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Abstract
Crash fault tolerant (CFT) consensus algorithms are commonly used in scenarios where system
components are trusted – e.g., enterprise settings and government infrastructure. However, CFT
consensus can be broken by even a single corrupt node. A desirable property in the face of such
potential Byzantine faults is accountability: if a corrupt node breaks the protocol and affects
consensus safety, it should be possible to identify the culpable components with cryptographic
integrity from the node states. Today, the best-known protocol for providing accountability to
CFT protocols is called PeerReview; it essentially records a signed transcript of all messages sent
during the CFT protocol. Because PeerReview is agnostic to the underlying CFT protocol, it
incurs high communication and storage overhead. We propose CFT-Forensics, an accountability
framework for CFT protocols. We show that for a special family of forensics-compliant CFT
protocols (which includes widely-used CFT protocols like Raft and multi-Paxos), CFT-Forensics
gives provable accountability guarantees. Under realistic deployment settings, we show theoretically
that CFT-Forensics operates at a fraction of the cost of PeerReview. We subsequently instantiate
CFT-Forensics for Raft, and implement Raft-Forensics as an extension to the popular nuRaft library.
In extensive experiments, we demonstrate that Raft-Forensics adds low overhead to vanilla Raft.
With 256 byte messages, Raft-Forensics achieves a peak throughput 87.8% of vanilla Raft at 46%
higher latency (+44 ms). We finally integrate Raft-Forensics into the open-source central bank digital
currency OpenCBDC, and show that in wide-area network experiments, Raft-Forensics achieves
97.8% of the throughput of Raft, with 14.5% higher latency (+326 ms).
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1 Introduction

In the theory and practice of distributed systems, crash fault tolerance plays a central
role [42]. Crash fault tolerant (CFT) protocols allow a system to come to consensus on
a log of events even in the presence of nodes that may crash, but otherwise follow the
protocol [58, 47, 24, 30]. CFT systems are widely deployed in enterprise systems and support
various high-profile services [27, 10, 5, 30, 21]. For example, prevalent systems like etcd [18],
CockroachDB [55] and Consul [28] employ CFT protocols like Raft [47]. CFT protocols are
also widely-used in security-sensitive critical infrastructure [49, 27], including prospective
Central Bank Digital Currencies (CBDCs) [41, 44].

CFT protocols provide theoretical correctness guarantees under the assumption that at
least a certain fraction of nodes follow the protocol, and remaining nodes may suffer from
crashes. However, these assumptions can be broken in practice. For instance, an agent could
be Byzantine, meaning that it can misbehave arbitrarily, e.g., by delaying or tampering with
messages. In such cases, consensus can be trivially broken.

One possible solution is to replace the CFT protocol with a Byzantine fault tolerant (BFT)
protocol, which guarantees consensus under not only crash faults, but also under Byzantine
faults [9, 40, 7, 2, 62, 20, 22, 25]. This is a viable solution, though swapping out consensus
protocols may be impractical for organizations that have already built infrastructure around
a particular CFT system.

In this paper, we explore a complementary approach to managing Byzantine faults:
accountability. That is, in the case of Byzantine faults in a CFT protocol, can an auditor
with access to locally-stored protocol states identify which node(s) were responsible for the
misbehavior, with cryptographic guarantees? In particular, we want to provide this guarantee
by making minimal changes to an existing system and protocol, rather than completely
replacing the consensus mechanism.

Accountability for BFT protocols has been studied systematically very recently, both as an
intrinsic attribute of existing protocols [50, 45, 46] and as an important feature in the design
of new protocols [6, 54, 11, 51]. However, there is comparatively little work on CFT protocols
that incorporate accountability for Byzantine faults [26, 24]. An important prior work called
PeerReview tackled this problem in the context of general CFT protocols [26]. PeerReview
works by producing a signed transcript of every message that is sent in the protocol.
Being a general-purpose protocol, it does not always achieve competitive performance
with the underlying CFT protocol (details in §6.2). Hence, to our knowledge, existing
work on accountability for CFT protocols either: (1) is very general, and thus incurs high
performance overhead when applied to specific CFT protocols (i.e., PeerReview [26]), and/or
(2) does not include a full implementation-based evaluation to measure the practical effect of
accountability [26, 24].
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Figure 1 Bandwidth-latency tradeoffs of Raft vs Raft-Forensics over 4 nodes at message size of
256 Bytes.

Our goal in this work is to design a practical accountability framework that
incurs low communication and storage overhead by exploiting the structure of
the underlying protocol, unlike PeerReview. Crucially, despite exploiting protocol
structure, we want the framework to be broadly applicable to common CFT protocols and
backwards-compatible with existing systems. To this end, our contributions are threefold:

Accountably-Safe Consensus: We first formally define a subclass of CFT protocols
called forensics-compliant protocols, which includes two of the most widely-used CFT
protocols in use today: Raft [47] and Paxos [34, 29] 1. Intuitively, the defining feature
of this class is that its protocols cycle between two phases: log replication and leader
election, and each phase satisfies some formal properties (defined in §4). We then propose
CFT-Forensics, a lightweight modification to forensics-compliant CFT protocols that
provably guarantees to expose at least one node that committed Byzantine faults when
consensus is violated. Note that we cannot guarantee to detect more than one Byzantine
node, as only one malicious node is needed to break CFT consensus; however, for certain
classes of attacks involving multiple Byzantine nodes, we are able to detect multiple
misbehaving nodes .
Theoretical Efficiency Comparison: We theoretically analyze the communication and
computational overhead of CFT-Forensics compared to the most relevant prior work in
this space, PeerReview. We show that CFT-Forensics has (amortized) vanishing storage
overhead compared to the baseline protocol in practical scenarios, while PeerReview
has overhead that grows linearly with the logs. In addition, during log replication, the
communication overhead of CFT-Forensics is 58% lower than PeerReview.
Empirical Performance Evaluation on Raft: We implement Raft-Forensics, an
instantiation of CFT-Forensics for the Raft protocol. Our implementation is built on a
fork of nuRaft, a popular C++ implementation of Raft. We evaluate its performance
compared to Raft, both in benchmark experiments and in a downstream application –
specifically, OpenCBDC [41] – an open-source central bank digital currency (CBDC)
implementation that uses nuRaft. In benchmark experiments, we observe in Fig. 1 that
CFT-Forensics achieves performance close to vanilla Raft (experimental details in §7).
For instance, in end-to-end experiments, it achieves a maximum throughput that is 87.8%
the maximum throughput of vanilla Raft, at 46% higher confirmation latency (44 ms).
In our OpenCBDC experiments over a wide-area network, Raft-Forensics achieves 2.2%
lower throughput at 14.4% higher latency (326 ms) than vanilla Raft.

1 For notational brevity, we use the name “Paxos” to refer to variants of the Paxos algorithm that are
sometimes referred to as multi-Paxos to distinguish from the original single-decree Paxos [34, 29].
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2 Related Work

CFT protocols

CFT protocols are designed to handle crash faults, where nodes may fail but do not exhibit
malicious behavior. Paxos [36] is a foundational CFT protocol, with many variants [38,
34, 15, 35, 4, 37, 43, 58, 29]. Raft [47] is a CFT protocol that aims to provide a more
understandable and easier-to-implement alternative to Paxos [58], where HovercRaft [31]
further improves its performance. Viewstamped Replication revisited [39] is a CFT protocol
that displays elements of both Paxos and Raft. Both Raft [55, 48, 1] and Paxos [8, 5, 53, 14]
are widely-used in practice.

Accountability

Accountability allows protocols to identify and hold misbehaving participants responsible
when security goals are compromised [33, 32]. In the context of fault-tolerant protocols,
accountability allows a protocol to identify culpable participants when security assumptions
are violated and demonstrate their misconduct. Recent works [50, 16] have examined
several widely used BFT protocols and assessed their inherent accountability levels without
altering the core protocols. In addition, some other works [23, 3, 59] have improved the
performance of existing BFT protocols by excluding culpable participants from the consensus
with accountability. Since CFT protocols are explicitly designed to handle only crash faults,
integrating accountability offers a lightweight enhancement to detect Byzantine actors.

One prior work [24] explored the accountability of the Hyperledger Fabric blockchain,
which features a pluggable consensus mechanism. This study conducted a case analysis of
incorporating accountability into a Hyperledger Fabric system underpinned by a CFT protocol,
Apache Kafka [21] (called Fabric*). However, this work treats the consensus module as a
cluster, offering accountability only at the level of the entire consensus group (not individual
nodes within the group). In contrast, we aim to identify and attribute Byzantine faults
to individual misbehaving consensus replicas participants. Fabric* introduces two primary
modifications. First, parties must sign every message they send. Second, it enforces a
deterministic block formation algorithm to eliminate ambiguity. However, these changes
are neither necessary nor sufficient for ensuring accountability in the CFT protocols we
study. In addition, Fabric* does not empirically evaluate their system, whereas we evaluate
performance both theoretically and empirically.

PeerReview [26] builds a framework for accountability that applies to general distributed
systems. Although it accounts for Byzantine faults in CFT protocols as CFT-Forensics
does, it has substantially higher overhead communications and space requirements than
CFT-Forensics, which we discuss in §6 in detail. PeerReview requires nodes to audit each
other, instead of assuming arbitrarily many central auditors as we do (§4). To address this
difference, we disable inter-node auditing in PeerReview, which still incurs substantially
higher communication and memory overhead than CFT-Forensics.

3 Setup

We study consensus protocols that solve the crash-fault tolerant state machine replication
(CFT-SMR) problem over partially synchronous networks. Precisely, we consider a setting
with n servers (also known as nodes) and arbitrarily many clients. For the vanilla CFT-SMR
setting, we assume that at most f out of the n nodes can suffer crash failures, where they
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stop working without resuming at an arbitrary and unpredictable moment. Each node u

maintains a state machine SMu and an append-only log list logs. We let u[i] denote the
i-th entry in u’s logs. The goal of CFT-SMR is for the nodes to maintain consistent state
machines SMu with each other (Definition 1). SMu maintains a local state s initialized to
s0 =⊥ and a deterministic function ϕ. logs are sequential inputs to SMu generated from
client requests, which results in state transition

SMu
.si = SMu

.ϕ(SMu
.si−1, u[i]), ∀i ∈ Z>0.

The network is partially synchronous, meaning that there exists a global stabilization
time (GST) and a constant time length ∆, such that a message sent at time t is guaranteed
to arrive at time max{GST, t} + ∆. GST is unknown to the system designer and is not
measurable by any component of the system.

▶ Definition 1 (CFT(-SMR) Protocol). In the setting above, a consensus protocol P is
f -CFT(-SMR) if f nodes can fail by crash, and the following three properties are satisfied.
1. Safety: If E is the i-th entry of a correct node’s log, then no other correct

node has E
′
≠ E at index i.

2. Liveness: If a correct client submits a request r, then eventually all non-faulty nodes will
(1) have a log entry E at index i handling r (2) there exists a log entry at all previous
positions j < i.

3. Validity: Each entry in the log of a correct replica can be uniquely mapped to a command
proposed by a client request.

In the remainder of the paper, we study f -CFT protocols with f = ⌊(n− 1)/2⌋ and focus
on the boldfaced safety property. These protocols tolerate f crash failures, but are typically
vulnerable under even one Byzantine failure, where a node arbitrarily deviates from the
stipulated protocol (§5.1).

We formalize our threat assumptions below.

3.1 Threat Model
In addition to the f nodes with crash failures, we further assume the existence of b ≥ 1 nodes
that execute Byzantine faults. We assume b ≤ n − 2 to avoid a trivial problem with at most
one honest node. The Byzantine nodes are capable of accessing states of honest nodes and
collaboratively determining whether, when, and what to send to every honest node. However,
they cannot influence the honest nodes or the communication between them.

Auditor

To identify the adversary, we introduce auditors in addition to the clients and (server) nodes
in the SMR model. Any actor with access to the full states of any node (details in §5.2.1)
can be an auditor. Each auditor works independently. If an auditor requests information,
honest nodes always provide their information to the auditor; a Byzantine node can respond
arbitrarily. Generally, the information is transmitted through the partially synchronous
network, so it is guaranteed to arrive at the auditors eventually. The information may also be
collected physically, if the entire system is maintained by a centralized party such as a central
bank. Any auditor may determine the safety of the system by checking data legitimacy and
consistency among the nodes, as a function of the received state information. Our main
goal is to define modifications to the consensus protocol and an auditing algorithm that
jointly enable an auditor to eventually uncover the identity of the adversarial node if the
state machine safety property is violated.

AFT 2024
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We assume the simplest setting with a single trusted auditor who is unable to directly
influence the system. Notably, there are various alternative auditing designs. For example,
we can introduce additional independent auditors to trade communication complexity for
robustness. We can also allow auditors to create checkpoints for the nodes. Since checkpoints
influence the system, the auditors should also be coordinated by a distributed consensus for
security. We leave the design of a trustless auditing system to future work.

3.2 The Accountability Problem

If even a single node is Byzantine, CFT protocols are vulnerable to safety violations (examples
in Section 5.1). As a result, we want to identify the party responsible for a safety violation
using an auditing algorithm. If such an algorithm exists, we say the protocol has accountability.

▶ Definition 2 (Accountability). Let P denote an f-CFT-SMR consensus protocol. P has
accountability if there exists a polynomial-time auditing algorithm A s.t.
1. A takes the states of P as input.
2. If safety (Def. 1) is violated, A outputs a non-empty set of nodes and irrefutable proof

that each member of the set violated protocol. Otherwise, A outputs ⊥.

4 Forensics-Compliant Protocols: A Family of CFT Protocols

Modifying an arbitrary CFT-SMR protocol under a general workflow without context can be
challenging. To address this, we define a family of CFT-SMR consensus protocols named
forensics-compliant, which are provably modifiable for accountability under our general frame-
work CFT-Forensics (Def. 2 and Theorem 11). At a high level, a forensics-compliant protocol
is leader-based (Property 3). It can be described by a set of procedures, which is partitioned
into log replication and leader election2 with each satisfying necessary properties. Both
Raft [47] and Paxos [58], two dominant CFT protocols in practice [29], are forensics-compliant
protocols. Additionally, forensics-compliant protocols include Viewstamped Replication re-
visited [39] and simple variants such as HovercRaft [31].

4.1 Setup

We start with an f -CFT-SMR protocol. In the protocol, each entry in the log has two
possible states: committed and uncommitted. If an entry is committed, the content in the
entry will not be changed in the future and can be applied to the state machine. If a prefix
in the log is committed, then all entries in the prefix is considered committed. The largest
index of committed entries is called the last commit index, denoted as iCommit.

Let there be global notion of time T = [0,∞), which is unknown to any of the nodes. For
simplicity, we let u[i] denote the i-th log entry in node u’s logs, and u.loglen denote the
length of u’s logs, which equals the index of u’s last entry. For a given entry E with index i,
we say a node v owns E if v[i] = E. Furthermore, we let Ei∶j denote a sequence of consecutive
entries {Ek∣k ∈ [i, j], Ek.index = k}. Throughout the paper, we use colored monospace
text to denote protocols and methods that appear in pseudo-code.

2 We use the terminology of Raft for clarity.
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Leader-Based

Let S denote the set of nodes with ∣S∣ = n. A forensics-compliant protocol must satisfy the
leader-based property (Property 3).

▶ Property 3 (Leader-Based). At any time t ∈ T , each node u ∈ S identifies a leader
Lu(t) ∈ S̄ ≜ S ∪ {⊥}. For each u, there exists an interval partition of T = ⋃∞

i=1[ti−1, ti) and
a sequence of nodes {ℓi ∈ S̄}∞i=1 where t0 = 0, and for all i ∈ Z>0,

ti−1 < ti, ℓi ≠ ℓi+1; Lu(t) = ℓi,∀t ∈ (ti−1, ti).

If Lu(t) = u for all t ∈ [t, t̄), u is called a leader during the leadership [t, t). Otherwise,
if Lu(t) = ℓ ∉ {u,⊥}, u is called a follower identifying ℓ. Only a leader can propose a log
entry. At time t when ℓ starts being a leader, it assigns a unique term to itself which is
fixed until it stops being a leader at t̄. Hence, the term can be regarded as an attribute of
a leadership during [t, t). For node u to identify ℓ, u must receive a message from ℓ that
includes ℓ’s term. u sets its term equal to ℓ’s term as soon as it starts identifying ℓ.

We say there exists a global leader ℓ ∈ S of term τ , if there exists a majority subset
M ⊆ S, such that ℓ ∈ M and for all u ∈ M , u.term = τ . Since M is the majority, ℓ must be
unique at every time, so global leaderships do not overlap in time. We require that the term
of a later global leadership must be strictly greater than that of an earlier one.

The full protocol consists of procedures that are partitioned into the following subprotocols.
Log Replication is the subprotocol that collects all procedures only executed when the
host node u identifies a new leader, i.e., Lu(t) ≠⊥.
Leader Election is the subprotocol collecting all the remaining procedures.

Log Replication

On the top level, log replication (Alg. 1) has a main procedure HandleClientRequest
that is triggered when a leader receives a client request. If a node is not running
HandleClientRequest or involved in an RPC call within the procedure, it cannot cre-
ate a new log entry or edit its logs and iCommit. It has three steps – log entry creation,
replication and commitment.

Creation. When leader ℓ receives a client request, ℓ creates a corresponding log entry E

and appends it to the log list. E has 3 attributes – (1) term, ℓ’s term; (2) index, its index
on the log list; and (3) payload, which handles the request. We define the freshness of a log
entry, a log list and a node in Def. 4, and provide an example in Fig. 2.

▶ Definition 4 (Freshness). A log entry E’s freshness is denoted by the tuple
(E.term, E.index). E is as fresh as entry F if their freshness tuples are identical. E

is fresher than F if E.term > F .term or E.term = F .term ∧ E.index ≥ F .index. E is
strictly fresher than F is E is fresher than F , and E is not as fresh as F . In contrast, E is
staler than F if E is not strictly fresher than F . The freshness of a node or its log list is
equivalent to that of the log list’s last entry.

Replication. The procedure of replication can be described by ℓ calling a single RPC
AppendEntries for each remaining node. Its eventual outcome is a AppendEntriesResp
message from each callee, which includes a predicate accept that indicates whether the
replication is successful. In addition, the RPC must satisfy the replication property:

AFT 2024
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28 28 2829 29 2930 30 3031 31 3132 32 32

Node v

Node u

index

... 3 3 4 4 4

... 3 3 4 4 4

... 3 3 4 4

... 3 3 4 4 4

... 3 3 4 4 4

... 3 3 3 5

World A World B World C

Figure 2 Examples of node freshness. Each box represents an entry containing the entry’s term.
The entries are not necessarily committed. Each world is a possible result of protocol execution by
only honest nodes. In all worlds, u’s log list is (unstrictly) fresher than v’s. In World A, u is as
fresh as v. In only Worlds B and C, u is strictly fresher than v.

▶ Property 5 (Replication). If a follower u replicates Ei∶j from leader ℓ, u’s term must equal
Ej’s term, and it must own E1∶i−1. Formally, u.term = ℓ.term = Ej .term and for all index
k ≤ j, u[k] = ℓ[k].

Commitment. Once ℓ receives AppendEntriesResp messages from (n − f − 1) followers
with accept=True, ℓ commits Ej . Then, ℓ sends a message InformCommitMsg including
(hash of) Ej to each remaining node u, who also commits Ej if it owns Ej .

Algorithm 1 Log replication of the forensics-compliant family. In persistent storage, a
node maintains term, logs, iCommit, CC and LC, where iCommit is the last commit index. The
red lines and variables are added in CFT-forensics (§5). See §5.2.1 for relevant definitions and
our full paper [57] for the complete algorithm.

1 Protocol LogReplication(host node w):
2 As leader:
3 Procedure HandleClientRequest(r):
4 E ← LogEntry(term=term, index=loglen + 1, payload=Payload(r))
5 E.pointer ← Hash(loglen + 1∥E.payload∥w[loglen].pointer)
6 E.stamp ← σw(E.pointer)
7 E.LC ← LC
8 Append E to w’s logs
9 replicators, sigs ← {w}, {σw(E.pointer)} // Replication

10 for async u ∈ S − {w}
11 msg ∶ AppendEntriesResp ← async AppendEntries([E], ...)
12 if msg.accept
13 if not verifySig(msg.signature, E.pointer, u)
14 fail exit
15 sigs ← sigs ∪ {msg.signature}
16 replicators ← replicators ∪ {u}
17 Wait until ∣replicators∣ ≥ n − f − 1
18 if E not yet committed // Commitment
19 Commit(E)
20 CC ← i∥E.pointer∥replicators∥sigs
21 for u ∈ S − {w}
22 Send InformCommitMsg(E, CC) to u
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Leader Election

By definition, leader election is the set of procedures that do not belong to Log Replication,
where CandidateMain is the main procedure. Without running CandidateMain or being
involved in an RPC within it, a node cannot identify any leader. Only a candidate within
CandidateMain can edit its logs and iCommit. CandidateMain consists of three steps: term
switching, candidate qualification, and leadership claim.

Term Switching. At the beginning, the caller ℓ, also called a candidate, updates the term to
a greater term, which is exactly the term of ℓ’s leadership as the outcome of CandidateMain.

Candidate Qualification. This phase is represented by a procedure Qualification, which
can be completed or interrupted. If it is interrupted, CandidateMain is also interrupted.
Otherwise, it satisfies the election property (Property 6) by necessary communications and
state modifications.

▶ Property 6 (Election). If ℓ completes Qualification at term τ , there must exist a set of
nodes V where ∣V ∣ ≥ n − f and ℓ ∈ V , such that
1. (Validity) After Qualification, ℓ[j].term ≥ ℓ[i].term for all j > i.
2. (Selection) For every log entry E = ℓ[i] after Qualification, there exists u ∈ V such

that u[i].payload = E.payload.
3. (Freshness) Let u

i denote an arbitrary node satisfying Selection at index i. Before
Qualification, let node v be freshest among u. After Qualification, ℓ’s log list is no
shorter than v’s and for all i ≤ length of v’s log list, u

i[i].term ≥ v[i].term.

Leadership Claim. After Qualification, ℓ identifies itself as the leader. Then, it sends a
LeadershipClaim message including its term τ to each other node. A recipient u identifies
ℓ as the leader and sets its own term to τ if τ is greater than u’s own term; otherwise, u

ignores the message.

4.2 Summary

▶ Definition 7 (Forensics-Compliant Protocols). A forensics-compliant protocol is a leader-
based (Property 3) f -CFT-SMR protocol (Def. 1). The protocol can be partitioned into two
subprotocols – log replication (Alg. 1) and leader election (Alg. 2), such that

Log replication is a set of procedures that can only be executed when a node identifies a
leader. If a node identifies itself, it handles client requests with HandleClientRequest,
where the AppendEntries RPC must have the replication property (Property 5).
Leader election is the set of all the remaining procedures, including CandidateMain, which
is a unique procedure that allows a node to start identifying a leader. In CandidateMain,
the Qualification procedure must satisfy the election property (Property 6).

In addition, the log list and iCommit must not be modified by any procedure that
is not mentioned above or explicitly written in the pseudocode.

▶ Proposition 8 (Instances of Forensics-Compliant Protocols). Both Raft [47] and Paxos
[34, 29] are forensics-compliant.
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Algorithm 2 Leader election of the accountable family. The red lines and phrases are
specific to our (unoptimized) CFT-forensics (§5). See §5.2.1 for relevant definitions. See our
full paper [57] for the complete algorithm and implementation of validate.

1 Protocol LeaderElection(host node w):
2 Procedure CandidateMain(⋯):
3 term ← a new, higher term than term // Term switching
4 Qualification(term, ...) // Candidate qualification; abort on failure
5 r ← w∥term∥w[loglen].term∥loglen∥w[loglen].pointer
6 votes ← {w ∶ σw(Hash(r))}
7 for async u ∈ S − {w}
8 msg ← Call RPC RequestVote(u, term)
9 if verifySig(msg.signature, Hash(r), u)

10 votes[u] ← msg.signature
11 Wait for votes.size ≥ n − f

12 LC ← r∥votes.keys∥votes.values
13 for E ∈ logs
14 if E.term = term
15 E.LC ← LC
16 Lw ← w // Leadership Claim
17 for u ∈ S − {w}
18 Send LeadershipClaim(term, LC) to u

19 Response HandleClaimLeadershipMsg(ℓ, msg):
20 if msg.term ≤ term
21 fail exit
22 Lw, term ←⊥, msg.term
23 if not validate(msg.LC)
24 fail exit
25 Lw ← ℓ

26 ... // Protocol-specific state updates

Proof (Raft)

Raft is originally designed in a very similar philosophy to the forensics-compliant family. It
is a leader-based (Property 3) SMR solution by design. The Raft consensus algorithm has
two components: log replication and leader election. We define the core procedures in our
full paper [57].

AppendEntries: After a follower receives a list of consecutive log entries (or a single
entry), it replicates them if it has the predecessor of the head of the list. Otherwise, it
triggers AppendEntries recursively to synchronize all uncommitted entries, which guarantees
the no-gap property (Property 5).

Qualification: A candidate ℓ in Raft asks voters for votes, and a voter only votes if ℓ’s
log list is fresher than its own. This ensures ℓ is fresher than n − f nodes without changing
its logs, so Qualification RPC satisfies the election property (Property 6).

To summarize, all the RPCs have the required properties, so Raft is forensics-compliant.

Proof (Paxos)

(Multi-)Paxos is an optimized protocol based on a simple array of basic Paxos. Its description
varies from paper to paper, so we adopt the version in [29] which enables a clear comparison
to Raft. Both the original Paxos [34] and [29]’s variation are leader-based (Property 3). In
Paxos, the log replication procedures are identical to those in Raft. Thus, we focus on the
leader election subprotocol (details in our full paper [57]).
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Unlike Raft, a Paxos voter u always votes for a candidate ℓ with a higher term in
Qualification. The vote comes with all u’s entries at ℓ’s uncommitted indices of ℓ. With
n − f − 1 such votes, at each uncommitted index, ℓ selects the freshest entry it has ever seen.
Hence, Qualification in Paxos also satisfies the election property (Property 6).

To summarize, Paxos (as described in [29]) is also forensics-compliant.

5 CFT-Forensics

Although CFT protocols guarantee safety against crash faults, they are not safety-resilient
against even a single Byzantine fault. We first illustrate typical safety attacks. Next, we
present CFT-Forensics to endow forensics-compliant protocols with accountability.

5.1 Example Attacks

Recall that in §3, we assumed that b ∈ [1, n − 2] nodes may behave adversarially. In two
examples, we assume n = 2f + 1 is odd for simplicity. We show the capabilities of a single
attacker Mallory, and the remaining 2f nodes are evenly partitioned into X and Y .

▶ Example 9 (Proposer’s Attack, or Split-Brains). Let Mallory be a corrupt leader. At the
same index, Mallory replicates log entries E and E

′
≠ E to X and Y , respectively. At each

side, she commits the corresponding entry with a quorum of f + 1 nodes. As a result, the
honest nodes in X and Y have different committed log entries at the same index.

▶ Example 10 (Voter’s Attack). Let Mallory be a corrupt voter who has committed entry E

with Y . Nodes in X, however, do not own E. In an election, suppose Carol ∈ X who earns
all f votes from X. When Carol requests vote from Mallory, Mallory votes by simulating
itself as a Carol’s clone. After being elected, Carol commits E

′
≠ E at the same index, which

conflicts with any honest node in Y .

Surprisingly, these two examples almost exhaustively enumerate the types of safety
attacks against forensics-compliant protocols (Theorem 11). This is why forensics-compliant
protocols can achieve accountability with much simpler modifications than PeerReview.

5.2 CFT-Forensics Design Overview

We present CFT-Forensics, a framework that enables accountability for forensics-compliant
protocols. Here, we present a basic variant of CFT-Forensics, which adds large overhead
compared to vanilla CFT protocols; we provide and analyze an optimized variant in §6.1.
We use the convention that for a forensics-compliant protocol P, P-Forensics denotes the
protocol P augmented with CFT-Forensics (e.g., we implement Raft-Forensics in Section 7).

At a high level, CFT-Forensics adds two central data structures to a forensics-compliant
protocol: commitment certificates (CCs) and leader certificates (LCs). A CC irrefutably proves
that a quorum of nodes have replicated an entry, and an LC proves which quorum of nodes
agreed to elect a leader. CFT-Forensics requires each log entry to be signed by its proposer,
which provides accountability for a split-brains attack (Example 9). It also requires that
each voter signs its vote, for which the voter is forced to take responsibility since the vote
exists in a CC or an LC, providing accountability for the voter’s attack (Example 10).
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Additional Assumptions: Public Key Infrastructure

We assume access to a Public Key Infrastructure (PKI). Each node u has a pair of private
and public keys, where the public key is well known, that is, known by all parties in the
system, including other nodes and auditors. Node u can use its private key to create an
unforgeable signature on (the hash of) an arbitrary message m, denoted by σu(Hash(m)),
and the signature can be verified with u’s public key. A collision-resistant cryptographic
hash function Hash is known to all parties. Both signing a message and verifying a signature
can be executed in time that is polynomial in message size.

5.2.1 Added States
We first explain the new state that is maintained in CFT-Forensics. CFT-Forensics introduces
four new categories of states: hash pointer, proposer stamp, leader certificate (LC) and
commitment certificate (CC).

Table 1 Attributes of a CC, an LC and a vote request.

Commitment certificate CC
index pointer voters signatures

i hi V {σu(hi)}u∈V

Leader certificate LC
req voters signatures
r V {σu(Hash(r))}u∈V

Vote Request id term eterm end pointer
ℓ ℓ.term τ(< ℓ.term) i h

1. Hash Pointer. The hash pointer of log entry Ei is denoted by Ei.pointer, where
E0.pointer =⊥. It is a lightweight proof that the host node owns the entire log list from
E1 to Ei. The other hash pointers can be derived by

Ei.pointer = Hash(i∥Ei.payload∥Ei−1.pointer),∀i ∈ Z>0. (1)

2. Proposer Stamp. The (proposer) stamp of log entry E is a digital signature by its
proposer ℓ on the hash pointer of E. We denote it by E.stamp = σℓ(E.pointer). Should
a pair of stamps of E and E

′
≠ E exist where E is neither an ancestor or descendent of

E
′ and E.term = E

′
.term, ℓ must have launched a split-brains attack.

3. Leader Certificate (LC) of Proposer. The LC of log entry E, denoted by E.LC, is the
LC created by E’s proposer ℓ at term E.term. It collects a quorum of signatures from a
set of nodes V on ℓ’s vote request r, where a request includes ID ℓ, term ℓ.term, plus the
tuple (term, index, hash pointer) of ℓ’s last entry (τ, i, h). Formally, r = ℓ∥ℓ.term∥τ∥i∥h

and LC = r∥V ∥{σu(Hash(r))}u∈V , as shown in Table 1.

In summary, in our basic (un-optimized) CFT-Forensics, a log entry has six attributes
(Fig. 3) – term, index, payload, pointer, stamp and LC. In addition, CFT-Forensics
requires each node to maintain two independent states – 4) the current leader’s LC and 5)
the latest CC.
4. Leader Certificate of Current Leader. Each node additionally maintains the LC of

the current leader it identifies. This LC is not covered above because the current leader
may have not proposed any log entry yet.

5. Commitment Certificate (CC) Each node only maintains one freshest CC. Like LCs, a
CC is a collection of a quorum of signatures on the same log entry. Formally, for a log
entry at index i that is replicated to a set of nodes V where ∣V ∣ ≥ n − f , we construct a
CC following the structure in Table 1. We denote CC = i∥hi∥V ∥{σu(hi)}u∈V .
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...

(first uncommitted)
Entry (index = i− 1)

index payload pointer

term stamp LC

Entry (index = i)

index payload pointer

term stamp LC

Entry (index = i+ 1)

index payload pointer

term stamp LC

(latest committed) CC

before optimization

after optimization

index payloadterm index payloadterm index payloadterm

(latest committed) CC

pointers:HashMapstamps:HashMapLCMap:HashMap

valuevaluevalue

LC of proposer at term stamp of last entry at term pointer of entry at index

keykey key ≥ iCommit

Figure 3 Log entry attributes with and without CFT-Forensics; committed blocks are shown
with a double gold outline. Our basic (unoptimized) CFT-Forensics (top) adds a hash pointer, a
proposer stamp, and a leader certificate LC, all shown in red. We also store a CC only for the latest
committed block. Our optimized CFT-Forensics (§6.1) reduces storage costs by storing three hash
maps: (1) one containing pointers only for the last committed block and later uncommitted blocks,
(2) one storing a single leader certificate LC for every term, and (3) one storing a proposer stamp
only for the latest proposed block in the current term.

5.2.2 Modified Procedures

Log Replication

We mark our changes in red in Alg. 1. Upon creation of a log entry E at index i, the leader
ℓ correctly attaches the three new states (pointer, stamp and LC). Then it replicates the
“enhanced” entry to followers via the AppendEntries RPC. Upon receipt, each follower u

validates the new states, and eventually puts the entries at their correct indices. As a result
of a successful replication, u sends a AppendEntriesResp message, which not only includes
the predicate accept, but also u’s signature on the last entry E’s hash pointer.

With (n − f − 1) AppendEntriesResp messages, the leader updates its CC by assembling
the n − f signatures it has obtained (including its own). To notify followers to commit E,
the leader sends a InformCommit message which includes CC in addition to E. Upon receipt,
a follower commits E if it owns E and the CC passes a follower’s verification.

Leader Election

In the Qualification procedure which satisfies the election property (Property 6), if a
candidate ℓ’s logs are changed during Qualification, we let ℓ reconstruct every uncommitted
entry with the same payload, as if ℓ plans to repropose them. In detail, ℓ a) sets their terms
equal to its current term, b) re-derives their hash pointers, c) creates its own stamp for each
of them, and d) sets their proposer LCs to its own LC. As a result, the hash pointers will
still be correct, and no entry will be overwritten if it has been committed by any node.
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Assume that the candidate ℓ passes the Qualification procedure in a vanilla forensics-
compliant protocol. Instead of directly declaring leadership in vanilla, ℓ broadcasts another
vote request r based on its current last log entry by calling RequestVote RPC. Since ℓ is
already qualified, the request deserves at least n − f votes by election property. Each vote
from u contains a signature σu(Hash(r)), proving u’s awareness that ℓ is fresher than itself.
After collecting n− f votes, ℓ assembles a leadership certificate (LC) and claims leadership by
broadcasting it. Then, each recipient will verify the LC, store it, and identify ℓ as the leader.

In general, we add an additional round of communication to leader election, where the
candidate provides information of its last log entry and the voters send signatures. In passive
leader elections like Paxos, any arbitrary node can be elected under deterministic logic (e.g.,
under round robin or maximum ID). The new leader must ensure freshness by updating its
log entries based on those it receives from the other nodes. As a result, the last log entry is
only available after a round of communication, so a second round of signatures is needed.
However, it is not needed in active elections like Raft, where a node actively seeks leadership
candidacy. If each node never modifies its logs during election, then their last entry does not
change, and they can collect signatures in just one round of communication.

5.3 Accountability Guarantee
▶ Theorem 11. If a CFT protocol P is forensics-compliant, then P-Forensics achieves
accountability (Def. 2).

Proof Sketch. (Full proof in our full paper [57]) We first establish a map from each term to
the LC of that term’s leader. If a term is associated with two distinct LCs, we can accuse all
voters that contributed signatures to both LCs, as they voted twice at the same term. If this
map exists, a term is uniquely used by a leader. Since safety (Def. 1) does not hold, we find
the first pair of entries from the logs of two honest nodes that conflict.

If they are of the same term, we discover a split-brains attack and we can accuse the
leader by its stamps on the conflicting entries or their successors.

If they are of different terms, we discover a voter’s attack, which has two possibilities –
1) at least one voter voted for a leader not fresher than itself; and 2) at least one voter
replicated and signed an entry at a term less than its term. In this final case, we can accuse
all the voters who have signatures in a pair of conflicting CC and LC. ◀

6 Performance Comparison with PeerReview

In this section, we provide a head-to-head comparison of the theoretical overhead costs of
CFT-Forensics compared to PeerReview, for the special cases of Raft-Forensics and Paxos-
Forensics. We begin by explaining some practical optimizations that reduce the redundancy of
CFT-Forensics without affecting accountability, then explain the cost comparison calculations.

6.1 CFT-Forensics State Optimization
The added states in basic CFT-Forensics incur linear overhead in the number of log entries.
We next show how to store the new states in independent, more efficient data structures.

Hash Pointer. We let each node u maintain the u[k].pointer only for k ≥ c ≜ u.iCommit
in a hash map pointers. This is sufficient for hash pointer reads, which happens only
when a node u receives a sequence of entries Ei∶j to be updated to its logs, plus the
preceding pointer Ei−1.pointer. We may presume j > c because u rejects updating any
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committed entry. Normally, u tells whether Ei∶j matches its own log list by whether
u[i − 1].pointer = Ei−1.pointer. If i ≤ c, u cannot find u[i − 1].pointer in the hash
map, but u can alternatively derive Ec.pointer by (1) and tell whether u[c].pointer =

Ec.pointer. Since Hash is collision-resistant, u[i− 1].pointer = Ei−1.pointer is implied by
u[c].pointer = Ec.pointer. Therefore, reduction of committed hash pointers (except the
last one) does not affect correctness.

Proposer Stamp. Suppose ℓ has proposed {Ek∣k ∈ [i, j]} during a leadership. Since Hash
is collision resistant, Ej .pointer effectively represents the entire log list from the head E1
to Ej . Therefore, the stamp σℓ(Ej .pointer) proves ℓ has proposed not only Ej , but also
Ei,⋯, Ej−1. Hence, the stamps on Ei,⋯, Ej−1 are all redundant, and it suffices to keep only
the last stamp Ej within ℓ’s term. Because we only need to maintain one last stamp for each
leader, all the stamps can be contained in a hash map stamps keyed by term.

Leader Certificate. By design, the LC used for each term is unique. Hence, we may reduce
overheads by maintaining the LCs in a hash map LCmap keyed by term and valued by LC.
Moreover, we may reduce the hash pointer inside the vote request of LC, because the pointer
can be derived from the logs.

Summary of Total Spatial Overhead. Let H denote the length of the logs, H
′ the number

of uncommitted entries and Λ the number of global leaderships during which at least one
entry is replicated. Our optimized CFT-Forensics substantially reduces total overhead of
the three states from O(nH) to O(H ′ + nΛ). However, to reduce notations and symbols for
better clarity, we continue using the primitive states in the algorithm pseudocode.

6.2 Cost Analysis
Using this optimized implementation, for Raft and Paxos, we compare the overhead space
and communication complexities of CFT-Forensics against PeerReview. For log replication,
Raft is identical to Paxos, so we merge the comparison in §6.2.1. For leader election, we
compare the variants separately in §6.2.2.

PeerReview

PeerReview [26] achieves accountability by logging communication for every message from any
node u to another node j, regardless of the underlying consensus protocol. The communication
log is an independent data structure introduced by PeerReview. We call such log entries
“comm entries”, where each comm entry includes a copy of the message. To make the entire
log tamper-evident, a hash pointer is maintained, just as in CFT-Forensics. We assume each
comm entry stores a hash pointer, though this storage cost can be reduced by storing one
pointer every few blocks, at the expense of time complexity of random access. For every
message msg sent from u to v, u sends msg along with a hash pointer and u’s signature.
Then, v replies a hash pointer plus v’s signature to u. Both u and v create a new comm
entry including a copy of msg. Hence, each message incurs communication overheads of two
hash pointers and two signatures.

For auditing, PeerReview allows nodes to supervise each other by forwarding all signatures
from a signer to the signer’s witnesses. For a fair comparison between CFT-Forensics (which
has a separate auditor) and PeerReview, we disable witnessing.
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6.2.1 Log Replication

Table 2 Complexities of Raft/Paxos, CFT-Forensics and PeerReview in log replication. Π denotes
hash size and Σ denotes digital signature size, both in bytes. m denotes number of log messages.

Raft/Paxos CFT-Forensics (ours) PeerReview
(Base) Communication Overhead

Heartbeat const 0 2(Π + Σ)
AppendEntries mB Π + 2Σ 4(Π + Σ)
InformCommit const Π + (n − f)Σ 0

(Base) Storage Overhead
Heartbeat 0 0 2(Π + Σ)

AppendEntries mB 0 2mB + 4(Π + Σ)
InformCommit 0 0 0

Figure 4 Overhead complexities of CFT-Forensics and PeerReview in log replication when hash
size Π = 32 bytes and digital signatures are Σ = 65 bytes. The height of the fifth blue bar of
“InformCommit (Communication)” is plotted with (n, f) = (3, 1).

Let Π and Σ denote the sizes of a hash and a digital signature, respectively. We choose
Π = 32 bytes and Σ = 65 bytes for numerical estimation, which are used for Ethereum[61]. 3

Let B denote the size of a log entry. For messages including a sequence of log entries, we let
m denote the number of entries. We assume nodes are up-to-date in term and need only
replicate entries of current term. This limits the number of stamps and LCs sent along with
the sequence. We also assume that AppendEntries complete in a single round, and that
InformCommit contributes negligible overhead with batched executions .

Table 2 presents the communication and storage complexities of Raft/Paxos, CFT-
Forensics and PeerReview in three main log replication RPCs. For our assumed parameter
values, we numerically visualize the overheads of the Heartbeat and the AppendEntries
RPCs in Fig. 4. We first observe that CFT-Forensics has zero storage overhead in all three
RPCs, while PeerReview has a positive overhead for Heartbeat and AppendEntries. Since
message frequency must be lower-bounded by the Heartbeat frequency which is typically
once every several seconds, CFT-Forensics outperforms PeerReview by saving about 1 KB
storage every minute. For communication complexity, we focus on the most frequently-used
RPC: (one-round) AppendEntries. CFT-Forensics has a (Π + 2Σ = 162)-byte overhead in
communication, which is 58.2% lower than 4(Π + Σ) = 388 bytes of PeerReview.
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Table 3 Comparison of overhead complexities between CFT-Forensics and PeerReview in leader
election. I = 0 if the candidate’s last committed entry is at the same term as the first entry it
receives from the voter; I = 1 otherwise. If a voter contributed a signature to the new LC, the LC it
receives from the candidate does not need to include its own signature.

Vanilla (base) CFT-Forensics (ours)
(Overhead)

PeerReview (Overhead)

Raft Comm. const Π + (n − f)Σ 6(Π + Σ)
Storage 0 (n − f)Σ 6(Π + Σ)

Paxos Comm. mB Π + (n − f + 1)Σ 4(Π + Σ)
Storage 0 τ(n − f)Σ 2mB + 4(Π + Σ)

Figure 5 Overhead complexities of CFT-Forensics and PeerReview in leader election.

6.2.2 Leader Election
Raft-Forensics vs Raft-PeerReview

Now we consider Raft’s leader election . A successful election has three messages between a
candidate ℓ and its voter u: 1) ℓ sends vote request to u; 2) u responds with a vote; and
3) ℓ sends a leadership claim. As shown in Table 3 and Fig. 5, although LC contributes an
O(n) overhead to CFT-Forensics, both complexities are still lower than Raft-PeerReview for
n ≤ 15 (under our assumed parameter values).

Paxos-Forensics vs Paxos-PeerReview

A successful Paxos leader election has two messages between a candidate ℓ and its voter
u: 1) ℓ sends its iCommit to u; 2) u responds with all its entries starting with iCommit + 1.
In Paxos-Forensics, we insert three more messages: 3) ℓ sends a vote request to u; 4) u

responds with a signed vote and 5) ℓ sends an LC to claim leadership. Table 3 lists the
overheads for Paxos. We assume that leader elections are rare, so message 2) only includes
entries of same term as ℓ[iCommit]. By Fig. 5, Paxos has lower communication complexity
than Paxos-PeerReview if n ≤ 7, and on a long enough timescale, its storage complexity is
arbitrarily lower than that of Paxos-PeerReview.

3 Ethereum uses Keccak-256 and ECDSA-secp256k1 for hashes and digital signatures, respectively.
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7 Empirical Evaluation

We implement Raft-Forensics4 in C++ based on nuRaft v1.3 [17] by eBay. With roughly
2,500 lines of code, our implementation fully expands nuRaft with our OpenSSL-based
designs in log replication, which correctly reflects the throughput and latency performances
between leader elections. We choose the SHA-256 hash function and Elliptic Curve Digital
Signature Algorithm (ECDSA) over the secp256r1 curve. For commitment certificates, we
used concatenated ECDSA signatures by all the signers.

We evaluate Raft-Forensics in two phases – online phase (§7.1) and offline phase (§7.2). In
the online phase, we benchmark the performance of Raft-Forensics over a WAN. In the offline
phase, we evaluate the auditing procedure that scans node logs for adversarial behaviors.

7.1 Online Evaluation
Setup on AWS

We evaluate Raft-Forensics over a WAN to demonstrate a geo-redundant deployment for
increased resilience [12]. We simulated the WAN environment by deploying Raft-Forensics
and other baseline protocols on multiple c5.large instances on AWS, where each instance
has 2 vCPUs and 4 GB Memory. We ran the experiments on 4 and 16 instances, respectively.
Because some typical applications of Raft-Forensics require the nodes to be distributed
domestically, we deployed the 16 instances evenly in 8 AWS datacenters in the US, Canada
and Europe. For the 4-instance experiments, we deployed the instances in 4 US datacenters.

Baseline Protocols

We compare the performance of Raft-Forensics against Raft [17], using eBay’s NuRaft [17]
implementation. We do not directly compare to state-of-the-art BFT protocols in our
evaluation because our goal is to propose low-cost solutions that can be easily integrated into
existing systems (i.e., the implementation should build upon existing code, and hence be
some variant of Raft). Although there exist BFT variants of Raft [56, 60, 13], we were unable
to confirm essential theoretical details needed to understand the protocol and guarantees.
For completeness, we compare Raft-Forensics against a recent BFT protocol called Dumbo-
NG [20] in our full paper [57], though a fair comparison is challenging and not the focus of
this work.

Experimental Settings

We benchmark each protocol by two metrics – transaction latency and throughput. Latency
is measured by the average time difference between when a transaction is committed by a
leader and when it is sent to a node. Throughput is measured by the average number of
transactions processed per second during an experiment.

The experiments are configured by two key parameters – transaction size and number of
concurrent clients. The transaction sizes range from 256 Bytes to 1 MB. For each transaction
size, we sweep the number of concurrent clients sending transactions (in experiments, we let
the leader machine spawn transactions). Under each configuration of transaction size and
client concurrency, we run all the nodes and client processes simultaneously for 20 seconds.

4 https://github.com/proy-11/NuRaft-Forensics.git

https://github.com/proy-11/NuRaft-Forensics.git
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We measure transaction latency and throughput by the average of five repeated runs to
reduce random perturbations. Typically, as the number of clients increases, throughput
increases first linearly and then plateaus when the protocol is saturated. In contrast, latency
is insensitive to the number of clients before the saturation, but rapidly increases when the
bottleneck throughput is reached. We finally evaluate the following quantities:

Peak throughput. We measure the peak throughput of each baseline as the maximum
number of transactions processed per second over all numbers of concurrent clients.
Fig. 6 presents the performance of all protocols under transaction sizes of 256 Bytes, 4
KiB, and 64 KiB. Compared to Raft, Raft-Forensics has an approximately 10% loss in
peak throughput under various transaction sizes, which is caused by the cryptographic
operations involved.
Latency-Throughput tradeoff. Under each transaction size, we measure the latency-
throughput curve parameterized by number of concurrent clients. Fig. 7 shows the latency-
throughput tradeoffs of the two protocols under various transaction sizes. Generally, the
tradeoff of Raft-Forensics is only slightly worse than Raft.

Figure 6 Peak transaction and bandwidth throughputs of consensus algorithms. We plot the
error bars with boundaries (mean ± 3 × std). (n = 4 nodes).

7.2 Offline Evaluation
We next evaluate the offline performance of log auditing. Theorem 11 ensures that we can
find at least 1 culprit when State Machine Safety is violated, and we implement an auditing
algorithm that finds the culprit. Briefly, the algorithm has two parts: a data legitimacy check
and a global consistency check. First, the data legitimacy check verifies the correctness and
completeness of the states submitted by each node. For example, the hash pointers must
match the logs, and every signature must pass verification. Next, the global consistency
check scans for a pair of nodes whose logs are a result of forking. It captures the culprit
based on the case discussions in the proof of Theorem 11. See our full paper [57] for the
auditing algorithm in detail.

Complexity Analysis

Recall that n denotes the number of nodes. Let H denote the length of the longest chain and
Λ the number of elections in total. See our full paper [57] for detailed complexity analysis.
The total time complexity of auditing is asymptotically optimal (linear in the size of data
n(H + Λ), which is required at minimum to ensure data legitimacy), where the complexity
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Figure 7 Latency-throughput tradeoff (n = 4 nodes). Top row displays throughput in number of
transactions per second; bottom row displays throughput in bandwidth.

of global consistency checks does not depend on the chain length H. The linear spatial
complexity Θ(n(H + Λ)) requires chunked storage of the log chain. For instance, for a
chunk size Θ(log H), the spatial complexity decreases to Θ(n(log H + Λ)), while the time
complexity remains the same. Notably, the time complexity of global consistency check
slightly increases to O(n(Λ + log2

H)), but is still much less than that of legitimacy checks.

Implementation

We implement the auditing algorithm in Python5, which can be tested along with a lightweight
Raft simulator that achieves better control than the fully-implemented Raft-Forensics in C++
over the leader elections, the adversarial nodes’ behavior and race conditions in general. In
particular, it is capable of assigning the adversary to a node and simulating the fork and bad
vote attacks in Examples 9 and 10. It ensures that the adversary generates legitimate data to
prevent it from being caught before consistency checks. For the best performance in memory
usage, it writes the data into chunked files that are available for auditing. In Appendix 7.2,
we run benchmarks on the performance of both the data legitimacy and consistency checks
of the auditing algorithm. The benchmarks are consistent with our complexity analysis, and
demonstrate a significant advantage in chunking data.

Based on the backend software above, we also implement a visualizer based on [52] that
demonstrates the attacks and the outputs of the auditing algorithm, including the identity
of the culprit and the irrefutable evidence.See our full paper [57] for a screenshot of the
visualizer.

5 https://github.com/WeizhaoT/Raft-Forensics-Simulator

https://github.com/WeizhaoT/Raft-Forensics-Simulator
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Table 4 Throughput and latency of two different OpenCBDC architectures integrated with Raft
and Raft-Forensics (ours), respectively. Each entry is expressed in mean ± std.

Throughput (# tx/s) Latency (ms)
2pc architecture

Raft 4, 800 ± 14 2, 251 ± 70
Raft-Forensics 4, 695 ± 76 2, 577 ± 252
(% Change) -105 (-2.2%) +326 (+14.5%)

atomizer architecture
Raft 1, 284 ± 56 37, 552 ± 18.75

Raft-Forensics 1, 250 ± 123 40, 802 ± 1, 653
(Change) -34 (-2.6%) +3,250 (+8.7%)

7.3 Integration with OpenCBDC
Finally, we evaluate the performance of Raft-Forensics integrated into a downstream ap-
plication: OpenCBDC [41], an open-source implementation of a retail central bank digital
currency. OpenCBDC is a good choice because (a) it uses nuRaft, and (b) CBDCs are/will be
public infrastructure, so security and performance are paramount. After integrating our Raft-
Forensics implementation into OpenCBDC, we deployed our experiments onto c5n.9xlarge
ec2 instances in AWS over three regions: us-east-1, us-east-2 and us-west-2.6

We compared Raft-Forensics against Raft in two different OpenCBDC architectures – two-
phase-commit (2pc) and atomizer. In both architectures, we replace Raft with Raft-Forensics
in every module that is Raft-replicated, i.e., implemented as Raft-variant distributed systems.
In the 2pc architecture, we created one generator, one sentinel, three coordinators and
three shards, where each coordinator and each shard are Raft-replicated. In the atomizer
architecture, we created one watchtower, one watchtower CLI, one sentinel, one archiver, four
shards and three atomizers, where only atomizers are Raft-replicated. In both architectures,
each Raft-replicated module consists of 3 nodes in 3 different AWS regions.

We used the benchmarking platform [44] of OpenCBDC under default configurations,
where load generators produce as much workload as the system can process. The transaction
size is 368 bytes. Each experiment lasts 315 seconds and is repeated 3 times. Table 4 shows
the throughput and latency of transactions of the entire system. We observe that in practical
complex systems like OpenCBDC, Raft-Forensics also performs close to Raft.

8 Discussion and Conclusion

This work is driven by the motivation to improve the Byzantine resistance of CFT protocols
by introducing accountability, without sacrificing too much performance. One alternative
approach to achieving higher security assurances with CFT protocols involves employing
BFT protocols directly. This strategy not only increases tolerance to Byzantine faults but
may also inherently include accountability as a bonus feature.

As explained in Section 7, we were unable to directly compare against BFT variants of
Raft [56, 60, 13]. Hence, we conducted performance comparisons between Raft-Forensics
and leading BFT designs like Dumbo-NG, as detailed in our full paper [57]. Our analysis
indicates that, in terms of reducing latency, Raft-Forensics generally surpasses Dumbo-NG,

6 Although CFT protocols are often run in the same datacenter, if they are used for critical infrastructure,
there will be a need for geographically-distributed deployments for robustness reasons.
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though the latter may display competitive or superior throughput for larger transaction
volumes. Moreover, Dumbo-NG is optimized for efficiently propagating blocks containing
multiple transactions among numerous participants, while Raft variants typically handle
single-transaction blocks (as required by SMR) in small-scale distributed systems. As a result,
we acknowledge that BFT protocols can indeed be optimized to achieve good performance
and replace CFT protocols in applications requiring higher security guarantees, albeit at the
cost of increased design complexity and an overhaul of the entire consensus logic. In contrast,
accountability may be more suitable for scenarios with moderate security improvement
requirements and an emphasis on lightweight changes.

More broadly, accountability need not be viewed as an alternative to Byzantine fault
tolerance – it is a complementary, desirable property. For example, all BFT protocols do not
inherently offer accountability [50]. We posit that accountability is an important component
of distributed system governance – all the more so for geographically-distributed critical
infrastructure [19].
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