions, the BP valuation vBP , and the
BP blockset B.

An allocation rule x induces per-transaction allocation rules with, for a transaction t,
xt(b, vBP , B) = 1 if t ∈ x(b, vBP , B) and 0 otherwise.

▶ Definition 4 (Transaction Fee Mechanism (TFM)). A transaction fee mechanism (TFM) is
a triple (x, p, q) in which x is a (suggested) allocation rule, p is a payment rule, and q is a
burning rule.

4 We assume that users and BPs are risk-neutral when interacting with a randomized TFM.
5 This differs superficially from the formalism in [45], in which a burning rule specifies per-transaction

(rather than per-block) transfers from users (rather than the BP) to currency holders. The payment
rule here can be interpreted as the sum of the payment and burning rules in [45], and the per-block
burning rule here can be interpreted as the sum of the burns of a block’s transactions in [45].

6 An alternative to money-burning that has similar game-theoretic and welfare properties is to trans-
fer q(B, b) to entities other than the BP, such as a foundation or the producers of future blocks.

AFT 2024
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A TFM is defined relative to a specific block publishing opportunity. A blockchain protocol
is free to use different TFMs for different blocks (e.g., with different base fees), perhaps
informed by the blockchain’s past history.

2.3.3 Utility functions and BPS revisited
With Definitions 1–4 in place, we can express more precisely the strategy spaces and utility
functions introduced in Section 2.1. We begin with an expression for the utility of a user
(as a function of its bid) for a TFM’s outcome, under the assumption that the BP always
chooses the block suggested by the TFM’s allocation rule.

▶ Definition 5 (User Utility Function). For a TFM (x, p, q), BP valuation vBP , BP blockset B,
and bids b−t of other transactions, the utility of the originator of a transaction t with
valuation vt and bid bt is

ut(bt) := vt · xt((bt, b−t), vBP , B) − pt(B, (bt, b−t)), (2)

where B := xt((bt, b−t), vBP , B).

In (2), we highlight the dependence of the utility function on the argument that is directly
under a user’s control, the bid bt submitted with its transaction.

The BP’s utility function, the block producer surplus, is then:

▶ Definition 6 (Block Producer Surplus (BPS)). For a TFM (x, p, q), BP valuation vBP , BP
blockset B, and transaction bids b, the block producer surplus of a BP that chooses the block
B ∈ B is

uBP (B) := vBP (B) +
∑
t∈B

pt(B, b) − q(B, b). (3)

In (3), we highlight the dependence of the BP’s utility function on the argument that is
under its direct control, its choice of a block. The BP’s utility depends on the payment and
burning rules of the TFM, but not on its allocation rule (which the BP is free to ignore, if
desired).

Finally, the collective utility function of (passive) currency holders for a block B with
transaction bids b is q(B, b), the amount of currency burned by the BP. (As promised, for a
block B, no matter what the bids and the TFM, the sum of the utilities of users, the BP,
and holders is exactly the welfare defined in (1).)

2.4 Incentive-Compatible TFMs
In this paper, we focus on two incentive-compatibility notions for TFMs – which, as we’ll
see, are already largely incompatible – one for users and one for block producers. We begin
with the latter.

2.4.1 BPIC TFMs
We assume that a BP will choose a block to maximize its utility function, the BPS (Defin-
ition 6). The defining equation (3) shows that, once the payment and burning rules of
a TFM are fixed, a BP’s valuation and blockset dictate the unique (up to tie-breaking)
BPS-maximizing block for each bid vector. We call an allocation rule consonant if, given the
payment and burning rules, it instructs a BP to always choose such a block (breaking ties in
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an arbitrary but consistent fashion). Because a BP can see all bids after they are submitted,
they can also insert their own “fake” transactions along with “shill” bids for them (e.g., to
manipulate the payment and/or burning rules of the TFM), we require that a BP is never
incentivized to include such shill bids.

▶ Definition 7 (Consonant Allocation Rule). An allocation rule x is consonant with the
payment and burning rules p and q if:
(a) for every BP valuation vBP and blockset B, and for every choice of transaction bids b,

x(b, vBP , B)︸ ︷︷ ︸
recommended block

∈ argmax
B∈B

{
vBP (B) +

∑
t∈B

pt(B, b) − q(B, b)
}

︸ ︷︷ ︸
BPS-maximizing block

;

(b) for some fixed total ordering on the blocks of B, the rule breaks ties between BPS-
maximizing blocks according to this ordering.

▶ Definition 8 (Shill-Proof). Payment and burning rules p and q are shill-proof if for every
BP valuation vBP and blockset B, and for every choice of transaction bids b, there is no set
F of fake transactions with shill bids b′ such that:

max
B∈B

vBP (B) +
∑

t∈B\F

pt(B, (b, b′)) − q(B, (b, b′))

︸ ︷︷ ︸
optimal BPS with shill bids

> max
B∈B

{
vBP (B) +

∑
t∈B

pt(B, b) − q(B, b)
}

︸ ︷︷ ︸
optimal BPS without shill bids

. (4)

BPIC TFMs are then precisely those that always instruct a BP to choose a BPS-
maximizing block (breaking ties consistently) while also being shill-proof.

▶ Definition 9 (Incentive-Compatibility for Block Producers (BPIC)). A TFM (x, p, q) is
incentive-compatible for block producers (BPIC) if:
(a) x is consonant with p and q;
(b) p and q are shill-proof.

2.4.1.1 DSIC TFMs

Dominant-strategy incentive-compatibility (DSIC) is one way to formalize the idea of a “good
user experience (UX)” for TFMs. The condition asserts that every user has an “obviously
optimal” bid, meaning a bid that, provided the BP follows the TFM’s allocation rule, is
guaranteed to maximize the user’s utility (no matter what other users might be bidding). In
the next definition, by a bidding strategy, we mean a function σ that maps a valuation to a
recommended bid for a user with that valuation.

▶ Definition 10 (Dominant-Strategy Incentive-Compatibility (DSIC)). A TFM (x, p, q) is
dominant-strategy incentive-compatible (DSIC) if there is a bidding strategy σ such that, for
every BP valuation vBP and blockset B, every user i with transaction t, every valuation vt

for i, and every choice of other users’ bids b−t,

σ(vt)︸ ︷︷ ︸
recommended bid

∈ argmax
bt

{ut(bt)}︸ ︷︷ ︸
utility-maximizing bid

, (5)

where ut is defined as in (2).
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That is, bidding according to the recommendation of the bidding strategy σ is guaranteed to
maximize a user’s utility.7 This is a strong property: a bidding strategy can depend only
on what a user knows (i.e., its private valuation), while the right-hand side of (5) implicitly
depends (through (2)) also on the bids of the other users and the BP’s preferences.

Note that the classic EIP-1559 mechanism [12] is no longer BPIC for an active BP, even
when the base fee is not excessively low (all the transactions with bid at least the base fee fit
into the block). The concern is that an active BP is incentivized to include transactions that
bid below the base fee (effectively subsidizing them) if the BP has sufficiently high value
for those transactions. The main result of Section 3 (Theorem 11) shows that the difficulty
of achieving DSIC and BPIC simultaneously is not particular to the EIP-1559 mechanism:
When BPs are active, no TFM that charges non-zero user fees can be both DSIC and BPIC.
In contrast, for a passive BP the DSIC and BPIC properties can be achieved simultaneously
via the tipless mechanism [45].

In this work we do not focus on offchain agreement proofness, a third incentive-
compatibility notion commonly studied in the context of transaction fee mechanisms. We
note that our impossibility results (Theorems 11 and 13) apply already to mechanisms that
are merely DSIC and BPIC (and not necessarily OCA-proof).

2.5 Adding Competitive Searchers

Next we describe the changes to the basic model that are needed in Sections 4 and 5, in which
we suppose that block proposers outsource the problem of value extraction to searchers.

2.5.1 Searchers and bundles

Searchers submit bundles to the blockchain protocol, where a bundle consists of a single
user-submitted transaction t and any additional transactions needed to extract value from the
transaction. We interchange between referring to bundles by either w or ti, with ti explicitly
referencing a bundle that includes transaction t. We assume that there is a canonical way
to extend a transaction with size st into a bundle, and denote by s′

t the size of the latter
(with s′

t ≥ st). For example, if t represents an AMM trade, the corresponding canonical
bundle might include a subsequent backrunning trade. Just as users submit bids with their
transactions, searchers submit bids with their bundles. A TFM now takes as input both
transactions (with their user bids) and bundles (with their searcher bids), and its allocation,
payment, and burning rules can depend on the bids of all users and all searchers. We assume
that a TFM can distinguish between transactions and bundles, and can therefore treat them
differently (e.g., the payment rule can differ for users and for searchers). Like users, searchers
have private nonnegative valuations for bundle inclusion and quasi-linear utility functions.
The DSIC condition is defined for searchers exactly as it is for users (Definition 10).

7 The term “DSIC” is often used to refer specifically to mechanisms that satisfy the condition in
Definition 10 with the truthful bidding strategy, σ(vt) = vt. Any mechanism that is DSIC in the sense
of Definition 10 can be transformed into one in which truthful bidding is a dominant strategy, simply by
enclosing the mechanism in an outer wrapper that accepts truthful bids, applies the assumed bidding
strategy σ to each, and passes on the results to the given DSIC mechanism. (This trick is known as the
“Revelation Principle”; see e.g. [44].)
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2.5.2 Blocks

Blocks can now include both transactions and bundles. Multiple searchers may submit
bundles corresponding to the same transaction, but in a feasible block, a given transaction
can be included (directly or as part of a bundle) at most once. The inclusion of a bundle
that contains a transaction t necessarily implies the inclusion of t itself – in this sense, the
space of feasible allocations is no longer downward-closed. Equivalently, a block now specifies
a set of user-submitted transactions and, for each such transaction t, the searcher (if any)
responsible for the included bundle that contains t. Users continue to have a private value vt

for inclusion (whether as part of a bundle or not).

2.5.3 Revised incentive-compatibility goals

Thus far, the addition of searchers strictly generalizes the model in Sections 1–4, and so our
impossibility results (Theorems 11 and 13) for the basic model apply immediately to it as
well.

But the whole point of accommodating a competitive ecosystem of searchers is for
proposers (the entities that participate directly in the blockchain protocol) to outsource the
specialized task of assembling high-value blocks to searchers. That is, searchers are meant
to allow proposers to on the one hand act passively (by simply using the most valuable
bundles submitted by searchers) and on the other hand earn almost all of the extractable
value (with searchers competing the value of their bundles away to the proposer through
the bidding process).8 Mathematically, with searchers, the idea is that what had been the
private valuation vBP of the (vertically integrated) BP in Section 2.1 is now distributed
specifically across the searchers. This interpretation is particularly clear in the additive case
– meaning the vertically integrated BP valuation vBP (B) would have been

∑
t∈B µt, with µt

the value extractable from a transaction t and no interactions between different transactions –
with every searcher that submits a bundle involving transaction t having a value of µt for
that bundle.9

With this interpretation in mind, in the model with searchers, there will be three incentive-
compatibility goals: (i) DSIC for users; (ii) DSIC for searchers; and (iii) BPIC for the proposer,
assuming that the proposer is passive (i.e., with the all-zero valuation for blocks and with
utility equal to the net revenue at the consensus layer, including any payments to it from
searchers). In effect, this revised model shatters what had been a vertically integrated BP
into a single proposer and a number of searchers, and what had been BPIC (with an active
BP) now translates to DSIC for (active) searchers and BPIC for a passive proposer.10

8 See [6] for a rigorous analysis of this idea.
9 For example, transactions could represent trades on different AMMs, or once-per-block MEV oppor-

tunities such as top-of-block CEX-DEX arbitrage or liquidation opportunities (the latter two types
modeled via a dummy transaction that has a user bid of zero but non-zero value for searchers).

10 The combination of (i)–(iii) can technically be achieved by using the tipless mechanism and always
ignoring any searchers that might be present. Our interest in Section 4 will be the incentive-compatibility
properties of a more interesting TFM that incorporates searchers in a way that resembles current practice;
the goal in Section 5 is to design novel TFMs that, in addition to satisfying (i) – (iii) and unlike the
searcher-excluding tipless mechanism, guarantee a constant fraction of the maximum-possible welfare.
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2.5.4 Welfare
With searchers, we redefine the welfare (1) of a block B to reflect the private valuations of
searchers and the fact that the proposer is assumed to have an all-zero valuation:

W (B) :=
∑

t∈BT

vt +
∑

w∈BS

vw, (6)

where BT and BS denote the transactions and bundles, respectively, in the block B.

3 An Impossibility Result for DSIC and BPIC Mechanisms

3.1 Can DSIC and BPIC Be Achieved Simultaneously?
The DSIC property (Definition 10) encodes the idea of a transaction fee mechanism with
“good UX,” meaning that bidding is straightforward for users. Given the unilateral power of
BPs in typical blockchain protocols, the BPIC property (Definition 9) would seem necessary,
absent any additional assumptions, to have any faith that a TFM will be carried out by BPs
as intended. One can imagine a long wish list of properties that we’d like a TFM to satisfy;
can we at least achieve these two?

The tipless mechanism [45] is an example of a TFM that is DSIC and BPIC in the special
case of passive BPs. This TFM is also “non-trivial,” in the sense that users generally pay
for the privilege of transaction inclusion. With active BPs, meanwhile, the DSIC and BPIC
properties can technically be achieved simultaneously by the following “trivial” TFM: the
payment rule p and burning rule q are identically zero, and the allocation rule x instructs
the BP to choose the feasible block that maximizes its private value (breaking ties in a
bid-independent way). This TFM is BPIC by construction, and it is DSIC because a user
has no control over whether it is included in the chosen block (it’s either in the BP’s favorite
block or it’s not) or its payment (which is always 0).

Thus, the refined version of the key question is:

Does there exist a non-trivial TFM that is DSIC and BPIC with active BPs?

3.2 Only Trivial Mechanisms Can Be DSIC and BPIC
The main result of this section is a negative answer to the preceding question. By the range
of a bidding strategy σ, we mean the set of bid vectors realized by nonnegative valuations:
{σ(v) : v ≥ 0}, where σ(v) denotes the componentwise application of σ.

▶ Theorem 11 (Impossibility of DSIC, BPIC, Non-Triviality). If the TFM (x, p, q) is DSIC
with bidding strategy σ and BPIC with active block producers, then the payment rule p is
identically zero on the range of σ.

The proof of Theorem 11 is quite general and holds even if BPs are restricted to have
nonnegative additive valuations and all known transactions have the same size and can be
included simultaneously into a single feasible block. We sketch the proof here with details in
the full version. Towards a contradiction, let (x, p, q) define a BPIC and DSIC TFM with a
non-zero payment rule. Thus assume there is a transaction t∗ and a set of bids b = (bt∗ , b−t∗)
where pt∗(B, b) > 0 where B is the BP’s BPS maximizing block for some vBP . Now define
an alternative bid vector b′ = (0, b−t∗) that is identical to b except for t∗ dropping their bid
to 0. Since 0 < pt∗(B, b), for the mechanism to be DSIC, we must have xt(vBP , b′, B) = 0
regardless of vBP . However, we show that we can define a BP valuation v̂BP where v̂BP ({t∗})
is sufficiently high such that for the mechanism to be BPIC, xt∗(v̂BP , b′, B) = 1 even with
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b′
t∗ = 0. This in turn leads to a contradiction. The technical part of the proof lies in choosing

v̂BP properly to show there is no choice of payment and burning rule such that there is a
consonant allocation rule where the BP doesn’t include t∗ under b′.

3.2.1 Discussion
The role of an impossibility result like Theorem 11 is to illuminate the most promising paths
forward. From it, we learn that our options are (i) constrained; and (ii) already being actively
explored by the blockchain research community. Specifically, with active BPs, to design a
non-trivial TFM, we must choose from among three options:
1. Give up on “good UX,” at least as it is expressed by the DSIC property.
2. Give up on the BPIC property, presumably compensating with restrictions on block

producer behavior (perhaps enforced using, e.g., trusted hardware [23] or cryptographic
techniques [14]).

3. Expand the TFM design space, for example by incorporating order flow auctions (e.g.,
[36]) or block producer competition (e.g., [18]) to expose information about a BP’s private
valuation to a TFM. We explore this idea further in Sections 4 and 5.

▶ Remark 12 (Variations of Theorem 11). Variations on the proof of Theorem 11 show that
the same conclusion holds for:
(a) BPs that have a non-zero private value for only one block (a very special case of

single-minded valuations). This version of the argument does not require the consistent
tie-breaking assumption in Definition 7(b).

(b) Burning rules that need not be nonnegative (i.e., rules that can print money), provided
that, for every bid vector b, there is a finite lower bound on the minimum-possible burn
minB∈B q(B, b). (This would be the case if, for example, the blockset B is finite.)

(c) Bid spaces and payment rules that need not be nonnegative (i.e., with negative bids
and user rebates allowed, subject to individual rationality), provided there is a finite
minimum bid bmin ∈ (−∞, 0] and that pt(B, b) = bmin whenever t ∈ B with bt = bmin.
In this case, the argument shows that the payment rule p must be identically equal to
bmin on the range of σ.

3.3 The Welfare Achieved by DSIC and BPIC Mechanisms
Theorem 11 shows that TFMs that are DSIC and BPIC must be “trivial,” in the sense
that users are never charged for the privilege of transaction inclusion. The next result
formalizes the intuitive consequence that such TFMs may, if both users and the BP follow
their recommended actions, produce blocks with welfare arbitrarily worse than the maximum
possible. (Recall that the welfare W (B) of a block B is defined in expression (1) in Section 2.2.)
That is, no approximately welfare-maximizing TFM can be both DSIC and BPIC with active
BPs. This result is not entirely trivial because the conclusion of Theorem 11 imposes no
restrictions on the burning rule of a TFM.

▶ Theorem 13 (Impossibility of DSIC, BPIC, and Non-Trivial Welfare Guarantees). Let (x, p, q)
denote a TFM that is BPIC and DSIC with bidding strategy σ. For every approximation
factor ρ > 0, there exists a BP valuation vBP , BP blockset B, block B∗ ∈ B, and transactions
with corresponding user valuations v such that

W (B) ≤ ρ · W (B∗),

where B = x(σ(v), vBP , B).
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In the absence of a burning rule, Theorem 13 follows directly from Theorem 11, since
any mechanism with p = 0 effectively ignores user bids when choosing a block. However,
it’s not immediately obvious that there is no burning rule that can entice the BP to pick a
welfare maximizing block even while ignoring users’ payments. We show that DSIC rules
such mechanisms out since a user being able to affect the burning rule and hence allocation
rule while having their payment fixed to 0 would give them an incentive to misreport their
value.

▶ Remark 14 (Generalizations of Theorem 13). The proof of Theorem 13 shows that the
result holds already with BPs that have additive or single-minded valuations. (As discussed
in Remark 12, Theorem 11 holds in both these cases, and the BP valuation vBP used in
the proof of Theorem 13 is both additive and single-minded). A slight variation of the
proof shows that the result holds more generally for DSIC and BPIC TFMs that use a
not-always-nonnegative burning rule, under the same condition as in Remark 12(b).

4 Transaction Fee Mechanisms with Searchers

4.1 Incorporating Searchers
The impossibility results in Section 3 are consistent with practice, in the sense that modern
attempts to mitigate the negative consequence of MEV through economic mechanisms
generally lie outside the basic design space of TFMs introduced in Sections 1–4. The
dominant such mechanisms distribute the task of block production across multiple parties;
in this section and the next, we adopt the model described in Section 2.5, which captures
some of this complexity through the addition of searchers that can submit bundles (of a
user-submitted transaction together with the searcher’s value-extracting transactions) to a
TFM. Recall from Section 2.5 that, in this model, what had been the private valuation vBP

of a vertically integrated BP is effectively distributed across a set of searchers, with the block
proposer, having outsourced the task of value extraction, then acting passively to maximize
its revenue (including the payments from searchers for included bundles). The winning bid
of a searcher can be interpreted as an “MEV oracle” that provides a TFM with an estimate
of the value that can be extracted from the bundled transaction. In this sense, the TFM
design space with searchers is richer than the basic model with users only, and there is hope
that a TFM can take advantage of such estimates to define payments for user-submitted
transactions in a DSIC-respecting way (e.g., with searchers’ bids leading in some cases to
user refunds). Indeed, we’ll see that this expanded design space allows for positive results
that would be impossible in the basic model.

In this section, we propose an abstraction of how searchers have traditionally been incor-
porated into the block production process, inspired specifically by mev-geth (see Section 2.5),
and study the incentive-compatibility properties of the resulting mechanism. Section 5
explores the TFM design space with searchers more generally, with a focus on welfare
guarantees.

4.2 The s-Tipless Mechanism
We next introduce the Searcher Augmented Tipless Mechanism (s-tipless mechanism). Like
the EIP-1559 and tipless mechanisms, it has a fixed base fee r that is charged per unit size.
Intuitively, for each user-submitted transaction t, the mechanism runs a first-price auction
among the interested searchers; such an auction is often referred to as an “order-flow auction.”
(Thus, the mechanism does not attempt to be DSIC for searchers.) If the winning bid bw
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in this auction is high enough to pay the base fee charges (i.e., bw ≥ r · s′
t, where s′

t is the
size of a bundle that contains t), then w’s bundle is included in the block and w pays its bid
(while the user that submitted t pays nothing). If the winning searcher bid is less than r · s′

t

then, if the user that submitted t bids at least the relevant base fee charges (i.e., bt ≥ r · st),
the transaction t is included in the block and the submitting user pays r · st. In either case,
all base fee revenues (r · st or r · s′

t) are burned. (The block proposer may still collect revenue
from the first-price auction among searchers if the winning bid exceeds r · s′

t.) In effect,
searchers can cover base fee charges for a user if their transaction is sufficiently valuable for
them.

▶ Definition 15 (Searcher-Augmented Tipless Mechanism (s-tipless mechanism)). Fix a base
fee r ≥ 0:

(a) Allocation rule: A transaction should be included if either it clears its base fee, or it has
a bundle that clears the bundle’s base fee. If multiple bundles for a transaction clear the
base fee, the bundle with the highest bid should be included. For each t ∈ T , let St denote
the submitted bundles that contain t, w a generic such bundle, and t∗ = argmaxw∈St

{bw}.
Define

S∗ = {t∗ : t ∈ T, bt∗ ≥ r · s′
t} and T ∗ = {t ∈ T : bt ≥ r · st ∨ St ∩ S∗ ̸= ∅},

and the allocation rule by

x(b, B) = T ∗ ∪ S∗.

(b) Payment rule:
For all transactions t in a block B:

pt(B, b) =
{

0 if St ∩ B ̸= ∅
r · st otherwise.

For all bundles w in a block B:

pw(B, b) = bw.

(c) Burning rule: For a block B with transactions BT and bundles BS,11

q(B, b) =
∑

t∈BT

r · st +
∑

w∈BS

r · (s′
t − st).

In Definition 15 and Theorem 16 below, we assume for simplicity that the base fee r is
large enough that there is sufficient room in the block for all of the transactions that the
mechanism would like to include (i.e., all transactions for which either the user or some
searcher is willing to cover the relevant base fee charges). In practice, a la the EIP-1559
mechanism, the base fee r would generally be adjusted by local search so that this property
typically holds. Definition 15 and Theorem 16 can be extended to the general case (with
contention between sufficiently high-bidding transactions and bundles) by redefining the
allocation rule to maximize the total revenue (i.e.,

∑
ti∈BS

(bti − r · s′
t)), breaking ties in a

consistent fashion.

11We subtract st for every bundle w ∈ Bs as to not double count st both as part of a bundle and as a
standalone transaction
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▶ Theorem 16. The s-tipless mechanism is DSIC for users and BPIC.

We give a sketch of the proof here with the details in the full version. To see that the
mechanism is DSIC for users, note that if a transaction has a bundle included for it, then
it always pays 0 regardless of what it bids, trivially giving the user a dominant bidding
strategy. Otherwise, the user faces a fixed price for inclusion and hence has a dominant
strategy to only bid above that price if their value is above it. To see that the mechanism
is BPIC, note that the only revenue the BP gets is from searcher bids above the basefee.
Standalone transactions have no net effect on the BP’s BPS. Thus any allocation rule that
picks the highest bid searchers above the base fee and picks transactions clearing the base
fee is consonant. Furthermore, since the amount searchers pay is only a function of their
own bids, the BP has no way to increase their BPS via inserting shill bids.

5 Welfare Guarantees

This section continues to investigate transaction fee mechanism design in the presence of
searchers, as in the model in Section 2.5. While the previous section proposed abstractions
for some of the economic mechanisms that are currently used in practice, this section zooms
out and explores the expanded design space more generally.

5.1 What Do We Want from a TFM?
Starting from a blank page, we naturally want to design a mechanism that scores well with
respect to all the criteria we have considered thus far:
(P1) DSIC for users;
(P2) DSIC for (active) searchers;
(P3) BPIC (with a passive block proposer);
(P4) good welfare guarantees.
Without searchers, Theorem 13 shows that the combination of (P1), (P3), and (P4) is
unachiavable. We also noted in passing (footnote 10) that the tipless mechanism, modified
to always ignore searchers, satisfies (P1)–(P3). (Such a mechanism can obviously lead to a
highly welfare-suboptimal outcome when the valuations of searchers are significantly bigger
than those of the users.)

Given the welfare-maximization goal (P4), one obvious starting point is the Vickrey-
Clarke-Groves (VCG) mechanism, which in this context would accept bids from all users
and searchers, output a feasible block that maximizes the social welfare (6) (taking users’
and searchers’ bids at face value), and charge each user or searcher its externality (i.e.,
what the maximum social welfare would have been had that user or searcher been absent).
As always, the VCG mechanism is DSIC (in this case, for both users and searchers) and
maximizes the social welfare at its dominant-strategy equilibrium. It does not, however,
satisfy property (P3). For example, even with only one user-submitted transaction and
a number of corresponding searchers (i.e., a second-price auction), the block proposer is
generally incentivized to masquerade as a searcher and insert a shill bid (just below the
highest searcher bid) to increase its revenue.12

12 A similar problem would arise if the s-tipless mechanism in Section 4 were defined with second-price
rather than first-price searcher auctions.
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One easy way to turn the VCG mechanism – or really, any TFM with a passive block
proposer – into a BPIC mechanism is to always burn all the payments made by users and
searchers. The block proposer would then be indifferent over blocks and willing to carry out
an arbitrary allocation rule. An extension of this idea that attempts to trade welfare for a
non-zero amount of BP revenue would be to use bidder-specific reserve prices (like r · st and
r · s′

t in the s-tipless mechanism) that don’t get burned.13

Summarizing, the VCG mechanism with all payments burned satisfies all of (P1)–(P4),
and in particular shows that the addition of searchers allows TFMs to circumvent the
impossibility result in Theorem 13. Should we declare victory?

5.2 Sybil-Proof Mechanisms
In a permissionless blockchain protocol like Bitcoin or Ethereum, it is easy to generate
multiple identities in an undetectable way. For example, a user can easily participate as a
“fake searcher” in a TFM if it so chooses. This challenge of “sybils,” especially in tandem
with the non-downward-closed nature of the set of feasible blocks (with inclusion of a bundle
implying inclusion of the corresponding transaction), renders the VCG mechanism extremely
easy to manipulate (despite being DSIC for users and searchers separately).

For example, consider a sample instance with a block size of k where all the transactions
and bundles are unit sized and there is one searcher per transaction, i.e. ∀t ∈ T , st = s′

t = 1
and St = {t∗}. In this case, the VCG mechanism will include the transactions and bundles
corresponding to the k highest values of bt + bt∗ . Let the (k + 1)th-highest of these values
be r. The included user and searcher for transaction t would then pay max{r − bt∗ , 0} and
max{r − bt, 0} respectively. In the case that both bt ≥ r and bt∗ ≥ r it follows that neither
the user nor searcher has to pay anything at all. Hence there is a clear incentive for a user
to deviate by making their bid arbitrarily high and including an arbitrarily high searcher bid
for their transaction to get included without paying anything. Even a user with only ϵ value
for inclusion has an incentive to do this. It follows that users engaging in such manipulations
can cause the mechanism to produce outcomes with arbitrarily bad welfare. Furthermore, in
permissionless blockchains, such manipulations are easy to carry out. This motivates seeking
out TFMs that are, among other properties, “sybil-proof” in some sense.

Our definition of sybil-proofness (for users and searchers) mirrors our definition of BPIC, in
that it asserts that the party in question cannot increase their utility through the submission
of fake transactions and shill bids.

▶ Definition 17 (Sybil-Proofness). A mechanism is sybil-proof if for every agent t and every
vector of bids b′, there exists some bid bt such that ut(bt) ≥ ūt(b′) where ūt(·) is the agent’s
net utility across the multiple transactions and/or bundles they submitted.

Intuitively, this definition asserts that a user or searcher should never earn more utility from
submitting multiple bids than they could have through a single bid for their transaction or
bundle.

We now augment our previous desiderata with:
(P5) sybil-proof.
Next we provide a TFM that satisfies the full set (P1)–(P5) of desired properties.

13 A mechanism with any non-zero reserve prices cannot offer any worst-case approximate welfare guarantees:
for all the mechanism knows, only one participant has a non-zero valuation, which is just below the
mechanism’s non-zero reserve price for that participant. We leave a Bayesian analysis (e.g., with the
choice of reserve prices informed by historical bidding data) of the revenue-welfare trade-offs of such
mechanisms to future work.
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5.3 The Searcher-Augmented Knapsack Auction
We will consider a mechanism that chooses which transactions and bundles to include based on
their bid-to-size ratios. For ease of exposition, we assume that these ratios are distinct. (This
assumption can be removed through standard lexicographic tie-breaking.) The mechanism
finds a threshold ratio such that all transactions and bundles that have bid-to-size ratios
above this threshold can fit into the block. This ratio is then used as a per-size price charged
to included transactions and bundles. Similarly to the s-tipless mechanism, an included
bundle pays all the costs for its corresponding transaction. For included bundles, in the case
that the second highest bundle bid for a transaction is greater than the threshold payment,
the winning searcher pays the second-highest bid instead. Finally, the burning rule is set to
be the sum of users’ and searchers’ payments so that the block proposer always receives zero
BPS.

▶ Definition 18 (Searcher-Augmented Knapsack Auction (SAKA)).

(a) Allocation rule: Recall that t∗ denotes the bundle with the highest bid for transaction t.
For a given µ, let

Sµ = {t∗ : t ∈ T, bt∗/s′
t ≥ µ} and T µ = {t ∈ T : bt/st ≥ µ ∨ St ∩ Sµ ̸= ∅}.

Then let Bµ = T µ ∪ Sµ be the block consisting of all transactions and bundles that have
a bid-to-size ratio of at least µ.14

Define µ∗ := inf{µ :
∑

t∈Bµ
T

st +
∑

ti∈Bµ
S
(s′

t − st) ≤ k}, where Bµ
T and Bµ

S denote the
transactions and bundles, respectively, in the block Bµ. Then,

x(b, B) = Bµ∗
.

(b) Payment rule: Define bt′ := maxti∈St,ti ̸=t∗{bti} as the second-highest bundle bid for
transaction t. (If there is no such bid, interpret bt′ as 0.) For t ∈ BT :

pt(B, b) =
{

0 if St ∩ B ̸= ∅
µ∗ · st otherwise.

For ti ∈ BS:

pti(B, b) = max{µ∗ · s′
t, bt′}.

(c) Burning rule:

q(B, b) =
∑

t∈BT

pt(B, b) +
∑

w∈BS

pw(B, b).

5.4 Analysis
We consider the incentive-compatibility properties of the SAKA mechanism in Theorem 19
and its welfare guarantee in Theorem 20. We conclude with Theorem 21, which shows that the
welfare guarantee in Theorem 20 is near-optimal among TFMs that satisfy properties (P1)–
(P5).

14 Subject to the usual constraint that each transaction is included (by itself or as part of a bundle) at
most once.
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▶ Theorem 19. The Searcher-Augmented Knapsack Auction (SAKA) mechanism is DSIC
for both users and searchers, BPIC, and sybil-proof.

We give the main ideas of the proof here with details in the full version. SAKA being
BPIC follows immediately from the burning rule. To see that the mechanism is DSIC, we
can focus on the case where a transaction doesn’t have a bundle included for it (otherwise
the transaction always pays 0). The allocation rule is monotone since once a user’s bid clears
µ∗ · st they will always be included. Furthermore, µ∗ · st is the minimal amount t can bid to
be included since otherwise bidding below µ∗ · st and being included would contradict the
definition of µ∗. The case for searcher DSIC follows identically with the addition of needing
to pay at least the second highest searcher bid to still be included. Sybil-proofness follows
from the fact that µ∗ is weakly increasing in the number of bids. So users and searchers have
no way to decrease their payment by bidding on fake transactions.15

We parameterize the mechanism’s welfare guarantee by the maximum fraction γ of a
block’s capacity that is consumed by a single transaction or bundle. (In many blockchain
protocols, γ is typically 2% or less.)

▶ Theorem 20. Assuming truthful bids by users and searchers, the outcome of the SAKA
mechanism has social welfare at least (1 − γ)/2 times the maximum possible welfare.

Note that SAKA implements a greedy knapsack algorithm, except it scores bundles
using a scoring rule of vt∗

s′
t

instead of vt+vt∗
s′

t
as it would optimally. However, we either have

vt∗
s′

t
≥ vt+vt∗

2s′
t

or vt∗
s′

t
< vt+vt∗

2s′
t

=⇒ vt

st
> vt+vt∗

2s′
t

. It follows that the density SAKA assigns
to a bundle is either at least half of what it should be or that the bundle’s corresponding
transaction carries half the bundle’s true density by itself. Since the mechanism includes
transactions and bundles with the highest densities, it follows that a bundle being left out
because its density was misjudged would be replaced with transactions and/or bundles with
at least half its density. Since the greedy algorithm will fill up at least 1−γ of the block limit,
this implies an approximation factor of 1−γ

2 . The details can be found in the full version.
Our final result shows that, modulo the factor of 1 − γ – which, as discussed above, is

typically close to 1 in our context – the welfare approximation guarantee in Theorem 20
is optimal among deterministic mechanisms that are both DSIC (for users and searchers)
and sybil-proof in the sense of Definition 17. The key insight is that it’s difficult to split the
payment between user and searcher when a bundle is included due to the bundle requiring its
corresponding transaction’s inclusion. In particular we show DSIC + sybil-proofness implies
user/searcher pairs can only be included based on the max of their values rather than the
sum of their values (as would be optimal). We leave the details to the full version.

▶ Theorem 21. No deterministic mechanism that is DSIC for users and searchers and
sybil-proof can achieve better than a 1/2-approximation to the optimal social welfare, even
when transaction sizes are a negligible fraction of the block size.
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