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Abstract
Decentralized Finance (DeFi) has witnessed a monumental surge, reaching 53.039 billion USD in
total value locked. As this sector continues to expand, ensuring the reliability of DeFi smart contracts
becomes increasingly crucial. While some users are adept at reading code or the compiled bytecode
to understand smart contracts, many rely on documentation. Therefore, discrepancies between the
documentation and the deployed code can pose significant risks, whether these discrepancies are
due to errors or intentional fraud. To tackle these challenges, we developed DeFiAligner , an end-to-
end system to identify inconsistencies between documentation and smart contracts. DeFiAligner
incorporates a symbolic execution tool, SEVM, which explores execution paths of on-chain binary
code, recording memory and stack states. It automatically generates symbolic expressions for
token balance changes and branch conditions, which, along with related project documents, are
processed by LLMs. Using structured prompts, the LLMs evaluate the alignment between the
symbolic expressions and the documentation. Our tests across three distinct scenarios demonstrate
DeFiAligner ’s capability to automate inconsistency detection in DeFi, achieving recall rates of 92%
and 90% on two public datasets respectively.
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1 Introduction

Decentralized Finance (DeFi) encompasses a wide range of financial applications and services
built on blockchain platforms that support smart contracts, such as exchanges, lending and
borrowing platforms, and derivatives [54]. These smart contracts are pieces of code that
execute automatically when triggered by transactions. A distinct characteristic of DeFi is
the transparency of the compiled bytecode for all smart contracts, often encapsulated by
the maxim “code is law”. This principle underscores the ecosystem’s transparency, allowing
anyone to deterministically and independently verify state transitions and validate the
execution outcomes of these contracts and transactions.

Although the DeFi ecosystem offers sufficient transparency to allow anyone to verify and
review the code of smart contracts, discrepancies between project documentation and the
actual code can still pose risks to users. DeFi project documentation typically describes core
functionalities and financial models, yet the actual on-chain code (e.g., EVM bytecode) may
not faithfully implement these features due to programming errors or intentional design, and
may even include unmentioned functionalities. A typical example is the Uranium Finance
incident [5], where a discrepancy between the implementation of a conditional formula in the
deployed code and its description in the whitepaper led to the theft of tokens valued at over
$50 million. Additionally, a broader example is that many ERC-20 tokens contain trading fees
or blacklists [29] that are not disclosed in the documentation. Indeed, users with sufficient
technical skills can directly read and understand the smart contract, thereby identifying
potential risks and avoiding losses. However, when the source code of smart contracts is
unavailable and only the binary code on the blockchain is accessible, understanding the
compiled low-level bytecode becomes extremely challenging [32, 20]. For those who mainly
rely on documentation or platform descriptions, discovering such inconsistencies is almost
impossible. As far as we know, existing static analysis tools [16, 43] have not considered
such inconsistency issues. Therefore, designing an inconsistency detection tool is crucial for
protecting user assets and enhancing the trustworthiness of the DeFi system.

In this work, we take the first step in automatically detecting logical inconsistencies
between DeFi project documentation and deployed smart contracts, aiming to assist in
the automated review of DeFi projects. Although some studies [18, 29, 82, 33, 80, 45]
have begun to discuss the issue of inconsistencies in DeFi, their scope of review remains
confined to superficial checks at the function interface level, lacking scrutiny of the underlying
business logic. Additionally, most of these studies heavily rely on manually derived or expert-
summarized invariants, rendering them inherently resistant to automation. Furthermore,
accessibility to open-source code repositories acts as a prerequisite for some methods [82, 33],
constraining their applicability within closed or proprietary systems. Even for approaches
[18, 45] that leverage transaction log analysis and do not require open-source code, they can
only provide retrospective insights, failing to proactively prevent potential issues.

We propose a method to automatically detect inconsistencies by comparing the logic of
smart contracts with the descriptions in the documentation. In our research, the examination
of inconsistencies primarily focuses on changes in token balances and the conditions for these
changes within smart contracts. We emphasize this focus because, in DeFi projects, balance
changes are the most critical aspect of the logic, giving transactions their significance, as
the primary purpose of most transactions is to alter balances. An inconsistency is identified
if there is a mismatch between the two. For example, if the change in a user’s token
balance does not align with the description in project documentation, it is identified as an
inconsistency. However, implementing this approach is nontrivial due to two main challenges:
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1) How to automatically generate symbolic representations of user balance changes and
execution conditions. Firstly, DeFi code often involves inter-contract interactions, and
existing tools like Mythril [7], Sailfish [12], and Manticore [51] lack support for computing
dynamic jump addresses and cross-contract analysis, making it difficult to generate complete
execution paths [70]. Secondly, some smart contracts are not open source or only partially
open source, which complicates the analysis of locating data structures and reconstructing
computational logic; 2) How to automatically compare symbolic expressions in the code
with the calculation logic in the documentation. The documentation often features abstract
business logic and personalized natural language expressions, which vary significantly. This
variability complicates the direct alignment and comparison of the computational elements in
the code with their descriptions in the documentation, making it difficult to verify consistency
across these two mediums.

To tackle these challenges, we design an end-to-end system named DeFiAligner , which
integrates traditional symbolic analysis with large language models (LLMs): ➊ Firstly,
DeFiAligner relies on a symbolic tool called SEVM (Symbolic Ethereum Virtual Machine)
to generate the execution paths of smart contracts. SEVM, an adaptation of the Ethereum
Virtual Machine (EVM) [3], supports operations with Z3 symbolic values [24] in both stack
and memory. It automatically generates corresponding Z3 symbolic variables as input based
on Application Binary Interface (ABI) [2] information and executes stack and memory
operations according to the opcode instructions of the smart contract. Unlike other symbolic
tools, SEVM supports cross-contract analysis and saves the state of the stack and memory
after each instruction is executed. ➋ Then, DeFiAligner identifies changes in token balances
and execution conditions for each path by analyzing the state of the stack and memory
after the execution of the SLOAD, SSTORE, and JUMPI instructions. ➌ Finally, to manage
the complexity and variability of document information, DeFiAligner incorporates large
language models [77], known for their proficiency in natural language processing and reasoning
capabilities. Specifically, we input both symbolic data and documentation into the LLM’s
API, guiding it to detect inconsistencies through structured prompts. Unlike other works [34]
that utilize LLMs for blockchain security analysis, our research uses symbolic expressions
extracted from binary code as inputs, rather than directly using source code, ensuring that
the input information is concise and crucial. Testing across three distinct scenarios shows
that DeFiAligner can not only identify direct inconsistencies between textual and symbolic
representations but can also uncover underlying logical discrepancies, thus significantly
enhancing the quality and efficiency of DeFi project audits.

In summary, this work has three major contributions.
To the best of our knowledge, this is the first work focused on detecting logical inconsisten-
cies between documentation and deployed smart contracts for project review. We design
an end-to-end system named DeFiAligner that identifies risks by examining on-chain
binary code before traders interact with the protocol, rather than conducting post-event
analysis after asset losses have occurred.
We develop a symbolic generation tool named SEVM that produces accurate symbolic
representations for cross-contract DeFi applications. This tool preserves the states of the
stack and memory after each opcode instruction is executed, making it not only suitable
for the task presented in this paper but also applicable to other symbolic analysis research
related to smart contracts.
We validate the practicality of our approach with empirical tests conducted across
three real-world scenarios. These evaluations confirm our method’s capability to expose
discrepancies between the documented descriptions and deployed smart contracts. This
verification not only proves the utility of our approach but also underscores its potential
to enhance the reliability and transparency of DeFi applications.

AFT 2024
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The code for this work is publicly available on GitHub2.

2 Background

2.1 Decentralized Finance and Smart Contracts
Decentralized Finance (DeFi) utilizes blockchain technology [79] to enable peer-to-peer
financial services, thereby eliminating the need for traditional intermediaries like banks. The
core of DeFi is smart contracts [78], self-executing contracts with terms directly embedded
in the code, which allow for the development and deployment of diverse financial protocols
on platforms such as Ethereum [71]. Smart contracts are written in high-level programming
languages like Solidity [22] or Vyper [15] and are compiled into lower-level bytecode that is
executable on the blockchain. During the compilation of smart contracts, an Application
Binary Interface (ABI) is generated that defines the methods and structures of the smart
contract, enabling users to interact accurately with the contract’s functions.

2.2 Symbolic Execution with Z3
Symbolic execution [40, 11] is a method of software analysis that models potential execution
paths of a program by treating its inputs as symbolic variables instead of using concrete values.
This allows for an exhaustive exploration of the program’s behavior under various conditions,
helping to detect bugs, security flaws, and performance bottlenecks. The technique involves
branching the program’s execution at conditional statements, thereby creating a tree of
possible execution paths. Each path is associated with a set of constraints on the input values
that must be met for the path to be taken, allowing testers and developers to identify critical
issues that could affect the program’s reliability and security. In this research, we employ
symbolic values within Z3 [24], a high-performance tool developed by Microsoft Research,
to handle and manipulate the symbolic representations of program states. This integration
facilitates more precise and powerful analysis, ensuring that all possible execution paths are
thoroughly evaluated.

2.3 Large Language Models (LLMs)
Large Language Models (LLMs) [17, 38], such as ChatGPT [8, 72, 74], are advanced artificial
intelligence systems designed to understand, generate, and manipulate human language.
These models are trained on vast datasets comprising diverse text sources, enabling them
to grasp complex language patterns, context, and semantics effectively. Firstly, LLMs can
automate the processing and analysis of large volumes of text, making them promising tools
for data-driven decision-making and automation in various fields. Secondly, their ability to
generate coherent and contextually relevant text makes them ideal for applications such as
conversational agents, content creation, and semantic analysis. Moreover, the inferential
reasoning abilities [69, 30, 56, 26] of LLMs set them apart, allowing them to not only process
information but also generate insights and hypotheses based on the contextual understanding
of the data they analyze. Nowadays, LLMs have been used in the field of software security
testing and analysis [67, 55, 37]. Leveraging their proficiency in understanding both natural
and programming languages, LLMs are increasingly used to enhance security protocols,
detect vulnerabilities, and automate the analysis of code for potential security threats

2 DeFiAligner, https://github.com/DeFiAligner/DeFiAligner

https://github.com/DeFiAligner/DeFiAligner
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Figure 1 Inconsistency: discrepancies between the project documentation and deployed smart
contracts during a DeFi project cycle.

[46, 61, 60, 57, 76, 58, 41, 49]. To some extent, LLMs can help identify potential security
issues without requiring security professionals to manually review thousands of lines of code,
thus speeding up the security review process.

3 Preliminary

3.1 Definition of Inconsistency
During a DeFi project cycle (as shown in Figure 1), the development team typically releases
project documentation, and deploys smart contracts onto the blockchain. Many users tend
to rely on the documents rather than inspecting the code directly. However, this overreliance
on documentation can pose significant risks: the functions, logic, or operational conditions
described in the documents may differ substantially from the code actually deployed on the
blockchain. These discrepancies may arise from errors in the development process, delays in
updating the documents, or intentional omissions of information. Users might not notice
these discrepancies and make erroneous decisions, thereby facing the risk of financial losses.
We define such inconsistencies, denoted by ∆, as follows:

▶ Definition 1 (Inconsistency ∆). Let D = {d1, d2, . . . , dn} be a set of descriptions from the
documentation, and let C = {c1, c2, . . . , cm} be a set of observed behaviors in the bytecode of
the deployed smart contracts. An inconsistency ∆ can be categorized into three types:

1. Documentation-Only Inconsistency (∆D): A description di ∈ D for which there is
no corresponding behavior in C. For example, a promised transfer that does not appear
in the code.

∆D = {di ∈ D |̸ ∃cj ∈ C : di corresponds to cj} (1)

2. Code-Only Inconsistency (∆C): A behavior cj ∈ C for which there is no corresponding
description in D. For example, a trading fee that appears in the code but is not declared
in the documentation.

∆C = {cj ∈ C |̸ ∃di ∈ D : cj corresponds to di} (2)

3. Mismatch Inconsistency (∆M ): Both a description di ∈ D and a behavior cj ∈ C

exist, but they do not match. For example, both the documentation and the code include
calculations for rewards, but the formulas used to calculate the rewards are different.

∆M = {(di, cj) ∈ D × C | di and cj are related but do not match} (3)

AFT 2024
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The collective set of inconsistencies ∆ is the union of these three types:

∆ = ∆D ∪ ∆C ∪ ∆M (4)

3.2 Threat Model

Following the definition of inconsistency ∆, the primary objective of this research is to
develop a methodology for detecting such inconsistencies between the documentation and the
deployed smart contract in DeFi projects. For the threat model, we consider the following
aspects:

Non-disclosure of Smart Contracts: As described in previous research [59, 48], over
99% of Ethereum contracts have not published their source code. The lack of source code
access complicates the verification of the contract’s security and functionality, as auditors
and users are unable to directly verify the correctness and completeness of the contract
logic by reading the source code.
Universal Accessibility of On-chain Binary Code: Regardless of the public availab-
ility of smart contract source code, the binary code deployed on the blockchain is always
accessible. This availability provides the possibility for contract verification but also
necessitates specific technologies to analyze and understand the actual behavior of these
codes.
Limitations of LLMs in Understanding Binary Code: While LLMs are powerful
tools for processing and analyzing text, their capability to understand and interpret
binary code directly is limited. This poses a significant challenge in scenarios where only
binary code is available, requiring additional tools or methods to bridge the gap between
LLM capabilities and the need for detailed binary code analysis.

Our approach aims to analyze and infer smart contract behaviors under conditions
of limited information by combining symbolic execution and LLMs, thereby identifying
discrepancies between the code and documentation.

4 Motivation Example

The following example illustrates a real counterfeit token, named UNISWAP2.03, which
copies the documentation of Uniswap tokens [6]. UNISWAP2.0 is a scam project, where the
developer uses the name of Uniswap to attract traders and embed malicious logic in the
counterfeit token. Specifically, the contract developer deployed this scam token on Ethereum
and subsequently created a liquidity pool on the Uniswap exchange [9] by depositing the scam
token and WETH token. Listing 1 shows the code snippet of UNISWAP2.0. In the code,
the automatedMarketMakerPairs array is used to verify interactions with the pool’s address.
This setup results in traders paying transaction fees when buying or selling tokens through
the pool. Additionally, the contract owner can manipulate a blacklist to prevent specific
users from transacting, furthering their malicious agenda. Please note that for illustrative
purposes, we present the source code here; however, we do not actually use the source code
in our entire detection process.

3 A counterfeit token, https://etherscan.io/token/0xC54F5c53Ab4a3A56303f96543245c13d58a3433d
#code

https://etherscan.io/token/0xC54F5c53Ab4a3A56303f96543245c13d58a3433d#code
https://etherscan.io/token/0xC54F5c53Ab4a3A56303f96543245c13d58a3433d#code
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Listing 1 The code snippet from a counterfeit token named UNISWAP2.0.
1 function _transfer ( address from , address to , uint256 amount ) internal override {
2 require (from != address (0) , " ERC20 : transfer from the zero address ");
3 require (to != address (0) , " ERC20 : transfer to the zero address ");
4 // Author ’s Note 1: The official project documentation does not describe a

blacklist , but it is present in this counterfeit token .
5 require (! blocked [from], " Sniper blocked ");
6 ......
7 // Author ’s Note 2: The official project documentation does not describe any

fees , but it is present in this counterfeit token .
8 # only take fees on buys/sells , do not take on wallet transfers
9 if ( takeFee ) {

10 # on sell
11 if ( automatedMarketMakerPairs [to] && sellTotalFees > 0) {
12 fees = amount .mul( sellTotalFees ).div (100) ;
13 ......
14 }
15 # on buy
16 else if ( automatedMarketMakerPairs [from] && buyTotalFees > 0) {
17 fees = amount .mul( buyTotalFees ).div (100) ;
18 ......
19 }
20 if (fees > 0) {
21 super . _transfer (from , address (this), fees);
22 }
23 amount -= fees;
24 }
25 super . _transfer (from , to , amount );
26 }

In this case, significant inconsistencies arise between the documentation of Uniswap token
and the scam contract. The documentation does not mention any mechanisms like blacklists
or trading fees. However, in the scam token’s code, there are at least two inconsistencies:
the existence of a blacklist and the imposition of transaction fees. These deviations are not
documented and could mislead users into making incorrect decisions, potentially leading to
financial losses.

Previous analyses and inspections of smart contracts [29, 47, 81, 44] have primarily focused
on checking specific code patterns, such as fee collection or blacklist enforcement. However,
they inherently cannot determine whether these features represent malicious intentions or
are merely unique implementations of normal business logic. Compared to previous research,
DeFiAligner utilizes symbolic analysis and large language models to conduct cross-field
comparisons between text and code, thus breaking through traditional limitations and
enhancing the ability to understand and detect inconsistencies between the deployed smart
contracts and their documented descriptions.

5 Methodology

5.1 Overview
The high-level logic of DeFiAligner operates as follows (as shown in Figure 2). Firstly, the
user specifies the function signature, contract address, and ABI information, all of which
are publicly available and easy to obtain. Then, SEVM interacts with the corresponding
blockchain Remote Procedure Call (RPC) [10] to retrieve the bytecode of the deployed smart
contract. Subsequently, SEVM constructs symbolic variables as inputs and symbolically
executes instructions in memory and stack according to the logic in the bytecode, thereby
generating all possible execution paths. These paths include the states of memory and
stack after the execution of each opcode instruction. Then, DeFiAligner extracts symbolic
expressions for token balance changes and their conditions from these paths by analyzing the

AFT 2024
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q ABI information                  

SEVM

Inconsistency

Blockchain 
RPC Service

Project 
Documentation

LLM

Prompt

paths output

Stage ❶：Path Generation Stage ❸：Inconsistency DetectionStage ❷：Symbol Extraction

Extractor
features

‧‧‧

conditions

‧‧‧

conditions

balance change balance change

Figure 2 Overview of DeFiAligner .

states of the stack and memory before and after the execution of specific instructions. Finally,
the symbolic features, along with the documentation, are fed into the large language model.
By using structured prompts, the large language model automatically detects potential
inconsistencies. In more detail, our system consists of the following stages:

Stage ➊: Path Generation. Although there are many symbolic generation and analysis
tools [7, 12, 51, 14], their functionality is limited: 1) the analysis is purely static and
lacks support for dynamic jump addresses and cross-contract analysis. For example,
they cannot generate incomplete execution paths when there are interactions between
multiple contracts; 2) some tools are unable to restore symbolic logic from the binary code;
3) although some tools (e.g, Vandal [14]) can convert low-level bytecode into semantic
logic relations, they do not support bitwise operations on memory data when executing
some memory-related instructions, resulting in errors. Therefore, we developed a tool
called SEVM to generate symbolic execution paths, which overcomes the aforementioned
limitations. Specifically, we first modify the basic data types of memory and stack in the
native EVM by changing the uint256 type elements in the stack to the bit-vector (BV)
type in Z3 Value [4], and transforming the memory into a customizable length type of
BV values. To adapt to changes in basic data, we also modify the EVM instructions to
support calculations with Z3 Value (e.g., ADD, SUB, MUL). Additionally, we modify the
EVM interpreter to support computations with Z3 Value and to utilize the Depth-First
Search algorithm [62] to explore all possible execution branches. To address the issue of
dynamic jump addresses and cross-contract calls, SEVM dynamically retrieves contract
addresses and codes from the RPC service when executing the CALL, STATICCALL, and
DELEGATECALL instructions and enters the function specified by these instructions for
subsequent SEVM computations. When executing each opcode instruction, SEVM records
all symbol information on each path, including : 1) executed opcode instructions and 2)
the states of the memory and stack after each instruction execution.
Stage ➋: Symbol Extraction. In traditional symbolic execution, the “path explosion
problem” is prevalent, where the number of paths for analysis multiplies rapidly, especially
with multiple IF instructions. DeFiAligner addresses this issue by applying domain-
specific knowledge in DeFi, focusing on changes in asset balances. Specifically, DeFiAligner
selectively filters out paths that do not impact token balances by checking the overlap
of SSTORE and SLOAD instructions in the symbolic representation. This approach allows
our system to concentrate on the most relevant paths, thereby increasing its efficiency.
DeFiAligner focuses on extracting two critical DeFi features from each path: 1) asset
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Figure 3 The process of generating execution paths by SEVM.

balance changes: In DeFi, changes in asset balances directly reflect the economic impact of
a smart contract’s actions. Focusing on these changes offers a straightforward method to
assess the contract’s behavior, translating complex code into tangible financial outcomes.
Unusual or unexpected balance changes may indicate vulnerabilities, bugs, or exploits
within the contract. 2) conditions of JUMPI: In EVM bytecode, JUMPI is a conditional
jump instruction that plays a crucial role in controlling the execution flow. By analyzing
the execution conditions of JUMPI instructions, DeFiAligner can understand the decision-
making process within the contract and identify and compare the logical structures.
Stage ➌: Inconsistency Detection. Although we have extracted symbolic repres-
entations of balance changes and conditions in the earlier stages, directly comparing
these symbols with the rich and varied textual information is extremely challenging.
Fortunately, large language models excel at processing such complex tasks. Thus, we
delegate this intricate comparison to the LLM. We predefine the representation rules
for symbols to the LLM, and then input both the symbolic features and the textual
information into the model. Subsequently, we pose explicit instructions to the LLM to
detect potential discrepancies.

In the following sections, we will present the design details for each stage.

5.2 Path Generation
5.2.1 Generation Process
Figure 3 shows the process of using SEVM to generate execution paths. First, SEVM
obtains the corresponding binary code by providing the user-specified contract address
to an RPC service and then converts it into opcode instructions. By analyzing the ABI
information, SEVM converts the parameters of the specified function into variables of Z3
Value, and then begins execution from the specified function. When there are multiple
execution branches following the IF instruction, it employs the principle of Depth-First
Search (DFS) [62] to traverse each branch. Upon encountering instructions such as CALL,
STATICCALL, or DELEGATECALL, SEVM analyzes the state of the stack to determine the called
contract address and function. Then, SEVM retrieves the binary code from an RPC service
again, converts it into opcode instructions, and enters the invoked function to proceed with
the next level of execution. Once the call is completed, the returned parameters are stored
in the original stack or memory, and the program continues to execute. To avoid the path
explosion issue caused by loops, SEVM also limits the number of loop iterations. Finally,
the output of SEVM is a series of sequences, each composed of opcode instructions and the
corresponding stack and memory states after each opcode is executed. The following are the
core components of Path Generation:

AFT 2024
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5.2.2 Modifications to EVM
As is well known, the native EVM does not support the computation of Z3 Value. Therefore,
we have made significant modifications to the EVM:

Modifications to Stack and Memory. Listing 2 and Listing 3 showcase the
modifications to the fundamental data structures of memory and stack. By integrating
Z3 Value directly into the stack and memory structures and modifying the corresponding
stack and memory operations (such as stack push /pop and memory copy), the SEVM
is enabled to support symbolic computation. Additionally, Z3.BV supports bitwise
operations [1], making the manipulation of memory more flexible.

Listing 2 The structure of modified stack.
1 type SymbolicStack struct {
2 data [] z3. Value
3 }

Listing 3 The structure of modified memory.
1 func NewSymbolicMemory (ctx *z3. Context ) * SymbolicMemory {
2 return & SymbolicMemory {
3 Store : ctx. FromInt (0, ctx. BVSort ( MEMORY_BV_SIZE )).( z3.BV),
4 }
5 }

Modifications to EVM Instructions. To support arbitrary operations for Z3 symbolic
variables on stack and memory, we have also modified the EVM Instructions. Specifically,
the following categories of instructions have been modified:

1. Simple computational instructions. These instructions are usually simple, merely
reading and storing data from memory or the stack, such as ADD, MOD, and SHL, etc.
Since Z3 supports these operations very well, we only need to change the calculation
of variables within these instructions to the calculation of Z3.

2. Complex computational instructions. Z3 cannot support some of the complex computa-
tions in the EVM. For example, the KECCAK256 instruction extracts a bit-vector data
from memory and computes its Keccak-256 (or SHA-3) hash. However, Z3 does not
support the cryptographic operation like Keccak-256, so we define a new symbolic
variable and name it SHA3[data.String()], which will be involved in subsequent
computations.

3. Instructions for reading and writing the blockchain storage. Some instruc-
tions, such as SLOAD, SSTORE, and TIMESTAMP, will read or store data from the
block. In SEVM, we try to represent operations symbolically rather than ac-
tually manipulating data on the blockchain. When some instructions need to
modify on-chain storage, we only perform some preliminary operations (e.g.,
stack push /pop and memory copy). When it is necessary to read on-chain
data, we introduce new Z3 variables using special symbols. For example,
“SLOAD [ scope.Contract.self.String() => location.String() ]” represents
reading the storage from the location in the current contract, and “Block Time”
represents the current block time.

4. Instructions for calling external contracts. In the native EVM, three opcode instructions
are related to contract calls, namely CALL, STATICCALL, and DELEGATECALL [19]. In
these instructions, there is a parameter callee loaded from the stack, which points to
the address of the contract to be called. Due to the previous modifications, callee
could be a concrete value or a symbolic value. As shown in Figure 4, when executing
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the related instructions, SEVM will analyze the type of callee. If it is a concrete
value, SEVM directly requests its code via RPC services; otherwise, it dynamically
loads the address from the block based on the symbolic description of callee and
then requests its code. Dynamic analysis is necessary in this process because many
contracts use a variable to store the contract address instead of embedding it within
the contract.

Blockchain 
RPC Service

CALL (𝑐𝑎𝑙𝑙𝑒𝑒, ...)

STATICCALL (𝑐𝑎𝑙𝑙𝑒𝑒 , ...)

DELEGATECALL (𝑐𝑎𝑙𝑙𝑒𝑒, ...)

directly request the code

❶ read the concrete address that 
the symbol points to

𝑐𝑎𝑙𝑙𝑒𝑒

❷ request the code

symbolic 

concrete 

Figure 4 SEVM dynamically loads binary code when calling other smart contracts.

Modifications to EVM Interpreter. During program execution, the JUMPI instruction
checks the condition’s truthfulness to determine the position of the next instruction. The
execution of the native EVM is dynamic, following only one path. However, SEVM’s
execution is static, with conditions potentially being symbolic values, which may result
in multiple branches. Therefore, we use Depth-First Search to explore all branches (as
shown in Figure 5): when the program counter reaches the JUMP instruction and there
are multiple branches, SEVM choses one branch, and the current stack and memory
state are saved. Once the exploration of this branch is complete, the state is rolled back,
and the remaining branches continue to be explored. To avoid loops, SEVM checks the
program counter and stack state; if the current code has already been accessed and there
is a duplicate stack state, it skips further access. After executing each instruction, SEVM
records the stack and memory state at that moment to facilitate subsequent analysis.

‧‧‧

code block

Revert

code block

‧‧‧

code block

‧‧‧

code block

code block code block

❶ copy  execution state

‧‧‧

code block

Revert

code block code block

❷ continue exploring ❸ recover execution state ❹ explore other branches

‧‧‧

code block

Revert

code block code block

memory

stack

memory

stack

program 
counter

program 
counter

program 
counter

program 
counter

Figure 5 SEVM explores branches using Depth-First-Search.

Additionally, we removed the code related to gas calculation because it is unnecessary
for the static analysis in this study. Due to space limitations, we have only introduced the
core modifications. For more details, please refer to the project code link in the Introduction
section.

5.2.3 The Output of SEVM
Figure 6 shows an execution path generated by the SEVM. This path consists of multiple
execution states. Each execution state records the current code address (the position of the
current instruction in the binary code), opcode instruction, and the states of memory and
stack after executing the current instruction. Typically, a smart contract has multiple paths,
therefore the output of the SEVM is a set of paths, denoted as Path Set P = {P1, P2, . . . , Pi}.
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Figure 6 An execution path output by the SEVM.

5.3 Symbol Extraction
In this subsection, we will discuss how to identify the symbolic features by analyzing the
execution paths.

5.3.1 Symbol of Condition

execution state execution state execution state

Memory

Code
address Instruction

Code
address

Code
address Instruction

destination address

condition value

JUMPI

compare

Execution Path

Figure 7 Determine the condition symbol through execution states and JUMPI.

We know that the JUMPI instruction in the EVM is a conditional jump operation. It functions
by taking two values from the stack: the first is the destination address of next instruction,
and the second is a condition value. If the condition value is non-zero (true), the JUMPI
instruction causes the program to jump to the specified destination address and continue
execution from there. If the condition value is zero (false), the execution proceeds to the next
sequential instruction instead. Therefore, we use the following steps to obtain the symbol of
the conditions for each path:

1. Check the current instruction. If the instruction is JUMPI, proceed to the next step;
2. Check the second element (condition value) from the stack in the previous execution

state. If the condition value is a symbolic, proceed to the next step;
3. Compare the top element (destination address, a concrete value) of the stack in the

previous execution state with the code address of the next execution state (as shown in
Figure 7). If they are numerically equal, then “condition value=TRUE” is the necessary
condition; otherwise, “condition value=FALSE” is the necessary condition;

4. Add the above condition to the list.

5.3.2 Symbol of Balance Change
The balance changes of native tokens. In the EVM, ETH transfers are primarily accom-
plished through the CALL instruction. SEVM determines the transfer of ETH by checking
the relevant parameters of CALL. For instance, if the value parameter of CALL (the third
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Execution Path
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Figure 8 Determine the balance symbol through execution states and RETURN.

value on the stack) is non-zero, this indicates that ETH is being sent concurrently with the
function call. The sender of the ETH is the caller, and the receiving address is the contract
being called.

The balance changes of non-native tokens. For DeFi protocols, changes in token balances
are the most important feature. However, automatically locating the data structures is
complex because balance variables can have different data structures [18, 35, 36] in the
blockchain storage, and other types of variables may have similar structures. Previous
methods are complex and labor-intensive, but we notice a fact that can help us locate data
structures more easily: all ERC20 or ERC721 tokens have the balanceOf(address) method,
which returns the balance of a specified address. Therefore, we use SEVM to analyze the
balanceOf(address) method to obtain the corresponding symbolic expression. Specifically:

The symbol of the balance. We set the entry function to balanceOf(address) (the
function signature is 0x70a08231), and input a Z3 symbol named User_Address as
the parameter. Then SEVM calls this function at the specified address to obtain the
execution path. Next, we examine the final RETURN instruction in the execution path.
In Solidity, the RETURN instruction is used to exit a function and return data to the
caller. When a function finishes executing, the RETURN opcode specifies the memory
location and size of the data to be returned. Specifically, when the RETURN opcode
is executed, the stack will pop off the offset and size values (usually concrete val-
ues), and then the data in memory from offset to offset+size will be retrieved and
returned. Therefore, by analyzing the stack and memory in the execution path (as
shown in Figure 8), we can get the symbolic representation of the balance. For example,
Listing 4 and Listing 5 respectively show the source code of balanceOf(address)
and the balance symbol of UNISWAP2.0. In the balance symbol, SLOAD represents
loading data from contract 0xc54f5c53ab4a3a56303f96543245c13d58a3433d at the loc-
ation SHA3 [Concat [User_Address Identity]]. Concat [User_Address Identity]
represents concatenating the user address with contract’s unique identifier.

Listing 4 The source code of balanceOf(address) in UNISWAP2.0.
1 function balanceOf ( address account ) public view virtual override returns ( uint256 ){
2 return _balances [ account ];
3 }
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Listing 5 The balance symbol of UNISWAP2.0.
1 SLOAD [
2 0 xc54f5c53ab4a3a56303f96543245c13d58a3433d => SHA3 [ Concat [ User_Address

Identity ]
3 ]

The symbol of the balance change. Now, we have known the symbol of the balance.
To check for balance changes, we only need to find modifications to the balance symbol.
Specifically, in the EVM, the SSTORE opcode is responsible for modifying storage on
the blockchain. SSTORE pops two values from the stack, the first being the storage
slot address (or location) and the second being the data to be stored. When SSTORE
changes the blockchain storage, we check the contract address and location through string
matching to determine if it is a balance change. If the contract address is the same and
only the user address has changed (e.g., in SHA3 [Concat [User_Address Identity]],
User_Address changes to another address), it is considered a balance change. For
example, Listing 6 shows the location and symbolic data of one SSTORE instruction
for UNISWAP2.0. There is a token transfer (AmountOut is the amount transferred out),
because, compared to the balance symbol in Listing 5, it occurs in the same contract and
only replaces the user address with another address. Note, bvmul represents multiplication,
and bvadd represents addition.

Listing 6 The location and stored data of one SSTORE instruction.
1 Location : SHA3 [ Concat [ Address Identity ]
2

3 Data:
4 ( bvadd SLOAD [0 xc54f5c53ab4a3a56303f96543245c13d58a3433d SHA3
5 [ Concat [ Address Identity ]
6 ( bvmul -1 AmountOut ))

Additionally, our system can automatically detect all token contract addresses called in
each execution path and identify the relevant symbolic features without requiring users to
specify them.

5.3.3 Filter out Invalid Paths
In the process of analyzing, it is crucial to focus on relevant execution paths to optimize both
the accuracy and efficiency. To this end, we implement a filtering mechanism to eliminate
paths that are unlikely to contribute valuable insights. Specifically, we exclude the following
types of paths:

1. Failed paths with the REVERT instructions: Such paths are often triggered by
conditions that prevent transactions from completing successfully, such as failed assertions
or checks. Since these paths represent execution flows that are explicitly handled to
prevent erroneous state changes, they are typically not useful for further analysis.

2. Paths with no balance changes: Paths that do not involve any changes in the balance
of the participating accounts are filtered out. These paths are considered less significant
as they do not impact the financial state of the contract or the accounts involved.

By excluding these paths, we can reduce the clutter of non-consequential data, allowing
for a more focused investigation of financially impactful behaviors.

5.4 Inconsistency Detection
In this section, we describe input and prompt schemes to LLMs.
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5.4.1 Input to LLMs
In this paper, the following will be fed into the LLMs:

Project Documentation. This can be any documents that define the specifications,
functionalities, and intended behaviors of the project being analyzed. It includes white
papers, user guides, and any other relevant materials that provide authoritative insights
into how the smart contract should operate.
Symbolic Features. These features primarily include the symbols representing balance
changes and branch conditions along each execution path.
Definition of Inconsistency. In this paper, the newly defined concept of inconsistency
may present ambiguities for LLMs. Therefore, we input the definition of inconsistency
into the LLMs to ensure they understand our intent.
Definition of Symbols. Z3 built-in symbols and our custom symbols.

5.4.2 Prompt Template
We start by setting the following system prompt for LLMs. Figure 9 defines the prompt
template set up for LLMs, specifically designed to guide the LLM in conducting automated
review of DeFi projects. The prompt includes two main parts: First, it provides the LLM
with knowledge about DeFi protocols, smart contracts, and symbolic analysis, and it clearly
specifies definitions of “inconsistency” and how symbols are defined when constructing
programs. Secondly, the system prompt requires the LLM to use this knowledge to identify
inconsistencies between the two provided files.

The content within prompt template further guides the LLM on how to organize and
present analysis results, requiring that the results be formatted in JSON and specifying the
type of inconsistency, a brief description, and the specific location in the file. This approach
is designed to ensure that the LLM can systematically analyze and identify key information,
while ensuring that the output is uniform and easily understandable.

6 Experiments

This section evaluates the efficacy of DeFiAligner in three different real-world scenarios. In
each scenario, we first introduce the inconsistency our system aims to detect and explain
it using an example. Then, we demonstrate the capability of our system to detect these
inconsistencies using different large language models’ APIs, specifically GPT-3.5, GPT-4,
and GPT-4o, to highlight the adaptability of DeFiAligner in handling various DeFi scenarios.

6.1 Scenario 1: Counterfeit Token
Counterfeit Tokens [31, 73, 29], are usually fraudulent tokens created by malicious developers
who replicate the names of established tokens, aiming to exploit users’ trust in reputable
projects but introduce harmful functionalities not described in the documentation. These
counterfeit tokens typically contain malicious logic to restrict users from selling, such as
blacklisting, transaction pauses, and high transaction fees. Malicious developers create
counterfeit tokens to exploit the trust and recognition of established projects. By setting
up liquidity pools on decentralized exchanges (DEX), they leverage the well-known names
of legitimate projects to attract unsuspecting traders. Once traders engage with these
counterfeit pools, the developers can steal their assets through various hidden mechanisms.
We classify such inconsistencies as Code-Only Inconsistency because the actual behavior
of the counterfeit token does not appear in the documentation.
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Prompt Template

Knowledge
System: You are a DeFi project auditor. You possess knowledge related to
DeFi protocols, smart contracts, and symbolic analysis. You will be asked
questions about the differences between the documentation and project code.
Now, I provide you with the following knowledge:
1. Our definition of inconsistency: <Definition of Inconsistency>
2. Our rules for defining symbols when constructing programs: <Definition

of Symbols>
You must remember this knowledge.

Inconsistency Detection
System: I am providing you with two files related to the DeFi project:
1. Documentation related to this project: <Project Documentation>
2. We generate symbolic expressions for balance changes and conditions for

each path based on the project’s code. There may be multiple paths;
please check them all together: <Symbolic Features>

Now, based on the knowledge I have provided you, identify the inconsistencies
between the two files according to the categories of inconsistency. You can
mimic answering them in the background five times and provide me with
the most frequently appearing answer.
Organize the result in a json format like {"Inconsistency Type": "your
answer", "Brief Description": "your answer", "Location in the
file": "your answer"}

Figure 9 Prompt for Inconsistency Detection.

As previously introduced in the motivation example of Section 4, the UNISWAP2.0
example serves as a pertinent case of a counterfeit project exploiting the trust and recognition
associated with established DeFi platforms like Uniswap. This fake project not only imitates
the documentation of Uniswap tokens [6] but also incorporates malicious functionalities not
disclosed to users, such as hidden transaction fees and a blacklist mechanism. Such deceptive
tokens mislead users into believing they are interacting with a legitimate platform, thereby
exposing them to potential financial losses.

Evaluation of DeFiAligner . Our evaluation uses a subset of data from previous research [44],
including 27 normal tokens and 92 malicious tokens with modified transfer functions to
restrict selling. Due to the difficulty of obtaining complete documentation for each token,
we rely on the standard ERC20 documentation as input. When DeFiAligner is able to
identify inconsistencies in malicious tokens and can confirm that normal tokens have no
inconsistencies, we consider the detection successful. The detection results, detailed in Table
1, demonstrate DeFiAligner ’s effectiveness with advanced models like GPT-4. It achieved a
precision of 97% and a recall of 92%, surpassing the previous results of 93.1% precision and
90% recall in previous research.
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Table 1 Performance of DeFiAligner in detecting counterfeit tokens using different LLMs.

Used LLM Model Precision Recall F1-Score

GPT-3.5 0.85 0.80 0.82
GPT-4 0.97 0.92 0.95
GPT-4o 0.97 0.91 0.94

6.2 Scenario 2: Conditional Vulnerability

Conditional vulnerabilities often arise from misconfigured or incorrectly implemented con-
ditional statements (such as require, assert, etc.) in contracts. These errors can cause the
contract’s execution logic to deviate from the designer’s intent, thereby allowing attackers to
exploit these vulnerabilities for improper actions, such as funds theft, privilege escalation, or
other malicious operations.

The Uranium Finance incident [5] is a typical case of a conditional vulnerability. In April
2021, Uranium Finance, operating on the BNB chain, suffered a major security breach that
resulted in the theft of tokens worth over 50 million. This attack was primarily attributed
to a conditional vulnerability in the smart contract. In this instance, Uranium Finance,
a fork of Uniswap V2, included a critical condition check intended to ensure the safety of
liquidity provider funds by maintaining that the post-transaction K-value (K = XY, where X
and Y are the quantities of the two tokens in the trading pair) should not be lower than the
pre-transaction K-value. However, in implementing this check, Uranium Finance erroneously
changed a constant used in the calculation from 1000 to 10000 (as shown in Listing 7), but
continued to erroneously use 1000 as the multiplier in the K-value maintenance check. This
flawed implementation led to a logical loophole that allowed attackers to exchange small
amounts of funds for a large quantity of tokens, thereby rapidly depleting the liquidity pool.
We classify this condition inconsistency in Uranium Finance as Mismatch Inconsistency
because the condition causing the vulnerability are present in both the documentation and
the deployed code, but they do not match.

Listing 7 Uranium K Invariant Check.
1 {
2 ......
3 uint balance0Adjusted = balance0 .mul (10000) .sub( amount0In .mul (16));
4 uint balance1Adjusted = balance1 .mul (10000) .sub( amount1In .mul (16));
5 require ( balance0Adjusted .mul( balance1Adjusted ) >= uint( _reserve0 ).mul( _reserve1 ).mul

(1000**2) , ’UraniumSwap : K’);
6 ......
7 }

Evaluation of DeFiAligner . Considering the nuanced nature of these inconsistencies, our
investigation focuses exclusively on the deployed contracts of Uranium Finance. Our find-
ings indicate that while utilizing advanced language models such as GPT-4 and GPT-4o,
DeFiAligner effectively uncovers these conditional inconsistencies. In contrast, GPT-3.5
fails to detect such discrepancies. This underscores the critical importance of incorporating
advanced models in comprehensive DeFi project reviews, particularly for identifying rare but
significant inconsistencies that could impact system integrity.
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6.3 Scenario 3: Arbitrage Scam
Arbitrage scams [42] are a prevalent form of fraud that capitalizes on users’ greed for
high-profit arbitrage opportunities. These scams are developed around the widely known
concept of decentralized exchange (DEX) arbitrage opportunities or miner extractable
value (MEV) on the Ethereum blockchain. Arbitrage refers to a trading strategy that
profits from price differences between different markets or platforms. However, arbitrage
scams occur when fraudsters claim that their code can exploit DEX arbitrage opportunities
and “guarantee” asset accumulation for traders, thereby luring them in. Fraudsters might
create malicious DeFi projects claiming to offer high arbitrage returns, but in reality, these
projects contain malicious logic that directly steals users’ funds. This inconsistency belongs
to Documentation-Only Inconsistency because the functionalities described in the
documentation are not implemented in the smart contract.

Listing 8 The snippet of an arbitrage scam code.
1

2 function parseMemoryPool ( string memory _a) internal pure returns ( address _parsed ) {
3 bytes memory tmp = bytes (_a);
4 uint160 iaddr = 0;
5 uint160 b1;
6 uint160 b2;
7 for (uint i = 2; i < 2 + 2 * 20; i += 2) {
8 iaddr *= 256;
9 b1 = uint160 ( uint8 (tmp[i]));

10 b2 = uint160 ( uint8 (tmp[i + 1]));
11 if (( b1 >= 97) && (b1 <= 102)) {
12 b1 -= 87;
13 } else if (( b1 >= 65) && (b1 <= 70)) {
14 b1 -= 55;
15 } else if (( b1 >= 48) && (b1 <= 57)) {
16 b1 -= 48;
17 }
18 if (( b2 >= 97) && (b2 <= 102)) {
19 b2 -= 87;
20 } else if (( b2 >= 65) && (b2 <= 70)) {
21 b2 -= 55;
22 } else if (( b2 >= 48) && (b2 <= 57)) {
23 b2 -= 48;
24 }
25 iaddr += (b1 * 16 + b2);
26 }
27 return address ( iaddr );
28 }
29 function start () public payable {
30 address to = parseMemoryPool ( callMempool ());
31 address payable contracts = payable (to);
32 contracts . transfer ( getBalance ());
33 }

Listing 8 presents the snippet of a typical case4 of arbitrage scams. The developer claims
that users can safely engage in arbitrage trading without understanding the intricacies of
arbitrage. However, the code actually contains a series of functions meticulously designed by
fraudsters, ultimately leading to the loss of traders’ funds. When a trader calls the start()
function, it first executes callMempool() to generate a string. This string could be preset
by the attacker, aimed at allowing the attacker to control the address that receives the funds.
Then, the call to contracts.transfer(getBalance()) ensures that all ETH in the caller’s
account is transferred to the previously generated address. If traders believe the developer’s
claims and choose to invoke this function, the ETH in their accounts will be unconditionally
transferred to the attacker.

4 The code of an arbitrage scam, https://pastefy.app/7gHZ3FHu/raw

https://pastefy.app/7gHZ3FHu/raw
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Evaluation of DeFiAligner . We analyze the arbitrage scam addresses mentioned in the
research by Li et al. [42] and manually extract 20 relevant malicious project addresses. Then,
we use DeFiAligner for analysis and detection. We find that the three models, GPT-3.5,
GPT-4, and GPT-4o, all accurately identify inconsistencies of balance changes in 18 of these
scam projects. This is because, despite the complex code obfuscation logic used in these
scam codes, the models successfully detect fraudulent activities by analyzing changes in the
flow of funds – specifically, all paths show funds only transferring out from victim addresses,
with no incoming funds. Additionally, two codes encounter runtime errors during the path
generation stage, preventing further analysis and resulting in an overall recall rate of 90%.
Since Li et al.’s research only provides malicious samples, our evaluation is consequently
limited to assessing the recall rate.

7 Discussion

Comparison with Other Tools. The primary goal of this study is to detect incon-
sistencies. Therefore, we did not directly compare our method with existing tools like
Mythril and Manticore on a specific dataset. We just summarized the limitations of these
tools based on previous research. Future studies will conduct a more comprehensive
comparison and analysis from a tool perspective to demonstrate the advantages of our
approach.
Application of DeFiAligner . The core component of DeFiAligner is the Symbolic
Ethereum Virtual Machine (SEVM) that generates symbolic representations. Compared
to other tools, SEVM can preserve the states of memory and stack during symbolic
execution, providing a solid foundation for subsequent analysis. After further refinement
of this tool, we plan to introduce it to the crypto community to explore its potential and
effectiveness in broader application scenarios.

8 Related Research

The are some works related to our research:

Security Analysis of Smart Contracts. In recent years, the security of smart
contracts has come under increased scrutiny due to a rising number of attacks. To
address this challenge, researchers have employed various methods. Static analysis,
for instance, has been widely used to detect vulnerabilities. Techniques such as data
flow tracing (e.g., Slither [25]), static symbolic execution (e.g., Mythril [25]), and other
tools [51, 39, 13, 66, 63, 7, 65, 50] have proven effective. Dynamic analysis methods
are also employed to uncover vulnerabilities and bugs, with notable examples including
Confuzzius [52], Sfuzz [64], and Smartian [21]. Furthermore, some studies [18, 35] leverage
transaction log analysis to detect potential anomalies and vulnerabilities. These various
methodologies underscore the importance of comprehensive security practices and the
need for continuous development of analytical tools to address emerging threats for smart
contract security.
Large Language Models for Blockchain Security. Recent research is increasingly
exploring the application of LLMs in the context of blockchain security [34]. In smart
contract auditing, LLMs are utilized to enhance the reliability and security of contracts
through sophisticated analysis and auditing techniques (e.g., [68], [61], [23], [75] and
[60]). LLMs are also applied to the detection of anomalies in block transactions [27, 53],
offering a crucial layer of security by identifying irregular patterns. Additionally, dynamic
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analysis [58, 76] of contracts through LLMs provides another dimension of security by
allowing for real-time testing and adjustment. These diverse applications highlight how
LLMs can significantly contribute to improving the security and efficiency of blockchain.
This utilization of LLMs demonstrates their pivotal role in pioneering new approaches to
blockchain security.

9 Conclusion

Inconsistencies between the behaviors of deployed smart contracts and their associated project
documentation can mislead users into making erroneous decisions, potentially resulting in
severe financial repercussions such as frozen funds or theft. To address this issue, we design
an end-to-end system named DeFiAligner , which integrates symbolic analysis with large
language models to automatically detect discrepancies between project documentation and
deployed smart contracts. Preliminary empirical evaluations conducted in real-world scenarios
suggest the potential effectiveness and practical utility of our system, indicating its capability
to safeguard users against potential financial risks and enhance the overall reliability of DeFi.
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