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Abstract
Layer 1 (L1) blockchains such as Ethereum are secured under an “honest supermajority of stake”
assumption for a large pool of validators who verify each and every transaction on it. This high
security comes at a scalability cost which not only effects the throughput of the blockchain but also
results in high gas fees for executing transactions on chain. The most successful solution for this
problem is provided by optimistic rollups, Layer 2 (L2) blockchains that execute transactions outside
L1 but post the transaction data on L1.

The security for such L2 chains is argued, informally, under the assumption that a set of nodes
will check the transaction data posted on L1 and raise an alarm (a fraud proof) if faulty transactions
are detected. However, all current deployments lack a proper incentive mechanism for ensuring that
these nodes will do their job “diligently”, and simply rely on a cursory incentive alignment argument
for security.

We solve this problem by introducing an incentivized watchtower network designed to serve as
the first line of defense for rollups. Our main contribution is a “Proof of Diligence” protocol that
requires watchtowers to continuously provide a proof that they have verified L2 assertions and get
rewarded for the same. Proof of Diligence protocol includes a carefully-designed incentive mechanism
that is provably secure when watchtowers are rational actors, under a mild rational independence
assumption.

Our proposed system is now live on Ethereum testnet. We deployed a watchtower network and
implemented Proof of Diligence for multiple optimistic rollups. We extract execution as well as
inclusion proofs for transactions as a part of the bounty. Each watchtower has minimal additional
computational overhead beyond access to standard L1 and L2 RPC nodes. Our watchtower network
comprises of 10 different (rationally independent) EigenLayer operators, secured using restaked
Ethereum and spread across three different continents, watching two different optimistic rollups for
Ethereum, providing them a decentralized and trustfree first line of defense. The watchtower network
can be configured to watch the batches committed by sequencer on L1, providing an approximately
3 minute (cryptoeconomically secure) finality since the additional overhead for watching is very low.
This is much lower than the finality delay in the current setup where it takes about 45 minutes for
state assertions on L1, and hence will not delay the finality process on L1.
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1 Introduction

L1 Scalability

Blockchain scalability, via improving throughput, latency and transaction fees, is a crucial
component of blockchain adoption [18, 30]. Improving the core L1 consensus protocols is a key
direction to scalability [8, 17, 48, 10]; as an example, Ethereum upgraded consensus from the
longest chain protocol in the proof-of-work (PoW) setting to the GHOST protocol [38] with
Casper finality gadget [7] in the proof-of-stake (PoS) setting recently, improving its throughput
potentially by three orders of magnitude and reducing 99.95% energy demand [1, 29]. Changes
to L1 via upgrading the consensus protocol is a wholesale change (hard fork), requiring
significant social consensus around the process and is time-consuming (e.g., Ethereum’s
upgrade to PoS from PoW took seven years [9]). However the scalability challenges have
persisted with increased computational demands and data storage outstripping the upgraded
capabilities, with the result that resulting gas fees have not seen any significant reduction.
More scaling techniques that maintain equivalent decentralization, known as horizontal
scaling, are necessary.

L2 Economy

L2 solutions have emerged as a significant breakthrough, with potential to increase transaction
processing speed, cut down costs, and enhance the overall capacity of blockchains. Rollups
work by processing transactions outside the L1 chain and then posting the transaction data
and state commitments back to it. Established rollup platforms such as Optimism [46] and
Arbitrum [23] accommodate a vast ecosystem (e.g., Arbitrum L2 supported more transactions
than Ethereum L1 itself in February 2023 [52]). At the same time, new entities [40, 41, 45, 44]
are entering the scene, introducing new infrastructure and optimizing their functionalities
for specific applications. These new schemes differ from traditional rollups in their targeted
functionalities and optimization techniques. Moreover, driven by the demand for customizable
and accessible layer 2 solutions, the concept of “Rollups-as-a-Service” is gaining traction
[22, 42, 43, 39], allowing a broader range of participants to create and utilize their own rollup
strategies.

Rollup security

With the rapid adoption and reliance on rollups, there is an increasing need to address
the critical security concern. Current rollup strategies secure the L2 states by requiring
asserters to execute and commit L2 block data to the L1 blockchain (Figure 1). These
asserters, often staked and centralized, can be objectively slashed when their asserted states
are proven to be incorrect. As depicted in the upper path of Figure 1, the system allows
applications to independently verify the states committed on L1 and initiate disputes, serving
as the secondary line of defense. These disputes are typically addressed and resolved via
fraud proofs. However, a basic vulnerability remains despite the security layer provided by
staked asserters and fraud proofs: the lack of incentives for actively watching the rollup. In
the normal path, there is no guarantee that these applications monitor the asserted states
consistently and effectively: how to ensure vigilance during normal path when attention

https://arxiv.org/abs/2402.07241
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Figure 1 Watchtowers are added to the current L2 security workflow to guard normal path
security.

might diminish due to the absence of apparent threats? In other words: who is watching the
watchers? This problem was identified sharply by the inventors of Aribtrum [16], however a
systematic solution has remained open since then.

Watchtowers: the first line of defense for rollups

In this paper we propose a “rational watchtower pool”, a group of workers incentivized to
constantly watch the transactions in the normal path. The lower part of Figure 1 illustrates
how watchtowers operate independently, interacting with the existing rollup system only
when an incorrect state is identified. At that point, they sound an alarm, much like what
applications typically do. However, watchtowers are incentivized to stay vigilant at all
times. Their role, serving as the first line of defense for rollups, is crucial for identifying
potential faults that might otherwise go unnoticed. To ensure that the watchtower fulfill
their “watching responsibilities” diligently, they must provide what we refer to as “proof of
diligence”, a prerequisite for earning incentives.

Proof of diligence

Specifically, the duties of watchtowers entail that for new L2 state assertions to be integrated
into the L2 ledger, watchtowers must execute the transactions and validate these new
assertions. For a watchtower to demonstrate their diligence, their evidence must meet two
criteria: (1) those who don’t process the transactions should only be able to generate the
proof with a negligible likelihood; (2) a proof produced by one watchtower shouldn’t be valid
for another. These standards ensure only the diligent watchtowers can generate valid proofs,
and prevent multiple watchtowers from presenting identical proofs, thus promoting individual
effort. To satisfy these conditions, each watchtower computes a verifiable random function
(VRF) using the commitment of transaction execution trace. As every watchtower possesses
a unique VRF key pair, they generate proofs independently and submit proofs on-chain,
allowing public verification. As illustrated in Figure 2, other watchtowers can recompute
this proof, ensuring watchtowers presenting false proofs are identified and penalized during
disputes.
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Incentive framework for watchtowers

For watchtowers to operate effectively, a carefully designed incentive mechanism is vital.
This mechanism should consider two parts: positive incentives for continuous monitoring
and negative incentives to punish undesirable actions. Positive rewards are allocated using
a “bounty mining” scheme. Watchtowers calculate their proof of diligence to determine
their eligibility for these rewards. To optimize efficiency, the criteria to obtain the bounty
is set by a specific threshold, narrowing down the list of potential recipients. Only the
selected winners need to submit their VRF outcomes as their proof of diligence. On the
other hand, the negative incentives are implemented through staking. To engage in the
protocol, watchtowers must deposit stakes, which are slashable upon detection of misconduct.
Monitoring watchtower behavior introduces the problem of “watching the watchtowers”.
Hence, the incentive structure offers additional rewards for the verification of the proof of
diligence. Watchtowers who spot inconsistent proofs can challenge them, earning a reward
if their challenge is successful. We rigorously analyze the protocol as a non-cooperative
game [26], examining the potential actions of watchtowers: being diligent or lazy. By
appropriately configuring these incentives, our findings show that a strategy where all
watchtowers diligently monitor rollups is the unique Nash equilibrium, leading to an effective
frontline defense for rollups.

Extended mechanism design

Moreover, we extend the action space for watchtowers to encompass potential collusion
strategies. Here, several watchtowers might form a collusion to exchange execution results
or decide on a mutual random outcome driven by the benefits of saving computational
costs. Our findings indicate that when factoring in such cooperative actions, the equilibrium
tends to favor collusion, nullifying the role of watchtowers. To counteract this, we introduce
design enhancements to disrupt collusive behaviors. We design a whistleblower scheme
allowing any colluder to secretly expose collusion in exchange for compensation. Our game-
theoretic analysis demonstrates that the whistleblower system encourages betrayals against
the collusion. Since this reporting remains confidential, while the act of betrayal is noticeable,
the whistleblower can not be individually attributed. Consequently, the collusion will not be
initiated at the first place.

System design

By integrating the proof of diligence and incentive mechanism, the design enforces watchtowers
to maintain their essential roles in guarding the security of rollups in normal path. The
network consists of a pool of watchtowers that are allocated to one of the participating
rollups randomly, with the allocation changing over time. The system utilizes a staking
mechanism to ensure sybil resistance and fair allocation of positive incentives; the stake is
also used as a bond that can be utilized for negative incentives. On-chain contracts perform
the broad activities of watchtower registration, rollup status monitoring, and disbursement
of incentives. The off-chain client comprises a wrapper to the L2 full node that fetches
intermediate information to mine the bounty. The system is implemented on the Optimism
Bedrock stack [47] that watches Optimism and Base rollups on the Goerli testnet. Note that
since watchtowers operate independently of the optimistic rollup framework, the system is
capable of monitoring multiple optimistic rollup chains simultaneously. We use Eigenlayer
(EL) [14] as the staking mechanism and build our registration functionality associated with it.
Our implementation adds a very low compute cost to an L2 full node with a low transaction
fee that can be adjusted on a sliding scale.
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Figure 2 (a) Optimistic rollup model and (b) Watchtower model.

The subsequent sections provide a detailed breakdown of our investigative approach and
findings. In Section 2, we outline the system’s model and explore various threat models. In
Section 3, we compare prior work on related topics with our solution. Section 4 presents an
in-depth view of our developed watchtower protocol. Further, in Section 5, we extend the
model to allow collusions and conduct a thorough cooperative game theoretic analysis of
the security aspects and the incentive compatibility associated with the enhanced protocol.
Section 6.1 demonstrates our system design and implementation details, the evaluations
results from the live system are presented in Section 6. Concluding the paper, Section 7
engages in a comprehensive discussion, bringing to the fore the pivotal learning from our
research and suggesting future directions.

2 Security Models and Definitions

2.1 Rollup Model

Rollups enhance the blockchain’s efficiency by handling transaction execution off the main
chain (L1). Present rollup techniques rely on either the validity proofs or fraud proofs to
ensure security. Validity proofs, used in schemes known as zk-rollups, apply sophisticated
cryptographic techniques to validate every batch of L2 transactions. On the other hand, fraud
proofs, employed by optimistic rollups, come into play only when a fault is spotted in the
execution process. Our focus is on enhancing the security of optimistic rollups (Figure 2a). In
this context, the watchtower pool has been introduced to monitor the normal-path operations –
that is, the process when transactions are presumed to be valid unless challenged.

In our system, there exists an L2 chain employing optimistic rollup scheme. The scheme
involves an untrusted asserter, responsible for processing the L2 blocks and submitting the
updated states assertion on L1 chain. L1 chain is guaranteed to be secure and live. We
assume the data of L2 blocks are stored on L1 directly or through a trusted data availability
service, hence the data is ensured to be retrievable. Furthermore, the system consists of
a group of defensive validators, whose role is activated when there is a need to produce a
fraud proof, which is verifiable on chain. We consider a live rollup system operator, who
coordinates the issuance of L2 blocks (typically through a role called sequencer) and provides
rewards for asserter, validators, and watchtowers. The goal of the operator is to ensure the
security of rollup states with minimal cost.

AFT 2024
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2.2 Watchtower Model
Independent of the rollup infrastructure, our model incorporates a pool of n registered
entities known as watchtowers (Figure 2b), denoted as {W1, W2, · · · , Wn}. Each watchtower
Wi has deposited relative stake αi into the system, where

∑n
i αi = 1 and the total amount

of stake is S. These watchtowers are modeled as individual rational adversary, where the
term “rational” implies that they operate with the purpose of optimizing a known payoff
function. And they have the ability to methodically process all potential scenarios and select
strategies that provides the best outcomes.

Even though rational participants will not deviate from the protocols without cause, they
might engage in attacks – either intentionally or inadvertently – if the expected rewards
justify such actions. We identify several potential attacks in this framework, emphasizing
the nuanced strategies rational actors might employ.

Lazy watchtower

Since watchtowers are also required to execute the entire batch of L2 transactions, they can
earn rewards by performing their duties diligently. This role closely resembles that of the
asserter in the original optimistic rollup system, who posts computation results in exchange
for rewards. As a result, one prominent challenge the watchtower design must confront is
the “lazy watchtower” problem. This issue arises because of two main reasons: (1) rational
watchtowers may submit arbitrary responses if the results lack verification process, and
(2) they might opt out of protocol participation if the associated costs outweigh potential
rewards. In essence, the watchtowers must provide a form of evidence for their work and the
protocol must offer sufficient incentives to encourage participants to actively and consistently
perform tasks.

Collusion attack

Rational entities might form collusion where several parties conduct coordinated actions
based on a common agreement. However, it’s essential to note that, despite the existence of
any agreement, colluding parties maintain individual autonomy and continue to prioritize
their self-interest. Within the scope of collusion attacks, we consider adaptive adversaries
who can adjust their collusion strategies in response to protocol developments.

In our system, we assume that adversaries are limited by computational constraints, so that
they are not able to break the security of necessary cryptographic primitives. It’s important
to highlight that rational adversaries, guided by their payoff functions, are considered weaker
threats compared to Byzantine adversaries. Since their profit-driven actions exclude certain
strategies. In the discussion section (Section 7) we explore the trade-off between different
levels of security and associated costs.

2.3 Preliminaries
We introduce fundamental primitives utilized throughout the paper. Other notations are
summarized in Table 1.

Verifiable random functions

Our protocol use verifiable random functions (VRFs), providing two functions to generate
and verify proofs. VRFsk(x) processes an input x and returns two values (d, πd): a normalized
hash digest d and a proof πd. The value d ∈ [0, 1) is uniquely determined by the input x
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Table 1 Summary of notations.

Term Definition Term Definition

n Number of registered watchtowers cT Cost per transaction batch
Wi Watchtower i cV Cost of resolving disputes
αi Relative stake of watchtower Wi RB Normal path reward for watchtowers
S Total amount of stake in the system RC Dispute path reward for watchtowers
S Blockchain state Rw Whistleblower protocol reward
T A batch of L2 transactions ϕ(αi) Bounty mining threshold
E Execution trace t Deposit for participating in collusion
rS State assertion h Rent in diligent collusion
rE Merkle root of execution trace nc The size of the colluding group

and a secret key sk, and is indistinguishable from a random value to anyone that does not
know sk. verifyVRFpk(πd, d, x) ∈ {true, false} takes the proof πd input and allows anyone who
knows the public key pk to verify whether d is the correct value computed from x and sk.

Merkle trees

Merkle trees are a fundamental data structure in cryptography, summarizing lists of items,
such as transactions or states, by concatenating their cryptographic hashes at various levels of
the tree. We provide the function Merklize(L)→ r that generates a Merkle root r from a list
of items L. It involves the construction of a Merkle tree or Patricia trees [28, 51] for L and
then produces the root hash that represents the entire list of items. MerkleProof(r, l, L)→ p

is used to generate a Merkle proof p associated with a leaf node l in a tree rooted at r. This
proof consists of the minimal amount of information needed to confirm the presence of the
specific leaf node l within the tree constructed from L. Furthermore, there exists a validation
function verifyMerkleProof(r, l, p) ∈ {true, false} that takes in a root r, a leaf l, and a Merkle
proof p, then returns a boolean value indicating whether p demonstrates that l is indeed part
of the Merkle tree rooted at r.

State transitions

We consider a general model for L1 blockchain, which keeps the latest states set S and
transactions organized as blocks within hash-based chains. The function apply(S′, T )→ (S, E)
represents the process of applying a list of transactions T to a prior state S′ to yield a
new state S and an execution trace E. The execution trace is a detailed record of all
intermediate states during the transition from S′ to S, serving as a reference for verification.
Another function validate(r, r′, L) ∈ {false(r), false(r′), false(r, r′)} resolves a conflict between
two Merkle roots r and r′ calculated from the same list of items L. The output represents
the subset of roots that are proven to be invalid. There are different ways to implement this
function, such as using L1 as a trusted third party to provide ground truth or executing an
interactive verification game (IVG) to identify the incorrect root.

Game theory

The concepts about game theory utilized in our analysis are all defined in the book [26]. We
first analyze the rollup security with watchtowers as a non-cooperative game in strategic
form (Def. 4.2, [26]), and examine the dominance of strategies (Def. 3.10 and 4.6, [26]) to
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find the pure strategy Nash equilibrium (Def. 4.17 and Def. 5.3, [26]) for watchtowers. We
also discuss an enhanced protocol considering cooperative game (Chapter 15, [26]), where
more than one Nash equilibria exist and Pareto efficiency (Def. 15.7, [26]) is considered.

3 Background and Prior Work

The dialogue surrounding optimistic rollups originated in community discussions on the
Ethereum research forum [2], where developers and researchers shared insights about potential
scalability solutions. One of the earliest detailed presentations came from the Optimism
team, who outlined the foundational framework of optimistic rollups and their theoretical
implications [21]. The theoretical cornerstone for optimistic rollups was further strengthened
through scholarly research. Pioneering works such as Arbitrum [19] and TrueBit [49]
introduced essential concepts related to off-chain computation and dispute resolution.

Subsequent discussions began to address broader implications in contexts such as data
availability [3, 53, 34], sequencer risks [27, 32], and validator behavior [20, 16, 33, 15, 13].
Specifically, among these topics, validator behavior is most pertinent to this paper. While
the basic rollup design discusses an elementary incentive structure to motivate asserters to
post correct states, verifiers may lack incentives to monitor the system’s states diligently,
such a situation is known as the verifier’s dilemma problem [24]. To address this issue
and enhance system security, the authors of Arbitrum [16] proposed an attention game
in which verifiers who fail to participate may be punished. TrueBit [20] also suggested
an enhanced mechanism to select a pool of validators, requiring them to submit a proof
of independent work [15] to enforce verification. Additionally, some research [33] provides
game-theoretic analyses of collusion risks in incentivized computation outsourcing, proposing
mitigation strategies, though not completely resolving the issue. In the field of verifiable
outsourced cloud computing, [13] investigates the dynamics between clients and workers
within smart contract frameworks, demonstrating a preference for honest behavior under
certain conditions. Although they propose a “traitor contract” to eliminate collusion, this is
limited to a two-party context. Furthermore, we contend that this proposed solution might
not be effective, as the contract’s output could compromise the traitor’s secrecy. Another
study [35] examines cooperation in N -person prisoner’s dilemma scenarios, with institutional
arrangements akin to smart contracts. Differing from our focus, this work considers collusion
through bargaining rather than a leader-based approach. A new design of the attention game
was proposed in a recent paper [25] to find the optimal number of validators that minimizes
failure probability. The design only provides probabilistic security and requires modification
in the underlying rollup protocol to ensure deterministic security. As a comparison, we
provide a plug-and-play solution that can be used for any off-chain compute resource with
minor modifications.

4 The Watchtower Protocol

4.1 Proof of Diligence
In our protocol, we focus on a single task that watchtowers undertake: verifying the updated
state assertion rS of the L2 blockchain, a state assertion is the Merkle root of the state tree,
calculated by rS = Merklize(S). The states S on a blockchain consist of a list of key-value
pairs, such as the account address and the account balance. Formally, given the latest
validated state S′ and a sequence of transactions T , the responsibility of the watchtowers is
to verify rS by executing the computations specified in Algorithm 1.
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Algorithm 1 Function for Watchtowers.

1: function checkState(S′, T, rS , αi)
2: (S, E)← apply(S′, T )
3: r′

S = Merklize(S)
4: rE = Merklize(E)
5: (d, π) = VRFsk(r′

S |rE)
6: if d < ϕ(αi) then
7: submit proof of diligence (d, π)
8: if rS = r′

S then
9: Return true

10: else
11: Return false

Algorithm 1 represents the process of assessing whether the proposed state assertion rS

is indeed consistent with the ledger history. The watchtower calling the checkState function
first applies the transactions T to the initial state S′, which returns the new state S and an
execution trace E. The watchtower then calculates the Merkle root of the legitimate state
S and compares the result r′

S with the posted rS . If the verification process succeeds and
no faults are found, the watchtower considers the new state S as validated. Otherwise, the
watchtower is expected to raise an alarm to the rollup scheme, activating defensive validators
for dispute resolution and fraud proof creation.

Besides, the watchtowers utilize the execution trace E to construct a Merkle root rE . Since
rE is not available anywhere and can only be derived by executing the transactions, it serves
as evidence of their work and diligence. They compute a VRF using rE and r′

S , incorporating
their secret keys. It is assumed that the corresponding public keys were disclosed during the
registration phase. The VRF produces (d, π); the digest d is subsequently used to allocate
rewards for diligent watch. Accompanied by the proof π, the watchtower submits this as the
proof of diligence, which satisfies the following properties:

Verifiability. Given a keypair (pk, sk), for any input x, if (d, π) ← VRFsk(x), then
verifyVRFpk(π, d, x) = true.

Uniqueness. Given a keypair (pk, sk), for any input x, if (d, π) ← VRFsk(x), no one,
including the key owner, can produce a different d′ ̸= d and the associated proof π′ such
that verifyVRFpk(π′, d′, x) = true.

Pseudorandomness. For a given input x and public key pk the output d is indis-
tinguishable from a truly random string to anyone who does not possess the private
key sk.

The verifiability ensures that once the proof is posted on the chain, it can be verified
by every watchtower using rS , rE , and the public key pk. This process is referred to as
“watching the watchtowers”. Other watchtowers will use their own rS , rE values to check
the proof. If they detect any inconsistencies, they invoke the validate function to resolve
conflicts on the chain. After a predefined challenge period tC , the protocol concludes that
the remaining proofs are correct. The uniqueness and pseudorandomness imply that only
diligent watchtowers can generate a valid proof, and the proof generated by one watchtower
cannot be used by others.
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4.2 Incentive Design
To ensure that watchtowers execute their verification duties with diligence, it’s imperative to
institute a carefully designed incentive mechanism. First of all, this mechanism mandates
that all enrolled watchtowers use their stakes as the deposit. This deposit acts as a form
of commitment to honest service – any verified misbehavior results in the slashing of their
deposit.

Bounty mining

Understanding that watching operations incur costs, represented as cT , in the process of
executing all transactions in T , we introduce a bounty mining scheme to motivate the
watchtowers to perform the verification (specified in Algorithm 1, line 4-7). The process
of bounty mining can be analogous to the process of committee or leader selection in some
blockchains [8, 11], where a VRF is computed to determine bounty winners. Formally, a
diligent watchtower Wi with relative stake αi who performs the transaction execution can
generate a proof of diligence (d, π) on the task. Then with a probability ϕ(αi), Wi finds that
its proof satisfies a certain condition (specified in Eq. 1), allowing them to receive a bounty
by publishing the proof. A system parameter θ is defined to control the probability that a
party with all stake wins the bounty.

Pr[VRFski(rS |rE).d < ϕ(αi)] = ϕ(αi) = 1− (1− θ)αi (1)

The amount of bounty each winner who submits a valid proof (d, π) can collect is a
constant value RB . If any watchtower identifies an incorrect proof, the validate function will
be invoked to resolve the dispute. In this process, both watchtowers are required to publish
their rS , rE values. The winner of the challenge will receive a constant reward of RC , and
a compensation distributed among all winners for the cost of dispute resolution cV . The
rewards setting satisfies the following conditions:

RB >
cT

ϕ(α0) , RC > cT (2)

where α0 is the unit stake fraction, hence α0 ≤ min{αi}i∈[1,n]. To ensure that the slashed
deposit is enough to pay for the cost of dispute resolution and rewards, we require that

α0S ≥ cV + (n− 1)RC (3)

In summary, the entire protocol works as follows.
1. When a new state assertion rS is published, a bounty timer t1 starts. Each watchtower

recomputes the assertion r′
S and generates the execution trace root rE by applying

transactions T to the old states S′, then computes (d, π) = VRFsk(r′
S , rE).

2. If the assertion is incorrect (rS ̸= r′
S), the watchtower notifies the defensive validators of

the rollup to initiate a challenge.
3. If a watchtower wins the bounty, the watchtower submits proof of diligence (d, π) before t1.
4. When a watchtower observes a proof of diligence submitted by other watchtowers, it

verifies the proof using the other’s public key and the execution trace root rE calculated
by itself. If the proof is incorrect, the watchtower calls validate interface to resolve the
dispute. The cost of triggering validate is denoted as cV shared among all watchtowers
who call the function.

5. If no validate is triggered before t1 expires, the rollup operateor concludes that the asserted
execution trace root is correct. Validated bounty winners receive RB as reward each.

6. If validate is triggered, the winning parties receive a reward RC and a compensation for
the shared cost, and the losing parties lose all the stake.
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4.3 Incentive Analysis in Non-Cooperative Games
We first consider the proof of diligence protocol as a non-cooperative game denoted as
PoD-Game, where different watchtowers optimize their individual payoff without any mutual
agreement for cooperation. Watchtowers can adopt one of two possible strategies: diligent or
lazy. Diligent watchtowers execute transactions honestly and report proof of diligence when
the condition is met. In contrast, lazy watchtowers opt for generating a random result as the
new state assertion, incurring negligible cost. Moreover, these lazy watchtowers might submit
a fake proof, computed from the random root, to deceitfully claim the bounty. Notably,
we consider only those lazy and deceitful watchtowers, as non-deceitful lazy watchtowers
are indistinguishable from non-participants in impact. A default constraint of our incentive
mechanism is that the payoff for diligent behavior is always positive, which dominates the
non-participating strategy. Therefore, we omit this trivial case in the subsequent analysis.

Let ua
i (nd) be the expected payoff function of watchtower Wi given that watchtower Wi

choose action a ∈ {d, l}, where d and l represent diligent and lazy strategies respectively, and
there are nd diligent watchtowers in total. According to the protocol, for all i ∈ [1, n], these
payoff functions are defined as follows:

ud
i (nd) =

{
ϕ(αi)RB + RC − cT nd < n

ϕ(αi)RB − cT nd = n
(4)

ul
i(nd) =

{
ϕ(αi)RB nd = 0
−αiSϕ(αi) nd > 0

(5)

Note that a lazy watchtower would attempt to mimic genuine probability to submit proofs,
otherwise the proof submission frequencies that can happen with negligible probability can
be used to detect malicious behaviors. By comparing the payoff for different strategies, we
observe that the diligent strategy dominates the lazy strategy for all watchtowers; formally,
we have the following theorem.

▶ Theorem 1. The diligent strategy in the PoD-Game is a dominant strategy for all watch-
towers.

Proof. For every watchtower Wi, given an arbitrary strategy vector s−i containing all others’
actions. Let nd denote the number of watchtowers that are diligent in s−i, we compare the
payoff of two strategies for Wi below.

Case 1: If nd = 0, due to Eq.2, ud
i (1) = ϕ(αi)RB + RC − cT > ϕ(αi)RB = ul

i(0).
Case 2: If 0 < nd < n− 1, due to Eq.2, ud

i (nd + 1) = ϕ(αi)RB + RC − cT > −αiSϕ(αi) =
ul

i(nd).
Case 3: If nd = n− 1, due to Eq.2, ud

i (n) = ϕ(αi)RB > −αiSϕ(αi) = ul
i(n− 1). ◀

Theorem 1 implies that the game has a unique Nash equilibrium since we can eliminate the
strictly dominated lazy strategy and get a unique strategy vector of all diligence; this follows
directly from Cor.4.37 [26].

▶ Corollary 2. The unique Nash equilibrium in PoD-Game occurs when every watchtower is
diligent.

In conclusion, in a setting without cooperation, our proof of diligence protocol ensures
that rational watchtowers will always work diligently, providing the first line of defense for the
rollup system. In practice, this setting can model many situations, such as when watchtowers
cannot communicate with each other, or when there is a public reputation system where
participating in any cooperation would be detected and deteriorate reputations.
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5 Cooperative Games and The Enhanced Protocol

In the PoD-Game, we observe that if all watchtowers choose to be lazy and agree to use a
common random rE and rS to compute their proofs, they will receive a higher payoff than
in the all-diligent equilibrium. However, this strategy did not get chosen since any party can
deviate from this “unreliable collusion” to achieve higher utility, while lazy parties end up
losing all their stakes.

Collusion can be reinforced by adding specific punishment mechanisms. In the context of
rollups, smart contracts are the most viable tools for enforcing agreements or promises of
such cooperation. Beyond the previously mentioned lazy collusion strategy, other strategies
may improve payoff through cooperation, like sharing the costs of diligence. Additionally,
the process of forming a colluding group can vary. For instance, in a leader-based method, a
watchtower might take the initiative to create a colluder contract [13], setting conditions for
joining and outlining actions to be taken, thereby allowing others to join. Conversely, in a
leader-less method, watchtowers can choose to join a collusion group and negotiate group
strategy collectively [35].

In this section, we explore the space of collusion, concentrating on two main leader-based
strategies applicable to most relevant settings. Our primary findings reveal that establishing
mutual agreements enforced by smart contracts makes lazy actions more beneficial. To
counteract this, we propose setting up Whistleblower contracts, which encourage colluders to
betray their collusion, thereby eliminating the lazy equilibrium.

5.1 Lazy Collusion

One possible strategy that watchtowers might employ to solidify the collusion is to require
all colluders to deposit a certain amount of stakes into the collusion. If a colluder posts a
proof computed from different execution roots, they will lose the collusion deposit.

We assume any party is capable of initiating such collusion, and we refer to that party as
the leader. A leader will specify the amount of stake t that each newly joined colluder needs
to contribute. Since the collusion is motivated by the benefit of being lazy, we term this
strategy “lazy collusion.” We observe that watchtowers choosing not to join the collusion
perceive the same game as PoD-Game, and therefore, they are likely to adopt a diligent
strategy. If such independent watchtowers exist, lazy collusion will not gain the expected
advantage by not computing the results. Consequently, collusion will only be effective when
all watchtowers participate in it. Specifically, the process of forming lazy collusion unfolds as
follows:
1. A watchtower initiates collusion by placing a deposit of t. The watchtower also releases a

randomly chosen r′
E .

2. Other watchtowers may join the collusion by placing a deposit of t. If n watchtowers join
the collusion before tlc, the collusion is formed. Otherwise, watchtowers get back their
deposits.

3. During the watching phase, all colluders are required to calculate the proof of diligence
using VRFsk(rS , r′

E), where rS is the state root posted by the asserter.
4. If a colluder becomes a winner, the collusion protocol will check whether the winner’s

proof is calculated from r′
E , if not, the winner is considered a traitor and will lose t.

5. At the end of the collusion, colluders who do not betray the collusion receive t+ntt/(nc−
nt), where nc is the size of colluding group, nt is the number of traitors. If all colluders
betray, everyone gets back their deposit t.
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We are considering two possible actions that all colluders (including the leader) can take,
given the collusion strategy selected by the leader: obey and betray. Colluders who choose
to obey the strategy follow the leader’s instructions to submit a response calculated from the
specified rE , while those who choose to betray may submit something different, driven by
personal interest. The game induced by lazy collusion is denoted as LC-Game. Let ua

li
(no) be

the expected payoff function of the i-th colluder Wli(i ∈ [1, nc]). a ∈ {o, b} represents for the
action chosen by Wli

, with o as obey and b as betray. There are no colluders who choose to
obey the collusion strategy. According to the protocol, nc = n, so we let li = i for simplicity,
and the payoff functions can be written as follows:

uo
i (no) =

{
−αiSϕ(αi) + (n−no)t

no
no < n

ϕ(αi)RB no = n
(6)

ub
i (no) =

{
ϕ(αi)RB − cT no = 0
ϕ(αi)RB + RC − cT − t no > 0

(7)

Now when there exists such lazy collusion, we compare the payoff of colluders with
different actions and observe that obeying the group strategy dominates the betrayal for all
colluders when the deposit t is high enough, formally, we have the following theorem.

▶ Theorem 3. The “obey” strategy in the LC-Game is a dominate strategy for colluder Wi if
the following conditions hold:

t > RC − cT (8)

t >
n− 1

n
(αiSϕ(αi) + ϕ(αi)RB + RC − cT ) (9)

Proof. For every colluder Wi, given an arbitrary strategy vector s−i containing all others’
actions. Let no denote the number of colluders that obey the collusion in s−i, we compare
the payoff of two strategies for Wi below.

Case 1: If no = n− 1, due to Eq. 8, uo
i (n) = ϕ(αi)RB > ϕ(αi)RB + RC − cT − t = ub

i (1).
Case 2: If 0 < no < n − 1, due to Eq. 9 , uo

i (no + 1) = −αiSϕ(αi) + (n−no−1)t
no+1 >

ϕ(αi)RB + RC − cT − t = ub
i (no).

Case 3: If no = 0, due to Eq. 9, uo
i (1) = −αiSϕ(αi)+(n−1)t > ϕ(αi)RB−cT = ub

i (n). ◀

Then we consider the game combining PoD-Game and LC-Game. It starts with an initiation
phase where watchtowers may choose to initiate a contract to become the collusion leader.
If all watchtowers join the same collusion contract, which is the only case where collusion
will be formed successfully, and the conditions specified in Eq.8 and 9 are satisfied, this
sub-game LC-Game can be eliminated according to Theorem 3, with the payoff induced by
the dominant strategy. Otherwise, independent watchtowers will follow the PoD-Game and
iterative elimination can be applied with Theorem 1. Observing that the payoff derived from
LC-Game is higher than PoD-Game, we find the game has two Nash equilibria but only the
lazy collusion strategy is Pareto efficient.

▶ Corollary 4. In PoD-Game that allows lazy collusion, there are two Nash equilibria: (1) all
watchtowers are independently diligent (2) all watchtowers are collusively lazy. The second
equilibrium is Pareto efficient.
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Table 2 DC-Game: The game induced by diligent collusion.

Payoff
(

ud1

udi

)
follower

All join Not all join

leader
Obey

(
ϕ(αd1 )RB − cT + (nC − 1)h

ϕ(αdi )RB − h

)
Betray

(
ϕ(αd1 )RB − cT + RC − cV

n−nC +1 − t

−αdi Sϕ(αdi ) + t
nC −1

)
Cheat

(
ϕ(αd1 )RB + (n − 1)h

ϕ(αdi )RB − h

) (
ϕ(αd1 )RB + (n − 1)h

ϕ(αdi )RB − h

)

5.2 Diligent Collusion
Moreover, watchtowers might choose to remain diligent while seeking to form a collusion to
share the execution costs. In this scenario, the leader initiating the collusion carries out the
computations and commits its solution to the group. Anyone wishing to join the collusion is
required to contribute a fee of h < cT to access the results. Subsequently, all colluders utilize
the execution root, as calculated by the collusion leader, to generate proof of diligence and
claim bounties. We refer to this strategy as “diligent collusion”. The process for forming
such a diligent collusion unfolds as follows:
1. A watchtower initiates collusion by placing a deposit of t. The watchtower also commits

a computed r′
E and specifies a rent h < cT .

2. Other watchtowers may join the collusion by paying the rent of h. Then the committed
rE is revealed.

3. During the watching phase, all colluders are required to calculate the proof of diligence
using VRFsk(rS , r′

E).
4. If the proof a non-leader colluder submits is recognized as a faulty proof, the leader will

lose t, and others will get back t/(nc − 1), where nc is the size of the colluding group.
5. If the proof provided by leader gets accepted, the leader gets t + (nc − 1)h.

In the game of diligent collusion, we observe that the leader has three possible actions:
obey, betray, and cheat. “Obey” implies that the leader will diligently compute the transaction
execution root and share it with others. “Betray” suggests that the leader might commit a
random output to the colluding group while submitting a correct proof for its own benefit.
And “cheat” represents the scenario in which the leader lazily commits and submits the same
random output. The other colluders may only choose to follow what the leader commits,
since they pay the rent; in other words, there is no benefit to join the collusion if they
plan to choose another action. Table 2 lists the payoff functions of DC-Game, the game
induced by the diligent collusion strategy. ud1 and udi

(i ∈ [2, nc]) represent for the payoff
function for the leader and other colluders. Note that if the leader chooses to cheat, its
payoff is highly influenced by whether all watchtowers join the collusion. If there exist
independent watchtowers, they must choose the diligent strategy as the PoD-Game implies,
then all colluders will be punished by the proof of diligence protocol. Therefore, it is evident
that the following theorem holds:

▶ Theorem 5. DC-Game has no pure strategy Nash equilibrium when t > RC−cV /(n−1)−h.

Proof. We denote the strategy profile in DC-Game as {a, nc}, where a ∈ {o, b, c} is the
action chosen by leader, representing obey, betray and cheat, nc is the number of other
watchtowers who choose to join the collusion. Firstly, the condition t > RC − cV /(n− 1)− h
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implies that ∀nc ∈ [2, n], ud1({o, nc}) > ud1({b, nc}), hence betray is strictly dominated by
obey. We then observe that ud1({o, n}) < ud1({c, n}), indicating that {o, n} is not a Nash
equilibrium, as in this case the leader can achieve a higher payoff by switching to cheat.
Additionally, independent watchtowers receive a higher payoff if they join the collusion when
the leader chooses to obey, as this spreads the execution cost across the entire colluding group.
Conversely, when the leader opts to cheat, if all watchtowers join the collusion, switching to
be independently diligent achieves a better payoff. However, if not all watchtowers join, obey
becomes the more beneficial strategy for the leader. Consequently, there doesn’t exist any
pure strategy that is a Nash equilibrium. ◀

Theorem 5 indicates that even if we take DC-Game into consideration, the pure strategy
Nash equilibria of the full game remain the same. Hence we have the following property.

▶ Corollary 6. In PoD-Game that allows lazy and diligent collusion, there are two Nash
equilibria: (1) all watchtowers are independently diligent (2) all watchtowers are collusively
lazy. The second equilibrium is Pareto efficient.

5.3 Enhanced Protocol with Whistleblower
The incentive for colluders to establish collusion lies in the potential to mine bounties with less
effort. However, less effort always correlates with the likelihood of faulty proofs. As analyzed
in Section 5.1, watchtowers are incentiviced to join the lazy collusion. In lazy collusion, the
benefits derived from betraying the collusion (by being diligent in computations) do not suffice
to offset the loss of the collusion deposit. Thus, the principles for eliminating the collusion
are to: (1) offer rewards for identifying and reporting collusion, and (2) provide compensation
for the losses incurred from betraying the collusion. We refer to such colluders, who disclose
information about collusion to the rollup system, as “whistleblowers”. In response, we have
specifically designed the whistleblower protocol as follows:
1. The rollup operator establishes a whistleblower bounty Rw and declares that the first

whistleblower will be eligible for the reward.
2. Any individual can place a deposit of d and submit the correct rE to assume the role of a

whistleblower.
3. The protocol invokes the validate interface to resolve the dispute. If the whistleblower

succeeds, they receive Rw + d in return. Otherwise, a loss results in the forfeiture of their
deposit.

To ensure the payoff of whistleblower is better in all above collusion games, we derive the
following condition to determine rewards.

▶ Lemma 7. With the additional action “report” that each watchtower can choose, the
strategy that all watchtowers obey the lazy collusion is no longer a Nash equilibrium for
watchtower i if

Rw > ϕ(αi)RB + cV + αiSϕ(αi) + cT (10)

Proof. We first consider the impact that the additional action report brings to LC-Game.
First, the whistleblower, by adhering to the collusion agreement to submit proof, will not be
subject to punishment by the slashing rule of the collusion. However, the payoffs of other
colluders will be reduced due to the exposure of the collusion, hence the changes in outcomes
are detectable and might be used to augment the collusion deposit. Even though, the act
of reporting cannot be traced back to an individual colluder. Therefore, any colluder may
switch to report to gain higher payoff from the whistleblower protocol, since
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ur
i (n) = −αiSϕ(αi)− cV + RC − cT + Rw (11)

> ϕ(αi)RB + RC > ϕ(αi)RB = uo
i (n) (12)

This further discourages other colluders from participating in the collusion, because the
payoff ûo

i (n) they get in the existence of whistleblower becomes

ûo
i (n) = −αiSϕ(αi) < ϕ(αi)RB − cT − cV /2 + RC = ud

i (n) (13)

As a result, joining and obeying the lazy collusion is not a Nash equilibrium.
Then we discuss the impact of the whistleblower scheme and the elimination of the lazy

equilibrium on DC-Game. We denote the strategy profile in DC-Game as {a, nc, w}, where
a ∈ {o, b, c} is the action chosen by the leader, nc is the number of watchtowers in the
collusion, and w ∈ {true, false} represents whether there exists a whistleblower. First, all
strategies with w = false are not Nash equilibria by the same analysis in Theorem 5. Next,
since the existence of a whistleblower will not lower the payoff of a leader who chooses to
obey, betrayal is still strictly dominated by obedience. Then we consider the strategy where a
whistleblower exists in the collusion group. In this case, if the leader opts to cheat, it’s always
better to switch to obedience. However, if the leader chooses to obey, the whistleblower is
better off choosing not to report. Consequently, there doesn’t exist any pure strategy in the
subgame DC-Game that is a Nash equilibrium. ◀

The introduction of a whistleblower protocol changes the payoff dynamics of lazy collusion,
as any colluder can expose the collusion for a higher payoff. Knowing this, the leader may
not choose to initiate lazy collusion in the first place and the full game reach back the state
where diligent strategy is the only Nash equilibrium.

▶ Corollary 8. In PoD-Game that allows lazy and diligent collusion, if whistleblower contract
exists, there is a unique equilibrium that all watchtowers are independently diligent.

Cryptoeconomic security and parameter selection

To provide a clear benchmark for evaluation and decision-making for different security
needs, we discuss how to choose parameters that ensure both cryptoeconomic security and
compatible incentives.

First, we normalize the execution transaction costs to cT = 1. As an example, assume
there are n = 10 watchtowers with equal stakes; then ϕ(αi) = ϕ(α0) ≃ 0.2 (Eq. 1) when
θ = 0.9. Eq. 2 then gives the bound on rewards: RB > 5 and RC > 1, which are affordable
as the normal-path incentives the rollup operator needs to provide. Eq. 3 calculates the
minimum stake α0S > 100009, assuming that cV = 100000≫ cT .

To induce lazy collusion, a leader in LC-Game will set the stake t > 18514 according to
Eq. 9. In LC-Game, for any t ≥ 0, the condition in Theorem 5 always holds. To eliminate all
collusion strategies, according to Eq. 10, the reward for the whistleblower should be set to
Rw > 120572.

If we increase the number of watchtowers to n = 100, we see that the bounty RB increases
accordingly to at least 44, which is still low. The minimum stake required for each watchtower
does not change significantly, and Rw decreases to 102281.

Under the rational adversary assumption, our protocol guarantees a unique pure strategy
Nash equilibrium where all watchtowers are diligent. Beyond this, cryptoeconomic security
requires that when an attack occurs, the cost of launching the attack exceeds the maximum
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profit. Therefore, when designing the actual parameters (e.g. n, S) for a practical system, we
can utilize signals on the inherent value of transactions [12] to adapt the security requirements
of watchtowers. For example, considering the current average transaction fee on Ethereum is
approximately $3 and the average L2 batch size is around 200, we simplify the model by
assuming all transactions are executed on L1 to resolve disputes, which incurs the cV ≈ $600
and cT ≈ $0.006. (Using other more complex dispute resolution methods can reduce this
cost.) Then the normal path reward for watchtowers can be estimated as:

RB > 5× $0.006 = $0.03 per batch.

Next, we calculate the number of batches produced by some L2 chains per year. For example,
Optimism processes approximately 400,000 transactions per day, translating to about 2,000
batches per day or 700,000 batches per year. Given the probability that a watchtower wins
the bounty is 0.2 and the annual percentage yield (APY) from external investment vehicles
is around 6%, the condition to incentivize stakers with the estimated return rate is:

(5− 1)× 0.006× 0.2× 700,000
600 + tx value > 6%.

In other words, a watchtower would be willing to secure approximately $56,000 worth of
transactions. And if the application aims to incentivize watchtowers to secure higher value
transactions, the rewards should be increased accordingly.

Additionally, the minimum stake that each watchtower needs to post should include the
transaction value. Notably, n determines the normal operational overhead of our protocol,
which does not directly determine the security. It can be chosen with a trade-off between
stake decentralization and operational cost.

6 Implementation and Evaluation

6.1 System design
The protocol described so far is a general framework for proving diligence in a computing plat-
form with anytrust guarantees. We describe an implementation of these proofs subsequently
in the context of optimistic rollups (ORs) as the compute platform and Eigenlayer [14] as the
underlying staking platform under a non-collusion setting. The complete system is termed a
watchtower network and serves the following implementation goals:
1. Low compute overhead: Watching an OR state involves executing all transactions of the

rollup. Overhead is termed as any resource cost on top of the bare minimum rollup state
execution. Our implementation minimizes this overhead to lower a watchtower’s resource
costs.

2. Modular implementation: The rollup ecosystem has a lot of tech stacks for full nodes
ranging from general OP-stack to specialized implementations for DeFi, such as LayerN.
Our modular implementation can be used on any rollup stack with minimal modifications.

3. Low gas fees: Large gas fees on settlement layers such as Ethereum can make watching
prohibitively expensive. Our implementation scales down L1 gas costs and makes it an
adjustable feature for the rollup.

The implementation is split across the functional domains of the rollup, settlement,
payment, and staking layers. For simplicity, we assume the settlement, payment, and
staking layers sit on the same ledger. However, it can be easily expanded to independent
networks if desired. Figure 3 shows the binding of the functional components with the two
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Figure 3 Watchtower client executes the rollup and observes the commitments on settlement
layer, it posts bounty and flags on the payment/stake layer.

architectural components: the Watchtower client running on a server and smart contracts
running on Ethereum. We outline the details of the two architectural components below. Our
implementation draws from the modules in section 6.1 to build a watchtower on the Optimism
Bedrock stack [50]. We test the implementation on the Ethereum Goerli testnet to watch
OP-goerli and Base-goerli. We evaluate the system as per our quantitative implementation
goals as described in section 6.1: Compute overhead, and gas costs. We adapt the modules
to fit the existing rollup stacks and deploy them using an update-optimized architecture to
make them evolve with the rollup ecosystem. We go over these details in Appendix A1.

6.2 On-chain Contracts
The contracts are written in Solidity and deployed on Ethereum Goerli via a UUPS proxy
architecture [37] to enable future updates. We deploy three contracts derived from section 6.1:
OperatorRegistry, BountyManager, and AlertManager. The deployed contracts can be found
at [4].

BountyManager contract implements a hash minimum across watchtowers to ensure a
single bounty winner within an epoch. The payment pool and Rollup registry contract are
replaced with a simple bounty count to measure contribution and a chain-id to point to a
rollup. Dispute resolution contracts will utilize L2 fraud proofs once they evolve.

Optimizations. Immutable data like diligenceProof are stored as calldata variables to avoid
storage costs. Proof outputs as set to a fixed size using keccak256 to ensure consistency in
storage requirements. Hash minima is calculated by the winning party to balance gas costs.
We use Mappings instead of arrays to store hash data to reduce gas costs. We utilize audited

1 Appendix is in the full version of the paper: https://arxiv.org/abs/2402.07241.

https://arxiv.org/abs/2402.07241
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Figure 4 Gas usage of MineBounty operation over 4 weeks of deployment.

and optimized ECDSA OpenZeppelin libraries [36] to verify the authenticity of signed proofs
to reduce contract risk. The contracts emit NewBountyClaimed and NewBountyRewarded for
efficient notifications to off-chain clients.

Gas usage. A bounty mining transaction consumes 380K gas on average as shown in
figure 4. As a reference, this is of the same order as a token swap operation on Uniswap.
Two significant contributors to gas usage are (a) Proof storage for reward reimbursement
and (b) Verifying the authenticity of proofs. This gas fees can be reduced in the future by
introducing an appropriate aggregation layer for submitting bounty mining transactions.

6.3 Off-chain Client

The off-chain clients are implemented to support OP-Bedrock as a rollup execution engine.
Two clients implemented in Golang enable the Watchtower client. A bounty mining client
contains the bounty mining and transaction generator modules. This client is supported by a
State extraction client that contains the settlement layer module with an RPC connection to
a full node. Alert management and reconfiguration manager modules are left as future work
to be implemented once the rollup stack evolves. We describe the implementation details of
the Go clients below:

Optimizations. We employ an event-based trigger to the PoD generation. The watchtower
client listens to emitted events on the L2OutputOracle Contract to receive real-time data
updates from the contract; this is much more efficient than polling mechanisms. Generating
execution trace requires storing the state roots after each transaction; this operation involves
re-execution and hence is limited to just the penultimate block in an L2 epoch to avoid
re-executing the whole epoch.

Resource utilization. The L2 full node and watchtower client are implemented on different
machines. We run the L2 full node on a machine with 4 cores and 16GB of RAM and the
watchtower client on a machine with 2 cores and 4GB RAM. Table 3 lists the resource costs
in running the watchtower client. We observe that the client consumes minimal resources
natively and has a minimal resource usage overhead on the L2 node. The client has no I/O
since its context is stored in memory.
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Table 3 Watchtower client usage stats.

L2 node CPU(%) Mem(MB) I/0(KB/s) NW(KB/s)
Before mining 0.7-25 5306 700 10-150
During mining 0.7-25 5307 700 10-150

Watchtower client CPU(%) Mem(MB) I/0(KB/s) NW(KB/s)
Before mining 0.1 15 0 1
During mining 0.1 - 10 15 0 1

We observe CPU usage burst to 10% on the watchtower client when the rollup proposer
on L1 output Oracle proposes a new block. We observe a similar burst of 25% on the L2
goerli node when op-node sends a block to op-geth to execute the transactions and update
the state.

We can utilize this capacity for additional off-chain computing to redistribute some
on-chain contract operations to an off-chain module. A proposed approach is to perform
proof aggregation on-chain; this implementation is left for future work.

7 Discussion

Proof of Diligence ensures that watchtower network executes all transactions on the rollup
diligently. Further improvements down the line will enhance security, enable generalized
applications, and allow for efficient trade-offs between delay and stake. We describe such
improvements below:

7.1 Enabling Cryptoeceonomically Secure Watchtower Applications
The design described so far ensures that watchtowers are independently verifying transactions
on rollups. The verification results can be utilized for attesting to any event on the rollup.
These attestations are cryptoeconomically secured by the watchtower’s stake locked with
EigenLayer. We summarize the design here:

Configurable execution event trace: Applications can subscribe to the Watchtower
network to get verifiable updates on their transactions’ life cycle. The events emitted
from these transactions will be added to the bounty to ensure the execution and can be
challenged for cryptoeconomic security.
Application event tracing: Watchtowers can trace the whole life cycle of transactions
pertaining to an application, starting from being sequenced by the sequencer to being
ordered on L1 to being asserted into the state. A different level of cryptoeconomic security
will accompany each of these stages.
Dispute resolution and cryptoeconomic security: Events pertaining to the sub-
scribed application are attested by the watchtower and are bound to be included in
the next bounty. As enforced by the proof of diligence, other watchtowers will ensure
that these attestations are correct. If these attestations are exchanged in private, An
application/agent consuming this attestation can contest its correctness in the future by
showing a mismatch between the watchtower’s attestation and the mined bounty.

Besides applications on the rollup, the incentivized watchtower network holds significant
potential for broader applications in general verifiable computing. Our future work will
explore how the Proof of Diligence protocol can be extended to various domains such as AI
inference [6], cloud computing [13], and blockchain light client protocols [31]. For example,
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to monitor and verify AI inference tasks, each watchtower can independently re-compute
the inference results from the provided input data and model parameters, raising an alert
if discrepancies are found. A recent work [31] demonstrates the use of watchtowers as a
monitoring service to secure proof of stake blockchain states for resource-limited light clients,
ensuring any invalid states are detected. This approach can be extended to a wider range of
blockchain applications where light clients are prevalent. Watchtowers provide a robust layer
of security and accountability.

7.2 Enhancing Security

The current system design ensures that Proof of Diligence works under a static adversary
that can form static collusion. Resistance against a stronger dynamic adversary requires
assumptions on rational independence of watchtowers and the privacy of whistleblower
contracts. These assumptions can be enforced through system design by enabling random
rotation of watchtowers in the pool and ensuring the privacy of the whistleblower.

Watchtower rotation. The rotation of watchtowers across different rollups in the pool is
essential for security against an adaptive adversary. Watchtowers can be periodically rotated
in small batches across rollups in a random and staggered manner reminiscent of the cuckoo
rule [5]. The rotation can be made more efficient by utilizing two techniques: (a) utilizing
modularity: we are designing an efficient reconfiguration protocol for watchtowers rotating
between rollup two rollups sharing similar modules - such as two rollups running the OP
stack; (b) stateless clients: watchtower rotation through the reconfiguration manager can
be made very efficient by removing the need to transfer state. The witness chain team is
developing a stateless client architecture that removes the need to download state when
reconfiguring to a new rollup.

Private Whistleblower contracts. The interactions of the whistleblower with the whistle-
blower contract are private to ensure that they can’t be used within the collusion contract.
We are designing a system to ensure these inputs stay private to the collusion contract by
deploying a whistleblower contract upon request post the bounty mining period. This ensures
that the address of the whistleblower contract is not static and cannot be referenced in the
collusion contract. Alternate design solutions include privacy-enhancing contract structures
such as Aleo.
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