
A Circuit Approach to Constructing Blockchains on
Blockchains
Ertem Nusret Tas #

Stanford University, CA, USA

David Tse #

Stanford University, CA, USA

Yifei Wang #

Stanford University, CA, USA

Abstract
Recent years have witnessed an explosion of blockchains, each with an open ledger that anyone can
read from and write to. In this multi-chain world, an important question emerges: how can we build
a more secure overlay blockchain by reading from and writing to a given set of blockchains? Drawing
an analogy with switching circuits, we approach the problem by defining two basic compositional
operations between blockchains, serial and triangular compositions, and use these operations as
building blocks to construct general overlay blockchains. Under the partially synchronous setting, we
have the following results: 1) the serial composition, between two certificate-producing blockchains,
yields an overlay blockchain that is safe if at least one of the two underlay blockchains is safe and
that is live if both of them are live; 2) the triangular composition between three blockchains, akin to
parallel composition of switching circuits, yields an overlay blockchain that is safe if all underlay
blockchains are safe and that is live if over half of them are live; 3) repeated composition of these
two basic operations can yield all possible tradeoffs of safety and liveness for an overlay blockchain
built on an arbitrary number of underlay chains. The results are also extended to the synchronous
setting.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases interchain consensus protocols, serial composition, triangular composition,
circuits

Digital Object Identifier 10.4230/LIPIcs.AFT.2024.8

Related Version Full Version: https://arxiv.org/abs/2402.00220 [44]

Funding This research was funded by a Research Hub Collaboration agreement with Input Output
Global Inc.
Ertem Nusret Tas: Supported by the Stanford Center for Blockchain Research.

Acknowledgements We thank Dionysis Zindros for several insightful discussions on this project. This
paper and the concurrent related work in which blockchains were analyzed as “virtual parties” [48]
both came out of many fruitful discussions about blockchain composability among Ertem Nusret
Tas, David Tse, Yifei Wang and Dionysis Zindros, when they were all at Stanford University.

1 Introduction

1.1 Background
Bitcoin, invented by Nakamoto in 2008 [32], is the first blockchain with a public ledger, which
anybody can read from and write arbitrary data. Since then, there has been a proliferation
of such blockchains. Each of them is a consensus protocol run by its own set of validators.
Together, these blockchains form a multi-chain world, communicating with each other through
bridging protocols which read from and write to the blockchains.

The authors are listed alphabetically.

© Ertem Nusret Tas, David Tse, and Yifei Wang;
licensed under Creative Commons License CC-BY 4.0

6th Conference on Advances in Financial Technologies (AFT 2024).
Editors: Rainer Böhme and Lucianna Kiffer; Article No. 8; pp. 8:1–8:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nusret@stanford.edu
https://orcid.org/0000-0001-6061-9700
mailto:dntse@stanford.edu
https://orcid.org/0000-0003-1460-5900
mailto:wangyf18@stanford.edu
https://orcid.org/0000-0002-0364-0893
https://doi.org/10.4230/LIPIcs.AFT.2024.8
https://arxiv.org/abs/2402.00220
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 A Circuit Approach to Constructing Blockchains on Blockchains

As a consensus protocol, a fundamental property of a blockchain is its security: a
blockchain is secure if the ledger it provides is safe and live. The security is supported by
the blockchain’s set of validators. In a multi-chain world, a natural question arises: given
a set of existing blockchains, how to build a more secure protocol, an overlay blockchain,
by only reading from and writing to the ledgers of the individual underlay blockchains? In
other words, how to build a blockchain on blockchains?

This problem has received attention recently, and there have been two main approaches to
this problem in the literature. The first approach is interchain timestamping. In the context
of two blockchains, data on one blockchain is timestamped to another blockchain, and a more
secure ledger is obtained by reading the ledger of the first chain using the timestamps on the
second chain to resolve forks. An interchain timestamping protocol was proposed in [23] to
allow a Proof-of-Stake (PoS) chain to borrow security from Bitcoin. In that work, Bitcoin is
assumed to be secure and the problem was to determine the optimal security properties that
can be achieved by the PoS chain. A more symmetric formulation is considered in [42], where
none of the individual chains is assumed to be secure. Moreover, the interchain timetamping
protocol is extended to more than 2 chains, where the timestamping proceeds in a sequential
manner, where the chains are ordered and the first chain timestamps to a second chain
which timestamps to a third chain, etc. The main security result in [42] is that the overlay
blockchain is safe if at least one of the underlay blockchains is safe, and is live if all of the
underlay blockchains are live.

In the second approach, an analogy is drawn between the multiple blockchains and the
multiple validators in a blockchain, and an overlay blockchain is built by running a consensus
protocol on top of the underlay blockchains by treating them as validators. This idea
was first sketched out in Recursive Tendermint [3] in the context of the Cosmos ecosystem,
consisting of numerous application specific blockchains each running the Tendermint consensus
protocol [12]. Recently, this idea was made more precise and concrete by Trustboost [41],
where the validator role of each underlay blockchain is instantiated by a specialized smart
contract. These simulated validators send messages between the underlay blockchains via
a cross-chain communication protocol (CCC) to implement a variant [9] of the Hotstuff
consensus protocol [46]. The main security result in [41] is that, in a partially synchronous
network, the overlay blockchain is secure (safe and live) if more than 2/3 of the underlay
blockchains are secure.

1.2 Problem Motivation
Even though interchain timestamping and Trustboost both propose a construction of block-
chains on blockchains, their security statements are quite different in nature. First, the
conditions for safety and liveness are separate for the interchain timestamping protocol, while
they are coupled in Trustboost. Since loss of safety and loss of liveness may have different
impacts on a blockchain, separating out when safety and liveness are achieved is useful.

Second, when the safety condition of the overlay blockchain depends only on the safety of
the underlay blockchains, one can immediately infer the accountable safety [14] (also known
as the forensics property [40]) of the overlay blockchain in terms of the accountable safety of
the underlay chains. Accountable safety states that if the adversary controls a large fraction
of the validators and causes a safety violation, all protocol observers can irrefutably identify
the adversarial validators responsible for the safety violation. It is thus a strengthening
of the traditional safety guarantees of consensus protocols. When the overlay blockchain’s
safety depends only on the underlay chains’ safety, a safety violation on the overlay would
imply safety violations on (some of) the underlays. Therefore, if the underlay chains satisfy

E. N. Tas, D. Tse, and Y. Wang 8:3

accountable safety, when the overlay’s safety is violated, all protocol observers would identify
the responsible adversarial validators of the underlay chains, implying accountable safety for
the overlay blockchain.

Whereas there are protocols satisfying accountable safety [33, 40], adversarial validators
responsible for liveness violations cannot be held accountable in the same sense as accountable
safety [43]. Thus, to infer the accountable safety of an overlay blockchain, its safety should
depend only on the safety but not the liveness of the underlay blockchains. Indeed, if the
overlay blockchain loses safety due to liveness violations on the underlay blockchains, it might
not be possible to identify the responsible adversarial validators.

Finally, separating safety and liveness of the overlay blockchain and characterizing their
dependence on the safety and liveness of the underlay chains enables achieving greater
resilience than when security is based on the number of secure underlay chains, with safety
and liveness coupled. For illustration, Trustboost [41] shows security of the overlay blockchain
only when over 2/3 of the underlay chains are secure, i.e., both safe and live. Note that this
is optimal if the overlay chain’s security were to be based on the number of secure underlay
chains. However, by separating safety and liveness, we can achieve safety for the overlay
blockchain if over 2/3 of the underlay chains are safe, and liveness if over 2/3 of the underlay
chains are live, where the sets of safe and live underlay chains need not be the same. This
implies that the overlay blockchain can be secure, even when up to 2/3 of the underlay chains
are not both safe and live, i.e., secure! While this may sound puzzling, there are no hidden
tricks at play here. Indeed, any two quorums of underlay chains required for the liveness
of the overlay blockchain must intersect at an underlay chain whose safety is required for
the overlay’s safety. In contrast, using our notation, Trustboost would require both liveness
quorums to intersect with a safety quorum at over 2/3 of the underlay chains.

Interchain timestamping protocols provide an inspiration for security statements separ-
ating out safety and liveness, but they only achieve one particular tradeoff between safety
and liveness: they favor safety strongly over liveness. This is because safety of the overlay
blockchain requires only one of the underlay blockchains to be safe, while liveness of the
overlay blockchain requires all of the underlay blockchains to be live. Therefore, two natural
questions arise: 1) What are all the tradeoffs between safety and liveness which can be
achieved? 2) How can we construct overlay blockchains that can achieve all the tradeoffs?
The main contributions of this paper are to answer these two questions.

1.3 Security Theorems
Consider overlay blockchains instantiated with k underlay chains (cf. Section 3 for a formal
definition of overlay blockchains). We say a tuple (k, s, l) is achievable if one can construct
an overlay blockchain such that
a. If s or more underlay blockchains are safe, the overlay blockchain is safe.
b. If l or more underlay blockchains are live with constant latency after the global stabilization

time (GST), the overlay blockchain is live with constant latency after GST.
Going forward, when referring to the liveness of a blockchain, we mean liveness with constant
latency after GST.

We identify all achievable tuples and provide a protocol achieving them (Fig. 1).

▶ Theorem 1. Consider the partially synchronous setting. For any integers k ≥ 1, l and s

such that ⌊k/2⌋ + 1 ≤ l ≤ k and s ≥ 2(k − l) + 1, the tuple (k, s, l) is achievable.

In particular, the tuple (k, ⌈ 2k
3 ⌉, ⌈ 2k

3 ⌉) is achievable, i.e., there is an overlay blockchain that
is safe if more than 2/3 of the underlay chains are safe, and is live if more than 2/3 of the
underlay chains are live. This implies that the overlay is safe and live if more than 2/3 of the

AFT 2024

8:4 A Circuit Approach to Constructing Blockchains on Blockchains

underlay chains are safe and more than 2/3 of the underlay chains are live. Note that this is
a strictly stronger security guarantee than Trustboost, which is guaranteed to be safe and
live if more than 2/3 of the underlay chains are both safe and live; i.e., the same chains need
to be safe and live in this latter statement. Moreover, Theorem 1 includes also asymmetric
operating points where s ̸= ℓ.

The next theorem gives a matching impossibility result.

▶ Theorem 2 (Informal, Theorem 14). Consider the partially synchronous network. For any
integers k ≥ 1, l and s such that ⌊k/2⌋ + 1 ≤ l ≤ k and s < 2(k − l) + 1, no protocol can
satisfy the following properties simultaneously:
a. If s underlay blockchains are safe and all underlay blockchains are live, the overlay

blockchain is safe.
b. If l underlay blockchains are live and all underlay blockchains are safe, the overlay

blockchain is live.

The same result holds for any integers k ≥ 1 and l ≤ k/2.

Theorem 2 shows the optimality of the result in Theorem 1 in a strong sense: even if we
allow the safety or liveness of the overlay blockchain to depend on both safety and liveness
of the underlay chains (Fig. 1), the security guarantee of the overlay blockchain cannot be
improved. In other words, under partial synchrony, liveness of the underlay chains have no
effect on the safety of the overlay blockchain. Theorems 1 and 2 are proven in Sections 5.2
and 6.2 respectively.

We also characterize the security properties achievable in the synchronous network.

▶ Theorem 3 (Informal, Theorems 17 and 19). Consider the synchronous network. For any
integers k ≥ 1, l, s and b, one can construct an overlay blockchain as described below if and
only if ⌊k/2⌋ + 1 ≤ l ≤ k, s ≥ 2(k − l) + 1, and b ≥ k − l + 1:
a. If s underlay blockchains are safe, or b underlay blockchains are both safe and live, the

overlay blockchain is safe.
b. If l underlay blockchains are live, the overlay blockchain is live.

Theorem 3 shows that under synchrony, unlike partial synchrony, the overlay blockchain
has better safety guarantees when the underlay chains are both safe and live. On the other
hand, Theorem 3 implies that if we require the safety (liveness) of the overlay blockchain to
depend only on the number of safe (live) underlay chains (i.e., restrict b to be 0), we cannot
achieve any better resilience under synchrony compared to partial synchrony. Security in the
synchronous network is discussed further in Sections 7 and 8.

1.4 Construction via Blockchain Circuits
We now give insight into our methods using the example of the (k, s, l) tuples under partial
synchrony. For k = 2, the only achievable tuple in Theorem 1 is (2, 1, 2), which can be
achieved by timestamping. For k = 3, we have (3, 1, 3) and (3, 3, 2) as achievable tuples.
(3, 1, 3) can be achieved by sequential interchain timestamping across 3 chains. This is the
strongly safety favoring overlay blockchain (extremal of the tradeoff in Figure 1). (3, 3, 2)
represents a liveness-favoring overlay blockchain: it is safe if all 3 underlay blockchains are
safe, and is live if at least 2 of the 3 underlay blockchains are live. No existing construction
is known to achieve this operating point. Our solution to achieve all tuples in Theorem 1
consists of two steps and described in Sections 4 and 5:

E. N. Tas, D. Tse, and Y. Wang 8:5

10.5

1

1 unachievable

achievable

(k, k, 1 + ⌊ k
2 ⌋)

(k, 1, k)

1 − l/k

1
−

s/
k

Figure 1 Region of safety-liveness guarantee. The integer grids in the blue area consists of all
points which are achievable, while the integer points in the red area are not achievable under partial
synchrony. We highlight the two extreme achievable tuples (k, 1, k) and (k, k, 1 + ⌊ k

2 ⌋).

1. We provide a construction that achieves (3, 3, 2) by drawing an analogy to Omission-Fault
Tolerant (OFT) protocols, where validators only commit omission faults (analogous to
loss of liveness of a safe underlay blockchain) but no Byzantine faults.

2. We show that by repeatedly composing the (2, 1, 2) and (3, 3, 2) solutions, we can build
overlay blockchains that achieve any tuple in Theorem 1.

As an inspiration to our approach, we can draw an analogy to switching circuit design
in Claude E. Shannon’s masters’ thesis [39] (Table 1). In this spectacular masters’ thesis,
Shannon used serial and parallel composition of switches to create an OR and an AND gate
respectively, and then use these gates as building blocks to create more complex circuits which
can be designed using Boolean algebra. Drawing the analogy, the timestamping solution
to (2, 1, 2) can be viewed as a serial composition of two blockchains, and the OFT solution
to (3, 3, 2), called the triangular composition due to the use of three blockchains, can be
viewed as a parallel composition of three blockchains for partial synchrony (Curiously, unlike
switching circuits, no parallel composition of 2 blockchains can exist under partial synchrony,
as ruled out by Theorem 2. See Section 4.2 for more discussion.)

Our serial and parallel compositions require the composed underlay blockchains to satisfy
certain properties (e.g., hosting smart contracts) outlined in Section 4. These properties
are satisfied by blockchains that support general-purpose smart contracts (e.g., EVM in
Ethereum) and run on PBFT-style consensus protocols [16] such as Tendermint [12]. In this
context, our circuit compositions can be readily implemented by Cosmos blockchains [1] that
support CosmWasm smart contracts and run Tendermint as their consensus protocols.

1.5 Outline
Our paper is organized as follows. Related works are summarized in Section 2. We present
preliminary definitions in Section 3. We describe the serial composition for achieving the tuple
(2, 1, 2) and the triangular composition for achieving (3, 3, 2) in Section 4. Using them as gates,
we build circuit compositions achieving all possible security properties under partial synchrony

AFT 2024

8:6 A Circuit Approach to Constructing Blockchains on Blockchains

Table 1 Comparison between switching circuits and blockchain circuits. We note that the
parallel composition for blockchain circuits is more complicated than X1X2 = (S1S2, L1 +L2), which
would have been the natural analogue of the parallel composition. However, such a composition is
impossible to achieve (Section 4.2).

Switching Circuits Blockchain Circuits

Goal Computation Security
Basic components switches blockchains
Component state X ∈ {0, 1} X = (S, L) ∈ {0, 1}2

X = 1 iff switch is open S = 1 iff chain is safe
L = 1 iff chain is live

Serial composition X1 + X2 = X1 OR X2 X1 + X2 = (S1 + S2, L1L2)
Parallel composition X1X2 = X1 AND X2 X1X2X3 = (S1S2S3, L1L2 + L2L3 + L3L1)

Syntheis Boolean formulas generalized quorum systems
Completeness All truth table assignments All achievable compositions

and synchrony in Sections 5 and 7. The converse results for unachievable properties under
partial synchrony and synchrony are in Sections 6 and 8. Section 9 investigates scalability of
large circuits based on serial and triangular compositions.

2 Related Works

Timestamping. A timestamping protocol allows a consumer chain to obtain timestamps
for its blocks by checkpointing [26, 21, 23, 43, 42] them on a provider chain; so that in case
there is a fork in the consumer chain, the fork can be resolved by choosing the one with the
earlier timestamp (other uses of timestamping include reducing the latency of Nakamoto
consensus [20]). The provider chain is thus used as a timestamping server that provides
security to the consumer chain. Examples of timestamping protocols include Polygon [7]
checkpointing onto Ethereum, Stacks [8] and Pikachu [10] checkpointing to PoW Ethereum
and Babylon [43] checkpointing to Bitcoin. Authors of [42] design an interchain timestamping
protocol to achieve mesh security [5, 6], in which Cosmos zones provide and consume security
to and from each other in a mesh architecture. The protocol strongly favors safety over
liveness and cannot achieve all possible security properties.

Trustboost. Trustboost [41] proposes a family of protocols where multiple constituent
blockchains interact to produce a combined ledger with boosted trust. Each blockchain runs
a smart contract that emulates a validator of an overlay consensus protocol, Information
Theoretic HotStuff (IT-HS) [9], that outputs the ledger with boosted trust. As long as over
two-thirds of the blockchains are secure (safe and live), Trustboost satisfies security; thus
its security guarantees are implied by our circuit construction. Trustboost is implemented
using Cosmos zones as the underlay blockchains and the inter-blockchain communication
protocol (IBC) as the method of cross-chain communication; so that the emulated validators
can exchange messages. In this paper, we separate the safety/liveness conditions of the
component blockchains for achieving safety/liveness guarantees of the interchain circuit
construction. Trustboost does not make any claims when the number of chains k ≤ 3 or when
a chain loses just one of its security properties (either safety or liveness), while our blockchain
circuit approach covers all possible choices of achievable (k, s, l) tuples, especially the two
basic cases (2, 1, 2) and (3, 3, 2). Trustboost also relies on external bots/scripts to notify the
constituent blockchains about the overlay protocol’s timeouts, whereas our approach does
not use any external parties beyond the underlay blockchains.

E. N. Tas, D. Tse, and Y. Wang 8:7

As one can trade-off the safety and liveness resilience of HotStuff by tuning its quorum size,
a natural question is if a similar trade-off for (k, s, l) points can be achieved for Trustboost
by tuning the quorum size of its overlay protocol (IT-HS). However, to achieve these points,
the overlay protocol must ensure liveness as long as l blockchains are live, without requiring
their safety. This necessitates changing the overlay protocol to prioritize liveness in the
case of safety violations2. Then, a new security analysis is needed for the modified overlay
protocol so that Trustboost can continue to leverage its security. In contrast, the triangular
composition of our circuits builds on a liveness-favoring protocol as is (cf. Section 4.2).

Cross-staking. Cross-staking was proposed as a technique to enhance the security of the
Cosmos blockchains (zones) in the context of mesh security. A consumer zone allows validators
of a provider zone to stake their tokens on the consumer zone via IBC and validate the
consumer chain. However, this requires validators to run full nodes of multiple blockchains,
thus resulting in a large overhead on that of interchain protocols and our blockchain circuit
approach, where the validators of the constituent blockchains only run light clients.

Thunderella. Thunderella [37] is a SMR consensus protocol, composed of an asynchronous,
quorum-based protocol and a synchronous, longest chain based protocol. The synchronous
protocol ensures that Thunderella satisfies security, albeit with latency O(∆), at all times with
1/2 resilience under the ∆-synchronous sleepy network model [36], whereas the asynchronous
path helps achieve fast progress with latency dependent only on the actual network delay
δ, if over 3/4 of the validators are honest and awake. Thus, its goal is to support different
latency regimes under different assumptions by having the validators execute two protocols,
rather than to improve security by combining different chains in a black-box manner (cf.
interchain consensus protocols, Section 3).

Robust Combines. Our approach of combining existing underlay chains to design a more
secure overlay protocol is conceptually related to cryptographic combiners [24, 22], which
combine many instances of a cryptographic primitive to obtain a more secure candidate for
the same primitive. The output satisfies correctness and security, if these properties are
guaranteed for at least one of the original candidates. In contrast, our circuit composition
decouples safety and liveness and analyzes the dependence of the overlay protocols’ safety
and liveness separately on the same properties of the underlay chains.

3 Preliminaries

In this section, we introduce several preliminary definitions. We use [k] to represent the set
{1, 2, . . . , k}. We denote the elements within a sequence s of k non-negative integers by the
indices i ∈ [k]: s = (s1, . . . , sk). For two such sequences, we write s ≤ s′ if for all i ∈ [k],
si ≤ s′

i. Similarly, s < s′ if s ≤ s′ and there exists an index i∗ ∈ [k] such that si∗ < s′
i∗ . We

denote a permutation function on the sequences s by σ. There are two types of participants
in our model: validators and clients.

2 For instance, HotStuff must relax the liveness rule of the SafeNode function to return true as long as
the view number of the prepareQC is larger than or equal to the locked view, which is different from the
current specification in [46].

AFT 2024

8:8 A Circuit Approach to Constructing Blockchains on Blockchains

Validators and Clients. Validators take as input transactions from the environment Z
and execute a blockchain protocol (also known as total order broadcast). Their goal is to
ensure that the clients output a single sequence of transactions. Validators output consensus
messages (e.g. blocks, votes), and upon query, send these messages to the clients. After
receiving consensus messages from sufficiently many validators, each client individually
outputs a sequence of finalized transactions, called the ledger and denoted by L. Clients can
be thought of as external observers of the protocol, which can go online or offline at will.

Blocks and Chains. Transactions are batched into blocks and the blockchain protocol orders
these blocks instead of ordering transactions individually. Each block Bk at height k has the
following structure: Bk = (xk, hk), where xk is the transaction data and hk = H(Bk−1) is a
parent pointer (e.g., a hash) to another block. There is a genesis block B0 = (⊥, ⊥) that is
common knowledge. We say that B extends B′, denoted by B′ ⪯ B, if B′ is the same as
B, or can be reached from B by following the parent pointers. Each block that extends the
genesis block defines a unique chain. Two blocks B and B′ (or the chains they define) are
consistent if either B ⪯ B′ or B′ ⪯ B. Consistency is a transitive relation.

A client cl finalizes a block B at some time t if it outputs B and the chain of blocks
preceding B as its ledger at time t, i.e., if cl’s latest chain contains B for the first time at
time t. The ledger in cl’s view is determined by the order of the transactions in this chain.

A blockchain protocol is said to proceed in epochs of fixed duration if whenever the protocol
is live, a new block is confirmed in the view of any client at a rate of at most one block
every T seconds for some constant T , i.e., the protocol has bounded chain growth rate. Such
examples include Tendermint [12] and Streamlet [17], where a new block is proposed by an
epoch leader every 2∆ time, where ∆ is a protocol parameter. These protocols enable the
clients to track time by inspecting the timestamps on the blocks. PBFT-style protocols such
as PBFT [16] and HotStuff [46] can also be made to proceed in epochs of fixed duration
(despite not being so) by artificially introducing delays before the proposal are broadcast.

Adversary. We consider a computationally-bounded adversary A that can corrupt a fraction
of the validators called adversarial. The remaining ones that follow the protocol are called
honest. Adversary controls message delivery subject to the network delay.

Networking. In a partially synchronous network [18], the adversary can delay messages
arbitrarily until a global stablizaton time (GST) chosen by the adversary. After GST, the
network becomes synchronous and the adversary must deliver messages sent by an honest
validators to its recipients within ∆ time, where ∆ > 0 is a known delay bound3. The
network is called synchronous if GST is known and equal to zero.

Security. Let Lcl
t denote the ledger output by a client cl at time t. We say that a protocol

is safe if for any times t, t′ and clients cl, cl′, Lcl
t and Lcl′

t′ are consistent, and for any client cl,
Lcl

t ⪯ Lcl
t′ for all t′ ≥ t. We say that a protocol is live if there is a time tfin > 0 such that for

any transaction tx input to all honest validator at some time t, it holds that tx ∈ Lcl
t′ for

any client cl and times t′ ≥ max(GST, t) + tfin. Note that a protocol satisfying liveness also
ensures that clients keep outputting valid transactions; because clients refusing to output
invalid transactions as part of their ledgers will not output anything after the first invalid
transaction. When we talk about the ledger of a specific protocol ΠA output by a client cl at
time t, we will use the notation Lcl

A,t.

3 We assume synchronized clocks as bounded clock offset can be captured by the delay ∆, and clocks can
be synchronized using the process in [18].

E. N. Tas, D. Tse, and Y. Wang 8:9

Certificates. We adopt the definition of certificates from [30].

▶ Definition 4 (Definition 3.2 of [30]). We say that a blockchain protocol with confirmation
rule C(.) generates certificates if the following holds with probability > 1− ϵ when the protocol
is run with security parameter ϵ, under the conditions for which safety is satisfied: There do
not exist conflicting ledgers L1 and L2, a time t and sets of consensus messages M1 and M2
broadcast by time t, such that Li is a prefix of the confirmed ledger determined by C(.) on
Mi, i.e., C(Mi) for i ∈ {1, 2}.

An example of a safety condition is over 2/3 of the validators being honest (e.g., for PBFT [16]),
whereas a confirmation rule example, applied to the consensus messages, is confirming a block
if there are commit messages for it from over 2/3 of the validators. In a certificate-generating
protocol, any client cl that finalizes a ledger L can convince any other client to finalize L by
showing a subset of the consensus messages. These messages form a certificate for L.

All protocols that are safe under partial synchrony generate certificates [30]. For example,
in PBFT-style protocols [16], Tendermint [12], HotStuff [46] and Streamlet [17], clients finalize
a block upon observing a quorum of commit messages from over 2/3 of the validator set.
This quorum of commit messages on the block acts as a certificate for the block. When these
protocols are safe, there cannot be two quorums, i.e., certificates, attesting to the finality
of conflicting blocks. In contrast, Nakamoto consensus [32] does not generate certificates.
As clients confirm a chain only if they do not receive a longer chain, no set of messages by
themselves suffice to convince clients of the confirmation of a blockchain, as there might
always exist a longer but hidden chain of blocks.

Interchain Consensus Protocols. An interchain consensus protocol (interchain protocol
for short) is a blockchain protocol, called the overlay protocol, executed on top of existing
blockchain protocols, called the underlay chains. Its participants are the clients and validators
of the constituent underlay chains Πi, i ∈ [n]. All clients and validators observe all underlay
chains, but each validator is responsible for participating in the execution of one of these
blockchain protocols, which ensures scalability. Clients and honest validators of each underlay
chain run a client of every other chain, and can read from and write to the output ledgers of
the other chains. This restricted communication is captured by the notion of cross-chain
communication (CCC) [47, 41]: each underlay chain Πi, i ∈ [n], only exposes read and write
functionalities to its finalized ledger. Clients and validators of every other chain, Πj , j ̸= i,
verify the finality of Πi’s ledger via certificates (e.g., by verifying a quorum of signatures on
the finalized blocks in PBFT-style protocols [16]), whereas the internal mechanisms and the
validator set of Πi remain hidden from the interchain protocol, except as used by the CCC to
validate certificates. They write to Πi by broadcasting their transactions to all Πi validators
as input in the presence of a public-key infrastructure, or by using trustless relays that can
produce a proof of transmission by collecting replies from sufficiently many Πi validators.
Clients of the interchain protocols use only their views of the finalized ledgers of the underlay
chains to determine the overlay blockchain’s ledger.

The CCC functionality can be implemented by a trusted controller that relays data across
chains, or by committees subsampled from among the validators. A prominent CCC example
is the Inter-Blockchain Communication protocol (IBC) of Cosmos [2], where the messages are
transmitted by relayers [4] akin to controllers. However, IBC does not require the relayers
to be trusted for safety, as it allows the receiver chain’s validators to verify messages by
inspecting if they were included in the finalized sender chain blocks.

AFT 2024

8:10 A Circuit Approach to Constructing Blockchains on Blockchains

4 Protocol Primitives

We build the overlay protocols by composing simpler protocols in two different ways: serial
composition and triangular composition. In this section, we describe these compositions and
their implications for security.

4.1 Serial Composition

Algorithm 1 The algorithm used by a bootstrapping client cl to output the ledger Ls of the
serial composition Πs instantiated with two constituent blockchains ΠA and ΠB at some time t.
The algorithm takes Lcl

B,t, the finalized ΠB ledger output by cl at time t, as its input and outputs
the ledger Ls. The function GetSnapshots returns the snapshots of the ΠA ledger included in
Lcl

B,t along with their certificates. The function isCertified returns true if the input ledger is
accompanied by a valid certificate.

1: function OutputChain(Lcl
B,t)

2: snp1, . . . , snpm ← GetSnapshots(Lcl
B,t)

3: Ls ← ⊥
4: for i = 1, . . . , m do
5: if isCertified(snpi) then
6: Ls ← Clean(Ls, snpi)
7: end if
8: end for
9: return Ls

10: end function

Figure 2 Serial composition. The ΠA blocks (brown) are denoted by b1, b2, . . . and the ΠB

blocks (blue) are denoted by B1, B2, Certificates of the ΠA blocks are denoted by the medals.
In (a), both ΠA and ΠB are safe. Thus, every client observes the same ΠB ledger with certified
snapshots snp1 = (tx1, tx2) and snp2 = (tx1, tx2, tx3, tx4). Upon sanitizing the snapshots, clients
obtain Clean(snp1, snp2) = (tx1, tx2, tx3, tx4) as the Πs ledger. In (b), the ΠB ledger is not safe,
and two clients x and y observe conflicting ΠB ledgers Lx

B,t1 and Ly
B,t2

with blocks B1, B2 and
B1, B′

2 respectively. The blocks B1, B2 and B′
2 contain the certified snapshots snp1 = (tx1, tx2),

snp2 = (tx1, tx2, tx3, tx4) and snp′
2 = (tx1, tx2) respectively. Note that (tx′

3, tx′
4) is not part of

the certified snapshot snp′
2 as they are not included in a certified ΠA block. Upon sanitizing the

snapshots, clients again obtain consistent Πs ledgers Lx
B,t1 = Clean(snp1, snp2) = (tx1, tx2, tx3, tx4)

and Ly
B,t2

= Clean(snp1, snp′
2) = (tx1, tx2). In (c), the ΠA ledger is not safe, and two clients x and

y observe conflicting ΠA ledgers Lx
A,t1 and Ly

A,t2
with blocks b1, b2 and b1, b3 respectively. However,

both clients observe the same ΠB ledger with blocks B1, B2, B3 and their certified snapshots
snp1, snp2, snp3. Hence, upon sanitizing the snapshots, clients obtain the same (consistent) Πs

ledgers Lx
s,t1 = Ly

s,t2 = Clean(snp1, snp2, snp3) = (tx1, tx2, tx3, tx4, tx′
3, tx′

4).

E. N. Tas, D. Tse, and Y. Wang 8:11

We describe the safety-favoring serial composition Πs with two constituent certificate-
generating blockchain protocols, ΠA and ΠB (Fig. 2; cf. Alg. 1). The ΠA validators receive
transactions from the environment and other validators, and the clients of ΠA output a
certified ΠA ledger. Each ΠB validator acts as a client of ΠA, and consider the ΠA ledger
in its view, called a snapshot, and its certificate, as a transaction input to ΠB

4 (Fig. 2a).
At any time step t, each client cl of the serial composition (which is a client of both ΠA

and ΠB), online at time t, inspects the certified snapshots of the ΠA ledger within its ΠB

ledger. Then, cl reads the certified ΠA snapshots in the order they appear in its ΠB ledger,
copies these snapshots and finally eliminates the duplicate transactions appearing in multiple
snapshots by calling a sanitization function. The sanitization function Clean(LA, LB) takes
two ledgers LA and LB , concatenates them, eliminates the duplicate transactions that appear
in LB and keeps their first occurrence in LA (cf. [34] [42]). Finally, the client outputs the
remaining transactions as its Πs ledger (its view of the Πs ledger at that time). The serial
composition satisfies the following security properties:

▶ Theorem 5. Consider the serial composition Πs instantiated with the certificate-generating
blockchain protocols ΠA and ΠB. Then, under partial synchrony,
1. Πs satisfies safety if at least one of ΠA or ΠB is safe.
2. Πs satisfies liveness with constant latency after GST if both ΠA and ΠB are live with

constant latency after GST.
3. Πs generates certificates.
4. Πs proceeds in epochs of fixed duration if ΠA and ΠB proceed in epochs of fixed duration.

Proof of Theorem 5 is given in [44, Appendix F.1]. Proof of the statements 1 and 2 are
illustrated by Fig. 2 that covers the cases when ΠB and ΠA are not safe, yet Πs is safe.
Statements 3 and 4 are needed for further composability of the serial composition with other
serial and triangular compositions (cf. the conditions on Theorems 5 and 6). [44, Appendix B]
describes an attack against the serial composition when ΠA is not certificate-generating.

For the serial composition Πs, we require liveness only for the transactions input to all
honest ΠA validators. In general, liveness must be guaranteed only for the transactions
input to all honest validators of the underlay protocols. If validators have access to a
public-key infrastructure that identifies each other, then any transaction input to a single
honest validator of an underlay protocol can be broadcast to all validators of all underlay
protocols, and thus can be included in the ledgers.

4.2 Triangular Composition
A natural liveness-favoring analogue of the serial composition of two blockchains would be a
composition that ensures liveness if either of the two chains is live, and safety if both chains
are safe. However, no interchain protocol can satisfy these guarantees, even under synchrony.
Below, we provide the intuition behind this result (cf. Theorems 18 and 19 for details).

Consider two blockchains ΠA and ΠB that are not live, but safe. Here, safety of a protocol
(e.g., ΠA) means that different clients’ views of the ΠA ledger are consistent, yet it is possible
that the ΠA ledger output by a client conflicts with a ΠB ledger output by another client.
The protocol ΠA emulates the behavior of a live blockchain towards a client cl1, whereas
it is stalled in cl2’s view, i.e., Lcl2

A,t = ∅ for all times t. In the meanwhile, ΠB emulates

4 For instance, if ΠB is a blockchain protocol, the snapshots and their certificates will be included in the
blocks by the block proposers (cf. Section 9 for more efficient implementations).

AFT 2024

8:12 A Circuit Approach to Constructing Blockchains on Blockchains

the behavior of a live blockchain towards a different client cl2, whereas it is stalled in cl1’s
view, i.e., Lcl1

B,t = ∅ for all times t. Since the triangular composition is conjectured to be live
when either of the blockchains is live, both cl1 and cl2 output transactions based on their
observations of the ΠA and ΠB ledgers respectively (as far as cl1 is concerned, ΠA looks live,
and as far as cl2 is concerned, ΠB looks live). However, when these ΠA and ΠB ledgers are
different and conflicting, this implies a safety violation even though both ΠA and ΠB are
safe, i.e., cl1 and cl2’s ΠA (ΠB) ledgers are consistent (as ∅ is a prefix of every ledger).

Given the example above which shows the impossibility of a composition that is live if
either chain is live and safe if both are safe, we relax the properties expected of a liveness-
favoring composition in two ways: (i) the triangular composition of 3 blockchains ensures
liveness if 2 of the 3 constituent chains are live, and safety if all chains are safe, under
partial synchrony (Theorem 6), whereas (ii) the parallel composition of 2 blockchains, under
synchrony, ensures liveness if either of the constituent chains is live, and safety if both chains
are safe and live (Section 7.1, Theorem 15). Here, we focus on the triangular composition.

For inspiration towards a minimal triangular composition with these guarantees, we
consider a setting, where the protocol participants are validators rather than blockchains. We
observe that a natural analogue of a blockchain that is not live, but safe, is a validator with
omission faults. Since the triangular composition for blockchains requires the safety of all
constituent protocols for safety, its analogue for validators would tolerate only omission faults.
Thus, our triangular composition is motivated by omission fault tolerant (OFT) consensus
protocols [28, 13, 35]. Before presenting the composition, we briefly describe these OFT
protocols for validators, which we extend to the blockchain setting.

4.2.1 The OFT Protocol for Validators

The OFT protocol is a leader-based blockchain protocol that generates certificates under a
partially synchronous network. It is run by 3 validators mirroring the most basic triangular
composition. It proceeds in epochs of fixed duration 3∆. In a nutshell, it works as follows:

Each epoch v has a unique leader that proposes a block at the beginning of the epoch,
i.e., at time 3∆v. Upon observing a proposal for epoch v, validators broadcast acknowledge
messages for the proposed block at time 3∆v + ∆. Upon observing a certificate of 2 unique
acknowledge messages from epoch v for the epoch’s proposal, validators and clients finalize
the proposed block and its prefix chain. If a validator does not observe a certificate of 2
acknowledge messages for an epoch v proposal by time 3∆v +2∆, it broadcasts a leader-down
message for epoch v, where the message contains the block with the highest epoch number
among the ones it previously voted for. Leader-down messages enable the leader of the next
epoch to identify the correct block to propose on to preserve safety. A detailed protocol
description is presented in [44, Appendix D].

4.2.2 From OFT Protocol to the Triangular Composition

We next describe a triangular composition for 3 blockchains. It consists of 3 underlay
blockchain protocols, ΠA, ΠB and ΠC , run by validators and an overlay protocol, i.e., the
OFT protocol, run on top of these chains (Fig. 3). Each underlay protocol executes a smart
contract that emulates a validator of the overlay OFT protocol (cf. [44, Appendix A] for a
discussion on validator emulation). These emulated validators exchange messages via the
CCC abstraction. There is a PKI that identifies on each underlay chain the 2 other chains
emulating a validator (e.g., by means of the public keys of the other chains’ validators).

E. N. Tas, D. Tse, and Y. Wang 8:13

Figure 3 Triangular composition. An overlay OFT protocol run on top of 3 underlay blockchains.
A smart contract on each of the underlays emulates a validator of the OFT protocol and outputs a
finalized OFT ledger. The client reads the underlay chains’ ledgers and outputs the OFT ledger
finalized by a majority of the emulated validators.

Blockchains. The triangular composition requires the underlay protocols to run general-
purpose smart contracts and to proceed in epochs of fixed duration T . This is because the
overlay OFT protocol requires each emulated validator to keep track of the time passed
since it entered any given epoch. In general, it is impossible to emulate the validators of any
overlay protocol secure under partial synchrony, if the underlay protocol has no means of
keeping track of the real time (cf. [44, Appendix C]). We achieve this functionality by using
underlay protocols that proceed in epochs of fixed time duration such as Tendermint [12]
or Streamlet [17] (cf. [44, Appendix C]). However, our triangular composition can also be
instantiated with optimistically responsive protocols (cf. Section 10 for more discussion).

Using epoch numbers recorded in the underlay blocks, the smart contract tracks the time
passed since it entered any given epoch of the overlay protocol. If it entered some epoch v of
the overlay protocol at time t, it moves to epoch v + 1 at an underlay block of an underlay
epoch 3tfin/T , where tfin is the cross-chain communication latency. Here, the 3∆ epoch of
the overlay OFT protocol is replaced by a 3tfin length epoch, since the messages exchanged
by the emulated validators incur additional latency, including the finalization latency of the
underlay chains besides network delay.

Clients. We next describe how clients of the triangular composition output a ledger for the
overlay protocol using the ledgers of the underlay chains. Upon outputting a ledger LA, LB

and LC for each underlay protocol ΠA, ΠB and ΠC , at some time t, a client inspects the
execution of the smart contracts as attested by these ledgers. If the execution trace on some
ledger is invalid according to the rules of the smart contract, then the client discards the parts
of the ledger starting with the first invalid transaction recorded on it, thus turning invalid
execution into a liveness failure. For instance, sending a syntactically incorrect message is
detectable by only inspecting the messages on a ledger. In contrast, sending two acknowledge
messages for conflicting overlay blocks in the same overlay epoch might not be detected upon
inspection, since these two messages can exist in separate execution traces emulating the
same OFT validator, i.e., on conflicting ledgers, observed by different clients (safety failure).

Once the client observes the execution traces for the validators emulated on valid portions
of the ledgers LA, LB and LC , it identifies the blocks of the overlay protocol committed by
each emulated validator. It accepts and outputs an overlay block and its prefix chain if it
was committed by 2 or more emulated validators (as attested by the ledgers of 2 or more

AFT 2024

8:14 A Circuit Approach to Constructing Blockchains on Blockchains

underlay chains). If a client accepts and outputs an overlay block and its chain of height h,
it never outputs a shorter overlay chain from that point on. If the client observes multiple
conflicting LA, LB and LC ledgers when the safety of underlay chains is violated, it considers
all these ledgers, and might output conflicting overlay blocks as a result. However, this is
not a problem, as the proof of the next theorem shows that the client will continue to output
blocks and retain liveness nevertheless.

The triangular composition satisfies the following:

▶ Theorem 6. Consider the triangular composition Πt instantiated with the protocols ΠA,
ΠB and ΠC , that proceed in epochs of fixed duration. Then, under partial synchrony,
1. Πt satisfies safety if all of ΠA, ΠB and ΠC are safe.
2. Πt satisfies liveness with constant latency after GST if 2 blockchains among ΠA, ΠB and

ΠC are live after GST with constant latency and proceed in epochs of fixed duration.
3. Πt generates certificates if ΠA, ΠB and ΠC do so.
4. Πt proceeds in epochs of fixed duration.

Proof of Theorem 6 is given in [44, Appendix F.2]. Statements 1 and 2 are based on the
proof of the original OFT protocol design for validators. Statements 3 and 4 are needed
for further composability of the triangular composition with other serial and triangular
composition (cf. the conditions on Theorem 5).

5 Circuits for Partial Synchrony

In this section, we construct overlay protocols via circuit composition achieving the security
properties claimed by Theorem 1 and show optimality by proving Theorem 2. We also extend
these results to all possible overlay protocols, akin to the generalization of security properties
to quorum and fail-prone systems. Unlike the security claims for the protocol primitives, all
of the proofs below are algebraic in nature.

5.1 Extended Serial and Triangular Constructions
We first build extended serial and triangular constructions as building block toward the full
circuit composition.

▶ Lemma 7. Let Πi, i ∈ [k] be k different blockchain protocols that generate certificates. Then,
there exists a protocol, called the n-serial composition, satisfying the following properties:

it is safe if at least one of Πi, i ∈ [k] is safe.
it is live after GST with constant latency if all of Πi, i ∈ [k] are live after GST with
constant latency.
it generates certificates.
it proceeds in epochs of fixed duration if all of Πi, i ∈ [k] do so.

Lemma 7 follows directly from iteratively applying Theorem 5 on the protocols Πi, i ∈ [k].

▶ Lemma 8. For any integer f ≥ 1, let Πi, i ∈ [2f + 1], be 2f + 1 different blockchain
protocols that proceed in epochs of fixed duration. Then, there exists a protocol, called the
(2f + 1)-triangular composition, satisfying the following properties:

it is safe if all Πi, i ∈ [2f + 1] are safe.
it is live after GST with some constant latency if at least f + 1 of Πi, i ∈ [2f + 1] are live
after GST with some constant latency.
it generates certificates if all Πi, i ∈ [2f + 1] generate certificates.
it proceeds in epochs of fixed duration.

E. N. Tas, D. Tse, and Y. Wang 8:15

Note that the original triangular composition with three protocols (referred to as the
triangular composition) would be called a 3-triangular composition. Proof of Lemma 8
is presented in [44, Appendix F.6]. It constructs an f -triangular composition via strong
induction on the number f . The inductive step uses the (f − 1)-triangular composition and
the serial composition of Lemma 7, whereas the base case follows from the properties of the
3-triangular composition shown by Theorem 6.

5.2 Permutation Invariant Circuits for Partial Synchrony
We next prove Theorem 1, which characterizes the security of so-called permutation invariant
overlay protocols. This class of protocols achieves safety (or liveness) as long as any subset
of the underlay chains with a sufficient size provide the same set of security guarantees (e.g.,
any subset of 5 out of 7 underlay chains is all safe and/or all live). In this sense, these
protocols do not distinguish between the underlay chains.

Proof of Theorem 1 relies on Theorems 5 and 6. Recall that a tuple (k, s, l) was defined
to be achievable if there exists an interchain protocol with k blockchains such that if at
least s blockchains are safe, the protocol is safe, and if at least l blockchains are live, the
protocol is live. By definition, a serial composition achieves the (2, 1, 2) point (Theorem 5),
and a triangular composition achieves the (3, 3, 2) point (Theorem 6). Similarly, a (2f + 1)-
triangular composition achieves the (2f + 1, 2f + 1, f + 1) point, and there exist such
compositions for any f ≥ 1 by Lemma 8, which itself follows from Theorems 5 and 6.

For two blockchain protocols ΠA, ΠB, we denote by ΠA ⊕ ΠB the serial compositions
of these two blockchains as described in Section 4.1. Consider k protocols Π1, Π2, . . . , Πk.
We iteratively define ⊕j+1

i=1 Πi =
(

⊕j
i=1Πi

)
⊕ Πj+1 for j ∈ [k − 1], and denote a protocol

achieving the (k, 1, k) point by π(k,1,k)(Π1, . . . , Πk). and denote a protocol achieving the
(2f + 1, 2f + 1, f + 1) point by π(2f+1,2f+1,f+1)(Π1, . . . , Π2f+1).

Towards the final result, the following lemma shows that we can construct a protocol
achieving (k + m, s, l + m) point using a protocol achieving (k, s, l).

▶ Lemma 9. For any integer m ≥ 1, if (k, s, l) is achievable using π(k,s,l) then, (k+m, s, l+m)
is achievable using

π(k+m,s,l+m)({Πi}k+m
i=1) = ⊕

S⊆[k+m]
|S|=k

π(k,s,l) ({Πj}j∈S) .
(1)

Proof. We first show that π(k+m,s,l+m) defined in (1) is safe if at least s of the blockchains
are safe. There exists a subset S0 ⊆ [k + m] with |S0| = k such that at least s blockchains
among {Πj}j∈S0 are safe. This implies that π(k,s,l) ({Πj}j∈S0) is safe. As we enumerate
all subsets with size k in constructing π(k,s,l) ({Πj}j∈S0), by Lemma 7, we observe that
π(k+m,s,l+m)({Πi}k+m

i=1) is safe; as one of the blockchains in the serial composition, namely
π(k,s,l) ({Πj}j∈S0), is safe.

On the other hand, suppose that at least l + m of the blockchains are live, which implies
that at most k − l blockchains are not live. Therefore, for any arbitrary choice of size-k subset
{Πj}j∈S from {Πj}k+m

j=1 , at most k − l blockchains are not live, or equivalently, at least l

blockchains in {Πj}j∈S are live. This implies that π(k,s,l) ({Πj}j∈S) is live for all possible
choices of subset S with size k. Then, by Lemma 7, we observe that π(k+m,s,l+m)({Πi}k+m

i=1)
is live; as all of the blockchains in the serial composition are live. ◀

Finally, we present the proof of Theorem 1.

AFT 2024

8:16 A Circuit Approach to Constructing Blockchains on Blockchains

Proof of Theorem 1. By Lemma 8, there are circuit compositions achieving the (2f +1, 2f +
1, f + 1) point given copies of any two protocols achieving the (2, 1, 2) and (3, 3, 2) points
respectively, via recursive compositions of these protocols. This in turn implies that for any
given integers k, s, l such that ⌊k/2⌋ + 1 ≤ l ≤ n and s = 2(k − l) + 1 (boundary of the
achievable points on Fig. 1), the point (s, s, k − l + 1) = (2(k − l) + 1, 2(k − l) + 1, k − l + 1)
is achievable. Since s = 2(k − l) + 1 for these boundary points, we have l + s − k = k − l + 1.
Therefore, by Lemma 9, (k, s, l) = (s+(k −s), s, k − l +1+(k −s)) is achievable. This implies
that all points (k, s, l) such that ⌊k/2⌋ + 1 ≤ l ≤ n and s ≥ 2(k − l) + 1 are achievable. ◀

5.3 General Circuits for Partial Synchrony
We next present a general characterization of the security of the overlay protocol under
partial synchrony as a function of the safety and liveness of the underlay chains. Note that
a general characterization would include protocols that are not permutation invariant, i.e.,
providing different security guarantees when two subsets of the underlay chains achieve the
same set of security properties. For example, a non-permutation invariant overlay protocol
with three underlay chains Πi, i ∈ [3], might be live when the underlay chains Π1 and Π2 are
both live, but it might not be so when Π1 and Π3 are live. For such protocols, our notation
of (k, s, l) tuples fall short of characterizing the security properties. Therefore, we develop a
new model for the security of overlay protocols synthesized from k underlay chains.

5.3.1 The Model
As the security of a blockchain consists of safety and liveness, we use s, l ∈ {0, 1}k to denote
the list of predicates indicating which underlay chains are guaranteed to be safe and live.
Specifically, si = 1 if the i-th underlay chain is guaranteed to be safe, and si = 0 if the i-th
chain is not guaranteed to be safe. Then, the security properties of an overlay protocol Π can
be characterized by two sets V S , V L ⊆ 2{0,1}2k , which express the dependence of Π’s safety
and liveness on the safety and liveness of the underlay chains. Namely, (s, l) ∈ V S if the
overlay protocol Π is guaranteed to be safe when for all i such that si = 1, the i-th underlay
chain is guaranteed safety, and for all j such that lj = 1, the j-th chain is guaranteed liveness.
Similarly, (s, l) ∈ V L if the overlay protocol Π is guaranteed to be live when for all i such
that si = 1, the i-th underlay chain is guaranteed safety, and for all j such that lj = 1, the
j-th chain is guaranteed liveness. We hereafter use the (V S , V L) characterization of security
in lieu of the (k, s, l) tuples. Given these definitions, any set V S , V L for an overlay protocol
satisfies
(P1) If v ∈ V , w ≥ v, then w ∈ V .
A sequence v ∈ V is called an extreme element if there is no w ∈ V such that w < v. Let
exm(V) be the set containing all extreme elements in V . By property (P1), exm(V) uniquely
describes V , and any protocol Π can be characterized by the two sets ES , EL ⊆ 2{0,1}2k

consisting of the extreme elements in V S and V L: ES = exm(V S) and EL = exm(V L).

5.3.2 The Result
Given the model above, the security properties achievable by overlay protocols under partial
synchrony can be described as follows. For s ∈ {0, 1}n, let us define ind(s) = {i : si = 1}.

▶ Theorem 10. For any tuple (ES , EL) ⊆ 2{0,1}2k such that
1. For all (s, l) ∈ EL, (s′, l′) ∈ ES, it holds that s = l′ = 0k.
2. For all (0k, l1), (0k, l2) ∈ EL, (s, 0k) ∈ ES, it holds that ind(l1) ∩ ind(l2) ∩ ind(s) ̸= ∅.
there exists an overlay protocol characterized by a tuple dominating (ES , EL).

E. N. Tas, D. Tse, and Y. Wang 8:17

The proof is in [44, Appendix F.3] and inductively constructs the desired overlay protocol.
Intuitively, Theorem 10 states that safety (liveness) of the overlay protocol depends only on
the safety (liveness) of the underlay chains, and any two quorums of underlay chains required
for the liveness of the overlay protocol must intersect at a chain whose safety is required for
the safety of the overlay protocol. Note that Theorem 10 implies Theorem 1, as Theorem 10
characterizes security for all types of overlay protocols, including permutation-invariant ones
analyzed by Theorem 1. We opted to present Theorem 1 first for ease of understanding.

6 The Converse for Partial Synchrony

6.1 The Converse Result for Partial Synchrony
We start with the converse result that applies to all overlay protocols under partial synchrony,
showing the optimality of our security characterization in Theorem 10.

▶ Theorem 11. Let Π be an overlay blockchain protocol. Let (si, li) ∈ {0, 1}n for i ∈ [3]
satisfy (s1, l1) ∈ V L, (s2, l2) ∈ V L, (s3, l3) ∈ V S . Then, we have ind(l1)∩ind(l2)∩ind(s3) ̸= ∅.

Note that the converse exactly matches the second clause of Theorem 10.

Proof. For contradiction, suppose ind(l1) ∩ ind(l2) ∩ ind(s3) = ∅. Denote the k underlay
blockchains by Π1, . . . , Πk. There are two clients cl1, cl2. Consider the following three worlds.

World 1. All blockchains are safe. The underlay chains Πi, i ∈ ind(l1) are live, and the
others are stalled. The adversary sets GST = 0. Suppose that tx1 is input to the protocol at
time t = 0. As (s1, l1) ∈ V L, the overlay blockchain is live. At time t1 = tfin, the client cl1
outputs tx1 as its interchain ledger: Lcl1

t1
= [tx1].

World 2. All blockchains are safe. The underlay chains Πi, i ∈ ind(l2) are live, and the
others are stalled. The adversary sets GST = 0. Suppose that tx2 is input to the protocol at
time t = 0. As (s2, l2) ∈ V L, the overlay blockchain is live. At time t2 = tfin, the client cl2
outputs tx2 as its interchain ledger: Lcl2

t2
= [tx2].

World 3. All blockchains are live. The underlay chains Πi, i ∈ ind(l1) ∩ ind(l2) are not
safe, and the others, including those in s3, are safe. For simplicity, let Q = ind(l1) ∩ ind(l2).
The adversary sets GST = 2tfin and creates a network partition before GST such that client
cl1 can only communicate with the validators in Πi, i ∈ ind(l1), and client cl2 can only
communicate with the validators in Πi, i ∈ ind(l2). As a result, for client cl1, the underlay
chains Πi, i /∈ ind(l1) seem stalled until at least time 2tfin, and for client cl2, the underlay
chains Πi, i /∈ ind(l2) seem stalled until at least time 2tfin, and Suppose that tx1, tx2 are
input to the protocol at time t = 0. However, the adversary reveals tx1 only to the honest
validators in Πi for i ∈ ind(l1)/Q and tx2 only to those in Πi for i ∈ ind(l2)/Q. Moreover,
it delays any communication between the validators in Πi for i ∈ ind(l1)/Q and those in
i ∈ ind(l2)/Q until after GST.

As the chains Πi, i ∈ Q are not safe, they can simultaneously interact with cl1 and the
chains Πi, i ∈ ind(l1)/Q as in World 1 and with cl2 and the chains Πi, i ∈ ind(l2)/Q as in
World 2. To ensure this, the adversary delays any messages from the honest validators of the
chains Πi, i ∈ Q, to cl1 and cl2, except the certificates received by cl1 and cl2 in Worlds 1 and
2 respectively. As we assume Πi, i ∈ Q, are not safe, such certificates attesting to conflicting
ledgers must exist for the chains Πi, i ∈ Q. Then, client cl1 cannot distinguish World 1 and

AFT 2024

8:18 A Circuit Approach to Constructing Blockchains on Blockchains

World 3 before 2tfin, which implies that Lcl1
t1

= [tx1]. Similarly, client cl2 cannot distinguish
World 2 and World 3, which implies that Lcl2

t2
= [tx2]. However, Lcl1

t1
and Lcl2

t2
conflict with

each other, which violates the safety of the overlay protocol. This is a contradiction; as all
underlay chains are live, and those in s3 are safe. ◀

6.2 The Converse Result for Permutation Invariant Protocols under
Partial Synchrony

Before proving Theorem 2, we introduce a more comprehensive notation for permutation
invariant overlay protocols to capture the fact that the safety (or liveness) of the overlay
protocol can depend on both the safety and liveness of the underlay chains. Although
Theorem 2 shows that the liveness of the underlay chains do not help achieve better safety
properties for the overlay (and vice versa), we nevertheless need a notation that allows the
possibility of such cross-dependence between safety and liveness to argue for the absence of
this cross-dependence. Moreover, we will use the new notation for permutation invariant
overlay protocols later to describe the achievable security guarantees under synchrony, where
the safety of the overlay protocol depend on the liveness of the underlay chains.

6.2.1 The Model for Permutation Invariant Overlay Protocols
Permutation invariance means that the overlay blockchain treats the underlays identically.

▶ Definition 12 (Permutation Invariance). We say a protocol Π is permutation invariant if
the sets V S and V L both satisfy that
(P2) If v ∈ V , then σ(v) ∈ V for all permutations σ.
Here, v = (s, l), and we define σ(v) = (σ(s), σ(l)), where σ(s), σ(l) ∈ {0, 1}k, σ(s)i =
sσ(i), σ(l)i = lσ(i) ∀i ∈ [k].

By property (P2), we can create an equivalence relation “∼” over the sets in V . We say
v ∼ w, if there exists a permutation σ : [k] → [k] such that w = σ(v). The relation “∼”
defines a quotient set V/ ∼, which is the set of equivalence classes in V . Given v = (s, l) and

cs(v) := #{i : si = 1}, cl(v) := #{i : li = 1}, csl(v) := #{i : si = li = 1},

each equivalence class {σ(v)|σ : [k] → [k] is a permutation} is uniquely represented by a
tuple (cs(v), cl(v), csl(v)) ∈ N3. As the set exm(V) (for either V S or V L) containing all
extreme elements also satisfies (P2), we can also partition exm(V)/ ∼ into equivalence classes,
each represented by a tuple (ns, nl, nsl) ∈ N3. Therefore, given property (P1), the set V can
be represented by a set of tuples P = {(n(i)

s , n
(i)
l , n

(i)
sl)|i ∈ N}.

Finally, any permutation invariant protocol Π can be characterized by two sets P S , P L ∈
2N3 , representing V S and V L respectively and interpreted as follows: For any (ns, nl, nsl) ∈
P S and (ms, ml, msl) ∈ P L, we have

Π is safe if at least ns blockchains are safe, nl blockchains are live, and nsl blockchains
are safe and live.
Π is live if at least ms blockchains are safe, ml blockchains are live, and msl blockchains
are safe and live.

Let V (P) := {v|cs(v) ≥ ns, cl(v) ≥ nl, csl(v) ≥ nsl, (ns, nl, nsl) ∈ P}.
For two set pairs (P S , P L) and (P̃ S , P̃ L) characterizing permutation invariant overlay

protocols, we define the partial order (P S , P L) ⪰ (P̃ S , P̃ L) to mean that V (P S) ⊇ V (P̃ S)
and V (P L) ⊇ V (P̃ L). For v ∈ {0, 1}k, let us define ind(v) = {i : si = 1}.

E. N. Tas, D. Tse, and Y. Wang 8:19

▶ Lemma 13. (P S , P L) ⪰ (P̃ S , P̃ L) if and only if for any p̃1 ∈ P̃ S , p̃2 ∈ P̃ L, there exists
p1 ∈ P S and p2 ∈ P L such that p1 ≤ p̃1 and p2 ≤ p̃2.

Proof. It is sufficient to show that V (P) ⊇ V (P̃) if and only if for any p̃ ∈ P̃ , there exists
p ∈ P such that p ≤ p̃. Suppose that we have V (P) ⊇ V (P̃). For any p̃ = (ñs, ñl, ñsl) ∈ P̃ ,
consider ṽ ∈ {0, 1}2k such that cs(ṽ) = ñs, cl(v) = ñl, csl(v) = ñsl. Then, ṽ ∈ V (P). There
exists an extreme element v ∈ V such that v ≤ ṽ. Defining p = (cs(v), cl(v), csl(v)), we can
conclude that p ≤ p̃. Suppose that for any p̃ ∈ P̃ , there exists p ∈ P such that p ≤ p̃. For
any ṽ ∈ V (P̃), there exists p̃ = (ñs, ñl, ñsl) ∈ P̃ such that cs(ṽ) = ñs, cl(ṽ) = ñl, csl(ṽ) = ñsl.
Let p ∈ P such that p ≤ p̃. From the definition of V (P), we have ṽ ∈ V (P). ◀

6.2.2 The Result
The converse result for permutation invariant overlay protocols under partial synchrony,
Theorem 2, follows as a corollary of Theorem 11. It shows the optimality of our security
characterization in Theorem 1. Its proof is presented in [44, Appendix F.4].

▶ Theorem 14 (Theorem 2). Let Π be a permutation invariant overlay blockchain protocol
characterized by (P S , P L). Consider the tuples (ms, ml, msl) ∈ P L, (ns, nl, nsl) ∈ P S . Then,
it holds that ns ≥ 2(k − ml) + 1 and ml > k/2.

7 Circuits for Synchrony

In this section, we construct overlay protocols via circuit composition achieving the security
properties claimed by Theorem 3, and show their optimality. As the properties achievable
under synchrony are stronger than those achievable under partial synchrony, to bridge the
gap between partial synchrony and synchrony, we first introduce the parallel composition as
a new protocol primitive in addition to the serial and triangular compositions (cf. Section 4.2
for a discussion of the triangular and parallel compositions). We then state the security
result for general overlay protocols using the model in Section 5.3.1. Equipped with the
model in Section 6.2.1, we subsequently show the security properties claimed for permutation
invariant overlay protocols by Theorem 3 as a corollary of the general result. We end with a
proof of optimality for both results.

7.1 Parallel Composition
We now describe the parallel composition with two underlay chains, ΠA and ΠB (Alg. 2).
Upon getting a transaction from the environment, every honest ΠA and ΠB validator
broadcasts the transaction to every other validator.

Let Lcl
A,t, Lcl

B,t and Lcl
p,t denote the ΠA, ΠB ledgers and the ledger of the parallel overlay

protocol in the view of a client cl at time t. Consider a client cl that has been online for at
least tfin time. It obtains the parallel ledger as a function of the ΠA and ΠB ledgers. For
this purpose, cl first checks if every transaction in Lcl

A,t−tfin
appears in Lcl

B,t, and if every
transaction in Lcl

B,t−tfin
appears within Lcl

A,t (the interleaving condition). If so, it interleaves
the prefixes of the ΠA and ΠB ledgers to construct the Πp ledger:

Lcl
p,t := Interleave(Lcl

A,t[:ℓ], Lcl
B,t[:ℓ]), (2)

where ℓ := min(|Lcl
A,t−tfin

|, |Lcl
B,t−tfin

|). Interleave function applied on equal size ledgers
L1, L2 outputs a ledger Lo such that Lo[2i − 1] = L1[i] and Lo[2i] = L2[i] for all i ∈ [|L1|].

AFT 2024

8:20 A Circuit Approach to Constructing Blockchains on Blockchains

Algorithm 2 The algorithm used by a client cl, online for at least tfin time, to output the ledger
Lcl

p,t of the parallel composition Πp instantiated with two constituent blockchains ΠA and ΠB at
some time t. The algorithm takes the ledgers Lcl

A,t−tfin , Lcl
A,t, Lcl

B,t−tfin and Lcl
B,t output by cl at

time t and outputs the ledger Lcl
p,t. The function Interleave(L1, L2) with inputs of same length

returns the interleaved ledger Lo such that Lo[2i− 1] = L1[i] and Lo[2i] = L2[i] for all i ∈ [|L1|].

1: function OutputChain(Lcl
A,t−tfin , Lcl

A,t, Lcl
B,t−tfin , Lcl

B,t)
2: ℓ← min(|Lcl

A,t−tfin |, |L
cl
B,t−tfin |)

3: if Lcl
A,t−tfin ⊆ Lcl

B,t ∧ Lcl
B,t−tfin ⊆ Lcl

A,t then
4: Lcl

p,t ← Interleave(Lcl
A,t[:ℓ], Lcl

B,t[:ℓ])
5: else
6: i∗ ← argmaxi∈{A,B}|Lcl

i,t−tfin |
7: Lcl

p,t ← Interleave(Lcl
A,t[:ℓ], Lcl

B,t[:ℓ])||Lcl
i∗,t[ℓ:]

8: end if
9: return Lcl

p,t

10: end function

If the interleaving condition fails, then cl interleaves the prefixes of the two ledgers and
outputs the remainder of the longer ledger: defining i∗ = argmaxi∈{A,B}|Lcl

i,t−tfin
|, it sets

Lcl
p,t := Interleave(Lcl

A,t[:ℓ], Lcl
B,t[:ℓ])||Lcl

i∗,t[ℓ:]. (3)

The parallel composition satisfies the security properties below:

▶ Theorem 15. Consider the parallel composition Πp instantiated with the blockchain
protocols ΠA and ΠB. Then, under synchrony,
1. Πp satisfies safety if both ΠA and ΠB are safe and live.
2. Πp satisfies liveness with constant latency if either ΠA or ΠB is live with constant latency.
3. Πp generates certificates if both ΠA and ΠB do so.
4. Πt proceeds in epochs of fixed duration if ΠA and ΠB do so.

Proof of Theorem 15 is presented in [44, Appendix F.5]. It shows that if both chains
are safe and live, the interleaving condition is satisfied, ensuring the safety of the Πp ledger.
If either chain is live, then all transactions up to the length of the longer chain is output,
ensuring the liveness of the Πp ledger. Note that the parallel composition does not satisfy
accountable safety despite satisfying safety. This is not too surprising since its safety requires
both the safety and liveness of the underlay chains.

7.2 General Circuits for Synchrony
▶ Theorem 16. For any tuple (ES , EL) ⊆ 2{0,1}2k such that
1. For all (s, l) ∈ EL it holds that s = 0k,
2. For all (0k, l1), (0k, l2) ∈ EL, (s, l) ∈ ES, it holds that

a. either there are indices i ∈ ind(l1) and j ∈ ind(l2) such that (si, li, sj , lj) = (1, 1, 1, 1),
b. or ind(l1) ∩ ind(l2) ∩ ind(s) ̸= ∅,

there exists an overlay protocol characterized by a tuple dominating (ES , EL).

We present the proof of Theorem 16 in [44, Appendix F.8]. It shows achievability by
constructing a circuit very similar to that constructed by Theorem 10. Intuitively, Theorem 16
states that for the safety of the overlay protocol, either any two quorums of underlay chains
required for the liveness of the overlay protocol must both contain at least one safe and live
chain (which can be different), or these quorums must intersect at a safe chain.

E. N. Tas, D. Tse, and Y. Wang 8:21

7.3 Permutation Invariant Circuits for Synchrony
Following lemma proves the achievability guarantees claimed by Theorem 3. It uses the
notation of Section 6.2.1 and follows as a corollary of Theorem 16.

▶ Theorem 17 (Theorem 3, Achievability). If a protocol is characterized by (P S , P L) within

{({(2(k − ml) + 1, 0, 0), (0, 0, k − ml + 1)}, {(0, ml, 0)})|k/2 < ml ≤ k},

then there exists a permutation invariant overlay protocol characterized by a tuple dominating
(P S , P L) under synchrony.

8 The Converse for Synchrony

We now show the optimality of our security characterization in Theorem 3.

8.1 The Converse Result for Synchrony
We start with the converse result that applies to all overlay protocols under synchrony,
showing the optimality of our security characterization in Theorem 16.

▶ Theorem 18. Let Π be an overlay blockchain protocol. Let (si, li) ∈ {0, 1}n for i ∈ [3]
satisfy (s1, l1) ∈ V L, (s2, l2) ∈ V L, (s3, l3) ∈ V S . Then, it holds that
1. either there are indices i ∈ ind(l1) and j ∈ ind(l2) such that (si, li, sj , lj) = (1, 1, 1, 1),
2. or ind(l1) ∩ ind(l2) ∩ ind(s) ̸= ∅.

Proof of Theorem 18 is presented in [44, Appendix F.9], and relies on an indistinguishability
argument between different worlds like the proof of Theorem 11. Note that the converse
exactly matches the clause of Theorem 16.

Theorem 18 is reduced to Theorem 11 if the set of security functions are restricted to
those, where safety of the overlay protocol depends only on the safety of the underlay chains,
and the liveness of the overlay protocol depends only on the liveness of the underlay chains.
This is consistent with [40, Theorem B.1], which proves that the accountable safety-liveness
tradeoff under synchrony is the same as the safety-liveness tradeoff under partial synchrony.

8.2 The Converse Result for Permutation Invariant Protocols under
Synchrony

The converse result for permutation invariant overlay protocols under synchrony as claimed
in Theorem 3, follows as a corollary of Theorem 18. It shows the optimality of our security
characterization in Theorem 3.

▶ Theorem 19 (Theorem 3, Converse). Let Π be a permutation invariant overlay blockchain
protocol characterized by (P S , P L). Consider the tuples (ms, ml, msl) ∈ P L, (ns, nl, nsl) ∈
P S . Then, it holds that either nsl ≥ k − ml + 1 or ns ≥ 2(k − ml) + 1 and ml > k/2.

Theorem 19 follows as a corollary of Theorem 18, and its proof is in [44, Appendix F.10].
[44, Appendix E] summarizes all of the results in Sections 5, 6, 7 and 8 by identifying

all pareto-optimal protocols under partial synchrony and synchrony using the language
developed in Sections 5.3.1 and 6.2.1.

AFT 2024

8:22 A Circuit Approach to Constructing Blockchains on Blockchains

9 Efficiency

Our model of interchain consensus protocols in Section 3 allows the validators of the underlay
blockchains to read the ledgers of the other underlays. For each validator, this implies a
communication load proportional to the number of underlay chains, i.e., low scalability.
However, all of our compositions (serial, triangular and parallel) can be modified to retain
their security properties when the validators merely run light clients of the other chains. For
instance, the serial composition in Section 4.1 can be instantiated with succinct timestamps
as in [42]; so that the constituent protocols receive and order timestamps of the blocks
of the other protocols rather than snapshots of the whole ledger. Here, timestamps can
even be made less frequent for more efficiency (albeit at the expense of latency). When the
timestamps are implemented with binding hash functions, their ordering suffices to resolve
forks on the other chains and ensure safety as long as any chain is safe.

The triangular construction in Section 4.2 requires the validators of each underlay chain to
only follow a smart contract, dedicated to executing the OFT protocol, on the other chains to
react to their OFT protocol messages. This again warrants at most a light client functionality.
Finally, in the parallel construction of Section 7.1, the validators of the underlay blockchains
need not communicate at all except broadcasting the circuit-composition related transactions.
In turn, external observers (clients) are responsible for interleaving their ledgers. Therefore,
all three composition methods, and by induction, our circuit constructions can work with
underlay validators running light clients of each other’s chains. Implementation of these
constructions with light clients is left as future work.

10 Conclusion

In this work, we have analyzed the security of interchain consensus protocols under synchrony
and partial synchrony. We next outline a few open questions and future directions implied by
our work. As our serial composition requires the underlay chains to produce certificates and
the protocols secure under the sleepy network model [36] (dynamic availability [27], unsized
setting [30]) do not generate certificates [30], our results do not extend to underlay chains
secure under the (synchronous) sleepy network model (no protocol can be secure under both
partial synchrony and the sleepy network model [29]). It is thus an open question to design
a serial composition for underlay chains that do not generate certificates.

Although we have instantiated the triangular composition with underlay chains that
proceed in fixed time durations, the composition can also work with optimistically responsive
protocols. These protocols achieve latency that is O(δ), where δ is the real-time network
delay, under optimistic conditions. They can keep track of time with the help of an oracle
committee of so-called time keepers [41] that input the real time into the protocol. Another
alternative that does not require any trust in oracles is for the smart contracts on the underlay
chains to adaptively estimate time. For instance, if the contracts notice that the overlay
protocol has not made progress while the underlay protocols have, it can slow down the
underlay protocols. It is future work to formalize the details of these solutions.

Our recursive compositions of circuits could require an underlay blockchain to appear
in exponentially many sub-circuits. Our goal in this work was to show the achievability
of the properties proven for the interchain consensus protocols. For small numbers of
underlay chains, our results coupled with the optimizations in Section 9 still yield practical
constructions for the safety-favoring points. It is an open question to design more scalable
interchain consensus protocols for all points.

E. N. Tas, D. Tse, and Y. Wang 8:23

References
1 Cosmos: The Internet of Blockchains. URL: https://cosmos.network/.
2 The Inter-Blockchain Communication protocol. Website. URL: https://cosmos.network/

ibc/.
3 ICS ?: Recursive Tendermint, 2019. URL: https://github.com/cosmos/ibc/issues/547.
4 cosmos/relayer: An IBC relayer for IBC-Go. Website, 2023. URL: https://github.com/

cosmos/relayer.
5 Mesh security, 2023. URL: https://github.com/osmosis-labs/mesh-security.
6 Mesh security. Youtube, 2023. URL: https://www.youtube.com/watch?v=GjX4ejD_cRA&t=

4670s.
7 Polygon 2.0: Protocol Architecture, 2023. URL: https://polygon.technology/blog/

polygon-2-0-protocol-vision-and-architecture.
8 Stacks - A Bitcoin Layer for Smart Contracts, DeFi, NFTs, and Apps, 2023. URL: https:

//www.stacks.co.
9 Ittai Abraham and Gilad Stern. Information Theoretic HotStuff. In OPODIS, volume 184 of

LIPIcs, pages 11:1–11:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
10 Sarah Azouvi and Marko Vukolic. Pikachu: Securing pos blockchains from long-range attacks

by checkpointing into bitcoin pow using taproot. In ConsensusDay@CCS, pages 53–65. ACM,
2022.

11 Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk, Chengyu
Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a secret? In TCC (1),
volume 12550 of Lecture Notes in Computer Science, pages 260–290. Springer, 2020.

12 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus.
arXiv:1807.04938, 2018. URL: https://arxiv.org/abs/1807.04938.

13 Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Optimal primary-
backup protocols. In WDAG, volume 647 of Lecture Notes in Computer Science, pages 362–378.
Springer, 1992.

14 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv:1710.09437,
2019. URL: https://arxiv.org/abs/1710.09437.

15 Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous byzantine agreement using cryptography. J. Cryptol., 18(3):219–246,
2005.

16 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, pages
173–186. USENIX Association, 1999.

17 Benjamin Y. Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. In AFT,
pages 1–11. ACM, 2020.

18 Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988.

19 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985.

20 Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ledger combiners for fast
settlement. In TCC (1), volume 12550 of Lecture Notes in Computer Science, pages 322–352.
Springer, 2020.

21 Bela Gipp, Norman Meuschke, and Andre Gernandt. Decentralized trusted timestamping
using the crypto currency bitcoin. In Proceedings of the iConference 2015, 2015.

22 Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust combiners
for oblivious transfer and other primitives. In EUROCRYPT, volume 3494 of Lecture Notes in
Computer Science, pages 96–113. Springer, 2005.

23 Thomas Hepp, Patrick Wortner, Alexander Schönhals, and Bela Gipp. Securing physical assets
on the blockchain: Linking a novel object identification concept with distributed ledgers. In
CRYBLOCK@MobiSys, pages 60–65. ACM, 2018.

AFT 2024

https://cosmos.network/
https://cosmos.network/ibc/
https://cosmos.network/ibc/
https://github.com/cosmos/ibc/issues/547
https://github.com/cosmos/relayer
https://github.com/cosmos/relayer
https://github.com/osmosis-labs/mesh-security
https://www.youtube.com/watch?v=GjX4ejD_cRA&t=4670s
https://www.youtube.com/watch?v=GjX4ejD_cRA&t=4670s
https://polygon.technology/blog/polygon-2-0-protocol-vision-and-architecture
https://polygon.technology/blog/polygon-2-0-protocol-vision-and-architecture
https://www.stacks.co
https://www.stacks.co
https://arxiv.org/abs/1807.04938
https://arxiv.org/abs/1710.09437

8:24 A Circuit Approach to Constructing Blockchains on Blockchains

24 Amir Herzberg. On tolerant cryptographic constructions. In CT-RSA, volume 3376 of Lecture
Notes in Computer Science, pages 172–190. Springer, 2005.

25 Manuel Huber, Julian Horsch, and Sascha Wessel. Protecting suspended devices from memory
attacks. In EUROSEC, pages 10:1–10:6. ACM, 2017.

26 Dimitris Karakostas and Aggelos Kiayias. Securing proof-of-work ledgers via checkpointing.
In IEEE ICBC, pages 1–5. IEEE, 2021.

27 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In CRYPTO (1), volume 10401 of Lecture
Notes in Computer Science, pages 357–388. Springer, 2017.

28 Leslie Lamport. The part-time parliament. In Concurrency: the Works of Leslie Lamport,
pages 277–317. ACM, 2019.

29 Andrew Lewis-Pye and Tim Roughgarden. Resource pools and the cap theorem.
arXiv:2006.10698, 2020. URL: https://arxiv.org/abs/2006.10698.

30 Andrew Lewis-Pye and Tim Roughgarden. How does blockchain security dictate blockchain
implementation? In CCS, pages 1006–1019. ACM, 2021.

31 Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David M. Sommer, Arthur
Gervais, Ari Juels, and Srdjan Capkun. ROTE: rollback protection for trusted execution. In
USENIX Security Symposium, pages 1289–1306. USENIX Association, 2017.

32 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: https:
//bitcoin.org/bitcoin.pdf.

33 Joachim Neu, Ertem Nusret Tas, and David Tse. Snap-and-Chat protocols: System aspects.
arXiv:2010.10447, 2020. URL: https://arxiv.org/abs/2010.10447.

34 Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A resolution of the
availability-finality dilemma. In IEEE Symposium on Security and Privacy, pages 446–465.
IEEE, 2021.

35 Brian M. Oki and Barbara Liskov. Viewstamped replication: A general primary copy. In
PODC, pages 8–17. ACM, 1988.

36 Rafael Pass and Elaine Shi. The sleepy model of consensus. In ASIACRYPT (2), volume
10625 of Lecture Notes in Computer Science, pages 380–409. Springer, 2017.

37 Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In
EUROCRYPT (2), volume 10821 of Lecture Notes in Computer Science, pages 3–33. Springer,
2018.

38 Michael O. Rabin. Randomized byzantine generals. In FOCS, pages 403–409. IEEE Computer
Society, 1983.

39 Claude E Shannon. A symbolic analysis of relay and switching circuits. Electrical Engineering,
57(12):713–723, 1938.

40 Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod Viswanath. BFT
protocol forensics. In CCS, pages 1722–1743. ACM, 2021.

41 Peiyao Sheng, Xuechao Wang, Sreeram Kannan, Kartik Nayak, and Pramod Viswanath.
Trustboost: Boosting trust among interoperable blockchains. In CCS, pages 1571–1584. ACM,
2023.

42 Ertem Nusret Tas, Runchao Han, David Tse, and Mingchao Yu. Interchain timestamping for
mesh security. In CCS, pages 1585–1599. ACM, 2023.

43 Ertem Nusret Tas, David Tse, Fangyu Gai, Sreeram Kannan, Mohammad Ali Maddah-Ali,
and Fisher Yu. Bitcoin-enhanced proof-of-stake security: Possibilities and impossibilities. In
SP, pages 126–145. IEEE, 2023.

44 Ertem Nusret Tas, David Tse, and Yifei Wang. A circuit approach to constructing blockchains
on blockchains. arXiv:2402.00220, 2024. URL: https://arxiv.org/abs/2402.00220.

45 Wenbin Wang, Chaoshu Yang, Runyu Zhang, Shun Nie, Xianzhang Chen, and Duo Liu.
Themis: Malicious wear detection and defense for persistent memory file systems. In ICPADS,
pages 140–147. IEEE, 2020.

https://arxiv.org/abs/2006.10698
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/2010.10447
https://arxiv.org/abs/2402.00220

E. N. Tas, D. Tse, and Y. Wang 8:25

46 Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In PODC, pages 347–356. ACM, 2019.

47 Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-Kogias, Pedro
Moreno-Sanchez, Aggelos Kiayias, and William J. Knottenbelt. Sok: Communication across
distributed ledgers. In Financial Cryptography (2), volume 12675 of Lecture Notes in Computer
Science, pages 3–36. Springer, 2021.

48 Dionysis Zindros, Apostolos Tzinas, and David Tse. Rollerblade: Replicated distributed
protocol emulation on top of ledgers. IACR Cryptol. ePrint Arch., page 210, 2024.

AFT 2024

	1 Introduction
	1.1 Background
	1.2 Problem Motivation
	1.3 Security Theorems
	1.4 Construction via Blockchain Circuits
	1.5 Outline

	2 Related Works
	3 Preliminaries
	4 Protocol Primitives
	4.1 Serial Composition
	4.2 Triangular Composition
	4.2.1 The OFT Protocol for Validators
	4.2.2 From OFT Protocol to the Triangular Composition

	5 Circuits for Partial Synchrony
	5.1 Extended Serial and Triangular Constructions
	5.2 Permutation Invariant Circuits for Partial Synchrony
	5.3 General Circuits for Partial Synchrony
	5.3.1 The Model
	5.3.2 The Result

	6 The Converse for Partial Synchrony
	6.1 The Converse Result for Partial Synchrony
	6.2 The Converse Result for Permutation Invariant Protocols under Partial Synchrony
	6.2.1 The Model for Permutation Invariant Overlay Protocols
	6.2.2 The Result

	7 Circuits for Synchrony
	7.1 Parallel Composition
	7.2 General Circuits for Synchrony
	7.3 Permutation Invariant Circuits for Synchrony

	8 The Converse for Synchrony
	8.1 The Converse Result for Synchrony
	8.2 The Converse Result for Permutation Invariant Protocols under Synchrony

	9 Efficiency
	10 Conclusion

