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Preface

This volume contains 30 papers selected from 106 submissions to the Conference on Advances
in Financial Technologies (AFT ’24) held at the Oesterreichische Nationalbank (OeNB) in
Vienna, Austria, on 23–25 September 2024. This is the 6th year of the conference and the
second year that it is independently organised and published in LIPIcs. The host institutions
in Austria were the Complexity Science Hub in Vienna and the University of Innsbruck.

For the first time, this conference was co-located with the Economics of Payments XIII
conference, the primary conference for economists, central bankers, and policy researchers
to present and discuss their studies on topics related to payment, clearing and settlement
systems. The purpose of the co-location was to foster collaboration across disciplinary
boundaries and professional communities. Both conferences had an overlap day open to
participants from both communities, with keynotes by Neha Narula of the Digital Currency
Initiative at MIT and Charles M. Kahn of the University of Illinois and the Bank of Canada,
followed by a panel discussion, and culminating in an evening reception and poster session.

AFT ’24 also had an associated workshop on Scalability & Interoperability of Blockchains
(SIB), co-organized by Zeta Avarikioti and Dionysis Zindros.

The paper selection process followed the conventions in computer science. Each submission
received at least three detailed double-blind reviews by several program committee members
and external reviewers. Each accepted paper was presented via a 15-minute live presentation,
followed by a 5-minute question/answer period with the audience.

We would like to thank all Program Committee members and external reviewers for
their service in selecting the AFT program, and all authors for submitting their work for
consideration. We are also grateful to the AFT steering committee for their support and
guidance throughout the process.

We would like to acknowledge the industry sponsors whose financial support is essential
to running of AFT:

Gold level
a16z crypto
EigenLabs
Kaspa

Silver level
Ava Labs
Gnosis Pay
IC3
StarkWare

We are deeply grateful to Bernhard Haslhofer, who served as General Chair. Without his
initiative and sustained commitment, we would not have brought AFT ’24 to Vienna, let
alone held it at a central bank and in conjunction with an economics conference. We would
further like to thank all the staff at the Complexity Science Hub in Vienna who made this
event possible, especially Hannah Scholl, Anja Böck, Sonja Jöchtl, and Svetlana Abramova.
Finally, we also would like to thank Helmut Stix, Helmut Elsinger, and Martin Summer
at the OeNB for their support in co-hosting this year’s AFT edition with Economics of
Payments XIII.

Innsbruck, Austria Rainer Böhme
Madrid, Spain Lucianna Kiffer
September 2024
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Abstract
We consider the problem of secret leader election with accountability. Secret leader election protocols
counter adaptive adversaries by keeping the identities of elected leaders secret until they choose
to reveal themselves, but in existing protocols this means it is impossible to determine who was
elected leader if they fail to act. This opens the door to undetectable withholding attacks, where
leaders fail to act in order to slow the protocol or bias future elections in their favor. We formally
define accountability (in weak and strong variants) for secret leader election protocols. We present
three paradigms for adding accountability, using delay-based cryptography, enforced key revelation,
or threshold committees, all of which ensure that after some time delay the result of the election
becomes public. The paradigm can be chosen to balance trust assumptions, protocol efficiency,
and the length of the delay before leaders are revealed. Along the way, we introduce several new
cryptographic tools including re-randomizable timed commitments and timed VRFs.
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1 Introduction

In proof-of-stake (PoS) blockchains, an essential challenge is randomly choosing a participant
as the leader. The role of leaders varies by protocol, but they may perform tasks like
compiling transactions into a block to propose to the network or voting to confirm proposed
blocks. A desirable property of leader election is secrecy: nobody knows who the leader is
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until they have revealed themselves in the course of fulfilling their duty. Secrecy is important
in mitigating adaptive attacks, where an adversary may attempt to selectively corrupt (or
launch a denial-of-service attack on) a leader before they can fulfill their duty. Adaptive
attacks can be prevented in the so-called you only speak once (YOSO) [21] or erasures model,
in which elected leaders delete their signing key prior to broadcasting their election. This
ensures that when leaders become publicly known, it is already too late to corrupt them.

The first secret leader election (SLE) protocols (e.g., Algorand [23]) are probabilistic.
Each user has an equal and independent chance of being assigned as leader, meaning there is
inherently some probability of multiple leaders (or none) being elected. This undermines
determinacy and adds overhead, motivating Protocol Labs [30] to propose single secret
leader election (SSLE). Boneh et al. [8] were the first to formally define and construct SSLE
protocols, which ensure that only a single leader (or another precise number) is elected. They
proposed several constructions which have found their way to practice. Their DDH-based
scheme was later adapted into Whisk, a practical SSLE protocol designed and proposed
for use in Ethereum in EIP-7441 [22]. Other SSLE constructions have also been proposed
with varying efficiency-security tradeoffs, including protocols with stronger security notions
such as post-quantum security [10], adaptive security [12], UC security [13]; and a higher-
communication protocol that better accommodates non-uniform stake distributions [4]. As
secret leader election is necessary to attain fairness in the presence of adaptive corruptions, it
has been studied in recent blockchain constructions like Ouroboros Crypsinous (implicitly, in
the UC framework) and Fantômette (under the name of “delayed unpredictability”) [26, 2].
An even stronger notion, wherein a leader’s identity is kept private even after they publish a
block, was proposed in [20].

Withholding attacks. Unfortunately, all known secret leader election schemes have the
property that if the leader fails to perform its duty and announce itself, the other parties
have no way of learning who the absentee leader was. This may not seem problematic,
as leaders are typically rewarded for publishing blocks so there is an opportunity cost to
failing to claim leadership. However, the choice to claim leadership or withhold creates
an opportunity for elected leaders to introduce bias into the randomness used to elect
future leaders. Wahrstätter [32] showed that a similar attack is indeed profitable today for
nodes in Ethereum’s RANDAO beacon chain, a core component of its consensus protocol.1
Withholding attacks on RANDAO may be even more profitable if combined with manipulating
randomness used by application-layer protocols which rely on it as a randomness beacon.
This attack is not unique to Ethereum – in fact, Ferreira et al. [19] showed that a version
of it inherently exists for all “cryptographic self-selection protocols” in which leaders are
randomly chosen based on past values of the blockchain alone.

These attacks are troubling first because they incentivize leader absenteeism, which slows
down the protocol (undermining liveness). Even worse, they threaten fairness, as validators
with greater stake can gain a greater advantage through this strategy. Intuitively, this is
because the chance of being elected once in an epoch is linear while the chance of being
elected twice is quadratic in the stake. In the limit, these attacks create a rich-get-richer
effect, motivating large coalitions and undermining decentralization.

1 In this attack, validators withhold from contributing randomness to the beacon chain, foregoing some
contribution reward to improve future election chances. Ethereum does not currently employ secret
leader election, so the attack is detectable; however, there are proposals to do so.
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Table 1 Summary of our constructions.

Construction Section P/S Approach

SSLE + RRTC 4.1 Single Delay-based. Users generate their key material as time-
lock puzzle outputs and publish the corresponding inputs.

Timed weak
VRFs 4.2 Probabilistic

Delay-based. Uses a new primitive called a timed VRF,
where anyone (even without the secret key) can evaluate
the VRF using a slow function.

Financial
punishment 5.1 Either Incentive-based.

Indexed VRFs 5.2 Probabilistic Incentive-based. From hash functions and requires linear
precomputation.

Indexed VRFs 5.2 Probabilistic
Incentive-based. From groups of unknown order. Does
not require linear precomputation and allows all users to
work in the same group.

Indexed VRFs 5.2 Probabilistic
Incentive-based. From trapdoor permutations. Less pre-
computation but each user must maintain its own trap-
door.

SSLE +
ThrPKE 6 Single

Committee-based. Uses threshold cryptography to en-
crypt key material to a committee, which can reconstruct
this key material if it is later withheld by a leader.

Our contributions. To address the problem of withholding attacks, we propose accountable
secret leader election, in which the other validators eventually learn the identity of a negligent
leader. Of course, it is critical that they do not learn the leader’s identity too early, to
maintain secrecy. We define both strong accountability (in which a withholding leader is
identified precisely) and weak accountability, in which all participants who deviate from the
protocol are identified (although we may not know which of them was the elected leader).

We then propose concrete constructions for both single and probabilistic SLE, summarized
in Table 1. Our constructions fit into three distinct approaches:
1. Timed Accountability (delay-based). Any party can evaluate a delay function (e.g.,

verifiable delay function) to learn the leader’s identity after some delay. The time delay
of the slow function ensures that no party can learn a leader’s identity until after its slot
to perform its duty has passed, even with a dishonest majority.

2. Key-Reveal Accountability (incentive-based). A validator must reveal its identity in
all past elections in order to either claim leadership or unstake. This approach is simple,
but only gives weak accountability and relies on economic incentives.

3. Threshold Accountability (committee-based). A quorum of validators exceeding some
threshold can work together to reconstruct the identity of a past leader. This approach
relies on an honest majority of validators, as a malicious majority coalition could learn
the identity of upcoming leaders prematurely.

In building these schemes, we identify and construct new cryptographic primitives. We
define and construct re-randomizable timed commitments, used for single secret leader
election, and timed VRFs, used for Algorand-style secret leader election. We also propose
novel constructions of indexed VRFs, which were proposed by [17] with applications to
Algorand-style secret leader election.

2 Preliminaries

We use λ to denote the security parameter, and poly(λ) and negl(λ) to denote polynomial
and negligible functions of λ, respectively. We use $←− (or $−→) to denote the output of a
randomized algorithm, or sampling uniformly at random from a range. We assume all
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adversaries are limited to running in probabilistic polynomial time (PPT) in the security
parameter λ; some adversaries are further limited to running in σ(t) steps on at most p(t)
parallel processors where noted. We let [k] denote the set {1, . . . , k}, and we use (a, b) to
denote the set of integers x such that a < x < b. We use v to denote a vector (v1, . . . , vn),
and write v[i] for the ith component of v.

Our schemes use a number of standard cryptographic primitives, including time-lock
puzzles, threshold public-key encryption, verifiable delay functions (VDFs), and non-
interactive zero-knowledge proofs. We describe the syntax and properties of these primitives
in the full version.

3 A Taxonomy of Leader Election Protocols

Different leader election protocols may offer different properties:
Public vs. secret. In public leader elections, all participants learn the identity of the elected

leader at once. This can be achieved by running any distributed randomness protocol [14,
25] and using the output to select a random leader. In this work we are only concerned
with secret leader election. In secret leader election, by contrast, participants do not
know who the elected leader(s) is/are until they reveal themselves. Secrecy helps prevent
adaptive attacks, such as targeted corruption or denial-of-service attacks against upcoming
leaders.

Number of leaders. One might want the protocol to elect just a single leader or a committee
of k leaders. If used to elect a block proposer, one leader is typically desired.

Single vs. probabilistic number of leaders. Somewhat confusingly, a single leader election
protocol always elects the same number of leaders, which may be one or a committee of
size k. Boneh et al. [8] considered the case of electing a single leader with no variance,
hence the name “single,” even though they noted that their techniques naturally extend
naturally to electing a larger committee. Probabilistic leader election protocols will elect
k leaders on average but might elect more or fewer due to the randomness of the protocol.
While single leader election is preferable, it is challenging to guarantee when combined
with secrecy.

Weighting. Unweighted leader election protocols give each participant the same probability
of being elected. Weighted protocols give different participants different probabilities of
election, for example, proportional to their stake in a PoS setting.

In this paper, we only consider secret election protocols where each participant should
be elected with equal probability. We consider both protocols where a single leader must
always be elected (Single Secret Leader Election) and protocols where the number of leaders
to be elected varies randomly (Probabilistic Secret Leader Election). All of our protocols
generalize to electing a committee of any size.

Below, we recall the definition of Single Secret Leader Election from [8]. We modify the
syntax slightly to make it accountable; in particular, we modify Register to take as input a
list L of all users’ registrations thus far and output a list L′ with the new user’s registration
appended. Consequently, we also modify Register to take this list as input. We also combine
Elect1 and Elect2 into a single protocol for ease of presentation, as [8] notes can be done for
the shuffle-based protocol we build off of. We note that this syntax does not require leader
uniqueness and encompasses some Probabilistic Secret Leader Election protocols as well;
thus, we define it here as simply Secret Leader Election.
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▶ Definition 1 (Secret Leader Election [8]). A secret leader election (SLE) protocol is a tuple
of PPT algorithms and protocols SLE = (SLE.Setup, SLE.Register, SLE.Elect, SLE.Verify)
SLE.Setup(λ, ℓ, N) → pp, sk1, . . . , skN , st0 is an algorithm that takes in the number of

parties N and an optional lower bound ℓ on the number of required participants in each
election, and outputs public parameters and secret keys for all parties.

SLE.Register(i, pp, st, L) → st′, L′ is a protocol run by all parties. It takes as input the
index i of the registering party, the public parameters pp, the current state st, and the
registration list L. It outputs an updated state st′ and an updated registration list L′. The
registering party i receives a nonce ki.

SLE.Elect(pp, st, R, i, ki, ski) → 1/0, π/⊥ is an algorithm run by each party i to determ-
ine if they won the election. R is a randomness beacon value, ki is the user’s nonce, and
ski is the user’s secret key. If user i was elected, outputs (1, π) where π is a proof that
they won. Otherwise, it outputs (0,⊥).

SLE.Verify(i, pp, st, R, πi) → 1/0 is an algorithm run by each party to verify that user i

with proof πi indeed won the election at state st with randomness R.

Informally, an SLE protocol must be unpredictable in that an adversary controlling some
subset of the parties cannot predict with non-negligible advantage which honest party was
elected (in the event that an honest party is elected).

3.1 Single Secret Leader Election
Single secret leader election (SSLE) follows the syntax defined in Definition 1 and must
satisfy uniqueness, fairness, and unpredictability as defined first in [8]. Uniqueness ensures
that only a single party can be accepted as winner of each election. Fairness ensures that
an adversary corrupting c out of N parties can win the election with probability at most
c
N . Unpredictability ensures that the identity of the winner cannot be predicted before they
reveal themselves.

Boneh et al. [8] defined these properties in terms of security games, where an adversary and
challenger engage in the SSLE protocol. The adversary controls the corrupted participants,
and the challenger controls the honest participants. The adversary can request that certain
honest parties register for elections, and it can specify the inputs itself for corrupted parties
to register.

Catalano et al. [12] identified a shortcoming in these definitions, which they subsequently
fixed in [13]. We apply their fix and provide these modified definitions below. We defer
further discussion of this modification to the full version. There, we prove that for a natural
class of protocols, security under the original definitions of [8] implies security under the
more stringent definitions of [13].

When we say that an SSLE protocol is secure, we mean that is is fair, unpredictable, and
unique under the modified definitions below.

▶ Definition 2 (Uniqueness [8, 13]). Let UNIQUE[A, λ, ℓ, N ] denote the uniqueness experiment
with security parameter λ, played by an adversary A and a challenger C as follows:
Setup phase. A picks a number c < N as well as a set of indices M ⊊ [N ], |M | = c of

users to corrupt. The challenger C runs pp, sk1, . . . , skN , st0 ← SSLE.Setup(λ, ℓ, N) and
gives A the parameters pp, state st0, and secrets ski for i ∈M .

Elections phase. Adversary A can choose any set of users to register for elections and for
any number of elections to occur, where A plays the role of users Ui for i ∈M and C plays
the role of the rest of the users. The challenger C also generates the election randomness
R ∈ R. To register a (corrupted or uncorrupted) user, A sends the index i of the user
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to C, and C and A together run the protocol Register(i, pp, st, L) to update the state to
st′ and the list to L′. If the Register protocol aborts, the game immediately ends with
output 1.
Each election begins with C generating (bi, πi) ← SSLE.Elect(pp, st′, R, i, ski) for each
uncorrupted user that has registered for the election. For each uncorrupted user i that has
not registered for that election, it sets (bi, πi) = (0,⊥). Finally, C sends (bj , πj) for each
uncorrupted user to A.

Output phase. For each election in the elections phase, A outputs values (bi, πi) for each
i ∈M . The experiment outputs 0 if for each election with randomness R ∈ R and state
st, there is at most one user Ui∗ (either corrupted or uncorrupted) who outputs bi∗ = 1
and πi∗ such that Verify(i∗, pp, st, R, πi∗) = 1. Otherwise the experiment outputs 1.
We say an SSLE scheme is unique if no PPT adversary A can win the uniqueness game
except with negligible probability. That is, for all PPT A and for any ℓ < N the quantity

Pr [UNIQUE[A, λ, ℓ, N ] = 1] ≤ negl(λ).

If uniqueness only holds so long as there are at least t uncorrupted users participating in
each election, we say that the protocol is t-threshold unique.

▶ Definition 3 (Unpredictability [8, 13]). Let UNPRED[A, λ, ℓ, N, n, c] denote the unpredict-
ability experiment with security parameter λ, played by an adversary A and a challenger C
as follows:
Setup phase. A picks a set of indices M ⊊ [N ], |M | = c of users to corrupt. The challenger
C runs pp, sk1, . . . , skN , st0 ← SSLE.Setup(λ, ℓ, N) and gives A the parameters pp, state
st0, and secrets ski for i ∈M .

Elections phase. Adversary A can choose any set of users to register for elections and for
any number of elections to occur, where A plays the role of users Ui for i ∈M and C plays
the role of the rest of the users. The challenger C also generates the election randomness
R ∈ R. To register a (corrupted or uncorrupted) user, A sends the index i of the user
to C, and C and A together run the protocol Register(i, pp, st, L) to update the state to
st′ and the list to L′. If the Register protocol aborts, the game immediately ends with
output 1.
Each election begins with C generating (bi, πi) ← SSLE.Elect(pp, st′, R, i, ski) for each
uncorrupted user that has registered for the election. For each uncorrupted user i that has
not registered for that election, it sets (bi, πi) = (0,⊥). Finally, C sends (bj , πj) for each
uncorrupted user to A.

Challenge phase. At some point after all users Uj for j ∈ [n] have registered, A indicates
that it wishes to receive a challenge, and one more election occurs. In this election,
C does not send (bj , πj) for each uncorrupted user to A. Let Ui be the winner of this
election. The game ends with A outputting an index i′ ∈ [N ]. If, for Ui elected in the
challenge phase, i ∈M , then the output of UNPRED[A, λ, ℓ, N, n, c] is set to 0. Otherwise,
UNPRED[A, λ, ℓ, N, n, c] outputs 1 iff i = i′.
We say that an SSLE scheme S is unpredictable if no PPT adversary A can win the
unpredictable game with greater than negligible advantage when the winner of the election
is uncorrupted. That is, for all PPT A, for any c ≤ n− 2, n ≤ N , and for any ℓ < N

the quantity

Pr [UNPRED[A, λ, ℓ, N, n, c] = 1|i ∈ [N ] \M ] ≤ 1
n− c

+ negl(λ).

If unpredictability only holds for c < t for some t > 0, we say that S is t-threshold
unpredictable.
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▶ Definition 4 (Fairness [8, 13]). Let FAIR[A, λ, ℓ, N, n, c] denote the uniqueness experiment
with security parameter λ, played by an adversary A and a challenger C as follows:
Setup phase. A picks a set of indices M ⊊ [N ], |M | = c of users to corrupt. The challenger
C runs pp, sk1, . . . , skN , st0 ← SSLE.Setup(λ, ℓ, N) and gives A the parameters pp, state
st0, and secrets ski for i ∈M .

Elections phase. Adversary A can choose any set of users to register for elections and for
any number of elections to occur, where A plays the role of users Ui for i ∈M and C plays
the role of the rest of the users. The challenger C also generates the election randomness
R ∈ R. To register a (corrupted or uncorrupted) user, A sends the index i of the user
to C, and C and A together run the protocol Register(i, pp, st, L) to update the state to
st′ and the list to L′. If the Register protocol aborts, the game immediately ends with
output 1.
Each election begins with C generating (bi, πi) ← SSLE.Elect(pp, st′, R, i, ski) for each
uncorrupted user that has registered for the election. For each uncorrupted user i that has
not registered for that election, it sets (bi, πi) = (0,⊥). Finally, C sends (bj , πj) for each
uncorrupted user to A.

Challenge phase. At some point after all users Uj for j ∈ [n] have registered, A indicates
that it wishes to receive a challenge, and one more election occurs. FAIR[A, λ, ℓ, N, n, c]
outputs 1 if there is no i ∈ [n] \M for which Verify(i, pp, st, R, πi) = 1 in the challenge
election.
We say that an SSLE scheme S is fair if no PPT adversary A can win the fairness game
with greater than negligible advantage. That is, if for all PPT A, n ≤ N, c < n, and for
any ℓ < N ,

|Pr [FAIR[A, λ, ℓ, N, n, c] = 1]− c/n| ≤ negl(λ).

If fairness only holds for c < t for some t > 0, we say S is t-threshold fair.

[8] notes that these definitions can be easily extended to accommodate elections picking a
fixed number of multiple leaders. This is in contrast to probabilistic leader election protocols,
where the number of elected leaders may vary randomly from election to election.

3.2 Accountability for Single Secret Leader Election
Here, we define an additional property: accountability. An accountable scheme features
a Recover protocol that informs all parties when an elected leader withholds. This allows
the protocol to impose consequences on withholding parties, whereas with standard leader
election, parties could withhold undetectably.
SSLE.Recover(pp, st, R, L, Ui) → 1/0/⊥ takes as input a state st, a random beacon out-

put R, a registration list L, and a user Ui. If the output is 1, this means that Ui could
generate a valid proof of leadership πi with respect to state st with randomness R. If the
output is 0, Ui could not generate such a proof. If the output is ⊥, Ui must have deviated
from the protocol in some way, and it is unknown whether they could prove leadership.

Both strong and weak accountability require that for any honest user, Recover outputs 1 if
the user can claim the election, and 0 otherwise. Strong accountability additionally requires
that Recover outputs 1 whenever a (possibly misbehaving) user could claim to be the winner
of the election at state st with random beacon output R. For strong accountability, Recover
never outputs ⊥.
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Weak accountability has the weaker condition Recover does not output 0 for any (possibly
misbehaving) user that could claim to win the election (i.e., that user i can produce a proof
π such that Verify(i, pp, st, R, πi) = 1). It may output either 1 or ⊥ when the winning user
misbehaves. Weak accountability is useful even in the case that the output is ⊥, as this
proves that the user in question must have misbehaved.

In our delay-based approaches, Recover is a slow non-interactive algorithm that can be
run by any individual party in time much longer than the election protocol takes to run. This
delay ensures unpredictability. In our committee-based approaches, Recover is an interactive
protocol run by the committee that should succeed as long as a threshold of them participate
honestly. In key-reveal approaches, Recover requires keys to be disclosed by participants
after some number of elections. As withholding parties may also withhold their keys, this
approach requires some incentive for revealing.

Defining Accountability

In defining accountability, we follow the style of definitions from [8] for the properties of
uniqueness, unpredictability, and fairness.

The definitions of [8] involve a game where the adversary may corrupt some subset of
the parties and run the SSLE protocol while controlling these parties and interacting with
the honest parties. We essentially reproduce this game from these previous definitions and
modify only the output phase to capture accountability, and the elections phase to apply a
fix similar to that of [13]. That is, the adversary wins the game if it causes the protocol to
abort. In the accountability game, the adversary aims to cause an election round where a
corrupted party is elected and Recover fails to recover their nonce.

▶ Definition 5 ((Strong, Weak) Accountability). We let wACCOUNT[A, λ, ℓ, N, n] and
sACCOUNT[A, λ, ℓ, N, n] denote the weak and strong accountability games played between an
adversary A and a challenger C:
Setup phase. A picks a set of indices M ⊊ [N ] of users to corrupt. C runs

pp, sk1, . . . , skN , st0 ← SSLE.Setup(λ, ℓ, N) and gives A the parameters pp, state st0,
and corrupted parties’ secrets ski for i ∈M .

Elections phase. A can choose any set of users to register for elections and for any number
of elections to occur, where A plays the role of users Ui for i ∈M and C plays the role of
the rest of the users. The challenger C also generates the election randomness R ∈ R. To
register a (corrupted or uncorrupted) user, A sends the index i of the user to C, and C
and A together run the protocol Register(i, pp, st, L) to update the state to st′ and the list
to L′. If the Register protocol aborts, the game immediately ends with output 1.
Each election begins with C generating (bi, πi) ← SSLE.Elect(pp, st′, R, i, ski) for each
uncorrupted user that has registered for the election. For each uncorrupted user i that has
not registered for that election, it sets (bi, πi) = (0,⊥). Finally, C sends (bj , πj) for each
uncorrupted user to A.

Output Phase. For each election in the elections phase, A outputs values (bi, πi) for each
i ∈M .
We say A violates correctness if it falsely blames an honest user in some way. More
precisely, it violates correctness if and only if for some election that occurred with
randomness R, state st, and registration list L at election time, there is some uncorrupted
user Ui′ such that either:
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Falsely blames an honest user for withholding: bi′ = 0 where
(bi′ , πi′)← SSLE.Elect(pp, st′, R, i′, ski′) and SSLE.Recover(pp, st′, R, L,Ui′) = 1, or

Falsely blames an honest user for other misbehavior:
SSLE.Recover(pp, st′, R, L,Ui′) = ⊥.

The strong accountability experiment outputs 1 if and only if A violates correctness, or for
some election with randomness R, state st′, and registration list at election time L, there is
a corrupted user Ui∗ who outputs bi∗ = 1 and πi∗ such that SSLE.Verify(i∗, pp, st, R, πi∗) =
1 and SSLE.Recover(pp, st, R, L,Ui∗) ̸= 1.
The weak accountability experiment outputs 1 if and only if A violates correcness,
or for some election with randomness R and state st, and registration list at elec-
tion time L, there is a corrupted user Ui∗ who outputs bi∗ = 1 and πi∗ such that
SSLE.Verify(i∗, pp, st, R, πi∗) = 1 and SSLE.Recover(pp, st, R, L,Ui∗) = 0.
We say an SSLE scheme is strongly/weakly accountable, respectively, if no PPT adversary
A can win the strong/weak accountability game except with negligible probability. That is,
for all PPT A and for any ℓ < N ,

Pr [(s/w)ACCOUNT[A, λ, ℓ, N, n] = 1] ≤ negl(λ).

If accountability only holds as long as there are at least τ uncorrupted users participating
in SSLE.Recover, we say that the scheme is τ -threshold (weakly/strongly) accountable.

3.3 Probabilistic Secret Leader Election

Recall that in probabilistic secret leader election (PSLE), the number of elected leaders is
randomly distributed. Often, this number is one in expectation, and there is a tie-breaking
procedure to agree on a single leader when the protocol elects multiple. PSLE encompasses
a large class of protocols that lack unifying definitions, and the SSLE definitions presented
above do not apply because of differing syntax and number of elected leaders. In this paper,
we focus on an approach to PSLE which we call Algorand-style PSLE, an abstraction of the
scheme used by Algorand [23].

Algorand-style PSLE. Each party holds a VRF public-secret key pair (Kpub, Kpriv). A
fresh random beacon value R is generated for each election and is available to all parties.
A party wins an election if (y, π)← VRF.Eval(Kpriv, R) and y < T , where T is a threshold
controlling the expected number of parties elected. Parties can prove they have been elected
by providing their VRF proof π, which other parties can verify using their public key. In
the event that multiple parties’ VRFs yield values under the threshold, the winner is chosen
according to some tie-breaking rule.

By pseudorandomness of the VRF, prior to the winner revealing its proof it is not possible
to tell who has won the election. Thus, if a winner never reveals their VRF output, it is
impossible to tell that they should have won. Furthermore, if there is a tie, it is impossible
to tell that the winning party withheld.

In Section 4.2, we show how to make Algorand-style PSLE accountable by using a notion
called a timed VRF that we define. This allows all other parties to evaluate VRF outputs
using a slow function (that preserves secrecy since it takes longer to evaluate than the election
takes to run).
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4 The Delay-based Approach

One approach is to replace cryptographic primitives with time-based variants. In general,
time-based cryptographic variants feature a fast computation function (requiring a secret
key) and an equivalent slow (inherently sequential) computation function which can be
computed by anybody. Timed commitments are a classic example: the original committer
can efficiently open the commitment, but any party can force open the commitment via a
slow computation.

Time-based primitives can add accountability to protocols by keeping some information
(such as the identity of a leader) secret in the short term while enabling eventual public
computation for accountability. Security relies on the assumed computational delay, without
any economic assumptions or an honest majority.2 We show two new time-based cryptographic
tools which can be used for secret leader election: re-randomizable timed commitments and
timed verifiable random functions.

4.1 Accountable SSLE from re-randomizable timed commitments
We can construct an accountable SSLE protocol by replacing the commitments from the
shuffle-based protocol of [8] with re-randomizable timed commitments (RRTCs), which we
define and construct here. An RRTCs commits to random keys in such a way that the
commitments can be re-randomized, and for a limited time period the commitments are
hiding. After this time period, anyone can open the commitment to learn the key. Our RRTC
construction combines the DDH-based commitment scheme used in [8] with any time-lock
puzzle in a natural way. We extend the definitions of re-randomizable commitments from [10]
and timed commitments from [9].

▶ Definition 6 (Re-Randomizable Timed Commitment (RRTC)). An RRTC is a tuple of
algorithms (Setup, Commit, Randomize, Test, SlowOpen) with the following syntax and proper-
ties:
Setup(λ, t) → pp: outputs public parameters pp,
Commit(pp, t) → (c, k, aux): outputs a commitment c, a key k, and auxiliary information

aux,
Randomize(pp, c) → c′: outputs a re-randomization c′ of the commitment,
Test(pp, c, k) → {true, false}: outputs true or false depending on whether k is a valid key

for the (possibly re-randomized) commitment c,
SlowOpen(pp, c, aux) → k̃: if c is an honestly formed commitment, outputs the key k̃ = k

committed to by c.

Correctness: If c is an honestly-formed (and possibly re-randomized) commitment to k,
Test(pp, c, k) = true.

Binding: It is computationally infeasible to find c, k, k′ such that Test(pp, c, k) and
Test(pp, c, k′).

Hiding for random keys: The commitment reveals nothing about k.
Honest soundness: Given an honestly-formed (and possibly honestly re-randomized) com-

mitment, SlowOpen recovers the committed key.
Re-randomizability: Randomize outputs another valid commitment to the same key.

2 A dishonest majority assumption may seem odd since many applications of leader election exist in
scenarios like consensus protocols, which require an honest supermajority. However, we note that there
may be subtle differences in the majority’s honesty, for example they might collude to learn a future
leader’s identity early but not to actively disrupt consensus.
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Unlinkability: An adversary running in sequential time at most t cannot determine if c̃ is a
re-randomization of commitment c1 (committing to k1) or of commitment c2 (committing
to k2) given that c̃ is a re-randomization of one of them.

Setup(λ, t)→ pp

TLP.pp $←− TLP.Setup(λ, t)
G, g, p

$←− GroupGen(λ)
pp← (G, g, p, TLP.pp)

Commit(pp, t)→ (c, k, aux)

x, y
$←− TLP.GenRandPuzzle(TLP.pp)

kL, kR ← H(x, y)
r

$←− Zp

c = (gr, grkL )
k ← kL||kR

aux ← x

Randomize(pp, c)→ c′

(u, v) := c

r′ $←− Zp

c′ ← (ur′
, vr′

)

Test(pp, c, k)→ {true, false}
(u, v) := c
kL||kR ← k

return (ukL
?= v)

SlowOpen(pp, c, aux)→ k̃
x← aux
k̃ ← H(x, TLP.Solve(TLP.pp, x))

Figure 1 Our re-randomizable timed commitment scheme.

Honest soundness. Our honest soundness property is a relaxation of the soundness property
defined by Boneh and Naor [9]. Soundness requires that a recipient can be convinced that
an honestly generated commitment is well-formed. In contrast, we require only that if the
commitment is honestly formed, SlowOpen recovers the key. This relaxation is sufficient
for a weak form of accountability where one is satisfied with punishing participants for
publishing malformed commitments after the fact. Furthermore, one can efficiently prove
that a puzzle failed to open correctly: Simply compute k̃ ← SlowOpen(pp, c, aux) and show
that for (u, v) = c, uk̃ ̸= v. If the commitment were well-formed, we would have uk̃ = v.

Our RRTC construction from DDH. [8] suggests the following construction of a re-
randomizable commitment based on the Decisional Diffie-Hellman (DDH) assumption. Let
G be a cyclic group of prime order p for which the (DDH) assumption holds, and let g ∈ G
be a generator for this group. Their commitment to a uniformly random key k is (gr, grk)
for a uniform r. To open a commitment (u, v) given k, one checks that uk = v. Furthermore,
this commitment can be re-randomized by drawing a uniform r′ and computing (ur′

, vr′).
We define our scheme, shown in Figure 1, to be compatible with the commitments

generated in the shuffle-based protocol of [8], which results in the slightly unnatural use
of terms kL, kR. If the above commitment is used in the SSLE protocol, two parties may
submit commitments to the same k. Therefore, kL, kR are introduced to detect when two
commitments (gr, grk), (gr′

, gr′k) have the same nonce k and prevent such a registration.
Each party reveals kiR at registration time, and in order to open their commitment ci = (u, v)
they must provide k′

i such that k′
iL, k′

iR ← H(k′
i), k′

iR = kiR, and ukiL = v. Only a party
that has revealed a matching k′

iR can claim to be leader for that commitment. Thus, if two
parties submit commitments to the same kL, the hash function ensures either that one of
them can never claim an election, or they must have the same kR. We check for duplicate
kR’s at registration time to rule out this latter case. We also note that Commit could instead
output (g, gkL), which would still be hiding and binding for random keys. However, this
would allow an adversary to distinguish between commitments that have and have not been
re-randomized, and this scheme would not achieve unlinkability as defined in [10].
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Achieving soundness using NIZKs. One could modify our scheme to satisfy the stronger
notion of soundness from [9] by requiring the committer to provide a non-interactive zero
knowledge proof π that c is a commitment to H(x, TLP.Solve(x)) for x = aux. This could
be achieved could use a generic zk-SNARK; for this, it is convenient to use a VDF as the
time-lock puzzle to avoid heavy computation in verifying its output. Designing a sound
RRTC without the use of generic SNARKs is an interesting direction for future work.

The BEHG protocol. We now briefly recall the “high-communication” variant of the
shuffle-based SSLE scheme (also known as the BEHG protocol) from Boneh et al. [8], which
we describe generically for any re-randomizable commitment scheme. In this variant, we
maintain a public list of commitments belonging to the parties in the election. When a new
user registers, they generate a nonce and corresponding commitment. They re-randomize the
commitments in the list, shuffle them, and insert their own commitment at a random location.
This new user posts a NIZK proof that they shuffled the list correctly: each commitment in
the old list appears exactly once, re-randomized, in the new list.

The algorithms for this scheme do the following. Setup creates an empty to-be-shuffled list
l, to which commitments will be added when users register; (in our modified protocol, it also
creates an empty not-to-be-shuffled list L). In Register, the registering user samples a random
key ki and splits its hash into two parts kiL, kiR ← H(ki), then computes a re-randomizable
commitment ci to kiL. It re-randomizes the commitments in l and shuffles l, then inserts ci

into l at a random location. It also provides a NIZK proof of honest shuffling. Each user
then examines the current state to get the list l and checks that the list was properly shuffled
using this proof. It also checks that none of the keys kjR are duplicated. If either of these
checks fails, the list is reverted to its most recent state and the protocol continues. Elect uses
a random beacon value R given as input to choose a random commitment (i.e. the winning
commitment) in l. If run by the user that submitted this commitment, including its key ki

as input, it outputs a proof πi that includes an opening proof for that commitment, allowing
the user to claim that election. Verify can be run by any user, and it checks if the revealed
(by Ui) key k̃ is consistent with Ui’s kiR from the registration list L and if k̃ is consistent
with the winning commitment.

A delay-based accountable SSLE scheme. Next, we’ll show that we can slightly modify
this scheme to be weakly or strongly accountable. Our scheme is described below, and further
detail is given in the full version.

The main modification is to use our RRTC instead of their original commitment scheme;
our RRTC is exactly the same as their scheme except that our key ki is chosen as the hash
of an input-output pair to a time-lock puzzle and our kiL and kiR are derived directly from
ki instead of H(ki) (as there is no need to hash twice). The weakly accountable version uses
our RRTC with honest soundness, and the strongly accountable version uses our RRTC with
the additional proof of well-formedness to achieve full soundness. We detail our modifications
below; they include a small modification to SSLE.Register and defining a Recover algorithm.

We make a small modification to SSLE.Register: when a user Ui registers, it must add its
registration to L. L is a list of auxiliary information that each party adds to when registering
that SSLE.Recover will use. L is separate from the shuffled list, and L is not shuffled or used
in the elections. To be more specific, SSLE.Register generates the commitment (c, k, aux)
using RRTC.Commit and appends (kiR, c, aux, idi) to L, where idi is a string representing its
identity. It then re-randomizes c using RRTC.Randomize to obtain (gri , grikiL) and continues
as in the original protocol from [8]. For the strongly accountable version, during Register all
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users check the proof of commitment well-formedness and reject the registration if it fails. To
claim an election for a chosen commitment (u, v), a party provides k′ = k′

L||k′
R and (x′, y′)

such that k′ = H(x′, y′), uk′
L = v, and k′

R matches the on-chain kR from that party’s initial
registration.

We define Recover(pp, st, R, L,Ui) → 1/0/⊥ for this scheme as follows. Recover first
parses st to obtain the current shuffled list of entries and uses R to choose the winning
commitment com∗. It then iterates through L (in case Ui registered multiple times). For each
entry (kiR, c, aux, idi) in L added by Ui, it computes k̃ ← SlowOpen(pp, c, aux). It checks that
Test(pp, c, k̃) = true; if not, it moves onto the next entry in L added by Ui. If it continues,
it parses k̃L||k̃R ← k̃. If Test(pp, com∗, k̃) = true, it outputs 1. If Test(pp, com∗, k̃) =
false, it continues. After it has iterated through all of L, it outputs ⊥ if it observed that
Test(pp, c, k̃) = false for any c added to L by Ui. Otherwise, it outputs 0.

▶ Theorem 7. The high-communication shuffling-based SSLE scheme from [8] is a weakly
accountable SSLE scheme when instantiated with our RRTC scheme as described above
(assuming an adversary that runs in sequential time less than t). It is a strongly accountable
SSLE scheme when we modify our RRTC scheme to require the committer to provide a NIZK
proof that the commitment was honestly generated.

The proof of this theorem is given in the full version.

Commitment expiry. A timed commitment is no longer hiding after enough time has passed
for SlowOpen to be evaluated. Therefore, this scheme is not secret if registrations remain
in the list for time greater than t, where t is the runtime of SlowOpen. The most natural
solution is to run the protocol in epochs of length less than t. At the beginning of each
epoch, the list is cleared and all users must re-register; this ensures that commitments do
not stay in the list for too long. Although this re-registration increases communication, this
increase can be traded off with the delay required to recover withholders’ identities. If one is
willing to increase this delay t, one can tolerate longer epochs and fewer re-registrations.

Protocol optimizations
Efficient TLP generation. Preparing a commitment requires generating a time-lock puzzle
pair (x, y). For classic repeated-squaring time-lock puzzles, Rivest et al. proposed generating
(x, y = x(2t) (mod N)) by taking advantage of the trapdoor φ(N) to compute a reduced
exponent e = 2t (mod φ(N)). This approach also applies for modern VDFs in an RSA
group [33]. The drawback of this approach is that each puzzle must use its own modulus N ,
making efficient hardware implementation more difficult.

A better approach utilizes re-randomizable VDFs [1]. Observe that users do not need to
compute a TLP on a specific value; rather, a TLP for a random x is sufficient. Re-randomizable
VDFs (of which repeated-squaring VDFs are a natural example) enable computing random
input/output pairs given a single precomputed value (g, h = g(2t)). Observe that (gα, hα)
is also a valid VDF input/output pair for any α. Hence, users can generate a puzzle by
choosing a random α and setting (x, y)← (gα, hα).

Outsourcing TLP computation. In order to learn the nonce for a pair (c, aux), or discover
that (c, aux) was malformed, one must compute the output of a TLP on aux. As this
computation is slow by design, it is desirable to have a mechanism to outsource this task.
Since all registrations (c, aux) are posted on-chain, we could allow any member of the public
to compute these TLP outputs on the participants’ behalf. This party could report a
malformed commitment by posting this TLP output and a proof of correctness on-chain;

AFT 2024



1:14 Accountable Secret Leader Election

this is especially convenient if one uses a VDF as the TLP. The protocol can then slash
(confiscate the deposited capital of) the offending participant, and the reporter could receive
some of the slashed stake.3

4.2 Accountable PSLE from timed VRFs
In Algorand-style PSLE [23], each party holds a VRF public-secret key pair (Kpub, Kpriv).
Kpub is known to all. Here, we make the modeling assumption that a fresh random beacon
value R is generated for each election; in Algorand’s actual protocol, R is a function of the
last block produced. R is available to all parties in the election. A party wins an election
if (y, π) ← VRF.Eval(Kpriv, R) and y < T , where T is a threshold specifying the expected
number of parties elected. Parties can prove they have been elected by providing their VRF
proof π, which other parties can verify using their public key. By pseudorandomness of
the VRF, prior to the winner revealing its proof it is not feasible to learn who has won the
election.

In the event that multiple parties’ VRFs yield values under the threshold, the party with
the lowest VRF output is chosen as the winner. An unintended consequence of this tie-
breaking rule is a way for malicious participants to bias the election. Because the randomness
R is a function of the previous leader’s identity, an adversary that controls two parties whose
VRF outputs y1 and y2 are both below T may choose which party’s output to reveal in
order to generate more favorable randomness for the next election. That is, if y1 < y2, the
adversary might choose not to reveal y1 so that its party with y2 can propose the next block.
Because other parties cannot compute the VRF, they cannot learn that the party with y1
withheld. This attack is therefore undetectable.

We provide accountability by replacing the VRF in Algorand-style elections with a timed
VRF, a new primitive which we define. A timed VRF has a slow open function that can
be run by anyone, without knowledge of the secret key. The slow open function requires a
lengthy computation, and before this delay the VRF retains its pseudorandomness. Timed
VRFs share some similarities with VDFs, but they are pseudorandom and evaluation is fast
given a private key. When we replace the VRFs in Algorand-style PSLE with timed VRFs,
all parties eventually learn all other parties’ VRF outputs for all elections. Thus, all parties
that have withheld can be identified.

Here, we delineate the formal properties of a timed VRF. We can also define timed weak
VRFs (akin to weak VRFs [11]), which are only pseudorandom on randomly chosen inputs:

Our timed VRF definition is (adapted from [27, 16]):

▶ Definition 8 (Timed VRF). A Timed VRF is a tuple of algorithms (KeyGen, Eval, SlowEval,
Verify) where:
KeyGen(λ, t) → (Kpub, Kpriv): generates a key pair which allows public evaluation with a

time delay of t.
Eval(Kpriv, x) → (y, π): outputs a value y using the private key Kpriv, and a correctness

proof π. This function should be fast to evaluate.
SlowEval(Kpub, x) → (y, π): outputs a value y for input x without using the private key

by completing a sequential computation.
Verify(Kpub, x, y, π) → 1/0: checks if y is the correct evaluation of x under Kpub given

proof π.

3 While we leave the exact incentive design as an open question, it is important that the reporter receive
some but not all of the slashed stake. Observe that a malicious user can prove their commitment is
malformed without executing a slow computation. If the reporter receives all of the slashed stake, a
malicious user could report themselves and effectively suffer no penalty.
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KeyGen(λ, t)→ (Kpub, Kpriv)
(Kpub, Kpriv)← tdVDF.KeyGen(λ, t)

Eval(Kpriv, x)→ (y, π)
y′, π′ ← tdVDF.tdEval(Kpriv, x)
π ← (y′, π′)
y ← H(y′)

SlowEval(Kpub, x)→ (y, π)
y′, π′ ← tdVDF.Eval(Kpub, x)
π ← (y′, π′)
y ← H(y′)

Verify(Kpub, x, y, π)→ {true, false}
(y′, π′)← π
return H(y′) = y ∧
tdVDF.Verify(Kpub, x, y′, π′)

Figure 2 Our timed VRF scheme from a trapdoor VDF.

Correctness: For any honestly-formed key pair (Kpub, Kpriv) and input x, given outputs
(y, π) ← Eval(Kpriv, x) and (y′, π′) ← SlowEval(Kpub, x), it should hold that both
Verify(Kpub, x, y, π) and Verify(Kpub, x, y′, π′) return true.

Unique provability: For every Kpub, x, no PPT adversary can find two outputs (y1, π1) and
(y2, π2) such that y1 ̸= y2 and both Verify(Kpub, x, y1, π1) and Verify(Kpub, x, y2, π2) return
true.

Strong t-pseudorandomness: For all PPT adversariesA = (A0,A1) whereA1 is t-sequential,
it holds that:

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Kpub, Kpriv)← GenKey(λ, t)
(x∗, σ)← AEval(Kpriv,·)

0 (Kpub)
b

$←− {0, 1}
y0 ← Eval(Kpriv, x∗)

y1
$←− Y

b′ ← AEval(Kpriv,·)
1 (σ, yb)


≤ 1

2 + negl(λ)

Weak t-pseudorandomness: For all PPT, t-sequential adversaries A, it holds that:

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Kpub, Kpriv)← GenKey(λ, t)
x∗

$←− X
b

$←− {0, 1}
y0 ← Eval(Kpriv, x∗)

y1
$←− Y

b′ ← AEval(Kpriv,·)(σ, yb)


≤ 1

2 + negl(λ)

Timed weak VRFs from trapdoor VDFs
We present an efficient construction, given in Figure 2, of a timed weak VRF from a trapdoor
VDF, as formalized by Wesolowski [33]. Wesolowski observes that while repeated squaring is
conjectured to be an inherently sequential function in a group of unknown order, given the
group order it becomes efficient as the exponent 2t can be reduced modulo the group order.
Therefore, the group order serves as a trapdoor enabling efficient computation of the VDF
for arbitrarily high delay parameters. The RSA group4 (Z/N)∗ is a natural example with
the group order φ(N) serving as the trapdoor.

4 Note that using (Z/N)∗ is insecure for VDFs as the low-order assumption does not hold, instead the
group of quadratic residues QRN or the group G+ = (Z/N)∗/{±1} should be used [7, §6].
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The weak pseudorandomness of the construction given in Figure 2 follows almost directly
from its unpredictability when considered as a VDF. Unpredictability of a VDF requires that
an adversary cannot predict the output on a random input; [6] notes that hashing the output
of a function that is unpredictable in this sense yields a pseudorandom output in the random
oracle model. Thus, we obtain a function whose output is pseudorandom on a random input
which is exactly weak pseudorandomness. We note that in our model of Algorand-style PSLE,
the input to the VRF is a random value R, and thus weak pseudorandomness is sufficient.
Furthermore, as long as the distribution of the input x has λ bits of min-entropy, H(x) is
uniform in the random oracle model.

5 The Key-disclosure Approach

We can achieve accountability if all users reveal their secret keys after each election, enabling
any party to recompute what the results should have been and detect any deviation. Of
course, the critical question is how we can ensure that users actually disclose their key
material.

5.1 Key disclosure via slashing
The most general approach is to compel users to publish key material under the the threat of
slashing, or losing deposited capital, if key material is not properly disclosed. This approach
works naturally for staking protocols in which users have committed a pool of deposited stake
to participate. One option is for users to disclose and re-key at regular intervals (e.g. after
each epoch). This adds continual overhead, but many protocols already impose a similar
requirement of per-epoch setup. Another option is to have users disclose only when they
attempt to withdraw their deposited capital and stop acting as participants (unstaking).
This reduces the frequency and overhead of key disclosure but means it will take longer to
detect misbehavior. Finally, users might disclose whenever they are elected as leader or
otherwise stand to earn rewards. This approach works naturally with protocols employing
the YOSO paradigm [21] to defend against adaptive adversaries, in which case keys are
one-time use by design.

Whenever users disclose keys, a waiting period is needed before any withdrawal of staked
capital to ensure adequate time for auditors to check for misbehavior using the disclosed key,
for example by re-deriving all VRF values the user should have computed under this key
and seeing if the users did not act as leader when they were expected to. They also require
careful analysis of incentives; if slashing penalties are too low, attackers may be willing to
absorb the loss as part of an attack. We leave detailed mechanism design of this approach as
future work but note that it is a simple and potentially powerful tool.

5.2 Implicit key disclosure from indexed VRFs
We can improve the approach of disclosing key material whenever a user is elected leader
by using an indexed VRF (iVRF) instead of a VRF in Algorand-style leader election. This
idea of an iVRF was formalized by Esgin et al. [17], though the construction was used earlier
by Azouvi et al [3]. The iVRF Eval function takes as input the index i, and proving a VRF
value for index i reveals the key material for all indices j ≤ i. In a distributed consensus
setting, the index is the round number, observing that (for protocols with per-round finality),
there is no downside to revealing key material for past rounds. Interestingly, while Esgin et
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KeyGen(λ, m)→ (Kpub, Kpriv)

Kpriv
$←− {0, 1}λ

Kpub = Km = Hm(Kpriv)

Eval(Kpriv, x, i, m)→ (y, π)
π = Ki := Hm−i(Kpriv)
y = H(Ki, x)

Verify(Kpub, x, i, y, π)→ {true, false}
return Hi(π) = Kpub ∧ y = H(π, x)

Figure 3 An indexed VRF from hash functions, due to Esgin et al. [17].

Setup(λ, m)→ pp

G, g, e
$←− GroupGen(λ)

g←
{

gei
}m

i=0
pp← (G, g, g)

KeyGen(λ, pp) $−→ (Kpub, Kpriv)

Kpriv = α
$←− B

Kpub = (g[m])α

Eval(pp, Kpriv, x, i, m)→ (y, π)
(G, g, g)← pp
π = Ki := (g[m− i])α

y = H(Ki, x)

Verify(Kpub, x, i, y, π)→ {true, false}
return πei

= Kpub ∧ y = H(π, x)

Figure 4 An indexed VRF from groups of unknown order. The space B must be large enough to
ensure gα is indistinguishable from random for α

$←− B. Statistical security can be achieved with
|B| ≥ 2 · |G|; whereas |B| ≥ 22λ under the SEI assumption [15].

al. proposed indexed VRFs due to their simplicity and potential for quantum-resistance, we
observe here that they also provide accountability by enabling observers to compute a user’s
past VRF values each time they publish a VRF output in any round.

We first recall Esgin et al.’s construction from hash chains [17] (Figure 3), then present
two novel constructions of iVRFs. Our iVRF from groups of unknown order decreases
precomputation cost relative to [17] and allows all users to work in the same group (Figure 4).
Our construction based on a trapdoor permutation (Figure 5) offers the novel advantage
that users can maintain the same key indefinitely (e.g. for an unlimited number of indices)
with no precomputation.

5.2.1 Indexed VRFs from hash functions
The Esgin et al. [17] indexed VRFis similar to classic notions of hash chains [24, 28], as shown
in Figure 3. Essentially, each user computes a chain of round-specific keys Ki = Hm−i(Kpriv)
for round i. The total number of indices supported, m, should be chosen to cover, say, one
epoch. Note that revealing πi = Ki as a proof for round i makes computing prior values
easy for indices j ≤ i: simply compute Kj = Hi−j(Ki).

Naively, computing and verifying this proof requires computing O(m) hashes each, though
some tradeoffs are available if the prover stores some intermediate keys Kj to compute proofs
with O(

√
m) computation and storage. Esgin et al. also describe tree-based variants enabling

logarithmic verification costs, though all of them appear to require O(m) computation during
KeyGen.

5.2.2 Indexed VRFs from groups of unknown order
We present an indexed VRF construction in Figure 4 based on groups of unknown order,
without assuming a trapdoor. This can have practical benefits in enabling all computation
to be performed in one group. We replace the hash function in the above construction
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KeyGen(λ, e)→ (Kpub, Kpriv)

p, q ← GenPrimes(λ)
N ← p · q
e← GenExponent(λ)
K0 $←− (1, N)
Kpub ← (N, e, K0)
d = e−1 (mod φ(N))
Kpriv ← (d, φ(N))

Eval(Kpriv, Kpub, x, i)→ (y, π)
N, e, K0 ← Kpub
d, φ(N)← Kpriv
d̃ = di (mod φ(N))
π ← Ki := (K0)d̃ (mod N)
y = H(Ki, x)

Verify(Kpub, x, i, y, π)→ {true, false}
e, N, K0 ← Kpub

return πei

= K0 (mod N) ∧ y = H(π, x)

Figure 5 An indexed VRF from trapdoor permutations. We present the scheme here working in
the RSA group (Z/N)∗, though the idea is generic to any trapdoor permutation. As presented, this
scheme requires linear work (in i) per verification. This can be reduced to constant cost by caching
the latest value of Ki after each evaluation.

with computing eth roots modulo N . However, in this protocol we do not assume users
know the trapdoor, so naively they must precompute the entire chain of keys Ki, as
with the hash-based indexed VRF. Implemented in this way, this approach has no clear
advantage over the hash-based approach. However, notice that the precomputed chain
K = {Kpriv, (Kpriv)e, (Kpriv)e2

, . . . , } can be computed only once in global setup, and then
randomized by each user as needed. This randomization is straightforward: given a precom-
puted chain g = {g0 = g, g1 = ge, g2 = ge2

, . . . }, a user can sample5 a random exponent
α← B and compute a randomized chain g′ = {(g0)α, (g1)α = (gα)e, (g2)α = (gα)e2

, . . . }.
This approach removes the linear precomputation and supports efficient proof computation.

Assuming access to the precomputed string g, needed elements of a user’s randomized chain
g′ can be produced on-demand as g′[j] = (g[j])α. It is also possible to provide efficient proofs
of correctness for any evaluation, by adding a succinct proof of exponentiation showing that
πi = Kpub. Since the group order is unknown, either Wesolowski proofs [33] or Pietrzak
proofs [29] may be used.

5.2.3 Indexed VRFs from trapdoor permutations
We present a new construction in Figure 5 based on trapdoor permutations. Essentially,
we replace the hash function in the hash-based construction with a trapdoor permutation,
such that computing forwards on the chain involves inverting the permutation with the help
of the trapdoor, and going backwards involves evaluating the permutation. Instantiated
with an RSA group, this involves computing eth roots modulo N . This is easy given the
trapdoor φ(N) but otherwise believed hard for suitably chosen N under the (weak) RSA
assumption [18]. This construction is similar to each user running a private STROBE
randomness beacon [5].

Naively, verifying that a revealed key Ki chains back to the original key K0 in Kpub
requires O(i) work via re-execution. This can be avoided via a succinct proof of exponentiation.
However, note that since the prover knows the trapdoor φ(N), Pietrzak proofs [29] (which

5 The size of this exponent required for security depends on assumptions. Under the Short Exponent
Indistinguishability assumption (SEI) [15], for α sampled from the range [0, 22λ] the value of gα will be
indistinguishable from random in G. Without this assumption, α must be sampled from the the range
[0, |G| · 22λ].
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require O(log i) work to verify) must be used instead. Wesolowski proofs [33] are not strongly
unique [31] if the prover knows the trapdoor and hence would make the iVRF unsound.
Alternatively, a more practical approach is for verifiers to cache the most recent revealed
key Ki after each epoch (instead of the originally published value K0), leaving only constant
work to verify at each index.

6 The Committee-based Approach

In a fundamentally different approach to accountable SSLE, we leverage threshold (public-
key) encryption. Each participant’s nonce is threshold-encrypted to the public key of
a committee after a threshold cryptographic setup, and then published alongside each
participant’s commitment in the registration list L so that a threshold number of participants
can collaborate to reconstruct the nonce of a leader that withholds later. We assume, without
loss of generality, that this committee is the group of all SSLE participants, although it could
even be a separate group of outsiders.

An accountable SSLE scheme using threshold encryption. The following changes are
made to the BEHG “high-communication” protocol to yield an accountable SSLE scheme
(denoted by ThrPKE-SSLE) that uses threshold encryption. First, SSLE.Setup also runs
ThrPKE.Setup. Next, a user Ui registering via SSLE.Register must additionally append
cti = ThrPKE.Enc(pp, ki) to the registration list L. (cti is not included in the shuffled list).6
This still means that the winning element of the final shuffled list ℓ is a commitment c̃. Given
this, we modify SSLE.Verify and SSLE.Recover as follows:
SSLE.Verify(i, pp, st, R, π) outputs 1 if the revealed key k̃ is consistent with kiR, the

winning commitment c̃, and also cti (with the randomness used to make the encryption
also supplied by the revealer as part of π), and 0 otherwise.

SSLE.Recover(pp, st, R, L, Ui) outputs 1/0/⊥ as follows. SSLE.Recover first parses st to
obtain the current shuffled list of entries and uses R to choose the winning commitment
c̃ = (ũ, ṽ). It then finds Ui’s entry (kiR, ci, cti, idi) in L and interactively (involving at least
τ out of n users) runs the algorithm ThrPKE.Dec to let k̃ = ThrPKE.Dec(pp, {ski}i∈S , cti)
and k̃L||k̃R ← H(k̃). It outputs 1 if both kiR = k̃R and ũk̃L = ṽ. It outputs 0 otherwise.

After Recover is run, the registration list must be cleared and all participants must re-register.
To improve efficiency, rather than running Recover after every withheld election, one could
run Recover once per time period of some length, or only after m leaders have withheld. This
would still return all of these leaders’ identities but mitigate frequent re-registration, at the
cost of learning these identities later.

▶ Theorem 9. Assuming honest shuffling, ThrPKE-SSLE is a single secret leader election
protocol that satisfies strong (and weak) accountability, given an adversary that controls less
than τ participants.

The proof is included in the full version.

6 cti may be included in the shuffled list if the encryption scheme yields an unlinkable commitment
as defined in [10], where no adversary can distinguish between two commitments (that include these
ciphertexts), even if they have been adversarially re-randomized. Including cti in the shuffled list would
allow the committee to decrypt only the winning ciphertext in Recover rather than the whole registration
list.
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7 Conclusion

We propose and define the notion of accountability for secret leader election. Our schemes
take three distinct approaches to address the threat of withholding attacks in secret leader
election protocols. These schemes offer a variety of trade-offs between computational overhead
for participants, communication requirements, the time delay before absentee leaders will be
detected, and strong-versus-weak accountability. Exploring these trade-offs in practice for
concrete protocols is an important avenue for future work.

A fundamental question to ask in practice is how promptly is accountability required?
Committee-based approaches have the advantage of enabling accountability nearly imme-
diately after a leader fails to act during their turn in a protocol, as the committee can
compute the election results whenever desired. Delay-based approaches inevitably introduce
a longer waiting period, as delay functions must be parameterized conservatively to ensure
that malicious attackers cannot compute them quickly enough to learn the election results
early. Furthermore, honest parties might not start computing the delay function until after a
leader fails to act, to avoid the cost of always computing it even when the leader is honest.
Finally, key-disclosure approaches may offer an even longer waiting period for accountability:
until the next time a missing leader is elected (or unstakes) or until the end of an epoch.

We also leave open the fundamental question of incentives and mechanism design. Clearly,
the key disclosure approach hinges entirely on appropriately incentivizing participants to
reveal keys. Delay-based approaches require incentivizing some party to compute the delay
functions, which may become non-trivial if they must be computed for every participant.
Even the committee-based approaches require incentivizing a committee to act when a leader
fails to show up, and not to conspire to learn election results early.

Finally, all of our protocols can, at best, serve as a detection mechanism for withholding
attacks (but not prevent them absolutely). Thus, it is vital to design appropriate penalties
(slashing) to ensure that such attacks are not profitable. At the same time, slashing may
introduce new incentive issues if attackers are incentivized to try denial-of-service attacks
on leaders as they attempt to broadcast during their slot. From the point of view of an
accountability mechanism there is no difference between a leader who withholds and a leader
whose network connection is jammed while they are legitimately attempting to broadcast a
block.

Precisely because of these open questions, we present a variety of options rather than a
single approach. We hope that future work can utilize these as a toolbox to improve the
security of secret leader election protocols in practice.
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Abstract
BoLD is a new dispute resolution protocol that is designed to replace the originally deployed
Arbitrum dispute resolution protocol. Unlike that protocol, BoLD is resistant to delay attacks. It
achieves this resistance without a significant increase in onchain computation costs and with reduced
staking costs.
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1 Introduction

In this paper, we introduce BoLD, a dispute resolution protocol: it allows conflicting assertions
about the result of a computation to be resolved. It is designed for use in a Layer 2 (L2)
blockchain protocol, relying on a Layer 1 (L1) blockchain protocol for its security (more
generally, it may be used with any parent chain in place of L1 and any child chain in place
of L2).

In an optimistic rollup protocol such as Arbitrum, a dispute resolution protocol like BoLD
operates as a component of a broader “rollup” protocol, in which validators post claims about
the correct outcome of executing an agreed-upon sequence of transactions. These claims
are backed by stakes posted by the claimants. If multiple competing claims are posted, the
protocol must choose one of them to treat as correct. The goal of BoLD and comparable
protocols is to determine, among a set of competing claims about the correct outcome of
execution, which of the claims is correct.

Let us state more precisely the problem to be solved. We begin with a starting state, S0,
on which all parties agree. We assume that a commitment to S0 has been posted to L1. (In
this paper, all commitments are non-hiding, deterministic commitments that will typically be
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implemented using some sort of Merkle tree.) There is also an agreed-upon state transition
function F , which maps state Si−1 to Si = F (Si−1) for i = 1, . . . , n. In practice, the function
F may be determined by the state transition function of a specific virtual machine, together
with a specific sequence of transactions that has also been posted to L1; however, these
details are not important here.

Any party may then compute S1, . . . , Sn and post an assertion to L1 that consists of
a commitment to Sn. Of course, such an assertion may be incorrect, and the purpose of
a dispute resolution protocol is to allow several parties to post conflicting assertions and
identify the correct one. Such a dispute resolution protocol is an interactive protocol that
makes use of L1:

each “move” made by a party in the protocol is posted as an input to a smart contract
on L1;
this smart contract will process each move and eventually declare a “winner”, that is, it
will identify which one of the assertions made about the commitment to Sn is correct.

Participation in the protocol requires resources:
staking: tokens required for “staking”, as specified by the dispute resolution protocol;
gas: L1 tokens required to pay for “L1 gas costs”, that is, the cost associated with posting
assertions and subsequent moves to L1;
computation: offchain compute costs incurred by the parties who participate in the dispute
resolution protocol.

As for staking, the dispute resolution protocol specifies exactly how much and when stakes
must be made. When the smart contract declares a winner, some stakes will be confiscated
(“slashed”) and some will be returned to the staking parties: corrupt parties may have some
or all of their stake confiscated, while honest parties should get all of their stake returned
to them. The staking requirement serves to discourage malicious behavior. In addition,
confiscated stakes may be redistributed to honest parties to cover their L1 gas costs and
offchain compute costs, or simply as a reward for participating in the protocol. These stakes
will be held in escrow by the smart contract.1

We make the following assumptions:
L1 provides both liveness and safety, that is, every transaction submitted to it is eventually
processed and is processed correctly;
at least one honest party participates in the dispute resolution protocol.

We wish to model the following types of attacks.
Censorship attacks. While we assume L1 provides liveness and safety, we assume that it

may be subject to intermittent censorship attacks. That is, an adversary may be able
to temporarily censor transactions submitted by honest parties to L1. During periods of
censorship, we assume the adversary may still submit its own transactions to L1.

Ordering attacks. Even if the adversary is not actively censoring, we assume that the
adversary may determine the order of transactions posted to L1 (for example, placing its
own transactions ahead of honest parties’ transactions in a given L1 block).

Resource exhaustion attacks. Even though a protocol might ensure that all honest parties
are “made whole” after the protocol succeeds, the adversary may try to simply exhaust
the resources of the honest parties (the staking, gas, and computation resources mentioned
above) so the honest parties can no longer afford to participate in the protocol.

1 In a (typical) run of the protocol in which there are no challenges to a correct assertion, there will be
no confiscated stakes available, and so some other source of funds must be used to compensate honest
parties for their (minimal) costs in participating in the protocol.
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Delay attacks. The adversary may try to delay the dispute from being resolved within a
reasonable amount of time. In such a delay attack, the adversary might try to keep the
protocol running for a very large number of moves without resolution – such an attack
may become a resource exhaustion attack as well.

To mitigate against a resource exhaustion attack, a well-designed dispute resolution protocol
should force the adversary to marshal many more resources than required by the honest
parties. Similarly, to mitigate against a delay attack, a well-designed dispute resolution
protocol should force an adversary who attempts to delay the protocol to expend a huge
amount of resources.

The BoLD protocol is designed as a replacement of the originally deployed Arbitrum
dispute resolution protocol. It makes more efficient use of resources than the original Arbitrum
protocol while providing a much stronger defense against delay attacks.

The rest of the paper. Section 2 briefly reviews the original Arbitrum dispute resolution
protocol, sketches the main ideas of BoLD, and discusses how BoLD improves on the original
Arbitrum protocol. Section 3 describes a formal attack model for dispute resolution. Section 4
describes BoLD in its simplest form, which we call single-level BoLD. Section 5 describes
a version of BoLD, which we call multi-level BoLD, that reduces some of the offchain
computational costs of the honest parties. This is the version of BoLD that will replace
the originally deployed Arbitrum dispute resolution protocol. Section 6 discusses details
regarding gas, staking, and reimbursement.

2 Overview and Comparison to Prior Work

We provide a brief overview of BoLD and a comparison to prior approaches in this section.
More details can be found in the full version of the paper [1].

2.1 Arbitrum Classic
By Arbitrum Classic, we refer to the protocol deployed on Arbitrum in 2020. Note that this
version differs in some ways from the original 2018 paper [2].

Arbitrum classic allows parties to post assertions to L1 accompanied by some stake (up
until a designated staking deadline). Parties with conflicting assertions may then challenge
each other. In each such two-party challenge subprotocol instance, one party defends
their assertion against another party who challenges their assertion. When this subprotocol
instance finishes, one of the two parties will win and the other will lose. The dispute resolution
protocol allows many such subprotocol instances to proceed, even concurrently. The protocol
ends when all remaining parties are staked on the same assertion – which is declared to
be the “winner”. The challenge subprotocol guarantees that any honest party will win in
any instance of the subprotocol in which it participates. This ensures that the protocol will
eventually terminate and declare the correct assertion to be the winner.

In the two-party challenge subprotocol, also called the “bisection game”, one party
Daria, defends her assertion, against a challenger Charlie. Daria’s assertion is of the form
(0, n, S0, Sn); this denotes the assertion that executing the state transition function F n times
on state S0 leads to state Sn (in practice, the assertion will include commitments to the state
rather than the state itself). WLG, we let n be a power of two. When Charlie challenges
this assertion, the subprotocol game requires Daria to “bisect” her assertion by posting two
smaller assertions (0, n/2, S0, Sn/2) and (n/2, n, Sn/2, Sn) of half the size each. Following
this, Charlie is now required to pick one of these smaller assertions to challenge. The game
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continues in a similar fashion until Charlie’s challenge is one a “one-step” assertion – i.e.,
of the form (i, i + 1, Si, Si+1). At this point, Daria must submit a proof that this one-step
assertion is correct which can be efficiently checked by the Layer 1 chain. If this proof is
valid, Daria wins the two-party challenge subprotocol and Charlie loses; otherwise, Charlie
wins and Daria loses.

The challenge subprotocol guarantees that any honest party will win whenever in which
it participates. However, a corrupt party may stake on the correct intial assertion, but still
intentionally lose a challenge. Because of this, and because honest parties cannot reliably
identify other honest parties, each honest party must stake on the correct assertion.

To maintain liveness, the protocol will enforce that the total time taken for each party’s
moves is smaller than some amount called the “challenge period.” This can be done using
a “chess-clock” approach where a party’s clock runs when it is her turn to make a move.
Note that each subprotocol will end within a maximum of 2 challenge periods. The challenge
period will be set to be large enough to accommodate any censorship.

There are a number of ways the dispute resolution protocol could orchestrate the challenge
subprotocols, depending on the amount of concurrency allowed. In the full concurrency
option, there is no limit on the concurrent execution of challenge subprotocol instances.
While this guarantees fast resolution, it is susceptible to a resource exhaustion attack.

The deployed version of Arbitrum Classic implements a less concurrent orchestration
method, by which each party is allowed to engage in at most one challenge subprotocol
instance at a time, although many such subprotocol instances may run concurrently. This
method reduces the risk of a resource exhaustion attack significantly, but is instead susceptible
to a delay attack. For this reason the deployed Arbitrum Classic has limited participation in
the protocol to a permissioned set of parties.

A complete description and discussion of Arbitrum Classic can be found in the full
version of the paper [1].

2.2 From Arbitrum Classic to BoLD
A primary motivation that separates BoLD was from Arbitrum Classic is to able to give the
following guarantees:

resolves disputes within a bounded amount of time (independent of the number of parties
or staked assertions),2 unlike Arbitrum Classic and
has gas and staking costs that scale better than Arbitrum Classic.

BoLD achieves these goals using the following ideas.

2.2.1 Trustless cooperation
Instead of just committing to the final state Sn, parties must commit to the entire execution
history S1, . . . , Sn. This can be done compactly using a Merkle tree whose leaves are the
individual commitments Com(Si) for i = 1, . . . , n. With this approach, a similar type of
bisection game as in Arbitrum Classic can be designed with the property that there is
only one (feasibly computable) justifiable bisection move that can be made at any step. In
other words, if a party submits a correct initial assertion, all smaller assertions obtained by

2 “BoLD” is an acronym that stands for Bounded Liquidity Delay, emphasizing the fact that it is resistant
to delay attacks, unlike partially-concurrent Arbitrum Classic. The term “liquidity” refers to the fact
that once the protocol terminates, funds sent from L2 to L1 become available on L1.
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bisection must also be correct. This means that the correct assertion need only be staked
once, and that the honest parties can build on the work of any apparently honest parties
that make correct assertions, even if those parties turn out not to be honest parties after all.
In this sense, all honest parties can work together as a team, although they do not have to
trust each other or explicitly coordinate with one another.

With just this one idea, one could fairly easily modify Arbitrum Classic to get a protocol
with the following properties. The honest parties in aggregate need to make just one staked
assertion. If the corrupt parties together make NA staked assertions, then within a bounded
amount of time (independent of NA) the honest parties can disqualify all incorrect staked
assertions using L1 gas proportional to NA. Indeed, this protocol will terminate within two
challenge periods.

2.2.2 A streamlined protocol
BoLD takes the above idea and turns it into a more elegant and streamlined protocol. We
design a new execution pattern in which all assertions (both original assertions and “smaller”
assertions obtained from bisection) are organized as nodes in a dynamically growing graph.
The edges in the graph represent parent/child relationships corresponding to bisection. In
this approach, there are no explicit one-on-one challenges nor associated “chess clocks”.
Instead of “chess clocks”, each node in the graph has a “local” timer that ticks so long as
the corresponding assertion remains unchallenged by a competing assertion – so higher local
timer values indicate that the corresponding assertion is in some sense more likely to be
correct (or incorrect but irrelevant to the protocol’s outcome). The values of these local
timers are aggregated in a careful way to ultimately determine which of the original assertions
(which are roots in this graph) was correct. This idea yields the a version of BoLD that we
call single-level BoLD, which maintains the same fast termination time of two challenge
periods.

2.2.3 Multi-level refinement
The downside of the above approach to trustless cooperation is that the offchain compute cost
needed to compute the commitments Com(Si) for i = 1, . . . , n and build a Merkle commitment
from them may be unacceptably high in practice when n is large. To address this, we introduce
a multi-level refinement strategy – the resulting protocol is called multi-level BoLD. For
example, suppose n = 255. Very roughly speaking, in two-level BoLD, we might execute
single-level BoLD using the “coarse” iterated state transition function F ′ = F 225 , which only
requires 230 state hashes, and narrow the disagreement with the adversary to one iteration
of F ′ which is equivalent to 225 iterations of F . A recursive invocation of single-level BoLD
over those iterations of F would then “refine” the disagreement down to a single invocation
of F which could then be proven using a one-step proof. Each such recursive invocation
would require just 225 state hashes. A naive realization of this rough idea would potentially
double the amount of time it would take to run the dispute resolution protocol to completion
– and even worse, for L-level BoLD, the time would get multiplied by a factor of L. Most
of this time is due to the built-in safety margins that mitigate against censorship attacks.
However, by carefully generalizing the logic of single-level BoLD, and in particular the logic
around how timer data on nodes is aggregated, we obtain a protocol that enjoys the same
fast termination time as single-level BoLD, namely, two challenge periods. Based on our
experience in implementing BoLD, we find that setting L = 3 reduces the offchain compute
costs to a reasonable level.
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3 Formal attack model

In the real world, there may be many parties that participate in the protocol, but we formally
describe the attack model in terms of just two parties: the honest party and the adversary.

The honest party in our formal model represents the actions taken in aggregate in the
real world by honest individuals who are correctly following the protocol. While one
might consider protocols that require communication and coordination among honest
individuals, our protocol does not require this. That said, in our protocol, some amount of
coordination between honest individuals may be useful in terms of efficiently distributing
the resources necessary to carry out the protocol.
The adversary in our formal model represents the actions taken in aggregate in the real
world by corrupt individuals who may well be coordinating their actions with one another,
and may also be influencing the behavior of the L1 itself, at least in terms of L1 censorship
and ordering attacks.

At the beginning of the challenge protocol, we assume that both the honest party and
adversary are initialized with the initial state S0 and a description of the state transition
function F . We assume that a commitment to S0 and a description of F are also recorded on
L1. The challenge protocol proceeds in rounds. While time plays a central role in our attack
model and our protocol, we shall simply measure time in terms of the number of elapsed
rounds. (As an example, if the L1 is Ethereum, a round might be an Ethereum block.)

In each round t = 1, 2, . . . , the honest party submits a set Submitt of moves to L1. After
seeing the set Submitt, the adversary specifies the precise sequence Exect of moves to be
executed on L1 in round t. The sequence Exect may contain moves submitted by the honest
party in this or any previous round, as well as arbitrary moves chosen by the adversary. The
sequence Exect is also given to the honest party, so that its value is available to the honest
party in its computation of Submitt+1. We do not place any limit on how many moves may
be submitted to or executed on L1 in a round. We assume that the appropriate party (either
the honest party or the adversary) is charged for the gas required to execute each move
on L1.

We introduce a nominal delay parameter δ that models the maximum delay between
the submission of a move and its execution under normal circumstances, that is, without
censorship. An adversary may choose to censor any given round t. To model censorship, we
define the following rules that the adversary must follow. At the beginning of the attack, we
initialize Pool, a set of (move, round-number) pairs, to the empty set. In each round t:

For each move in Submitt, we set its due date to t + δ and add the move, paired with
its due date, to the set Pool.
If t is designated a censored round by the adversary, then we increment the due date of
every move in Pool (including those just added).
The adversary chooses some moves in pool to include in Exect, which are then removed
from Pool, subject to the rule:

any move in Pool whose due date is equal to t must be included in Exect.

We introduce another parameter, Cmax, which we call the censorship budget. We
require that the adversary censors at most Cmax rounds during the attack game. This is our
way of modeling the assumption that censorship attacks cannot be carried out indefinitely.
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4 The BoLD protocol: single-level version

In this section, we describe the BoLD protocol in its purest form, which we call single-level
BoLD.

4.1 Preliminaries
To simplify things, we assume that the parties involved seek to prove a computation of
n := 2kmax steps, for kmax ≥ 0. We assume that a commitment to S0 is already stored on L1,
and we denote this by H0.

The goal is to have a commitment to Sn posted to L1 in such a way that the dispute
resolution protocol ensures that this commitment is correct (under well defined assumptions).

4.2 The protocol graph
As the protocol proceeds, a data structure will be built on L1 that represents a directed
acyclic graph G. The structure of G will be described below. Initially, the protocol graph G
is empty, and grows over time. Participants in the challenge protocol will make moves that
lead to the creation of new nodes and edges – the details of these moves are described below
in Section 4.3.

4.2.1 The syntax of a node
We begin by defining the syntax of a node. A node specifies a base commitment and a span
commitment. The base commitment is supposed to be (but may not be) a commitment to
an initial sequence of states, while the span commitment is supposed to be (but may not be)
a commitment to an adjacent sequence of states. A node also specifies the length of these
two sequences.

More precisely, a node is a tuple

(nodeType, lbase, lspan, base, span), (1)

where base and span are the base and span commitments of the node, while lbase and lspan
specify the corresponding commitment lengths. As will become evident, the value lbase
will always be an integer in the range 0, . . . , n − 1, while the value lspan will always be a
power of two dividing n; moreover, it will always hold that lbase is a multiple of lspan and
lbase + lspan ≤ n. The value nodeType is a flag, equal to either

regular, in which case we say the node is a regular node, or
proof, in which case we say the node is a proof node.

The role of this flag will be described below.

Correct construction. Suppose the correct sequence of states is S0, S1, . . . , Sn. We say the
node (1) is correctly constructed if the base commitment base is the root of a Merkle tree
whose leaves are commitments to

S0, S1, . . . , Slbase (2)

and the span commitment span is the root of a Merkle tree whose leaves are commitments
to

Slbase+1, . . . , Slbase+lspan , (3)

where
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the Merkle tree rooted at span is a perfect binary tree (which is possible because lspan is
always a power of two), and
the shape of the Merkle tree rooted at base is determined by the rules governing par-
ent/child relationships, given below.

Intuition. Intuitively, a party who makes a move that leads to the creation of a regular
node is implicitly claiming that this node is correctly constructed. The nodes created in
response to moves made by the honest party will always be correctly constructed. However,
the adversary may make moves that result in the creation of incorrectly constructed nodes.
The smart contract on L1 cannot distinguish between correctly and incorrrectly constructed
nodes (however, the honest party, or any entity with access to S0, certainly can).

4.2.2 Root nodes

Since G is directed-acyclic, it will have some number of roots, i.e., nodes with in-degree zero.
Recall that H0 is the commitment to S0. A root in G is a regular node of the form

r = (regular, 0, n, H0, span). (4)

Correct construction. By definition, r is correctly constructed if the span commitment
span is a commitment to S1, . . . , Sn.

Intuition. The party that makes a move that creates a root is claiming that span is a
commitment to S1, . . . , Sn.

4.2.3 Nonterminal nodes

We call a regular node in G of the form

v = (regular, lbase, lspan, base, span), (5)

where lspan > 1, a nonterminal node. If this node has any children, it will have exactly
two children. These children are of the form

vL = (regular, lbase, lspan/2, base, spanL) (6)

and

vR = (regular, lbase + lspan/2, lspan/2, H(base, spanL), spanR), (7)

for some spanL, spanR with

span = H(spanL, spanR). (8)

Here, H is the hash function used to form the internal nodes of the Merkle trees. We call vL
the left child of v and vR right child of v.
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Correct construction. Recall that v is correctly constructed if its base commitment base is
a commitment to (2) and its span commitment span is a commitment to (3). One sees that
vL is correctly constructed if its base commitment is also a commitment to (2) and its span
commitment is a commitment to

Slbase+1, . . . , Slbase+lspan/2. (9)

Similarly, vR is correctly constructed if its base commitment is a commitment to

S0, . . . , Slbase+lspan/2 (10)

and its span commitment is a commitment to

Slbase+lspan/2+1, . . . , Slbase+lspan . (11)

This definition also tells us the precise shape of the Merkle tree for the base commitment of
a correctly constructed node.

It is easy to see that if vL and vR are correctly constructed, then so is v. Conversely,
assuming that H is collision resistant, if v is correctly constructed, then so are vL and vR.

Intuition. The first implication (vL and vR correctly constructed implies v correctly con-
structed) says the following: to prove the claim corresponding to the parent, it suffices
to prove the claims corresponding to both children. The second implication (v correctly
constructed implies vL and vR correctly constructed) says the following: to disprove the
claim corresponding to the parent, it suffices to disprove the claim corresponding to one of
the children.

4.2.4 Terminal nodes and proof nodes
We call a node of the form

v = (regular, lbase, 1, base, span) (12)

a terminal node.
If v has any children, it must have exactly one child, and that child must be

vP = (proof, lbase, 1, base, span). (13)

Correct construction. Clearly, if v is correctly constructed, then so is vP.

Intuition. A terminal node v corresponds to a claim that base is a commitment to (2) and
that span is a commitment to Slbase+1. Assuming that the claim regarding base is true, the
presence of the child vP in the graph indicates that the one-step state transition from Slbase
to Slbase+1 has been proven to be correct, that is, F (Slbase) = Slbase+1, which means the
claim corresponding to v is also true.

4.2.5 Position, context, and rivals
For a given regular node (regular, lbase, lspan, base, span), we define its position to be
(lbase, lspan), and we define its context to be (lbase, lspan, base). We say two distinct regular
nodes are rivals if their contexts are equal. A node that has no rivals is called unrivaled.
Note that, by definition, proof nodes are unrivaled.
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Intuition. A rivalry between two nodes corresponds to a particular type of dispute between
the corresponding claims. If two nodes v and v′ are rivals, then their corresponding claims
agree with respect to the commitment base to the initial sequence (2), but disagree with
respect to the commitment span to the following sequence (3). If v and v′ are nonterminal
nodes with children, and v has children vL and vR, and v′ has children v′

L and v′
R, then either

vL and v′
L are rivals or vR and v′

R are rivals, but not both (assuming collision resistance) –
see full version of the paper for further details [1]. Thus, the dispute between the claims
corresponding to v and v′ can be resolved by resolving the dispute between the claims
corresponding to either their left children or their right children.

4.2.6 Some general observations

A given node v in the protocol graph G may have several parents. However, the distance
between v and any root is the same, which we call the depth of v.

We also observe that any two nodes that are children of nonterminal nodes and that
have the same position are either both left children or both right children of their respective
parents. More generally, the position of any regular node implicitly encodes the complete
sequence of left/right steps along any path from the root to that node.

4.3 Types of Protocol Moves

There are three types of protocol moves. Each such move will supply some data, and when
the L1 protocol processes this data, it will add zero, one, or two nodes to the protocol graph
G. Whenever a new node or edge is added to G, the L1 protocol also records the round
number in which it was added.

4.3.1 Root creation

The first type of move in the protocol is root creation. Such a move supplies a commitment
span. The L1 protocol adds to G the root node r as in (4), unless this node already exists in
G. We say this move creates the root r.

4.3.2 Bisection

The second type of protocol move is bisection. Such a move supplies a nonterminal node v

as in (5) in Section 4.2.3, together with commitments spanL and spanR. The L1 protocol
checks that

(a) v is already in G and rivaled, (b) v has no children, and (c) (8) holds,
and if so, adds to G

the node vL as in (6), unless it is already in G
the node vR as in (7), unless it is already in G, and
the edges v → vL and v → vR.

We say this move bisects the node v. Note that the precondition that v has no children
means that v has not been previously bisected. Also note that, in principle, a node may be
bisected in the same round in which it was added to G, so long as the preconditions hold at
the moment the bisection move is executed (as we will see, although the adversary is free to
do this, the honest party will not).
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4.3.3 One-step proof

The third and final type of protocol move is one-step proof. Such a move supplies a
terminal node v as in (12) and a proof π. The L1 protocol checks that (a) v is already in G
and rivaled, (b) v has no children, and (c) π is a valid proof (see details below),
and if so, adds to G the node vP as in (13) and the edge v → vP.

We say this move proves the node v. Note that, in principle, a node may be proved in
the same round in which it was added to G (as we will see, although the adversary is free to
do this, the honest party will not).

Some details on the proof system. We assume a proof system that is comprised of a
commitment scheme Com, a proof generator Prove, and a proof verifier Verify. The proof
generator should take as input a state S and output a proof p. The proof verifier takes as
input (h, h′, p) and outputs accept or reject, and should always output accept on inputs
of the form (h, h′, p) where h = Com(S), h′ = Com(F (S)), and p = Prove(S). We may state
the required soundness property for the proof system as follows:

It should be infeasible for an adversary to construct a state S along with a triple
(h, ĥ′, p̂), such that h = Com(S), ĥ′ ̸= Com(F (S)), and Verify(h, ĥ′, p̂) = accept.

Note that the proof π supplied in a proof move must actually include a proof p as above, as
well the commitment h = Com(Slbase) and a right-most Merkle path mp for this commitment
relative to the root base. To check the proof π, the L1 protocol validates mp (relative to base
and h) and verifies that Verify(h, span, p) = accept – note that for a correctly constructed
node, we will have span = Com(Slbase+1).

4.4 Timers

We are not quite done describing our dispute resolution protocol. However, before going
further, some intuition is in order. The ultimate goal of the protocol is to allow both the
honest party and the adversary to create root nodes and to make other moves in such a
way that the L1 protocol can determine which root node is correctly constructed. Now, one
trivial way to do this would be to have the honest party bisect the correctly constructed root,
bisect its children, bisect all of their children, and so on, creating n terminal nodes, and then
proving each of these terminal nodes. However, this trivial approach is extremely expensive.
Instead, we adopt the following approach. Whenever a node is created and remains unrivaled
for a period of time, the L1 protocol will take that as evidence that the claim corresponding
to that node cannot (or need not) be proven false – the more time that elapses, the stronger
the evidence. The L1 protocol has to then analyze all of this evidence and declare a “winner”,
that is, the root nodes that is most likely the correctly constructed one. The honest party
will then adopt a “lazy” strategy, and only defend claims (i.e., bisect nodes) that are disputed
(i.e., rivaled), and indeed the protocol is designed so that the honest party must defend all
disputed honest claims in order to guarantee victory. However, if its claim corresponding to
the correctly constructed root remains undisputed for a sufficiently long period of time, no
further moves need to be made.

Throughout the remainder of Section 4.4, we consider a fixed run of the protocol for
some number, say N , of rounds and let G be the resulting protocol graph.
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4.4.1 Creation and rival time

Recall that the L1 protocol keeps track of the round in which a given node v was created,
that is, added to the graph G. Let us call this the creation time of v, denoted ct(v),
defining ct(v) := ∞ if v was never created throughout the protocol execution.

Let us call the round in which a regular node v becomes rivaled its rival time, denoted
rt(v). More precisely, rt(v) is defined to be the first round in which both v and a rival of
v appear in G, defining rt(v) := ∞ if v was never created or was created but never rivaled
throughout the protocol execution. Clearly, rt(v) ≥ ct(v).

4.4.2 Local timers

For any regular node v and round number t = 1, . . . , N , we define the local timer of v

as of round t, denoted λv(t), to be the number of rounds in which v, as of round t, has
remained unrivaled since its creation. Formally, we define

λv(t) := max ( min(t, rt(v)) − ct(v), 0 ) ,

where the usual rules governing infinity arithmetic are used.
The following is an equivalent and perhaps more intuitive characterization of λv(t):
if v was created in round t or later, then λv(t) = 0;
otherwise, if v was unrivaled as of round t − 1, then λv(t) = 1 + λv(t − 1) and we may
say “v’s local timer ticks in round t”;
otherwise, λv(t) = λv(t − 1) and we may say “v’s local timer does not tick in round t”.

We also define the local timer for a proof node v as follows:

λv(t) :=
{

0 if ct(v) > t,

∞ otherwise.

Note that throughout the paper, whenever we say something happens “as of round t”, we
mean “after executing all moves in round t”.

4.4.3 Bottom-up timers

Recall that the L1 protocol keeps track of the round in which any given node is added to the
graph G. For any node v and round number t = 1, . . . , N , let us define Childv(t) as the set of
children of v as of round t. We define the bottom-up timer of v as of round t, denoted
βv(t), recursively as follows:

βv(t) := λv(t) +
{

min
(
{βw(t) : w ∈ Childv(t)}

)
, if Childv(t) ̸= ∅;

0, otherwise.

In other words:
if v was created later than round t, then βv(t) = 0;
otherwise, if v has no children as of round t, then βv(t) = λv(t);
otherwise, βv(t) is the sum of λv(t) and minw βw(t), where the minimum is taken over
all children w of v as of round t.
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4.4.4 Winners
We are finally in a position to define the condition under which the L1 protocol declares a
winner. To this end, we introduce a parameter T , which we call the confirmation threshold.
We say a root node r in the protocol graph is confirmed in round t if βr(t) ≥ T . Suppose
that t∗ is the first round in which any root node is confirmed. If there is a unique root node
r∗ confirmed in round t∗ then r∗ is declared the winner; otherwise, “none” is declared
the winner.

4.4.5 Paths in the protocol graph
To better understand the role of bottom-up timers in the protocol, and the rule for confirming
root nodes, it is helpful to introduce some additional notions (which will also be useful in
the analysis of the protocol).

A path P is a sequence of nodes (v0, . . . , vq−1) in G such that G includes the edges
v0 → v1 → · · · → vq−1. We define the length of P to be q. We define the weight of P to
be ωP :=

∑q−1
i=0 λvi

(N). We say P is a complete path if it is nonempty and and vq−1 has
no children in G.

Note that in defining paths, path weights, and complete paths, we are looking at the state
of affairs as of round N , the last round of execution that led to the creation of the protocol
graph G. In particular, path weights are defined in terms of local timers as of round N .

We can now characterize bottom-up timers as of round N in terms of path weights.
Specifically, for any node v in G, we have

βv(N) = min
P

ωP , (14)

where the minimum is taken of all complete paths P starting at v. It follows that for any
given nonnegative integer W , we have:

βv(N) ≥ W if and only if every complete path starting at v has weight at least
W .

(15)

4.5 The honest strategy
So far, we have described the logic of the L1 smart contract that acts as a “referee” to ensure
that all moves are legal and to declare a winner. However, we have yet to describe the
(offchain) logic of the honest party. We do that here.

4.5.1 The honest party’s initial move
We assume that the honest party has the states S0, S1, . . . , Sn and begins by computing the
Merkle tree whose leaves are the commitments to S1, . . . , Sn. Let span be the root of this
Merkle tree. The honest party submits a root creation move in round 1 using this value span.
This is the only move that the honest party submits in round 1. This move, when executed,
will add the honest root r† (which we defined in Section 4.4.5 as the correctly constructed
root node) to the protocol graph.

4.5.2 The honest party’s subsequent moves
Now suppose the protocol has executed rounds 1, . . . , t and no winner has been declared as of
round t. Consider the protocol graph G as of round t (which the honest party can compute
for itself). Recall the confirmation threshold parameter T introduced in Section 4.4.4 and
the notions of paths and path weights introduced in Section 4.4.5. The honest party submits
moves in round t + 1 as follows:
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For each complete path P in G which starts at r† and has weight less than T :
if P ends in a node v that is rivaled, then

if v is a nonterminal node, the honest party will submit a move to bisect v (if it
has not already done so),
otherwise, v must be a terminal node, and the honest party will submit a move
to prove v (again, if it has not already done so).

4.6 Execution Example
In this section we go over an example execution of single-level BoLD (see Fig. 1). Here, we
have n = 4. We assume in this example that the adversary’s base and span commitments
are valid commitments to sequences of states, but these sequences of states may be incorrect.
For brevity, we write a node as “[· · · ][· · · ]”, where first set of brackets encloses the sequence
of states committed to in the base commitment, while the second set of brackets encloses the
sequence of states committed to in the span commitment.

Initially, the honest party moves to create the honest root. As indicated in part (a) of
the figure, this move gets executed in round 5 of the protocol execution. We will annotate
each node with a superscipt indicating the current value of its local timer, adding a “+” to
that value if its timer is still ticking (meaning the node is unrivaled).

We see in part (b) that the adversary executes moves in round 12 to create a rival root
node and to bisect that node as well. We indicate the rivalry relation between nodes using
dashed lines. While the honest root’s local timer accumulated 7 rounds, it is now stopped
because it is rivaled. Seeing that the honest root is rivaled, the honest party submits a move
to bisect it. (The reader should note that in each part, new elements in the protocol graph,
both nodes and edges, are highlighted in red.)

We see in part (c) that the honest party’s bisection is executed in round 15. Note that
the left child of the honest root is actually identical to a node created by the adversary in
round 12. This illustrates how nodes can come to have multiple parents. While the left child
of the honest root is unrivaled, its right child is rivaled. So the honest party submits a move
to bisect that right child. (The reader should note that the edges of the honest tree are
highlighted with thicker arrows.)

We see in part (d) that in round 20, the honest party’s submitted bisection move has not
yet been executed. Instead, the adversary is able to execute moves to create another rival
root and to bisect that node as well. This bisection creates a node that rivals the left child of
the honest root. Seeing that this node is rivaled, the honest party submits a move to bisect
it. So now there are two bisection moves submitted by the honest party that are “in flight”.

We see in part (e) that in round 24 both these bisection moves are executed.
We see in part (f) that in round 29, the adversary bisects a node that creates a rival

of one of the honest node’s created in round 24. That node, denoted “[S0S1S2][S3]” in the
figure, is a terminal node. As such, the honest party submits a move to prove that node.

We see in part (g) that in round 35, the proof move submitted by the honest party is
executed. This created a proof node, which we also write as “[S0S1S2][S3]”, but one sees
that its local timer is ∞.

At this point, if no other moves are made by the adversary, the timers on all of the leaves
in the honest tree that are regular nodes will continue to tick. At the same time, for both
adversarial roots, there is at least one path along which all timers are stopped (while the
the local timer on the node denoted “[S0S∗

1 S∗
2 ][S∗

3 S∗
4 ]” will continue ticking and remain the

largest local timer in the graph, it will not help the adversary confirm an adversarial root).
Thus, so long as the confirmation threshold is high enough, the honest root will eventually
be confirmed while the adversarial roots will not be.
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<latexit sha1_base64="aTRGDhy8YivZupPfBhzduV7uYUA=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nNy3szmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4PjKvi1pBzdSFqbof2GWn6syBVombkzLkaAb2V6+fkCymQhOOlfJcJ9X+BEvNCKfTUi9TNMVkhAfUM1TgmCp/Mj9gis6N0kdRIk0Jjebq74kJjpUax6HpjLEeqmVvJv7neZmOrv0JE2mmqSCLRVHGkU7QLA3UZ5ISzceGYCKZ+SsiQywx0SazkgnBXT55lXRqVfey6tzVy41KHkcRTuEMKuDCFTTgFprQBgJTeIZXeLOerBfr3fpYtBasfOYY/sD6/AHIiJPg</latexit>

[S0][S1S2S3S4]

<latexit sha1_base64="e7Xx0nrmBzv7tC04aEbpIrJSeS4=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovQVUmqqMuCG5eV2ge0IUymk3boZBJmJkINxV9x40IRt/6HO//GaZuFth64cOace7l3TpBwprTjfFsrq2vrG5uFreL2zu7evn1w2FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+u0HKhWLxb0eJ9SL8ECwkBGsjeTbx92G76CG75qqesi8zj3k2yWn4syAlombkxLkqPv2V68fkzSiQhOOleq6TqK9DEvNCKeTYi9VNMFkhAe0a6jAEVVeNrt+gs6M0kdhLE0JjWbq74kMR0qNo8B0RlgP1aI3Ff/zuqkOr72MiSTVVJD5ojDlSMdoGgXqM0mJ5mNDMJHM3IrIEEtMtAmsaEJwF7+8TFrVintZce4uSrVyHkcBTuAUyuDCFdTgFurQBAKP8Ayv8GY9WS/Wu/Uxb12x8pkj+APr8wfpjpLc</latexit>

[S0S1S2][S3]

<latexit sha1_base64="aTRGDhy8YivZupPfBhzduV7uYUA=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nNy3szmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4PjKvi1pBzdSFqbof2GWn6syBVombkzLkaAb2V6+fkCymQhOOlfJcJ9X+BEvNCKfTUi9TNMVkhAfUM1TgmCp/Mj9gis6N0kdRIk0Jjebq74kJjpUax6HpjLEeqmVvJv7neZmOrv0JE2mmqSCLRVHGkU7QLA3UZ5ISzceGYCKZ+SsiQywx0SazkgnBXT55lXRqVfey6tzVy41KHkcRTuEMKuDCFTTgFprQBgJTeIZXeLOerBfr3fpYtBasfOYY/sD6/AHIiJPg</latexit>

[S0][S1S2S3S4]

<latexit sha1_base64="9A5k+szsBY/iAZf7JJL7vORhgVM=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0Wom5KIr41QcOOygn1AE8pkOmmHTiZh5kasofgrblwo4tb/cOffOGm70NZzuXA4517mzgkSwTU4zre1sLi0vLJaWCuub2xubds7uw0dp4qyOo1FrFoB0UxwyerAQbBWohiJAsGaweA695v3TGkeyzsYJsyPSE/ykFMCRurY+x6wB8jK5Hjk4bwwXJ117JJTccbA88SdkhKaotaxv7xuTNOISaCCaN12nQT8jCjgVLBR0Us1SwgdkB5rGypJxLSfja8f4SOjdHEYK9MS8Fj9vZGRSOthFJjJiEBfz3q5+J/XTiG89DMukxSYpJOHwlRgiHEeBe5yxSiIoSGEKm5uxbRPFKFgAiuaENzZL8+TxknFPa84t6elankaRwEdoENURi66QFV0g2qojih6RM/oFb1ZT9aL9W59TEYXrOnOHvoD6/MHJVeTow==</latexit>

(a) t = 5

<latexit sha1_base64="uNPP1jdgERfjgawh3hyoPniUa7s=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1iEuilJEXUjFNy4rGAf0IQymU7boZNJmLkRSyj4K25cKOLW73Dn3zhps9DWc7lwOOde5s4JYsE1OM63VVhZXVvfKG6WtrZ3dvfs/YOWjhJFWZNGIlKdgGgmuGRN4CBYJ1aMhIFg7WB8k/ntB6Y0j+Q9TGLmh2Qo+YBTAkbq2UcesEdIK8HZ1MNZYbh2az277FSdGfAycXNSRjkaPfvL60c0CZkEKojWXdeJwU+JAk4Fm5a8RLOY0DEZsq6hkoRM++ns/Ck+NUofDyJlWgKeqb83UhJqPQkDMxkSGOlFLxP/87oJDK78lMs4ASbp/KFBIjBEOMsC97liFMTEEEIVN7diOiKKUDCJlUwI7uKXl0mrVnUvqs7debleyeMoomN0girIRZeojm5RAzURRSl6Rq/ozXqyXqx362M+WrDynUP0B9bnD5gKk9w=</latexit>

(b) t = 12

<latexit sha1_base64="MH5jaDSnsl7HMYqjNYtrsftUIB4=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1iEuimJ+NoIBTcuK9gHNKVMppN26GQSZm7EEgr+ihsXirj1O9z5N07aLLT1XC4czrmXuXP8WHANjvNtFZaWV1bXiuuljc2t7R17d6+po0RR1qCRiFTbJ5oJLlkDOAjWjhUjoS9Yyx/dZH7rgSnNI3kP45h1QzKQPOCUgJF69oEH7BHSCj2ZeDgrDNfuec8uO1VnCrxI3JyUUY56z/7y+hFNQiaBCqJ1x3Vi6KZEAaeCTUpeollM6IgMWMdQSUKmu+n0/Ak+NkofB5EyLQFP1d8bKQm1Hoe+mQwJDPW8l4n/eZ0EgqtuymWcAJN09lCQCAwRzrLAfa4YBTE2hFDFza2YDokiFExiJROCO//lRdI8rboXVefurFyr5HEU0SE6QhXkoktUQ7eojhqIohQ9o1f0Zj1ZL9a79TEbLVj5zj76A+vzB54nk+A=</latexit>

(c) t = 15

<latexit sha1_base64="5CFk9Xph1z3MqIiAum/vPxB+Erc=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1iEuilJEXUjFNy4rGAf0IQymUzaoZMHMzdiCQV/xY0LRdz6He78GydtFtp6LhcO59zL3DleIrgCy/o2Siura+sb5c3K1vbO7p65f9BRcSopa9NYxLLnEcUEj1gbOAjWSyQjoSdY1xvf5H73gUnF4+geJglzQzKMeMApAS0NzCMH2CNkNf9s6uC8MFw3rIFZterWDHiZ2AWpogKtgfnl+DFNQxYBFUSpvm0l4GZEAqeCTStOqlhC6JgMWV/TiIRMudns/Ck+1YqPg1jqjgDP1N8bGQmVmoSengwJjNSil4v/ef0Ugis341GSAovo/KEgFRhinGeBfS4ZBTHRhFDJ9a2YjogkFHRiFR2CvfjlZdJp1O2LunV3Xm3WijjK6BidoBqy0SVqolvUQm1EUYae0St6M56MF+Pd+JiPloxi5xD9gfH5A5mpk90=</latexit>

(d) t = 20

<latexit sha1_base64="jLDft4KjyD7aSy8kYjultefrJSw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPbjn/XLVrblzkFXi5aQKORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmpVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSeui5l3V3PvLar2Sx1GEE6jAGXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9dfjM4=</latexit>

0+

<latexit sha1_base64="lW8f3h3KYdKFdeOobKgzH9b9uFs=">AAACAXicbVC7SgNBFL0bXzG+Vm0Em8EgSRV2Y1DLgI1lJOYBm2WZnUySIbMPZmaFsMTGX7GxUMTWv7Dzb5wkW2jigXs5nHMvM/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZrm42anpVXRcl3Wol1zOLVsWaA60SOyNFyNDwzK9ePyJJQENFOJbSsa1YuSkWihFOp4VeImmMyRgPqaNpiAMq3XR+wRSda6WPBpHQFSo0V39vpDiQchL4ejLAaiSXvZn4n+ckanDtpiyME0VDsnhokHCkIjSLA/WZoETxiSaYCKb/isgIC0yUDq2gQ7CXT14l7WrFvqxYd7VivZzFkYdTOIMy2HAFdbiFBrSAwCM8wyu8GU/Gi/FufCxGc0a2cwx/YHz+ADudlBg=</latexit>

[S0][S1S2S
0
3S

0
4]

<latexit sha1_base64="ee1VcVLW7NPQbfU35LVYWHX6eZU=">AAACAnicbVC7SgNBFL0bXzG+Vq3EZjBIUoXdGNQyYGMZiXnAZllmJ5NkyOyDmVkhLMHGX7GxUMTWr7Dzb5wkW2jigQtnzrmXO/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZqOnZuqou0q+Lkqa1kuuZRatizYFWiZ2RImRoeOZXrx+RJKChIhxL6dhWrNwUC8UIp9NCL5E0xmSMh9TRNMQBlW46P2GKzrXSR4NI6AoVmqu/J1IcSDkJfN0ZYDWSy95M/M9zEjW4dlMWxomiIVksGiQcqQjN8kB9JihRfKIJJoLpvyIywgITpVMr6BDs5ZNXSbtasS8r1l2tWC9nceThFM6gDDZcQR1uoQEtIPAIz/AKb8aT8WK8Gx+L1pyRzRzDHxifP5OWlEI=</latexit>

[S0S1S2][S
0
3S

0
4]

<latexit sha1_base64="1Gt/QsTATpZQb34L9qmxlph2uYk=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovQVUmKqMuCG5eV2gekIUymk3boZBJmJoUS+iduXCji1j9x5984bbPQ1gP3cjjnXubOCVPOlHacb6u0tb2zu1ferxwcHh2f2KdnXZVkktAOSXgi+yFWlDNBO5ppTvuppDgOOe2Fk/uF35tSqVginvQspX6MR4JFjGBtpMC2vXbg+Mh0F7WDho8Cu+rUnSXQJnELUoUCrcD+GgwTksVUaMKxUp7rpNrPsdSMcDqvDDJFU0wmeEQ9QwWOqfLz5eVzdGWUIYoSaUpotFR/b+Q4VmoWh2Yyxnqs1r2F+J/nZTq683Mm0kxTQVYPRRlHOkGLGNCQSUo0nxmCiWTmVkTGWGKiTVgVE4K7/uVN0m3U3Zu683hdbdaKOMpwAZdQAxduoQkP0IIOEJjCM7zCm5VbL9a79bEaLVnFzjn8gfX5A7efka8=</latexit>

[S0][S1S2]

<latexit sha1_base64="8y1JVRm1rJH4Xb5hurSArFFz7TY=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR67HgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KFbfqLkDWiZeTCuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppX1W9m6rbvK7Uy3kcBTiHMlyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ae7uMoA==</latexit>

7
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="jLDft4KjyD7aSy8kYjultefrJSw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPbjn/XLVrblzkFXi5aQKORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmpVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSeui5l3V3PvLar2Sx1GEE6jAGXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9dfjM4=</latexit>

0+
<latexit sha1_base64="jLDft4KjyD7aSy8kYjultefrJSw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPbjn/XLVrblzkFXi5aQKORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmpVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSeui5l3V3PvLar2Sx1GEE6jAGXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9dfjM4=</latexit>

0+

<latexit sha1_base64="C+QV/LL7E5iMf9xGcuCp0GoF1ss=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nk7XszmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4qBW4pmo+Mq8Lw+p+YJedqjMHWiVuTsqQoxnYX71+QrKYCk04VspznVT7Eyw1I5xOS71M0RSTER5Qz1CBY6r8yfyAKTo3Sh9FiTQlNJqrvycmOFZqHIemM8Z6qJa9mfif52U6uvYnTKSZpoIsFkUZRzpBszRQn0lKNB8bgolk5q+IDLHERJvMSiYEd/nkVdKpVd3LqnNXLzcqeRxFOIUzqIALV9CAW2hCGwhM4Rle4c16sl6sd+tj0Vqw8plj+APr8wfG1pPg</latexit>

[S0S1S2][S3S4]

<latexit sha1_base64="aTRGDhy8YivZupPfBhzduV7uYUA=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nNy3szmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4PjKvi1pBzdSFqbof2GWn6syBVombkzLkaAb2V6+fkCymQhOOlfJcJ9X+BEvNCKfTUi9TNMVkhAfUM1TgmCp/Mj9gis6N0kdRIk0Jjebq74kJjpUax6HpjLEeqmVvJv7neZmOrv0JE2mmqSCLRVHGkU7QLA3UZ5ISzceGYCKZ+SsiQywx0SazkgnBXT55lXRqVfey6tzVy41KHkcRTuEMKuDCFTTgFprQBgJTeIZXeLOerBfr3fpYtBasfOYY/sD6/AHIiJPg</latexit>

[S0][S1S2S3S4]
<latexit sha1_base64="lW8f3h3KYdKFdeOobKgzH9b9uFs=">AAACAXicbVC7SgNBFL0bXzG+Vm0Em8EgSRV2Y1DLgI1lJOYBm2WZnUySIbMPZmaFsMTGX7GxUMTWv7Dzb5wkW2jigXs5nHMvM/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZrm42anpVXRcl3Wol1zOLVsWaA60SOyNFyNDwzK9ePyJJQENFOJbSsa1YuSkWihFOp4VeImmMyRgPqaNpiAMq3XR+wRSda6WPBpHQFSo0V39vpDiQchL4ejLAaiSXvZn4n+ckanDtpiyME0VDsnhokHCkIjSLA/WZoETxiSaYCKb/isgIC0yUDq2gQ7CXT14l7WrFvqxYd7VivZzFkYdTOIMy2HAFdbiFBrSAwCM8wyu8GU/Gi/FufCxGc0a2cwx/YHz+ADudlBg=</latexit>

[S0][S1S2S
0
3S

0
4]

<latexit sha1_base64="ee1VcVLW7NPQbfU35LVYWHX6eZU=">AAACAnicbVC7SgNBFL0bXzG+Vq3EZjBIUoXdGNQyYGMZiXnAZllmJ5NkyOyDmVkhLMHGX7GxUMTWr7Dzb5wkW2jigQtnzrmXO/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZqOnZuqou0q+Lkqa1kuuZRatizYFWiZ2RImRoeOZXrx+RJKChIhxL6dhWrNwUC8UIp9NCL5E0xmSMh9TRNMQBlW46P2GKzrXSR4NI6AoVmqu/J1IcSDkJfN0ZYDWSy95M/M9zEjW4dlMWxomiIVksGiQcqQjN8kB9JihRfKIJJoLpvyIywgITpVMr6BDs5ZNXSbtasS8r1l2tWC9nceThFM6gDDZcQR1uoQEtIPAIz/AKb8aT8WK8Gx+L1pyRzRzDHxifP5OWlEI=</latexit>

[S0S1S2][S
0
3S

0
4]

<latexit sha1_base64="1Gt/QsTATpZQb34L9qmxlph2uYk=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovQVUmKqMuCG5eV2gekIUymk3boZBJmJoUS+iduXCji1j9x5984bbPQ1gP3cjjnXubOCVPOlHacb6u0tb2zu1ferxwcHh2f2KdnXZVkktAOSXgi+yFWlDNBO5ppTvuppDgOOe2Fk/uF35tSqVginvQspX6MR4JFjGBtpMC2vXbg+Mh0F7WDho8Cu+rUnSXQJnELUoUCrcD+GgwTksVUaMKxUp7rpNrPsdSMcDqvDDJFU0wmeEQ9QwWOqfLz5eVzdGWUIYoSaUpotFR/b+Q4VmoWh2Yyxnqs1r2F+J/nZTq683Mm0kxTQVYPRRlHOkGLGNCQSUo0nxmCiWTmVkTGWGKiTVgVE4K7/uVN0m3U3Zu683hdbdaKOMpwAZdQAxduoQkP0IIOEJjCM7zCm5VbL9a79bEaLVnFzjn8gfX5A7efka8=</latexit>

[S0][S1S2]

<latexit sha1_base64="8y1JVRm1rJH4Xb5hurSArFFz7TY=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR67HgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KFbfqLkDWiZeTCuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppX1W9m6rbvK7Uy3kcBTiHMlyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ae7uMoA==</latexit>

7
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="WNTZyBWzJyFRKRq+HU5Vdk8e+QM=">AAAB6XicbVBNS8NAEJ34WetX1aOXpUUQhJKoqMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKDxdnvVLFrbozkGXi5aQCOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2aXTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPEzoZIUuWLzRWEqCcZk+jbpC80ZyrEllGlhbyVsSDVlaMMp2hC8xZeXSfO86l1V3fvLSq2cx1GAYyjDKXhwDTW4gzo0gEEIz/AKb87IeXHenY9564qTzxzBHzifP9vujNE=</latexit>

3+
<latexit sha1_base64="uCWguNiHC2YD/OrSYDhBxf3++jA=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIV9Vjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqXPZLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS966rbuKrUynkcBTiFMpyDBzdQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBdauMnA==</latexit>

3
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="XOY8qiYW8FVCXn2vPrshvfEbNCk=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUdaiSUgFjJRbGotKH1KaR4zqtVceJbAepijqw8CssDCDEykew8Tc4bQZouZKPjs65V9f3eBGjUlnWt5Hb2Nza3snvFvb2Dw6PzOOTjgxjgUkbhywUPQ9JwignbUUVI71IEBR4jHS96U3qdx+IkDTk92oWESdAY059ipHSkmsW+y3XcjTYw0rLraVwkUJ9WHFcs2RVrUXBdWJnpASyarrm12AU4jggXGGGpOzbVqScBAlFMSPzwiCWJEJ4isakrylHAZFOsjhiDs+1MoJ+KPTjCi7U3xMJCqScBZ7uDJCayFUvFf/z+rHyr52E8ihWhOPlIj9mUIUwTQSOqCBYsZkmCAuq/wrxBAmElc6toEOwV09eJ51a1b6sWnf1UqOcxZEHRXAGysAGV6ABbkETtAEGj+AZvII348l4Md6Nj2VrzshmTsGfMj5/APcOlag=</latexit>

[S0][S
⇤
1S

⇤
2S

⇤
3S

⇤
4 ]

<latexit sha1_base64="C+QV/LL7E5iMf9xGcuCp0GoF1ss=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nk7XszmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4qBW4pmo+Mq8Lw+p+YJedqjMHWiVuTsqQoxnYX71+QrKYCk04VspznVT7Eyw1I5xOS71M0RSTER5Qz1CBY6r8yfyAKTo3Sh9FiTQlNJqrvycmOFZqHIemM8Z6qJa9mfif52U6uvYnTKSZpoIsFkUZRzpBszRQn0lKNB8bgolk5q+IDLHERJvMSiYEd/nkVdKpVd3LqnNXLzcqeRxFOIUzqIALV9CAW2hCGwhM4Rle4c16sl6sd+tj0Vqw8plj+APr8wfG1pPg</latexit>

[S0S1S2][S3S4]

<latexit sha1_base64="aTRGDhy8YivZupPfBhzduV7uYUA=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nNy3szmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4PjKvi1pBzdSFqbof2GWn6syBVombkzLkaAb2V6+fkCymQhOOlfJcJ9X+BEvNCKfTUi9TNMVkhAfUM1TgmCp/Mj9gis6N0kdRIk0Jjebq74kJjpUax6HpjLEeqmVvJv7neZmOrv0JE2mmqSCLRVHGkU7QLA3UZ5ISzceGYCKZ+SsiQywx0SazkgnBXT55lXRqVfey6tzVy41KHkcRTuEMKuDCFTTgFprQBgJTeIZXeLOerBfr3fpYtBasfOYY/sD6/AHIiJPg</latexit>

[S0][S1S2S3S4]
<latexit sha1_base64="lW8f3h3KYdKFdeOobKgzH9b9uFs=">AAACAXicbVC7SgNBFL0bXzG+Vm0Em8EgSRV2Y1DLgI1lJOYBm2WZnUySIbMPZmaFsMTGX7GxUMTWv7Dzb5wkW2jigXs5nHMvM/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZrm42anpVXRcl3Wol1zOLVsWaA60SOyNFyNDwzK9ePyJJQENFOJbSsa1YuSkWihFOp4VeImmMyRgPqaNpiAMq3XR+wRSda6WPBpHQFSo0V39vpDiQchL4ejLAaiSXvZn4n+ckanDtpiyME0VDsnhokHCkIjSLA/WZoETxiSaYCKb/isgIC0yUDq2gQ7CXT14l7WrFvqxYd7VivZzFkYdTOIMy2HAFdbiFBrSAwCM8wyu8GU/Gi/FufCxGc0a2cwx/YHz+ADudlBg=</latexit>

[S0][S1S2S
0
3S

0
4]

<latexit sha1_base64="ee1VcVLW7NPQbfU35LVYWHX6eZU=">AAACAnicbVC7SgNBFL0bXzG+Vq3EZjBIUoXdGNQyYGMZiXnAZllmJ5NkyOyDmVkhLMHGX7GxUMTWr7Dzb5wkW2jigQtnzrmXO/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZqOnZuqou0q+Lkqa1kuuZRatizYFWiZ2RImRoeOZXrx+RJKChIhxL6dhWrNwUC8UIp9NCL5E0xmSMh9TRNMQBlW46P2GKzrXSR4NI6AoVmqu/J1IcSDkJfN0ZYDWSy95M/M9zEjW4dlMWxomiIVksGiQcqQjN8kB9JihRfKIJJoLpvyIywgITpVMr6BDs5ZNXSbtasS8r1l2tWC9nceThFM6gDDZcQR1uoQEtIPAIz/AKb8aT8WK8Gx+L1pyRzRzDHxifP5OWlEI=</latexit>

[S0S1S2][S
0
3S

0
4]

<latexit sha1_base64="1Gt/QsTATpZQb34L9qmxlph2uYk=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovQVUmKqMuCG5eV2gekIUymk3boZBJmJoUS+iduXCji1j9x5984bbPQ1gP3cjjnXubOCVPOlHacb6u0tb2zu1ferxwcHh2f2KdnXZVkktAOSXgi+yFWlDNBO5ppTvuppDgOOe2Fk/uF35tSqVginvQspX6MR4JFjGBtpMC2vXbg+Mh0F7WDho8Cu+rUnSXQJnELUoUCrcD+GgwTksVUaMKxUp7rpNrPsdSMcDqvDDJFU0wmeEQ9QwWOqfLz5eVzdGWUIYoSaUpotFR/b+Q4VmoWh2Yyxnqs1r2F+J/nZTq683Mm0kxTQVYPRRlHOkGLGNCQSUo0nxmCiWTmVkTGWGKiTVgVE4K7/uVN0m3U3Zu683hdbdaKOMpwAZdQAxduoQkP0IIOEJjCM7zCm5VbL9a79bEaLVnFzjn8gfX5A7efka8=</latexit>

[S0][S1S2]

<latexit sha1_base64="8y1JVRm1rJH4Xb5hurSArFFz7TY=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR67HgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KFbfqLkDWiZeTCuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppX1W9m6rbvK7Uy3kcBTiHMlyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ae7uMoA==</latexit>

7
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="uCWguNiHC2YD/OrSYDhBxf3++jA=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIV9Vjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqXPZLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS966rbuKrUynkcBTiFMpyDBzdQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBdauMnA==</latexit>

3
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0<latexit sha1_base64="0GSM7A+MD4lmTO35F6/L9iGqjbI=">AAAB+nicbVDLTgIxFL2DL8TXoEs3jcSEsCAzxKhLEjcuMcgjGYZJpxRo6DzSdjRk5FPcuNAYt36JO//GArNQ8CT35uSce9Pb48ecSWVZ30ZuY3Nreye/W9jbPzg8MovHbRklgtAWiXgkuj6WlLOQthRTnHZjQXHgc9rxJzdzv/NAhWRReK+mMXUDPArZkBGstOSZRafpWa5udr/S9Gr9iuuZJatqLYDWiZ2REmRoeOZXbxCRJKChIhxL6dhWrNwUC8UIp7NCL5E0xmSCR9TRNMQBlW66OH2GzrUyQMNI6AoVWqi/N1IcSDkNfD0ZYDWWq95c/M9zEjW8dlMWxomiIVk+NEw4UhGa54AGTFCi+FQTTATTtyIyxgITpdMq6BDs1S+vk3atal9WrbuLUr2cxZGHUziDMthwBXW4hQa0gMAjPMMrvBlPxovxbnwsR3NGtnMCf2B8/gDuwJJp</latexit>[S0][S
⇤
1S

⇤
2 ]

<latexit sha1_base64="PkCsget2oAj+PwJjccP6hG0ZqQs=">AAACBXicbZC7TsMwFIadcivlFmCEwaJCqjpUSamAsRILY1HpRWrTyHGd1qrjRLaDVEVdWHgVFgYQYuUd2HgbnDYDtPySpc//OUf2+b2IUaks69vIra1vbG7ltws7u3v7B+bhUVuGscCkhUMWiq6HJGGUk5aiipFuJAgKPEY63uQmrXceiJA05PdqGhEnQCNOfYqR0pZrnvaargWbrj0oN93qoOzo+0XKNc2uWbQq1lxwFewMiiBTwzW/+sMQxwHhCjMkZc+2IuUkSCiKGZkV+rEkEcITNCI9jRwFRDrJfIsZPNfOEPqh0IcrOHd/TyQokHIaeLozQGosl2up+V+tFyv/2kkoj2JFOF485McMqhCmkcAhFQQrNtWAsKD6rxCPkUBY6eAKOgR7eeVVaFcr9mXFuqsV66Usjjw4AWegBGxwBergFjRAC2DwCJ7BK3gznowX4934WLTmjGzmGPyR8fkDT2+V0g==</latexit>

[S0S
⇤
1S

⇤
2 ][S

⇤
3S

⇤
4 ]

<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0
<latexit sha1_base64="jLDft4KjyD7aSy8kYjultefrJSw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPbjn/XLVrblzkFXi5aQKORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmpVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSeui5l3V3PvLar2Sx1GEE6jAGXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9dfjM4=</latexit>

0+
<latexit sha1_base64="v2Dtcfo0UUApoWCvtCsP4vkeiIE=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KFbfqLkDWiZeTCuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20r6reTdVtXlfq5TyOApxDGS7Bg1uowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AfT+MoQ==</latexit>

8

<latexit sha1_base64="XOY8qiYW8FVCXn2vPrshvfEbNCk=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUdaiSUgFjJRbGotKH1KaR4zqtVceJbAepijqw8CssDCDEykew8Tc4bQZouZKPjs65V9f3eBGjUlnWt5Hb2Nza3snvFvb2Dw6PzOOTjgxjgUkbhywUPQ9JwignbUUVI71IEBR4jHS96U3qdx+IkDTk92oWESdAY059ipHSkmsW+y3XcjTYw0rLraVwkUJ9WHFcs2RVrUXBdWJnpASyarrm12AU4jggXGGGpOzbVqScBAlFMSPzwiCWJEJ4isakrylHAZFOsjhiDs+1MoJ+KPTjCi7U3xMJCqScBZ7uDJCayFUvFf/z+rHyr52E8ihWhOPlIj9mUIUwTQSOqCBYsZkmCAuq/wrxBAmElc6toEOwV09eJ51a1b6sWnf1UqOcxZEHRXAGysAGV6ABbkETtAEGj+AZvII348l4Md6Nj2VrzshmTsGfMj5/APcOlag=</latexit>

[S0][S
⇤
1S

⇤
2S

⇤
3S

⇤
4 ]

<latexit sha1_base64="C+QV/LL7E5iMf9xGcuCp0GoF1ss=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nk7XszmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4qBW4pmo+Mq8Lw+p+YJedqjMHWiVuTsqQoxnYX71+QrKYCk04VspznVT7Eyw1I5xOS71M0RSTER5Qz1CBY6r8yfyAKTo3Sh9FiTQlNJqrvycmOFZqHIemM8Z6qJa9mfif52U6uvYnTKSZpoIsFkUZRzpBszRQn0lKNB8bgolk5q+IDLHERJvMSiYEd/nkVdKpVd3LqnNXLzcqeRxFOIUzqIALV9CAW2hCGwhM4Rle4c16sl6sd+tj0Vqw8plj+APr8wfG1pPg</latexit>

[S0S1S2][S3S4]

<latexit sha1_base64="aTRGDhy8YivZupPfBhzduV7uYUA=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nNy3szmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4PjKvi1pBzdSFqbof2GWn6syBVombkzLkaAb2V6+fkCymQhOOlfJcJ9X+BEvNCKfTUi9TNMVkhAfUM1TgmCp/Mj9gis6N0kdRIk0Jjebq74kJjpUax6HpjLEeqmVvJv7neZmOrv0JE2mmqSCLRVHGkU7QLA3UZ5ISzceGYCKZ+SsiQywx0SazkgnBXT55lXRqVfey6tzVy41KHkcRTuEMKuDCFTTgFprQBgJTeIZXeLOerBfr3fpYtBasfOYY/sD6/AHIiJPg</latexit>

[S0][S1S2S3S4]
<latexit sha1_base64="lW8f3h3KYdKFdeOobKgzH9b9uFs=">AAACAXicbVC7SgNBFL0bXzG+Vm0Em8EgSRV2Y1DLgI1lJOYBm2WZnUySIbMPZmaFsMTGX7GxUMTWv7Dzb5wkW2jigXs5nHMvM/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZrm42anpVXRcl3Wol1zOLVsWaA60SOyNFyNDwzK9ePyJJQENFOJbSsa1YuSkWihFOp4VeImmMyRgPqaNpiAMq3XR+wRSda6WPBpHQFSo0V39vpDiQchL4ejLAaiSXvZn4n+ckanDtpiyME0VDsnhokHCkIjSLA/WZoETxiSaYCKb/isgIC0yUDq2gQ7CXT14l7WrFvqxYd7VivZzFkYdTOIMy2HAFdbiFBrSAwCM8wyu8GU/Gi/FufCxGc0a2cwx/YHz+ADudlBg=</latexit>

[S0][S1S2S
0
3S

0
4]

<latexit sha1_base64="ee1VcVLW7NPQbfU35LVYWHX6eZU=">AAACAnicbVC7SgNBFL0bXzG+Vq3EZjBIUoXdGNQyYGMZiXnAZllmJ5NkyOyDmVkhLMHGX7GxUMTWr7Dzb5wkW2jigQtnzrmXO/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZqOnZuqou0q+Lkqa1kuuZRatizYFWiZ2RImRoeOZXrx+RJKChIhxL6dhWrNwUC8UIp9NCL5E0xmSMh9TRNMQBlW46P2GKzrXSR4NI6AoVmqu/J1IcSDkJfN0ZYDWSy95M/M9zEjW4dlMWxomiIVksGiQcqQjN8kB9JihRfKIJJoLpvyIywgITpVMr6BDs5ZNXSbtasS8r1l2tWC9nceThFM6gDDZcQR1uoQEtIPAIz/AKb8aT8WK8Gx+L1pyRzRzDHxifP5OWlEI=</latexit>

[S0S1S2][S
0
3S

0
4]

<latexit sha1_base64="1Gt/QsTATpZQb34L9qmxlph2uYk=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovQVUmKqMuCG5eV2gekIUymk3boZBJmJoUS+iduXCji1j9x5984bbPQ1gP3cjjnXubOCVPOlHacb6u0tb2zu1ferxwcHh2f2KdnXZVkktAOSXgi+yFWlDNBO5ppTvuppDgOOe2Fk/uF35tSqVginvQspX6MR4JFjGBtpMC2vXbg+Mh0F7WDho8Cu+rUnSXQJnELUoUCrcD+GgwTksVUaMKxUp7rpNrPsdSMcDqvDDJFU0wmeEQ9QwWOqfLz5eVzdGWUIYoSaUpotFR/b+Q4VmoWh2Yyxnqs1r2F+J/nZTq683Mm0kxTQVYPRRlHOkGLGNCQSUo0nxmCiWTmVkTGWGKiTVgVE4K7/uVN0m3U3Zu683hdbdaKOMpwAZdQAxduoQkP0IIOEJjCM7zCm5VbL9a79bEaLVnFzjn8gfX5A7efka8=</latexit>

[S0][S1S2]

<latexit sha1_base64="8y1JVRm1rJH4Xb5hurSArFFz7TY=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR67HgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KFbfqLkDWiZeTCuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppX1W9m6rbvK7Uy3kcBTiHMlyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ae7uMoA==</latexit>

7
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="uCWguNiHC2YD/OrSYDhBxf3++jA=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIV9Vjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqXPZLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS966rbuKrUynkcBTiFMpyDBzdQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBdauMnA==</latexit>

3
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0<latexit sha1_base64="0GSM7A+MD4lmTO35F6/L9iGqjbI=">AAAB+nicbVDLTgIxFL2DL8TXoEs3jcSEsCAzxKhLEjcuMcgjGYZJpxRo6DzSdjRk5FPcuNAYt36JO//GArNQ8CT35uSce9Pb48ecSWVZ30ZuY3Nreye/W9jbPzg8MovHbRklgtAWiXgkuj6WlLOQthRTnHZjQXHgc9rxJzdzv/NAhWRReK+mMXUDPArZkBGstOSZRafpWa5udr/S9Gr9iuuZJatqLYDWiZ2REmRoeOZXbxCRJKChIhxL6dhWrNwUC8UIp7NCL5E0xmSCR9TRNMQBlW66OH2GzrUyQMNI6AoVWqi/N1IcSDkNfD0ZYDWWq95c/M9zEjW8dlMWxomiIVk+NEw4UhGa54AGTFCi+FQTTATTtyIyxgITpdMq6BDs1S+vk3atal9WrbuLUr2cxZGHUziDMthwBXW4hQa0gMAjPMMrvBlPxovxbnwsR3NGtnMCf2B8/gDuwJJp</latexit>[S0][S
⇤
1S

⇤
2 ]

<latexit sha1_base64="PkCsget2oAj+PwJjccP6hG0ZqQs=">AAACBXicbZC7TsMwFIadcivlFmCEwaJCqjpUSamAsRILY1HpRWrTyHGd1qrjRLaDVEVdWHgVFgYQYuUd2HgbnDYDtPySpc//OUf2+b2IUaks69vIra1vbG7ltws7u3v7B+bhUVuGscCkhUMWiq6HJGGUk5aiipFuJAgKPEY63uQmrXceiJA05PdqGhEnQCNOfYqR0pZrnvaargWbrj0oN93qoOzo+0XKNc2uWbQq1lxwFewMiiBTwzW/+sMQxwHhCjMkZc+2IuUkSCiKGZkV+rEkEcITNCI9jRwFRDrJfIsZPNfOEPqh0IcrOHd/TyQokHIaeLozQGosl2up+V+tFyv/2kkoj2JFOF485McMqhCmkcAhFQQrNtWAsKD6rxCPkUBY6eAKOgR7eeVVaFcr9mXFuqsV66Usjjw4AWegBGxwBergFjRAC2DwCJ7BK3gznowX4934WLTmjGzmGPyR8fkDT2+V0g==</latexit>

[S0S
⇤
1S

⇤
2 ][S

⇤
3S

⇤
4 ]

<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0
<latexit sha1_base64="v2Dtcfo0UUApoWCvtCsP4vkeiIE=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KFbfqLkDWiZeTCuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20r6reTdVtXlfq5TyOApxDGS7Bg1uowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AfT+MoQ==</latexit>

8

<latexit sha1_base64="sCrikl2LJef3tbg+/lmHHxEsEHY=">AAAB/XicbVDJSgNBEO2JW4xbXG5eGoMQL2EmBPUiBLx4jGAWyITQ06kkTXoWumvEOAR/xYsHRbz6H978GzvJHDTxFQWP96ro6udFUmi07W8rs7K6tr6R3cxtbe/s7uX3Dxo6jBWHOg9lqFoe0yBFAHUUKKEVKWC+J6Hpja6nfvMelBZhcIfjCDo+GwSiLzhDI3XzRy7CAyZFOJu4dFp4Va508wW7ZM9Al4mTkgJJUevmv9xeyGMfAuSSad127Ag7CVMouIRJzo01RIyP2ADahgbMB91JZtdP6KlRerQfKtMB0pn6eyNhvtZj3zOTPsOhXvSm4n9eO8b+ZScRQRQjBHz+UD+WFEM6jYL2hAKOcmwI40qYWykfMsU4msByJgRn8cvLpFEuOecl+7ZSqBbTOLLkmJyQInHIBamSG1IjdcLJI3kmr+TNerJerHfrYz6asdKdQ/IH1ucPRd6TuA==</latexit>

(e) t = 24

<latexit sha1_base64="DhVbFHoLHrTjWuneFh4V1Ldons8=">AAAB+3icbVDLTsJAFL3FF+Kr4tLNRGLCirRo1CWJG5cY5JGUppkOU5gwnTYzUyMh/IobFxrj1h9x5984QBcKnuQmZ865N/fOCVPOlHacb6uwsbm1vVPcLe3tHxwe2cfljkoySWibJDyRvRArypmgbc00p71UUhyHnHbD8e3c7z5SqVgiHvQkpX6Mh4JFjGBtpMAue63AQa3ANVX3zePCD+yKU3MWQOvEzUkFcjQD+6s/SEgWU6EJx0p5rpNqf4qlZoTTWamfKZpiMsZD6hkqcEyVP13cPkPnRhmgKJGmhEYL9ffEFMdKTeLQdMZYj9SqNxf/87xMRzf+lIk001SQ5aIo40gnaB4EGjBJieYTQzCRzNyKyAhLTLSJq2RCcFe/vE469Zp7VXPuLyuNah5HEU7hDKrgwjU04A6a0AYCT/AMr/BmzawX6936WLYWrHzmBP7A+vwBNKOSiA==</latexit>

[S0S1S2][S3]
<latexit sha1_base64="xmG3CBiWULa757Kr75jhloilWnM=">AAACAHicbVBNT8JAFHzFL8SvqgcPXjYSE06kRaIeSbx4xCBIUppmu2xhw3bb7G5NCOHiX/HiQWO8+jO8+W9coAcFJ5lkMvNedt+EKWdKO863VVhb39jcKm6Xdnb39g/sw6OOSjJJaJskPJHdECvKmaBtzTSn3VRSHIecPoSjm1n+8EilYom41+OU+jEeCBYxgrWxAvvEawUOagWuYc3wwkfGqfuBXXaqzhxoVbi5KEOOZmB/9foJyWIqNOFYKc91Uu1PsNSMcDot9TJFU0xGeEA9IwWOqfIn8wOm6Nw4fRQl0lBoNHd/b0xwrNQ4Ds1kjPVQLWcz87/My3R07U+YSDNNBVk8FGUc6QTN2kB9JinRfGwEJpKZvyIyxBITbTormRLc5ZNXRadWdS+rzl293KjkdRThFM6gAi5cQQNuoQltIDCFZ3iFN+vJerHerY/FaMHKd47hD6zPH8YAk+A=</latexit>

[S0S1S2S3][S4]
<latexit sha1_base64="W/UXPFzTb6CbDHWYot1MrOZR2eo=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahp5KIqMeCF4+V2g9IQ9hsN+3SzW7YnQgl9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5USq4Adf9dkobm1vbO+Xdyt7+weFR9fika1SmKetQJZTuR8QwwSXrAAfB+qlmJIkE60WTu7nfe2LacCUfYZqyICEjyWNOCVjJ99uhG/i4HXpBWK25DXcBvE68gtRQgVZY/RoMFc0SJoEKYozvuSkEOdHAqWCzyiAzLCV0QkbMt1SShJkgX5w8wxdWGeJYaVsS8EL9PZGTxJhpEtnOhMDYrHpz8T/PzyC+DXIu0wyYpMtFcSYwKDz/Hw+5ZhTE1BJCNbe3YjommlCwKVVsCN7qy+uke9nwrhvuw1WtWS/iKKMzdI7qyEM3qInuUQt1EEUKPaNX9OaA8+K8Ox/L1pJTzJyiP3A+fwC5u5Ao</latexit>

[S0][S1]

<latexit sha1_base64="JKhMPoR7AqmST0AOHUVHT5OHD7I=">AAAB6XicbVBNS8NAEJ34WetX1aOXpUUQhJJIUY8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHmoX/VLFrbpzkFXi5aQCORr90ldvELM04gqZpMZ0PTdBP6MaBZN8WuylhieUjemQdy1VNOLGz+aXTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2hC85ZdXSeuy6l1V3ftapV7O4yjAKZThHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPH91zjNI=</latexit>

4+

<latexit sha1_base64="jLDft4KjyD7aSy8kYjultefrJSw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPbjn/XLVrblzkFXi5aQKORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmpVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSeui5l3V3PvLar2Sx1GEE6jAGXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9dfjM4=</latexit>

0+ <latexit sha1_base64="jLDft4KjyD7aSy8kYjultefrJSw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPbjn/XLVrblzkFXi5aQKORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmpVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSeui5l3V3PvLar2Sx1GEE6jAGXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9dfjM4=</latexit>0+
<latexit sha1_base64="jLDft4KjyD7aSy8kYjultefrJSw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPbjn/XLVrblzkFXi5aQKORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmpVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSeui5l3V3PvLar2Sx1GEE6jAGXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9dfjM4=</latexit>

0+
<latexit sha1_base64="jLDft4KjyD7aSy8kYjultefrJSw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPbjn/XLVrblzkFXi5aQKORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmpVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSeui5l3V3PvLar2Sx1GEE6jAGXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9dfjM4=</latexit>

0+

<latexit sha1_base64="F1Krp2q+eaAAHZF88UM/Hprj+e8=">AAAB/HicbVDLTsJAFL3FF+KrytLNRGJkRVo06pLEjUsMgiSlaabDFCZMH5mZmjQN/oobFxrj1g9x5984QBcKnuQmZ865N/fO8RPOpLKsb6O0tr6xuVXeruzs7u0fmIdHPRmngtAuiXks+j6WlLOIdhVTnPYTQXHoc/rgT25m/sMjFZLF0b3KEuqGeBSxgBGstOSZVafjWajj2bqarn6cn7meWbMa1hxoldgFqUGBtmd+DYYxSUMaKcKxlI5tJcrNsVCMcDqtDFJJE0wmeEQdTSMcUunm8+On6FQrQxTEQlek0Fz9PZHjUMos9HVniNVYLnsz8T/PSVVw7eYsSlJFI7JYFKQcqRjNkkBDJihRPNMEE8H0rYiMscBE6bwqOgR7+curpNds2JcN6+6i1qoXcZThGE6gDjZcQQtuoQ1dIJDBM7zCm/FkvBjvxseitWQUM1X4A+PzB5nskrk=</latexit>

[S0S1S2][S
0
3]

<latexit sha1_base64="5b1TThqnj7pgAoQpOoWmskausVA=">AAACAnicbVC7SgNBFL0bXzG+Vq3EZjBIUoXdGNQyYGMZiXnAZllmJ5NkyOyDmVkhLMHGX7GxUMTWr7Dzb5wkW2jigQOHc+5l5h4/5kwqy/o2cmvrG5tb+e3Czu7e/oF5eNSWUSIIbZGIR6LrY0k5C2lLMcVpNxYUBz6nHX98M8s7D1RIFoX3ahJTN8DDkA0YwUpbnnniND0LNT1bs6p5UXKRtmol1zOLVsWaA60KOxNFyNDwzK9ePyJJQENFOJbSsa1YuSkWihFOp4VeImmMyRgPqaNliAMq3XR+whSda6ePBpHQDBWau783UhxIOQl8PRlgNZLL2cz8L3MSNbh2UxbGiaIhWTw0SDhSEZr1gfpMUKL4RAtMBNN/RWSEBSZKt1bQJdjLJ6+KdrViX1asu1qxXs7qyMMpnEEZbLiCOtxCA1pA4BGe4RXejCfjxXg3PhajOSPbOYY/MD5/AJJWlEI=</latexit>

[S0S1S2S
0
3][S

0
4]

<latexit sha1_base64="e7Xx0nrmBzv7tC04aEbpIrJSeS4=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovQVUmqqMuCG5eV2ge0IUymk3boZBJmJkINxV9x40IRt/6HO//GaZuFth64cOace7l3TpBwprTjfFsrq2vrG5uFreL2zu7evn1w2FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+u0HKhWLxb0eJ9SL8ECwkBGsjeTbx92G76CG75qqesi8zj3k2yWn4syAlombkxLkqPv2V68fkzSiQhOOleq6TqK9DEvNCKeTYi9VNMFkhAe0a6jAEVVeNrt+gs6M0kdhLE0JjWbq74kMR0qNo8B0RlgP1aI3Ff/zuqkOr72MiSTVVJD5ojDlSMdoGgXqM0mJ5mNDMJHM3IrIEEtMtAmsaEJwF7+8TFrVintZce4uSrVyHkcBTuAUyuDCFdTgFurQBAKP8Ayv8GY9WS/Wu/Uxb12x8pkj+APr8wfpjpLc</latexit>

[S0S1S2][S3]

<latexit sha1_base64="XOY8qiYW8FVCXn2vPrshvfEbNCk=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUdaiSUgFjJRbGotKH1KaR4zqtVceJbAepijqw8CssDCDEykew8Tc4bQZouZKPjs65V9f3eBGjUlnWt5Hb2Nza3snvFvb2Dw6PzOOTjgxjgUkbhywUPQ9JwignbUUVI71IEBR4jHS96U3qdx+IkDTk92oWESdAY059ipHSkmsW+y3XcjTYw0rLraVwkUJ9WHFcs2RVrUXBdWJnpASyarrm12AU4jggXGGGpOzbVqScBAlFMSPzwiCWJEJ4isakrylHAZFOsjhiDs+1MoJ+KPTjCi7U3xMJCqScBZ7uDJCayFUvFf/z+rHyr52E8ihWhOPlIj9mUIUwTQSOqCBYsZkmCAuq/wrxBAmElc6toEOwV09eJ51a1b6sWnf1UqOcxZEHRXAGysAGV6ABbkETtAEGj+AZvII348l4Md6Nj2VrzshmTsGfMj5/APcOlag=</latexit>

[S0][S
⇤
1S

⇤
2S

⇤
3S

⇤
4 ]

<latexit sha1_base64="C+QV/LL7E5iMf9xGcuCp0GoF1ss=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nk7XszmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4qBW4pmo+Mq8Lw+p+YJedqjMHWiVuTsqQoxnYX71+QrKYCk04VspznVT7Eyw1I5xOS71M0RSTER5Qz1CBY6r8yfyAKTo3Sh9FiTQlNJqrvycmOFZqHIemM8Z6qJa9mfif52U6uvYnTKSZpoIsFkUZRzpBszRQn0lKNB8bgolk5q+IDLHERJvMSiYEd/nkVdKpVd3LqnNXLzcqeRxFOIUzqIALV9CAW2hCGwhM4Rle4c16sl6sd+tj0Vqw8plj+APr8wfG1pPg</latexit>

[S0S1S2][S3S4]

<latexit sha1_base64="aTRGDhy8YivZupPfBhzduV7uYUA=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nNy3szmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4PjKvi1pBzdSFqbof2GWn6syBVombkzLkaAb2V6+fkCymQhOOlfJcJ9X+BEvNCKfTUi9TNMVkhAfUM1TgmCp/Mj9gis6N0kdRIk0Jjebq74kJjpUax6HpjLEeqmVvJv7neZmOrv0JE2mmqSCLRVHGkU7QLA3UZ5ISzceGYCKZ+SsiQywx0SazkgnBXT55lXRqVfey6tzVy41KHkcRTuEMKuDCFTTgFprQBgJTeIZXeLOerBfr3fpYtBasfOYY/sD6/AHIiJPg</latexit>

[S0][S1S2S3S4]
<latexit sha1_base64="lW8f3h3KYdKFdeOobKgzH9b9uFs=">AAACAXicbVC7SgNBFL0bXzG+Vm0Em8EgSRV2Y1DLgI1lJOYBm2WZnUySIbMPZmaFsMTGX7GxUMTWv7Dzb5wkW2jigXs5nHMvM/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZrm42anpVXRcl3Wol1zOLVsWaA60SOyNFyNDwzK9ePyJJQENFOJbSsa1YuSkWihFOp4VeImmMyRgPqaNpiAMq3XR+wRSda6WPBpHQFSo0V39vpDiQchL4ejLAaiSXvZn4n+ckanDtpiyME0VDsnhokHCkIjSLA/WZoETxiSaYCKb/isgIC0yUDq2gQ7CXT14l7WrFvqxYd7VivZzFkYdTOIMy2HAFdbiFBrSAwCM8wyu8GU/Gi/FufCxGc0a2cwx/YHz+ADudlBg=</latexit>

[S0][S1S2S
0
3S

0
4]

<latexit sha1_base64="ee1VcVLW7NPQbfU35LVYWHX6eZU=">AAACAnicbVC7SgNBFL0bXzG+Vq3EZjBIUoXdGNQyYGMZiXnAZllmJ5NkyOyDmVkhLMHGX7GxUMTWr7Dzb5wkW2jigQtnzrmXO/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZqOnZuqou0q+Lkqa1kuuZRatizYFWiZ2RImRoeOZXrx+RJKChIhxL6dhWrNwUC8UIp9NCL5E0xmSMh9TRNMQBlW46P2GKzrXSR4NI6AoVmqu/J1IcSDkJfN0ZYDWSy95M/M9zEjW4dlMWxomiIVksGiQcqQjN8kB9JihRfKIJJoLpvyIywgITpVMr6BDs5ZNXSbtasS8r1l2tWC9nceThFM6gDDZcQR1uoQEtIPAIz/AKb8aT8WK8Gx+L1pyRzRzDHxifP5OWlEI=</latexit>

[S0S1S2][S
0
3S

0
4]

<latexit sha1_base64="1Gt/QsTATpZQb34L9qmxlph2uYk=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovQVUmKqMuCG5eV2gekIUymk3boZBJmJoUS+iduXCji1j9x5984bbPQ1gP3cjjnXubOCVPOlHacb6u0tb2zu1ferxwcHh2f2KdnXZVkktAOSXgi+yFWlDNBO5ppTvuppDgOOe2Fk/uF35tSqVginvQspX6MR4JFjGBtpMC2vXbg+Mh0F7WDho8Cu+rUnSXQJnELUoUCrcD+GgwTksVUaMKxUp7rpNrPsdSMcDqvDDJFU0wmeEQ9QwWOqfLz5eVzdGWUIYoSaUpotFR/b+Q4VmoWh2Yyxnqs1r2F+J/nZTq683Mm0kxTQVYPRRlHOkGLGNCQSUo0nxmCiWTmVkTGWGKiTVgVE4K7/uVN0m3U3Zu683hdbdaKOMpwAZdQAxduoQkP0IIOEJjCM7zCm5VbL9a79bEaLVnFzjn8gfX5A7efka8=</latexit>

[S0][S1S2]

<latexit sha1_base64="8y1JVRm1rJH4Xb5hurSArFFz7TY=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR67HgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KFbfqLkDWiZeTCuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppX1W9m6rbvK7Uy3kcBTiHMlyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ae7uMoA==</latexit>

7
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="uCWguNiHC2YD/OrSYDhBxf3++jA=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIV9Vjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqXPZLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS966rbuKrUynkcBTiFMpyDBzdQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBdauMnA==</latexit>

3
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0<latexit sha1_base64="0GSM7A+MD4lmTO35F6/L9iGqjbI=">AAAB+nicbVDLTgIxFL2DL8TXoEs3jcSEsCAzxKhLEjcuMcgjGYZJpxRo6DzSdjRk5FPcuNAYt36JO//GArNQ8CT35uSce9Pb48ecSWVZ30ZuY3Nreye/W9jbPzg8MovHbRklgtAWiXgkuj6WlLOQthRTnHZjQXHgc9rxJzdzv/NAhWRReK+mMXUDPArZkBGstOSZRafpWa5udr/S9Gr9iuuZJatqLYDWiZ2REmRoeOZXbxCRJKChIhxL6dhWrNwUC8UIp7NCL5E0xmSCR9TRNMQBlW66OH2GzrUyQMNI6AoVWqi/N1IcSDkNfD0ZYDWWq95c/M9zEjW8dlMWxomiIVk+NEw4UhGa54AGTFCi+FQTTATTtyIyxgITpdMq6BDs1S+vk3atal9WrbuLUr2cxZGHUziDMthwBXW4hQa0gMAjPMMrvBlPxovxbnwsR3NGtnMCf2B8/gDuwJJp</latexit>[S0][S
⇤
1S

⇤
2 ]

<latexit sha1_base64="PkCsget2oAj+PwJjccP6hG0ZqQs=">AAACBXicbZC7TsMwFIadcivlFmCEwaJCqjpUSamAsRILY1HpRWrTyHGd1qrjRLaDVEVdWHgVFgYQYuUd2HgbnDYDtPySpc//OUf2+b2IUaks69vIra1vbG7ltws7u3v7B+bhUVuGscCkhUMWiq6HJGGUk5aiipFuJAgKPEY63uQmrXceiJA05PdqGhEnQCNOfYqR0pZrnvaargWbrj0oN93qoOzo+0XKNc2uWbQq1lxwFewMiiBTwzW/+sMQxwHhCjMkZc+2IuUkSCiKGZkV+rEkEcITNCI9jRwFRDrJfIsZPNfOEPqh0IcrOHd/TyQokHIaeLozQGosl2up+V+tFyv/2kkoj2JFOF485McMqhCmkcAhFQQrNtWAsKD6rxCPkUBY6eAKOgR7eeVVaFcr9mXFuqsV66Usjjw4AWegBGxwBergFjRAC2DwCJ7BK3gznowX4934WLTmjGzmGPyR8fkDT2+V0g==</latexit>

[S0S
⇤
1S

⇤
2 ][S

⇤
3S

⇤
4 ]

<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0
<latexit sha1_base64="v2Dtcfo0UUApoWCvtCsP4vkeiIE=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KFbfqLkDWiZeTCuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20r6reTdVtXlfq5TyOApxDGS7Bg1uowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AfT+MoQ==</latexit>

8

<latexit sha1_base64="DhVbFHoLHrTjWuneFh4V1Ldons8=">AAAB+3icbVDLTsJAFL3FF+Kr4tLNRGLCirRo1CWJG5cY5JGUppkOU5gwnTYzUyMh/IobFxrj1h9x5984QBcKnuQmZ865N/fOCVPOlHacb6uwsbm1vVPcLe3tHxwe2cfljkoySWibJDyRvRArypmgbc00p71UUhyHnHbD8e3c7z5SqVgiHvQkpX6Mh4JFjGBtpMAue63AQa3ANVX3zePCD+yKU3MWQOvEzUkFcjQD+6s/SEgWU6EJx0p5rpNqf4qlZoTTWamfKZpiMsZD6hkqcEyVP13cPkPnRhmgKJGmhEYL9ffEFMdKTeLQdMZYj9SqNxf/87xMRzf+lIk001SQ5aIo40gnaB4EGjBJieYTQzCRzNyKyAhLTLSJq2RCcFe/vE469Zp7VXPuLyuNah5HEU7hDKrgwjU04A6a0AYCT/AMr/BmzawX6936WLYWrHzmBP7A+vwBNKOSiA==</latexit>

[S0S1S2][S3]
<latexit sha1_base64="xmG3CBiWULa757Kr75jhloilWnM=">AAACAHicbVBNT8JAFHzFL8SvqgcPXjYSE06kRaIeSbx4xCBIUppmu2xhw3bb7G5NCOHiX/HiQWO8+jO8+W9coAcFJ5lkMvNedt+EKWdKO863VVhb39jcKm6Xdnb39g/sw6OOSjJJaJskPJHdECvKmaBtzTSn3VRSHIecPoSjm1n+8EilYom41+OU+jEeCBYxgrWxAvvEawUOagWuYc3wwkfGqfuBXXaqzhxoVbi5KEOOZmB/9foJyWIqNOFYKc91Uu1PsNSMcDot9TJFU0xGeEA9IwWOqfIn8wOm6Nw4fRQl0lBoNHd/b0xwrNQ4Ds1kjPVQLWcz87/My3R07U+YSDNNBVk8FGUc6QTN2kB9JinRfGwEJpKZvyIyxBITbTormRLc5ZNXRadWdS+rzl293KjkdRThFM6gAi5cQQNuoQltIDCFZ3iFN+vJerHerY/FaMHKd47hD6zPH8YAk+A=</latexit>

[S0S1S2S3][S4]
<latexit sha1_base64="W/UXPFzTb6CbDHWYot1MrOZR2eo=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahp5KIqMeCF4+V2g9IQ9hsN+3SzW7YnQgl9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5USq4Adf9dkobm1vbO+Xdyt7+weFR9fika1SmKetQJZTuR8QwwSXrAAfB+qlmJIkE60WTu7nfe2LacCUfYZqyICEjyWNOCVjJ99uhG/i4HXpBWK25DXcBvE68gtRQgVZY/RoMFc0SJoEKYozvuSkEOdHAqWCzyiAzLCV0QkbMt1SShJkgX5w8wxdWGeJYaVsS8EL9PZGTxJhpEtnOhMDYrHpz8T/PzyC+DXIu0wyYpMtFcSYwKDz/Hw+5ZhTE1BJCNbe3YjommlCwKVVsCN7qy+uke9nwrhvuw1WtWS/iKKMzdI7qyEM3qInuUQt1EEUKPaNX9OaA8+K8Ox/L1pJTzJyiP3A+fwC5u5Ao</latexit>

[S0][S1]

<latexit sha1_base64="stdgRzYeyxY3QSacYvN32PA6R3g=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZSkiI+FUHDjsoJ9QBPKZDpph04ezNyINRR/xY0LRdz6H+78GydtFtp6LhcO59zL3DleLLgCy/o2CkvLK6trxfXSxubW9o65u9dSUSIpa9JIRLLjEcUED1kTOAjWiSUjgSdY2xtdZ377nknFo/AOxjFzAzIIuc8pAS31zAMH2AOkFf9k4uCs4Kp22TPLVtWaAi8SOydllKPRM7+cfkSTgIVABVGqa1sxuCmRwKlgk5KTKBYTOiID1tU0JAFTbjq9foKPtdLHfiR1h4Cn6u+NlARKjQNPTwYEhmrey8T/vG4C/oWb8jBOgIV09pCfCAwRzqLAfS4ZBTHWhFDJ9a2YDokkFHRgJR2CPf/lRdKqVe2zqnV7Wq5X8jiK6BAdoQqy0TmqoxvUQE1E0SN6Rq/ozXgyXox342M2WjDynX30B8bnD08Ck74=</latexit>

(f) t = 29

<latexit sha1_base64="b+SnuIw2J0rEHalG1VZSA1H4p6A=">AAAB6XicbVDLSgNBEOz1GeMr6tHLkCAIQtgVX8eAF49RzAOSJcxOZpMhs7PLTK8QlvyBFw+KePWPvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD5dnvVLFrbozkGXi5aQCOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2aXTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPEzoZIUuWLzRWEqCcZk+jbpC80ZyrEllGlhbyVsSDVlaMMp2hC8xZeXSfO86l1V3fuLSq2cx1GAYyjDKXhwDTW4gzo0gEEIz/AKb87IeXHenY9564qTzxzBHzifP974jNM=</latexit>

5+
<latexit sha1_base64="b+SnuIw2J0rEHalG1VZSA1H4p6A=">AAAB6XicbVDLSgNBEOz1GeMr6tHLkCAIQtgVX8eAF49RzAOSJcxOZpMhs7PLTK8QlvyBFw+KePWPvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD5dnvVLFrbozkGXi5aQCOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2aXTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPEzoZIUuWLzRWEqCcZk+jbpC80ZyrEllGlhbyVsSDVlaMMp2hC8xZeXSfO86l1V3fuLSq2cx1GAYyjDKXhwDTW4gzo0gEEIz/AKb87IeXHenY9564qTzxzBHzifP974jNM=</latexit>

5+
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0
<latexit sha1_base64="jLDft4KjyD7aSy8kYjultefrJSw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisYj+gDWWz3bRLN5uwOxFK6D/w4kERr/4jb/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPbjn/XLVrblzkFXi5aQKORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+aXTsmpVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2RC85ZdXSeui5l3V3PvLar2Sx1GEE6jAGXhwDXW4gwY0gUEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9dfjM4=</latexit>

0+
<latexit sha1_base64="Nnc+cYFfJL+e0y7S6h8+BwPmiwM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4Crvi6xjw4jEB84BkCbOT3mTM7OwyMyuEJV/gxYMiXv0kb/6Nk2QPmljQUFR1090VJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqXPVLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS966rbuKzUynkcBTiFMpyDBzdQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBeLOMng==</latexit>

5
<latexit sha1_base64="b+SnuIw2J0rEHalG1VZSA1H4p6A=">AAAB6XicbVDLSgNBEOz1GeMr6tHLkCAIQtgVX8eAF49RzAOSJcxOZpMhs7PLTK8QlvyBFw+KePWPvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD5dnvVLFrbozkGXi5aQCOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2aXTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPEzoZIUuWLzRWEqCcZk+jbpC80ZyrEllGlhbyVsSDVlaMMp2hC8xZeXSfO86l1V3fuLSq2cx1GAYyjDKXhwDTW4gzo0gEEIz/AKb87IeXHenY9564qTzxzBHzifP974jNM=</latexit>

5+

<latexit sha1_base64="+gHO09gclileFJKnfoNziOtCudw=">AAAB6XicbVDLSgNBEOz1GeMr6tHLkCAIQtgV8XELePEYxTwgWcLsZDYZMju7zPQKYckfePGgiFf/yJt/4yTZgyYWNBRV3XR3BYkUBl3321lZXVvf2CxsFbd3dvf2SweHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqt564NiJWjzhOuB/RgRKhYBSt9HBz1itV3Ko7A1kmXk4qkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26YScWKVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uw2s/EypJkSs2XxSmkmBMpm+TvtCcoRxbQpkW9lbChlRThjacog3BW3x5mTTPq95l1b2/qNTKeRwFOIYynIIHV1CDO6hDAxiE8Ayv8OaMnBfn3fmYt644+cwR/IHz+QPlDIzX</latexit>

9+

<latexit sha1_base64="F1Krp2q+eaAAHZF88UM/Hprj+e8=">AAAB/HicbVDLTsJAFL3FF+KrytLNRGJkRVo06pLEjUsMgiSlaabDFCZMH5mZmjQN/oobFxrj1g9x5984QBcKnuQmZ865N/fO8RPOpLKsb6O0tr6xuVXeruzs7u0fmIdHPRmngtAuiXks+j6WlLOIdhVTnPYTQXHoc/rgT25m/sMjFZLF0b3KEuqGeBSxgBGstOSZVafjWajj2bqarn6cn7meWbMa1hxoldgFqUGBtmd+DYYxSUMaKcKxlI5tJcrNsVCMcDqtDFJJE0wmeEQdTSMcUunm8+On6FQrQxTEQlek0Fz9PZHjUMos9HVniNVYLnsz8T/PSVVw7eYsSlJFI7JYFKQcqRjNkkBDJihRPNMEE8H0rYiMscBE6bwqOgR7+curpNds2JcN6+6i1qoXcZThGE6gDjZcQQtuoQ1dIJDBM7zCm/FkvBjvxseitWQUM1X4A+PzB5nskrk=</latexit>

[S0S1S2][S
0
3]

<latexit sha1_base64="5b1TThqnj7pgAoQpOoWmskausVA=">AAACAnicbVC7SgNBFL0bXzG+Vq3EZjBIUoXdGNQyYGMZiXnAZllmJ5NkyOyDmVkhLMHGX7GxUMTWr7Dzb5wkW2jigQOHc+5l5h4/5kwqy/o2cmvrG5tb+e3Czu7e/oF5eNSWUSIIbZGIR6LrY0k5C2lLMcVpNxYUBz6nHX98M8s7D1RIFoX3ahJTN8DDkA0YwUpbnnniND0LNT1bs6p5UXKRtmol1zOLVsWaA60KOxNFyNDwzK9ePyJJQENFOJbSsa1YuSkWihFOp4VeImmMyRgPqaNliAMq3XR+whSda6ePBpHQDBWau783UhxIOQl8PRlgNZLL2cz8L3MSNbh2UxbGiaIhWTw0SDhSEZr1gfpMUKL4RAtMBNN/RWSEBSZKt1bQJdjLJ6+KdrViX1asu1qxXs7qyMMpnEEZbLiCOtxCA1pA4BGe4RXejCfjxXg3PhajOSPbOYY/MD5/AJJWlEI=</latexit>

[S0S1S2S
0
3][S

0
4]

<latexit sha1_base64="e7Xx0nrmBzv7tC04aEbpIrJSeS4=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovQVUmqqMuCG5eV2ge0IUymk3boZBJmJkINxV9x40IRt/6HO//GaZuFth64cOace7l3TpBwprTjfFsrq2vrG5uFreL2zu7evn1w2FJxKgltkpjHshNgRTkTtKmZ5rSTSIqjgNN2MLqZ+u0HKhWLxb0eJ9SL8ECwkBGsjeTbx92G76CG75qqesi8zj3k2yWn4syAlombkxLkqPv2V68fkzSiQhOOleq6TqK9DEvNCKeTYi9VNMFkhAe0a6jAEVVeNrt+gs6M0kdhLE0JjWbq74kMR0qNo8B0RlgP1aI3Ff/zuqkOr72MiSTVVJD5ojDlSMdoGgXqM0mJ5mNDMJHM3IrIEEtMtAmsaEJwF7+8TFrVintZce4uSrVyHkcBTuAUyuDCFdTgFurQBAKP8Ayv8GY9WS/Wu/Uxb12x8pkj+APr8wfpjpLc</latexit>

[S0S1S2][S3]

<latexit sha1_base64="XOY8qiYW8FVCXn2vPrshvfEbNCk=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYVUdaiSUgFjJRbGotKH1KaR4zqtVceJbAepijqw8CssDCDEykew8Tc4bQZouZKPjs65V9f3eBGjUlnWt5Hb2Nza3snvFvb2Dw6PzOOTjgxjgUkbhywUPQ9JwignbUUVI71IEBR4jHS96U3qdx+IkDTk92oWESdAY059ipHSkmsW+y3XcjTYw0rLraVwkUJ9WHFcs2RVrUXBdWJnpASyarrm12AU4jggXGGGpOzbVqScBAlFMSPzwiCWJEJ4isakrylHAZFOsjhiDs+1MoJ+KPTjCi7U3xMJCqScBZ7uDJCayFUvFf/z+rHyr52E8ihWhOPlIj9mUIUwTQSOqCBYsZkmCAuq/wrxBAmElc6toEOwV09eJ51a1b6sWnf1UqOcxZEHRXAGysAGV6ABbkETtAEGj+AZvII348l4Md6Nj2VrzshmTsGfMj5/APcOlag=</latexit>

[S0][S
⇤
1S

⇤
2S

⇤
3S

⇤
4 ]

<latexit sha1_base64="C+QV/LL7E5iMf9xGcuCp0GoF1ss=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nk7XszmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4qBW4pmo+Mq8Lw+p+YJedqjMHWiVuTsqQoxnYX71+QrKYCk04VspznVT7Eyw1I5xOS71M0RSTER5Qz1CBY6r8yfyAKTo3Sh9FiTQlNJqrvycmOFZqHIemM8Z6qJa9mfif52U6uvYnTKSZpoIsFkUZRzpBszRQn0lKNB8bgolk5q+IDLHERJvMSiYEd/nkVdKpVd3LqnNXLzcqeRxFOIUzqIALV9CAW2hCGwhM4Rle4c16sl6sd+tj0Vqw8plj+APr8wfG1pPg</latexit>

[S0S1S2][S3S4]

<latexit sha1_base64="aTRGDhy8YivZupPfBhzduV7uYUA=">AAACAHicbVBNT8JAEJ3iF+JX1YMHLxuJCSfSIlGPJF48YhAkKU2zXbawYbttdrcmhHDxr3jxoDFe/Rne/Dcu0IOCL5nNy3szmZ0Xppwp7TjfVmFtfWNzq7hd2tnd2z+wD486KskkoW2S8ER2Q6woZ4K2NdOcdlNJcRxy+hCObmb+wyOViiXiXo9T6sd4IFjECNZGCuwTrxU4PjKvi1pBzdSFqbof2GWn6syBVombkzLkaAb2V6+fkCymQhOOlfJcJ9X+BEvNCKfTUi9TNMVkhAfUM1TgmCp/Mj9gis6N0kdRIk0Jjebq74kJjpUax6HpjLEeqmVvJv7neZmOrv0JE2mmqSCLRVHGkU7QLA3UZ5ISzceGYCKZ+SsiQywx0SazkgnBXT55lXRqVfey6tzVy41KHkcRTuEMKuDCFTTgFprQBgJTeIZXeLOerBfr3fpYtBasfOYY/sD6/AHIiJPg</latexit>

[S0][S1S2S3S4]
<latexit sha1_base64="lW8f3h3KYdKFdeOobKgzH9b9uFs=">AAACAXicbVC7SgNBFL0bXzG+Vm0Em8EgSRV2Y1DLgI1lJOYBm2WZnUySIbMPZmaFsMTGX7GxUMTWv7Dzb5wkW2jigXs5nHMvM/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZrm42anpVXRcl3Wol1zOLVsWaA60SOyNFyNDwzK9ePyJJQENFOJbSsa1YuSkWihFOp4VeImmMyRgPqaNpiAMq3XR+wRSda6WPBpHQFSo0V39vpDiQchL4ejLAaiSXvZn4n+ckanDtpiyME0VDsnhokHCkIjSLA/WZoETxiSaYCKb/isgIC0yUDq2gQ7CXT14l7WrFvqxYd7VivZzFkYdTOIMy2HAFdbiFBrSAwCM8wyu8GU/Gi/FufCxGc0a2cwx/YHz+ADudlBg=</latexit>

[S0][S1S2S
0
3S

0
4]

<latexit sha1_base64="ee1VcVLW7NPQbfU35LVYWHX6eZU=">AAACAnicbVC7SgNBFL0bXzG+Vq3EZjBIUoXdGNQyYGMZiXnAZllmJ5NkyOyDmVkhLMHGX7GxUMTWr7Dzb5wkW2jigQtnzrmXO/f4MWdSWda3kVtb39jcym8Xdnb39g/Mw6O2jBJBaItEPBJdH0vKWUhbiilOu7GgOPA57fjjm5nfeaBCsii8V5OYugEehmzACFZa8swTp+lZqOnZuqou0q+Lkqa1kuuZRatizYFWiZ2RImRoeOZXrx+RJKChIhxL6dhWrNwUC8UIp9NCL5E0xmSMh9TRNMQBlW46P2GKzrXSR4NI6AoVmqu/J1IcSDkJfN0ZYDWSy95M/M9zEjW4dlMWxomiIVksGiQcqQjN8kB9JihRfKIJJoLpvyIywgITpVMr6BDs5ZNXSbtasS8r1l2tWC9nceThFM6gDDZcQR1uoQEtIPAIz/AKb8aT8WK8Gx+L1pyRzRzDHxifP5OWlEI=</latexit>

[S0S1S2][S
0
3S

0
4]

<latexit sha1_base64="1Gt/QsTATpZQb34L9qmxlph2uYk=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovQVUmKqMuCG5eV2gekIUymk3boZBJmJoUS+iduXCji1j9x5984bbPQ1gP3cjjnXubOCVPOlHacb6u0tb2zu1ferxwcHh2f2KdnXZVkktAOSXgi+yFWlDNBO5ppTvuppDgOOe2Fk/uF35tSqVginvQspX6MR4JFjGBtpMC2vXbg+Mh0F7WDho8Cu+rUnSXQJnELUoUCrcD+GgwTksVUaMKxUp7rpNrPsdSMcDqvDDJFU0wmeEQ9QwWOqfLz5eVzdGWUIYoSaUpotFR/b+Q4VmoWh2Yyxnqs1r2F+J/nZTq683Mm0kxTQVYPRRlHOkGLGNCQSUo0nxmCiWTmVkTGWGKiTVgVE4K7/uVN0m3U3Zu683hdbdaKOMpwAZdQAxduoQkP0IIOEJjCM7zCm5VbL9a79bEaLVnFzjn8gfX5A7efka8=</latexit>

[S0][S1S2]

<latexit sha1_base64="8y1JVRm1rJH4Xb5hurSArFFz7TY=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR67HgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KFbfqLkDWiZeTCuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppX1W9m6rbvK7Uy3kcBTiHMlyCBzWowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ae7uMoA==</latexit>

7
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="uCWguNiHC2YD/OrSYDhBxf3++jA=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIV9Vjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqXPZLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS966rbuKrUynkcBTiFMpyDBzdQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBdauMnA==</latexit>

3
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0<latexit sha1_base64="0GSM7A+MD4lmTO35F6/L9iGqjbI=">AAAB+nicbVDLTgIxFL2DL8TXoEs3jcSEsCAzxKhLEjcuMcgjGYZJpxRo6DzSdjRk5FPcuNAYt36JO//GArNQ8CT35uSce9Pb48ecSWVZ30ZuY3Nreye/W9jbPzg8MovHbRklgtAWiXgkuj6WlLOQthRTnHZjQXHgc9rxJzdzv/NAhWRReK+mMXUDPArZkBGstOSZRafpWa5udr/S9Gr9iuuZJatqLYDWiZ2REmRoeOZXbxCRJKChIhxL6dhWrNwUC8UIp7NCL5E0xmSCR9TRNMQBlW66OH2GzrUyQMNI6AoVWqi/N1IcSDkNfD0ZYDWWq95c/M9zEjW8dlMWxomiIVk+NEw4UhGa54AGTFCi+FQTTATTtyIyxgITpdMq6BDs1S+vk3atal9WrbuLUr2cxZGHUziDMthwBXW4hQa0gMAjPMMrvBlPxovxbnwsR3NGtnMCf2B8/gDuwJJp</latexit>[S0][S
⇤
1S

⇤
2 ]

<latexit sha1_base64="PkCsget2oAj+PwJjccP6hG0ZqQs=">AAACBXicbZC7TsMwFIadcivlFmCEwaJCqjpUSamAsRILY1HpRWrTyHGd1qrjRLaDVEVdWHgVFgYQYuUd2HgbnDYDtPySpc//OUf2+b2IUaks69vIra1vbG7ltws7u3v7B+bhUVuGscCkhUMWiq6HJGGUk5aiipFuJAgKPEY63uQmrXceiJA05PdqGhEnQCNOfYqR0pZrnvaargWbrj0oN93qoOzo+0XKNc2uWbQq1lxwFewMiiBTwzW/+sMQxwHhCjMkZc+2IuUkSCiKGZkV+rEkEcITNCI9jRwFRDrJfIsZPNfOEPqh0IcrOHd/TyQokHIaeLozQGosl2up+V+tFyv/2kkoj2JFOF485McMqhCmkcAhFQQrNtWAsKD6rxCPkUBY6eAKOgR7eeVVaFcr9mXFuqsV66Usjjw4AWegBGxwBergFjRAC2DwCJ7BK3gznowX4934WLTmjGzmGPyR8fkDT2+V0g==</latexit>

[S0S
⇤
1S

⇤
2 ][S

⇤
3S

⇤
4 ]

<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0

<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0
<latexit sha1_base64="v2Dtcfo0UUApoWCvtCsP4vkeiIE=">AAAB6HicbVBNS8NAEJ34WetX1aOXpUXwVBIR7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA1KFbfqLkDWiZeTCuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20r6reTdVtXlfq5TyOApxDGS7Bg1uowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4AfT+MoQ==</latexit>

8

<latexit sha1_base64="DhVbFHoLHrTjWuneFh4V1Ldons8=">AAAB+3icbVDLTsJAFL3FF+Kr4tLNRGLCirRo1CWJG5cY5JGUppkOU5gwnTYzUyMh/IobFxrj1h9x5984QBcKnuQmZ865N/fOCVPOlHacb6uwsbm1vVPcLe3tHxwe2cfljkoySWibJDyRvRArypmgbc00p71UUhyHnHbD8e3c7z5SqVgiHvQkpX6Mh4JFjGBtpMAue63AQa3ANVX3zePCD+yKU3MWQOvEzUkFcjQD+6s/SEgWU6EJx0p5rpNqf4qlZoTTWamfKZpiMsZD6hkqcEyVP13cPkPnRhmgKJGmhEYL9ffEFMdKTeLQdMZYj9SqNxf/87xMRzf+lIk001SQ5aIo40gnaB4EGjBJieYTQzCRzNyKyAhLTLSJq2RCcFe/vE469Zp7VXPuLyuNah5HEU7hDKrgwjU04A6a0AYCT/AMr/BmzawX6936WLYWrHzmBP7A+vwBNKOSiA==</latexit>

[S0S1S2][S3]
<latexit sha1_base64="xmG3CBiWULa757Kr75jhloilWnM=">AAACAHicbVBNT8JAFHzFL8SvqgcPXjYSE06kRaIeSbx4xCBIUppmu2xhw3bb7G5NCOHiX/HiQWO8+jO8+W9coAcFJ5lkMvNedt+EKWdKO863VVhb39jcKm6Xdnb39g/sw6OOSjJJaJskPJHdECvKmaBtzTSn3VRSHIecPoSjm1n+8EilYom41+OU+jEeCBYxgrWxAvvEawUOagWuYc3wwkfGqfuBXXaqzhxoVbi5KEOOZmB/9foJyWIqNOFYKc91Uu1PsNSMcDot9TJFU0xGeEA9IwWOqfIn8wOm6Nw4fRQl0lBoNHd/b0xwrNQ4Ds1kjPVQLWcz87/My3R07U+YSDNNBVk8FGUc6QTN2kB9JinRfGwEJpKZvyIyxBITbTormRLc5ZNXRadWdS+rzl293KjkdRThFM6gAi5cQQNuoQltIDCFZ3iFN+vJerHerY/FaMHKd47hD6zPH8YAk+A=</latexit>

[S0S1S2S3][S4]
<latexit sha1_base64="W/UXPFzTb6CbDHWYot1MrOZR2eo=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahp5KIqMeCF4+V2g9IQ9hsN+3SzW7YnQgl9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5USq4Adf9dkobm1vbO+Xdyt7+weFR9fika1SmKetQJZTuR8QwwSXrAAfB+qlmJIkE60WTu7nfe2LacCUfYZqyICEjyWNOCVjJ99uhG/i4HXpBWK25DXcBvE68gtRQgVZY/RoMFc0SJoEKYozvuSkEOdHAqWCzyiAzLCV0QkbMt1SShJkgX5w8wxdWGeJYaVsS8EL9PZGTxJhpEtnOhMDYrHpz8T/PzyC+DXIu0wyYpMtFcSYwKDz/Hw+5ZhTE1BJCNbe3YjommlCwKVVsCN7qy+uke9nwrhvuw1WtWS/iKKMzdI7qyEM3qInuUQt1EEUKPaNX9OaA8+K8Ox/L1pJTzJyiP3A+fwC5u5Ao</latexit>

[S0][S1]
<latexit sha1_base64="b+SnuIw2J0rEHalG1VZSA1H4p6A=">AAAB6XicbVDLSgNBEOz1GeMr6tHLkCAIQtgVX8eAF49RzAOSJcxOZpMhs7PLTK8QlvyBFw+KePWPvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD5dnvVLFrbozkGXi5aQCOeq90le3H7M04gqZpMZ0PDdBP6MaBZN8UuymhieUjeiAdyxVNOLGz2aXTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPEzoZIUuWLzRWEqCcZk+jbpC80ZyrEllGlhbyVsSDVlaMMp2hC8xZeXSfO86l1V3fuLSq2cx1GAYyjDKXhwDTW4gzo0gEEIz/AKb87IeXHenY9564qTzxzBHzifP974jNM=</latexit>

5+
<latexit sha1_base64="PGsGvPVvWUQc+23lY+tC14vDCzA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KVbfmLkDWiZeTKuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IuVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a865rbvKrWK3kcRTiDClyABzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AcR+MmQ==</latexit>

0
<latexit sha1_base64="Nnc+cYFfJL+e0y7S6h8+BwPmiwM=">AAAB6HicbVDLSgNBEOz1GeMr6tHLkCB4Crvi6xjw4jEB84BkCbOT3mTM7OwyMyuEJV/gxYMiXv0kb/6Nk2QPmljQUFR1090VJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqXPVLFbfqzkFWiZeTCuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVS966rbuKzUynkcBTiFMpyDBzdQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBeLOMng==</latexit>

5

<latexit sha1_base64="Juvg8flZjKUO3EAUid1fzyxJVYI=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSxC3ZTE90YouHFZwT6gCWUynbRDJw9mbsQair/ixoUibv0Pd/6NkzYLbT2XC4dz7mXuHC8WXIFlfRuFhcWl5ZXiamltfWNzy9zeaaookZQ1aCQi2faIYoKHrAEcBGvHkpHAE6zlDa8zv3XPpOJReAejmLkB6Yfc55SAlrrmngPsAdJK/2js4Kzg6uSsa5atqjUBnid2TsooR71rfjm9iCYBC4EKolTHtmJwUyKBU8HGJSdRLCZ0SPqso2lIAqbcdHL9GB9qpYf9SOoOAU/U3xspCZQaBZ6eDAgM1KyXif95nQT8SzflYZwAC+n0IT8RGCKcRYF7XDIKYqQJoZLrWzEdEEko6MBKOgR79svzpHlctc+r1u1puVbJ4yiifXSAKshGF6iGblAdNRBFj+gZvaI348l4Md6Nj+lowch3dtEfGJ8/TAeTvA==</latexit>

(g) t = 35

<latexit sha1_base64="Jj2nUxyV9kerjbYgItZW9Uo34RU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLkCAIQtgVX8eAF48RzQOSJcxOZpMhs7PLTK8QlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD97lWa9UcavuDGSZeDmpQI56r/TV7ccsjbhCJqkxHc9N0M+oRsEknxS7qeEJZSM64B1LFY248bPZqRNyYpU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDG/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0ijYEb/HlZdI8r3pXVff+olIr53EU4BjKcAoeXEMN7qAODWAwgGd4hTdHOi/Ou/Mxb11x8pkj+APn8wdOk40O</latexit>

15+

<latexit sha1_base64="/34IUvO2mCEyadaA0FH4MjR9CVo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPXjeeb9cdWvuHGSVeDmpQo5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyapUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDG/8TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK6qHlXNff+slqv5HEU4QQqcAYeXEMd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNIf40K</latexit>

11+
<latexit sha1_base64="5fp/37NvD5iRNvOJNsdbvhU/r+k=">AAAB6XicbVBNS8NAEJ34WetX1aOXpUUQhJKIVI8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHmoX/VLFrbpzkFXi5aQCORr90ldvELM04gqZpMZ0PTdBP6MaBZN8WuylhieUjemQdy1VNOLGz+aXTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jYZCM0ZyokllGlhbyVsRDVlaMMp2hC85ZdXSeuy6tWq7v1VpV7O4yjAKZThHDy4hjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPH+B9jNQ=</latexit>

6+
<latexit sha1_base64="/34IUvO2mCEyadaA0FH4MjR9CVo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LC2CIJRERD0WvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RTW1jc2t4rbpZ3dvf2D8uFRy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVI04S7kd0qEQoGEUrPXjeeb9cdWvuHGSVeDmpQo5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyapUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDG/8TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK6qHlXNff+slqv5HEU4QQqcAYeXEMd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNIf40K</latexit>

11+

<latexit sha1_base64="DhVbFHoLHrTjWuneFh4V1Ldons8=">AAAB+3icbVDLTsJAFL3FF+Kr4tLNRGLCirRo1CWJG5cY5JGUppkOU5gwnTYzUyMh/IobFxrj1h9x5984QBcKnuQmZ865N/fOCVPOlHacb6uwsbm1vVPcLe3tHxwe2cfljkoySWibJDyRvRArypmgbc00p71UUhyHnHbD8e3c7z5SqVgiHvQkpX6Mh4JFjGBtpMAue63AQa3ANVX3zePCD+yKU3MWQOvEzUkFcjQD+6s/SEgWU6EJx0p5rpNqf4qlZoTTWamfKZpiMsZD6hkqcEyVP13cPkPnRhmgKJGmhEYL9ffEFMdKTeLQdMZYj9SqNxf/87xMRzf+lIk001SQ5aIo40gnaB4EGjBJieYTQzCRzNyKyAhLTLSJq2RCcFe/vE469Zp7VXPuLyuNah5HEU7hDKrgwjU04A6a0AYCT/AMr/BmzawX6936WLYWrHzmBP7A+vwBNKOSiA==</latexit>

[S0S1S2][S3]
<latexit sha1_base64="AiSJQzewQ96T/xfxMqIXYQwu2ao=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMeCF48V7Ae0oWy2m3bpZhN2J0Io/RFePCji1d/jzX/jps1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md7nffeLaiFg9YpZwP6JjJULBKFqpOxAqxKwyrNbdhrsAWSdeQepQoDWsfg1GMUsjrpBJakzfcxP0Z1SjYJLPK4PU8ISyKR3zvqWKRtz4s8W5c3JulREJY21LIVmovydmNDImiwLbGVGcmFUvF//z+imGt/5MqCRFrthyUZhKgjHJfycjoTlDmVlCmRb2VsImVFOGNqE8BG/15XXSuWx41w334arerBVxlOEManABHtxAE+6hBW1gMIVneIU3J3FenHfnY9lacoqZU/gD5/MH8NGPNQ==</latexit>1

Figure 1 An example execution.
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2:16 BoLD: Fast and Cheap Dispute Resolution

4.7 Main result
We first recall the various parameters introduced so far: the nominal delay bound δ (see
Section 3), the censorship budget Cmax (see Section 3), the length of a computation n = 2kmax

(see Section 4.1), and the confirmation threshold T (see Section 4.4.4).
Given the above, we define

N∗ := T + Cmax + (δ + 1)(kmax + 2), (16)

The main result of this section is:

▶ Theorem 1. Assume the hash function H used to build Merkle trees is collision resistant.
Consider an execution of the protocol using the honest strategy and an arbitrary (efficient)
adversary. Assume that Cmax + (δ + 1)(kmax + 2) < T . Then (with overwhelming probability)
the honest root will be declared the winner at or before round N∗.

The full proof of Theorem 1 can be found in the full version of the paper [1]. Below we
provide an informal proof overview.

Proof Overview. Recall that the protocol declares some root as a winner only when the
weight of every complete path starting at that root (equal to the sum of local timers of
the nodes along the path) reaches the confirmation threshold. Thus, to prove Theorem 1
it suffices to prove two main claims: the first asserts that by round N∗ the weight of every
complete path starting at the honest root will surpass the threshold. The second asserts that
by that round every adversarial root will have some complete path starting from it with
weight strictly less than the threshold.

The honest strategy is designed to achieve exactly this – all its moves aim to extend
complete paths starting at the honest root to allow them to accumulate more weight. These
honest moves serve the second goal as well, since the nodes created by them rival nodes on
paths starting at adversarial roots – this in turn prevents these paths from accumulating
weight. The honest party has advantage in this game in the long run, since it is always able
to provide one-step proofs to regular terminal nodes that are descendants of the honest root.

A bit more formally, in order to prove the first claim we observe that at any round of the
protocol, if a complete path starting at the honest root does not accumulate more weight, it
must be the case that all its nodes are rivaled. But in this case, the honest party will submit
a (legal) move to extend the path by either bisecting or proving the last node in the path.
Of course, once that move is executed the adversary can immediately submit a counter-move
to rival the new node in the path, preventing the local timer of the new node from ticking
by doing so. At this point the honest party will submit another move to extend the path,
followed by another adversary counter-move and so on. This process must end at some point
since the maximum depth of a path is bounded by kmax + 1, and once a proof node has been
added to a path, its weight becomes ∞ by definition. The number of rounds N∗ is chosen
to account for all steps in this process and also to account for possible rounds in which the
honest party’s moves were delayed or censored.

To see why the second claim holds, consider any adversarial root r at round N∗. A first
observation is that r rivals the honest root r† (which must exist in the protocol graph by
this round). Another observation is that for any two nonterminal rival nodes, both with left
and right children nodes, either both left children are rivals or both right children are rivals.
An iterative application of this observation shows that there must exist two complete paths
P and P † starting at r and r† (respectively), such that every node in the shorter path of the
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two has a matching rival node in some prefix of the longer path. We then make the crucial
observation that at any given round, only one node in the union of both paths can have its
local timer tick. It follows that the sum of weights of both paths is bounded by the number
of elapsed rounds since the beginning of the protocol. However, the first claim above gives
a lower bound on the weight of P †. The combination of these gives us the desired upper
bound on the weight of P , which proves the second claim.

4.8 A Practical Implementation
As a practical matter, our protocol as given requires too much from the L1 protocol.
Specifically, we are asking the L1 protocol to continuously track all of the local and bottom-
up timers round by round, which would be prohibitively expensive. A simple change to the
protocol and the honest party’s strategy can fix this. The idea is to use “lazy evaluation”
that computes bottom-up timer estimates “on demand”. These estimates will always be no
more than the true value of the timer. A detailed description and analysis of the modified
protocol is deferred to the full version of the paper [1].

5 Multi-level BoLD

Single-level BoLD has a number of desirable properties, but for some use cases the offchain
compute cost of the honest party may be excessive, because of the amount of hashing required
by the honest strategy. For example, if n = 255, which is plausible for a dispute in Arbitrum,
the adversary will need to compute 255 state commitments, each of them a Merkle hash of
a virtual machine state, and then do about 255 additional hashes to build the Merkle tree.
This much hashing may be too time-consuming in practice.

An alternative is to use BoLD recursively. For example, we might execute BoLD using
the iterated state transition function F ′ = F 225 , thereby narrowing the disagreement with
the adversary to one iteration of F ′ which is equivalent to 225 iterations of F . A recursive
invocation of BoLD over those iterations of F would then narrow the disagreement down to
a single invocation of F which could then be proven using the underlying proof system.

The (realized) hope is that if n = 255 and there are NA adversarial roots, then the honest
party will have to do one iteration of BoLD with a “sequence length” of n2 = 230 and a
“stride” of ∆2 = 225, then at most NA “sub-challenge” iterations of BoLD, each with a
“sequence length” of n1 = 225 and a “stride” of ∆1 = 1. For realistic values of NA, this
requires much less hashing than single-level BoLD.

The multi-level BoLD protocol generalizes this idea of applying single-level BoLD
recursively, to support more than two levels. To do this, we extend the single-level protocol
by introducing two new elements: refinement nodes and refinement moves. A refinement
move takes a node representing a claim about a single step of the iterated transition function
at a particular level – this would be a deepest node in that level, which we also call a terminal
node – and creates a child node representing the same computation but according to the
refined transition function, in a new, deeper level of the protocol. This new child node is
called a refinement node, and is analogous to a root of this next level.

Refinement moves are different than the bisection and proof moves in the sense that the
protocol cannot be directly convinced that the newly created refinement node is correctly
constructed (assuming the correct construction of its parent) – in the same way that the
single-level protocol cannot be directly convinced that some root is correctly constructed. To
deal with this, the protocol does not limit the amount of refinement nodes created from a
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single parent terminal node, and these nodes compete with each other in a recursive execution
of the protocol. Essentially, the goal of this recursive competition is to convince the protocol
which of the refinement nodes is the correctly constructed one.

The transition to multiple levels requires a significant change to the timer scheme.
Specifically, the bottom up timer of a node is defined exactly as in the single-level version –
except for terminal nodes at any level, for which it is defined as the local timer of that
terminal node plus the maximum of the bottom-up timers of all of its children refinement
nodes. The reason for using maximum instead of minimum here is exactly the same as the
reason that the winner root is the one with the highest value bottom-up timer (and not
the lowest) – this definition ensures that the unique correctly constructed refinement node,
presumably the one with the highest bottom-up timer, will be the one to contribute to the
conviction that its parent is correctly constructed as well.

We then prove, as we did in the single-level version, that as long as the confirmation
threshold is set high enough, the honest root will be declared winner before any adversarial
root. Further details of the extended protocol are deferred to the full version of the paper [1].

6 Gas, staking, and reimbursement in BoLD

In this section, we summarize our analysis of the gas costs incurred by the honest party when
executing the BoLD protocol. We introduce a staking requirement for participation and give
an overview of how staking can be used to reimburse the honest party for its efforts, and
to mitigate against resource exhaustion attacks. For further details, see full version of the
paper [1].

6.1 Single-Level BoLD
In single-level BoLD, we require parties creating a root node to place a stake (locking up
funds on the parent chain) when doing so. When a root node is declared a winner, the stake
for the winner is reimbursed and the stake for the other root nodes is confiscated. In the
event of a challenge, some stakes will be confiscated; these can be used to reimburse honest
parties for their gas costs incurred while running the protocol.3. The value of the stake – S –
should be set high enough to ensure that confiscated stakes are sufficient to reimburse the
gas costs incurred by honest parties running the protocol. However, it should probably be set
much higher than this, to discourage an adversary from making any challenge at all, which
delays confirmation of the honest root, and to mitigate against resource exhaustion attacks.

In order to reimburse honest parties for their gas costs, it suffices to set S at least as
large as a certain fixed gas cost, G, which we can calculate (this is essentially the cost of
bisecting down a single path from the honest root to a terminal node and then making one
proof move).

To reason about resource exhaustion, we define the notion of a resource ratio or griefing
ratio (ρ). This is (as the name suggests) a ratio, whose numerator is the total staking and
gas cost paid by the adversary to mount an attack on BoLD, and whose denominator is
the total gas and staking cost paid by the honest party in the course of responding to that

3 If there is no challenge, BoLD does not have a built-in mechanism to refund the gas cost of the party
who creates the confirmed root; compensation for this party will need to come from some external
source.
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attack. The denominator does not include the staking and gas cost to create the honest root,
since the honest party must bear this cost regardless of what the adversary does to attack
the protocol (indeed, the honest party must pay this cost even if there is no challenge).

A tradeoff exists between the size of stake and the griefing ratio obtained from using that
size stake. A larger stake means that the capital cost for an honest party to create an honest
root is higher, but also leads to a larger resource ratio, meaning it is proportionally more
expensive for the adversary to impose additional costs on the honest party.

To achieve a target resource ratio ρ, we show that it suffices to set S to, roughly, ρ · G′,
for a fixed amount of gas G′.

For further details, see full version of the paper [1].

6.2 Multi-Level BoLD
In multi-level BoLD, we require stakes on refinement edges as well as root edges. The amount
of stake required can differ between levels, but at any given level, root or refinement edges
at that level all require the same amount of stake. That is, for each level ℓ, we have a
parameter Sl, giving the required stake to create a root or refinement node at that level.
The most effective staking schemes involve these stakes being larger at higher levels; that is,
S1 ≤ ... ≤ SL.

As in single-level BoLD, in order to reimburse honest parties for their gas costs, it suffices
to set each Sl at least as large as a certain fixed gas cost, Gl, which we can calculate.

In order to obtain a target resource ratio of ρ, it turns out that we need exponentially
escalating stakes. That is, for some fixed amount of gas G′, we set S1 to G′, and then for
1 ≤ ℓ < N , Sℓ+1 will be set to (roughly) ρ · Sl. This is why it is important to limit the
number of levels in multi-level BoLD: stakes need to increase exponentially in the number of
levels in order to maintain the same griefing ratio.

We have also explored an alternate staking regime, which (roughly speaking) gives an
“asymptotically unbounded” resource ratio. Intuitively, in this regime, rather than being
bounded by a constant, the ratio of the adversary’s cost to the honest party’s cost tends
toward infinity as the honest party’s cost grows. However, as the number of levels grows, the
rate at which this ratio tends toward infinity becomes slower, and does so very quickly. This
approach is therefore only useful for single-level BoLD and 2-level BoLD (i.e., multi-level
BoLD with L = 1 or L = 2).

For further details, see full version of the paper [1].
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Abstract
Crash fault tolerant (CFT) consensus algorithms are commonly used in scenarios where system
components are trusted – e.g., enterprise settings and government infrastructure. However, CFT
consensus can be broken by even a single corrupt node. A desirable property in the face of such
potential Byzantine faults is accountability: if a corrupt node breaks the protocol and affects
consensus safety, it should be possible to identify the culpable components with cryptographic
integrity from the node states. Today, the best-known protocol for providing accountability to
CFT protocols is called PeerReview; it essentially records a signed transcript of all messages sent
during the CFT protocol. Because PeerReview is agnostic to the underlying CFT protocol, it
incurs high communication and storage overhead. We propose CFT-Forensics, an accountability
framework for CFT protocols. We show that for a special family of forensics-compliant CFT
protocols (which includes widely-used CFT protocols like Raft and multi-Paxos), CFT-Forensics
gives provable accountability guarantees. Under realistic deployment settings, we show theoretically
that CFT-Forensics operates at a fraction of the cost of PeerReview. We subsequently instantiate
CFT-Forensics for Raft, and implement Raft-Forensics as an extension to the popular nuRaft library.
In extensive experiments, we demonstrate that Raft-Forensics adds low overhead to vanilla Raft.
With 256 byte messages, Raft-Forensics achieves a peak throughput 87.8% of vanilla Raft at 46%
higher latency (+44 ms). We finally integrate Raft-Forensics into the open-source central bank digital
currency OpenCBDC, and show that in wide-area network experiments, Raft-Forensics achieves
97.8% of the throughput of Raft, with 14.5% higher latency (+326 ms).
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1 Introduction

In the theory and practice of distributed systems, crash fault tolerance plays a central
role [42]. Crash fault tolerant (CFT) protocols allow a system to come to consensus on
a log of events even in the presence of nodes that may crash, but otherwise follow the
protocol [58, 47, 24, 30]. CFT systems are widely deployed in enterprise systems and support
various high-profile services [27, 10, 5, 30, 21]. For example, prevalent systems like etcd [18],
CockroachDB [55] and Consul [28] employ CFT protocols like Raft [47]. CFT protocols are
also widely-used in security-sensitive critical infrastructure [49, 27], including prospective
Central Bank Digital Currencies (CBDCs) [41, 44].

CFT protocols provide theoretical correctness guarantees under the assumption that at
least a certain fraction of nodes follow the protocol, and remaining nodes may suffer from
crashes. However, these assumptions can be broken in practice. For instance, an agent could
be Byzantine, meaning that it can misbehave arbitrarily, e.g., by delaying or tampering with
messages. In such cases, consensus can be trivially broken.

One possible solution is to replace the CFT protocol with a Byzantine fault tolerant (BFT)
protocol, which guarantees consensus under not only crash faults, but also under Byzantine
faults [9, 40, 7, 2, 62, 20, 22, 25]. This is a viable solution, though swapping out consensus
protocols may be impractical for organizations that have already built infrastructure around
a particular CFT system.

In this paper, we explore a complementary approach to managing Byzantine faults:
accountability. That is, in the case of Byzantine faults in a CFT protocol, can an auditor
with access to locally-stored protocol states identify which node(s) were responsible for the
misbehavior, with cryptographic guarantees? In particular, we want to provide this guarantee
by making minimal changes to an existing system and protocol, rather than completely
replacing the consensus mechanism.

Accountability for BFT protocols has been studied systematically very recently, both as an
intrinsic attribute of existing protocols [50, 45, 46] and as an important feature in the design
of new protocols [6, 54, 11, 51]. However, there is comparatively little work on CFT protocols
that incorporate accountability for Byzantine faults [26, 24]. An important prior work called
PeerReview tackled this problem in the context of general CFT protocols [26]. PeerReview
works by producing a signed transcript of every message that is sent in the protocol.
Being a general-purpose protocol, it does not always achieve competitive performance
with the underlying CFT protocol (details in §6.2). Hence, to our knowledge, existing
work on accountability for CFT protocols either: (1) is very general, and thus incurs high
performance overhead when applied to specific CFT protocols (i.e., PeerReview [26]), and/or
(2) does not include a full implementation-based evaluation to measure the practical effect of
accountability [26, 24].
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Figure 1 Bandwidth-latency tradeoffs of Raft vs Raft-Forensics over 4 nodes at message size of
256 Bytes.

Our goal in this work is to design a practical accountability framework that
incurs low communication and storage overhead by exploiting the structure of
the underlying protocol, unlike PeerReview. Crucially, despite exploiting protocol
structure, we want the framework to be broadly applicable to common CFT protocols and
backwards-compatible with existing systems. To this end, our contributions are threefold:

Accountably-Safe Consensus: We first formally define a subclass of CFT protocols
called forensics-compliant protocols, which includes two of the most widely-used CFT
protocols in use today: Raft [47] and Paxos [34, 29] 1. Intuitively, the defining feature
of this class is that its protocols cycle between two phases: log replication and leader
election, and each phase satisfies some formal properties (defined in §4). We then propose
CFT-Forensics, a lightweight modification to forensics-compliant CFT protocols that
provably guarantees to expose at least one node that committed Byzantine faults when
consensus is violated. Note that we cannot guarantee to detect more than one Byzantine
node, as only one malicious node is needed to break CFT consensus; however, for certain
classes of attacks involving multiple Byzantine nodes, we are able to detect multiple
misbehaving nodes .
Theoretical Efficiency Comparison: We theoretically analyze the communication and
computational overhead of CFT-Forensics compared to the most relevant prior work in
this space, PeerReview. We show that CFT-Forensics has (amortized) vanishing storage
overhead compared to the baseline protocol in practical scenarios, while PeerReview
has overhead that grows linearly with the logs. In addition, during log replication, the
communication overhead of CFT-Forensics is 58% lower than PeerReview.
Empirical Performance Evaluation on Raft: We implement Raft-Forensics, an
instantiation of CFT-Forensics for the Raft protocol. Our implementation is built on a
fork of nuRaft, a popular C++ implementation of Raft. We evaluate its performance
compared to Raft, both in benchmark experiments and in a downstream application –
specifically, OpenCBDC [41] – an open-source central bank digital currency (CBDC)
implementation that uses nuRaft. In benchmark experiments, we observe in Fig. 1 that
CFT-Forensics achieves performance close to vanilla Raft (experimental details in §7).
For instance, in end-to-end experiments, it achieves a maximum throughput that is 87.8%
the maximum throughput of vanilla Raft, at 46% higher confirmation latency (44 ms).
In our OpenCBDC experiments over a wide-area network, Raft-Forensics achieves 2.2%
lower throughput at 14.4% higher latency (326 ms) than vanilla Raft.

1 For notational brevity, we use the name “Paxos” to refer to variants of the Paxos algorithm that are
sometimes referred to as multi-Paxos to distinguish from the original single-decree Paxos [34, 29].
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2 Related Work

CFT protocols

CFT protocols are designed to handle crash faults, where nodes may fail but do not exhibit
malicious behavior. Paxos [36] is a foundational CFT protocol, with many variants [38,
34, 15, 35, 4, 37, 43, 58, 29]. Raft [47] is a CFT protocol that aims to provide a more
understandable and easier-to-implement alternative to Paxos [58], where HovercRaft [31]
further improves its performance. Viewstamped Replication revisited [39] is a CFT protocol
that displays elements of both Paxos and Raft. Both Raft [55, 48, 1] and Paxos [8, 5, 53, 14]
are widely-used in practice.

Accountability

Accountability allows protocols to identify and hold misbehaving participants responsible
when security goals are compromised [33, 32]. In the context of fault-tolerant protocols,
accountability allows a protocol to identify culpable participants when security assumptions
are violated and demonstrate their misconduct. Recent works [50, 16] have examined
several widely used BFT protocols and assessed their inherent accountability levels without
altering the core protocols. In addition, some other works [23, 3, 59] have improved the
performance of existing BFT protocols by excluding culpable participants from the consensus
with accountability. Since CFT protocols are explicitly designed to handle only crash faults,
integrating accountability offers a lightweight enhancement to detect Byzantine actors.

One prior work [24] explored the accountability of the Hyperledger Fabric blockchain,
which features a pluggable consensus mechanism. This study conducted a case analysis of
incorporating accountability into a Hyperledger Fabric system underpinned by a CFT protocol,
Apache Kafka [21] (called Fabric*). However, this work treats the consensus module as a
cluster, offering accountability only at the level of the entire consensus group (not individual
nodes within the group). In contrast, we aim to identify and attribute Byzantine faults
to individual misbehaving consensus replicas participants. Fabric* introduces two primary
modifications. First, parties must sign every message they send. Second, it enforces a
deterministic block formation algorithm to eliminate ambiguity. However, these changes
are neither necessary nor sufficient for ensuring accountability in the CFT protocols we
study. In addition, Fabric* does not empirically evaluate their system, whereas we evaluate
performance both theoretically and empirically.

PeerReview [26] builds a framework for accountability that applies to general distributed
systems. Although it accounts for Byzantine faults in CFT protocols as CFT-Forensics
does, it has substantially higher overhead communications and space requirements than
CFT-Forensics, which we discuss in §6 in detail. PeerReview requires nodes to audit each
other, instead of assuming arbitrarily many central auditors as we do (§4). To address this
difference, we disable inter-node auditing in PeerReview, which still incurs substantially
higher communication and memory overhead than CFT-Forensics.

3 Setup

We study consensus protocols that solve the crash-fault tolerant state machine replication
(CFT-SMR) problem over partially synchronous networks. Precisely, we consider a setting
with n servers (also known as nodes) and arbitrarily many clients. For the vanilla CFT-SMR
setting, we assume that at most f out of the n nodes can suffer crash failures, where they
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stop working without resuming at an arbitrary and unpredictable moment. Each node u

maintains a state machine SMu and an append-only log list logs. We let u[i] denote the
i-th entry in u’s logs. The goal of CFT-SMR is for the nodes to maintain consistent state
machines SMu with each other (Definition 1). SMu maintains a local state s initialized to
s0 =⊥ and a deterministic function ϕ. logs are sequential inputs to SMu generated from
client requests, which results in state transition

SMu
.si = SMu

.ϕ(SMu
.si−1, u[i]), ∀i ∈ Z>0.

The network is partially synchronous, meaning that there exists a global stabilization
time (GST) and a constant time length ∆, such that a message sent at time t is guaranteed
to arrive at time max{GST, t} + ∆. GST is unknown to the system designer and is not
measurable by any component of the system.

▶ Definition 1 (CFT(-SMR) Protocol). In the setting above, a consensus protocol P is
f -CFT(-SMR) if f nodes can fail by crash, and the following three properties are satisfied.
1. Safety: If E is the i-th entry of a correct node’s log, then no other correct

node has E
′
≠ E at index i.

2. Liveness: If a correct client submits a request r, then eventually all non-faulty nodes will
(1) have a log entry E at index i handling r (2) there exists a log entry at all previous
positions j < i.

3. Validity: Each entry in the log of a correct replica can be uniquely mapped to a command
proposed by a client request.

In the remainder of the paper, we study f -CFT protocols with f = ⌊(n− 1)/2⌋ and focus
on the boldfaced safety property. These protocols tolerate f crash failures, but are typically
vulnerable under even one Byzantine failure, where a node arbitrarily deviates from the
stipulated protocol (§5.1).

We formalize our threat assumptions below.

3.1 Threat Model
In addition to the f nodes with crash failures, we further assume the existence of b ≥ 1 nodes
that execute Byzantine faults. We assume b ≤ n − 2 to avoid a trivial problem with at most
one honest node. The Byzantine nodes are capable of accessing states of honest nodes and
collaboratively determining whether, when, and what to send to every honest node. However,
they cannot influence the honest nodes or the communication between them.

Auditor

To identify the adversary, we introduce auditors in addition to the clients and (server) nodes
in the SMR model. Any actor with access to the full states of any node (details in §5.2.1)
can be an auditor. Each auditor works independently. If an auditor requests information,
honest nodes always provide their information to the auditor; a Byzantine node can respond
arbitrarily. Generally, the information is transmitted through the partially synchronous
network, so it is guaranteed to arrive at the auditors eventually. The information may also be
collected physically, if the entire system is maintained by a centralized party such as a central
bank. Any auditor may determine the safety of the system by checking data legitimacy and
consistency among the nodes, as a function of the received state information. Our main
goal is to define modifications to the consensus protocol and an auditing algorithm that
jointly enable an auditor to eventually uncover the identity of the adversarial node if the
state machine safety property is violated.

AFT 2024
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We assume the simplest setting with a single trusted auditor who is unable to directly
influence the system. Notably, there are various alternative auditing designs. For example,
we can introduce additional independent auditors to trade communication complexity for
robustness. We can also allow auditors to create checkpoints for the nodes. Since checkpoints
influence the system, the auditors should also be coordinated by a distributed consensus for
security. We leave the design of a trustless auditing system to future work.

3.2 The Accountability Problem

If even a single node is Byzantine, CFT protocols are vulnerable to safety violations (examples
in Section 5.1). As a result, we want to identify the party responsible for a safety violation
using an auditing algorithm. If such an algorithm exists, we say the protocol has accountability.

▶ Definition 2 (Accountability). Let P denote an f-CFT-SMR consensus protocol. P has
accountability if there exists a polynomial-time auditing algorithm A s.t.
1. A takes the states of P as input.
2. If safety (Def. 1) is violated, A outputs a non-empty set of nodes and irrefutable proof

that each member of the set violated protocol. Otherwise, A outputs ⊥.

4 Forensics-Compliant Protocols: A Family of CFT Protocols

Modifying an arbitrary CFT-SMR protocol under a general workflow without context can be
challenging. To address this, we define a family of CFT-SMR consensus protocols named
forensics-compliant, which are provably modifiable for accountability under our general frame-
work CFT-Forensics (Def. 2 and Theorem 11). At a high level, a forensics-compliant protocol
is leader-based (Property 3). It can be described by a set of procedures, which is partitioned
into log replication and leader election2 with each satisfying necessary properties. Both
Raft [47] and Paxos [58], two dominant CFT protocols in practice [29], are forensics-compliant
protocols. Additionally, forensics-compliant protocols include Viewstamped Replication re-
visited [39] and simple variants such as HovercRaft [31].

4.1 Setup

We start with an f -CFT-SMR protocol. In the protocol, each entry in the log has two
possible states: committed and uncommitted. If an entry is committed, the content in the
entry will not be changed in the future and can be applied to the state machine. If a prefix
in the log is committed, then all entries in the prefix is considered committed. The largest
index of committed entries is called the last commit index, denoted as iCommit.

Let there be global notion of time T = [0,∞), which is unknown to any of the nodes. For
simplicity, we let u[i] denote the i-th log entry in node u’s logs, and u.loglen denote the
length of u’s logs, which equals the index of u’s last entry. For a given entry E with index i,
we say a node v owns E if v[i] = E. Furthermore, we let Ei∶j denote a sequence of consecutive
entries {Ek∣k ∈ [i, j], Ek.index = k}. Throughout the paper, we use colored monospace
text to denote protocols and methods that appear in pseudo-code.

2 We use the terminology of Raft for clarity.
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Leader-Based

Let S denote the set of nodes with ∣S∣ = n. A forensics-compliant protocol must satisfy the
leader-based property (Property 3).

▶ Property 3 (Leader-Based). At any time t ∈ T , each node u ∈ S identifies a leader
Lu(t) ∈ S̄ ≜ S ∪ {⊥}. For each u, there exists an interval partition of T = ⋃∞

i=1[ti−1, ti) and
a sequence of nodes {ℓi ∈ S̄}∞i=1 where t0 = 0, and for all i ∈ Z>0,

ti−1 < ti, ℓi ≠ ℓi+1; Lu(t) = ℓi,∀t ∈ (ti−1, ti).

If Lu(t) = u for all t ∈ [t, t̄), u is called a leader during the leadership [t, t). Otherwise,
if Lu(t) = ℓ ∉ {u,⊥}, u is called a follower identifying ℓ. Only a leader can propose a log
entry. At time t when ℓ starts being a leader, it assigns a unique term to itself which is
fixed until it stops being a leader at t̄. Hence, the term can be regarded as an attribute of
a leadership during [t, t). For node u to identify ℓ, u must receive a message from ℓ that
includes ℓ’s term. u sets its term equal to ℓ’s term as soon as it starts identifying ℓ.

We say there exists a global leader ℓ ∈ S of term τ , if there exists a majority subset
M ⊆ S, such that ℓ ∈ M and for all u ∈ M , u.term = τ . Since M is the majority, ℓ must be
unique at every time, so global leaderships do not overlap in time. We require that the term
of a later global leadership must be strictly greater than that of an earlier one.

The full protocol consists of procedures that are partitioned into the following subprotocols.
Log Replication is the subprotocol that collects all procedures only executed when the
host node u identifies a new leader, i.e., Lu(t) ≠⊥.
Leader Election is the subprotocol collecting all the remaining procedures.

Log Replication

On the top level, log replication (Alg. 1) has a main procedure HandleClientRequest
that is triggered when a leader receives a client request. If a node is not running
HandleClientRequest or involved in an RPC call within the procedure, it cannot cre-
ate a new log entry or edit its logs and iCommit. It has three steps – log entry creation,
replication and commitment.

Creation. When leader ℓ receives a client request, ℓ creates a corresponding log entry E

and appends it to the log list. E has 3 attributes – (1) term, ℓ’s term; (2) index, its index
on the log list; and (3) payload, which handles the request. We define the freshness of a log
entry, a log list and a node in Def. 4, and provide an example in Fig. 2.

▶ Definition 4 (Freshness). A log entry E’s freshness is denoted by the tuple
(E.term, E.index). E is as fresh as entry F if their freshness tuples are identical. E

is fresher than F if E.term > F .term or E.term = F .term ∧ E.index ≥ F .index. E is
strictly fresher than F is E is fresher than F , and E is not as fresh as F . In contrast, E is
staler than F if E is not strictly fresher than F . The freshness of a node or its log list is
equivalent to that of the log list’s last entry.

Replication. The procedure of replication can be described by ℓ calling a single RPC
AppendEntries for each remaining node. Its eventual outcome is a AppendEntriesResp
message from each callee, which includes a predicate accept that indicates whether the
replication is successful. In addition, the RPC must satisfy the replication property:
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World A World B World C

Figure 2 Examples of node freshness. Each box represents an entry containing the entry’s term.
The entries are not necessarily committed. Each world is a possible result of protocol execution by
only honest nodes. In all worlds, u’s log list is (unstrictly) fresher than v’s. In World A, u is as
fresh as v. In only Worlds B and C, u is strictly fresher than v.

▶ Property 5 (Replication). If a follower u replicates Ei∶j from leader ℓ, u’s term must equal
Ej’s term, and it must own E1∶i−1. Formally, u.term = ℓ.term = Ej .term and for all index
k ≤ j, u[k] = ℓ[k].

Commitment. Once ℓ receives AppendEntriesResp messages from (n − f − 1) followers
with accept=True, ℓ commits Ej . Then, ℓ sends a message InformCommitMsg including
(hash of) Ej to each remaining node u, who also commits Ej if it owns Ej .

Algorithm 1 Log replication of the forensics-compliant family. In persistent storage, a
node maintains term, logs, iCommit, CC and LC, where iCommit is the last commit index. The
red lines and variables are added in CFT-forensics (§5). See §5.2.1 for relevant definitions and
our full paper [57] for the complete algorithm.

1 Protocol LogReplication(host node w):
2 As leader:
3 Procedure HandleClientRequest(r):
4 E ← LogEntry(term=term, index=loglen + 1, payload=Payload(r))
5 E.pointer ← Hash(loglen + 1∥E.payload∥w[loglen].pointer)
6 E.stamp ← σw(E.pointer)
7 E.LC ← LC
8 Append E to w’s logs
9 replicators, sigs ← {w}, {σw(E.pointer)} // Replication

10 for async u ∈ S − {w}
11 msg ∶ AppendEntriesResp ← async AppendEntries([E], ...)
12 if msg.accept
13 if not verifySig(msg.signature, E.pointer, u)
14 fail exit
15 sigs ← sigs ∪ {msg.signature}
16 replicators ← replicators ∪ {u}
17 Wait until ∣replicators∣ ≥ n − f − 1
18 if E not yet committed // Commitment
19 Commit(E)
20 CC ← i∥E.pointer∥replicators∥sigs
21 for u ∈ S − {w}
22 Send InformCommitMsg(E, CC) to u
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Leader Election

By definition, leader election is the set of procedures that do not belong to Log Replication,
where CandidateMain is the main procedure. Without running CandidateMain or being
involved in an RPC within it, a node cannot identify any leader. Only a candidate within
CandidateMain can edit its logs and iCommit. CandidateMain consists of three steps: term
switching, candidate qualification, and leadership claim.

Term Switching. At the beginning, the caller ℓ, also called a candidate, updates the term to
a greater term, which is exactly the term of ℓ’s leadership as the outcome of CandidateMain.

Candidate Qualification. This phase is represented by a procedure Qualification, which
can be completed or interrupted. If it is interrupted, CandidateMain is also interrupted.
Otherwise, it satisfies the election property (Property 6) by necessary communications and
state modifications.

▶ Property 6 (Election). If ℓ completes Qualification at term τ , there must exist a set of
nodes V where ∣V ∣ ≥ n − f and ℓ ∈ V , such that
1. (Validity) After Qualification, ℓ[j].term ≥ ℓ[i].term for all j > i.
2. (Selection) For every log entry E = ℓ[i] after Qualification, there exists u ∈ V such

that u[i].payload = E.payload.
3. (Freshness) Let u

i denote an arbitrary node satisfying Selection at index i. Before
Qualification, let node v be freshest among u. After Qualification, ℓ’s log list is no
shorter than v’s and for all i ≤ length of v’s log list, u

i[i].term ≥ v[i].term.

Leadership Claim. After Qualification, ℓ identifies itself as the leader. Then, it sends a
LeadershipClaim message including its term τ to each other node. A recipient u identifies
ℓ as the leader and sets its own term to τ if τ is greater than u’s own term; otherwise, u

ignores the message.

4.2 Summary

▶ Definition 7 (Forensics-Compliant Protocols). A forensics-compliant protocol is a leader-
based (Property 3) f -CFT-SMR protocol (Def. 1). The protocol can be partitioned into two
subprotocols – log replication (Alg. 1) and leader election (Alg. 2), such that

Log replication is a set of procedures that can only be executed when a node identifies a
leader. If a node identifies itself, it handles client requests with HandleClientRequest,
where the AppendEntries RPC must have the replication property (Property 5).
Leader election is the set of all the remaining procedures, including CandidateMain, which
is a unique procedure that allows a node to start identifying a leader. In CandidateMain,
the Qualification procedure must satisfy the election property (Property 6).

In addition, the log list and iCommit must not be modified by any procedure that
is not mentioned above or explicitly written in the pseudocode.

▶ Proposition 8 (Instances of Forensics-Compliant Protocols). Both Raft [47] and Paxos
[34, 29] are forensics-compliant.
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Algorithm 2 Leader election of the accountable family. The red lines and phrases are
specific to our (unoptimized) CFT-forensics (§5). See §5.2.1 for relevant definitions. See our
full paper [57] for the complete algorithm and implementation of validate.

1 Protocol LeaderElection(host node w):
2 Procedure CandidateMain(⋯):
3 term ← a new, higher term than term // Term switching
4 Qualification(term, ...) // Candidate qualification; abort on failure
5 r ← w∥term∥w[loglen].term∥loglen∥w[loglen].pointer
6 votes ← {w ∶ σw(Hash(r))}
7 for async u ∈ S − {w}
8 msg ← Call RPC RequestVote(u, term)
9 if verifySig(msg.signature, Hash(r), u)

10 votes[u] ← msg.signature
11 Wait for votes.size ≥ n − f

12 LC ← r∥votes.keys∥votes.values
13 for E ∈ logs
14 if E.term = term
15 E.LC ← LC
16 Lw ← w // Leadership Claim
17 for u ∈ S − {w}
18 Send LeadershipClaim(term, LC) to u

19 Response HandleClaimLeadershipMsg(ℓ, msg):
20 if msg.term ≤ term
21 fail exit
22 Lw, term ←⊥, msg.term
23 if not validate(msg.LC)
24 fail exit
25 Lw ← ℓ

26 ... // Protocol-specific state updates

Proof (Raft)

Raft is originally designed in a very similar philosophy to the forensics-compliant family. It
is a leader-based (Property 3) SMR solution by design. The Raft consensus algorithm has
two components: log replication and leader election. We define the core procedures in our
full paper [57].

AppendEntries: After a follower receives a list of consecutive log entries (or a single
entry), it replicates them if it has the predecessor of the head of the list. Otherwise, it
triggers AppendEntries recursively to synchronize all uncommitted entries, which guarantees
the no-gap property (Property 5).

Qualification: A candidate ℓ in Raft asks voters for votes, and a voter only votes if ℓ’s
log list is fresher than its own. This ensures ℓ is fresher than n − f nodes without changing
its logs, so Qualification RPC satisfies the election property (Property 6).

To summarize, all the RPCs have the required properties, so Raft is forensics-compliant.

Proof (Paxos)

(Multi-)Paxos is an optimized protocol based on a simple array of basic Paxos. Its description
varies from paper to paper, so we adopt the version in [29] which enables a clear comparison
to Raft. Both the original Paxos [34] and [29]’s variation are leader-based (Property 3). In
Paxos, the log replication procedures are identical to those in Raft. Thus, we focus on the
leader election subprotocol (details in our full paper [57]).
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Unlike Raft, a Paxos voter u always votes for a candidate ℓ with a higher term in
Qualification. The vote comes with all u’s entries at ℓ’s uncommitted indices of ℓ. With
n − f − 1 such votes, at each uncommitted index, ℓ selects the freshest entry it has ever seen.
Hence, Qualification in Paxos also satisfies the election property (Property 6).

To summarize, Paxos (as described in [29]) is also forensics-compliant.

5 CFT-Forensics

Although CFT protocols guarantee safety against crash faults, they are not safety-resilient
against even a single Byzantine fault. We first illustrate typical safety attacks. Next, we
present CFT-Forensics to endow forensics-compliant protocols with accountability.

5.1 Example Attacks

Recall that in §3, we assumed that b ∈ [1, n − 2] nodes may behave adversarially. In two
examples, we assume n = 2f + 1 is odd for simplicity. We show the capabilities of a single
attacker Mallory, and the remaining 2f nodes are evenly partitioned into X and Y .

▶ Example 9 (Proposer’s Attack, or Split-Brains). Let Mallory be a corrupt leader. At the
same index, Mallory replicates log entries E and E

′
≠ E to X and Y , respectively. At each

side, she commits the corresponding entry with a quorum of f + 1 nodes. As a result, the
honest nodes in X and Y have different committed log entries at the same index.

▶ Example 10 (Voter’s Attack). Let Mallory be a corrupt voter who has committed entry E

with Y . Nodes in X, however, do not own E. In an election, suppose Carol ∈ X who earns
all f votes from X. When Carol requests vote from Mallory, Mallory votes by simulating
itself as a Carol’s clone. After being elected, Carol commits E

′
≠ E at the same index, which

conflicts with any honest node in Y .

Surprisingly, these two examples almost exhaustively enumerate the types of safety
attacks against forensics-compliant protocols (Theorem 11). This is why forensics-compliant
protocols can achieve accountability with much simpler modifications than PeerReview.

5.2 CFT-Forensics Design Overview

We present CFT-Forensics, a framework that enables accountability for forensics-compliant
protocols. Here, we present a basic variant of CFT-Forensics, which adds large overhead
compared to vanilla CFT protocols; we provide and analyze an optimized variant in §6.1.
We use the convention that for a forensics-compliant protocol P, P-Forensics denotes the
protocol P augmented with CFT-Forensics (e.g., we implement Raft-Forensics in Section 7).

At a high level, CFT-Forensics adds two central data structures to a forensics-compliant
protocol: commitment certificates (CCs) and leader certificates (LCs). A CC irrefutably proves
that a quorum of nodes have replicated an entry, and an LC proves which quorum of nodes
agreed to elect a leader. CFT-Forensics requires each log entry to be signed by its proposer,
which provides accountability for a split-brains attack (Example 9). It also requires that
each voter signs its vote, for which the voter is forced to take responsibility since the vote
exists in a CC or an LC, providing accountability for the voter’s attack (Example 10).
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Additional Assumptions: Public Key Infrastructure

We assume access to a Public Key Infrastructure (PKI). Each node u has a pair of private
and public keys, where the public key is well known, that is, known by all parties in the
system, including other nodes and auditors. Node u can use its private key to create an
unforgeable signature on (the hash of) an arbitrary message m, denoted by σu(Hash(m)),
and the signature can be verified with u’s public key. A collision-resistant cryptographic
hash function Hash is known to all parties. Both signing a message and verifying a signature
can be executed in time that is polynomial in message size.

5.2.1 Added States
We first explain the new state that is maintained in CFT-Forensics. CFT-Forensics introduces
four new categories of states: hash pointer, proposer stamp, leader certificate (LC) and
commitment certificate (CC).

Table 1 Attributes of a CC, an LC and a vote request.

Commitment certificate CC
index pointer voters signatures

i hi V {σu(hi)}u∈V

Leader certificate LC
req voters signatures
r V {σu(Hash(r))}u∈V

Vote Request id term eterm end pointer
ℓ ℓ.term τ(< ℓ.term) i h

1. Hash Pointer. The hash pointer of log entry Ei is denoted by Ei.pointer, where
E0.pointer =⊥. It is a lightweight proof that the host node owns the entire log list from
E1 to Ei. The other hash pointers can be derived by

Ei.pointer = Hash(i∥Ei.payload∥Ei−1.pointer),∀i ∈ Z>0. (1)

2. Proposer Stamp. The (proposer) stamp of log entry E is a digital signature by its
proposer ℓ on the hash pointer of E. We denote it by E.stamp = σℓ(E.pointer). Should
a pair of stamps of E and E

′
≠ E exist where E is neither an ancestor or descendent of

E
′ and E.term = E

′
.term, ℓ must have launched a split-brains attack.

3. Leader Certificate (LC) of Proposer. The LC of log entry E, denoted by E.LC, is the
LC created by E’s proposer ℓ at term E.term. It collects a quorum of signatures from a
set of nodes V on ℓ’s vote request r, where a request includes ID ℓ, term ℓ.term, plus the
tuple (term, index, hash pointer) of ℓ’s last entry (τ, i, h). Formally, r = ℓ∥ℓ.term∥τ∥i∥h

and LC = r∥V ∥{σu(Hash(r))}u∈V , as shown in Table 1.

In summary, in our basic (un-optimized) CFT-Forensics, a log entry has six attributes
(Fig. 3) – term, index, payload, pointer, stamp and LC. In addition, CFT-Forensics
requires each node to maintain two independent states – 4) the current leader’s LC and 5)
the latest CC.
4. Leader Certificate of Current Leader. Each node additionally maintains the LC of

the current leader it identifies. This LC is not covered above because the current leader
may have not proposed any log entry yet.

5. Commitment Certificate (CC) Each node only maintains one freshest CC. Like LCs, a
CC is a collection of a quorum of signatures on the same log entry. Formally, for a log
entry at index i that is replicated to a set of nodes V where ∣V ∣ ≥ n − f , we construct a
CC following the structure in Table 1. We denote CC = i∥hi∥V ∥{σu(hi)}u∈V .
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...

(first uncommitted)
Entry (index = i− 1)

index payload pointer

term stamp LC

Entry (index = i)

index payload pointer

term stamp LC

Entry (index = i+ 1)

index payload pointer

term stamp LC

(latest committed) CC

before optimization

after optimization

index payloadterm index payloadterm index payloadterm

(latest committed) CC

pointers:HashMapstamps:HashMapLCMap:HashMap

valuevaluevalue

LC of proposer at term stamp of last entry at term pointer of entry at index

keykey key ≥ iCommit

Figure 3 Log entry attributes with and without CFT-Forensics; committed blocks are shown
with a double gold outline. Our basic (unoptimized) CFT-Forensics (top) adds a hash pointer, a
proposer stamp, and a leader certificate LC, all shown in red. We also store a CC only for the latest
committed block. Our optimized CFT-Forensics (§6.1) reduces storage costs by storing three hash
maps: (1) one containing pointers only for the last committed block and later uncommitted blocks,
(2) one storing a single leader certificate LC for every term, and (3) one storing a proposer stamp
only for the latest proposed block in the current term.

5.2.2 Modified Procedures

Log Replication

We mark our changes in red in Alg. 1. Upon creation of a log entry E at index i, the leader
ℓ correctly attaches the three new states (pointer, stamp and LC). Then it replicates the
“enhanced” entry to followers via the AppendEntries RPC. Upon receipt, each follower u

validates the new states, and eventually puts the entries at their correct indices. As a result
of a successful replication, u sends a AppendEntriesResp message, which not only includes
the predicate accept, but also u’s signature on the last entry E’s hash pointer.

With (n − f − 1) AppendEntriesResp messages, the leader updates its CC by assembling
the n − f signatures it has obtained (including its own). To notify followers to commit E,
the leader sends a InformCommit message which includes CC in addition to E. Upon receipt,
a follower commits E if it owns E and the CC passes a follower’s verification.

Leader Election

In the Qualification procedure which satisfies the election property (Property 6), if a
candidate ℓ’s logs are changed during Qualification, we let ℓ reconstruct every uncommitted
entry with the same payload, as if ℓ plans to repropose them. In detail, ℓ a) sets their terms
equal to its current term, b) re-derives their hash pointers, c) creates its own stamp for each
of them, and d) sets their proposer LCs to its own LC. As a result, the hash pointers will
still be correct, and no entry will be overwritten if it has been committed by any node.
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Assume that the candidate ℓ passes the Qualification procedure in a vanilla forensics-
compliant protocol. Instead of directly declaring leadership in vanilla, ℓ broadcasts another
vote request r based on its current last log entry by calling RequestVote RPC. Since ℓ is
already qualified, the request deserves at least n − f votes by election property. Each vote
from u contains a signature σu(Hash(r)), proving u’s awareness that ℓ is fresher than itself.
After collecting n− f votes, ℓ assembles a leadership certificate (LC) and claims leadership by
broadcasting it. Then, each recipient will verify the LC, store it, and identify ℓ as the leader.

In general, we add an additional round of communication to leader election, where the
candidate provides information of its last log entry and the voters send signatures. In passive
leader elections like Paxos, any arbitrary node can be elected under deterministic logic (e.g.,
under round robin or maximum ID). The new leader must ensure freshness by updating its
log entries based on those it receives from the other nodes. As a result, the last log entry is
only available after a round of communication, so a second round of signatures is needed.
However, it is not needed in active elections like Raft, where a node actively seeks leadership
candidacy. If each node never modifies its logs during election, then their last entry does not
change, and they can collect signatures in just one round of communication.

5.3 Accountability Guarantee
▶ Theorem 11. If a CFT protocol P is forensics-compliant, then P-Forensics achieves
accountability (Def. 2).

Proof Sketch. (Full proof in our full paper [57]) We first establish a map from each term to
the LC of that term’s leader. If a term is associated with two distinct LCs, we can accuse all
voters that contributed signatures to both LCs, as they voted twice at the same term. If this
map exists, a term is uniquely used by a leader. Since safety (Def. 1) does not hold, we find
the first pair of entries from the logs of two honest nodes that conflict.

If they are of the same term, we discover a split-brains attack and we can accuse the
leader by its stamps on the conflicting entries or their successors.

If they are of different terms, we discover a voter’s attack, which has two possibilities –
1) at least one voter voted for a leader not fresher than itself; and 2) at least one voter
replicated and signed an entry at a term less than its term. In this final case, we can accuse
all the voters who have signatures in a pair of conflicting CC and LC. ◀

6 Performance Comparison with PeerReview

In this section, we provide a head-to-head comparison of the theoretical overhead costs of
CFT-Forensics compared to PeerReview, for the special cases of Raft-Forensics and Paxos-
Forensics. We begin by explaining some practical optimizations that reduce the redundancy of
CFT-Forensics without affecting accountability, then explain the cost comparison calculations.

6.1 CFT-Forensics State Optimization
The added states in basic CFT-Forensics incur linear overhead in the number of log entries.
We next show how to store the new states in independent, more efficient data structures.

Hash Pointer. We let each node u maintain the u[k].pointer only for k ≥ c ≜ u.iCommit
in a hash map pointers. This is sufficient for hash pointer reads, which happens only
when a node u receives a sequence of entries Ei∶j to be updated to its logs, plus the
preceding pointer Ei−1.pointer. We may presume j > c because u rejects updating any
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committed entry. Normally, u tells whether Ei∶j matches its own log list by whether
u[i − 1].pointer = Ei−1.pointer. If i ≤ c, u cannot find u[i − 1].pointer in the hash
map, but u can alternatively derive Ec.pointer by (1) and tell whether u[c].pointer =

Ec.pointer. Since Hash is collision-resistant, u[i− 1].pointer = Ei−1.pointer is implied by
u[c].pointer = Ec.pointer. Therefore, reduction of committed hash pointers (except the
last one) does not affect correctness.

Proposer Stamp. Suppose ℓ has proposed {Ek∣k ∈ [i, j]} during a leadership. Since Hash
is collision resistant, Ej .pointer effectively represents the entire log list from the head E1
to Ej . Therefore, the stamp σℓ(Ej .pointer) proves ℓ has proposed not only Ej , but also
Ei,⋯, Ej−1. Hence, the stamps on Ei,⋯, Ej−1 are all redundant, and it suffices to keep only
the last stamp Ej within ℓ’s term. Because we only need to maintain one last stamp for each
leader, all the stamps can be contained in a hash map stamps keyed by term.

Leader Certificate. By design, the LC used for each term is unique. Hence, we may reduce
overheads by maintaining the LCs in a hash map LCmap keyed by term and valued by LC.
Moreover, we may reduce the hash pointer inside the vote request of LC, because the pointer
can be derived from the logs.

Summary of Total Spatial Overhead. Let H denote the length of the logs, H
′ the number

of uncommitted entries and Λ the number of global leaderships during which at least one
entry is replicated. Our optimized CFT-Forensics substantially reduces total overhead of
the three states from O(nH) to O(H ′ + nΛ). However, to reduce notations and symbols for
better clarity, we continue using the primitive states in the algorithm pseudocode.

6.2 Cost Analysis
Using this optimized implementation, for Raft and Paxos, we compare the overhead space
and communication complexities of CFT-Forensics against PeerReview. For log replication,
Raft is identical to Paxos, so we merge the comparison in §6.2.1. For leader election, we
compare the variants separately in §6.2.2.

PeerReview

PeerReview [26] achieves accountability by logging communication for every message from any
node u to another node j, regardless of the underlying consensus protocol. The communication
log is an independent data structure introduced by PeerReview. We call such log entries
“comm entries”, where each comm entry includes a copy of the message. To make the entire
log tamper-evident, a hash pointer is maintained, just as in CFT-Forensics. We assume each
comm entry stores a hash pointer, though this storage cost can be reduced by storing one
pointer every few blocks, at the expense of time complexity of random access. For every
message msg sent from u to v, u sends msg along with a hash pointer and u’s signature.
Then, v replies a hash pointer plus v’s signature to u. Both u and v create a new comm
entry including a copy of msg. Hence, each message incurs communication overheads of two
hash pointers and two signatures.

For auditing, PeerReview allows nodes to supervise each other by forwarding all signatures
from a signer to the signer’s witnesses. For a fair comparison between CFT-Forensics (which
has a separate auditor) and PeerReview, we disable witnessing.
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6.2.1 Log Replication

Table 2 Complexities of Raft/Paxos, CFT-Forensics and PeerReview in log replication. Π denotes
hash size and Σ denotes digital signature size, both in bytes. m denotes number of log messages.

Raft/Paxos CFT-Forensics (ours) PeerReview
(Base) Communication Overhead

Heartbeat const 0 2(Π + Σ)
AppendEntries mB Π + 2Σ 4(Π + Σ)
InformCommit const Π + (n − f)Σ 0

(Base) Storage Overhead
Heartbeat 0 0 2(Π + Σ)

AppendEntries mB 0 2mB + 4(Π + Σ)
InformCommit 0 0 0

Figure 4 Overhead complexities of CFT-Forensics and PeerReview in log replication when hash
size Π = 32 bytes and digital signatures are Σ = 65 bytes. The height of the fifth blue bar of
“InformCommit (Communication)” is plotted with (n, f) = (3, 1).

Let Π and Σ denote the sizes of a hash and a digital signature, respectively. We choose
Π = 32 bytes and Σ = 65 bytes for numerical estimation, which are used for Ethereum[61]. 3

Let B denote the size of a log entry. For messages including a sequence of log entries, we let
m denote the number of entries. We assume nodes are up-to-date in term and need only
replicate entries of current term. This limits the number of stamps and LCs sent along with
the sequence. We also assume that AppendEntries complete in a single round, and that
InformCommit contributes negligible overhead with batched executions .

Table 2 presents the communication and storage complexities of Raft/Paxos, CFT-
Forensics and PeerReview in three main log replication RPCs. For our assumed parameter
values, we numerically visualize the overheads of the Heartbeat and the AppendEntries
RPCs in Fig. 4. We first observe that CFT-Forensics has zero storage overhead in all three
RPCs, while PeerReview has a positive overhead for Heartbeat and AppendEntries. Since
message frequency must be lower-bounded by the Heartbeat frequency which is typically
once every several seconds, CFT-Forensics outperforms PeerReview by saving about 1 KB
storage every minute. For communication complexity, we focus on the most frequently-used
RPC: (one-round) AppendEntries. CFT-Forensics has a (Π + 2Σ = 162)-byte overhead in
communication, which is 58.2% lower than 4(Π + Σ) = 388 bytes of PeerReview.
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Table 3 Comparison of overhead complexities between CFT-Forensics and PeerReview in leader
election. I = 0 if the candidate’s last committed entry is at the same term as the first entry it
receives from the voter; I = 1 otherwise. If a voter contributed a signature to the new LC, the LC it
receives from the candidate does not need to include its own signature.

Vanilla (base) CFT-Forensics (ours)
(Overhead)

PeerReview (Overhead)

Raft Comm. const Π + (n − f)Σ 6(Π + Σ)
Storage 0 (n − f)Σ 6(Π + Σ)

Paxos Comm. mB Π + (n − f + 1)Σ 4(Π + Σ)
Storage 0 τ(n − f)Σ 2mB + 4(Π + Σ)

Figure 5 Overhead complexities of CFT-Forensics and PeerReview in leader election.

6.2.2 Leader Election
Raft-Forensics vs Raft-PeerReview

Now we consider Raft’s leader election . A successful election has three messages between a
candidate ℓ and its voter u: 1) ℓ sends vote request to u; 2) u responds with a vote; and
3) ℓ sends a leadership claim. As shown in Table 3 and Fig. 5, although LC contributes an
O(n) overhead to CFT-Forensics, both complexities are still lower than Raft-PeerReview for
n ≤ 15 (under our assumed parameter values).

Paxos-Forensics vs Paxos-PeerReview

A successful Paxos leader election has two messages between a candidate ℓ and its voter
u: 1) ℓ sends its iCommit to u; 2) u responds with all its entries starting with iCommit + 1.
In Paxos-Forensics, we insert three more messages: 3) ℓ sends a vote request to u; 4) u

responds with a signed vote and 5) ℓ sends an LC to claim leadership. Table 3 lists the
overheads for Paxos. We assume that leader elections are rare, so message 2) only includes
entries of same term as ℓ[iCommit]. By Fig. 5, Paxos has lower communication complexity
than Paxos-PeerReview if n ≤ 7, and on a long enough timescale, its storage complexity is
arbitrarily lower than that of Paxos-PeerReview.

3 Ethereum uses Keccak-256 and ECDSA-secp256k1 for hashes and digital signatures, respectively.
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7 Empirical Evaluation

We implement Raft-Forensics4 in C++ based on nuRaft v1.3 [17] by eBay. With roughly
2,500 lines of code, our implementation fully expands nuRaft with our OpenSSL-based
designs in log replication, which correctly reflects the throughput and latency performances
between leader elections. We choose the SHA-256 hash function and Elliptic Curve Digital
Signature Algorithm (ECDSA) over the secp256r1 curve. For commitment certificates, we
used concatenated ECDSA signatures by all the signers.

We evaluate Raft-Forensics in two phases – online phase (§7.1) and offline phase (§7.2). In
the online phase, we benchmark the performance of Raft-Forensics over a WAN. In the offline
phase, we evaluate the auditing procedure that scans node logs for adversarial behaviors.

7.1 Online Evaluation
Setup on AWS

We evaluate Raft-Forensics over a WAN to demonstrate a geo-redundant deployment for
increased resilience [12]. We simulated the WAN environment by deploying Raft-Forensics
and other baseline protocols on multiple c5.large instances on AWS, where each instance
has 2 vCPUs and 4 GB Memory. We ran the experiments on 4 and 16 instances, respectively.
Because some typical applications of Raft-Forensics require the nodes to be distributed
domestically, we deployed the 16 instances evenly in 8 AWS datacenters in the US, Canada
and Europe. For the 4-instance experiments, we deployed the instances in 4 US datacenters.

Baseline Protocols

We compare the performance of Raft-Forensics against Raft [17], using eBay’s NuRaft [17]
implementation. We do not directly compare to state-of-the-art BFT protocols in our
evaluation because our goal is to propose low-cost solutions that can be easily integrated into
existing systems (i.e., the implementation should build upon existing code, and hence be
some variant of Raft). Although there exist BFT variants of Raft [56, 60, 13], we were unable
to confirm essential theoretical details needed to understand the protocol and guarantees.
For completeness, we compare Raft-Forensics against a recent BFT protocol called Dumbo-
NG [20] in our full paper [57], though a fair comparison is challenging and not the focus of
this work.

Experimental Settings

We benchmark each protocol by two metrics – transaction latency and throughput. Latency
is measured by the average time difference between when a transaction is committed by a
leader and when it is sent to a node. Throughput is measured by the average number of
transactions processed per second during an experiment.

The experiments are configured by two key parameters – transaction size and number of
concurrent clients. The transaction sizes range from 256 Bytes to 1 MB. For each transaction
size, we sweep the number of concurrent clients sending transactions (in experiments, we let
the leader machine spawn transactions). Under each configuration of transaction size and
client concurrency, we run all the nodes and client processes simultaneously for 20 seconds.

4 https://github.com/proy-11/NuRaft-Forensics.git
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We measure transaction latency and throughput by the average of five repeated runs to
reduce random perturbations. Typically, as the number of clients increases, throughput
increases first linearly and then plateaus when the protocol is saturated. In contrast, latency
is insensitive to the number of clients before the saturation, but rapidly increases when the
bottleneck throughput is reached. We finally evaluate the following quantities:

Peak throughput. We measure the peak throughput of each baseline as the maximum
number of transactions processed per second over all numbers of concurrent clients.
Fig. 6 presents the performance of all protocols under transaction sizes of 256 Bytes, 4
KiB, and 64 KiB. Compared to Raft, Raft-Forensics has an approximately 10% loss in
peak throughput under various transaction sizes, which is caused by the cryptographic
operations involved.
Latency-Throughput tradeoff. Under each transaction size, we measure the latency-
throughput curve parameterized by number of concurrent clients. Fig. 7 shows the latency-
throughput tradeoffs of the two protocols under various transaction sizes. Generally, the
tradeoff of Raft-Forensics is only slightly worse than Raft.

Figure 6 Peak transaction and bandwidth throughputs of consensus algorithms. We plot the
error bars with boundaries (mean ± 3 × std). (n = 4 nodes).

7.2 Offline Evaluation
We next evaluate the offline performance of log auditing. Theorem 11 ensures that we can
find at least 1 culprit when State Machine Safety is violated, and we implement an auditing
algorithm that finds the culprit. Briefly, the algorithm has two parts: a data legitimacy check
and a global consistency check. First, the data legitimacy check verifies the correctness and
completeness of the states submitted by each node. For example, the hash pointers must
match the logs, and every signature must pass verification. Next, the global consistency
check scans for a pair of nodes whose logs are a result of forking. It captures the culprit
based on the case discussions in the proof of Theorem 11. See our full paper [57] for the
auditing algorithm in detail.

Complexity Analysis

Recall that n denotes the number of nodes. Let H denote the length of the longest chain and
Λ the number of elections in total. See our full paper [57] for detailed complexity analysis.
The total time complexity of auditing is asymptotically optimal (linear in the size of data
n(H + Λ), which is required at minimum to ensure data legitimacy), where the complexity
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Figure 7 Latency-throughput tradeoff (n = 4 nodes). Top row displays throughput in number of
transactions per second; bottom row displays throughput in bandwidth.

of global consistency checks does not depend on the chain length H. The linear spatial
complexity Θ(n(H + Λ)) requires chunked storage of the log chain. For instance, for a
chunk size Θ(log H), the spatial complexity decreases to Θ(n(log H + Λ)), while the time
complexity remains the same. Notably, the time complexity of global consistency check
slightly increases to O(n(Λ + log2

H)), but is still much less than that of legitimacy checks.

Implementation

We implement the auditing algorithm in Python5, which can be tested along with a lightweight
Raft simulator that achieves better control than the fully-implemented Raft-Forensics in C++
over the leader elections, the adversarial nodes’ behavior and race conditions in general. In
particular, it is capable of assigning the adversary to a node and simulating the fork and bad
vote attacks in Examples 9 and 10. It ensures that the adversary generates legitimate data to
prevent it from being caught before consistency checks. For the best performance in memory
usage, it writes the data into chunked files that are available for auditing. In Appendix 7.2,
we run benchmarks on the performance of both the data legitimacy and consistency checks
of the auditing algorithm. The benchmarks are consistent with our complexity analysis, and
demonstrate a significant advantage in chunking data.

Based on the backend software above, we also implement a visualizer based on [52] that
demonstrates the attacks and the outputs of the auditing algorithm, including the identity
of the culprit and the irrefutable evidence.See our full paper [57] for a screenshot of the
visualizer.

5 https://github.com/WeizhaoT/Raft-Forensics-Simulator
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Table 4 Throughput and latency of two different OpenCBDC architectures integrated with Raft
and Raft-Forensics (ours), respectively. Each entry is expressed in mean ± std.

Throughput (# tx/s) Latency (ms)
2pc architecture

Raft 4, 800 ± 14 2, 251 ± 70
Raft-Forensics 4, 695 ± 76 2, 577 ± 252
(% Change) -105 (-2.2%) +326 (+14.5%)

atomizer architecture
Raft 1, 284 ± 56 37, 552 ± 18.75

Raft-Forensics 1, 250 ± 123 40, 802 ± 1, 653
(Change) -34 (-2.6%) +3,250 (+8.7%)

7.3 Integration with OpenCBDC
Finally, we evaluate the performance of Raft-Forensics integrated into a downstream ap-
plication: OpenCBDC [41], an open-source implementation of a retail central bank digital
currency. OpenCBDC is a good choice because (a) it uses nuRaft, and (b) CBDCs are/will be
public infrastructure, so security and performance are paramount. After integrating our Raft-
Forensics implementation into OpenCBDC, we deployed our experiments onto c5n.9xlarge
ec2 instances in AWS over three regions: us-east-1, us-east-2 and us-west-2.6

We compared Raft-Forensics against Raft in two different OpenCBDC architectures – two-
phase-commit (2pc) and atomizer. In both architectures, we replace Raft with Raft-Forensics
in every module that is Raft-replicated, i.e., implemented as Raft-variant distributed systems.
In the 2pc architecture, we created one generator, one sentinel, three coordinators and
three shards, where each coordinator and each shard are Raft-replicated. In the atomizer
architecture, we created one watchtower, one watchtower CLI, one sentinel, one archiver, four
shards and three atomizers, where only atomizers are Raft-replicated. In both architectures,
each Raft-replicated module consists of 3 nodes in 3 different AWS regions.

We used the benchmarking platform [44] of OpenCBDC under default configurations,
where load generators produce as much workload as the system can process. The transaction
size is 368 bytes. Each experiment lasts 315 seconds and is repeated 3 times. Table 4 shows
the throughput and latency of transactions of the entire system. We observe that in practical
complex systems like OpenCBDC, Raft-Forensics also performs close to Raft.

8 Discussion and Conclusion

This work is driven by the motivation to improve the Byzantine resistance of CFT protocols
by introducing accountability, without sacrificing too much performance. One alternative
approach to achieving higher security assurances with CFT protocols involves employing
BFT protocols directly. This strategy not only increases tolerance to Byzantine faults but
may also inherently include accountability as a bonus feature.

As explained in Section 7, we were unable to directly compare against BFT variants of
Raft [56, 60, 13]. Hence, we conducted performance comparisons between Raft-Forensics
and leading BFT designs like Dumbo-NG, as detailed in our full paper [57]. Our analysis
indicates that, in terms of reducing latency, Raft-Forensics generally surpasses Dumbo-NG,

6 Although CFT protocols are often run in the same datacenter, if they are used for critical infrastructure,
there will be a need for geographically-distributed deployments for robustness reasons.
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though the latter may display competitive or superior throughput for larger transaction
volumes. Moreover, Dumbo-NG is optimized for efficiently propagating blocks containing
multiple transactions among numerous participants, while Raft variants typically handle
single-transaction blocks (as required by SMR) in small-scale distributed systems. As a result,
we acknowledge that BFT protocols can indeed be optimized to achieve good performance
and replace CFT protocols in applications requiring higher security guarantees, albeit at the
cost of increased design complexity and an overhaul of the entire consensus logic. In contrast,
accountability may be more suitable for scenarios with moderate security improvement
requirements and an emphasis on lightweight changes.

More broadly, accountability need not be viewed as an alternative to Byzantine fault
tolerance – it is a complementary, desirable property. For example, all BFT protocols do not
inherently offer accountability [50]. We posit that accountability is an important component
of distributed system governance – all the more so for geographically-distributed critical
infrastructure [19].
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while safeguarding against other potential attacks. Importantly, we minimize the information leakage
to auditors and other organizations and guarantee three crucial security and privacy properties
that we propose: (i) transaction amount privacy, (ii) organization-auditor unlinkability, and (iii)
transacting organizations unlinkability. At the core of our protocols lies a two-tier ledger architecture
alongside a suite of cryptographic tools. To demonstrate the practicality and scalability of our
designs, we provide extensive performance evaluation for both CLOSC and CLOLC. Our numbers are
promising, i.e., all computation and verification times lie in the range of seconds, even for millions
of transactions, while the on-chain storage costs for an auditing epoch are encouraging i.e. in the
range of GB for millions of transactions and thousands of organizations.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols

Keywords and phrases Financial auditing, Two-tier ledger architecture, Smart contracts, Transaction
privacy, Financial entity unlinkability

Digital Object Identifier 10.4230/LIPIcs.AFT.2024.4

Related Version Full Version: https://eprint.iacr.org/2024/1155.pdf

Supplementary Material Software (Code): https://github.com/auti-project

Funding This work was supported in part by the Hong Kong Research Grants Council under grant
GRF-16200721 and by the EU Horizon project no 101160671 (DIGITISE).

Acknowledgements We would like to thank the anonymous reviewers for their feedback and Pierre-
Louis Roman for shepherding our paper.

© Vlasis Koutsos, Xiangan Tian, Dimitrios Papadopoulos, and Dimitris Chatzopoulos;
licensed under Creative Commons License CC-BY 4.0

6th Conference on Advances in Financial Technologies (AFT 2024).
Editors: Rainer Böhme and Lucianna Kiffer; Article No. 4; pp. 4:1–4:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vkoutsos@cse.ust.hk
https://orcid.org/0000-0002-8853-0625
mailto:xtianae@cse.ust.hk
https://orcid.org/0000-0002-5382-9416
mailto:dipapado@cse.ust.hk
https://orcid.org/0000-0003-2621-3015
mailto:dimitris.chatzopoulos@ucd.ie
https://orcid.org/0000-0002-4765-5085
https://doi.org/10.4230/LIPIcs.AFT.2024.4
https://eprint.iacr.org/2024/1155.pdf
https://github.com/auti-project
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Cross Ledger Transaction Consistency for Financial Auditing

1 Introduction

Bookkeeping is an indispensable part of organizations (e.g., businesses, municipalities, banks).
One of the main reasons organizations maintain ledgers with their transactions (to/from other
organizations) is to convince committees (e.g., the Public Company Accounting Oversight
Board [4] in the United States of America or the Financial Reporting Council [2] in the United
Kingdom) about the integrity and lawfulness of their operations. They periodically produce
statements about the integrity and correctness of their finances, signed by an auditor. The
goal of auditors is to ensure that there are no mistakes or inconsistencies in the organization-
reported numbers [26]. To that end, they sign/generate a report on the organization-provided
data. Figure 1 showcases a (simplified) flowchart model of organizations, auditors, and the
committee during a financial epoch. Organizations transact with each other, keep respective
records, and disclose them to their auditors at the appropriate time. The auditors, after
examining the provided data, generate and sign a report attesting to the judicious activity
of their client-organization, and send it over to a committee who verifies its content.

Although auditors have access to all organization-reported data and paperwork of
their clients, checking for consistency is prohibitive in terms of human resources and time
constraints [25, 27]. This is mainly because organizations under audit may record hundreds
of transactions daily. To address this issue, auditors have developed probabilistic processes
that check for consistency between the received data and the actual paperwork, but not for
the entirety of the data. This, in turn, opens up the audit to additional risk. However, it is
currently the best tool professionals use to ensure the audit’s feasibility [11].

Established auditing process. Organizations record their transactions in a ledger throughout
the fiscal year, meaning that a ledger is a list of financial transactions an organization holds
over time. At a later point, the auditing period begins, during which auditors sample a
percentage of the total reported transactions and request to examine the corresponding
paperwork from their client-organizations. Upon conducting all relevant checks (e.g., validity
of signatures, and consistency of amounts and timestamps) the auditor includes their
findings regarding the auditing output in a report, which they later sign and make public.
After the auditing period, a committee can select to verify the consistency between the
auditor-generated reports and the recorded data of the organizations. For consistency
verifiability purposes, all transactions have to be kept in the ledgers of both transactional
parties. Especially for organization-to-organization (O2O) transactions, each of them needs
to register a transaction that is the dual equivalent of the other.

The problem we focus on
There are numerous cases annually of organizations misreporting transactions. For example,
they fabricate and report sham transactions, which in turn leads to auditing scandals involving
fraud and fines in the range of millions of USD [20, 40, 41]. In fact, this derives from a crucial
limitation of the existing auditing ecosystem: auditors cannot check if a recorded transaction
in their client’s ledger has a dual counterpart in another organization’s ledger [28]. E.g., an
organization may procure illicit funds and fabricate transaction records, for which no other
organization would have dual transactions to. Despite its importance, to the best of our
knowledge, no process exists to check the duality of transactions between two ledgers where
the organizations that maintain them are examined by separate auditors. Hence, we pose
the following question:
Can we ensure that an auditor, who does not have access to internal data of any organization
except of her client-organization, can verify the duality of all O2O transactions of her client?
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Figure 1 Entity setting, interactions, and flowchart for current financial auditing. Organization
A is audited by Auditor X and B by Y respectively. Auditors generate reports on data received from
their client-organization that the Committee can later verify.

Limitations of applying existing cryptographic approaches. Before going further, we
examine two ideas utilizing existing techniques to solve this problem at a high level. First,
the auditor and the two transacting parties could engage in a multi-party computation
protocol at the time of the auditing. Such an attempt requires the auditor to interact with all
organizations its client has transactions with, introducing a linear communication overhead
proportional to the number of organizations and auditors. Moreover, let’s consider having
just two organizations, oi and oj , who initiate a 2-party computation protocol and agree on
a common identifier for a mutual transaction. Upon deal completion, oj will provide oi with
a digest dgsj,z (e.g., a cryptographic accumulator) and a proof that dgsj,z “contains” the
oj-part of the trade, and vice versa, proving the existence of the transactions in question.
However, in reality, organizations do not trust each other, and auditors do not assume
organizations to behave honestly. In fact, interesting questions arise in such scenarios:
1. What happens if oi or oj do not follow the protocol?
2. What happens if oi computes a digest, sends it over to oj with convincing proof, but later

on includes the transaction in its ledger using different data?
3. What happens if oi appends an incorrect proof with its data on their internal ledger?
Since organizations cannot access the ledger of their trading counterparts, auditors cannot
distinguish even between trivial scenarios e.g., identify which party made mistakes or uploaded
inconsistent data. Requiring auditor collaboration to discover the truth behind inconsistencies
is far from a realistic assumption – both from a performance and a real-world perspective.

Another approach could be the following: Consider two organizations transacting with
each other and recording this transaction on their ledgers. Each of them now can produce
and communicate to the other a zero-knowledge proof (ZKP) about the inclusion of the
transaction record in their respective ledgers. However, this approach works only when
assuming that both organizations are honestly maintaining their ledgers. E.g., a client might
generate and provide a ZKP about an O2O transaction to its counterpart, but later alter
its ledger state, before the audit begins. The ZKP would still verify, as it was honestly
generated at the time, but vitally the ledger alteration would be undetectable. Thus, a
notion of ledger-immutability is necessary, on top of such a technique.

There exists an additional limitation in the current auditing ecosystem: committees
wishing to verify process outputs need to re-perform all operations themselves. Specifically,
a committee that attempts to verify all process outputs needs to expend the entirety of the
collective effort from all auditors. Verifying all processes on all ledgers is rendered impractical
in this case since the verification time is linearly proportional to the number of organizations
and auditors. Instead, committees perform checks on a number of reports and thus trust

AFT 2024



4:4 Cross Ledger Transaction Consistency for Financial Auditing

implicitly the remaining ones to be generated honestly. Various systems utilize techniques
such as verifiable computation, secure hardware, or tailored ZKPs to enable auditing parties
to verify function output results in sublinear time, and in Section 2 we investigate them in
more detail. However, in the scope of the cross-ledger transaction consistency for financial
auditing that we examine no such solution exists to date. Therefore, we adjust and pose a
newer version of our previous question:
Can we ensure that an auditor, who does not have access to internal data of any organization
except of her client-organization, 1 can verify the duality of all O2O transactions of her
client and 2 produce a result that a committee can verify without having access to any
internal organization data, efficiently?

State-of-the-art. There exist prior works that indirectly provide a solution to part 1 of
our problem, however, they operate in a different model. Specifically, zkLedger [43] and
Miniledger [19] consider a scenario where all organizations maintain a single ledger in a
distributed manner that includes all transactions in a hiding manner. Nevertheless, their
model does not correspond to the real-world alternative, where bookkeeping is being done
individually by each organization. E.g., a small enterprise that logs a thousand transactions
annually should not need to record any data from all the remaining transactions of other
organizations. Another relevant work to our problem revolves around cross-chain bridges [18].
Their core functionality is enabling proof generation of an event that occurred on one chain
to be verified on another. This indeed fits into our problem setting, but most current bridges
e.g., [7, 8, 9] either suffer from poor performance or rely on central entities.

Our results. First, we introduce and formulate the problem of cross-ledger transaction
consistency for financial auditing, including the system and threat models, as well as crucial
security goals. We then propose two protocols, CLOSC (Cross Ledger cOnsistency with Smart
Contracts) and CLOLC (Cross Ledger cOnsistency with Linear Combinations), implement them
upon a two-tier ledger/blockchain-based architecture, and provide extensive evaluation
results regarding their performance. Additionally, we formally define three privacy and
security properties, namely transaction amount privacy, organization-auditor unlinkability,
and transacting organizations unlinkability, and prove that both our protocols satisfy them.

CLOSC utilizes smart contracts for storing transaction-related data and proofs from
organizations. For each transaction, both organizations deploy a smart contract and fill in
their “half” regarding the consistency-checking method, to both smart contracts. In this way,
both auditors have all the information needed to verify the consistency between the reported
transactions. CLOLC relies on linear combinations with organizations now maintaining a
separate list of transactions for each of their transaction counterparts. The consistency
checking is performed on an “O2O-pair” basis, where each auditor verifies consistency for
each organization their client transacts with individually. To enable this, the committee
assigns and distributes to auditors weights for each individual O2O transaction for every
transacting pair. Then, for each transacting organization, the auditor calculates the linear
combination of the amounts with the corresponding weights and exchanges the result with
the counterpart’s auditor. The committee in both CLOSC and CLOLC essentially performs
two types of checks: (i) consistency between the reported data from an organization and
its auditor, and (ii) reported data from the two auditors. This has a dual purpose: First,
when all verifications succeed, this signifies that consistency exists across all organization
ledgers, and second, when a verification is unsuccessful, the committee needs only to further
investigate the particular O2O transacting organization-pair. Importantly, all checks above
are lightweight and do not impose prohibitive overheads for the committee.
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We test our system on AWS machines, implement our two-tier ledger architecture over
Hyperledger Fabric, and conduct experiments to demonstrate the practicality and scalability of
our proposed solutions. Notably, executing an auditing epoch in CLOSC for 1024 organizations,
with each of them recording 1M transactions requires on average ≈ 43 mins per organization,
≈ 18mins per auditor, and ≈ 4secs for the committee, whereas for the same organizations
and total transactions in CLOLC it takes on average ≈ 30mins per organization, ≈ 39mins per
auditor, and ≈ 4mins for the committee. In Section 6 we provide the extensive evaluation
of both our proposed solutions, for varying number of entities and total transactions per
auditing epoch. Additionally, we include a comparative analysis for the performance of our
two protocols and also compare against prior works in terms of protocol computation and
storage needs complexity, which have “similar-enough” auditability goals to ours.

Paper organization. The rest of this paper is organized as follows. In Section 2 we expand on
prior works relevant to our problem and in Section 3 we introduce the necessary background
for our system and protocol design. Following, we concretely formulate the problem we are
focusing on in this work in Section 4. Then, we analyze our system architecture, provide
the details of our two protocols (CLOSC and CLOLC), and provide the intuition of how they
achieve our three newly proposed security properties in Section 5. In Section 6 we present
the implementation details of our protocols and demonstrate their performance. Last, we
provide a discussion on the limitations and potential future directions in Section 7, and
finally conclude our work in Section 8.

2 Related Work

The combination of privacy-enhancing and blockchain technologies has been gaining interest,
especially for “traditional” financial applications [14]. A core property of blockchains is
immutability and, as a result, multiple researchers have tried to enable/construct blockchain-
assisted auditing. Generally, there seems to be a consensus amongst researchers and industry
professionals as to the anticipation that blockchains are a disrupting force in the auditing
ecosystem and that their role will get increasingly important [10, 47, 35, 22, 24, 12, 21],
potentially even shifting the auditing process from backward to forward-looking [17]. However,
as pointed out in [27] the vast majority of blockchain-related works do not look into how to
utilize blockchains and smart contracts to address the challenges revolving around financial
auditing, with a small set of notable exceptions. The authors of [22] propose a triple-booking
system where a copy of all records is kept on a blockchain (on top of an existing double-
booking protocol). The inclusion of smart contracts in the design of such systems was
proposed in [35, 47]. However, in both [35, 47] the access rights/patterns are not clearly
outlined and questions arise about how potential leakage can be used for malicious purposes.

2.1 Single-ledger approaches
To enforce that during a transaction no entity expends more than the total amount of assets
they hold, the authors of zkLedger [43] introduced tailored proof of assets, specifically in a
banking setting, similar to our O2O scenario. Importantly, this work uses zero-knowledge
proofs to enable confidential transactions while (i) allowing for regulatory compliance
and auditability and (ii) guaranteeing the condition above without revealing to the other
system’s participants anything about transaction amounts. However, zkLedger has not
been implemented on any blockchain platform and the proposed protocol does seem not
scale well with the number of protocol participating entities. This is mainly due to all
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participants needing to maintain the same version of a single ledger in a distributed manner
with storage complexity O(nm), where n are the total banks and m are the total transactions
in the system. Additionally, zkLedger cannot support multiple transactions happening in
parallel. This derives from the fact that in order for the ledger to accept a transaction,
it needs to verify the correctness of all appended proofs to it, rendering the cases where
multiple transactions are being submitted concurrently impossible to handle; there needs to
be an ordering protocol. The authors of Miniledger [19] overcome the scalability issues by
introducing a pruning technique for the ledger in question. However, Miniledger suffers from
other shortcomings such as large transaction creation time (≈ 5s for a single transaction in
a setting with 100 banks) and requires both a synchronization and a transaction-ordering
protocol, both of which are unrealistic in real-world scenarios where organizations transact
asynchronously with each other daily and in the thousands totally. More recently, ACA [37]
has been proposed with focus to anonymity, confidentiality, and auditability of transactions.
The authors rely on a conventional blockchain layer for recording the transactions which are
smaller than zkLedger and Miniledger, however the size of general transactions (≈ 3.8KB)
and the verification times (≈ 1.4sec) are prohibitive for settings as the ones we consider. In
Section 6 we show that an entire auditing epoch in both CLOSC and CLOLC takes minutes
even for millions of transactions, regardless of the organizations in our system.

2.2 Communication between different blockchains
An emerging research area revolves around cross-chain bridges, a technique that increases
token utility by facilitating cross-chain liquidity between distinct blockchains. Specifically,
they enable users to transform their tokens from one blockchain to another, usually by burning
or locking existing tokens from the original-chain, and minting or unlocking “new” ones to the
target-chain [18]. Essentially bridges utilize messaging protocols that in theory can be used
to support arbitrary messages across different chains, usually via smart contracts [7, 8, 9].
Recently, zkBridge [49] has been proposed, a protocol that betters the performance of
existing bridges while achieving higher security standards. The authors utilize zk-SNARKs
for generating proofs for relaying block headers. However, this approach relies on the
construction of smart contracts, which is not ideal due to storage and computational costs
required. In Section 6 we showcase the difference in efficiency and scalability between our two
protocols. CLOSC relies on smart contracts, whereas CLOLC on linear combinations, making
clear the trade-offs between them.

2.3 Other non-blockchain-based systems with auditing capabilities
Recently, a line of works explores the area of authenticated data structures. Transparency
logs are a prominent example when considering auditing. In these works, the goal of an
auditor is to examine digests published by untrusted servers to avoid server equivocation
(e.g., Merkle2 [29] and CONIKS [38]). Other works revolve around ensuring token liability
when transacting across a system. Specifically, the authors of [30, 46] approach this problem
by requiring entities to publish attestations on their total liabilities e.g., on public bulletin
boards. Their goal is to safeguard against data-leaking attacks while allowing auditors to
verify the validity of statements regarding liabilities. While these works examine auditability,
the view on auditing is through a different lens. First, our system design is more complex,
auditors examine organizations and then a committee verifies the auditor-generated results.
Additionally, our protocols propose an auditing process that revolves around detecting
individual transaction (in)consistency, a considerably more challenging task than, for example,
proving the sum of an organization’s assets.
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3 Preliminaries

General Notation. Let E be an elliptic curve defined over a large prime field Fp with
G, H ∈ E as publicly known generators. We denote by x←$ A the random sampling of the
element x from the domain A, and the set {1, · · · , n} by [n]. We denote by λ a security
parameter and by negl(λ) a negligible function in λ.

Commitment Schemes [33]. A commitment scheme consists of a pair of PPT algorithms
(Com.Setup,Com.Commit). The Com.Setup algorithm generates public parameters pp for the
scheme, for security parameter λ: pp ← Com.Setup(1λ). The commitment algorithm defines
a function Mpp × Rpp → Cpp, for message space Mpp, for randomness space Rpp, and for
commitment space Cpp, determined by pp. It takes as input a message x and randomness r

and outputs c ← Com.Commitpp(x; r). Specifically, a Pedersen commitment [45] of x with
randomness r is in the form of cm(x, r) = x ·G + r ·H . Pedersen commitments are additively
homomorphic, i.e., cm(x1, r1) + cm(x2, r2) = cm(x1 + x2, r1 + r2), computationally binding
(after committing it is not feasible to “change one’s mind”), and perfectly hiding (they
reveal nothing about the committed data). A computationally binding and perfectly hiding
commitment scheme must satisfy the following properties:

Computationally Binding: It is not easy to find two strings x0 and x1 that map to
the same commitment. More formally, if cm0 ← Com.Commit(x0; r0):

Pr[A(cm0)→ (x1, r1) : cm0 = Com.Commit(x1; r1)] ≤ negl(λ).

Perfectly Hiding: It is not easy to identify which value was used in the generation
of a commitment cm←Com.Commit(·, ·). Formally, ∀ x0,x1 (of the same length), for all
non-uniform PPT adversaries A, we have that:

|Pr[A(Com.Commit(x0; r0))=1]− Pr[A(Com.Commit(x1; r1))=1]| = 0.

Hash Function [23]. A cryptographic hash function H : {0, 1}∗ → {0, 1}λ is pre-image
resistant if the probability of reversing the hash output to obtain the underlying pre-image is
negligible: Pr[A(y)→ x|y = H(x)] ≤ negl(λ).

Public-Key Encryption (PKE) Scheme. A PKE scheme E consists of a tuple of al-
gorithms PKE.KeyGen,PKE.Enc,PKE.Dec. Specifically the elliptic curve El-Gamal encryption
scheme [31] is as follows:

KeyGen(λ) → (sk, pk). Given the security parameter λ, KeyGen samples a secret key
sk ←$ {0, 1}λ, computes the public key pk = sk ·G. It outputs the key-pair (sk, pk).
Enc(pk, x; r)→ ctx. To encrypt a value x, the algorithm takes input a randomness r and
outputs the curve point

(
r ·G, Px + ·r(sk ·G)

)
. Here, Px is a publicly-known mapping of

a value x to a curve point in E.
Dec(ctx, sk) → x. To decrypt x from E(pk, x; r), the algorithms computes x := Px +
·r(sk ·G)− r · sk ·G.

Regarding security, we say a PKE scheme is IND-CPA secure whenever an adversary A plays
an indistinguishability game with a challenger C where the former has encryption oracle
access and at some point gives a left-or-right challenge (x0, x1) to C, who depending on a bit
b←$ {0, 1} which it had picked during setup returns ctb ← PKE.Enc(xb). Finally, A outputs
a guess b′ on b and wins if Pr[b = b′] ≥ 1

2 + negl(λ).
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Merkle Tree [39]. A Merkle tree (MT ) is a binary tree whose leaf nodes can store any
information and each parent node being calculated as the hash of its children. The time
complexity and the space complexity to find a data entry in a MT with n entries, given its
path, is O(log n). MT s support membership proofs πm ← ProofExists(rootMT , x), proving
the inclusion of a leaf node x to a tree whose root is denoted by rootMT and its root-
to-leaf-path by pathleaf . pathleaf comprises the siblings of the nodes while traversing
from the leaf to rootMT . Additionally, there exists a leaf-inclusion verification algorithm
0/1←VerifyExists(rootMT , x, πm) that enables a verifier to check whether a value x resides
in the merkle tree MT , given a proof πm and the root rootMT . Last, one can generate a
proof for a set of leaves together using a MergeProofs(·) algorithm, containing essentially the
set of leaves and their corresponding unique path siblings across the respective tree levels.

Blockchain & Smart contracts. A blockchain is a peer-distributed ledger made secure
through cryptography and incentives. Peers using consensus mechanisms agree upon which
information to store in blocks. Blockchain technology has found other uses apart from
cryptocurrency applications, especially via using smart contracts [48]. A smart contract is a
computer program that can be run in an on-chain manner, has internal states and its own
on-chain storage. Uploading data on a smart contract method requires time to be verified
and agreed upon by the blockchain peers. Contrary, reading data from the contract is almost
instantaneous and does not require any form of consensus.

4 Problem Formulation

Below, we formalize the problem we solve in this work, including the system and threat
model revolving around it, and provide corresponding security goals.

4.1 System model
Our model includes three entity types, namely organizations, auditors, and a committee.
Organizations transact with each other and are responsible to maintain a copy of each and
every of their bipartite O2O transactions in a private ledger, to which only their auditor
and the committee are privy to (if needed). Auditors examine the transaction records of
their clients and are responsible to extract results about their reported individual economical
activity and share them with the committee. The committee is responsible to verify auditor-
provided results and can access organization records upon request.

4.2 Threat model
First, we assume each organization to be audited by a single auditor, which is in line with
current practices [36]. Notably, even in cases where the same auditing entity e.g., one of the
Big Four (KPMG, EY, PwC, Delloite) audits different organizations, this does not translate
to each individual auditor having access to all organization data of each of the company’s
client. Additionally, we assume no inter-organization or inter-auditor collusions. Remember
that such collusions happen in reality and lead to a plethora of auditing scandals which are
discovered annually and leading to fines [20]. However, these cases are outside our design
rational since they are impossible to detect macroscopically as described in our system model.
E.g., consider a scenario where two organizations transact with each other but do not log
this transaction in either of their ledgers. To identify such misreported transactions, their
auditors or/and the committee need to perform on-site auditing and compare tangible assets
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(e.g., monetary or other asset reserves with the reported ones). While this on-site part is
integral in the auditing process as a whole, we solely focus on the consistency across all
organization-reported data. Other than that, we consider all entities in our system to be
malicious, except for the committee, which is trusted. Specifically, on top of misreporting
their transaction activity while trying to avoid detection, organizations wish to extract
information as to the client-relation between other organizations and auditors, infer amounts
of any transactions apart from the ones they are privy to, and check whether cross-ledger
transaction consistency holds for other organizations. Adversarial auditors have the same
objectives. Such deviant behaviors and attack goals are not only realistic but can also lead
to tangible rewards e.g., through insider trading [13].

4.3 Security goals and rationale

Based on the threat model above we determine the security goals that our solutions need
to achieve for cross-ledger transaction consistency. First, our solutions need to provide a
notion of soundness, in the sense that no organization or auditor should be able to misreport
data or results and avoid detection1, in order to prevent fraudulent asset in/deflation e.g.,
through the inclusion of sham transactions in their ledger or via generating fake reports
[6, 20, 28]. Then, transaction amount privacy ensures that only an organization and its
auditor should have access to raw transaction data of the former. Financial data is considered
to be sensitive and having access unrightfully to an organization’s data (e.g., by another
organization) may lead to market manipulation via insider trading [13], as mentioned above.
Additionally, transacting organizations unlinkability guarantees that only the two transacting
organizations should have knowledge of the fact that there exists transaction activity between
them. Similarly, organization-auditor unlinkability ensures that no other system entity can
infer any organization-auditor bipartite relation, except the ones they are part of. Last,
only auditors and the committee should be able to verify transaction (in)consistency across
ledgers. In the auditors’ case crucially, only for organizations their client is transacting with.

Although to the best of our knowledge we are the first to consider the transacting
organizations and organization-auditor unlinkability properties, there exist prior works
that have built their systems and architectures in such a way that implicitly achieves
comparable notions of security. zkLedger [43] and Miniledger [19] are perfect examples of this:
The respective ledger atop which both these systems are based on essentially satisfies our
transacting organizations security property; the hiding property of the commitments employed
in their system, ensure the privacy of the transaction amounts. Now, as for the auditor-
organization unlinkability, existing industry standards already safeguard the confidentiality
of the relation between an auditor and its client. Currently, this type of information might
be disclosed after the auditor performs all necessary consistency examinations and produces
its report, usually after the fiscal year concludes [44]. Regarding cross ledger consistency
verifiability, auditors currently require raw transactional data access of their clients records
to carry out respective auditing processes, and organizations carefully pick who has such
access. Notably though, enabling other entities to verify cross ledger consistencies could in
fact contribute positively to the financial auditing ecosystem, rendering the organizations’
activities even more transparent. However, organizations are generally not eager to publicly
disclose their financial data to accommodate such verification. Achieving such a notion of

1 Such a property is fairly common in systems like ours and this is why we do not introduce it as a
separate property. They are usually achieved through an arbiter, which is the committee in our case.
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“public auditability” might need to be coupled with a strong notion of anonymity as the one
presented in [32]. This is not trivial to achieve, considering all other challenges financial
auditing has regarding accountability and traceability, and we leave this as future work.

5 Our Solution

Our system design is epoch-based and includes all three entities (i.e., organizations, auditors,
and a committee). We propose two protocols that exist atop a two-tier ledger architecture.
In our solutions, we construct this architecture over blockchains, taking advantage of their
immutability to avoid attacks like the one presented in Section 1. Each organization maintains
a “local” ledger, to which we refer to as localchain – LocalChain for storing information
related to its O2O transactions (txOrg). Additionally, organizations maintain plaintext
records of their financial activity offline (e.g., in a database). The committee maintains
two “global” ledgers in the form of blockchains, to which we refer to as globalchains: one
“for organizations”, namely OrgChain, where organizations upload localchain-related data
(dataOrg), and another “for auditors”, namely AudChain, who upload report-related data
(dataAud). Organizations have access to their off-chain ledger, their LocalChain, and the
OrgChain, while auditors have access only to AudChain and their client’s LocalChain. Recall
that the auditor and the committee may access off-chain records if they ask explicitly to
examine them to investigate further potential fraudulent behavior. At a high level, an
organization stores hiding versions of its transactions on its LocalChain and aggregated
transaction data on OrgChain, while auditors store result-related hiding data on AudChain.

Design rationale. This architecture enables 1 auditors to check the consistency of their
clients reported transactional amounts across other ledgers and 2 the committee to verify
(i) the consistency between the data uploaded between an auditor and its client-organization
and (ii) the consistency between the data uploaded between two auditors whose clients
have transacted during the epoch. Figure 2 depicts the architectural model our protocols
operate in, the phases with their respective operations, and the transitional triggers across
phases. Contrary to prior works based on a single-ledger approach (e.g., [43, 19, 37]), our
two-tier ledger architecture allows organizations to store data only pertaining to their own
transactional activity; reducing considerably the individual storage costs.

We refer to our different ledger tiers (local and global) as chains, since (i) we need a notion
of ledger immutability in our system design and (ii) we implement them later as blockchains.
However, we stress that these ledgers are not explicitly blockchains and our system is ledger-
agnostic at its core. In fact, any immutable ledger may be used in our design. By combining
the ledger immutability of our two-tier architecture with cryptographic components, we can
guarantee the three security properties mentioned above. More specifically, in both our
solutions we employ hiding techniques for dataOrg to ensure transaction amount privacy and
ensure that no entity except for the Committee can associate the economic activity of any
organization to another. Last, by uploading dataAud in a hiding manner, no other entity
except for the committee can infer relations between organizations and auditors.

Phases. Each epoch is comprised of four phases, namely (i) Initialization (IN ), (ii)
Transaction recording (T R), (iii) Consistency examination (CE), and (iv) Result verification
(RV). In the initialization phase the committee performs the necessary setup operations
and distributes information to the other entities accordingly. During transaction recording,
organizations record data about their O2O transactions to their LocalChain, and the



V. Koutsos, X. Tian, D. Papadopoulos, and D. Chatzopoulos 4:11

Figure 2 Our architectural two-tier ledger design and access rights of the entities involved,
alongside the protocol phases with respective operations and triggers.

OrgChain. During the consistency examination phase auditors first perform computations on
their clients data and extract results which they upload on the AudChain. Afterwards, they
compare their results against those from the respective auditors of their clients’ transacting
counterparts, which are already uploaded on AudChain. Finally, the committee during
result verification collects data from OrgChain and AudChain, and conducts checks as to
the consistency of the reported/uploaded data. Upon identifying any inconsistencies, the
committee may investigate further the ledgers of the suspicious organizations and/or the
results produced by their auditors, and potentially assign penalties.

Protocol preliminaries. Let [n] be the index set of the organizations, m the maximum
transactions that can be recorded in an epoch, by a single organization, and [l] the index set
of the Auditors. Therefore, let On = {oi}i∈[n] denote the set of organizations, Al = {az}z∈[l]
the set of auditors, and Com the committee. Let Li denote the respective LocalChain of
oi, Lo the OrgChain, and La the AudChain. Let Op =

〈
Setup, RecordTx, AppendLocal,

GenerateDigest, CheckConsistency, ProduceReport, AppendGlobal, VerifyReport
〉

be the list
of allowed operations. Then, the tuple

〈
Oi,Al, Com, {Li}i∈[n], Lo, La, Op

〉
can describe

fully both our protocols. Below, we explain the operations at a high level and provide in
Sections 5.1 and 5.2 our proposed protocols’ specifics. In the detailed description of our
protocols, for readability purposes we break down all operations to specific steps.

Setup(On,Al, t): Com generates the public parameters pp, blinding identifiers Lido,b (for
organizations) and Lida,b (for auditors), and other protocol-specific parameters psp for
epoch t.
RecordTx(Sender,Receiver,Value): oi invokes this operation to record a transaction data-
Local of Value from a Sender or to a Receiver, where {Sender, Receiver} ∈ On and Sender
̸= Receiver.
AppendLocal(tx,Li): oi invokes this operation to append a hiding version txh of a trans-
action tx to its ledger Li.
GenerateDigest(t,Li): oi invokes this operation to generate a “digest” dataOrg of the state
of its ledger Li for epoch t.
CheckConsistency(Li, La): az checks whether forall transactions ∈ Li there exists a
transaction in the ledger of another oj ∈ On and produces a Result.
ProduceReport(t,Li,dataOrgi): ai invokes this operation to produce a “report” dataAud
about the consistency between the data on its client’s ledger Li, dataLocali with dataOrgi

for epoch t.

AFT 2024



4:12 Cross Ledger Transaction Consistency for Financial Auditing

Figure 3 CLOSC core components and interactions. Each organization stores transactions in a
Merkle Tree, then deploys a smart contract where it adds all transaction-related data of a transaction
stored as a commitment at the leaf level of the Merkle tree, and uploads the smart contract address
to a bulletin board. The other transacting organization performs equivalent steps and uploads their
own transaction-related records also to the latter’s smart contract.

AppendGlobal(data⋆,L ⋆): oi invokes this operation to append data⋆=dataOrg to L ⋆ = Lo

or az to append result-related data data⋆=dataAud to L ⋆ = La.
VerifyResult

(
Lo,La,(idαz ,dataAud)

)
: Com invokes this operation to verify the consistency

of dataAud (generated from az) with Lo and La.

5.1 CLOSC (Cross Ledger cOnsistency with Smart Contracts)

Our first protocol utilizes smart contracts as the name indicates. In more details, in
addition to an organization (i) maintaining a copy of all its transactions offline in a local
ledger/database and (ii) computing and uploading a hiding copy of each such transaction to
its LocalChain, now it needs to (iii) maintain a tree structure MTt whose leaves correspond
to hiding transactions, (iv) upload the root of the tree rootMTt to OrgChain, and (v) upload
a smart contract on its LocalChain for every transaction. Below we explain both at a high
level and explicitely the details of CLOSC.

Let txS,R =
〈
Sender, Receiver, Amount, nonce, timestamp

〉
describe a transaction tuple,

where nonce is an O2O-specific transaction unique random identifier. Then, hiding commit-
ments of the form cmtimestamp

nonce = gAmount · hH(timestamp,nonce), are stored at the MTt leaf-level,
with the sole exception of the utmost left leaf that is equaly to the merkle tree root of
the previous epoch. The non-leaf nodes of the tree are calculated as follows: nodei =
H

(
nodelc||noderc

)
; essentially the hash of the concatenation of the node’s left and right

children (denoted by lc and rc respectively) also depicted in Figure 3. Importantly, for
incoming transactions, we consider Amount to be positive, and negative otherwise. Now
recall that an auditor should, ideally, be able to verify that: For every organization-related
transaction txi,j included in its client’s ledger Li there exists a dual transaction in Lj ,
crucially, without having access to Lj . We enable auditors to verify this via the following:
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When oj transacts with oi the latter deploys a smart contract on Li and whitelists oj

to be able to submit data to it, and oj operates similarly. These smart contracts will
store the committed transactions alongside the proofs that the financial transactions
corresponding to the deal have been included to the respective trees whose roots are
uploaded to Lo.

With this design oi can deploy the contract, communicate its “address” to oj , upload its
data and proof there, and await for its counterpart to upload the other half. The smart
contract will store the two instances of {cmtx, rootMTt , πExists}, with the latter proving that
cmtx is in the tree whose root is rootMTt . The only potential problem here is that oj may
never submit its half of the deal and claim not knowing the address. To solve this “plausible
deniability” problem, we employ a bulletin board, which is maintained by the committee. In
fact, all organizations publish the addresses of their smart contracts there to make sure that
any organization can use them. Notably, only the committee can delete information stored
on the bulletin board at the end of each epoch to keep storage use low. At the same time
this construction ensures that no organization can deny knowing where to upload their data.

Now, only the duality has yet to be shown. For this we require oi to commit to the amount
xi,j,k (for transaction with nonce k) in the form of gxi,j,k . In CLOSC, cmtx = cmtimestamp

j,i,k =
gxi,j,k · hH(timestamp,j,k). To ensure cross-ledger transaction consistency, both auditors have
to verify the 2 uploaded proofs stored inside each of their client’s smart contracts. We
implicitly assume that the two transacting organizations have agreed on a common and
unique (timestamp,nonce) pair ahead of time. Last, to assist the committee with the result
verification, the auditors utilize a MergeProofs algorithm that combines the individual proofs
received from their clients into a single one, that they later on pass to the committee. Figure 4
showcases the protocol details including the on-chain storage, where i, j refer to organizations,
k to transaction nonces, and z to auditors.

5.2 CLOLC (Cross Ledger cOnsistency with Linear Combinations)
This construction lies on linear combinations. Specifically, we aim to exploit the fact that
it is infeasible to generate two set of values that, combined with a vector of secret-random
“weights”, results in the same weighted sum evaluation. To this end, the committee during
initialization samples random values for each potential transaction to be made within the
epoch and shares them to the respective auditors. Contrary to CLOSC, organizations now
do not need to maintain a tree structure or deploy smart contracts. Instead, to record
their transaction, they need to upload to their LocalChain lists of commitments for each
transaction they make during the epoch and the (homomorphic) product of all commitments
per transacting organization on the OrgChain. Importantly, each organization “masks” this
product by multiplying it with a hash of its own unique identifier, assisting in guaranteeing
that no other OrgChain participants can identify transacting organization pairs.

The consistency examination phase is comprised of two parts in CLOLC. First, the auditors
calculate a weighted sum of the transaction amounts (at the exponent) with the committee-
generated values (during the initialization phase) through homomorphic multiplications.
Afterwards, each auditor uploads these products to the AudChain alongside specific identifiers,
from where the respective auditor of the transacting organization can retrieve all matching
products, using the corresponding common identifiers. Auditors can then use these product
pairs to verify the consistency between the reported data from their client organizations and
their respective {organization, auditor} pair. Upon identifying an inconsistency, the auditor
can approach the committee, who can then investigate further. Having the auditors upload
their results in a hiding manner assists in guaranteeing that no other auditor can “mix and
match” reports on AudChain to identify organization-auditor pairs.
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Protocol
(
i, j, z ∈ [n]; k ∈ [m], epoch = t, timestamp = tstp

)
IN .1) Generate raz,i

←$ Zp Committee
IN .2) Distribute IDA = {graz,i }z

T R.1) Store Ltxi = {Sender, Receiver, xi,j,k, k, tstp}j,k off-chain
T R.2) cmtstp

j,k = gxi,j,k · hH(tstp,j,k)

T R.3) Upload Lcmi = {cmtstp
j,k }j,k to LocalChain

T R.4) Create MTt
i, with rootMTt

i
Organization

T R.5) Upload rootMTt
i

to OrgChain
T R.6) πm

j,k ← ProveExists(xi,j,k, rootMTt
i
)

T R.7) Deploy SCi,j,k on LocalChain (1stpart)

T R.8) Store {cmtstp
j,k , rootMTt

i
, πm

j,k} in SCi,j,k and SCj,i,k (2ndpart)
CE .1) bi,j,k ←VerifyExists(cmtstp

i,j,k, rootMTt
i
, πm

i,j,k), ∀SCi,j,k

CE .2) bj,i,k ←VerifyExists(cmtstp
j,i,k, rootMTt

i
, πm

j,i,k)
CE .3) B =

∏(n,m)
(j,k)=(1,1) bi,j,k · bj,i,k, if B = 0 alert Com

CE .4) Check
∏m

k=1 cmtstp
i,j,k · cmtstp

j,i,k · h−H(tstp,j,k)−H(tstp,i,k) ?= 1
CE .5) cmt

i,j = graz,i ·
∏m

k=1cmtstp
i,j,k Auditor

CE .6) πm′

i,j ←MergeProofs({πm
i,j,k}k), {H(πm′

i,j )}j

CE .7) Upload
{

cmt
i,j ,H(πm′

i,j )
}

j
to AudChain

CE .8) Forward {Lcmi,j}k = {cmtstp
i,j,k}k and {πm′

i,j }j to Com

RV .1) {cmtstp
i,j,k}k = Lcmi,j Committee

RV .2) b′
i,j ←VerifyExists(Lcmi,j , rootMTt

i
, πm′

i,j )
RV .3) Check B′ =

∏(n,n)
(i,j)=(1,1) b′

i,j · bj,i
?= 0

RV .4) Check
∏n

i=1
∏n

j=1 cmt
i,j · cmt

j,i
?= graz,i · graz,j

LocalChain: Lcm = {Lcmi}j,k, Lsc = {SCi,j,k}j,k

OrgChain: {rootMTt
i
}i

AudChain: {cmt
i,j ,H(πm′

i,j )}i,j

Figure 4 CLOSC phase and on-chain storage analysis. Regarding operations, Setup:IN , Re-
cordTx:T R.1, 2, AppendLocal:T R.3, 7, 8, GenerateDigest:T R.4, 6, CheckConsistency:CE .1-6, 8, Append-
Global:T R.5, CE .7, VerifyResult:RV.1-4.

The committee verifies results by accessing only OrgChain and AudChain, meaning it
requires no access to any of the underlying localchain commitments, unless it specifically asks
for them, e.g., to cross-check any data regarding an auditor-reported potential inconsistency.
We enable the committee to carry out result verification checks by ensuring that (i) the
data organizations upload to OrgChain are consistent with the data their auditor uploads
to AudChain and (ii) the data auditors upload to AudChain are consistent with each other.
Importantly, we tie each auditor-generated commitment sum with the unique identifier of
said auditor so as to avoid possible brute-force matching attacks, since these commitments
(cmt

i,j) are uploaded on AudChain. Importantly, the linear combination with random values
is what on one side assists the auditors in their duties but at the same time hides the
transactional amounts from other participants. The infeasibility of reversing these linear
combinations resides at the heart of this protocol, which has been used previously in other
application contexts as well e.g., for oblivious linear-function evaluation [15], or function
secret sharing [16]. In Figure 5 we showcase the CLOLC protocol phases in detail alongside
which elements are stored on-chain.
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Protocol
(
i, j, z ∈ [n]; k ∈ [m]

)
IN .1) {ri,j,k}i,j,k

$←− Zp, ri,j,k = rj,i,k Committee
IN .2) {idi}i∈[n]

$←− Zp, {idz}z∈[l]
$←− Zp

IN .3) skcom, {ski}i∈[n]
$←− Zp, pkcom = gskcom , pki = gski

IN .4) Publish pkcom, {pki}i

IN .5) Forward {ri,j,k}i,j,k, {ski}i to Auditor z

T R.1) com(xi,j,k)=gxi,j,k · hρi,j,k , {ρi,j,k}i,j,k
$←− Zp Organization

T R.2) Ai,j =
∏m

k=1 com(xi,j,k) = g
∑m

k=1
xi,j,k · h

∑m

k=1
ρi,j,k

T R.3) Upload Ltxi,j = {com(xi,j,k)}k to LocalChain
T R.4) Upload {H(idi) ·Ai,j}j to OrgChain
CE .1) Read from LocalChain Ltxi,j

CE .2) {resi,j}j =
{ ∏m

k=1
(
com(xi,j,k)ri,j,k

)}
j

=
{

g
∑m

k=1
xi,j,k·ri,j,k · h

∑m

k=1
ρi,j,k·ri,j,k

}
j

CE .3) Bi,j = hri,j,f , ri,j,f = −
∑m

k=1 ρi,j,k · ri,j,k

CE .4) Read from OrgChain {Yi,j = H(idi) ·Ai,j}j

CE .5) {Ai,j = Yi,j · H(idi)−1}j and Ci,j = res−1
i,j ·Ai,j Auditor

CE .6) {Di,j}j = {g−
∑m

k=1
xi,j,k · h

∑m

k=1
ρi,j,k·ri,j,k−

∑m

k=1
ρi,j,k}j (1stpart)

CE .7) ct(resi,j)← Enc(pkj , resi,j), ct(Bi,j)← Enc(pkj , hri,j,f )
CE .8) ct(Ci,j)← Enc(pkcom, resi,j ·Ai,j), ct

(
H(idz) ·Di,j

)
← Enc

(
pkcom,H(idz) ·Di,j

)
CE .9) Upload to AudChain:

Lresi = {H
(
idi||

∑m
k=1 ri,j,k

)
, ct(resi,j), ct(Bi,j), ct(Ci,j), ct(H(idz) ·Di,j)}j

CE .10) H
(
idi||

∑m
k=1 ri,j,k

)
, ∀j ∈ [n]

CE .11) Retrieve and decrypt from AudChain {res′
i,j , B′

i,j}j (2ndpart)
CE .12) Check res′

i,j ·B′
i,j, · resi,j ·Bi,j

?= 1, ∀j ∈ [n]
RV .1) Read {H(idi) ·Ai,j}j from OrgChain Committee
RV .2) Read from AudChain and decrypt

{
ct(Bi,j), ct(Ci,j), ct(H(idz) ·Di,j)

}
i,j

RV .3) Check ∀ (i, z): H(idi) ·Ai,j ·Bi,j · H(idz) ·Di,j
?= H(idi) · H(idz)

RV .4) Check ∀ (z, z′): H(idz) ·Di,j · Ci,j · H(idz′) ·D′
i,j · C ′

i,j
?= H(idz) · H(idz′)

Localchain: Ltxi,j =
{

com(xi,j,k)
}

k
= {gxi,j,k · hρi,j,k}i,j,k

OrgChain:
{
{H(idi) · g

∑m

k=1
xi,j,k · h

∑m

k=1
ρi,j,k}j

}
i

AudChain: Lresi,j =
{
{H

(
idi ·

∑m
k=1 ri,j,k

)
, ctpkj

(resi,j), ctpkj
(hri,j,f )}j

}
i

{H(idz) · h
∑m

k=1
−ρi,j,k·ri,j,k , g−

∑m

k=1
xi,j,k · h

∑m

k=1
ρi,j,k·ri,j,k−

∑m

k=1
ρi,j,k}(i,j)

{g
∑m

k=1
xi,j,k·ri,j,k−

∑m

k=1
xi,j,k · h

∑m

k=1
ρi,j,k·ri,j,k−

∑m

k=1
ρi,j,k}(i,j)

{g−
∑m

k=1
xi,j,k · h

∑m

k=1
ρi,j,k·ri,j,k−

∑m

k=1
ρi,j,k}(i,j)

Figure 5 CLOLC phase and on-chain storage analysis. X ′ denotes a retrieved/decrypted value
X, generated by other auditors or organizations. Regarding operations, Setup:IN , RecordTx:T R.1,
AppendLocal:T R.3, GenerateDigest:T R.2, CheckConsistency:CE .1-7, 9, 10, AppendGlobal:T R.4, CE .8,
VerifyResult:RV.1-4.

5.3 Protocol Considerations
While we present our solution assuming all organizations participate in our system honestly
and in their entirety, there are multiple real-world scenarios where this is not the case and
below we analyze such cases. Specifically we focus on 1 the synchronization requirements of
our protocols regarding their epochs and 2 the relaxation of the percentage of participating
organizations in our proposed solutions.
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1 Our two protocols have different behaviors regarding epoch deadlines and synchronization.
In CLOSC, for a pair of auditors to be able to check the consistency of records across the
reported data from their two client-organizations, the only requirement is that both Merkle
trees need to be finalized and their corresponding roots uploaded on the OrgChain. This
is in line with current practices where organizations need to submit their reports by the
end of the fiscal year in their respective environment they operate in. In cases of differences
in these deadlines the checks can be carried out at the latest deadline available, however,
we argue that this is not a considerable caveat, especially considering the time-efficiency
of the consistency examination and result verification phases in CLOSC. Contrary, in CLOLC
the only requirement revolves around a mutually agreed-upon deadline between each two
transacting organizations. For example, the auditor of organization A may be able to execute
the consistency examination for organization B at time tAB , and for organization C at time
tAC , with tAB ̸= tAC . The same restrictions apply for the committee as well; however, both
auditors now need to have performed their examinations before a specific deadline t′.
2 Regarding the functionality of the auditing process when a subset of all system-wide

organizations does not participate in our system, we make an important observation. First,
neither CLOSC nor CLOLC have an “all or nothing” requirement, meaning that the crucial
phases of consistency examination and result verification can essentially be executed correctly
regardless of how many organizations choose to record their transactions in our proposed
manners. The only obvious relaxation in such cases, however, is that transaction consistency
and result verification can be conducted only amongst the organizations that opt to participate
in all phases of our protocols. This indicates that auditors and the committee can utilize a
hybrid approach: First, they can utilize both our protocols for all organization-transacting
pairs participating in them. Furthermore, they can use traditional methods that, however,
currently do not provide our proposed security properties (which are outlined below).

5.4 Security Analysis
We aim to design security properties that safeguard our protocols against the various
adversarial behaviours of the entities involved in our system design. To this end we introduce
three security game-based definitions to fully capture the goals described at a high level in
Subsection 4.3 and for which we provide an overview below. Importantly, depending on the
property, we consider organizations and auditors to assume the role of the adversary, who
may also choose to corrupt a set of organizations and auditors.

Our first property revolves around transaction amount privacy. The adversary selects a set
of organizations to corrupt and submits to the challenger a pair of transaction vectors. The
latter selects to utilize one of them and the adversary should not be able to distinguish between
the two cases. Next, we present organization-auditor unlinkability. The adversary here firstly
selects to corrupt a set of entities and then two distinct non-corrupted organizations and
auditors. Following, the challenger “matches” each organization with a respective auditor
arbitrarily and the adversary should not be able to distinguish which of the two selected
organizations is paired with which of the two selected auditor. Last, we describe the notion
of transacting organizations unlinkability. Similarly to the previous property, the adversary
corrupts a set of entities and then picks four distinct non-corrupted organizations and the
challenger pairs them arbitrarily. The goal of the adversary here is to identify these pairs.

Notably, in all above properties the unlinkability or the privacy holds regarding external
parties. Recall that the committee may have plaintext access upon submitting such a request,
and each auditor has access to all localchain data of its client. To the best of our knowledge,
we are the first to define formally system-wide security properties for financial auditing
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processes. We defer the reader to the full version of our work [34] for the formal definitions and
provide proofs about how our constructions satisfy them under various security assumptions
regarding the underlying cryptographic components of our designs.

6 Implementation & Experimental Evaluation

We develop working prototypes of both our cross-ledger consistency checking protocols and
measure their performance against different choice of parameters regarding the number
of organizations, auditors, and transactions during an epoch. We implement our two-tier
blockchain architecture over Hyperledger Fabric [3] and all off-chain components using
Golang 1.20.5. We use the stable 2.5.1 HLFabric version with the Raft consensus algorithm
with three orderers for all blockchains. All off-chain computations in CLOSC and CLOLC are
implemented over the Edwards25519 Elliptic Curve (EC), and specifically we utilize the EC
Library of [1]. Below we report on the performance of each individual component of our
prototype. Both the implementation and the experimental evaluation results are available at
https://github.com/auti-project. All off-chain components evaluation and blockchain
experiments were conducted on an 8-core AWS EC2 instance (m5n.2xlarge) running Ubuntu
20.04, with 32GB RAM and 50GB storage. For LocalChain experiments, we consider having
2 peer nodes (for the organization and the auditor) in the network whereas for OrgChain
and AudChain we utilized 8 peer nodes. All nodes, including peers and orderers, are tested
as Docker containers within the same network, on a single EC2 instance. We conduct our
experiments for a varying number of organizations and our numbers are taken as a mean of 10
runs with standard deviation of < 5%. Last, we assume that each organization has a unique
auditor, which is in fact the worst-case scenario from the implementation perspective. We
use the MT library of github.com/txaty/go-merkletree and to further improve the our
protocols’ performance we configure our chaincodes to accept batch transaction submitting.
Specifically, we bundle 5K transactions together and upload them via a single invoke request.

Below, we present the evaluation of both our constructions across different scenarios
and compare their complexity against works with similar potential capabilities. Specifically,
through this process we aim to showcase the practicality and scalability of our proposed
solutions in terms of the time and space required for varying total number of entities involved
and total number of transactions that are recorded during an epoch.

6.1 Performance evaluation of CLOSC

We measure all time and space requirements for our proposed solution. Recall that this
is a smart contract based approach, where each transaction is stored doubly in two smart
contracts on the respective Localchains, in addition to an offline organization Merkle
tree. Below we analyze the performance of each protocol phase. Initialization takes ≈ 1s

for 1024 organizations, scaling linearly with their number. During transaction recording,
computing 1M transaction commitments takes ≈ 7mins, while uploading them to the
respective LocalChain takes an extra ≈ 8mins. The resulting on-chain storage for 1M
transaction commitments is 432MB and reading all this data requires ≈ 1min. Generating
a Merkle tree with depth 20 (for ≈ 1M commitments), whose leaves are the commitments
above, along with all individual membership proofs takes ≈ 2s. Last, deploying SCi,j,k and
uploading the triple {cmtimestamp

j,k , rootMTt
i
, πm

j,k} on it takes ≈ 64s, and for 1M transactions
the total on-chain storage overhead is 515GB per LocalChain. Auditors or the committee
wishing to read all this data can do so in ≈ 16s. As for consistency examination, verifying
1M membership proofs and computing cmt

i,j and πm′

i,j takes ≈ 28s, while computing the
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(a) Total transactions in CLOLC for a variant number
of organizations and settings (X : Y signifies that
X% of the total organizations are transacting with
the Y % of the rest, with 1024 O2O txs per pair).

(b) E2E time across all different phases for
CLOSC(SC) and CLOLC(LC), for different number
of transactions (10K, 100K, and 1M).

Figure 6 Scalability behavior of CLOSC and CLOLC in terms of total transactions and time depending
on different number of transacting pairs and the amount of their bipartite pairwise transactions.

merged proof takes ≈ 2.1s. Uploading 256 {cmt
i,j ,H(πm′

i,j )} tuples on Audchain takes ≈ 2.3s

and requires 556KB. Finally, the committee can perform the result verification phase for 1M
transactions in ≈ 4s, for a Merkle tree of depth 20.

6.2 Performance evaluation of CLOLC

Following, we present the respective time and space requirements of our second solution.
Recall that this approach is based on checking the consistency per transacting organization
pairs and we make the “worst-case assumption” that all organizations will transact with all
others. In such a case we report that for 256 organizations the initialization phase takes
≈ 154s, for 1024 maximum transactions per organization pair. We observe that in CLOLC each
organization’s computational expenses grow linearly with the number of its total transactions
and thus, for example, a case where 2 organizations sign 100 transactions with each other is
equivalent to a case where 4 organizations sign 25 transactions with each other, from a system
design perspective. Notably, this holds especially during the initialization phase, where the
committee needs to generate a unique identifier for each different transaction the system can
support. Therefore, we pick several different settings where, instead of assuming solely that
all organizations transact with each other, we explore other, more realistic cases. Figure 6a
depicts the total number of transactions per number of organizations in different settings
CLOLC can support per epoch, with 1024 O2O transactions per organization pair2. At a high
level, we chose the following 5 representative settings: (i) each organization transacts with all
others, (ii) organizations are operating in fully connected transaction pair islands, (iii) each
organization transacts with the same (smaller) portion of the others, (iv) fewer organizations
transact with more of the rest, while most organizations transact with a small portion of
the total organizations, and (v) each organization transact with the same (small) portion
of the rest. Importantly, we observe that the initialization costs scale linearly with the
number of maximum transactions, which results to the following: Having 256 organizations,
each conducting 1024 transactions with all other organizations (≈ 33, 5M txs in total) is

2 We do not provide a similar analysis for CLOSC, since its cost of IN is not affected by such metrics.
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Table 1 Computational times (off-chain + on-chain) and blockchain storage needs of CLOSC and
CLOLC per epoch for 256 organizations, 1024 max transactions per epoch and organization pair, for a
total of 33, 423, 360 max total transactions per epoch.

(a) Computational times per phase per organization and epoch.

Protocol IN T R CE RV
CLOSC 52ms 103.2s + 299.8s 8.7s + 212.2s 3.6s
CLOLC 153.6s 105.5s + 134.9s 12.8s + 7.6s 12.3s + 8.2s

(b) Blockchain storage needs per organization and epoch.

Protocol LocalChain OrgChain AudChain
CLOSC 704MB 543KB 42.6MB
CLOLC 201MB 28.9MB 134MB

approximately equivalent to having a setting with 100K organizations, where on average each
organization transacts with 20 others and sign a total of 33 txs over the epoch. This is a
rather realistic scenario, especially when epochs have short duration e.g., a week or a month.
Next, transaction recording has both off-chain and on-chain parts. Generating 1M committed
transactions take ≈ 402s, while accumulating them in Ai,j takes ≈ 1s. Uploading this list of
committed transactions on LocalChain takes ≈ 544s and requires 767MB, while fetching
it takes ≈ 28s. As for OrgChain, things are similar. Uploading 1M accumulated values
takes ≈ 835s and 436MB, while reading all these values takes ≈ 36s. During consistency
examination, generating combined all {resi,j , Bi,j , Ci,j , Di,j} takes ≈ 690ms and encrypting
≈ 1.4ms, for 1024 underlying transactions. Uploading 1M such encrypted tuples takes
≈ 39mins and 2GB, while retrieving, decrypting and checking the consistency takes ≈ 0.5s

per transacting O2O pair. Last, for result verification, Com conducts both checks in ≈ 2s.

6.3 Comparing the two protocols
As showcased in Tables 1a & 1b, overall there is no clear “better” solution and we observe a
trade-off in our designs as for the required time, communication, and on-chain storage. CLOSC
has a faster initialization phase, requiring also less communication between the committee
and the rest of the entities. Contrary, during transaction recording CLOLC outperforms
significantly CLOSC, as the latter requires a separate smart contract per recorded transaction.
The performance is reversed once again during consistency examination. As CLOLC splits this
phase into two parts, it takes more time to produce the auditor results including all auxiliary
elements the committee needs for the next phase. However, in CLOSC the auditor forwards the
vector of transactions to the committee, incurring considerably higher communication costs.
Last, during result verification both our protocols are very efficient allowing our designs to
scale regardless of the number of organizations, auditors, or total recorded transactions.

In Figure 6b we depict the performance of CLOSC and CLOLC across all phases, for varying
amounts of supported transactions per epoch, and in terms of the time each protocol requires
for the execution of an auditing epoch. We observe that the performance of both our protocols
is linearly affected by the number of total transactions per auditing epoch. This can offer
a point of flexibility depending on the number of organizations and the frequency of their
transaction rates and their auditors’ consistency examination responsibilities. Since for each
distinct organization and auditor the transaction recording and consistency examination
phases are inherently independent from other entities, the time required is calculated as
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Table 2 Protocol phase complexity and ledger storage asymptotics of CLOSC and CLOLC against
other works with similar potential capabilities across comparable phases of our protocols. n and m

respectively denote the total number of organizations and transactions per auditing epoch.
⋆: Miniledger has a pruning technique to regularly minimize the size of the ledger.

Protocol IN T R CE RV Storage
ZkLedger [43] O(n) O(nm) O(nm) — O(n2m)
Miniledger [19] O(n) O(nm) O(nm) — O(n2m)⋆

ACA [37] O(n) O(nm) O(nm) — O(nm)

CLOSC O(n2) O(nm + mlogm) O(nm) O(n2) O(n2m)
CLOLC O(n2m) O(nm) O(n) O(n2) O(n2 + nm)

the necessary time for one of each entities to execute all operations during each phase (e.g.,
how long it take for an organization to perform the transaction recording phase). Last, the
storage required for both our solutions is not prohibitive, considering also that after the
auditing epoch ends there is no need to keep all the uploaded data in any data structure as
a whole. For historicity, maintaining a small digest (e.g., a hash output) of the ledgers might
suffice to enable post-hoc verification For example, an organization can set the root of the
Merkle tree of the previous epoch as the left-most leaf of the tree of the next auditing epoch.

6.4 Comparing with other works
To the best of our knowledge there exists no other implemented system that concretely
supports auditing protocols for cross-ledger transactions consistency. Nevertheless, there
exist approaches that could serve similar purposes if adjusted appropriately. E.g., the
authors of [43, 19, 37] proposed systems close to our design in some aspects regarding
auditability/verifiability but they are based on different setups, including solely users and
auditors. We provide a comparative analysis in terms of computation and storage asymptotics
between our protocols and these works for a single epoch in Table 2.

Notably, CLOSC and CLOLC have higher initialization (IN ) complexity since more para-
meters need to be generated in order to speedup the consistency examination (CE) and
result verification (RV) phases of our protocols. Regarding transaction recording (T R) and
considering that [43, 19, 37] employ a single-ledger approach, in ACA the transacting entity
posts a single transaction pertaining solely to the transfer of its funds, while in zkLedger
and Miniledger it also computes and uploads “dummy” transactions for the rest. In CLOSC
the dominant term corresponds to the creation of the smart contracts, following by the
Merkle tree creation time, whereas in CLOLC organizations create a linear combination of
their records per transaction pair. During auditing, all proposed solutions parse through the
ledger transaction records, except for CLOLC, where organizations have reported a digest of
their entire records, rendering the consistency examination faster. Last, prior works do not
consider an RV phase. In both CLOSC and CLOLC the committee performs only multiplications
and hashing operations during this protocol phase, introducing a negligible overhead in the
total required computational time as shown in Table 1a.

Regarding storage requirements, the single-ledger approaches record each and every
transaction in the communal ledger, and which all participants need to store in its entirety.
To combat growing ledger-storing costs, one of the major caveats of employing blockchains in
any system design, Miniledger employs a pruning technique. By doing so, it renders the total
storage required ultimately less than in zkLedger and ACA. However, this pruning is not
instantaneous and needs to be verified by all other participants. An important diversification
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in our designs is the following: Even though at a system level the storage is similar in
terms of complexity to prior approaches, each organization only records their own activity
on Localchains, leading to significantly less storage requirements individually as shown in
Table 1b. Additionally, after RV concludes only a small digest might be needed to remain
from each ledger (including Orgchain and Audchain) for historicity purposes, as mentioned
above. Overall, the costs in CLOSC and CLOLC are comparable or lower than the other works
whilst not only guaranteeing our three proposed security properties but also operating in a
more relaxed security setting.

7 Discussion

On protocol generalization and limitations. Cross-ledger transaction consistency is an
important check auditors can use to detect fraudulent behavior of their client-organizations
e.g., reported sham transactions or inflated assets. We believe that our protocols can be
further augmented to facilitate execution and verification of other popular financial auditing
processes e.g., 4-way matching [5]. A possible direction to enable such a process could be
for every organization to utilize the same specific SNARK construction that would take as
input the four transaction commitments that satisfy the 4-way matching relation and output
a proof about their consistency. Based on current practices we expect such an addition
to behave similarly (from a computation perspective) to our proposed solutions. Last, we
believe that incorporating atomic cross-chain exchange techniques like the ones in [42] on top
of our auditability protocols may result in a system with even further capabilities. However,
this remains challenging as the entity setting is different and additional processes will need
to be designed. As for limitations, in CLOSC the committee currently needs to receive all
commitments to be able to verify the auditor-generated results and in CLOLC it needs to
generate a randomness per transaction per epoch during the initialization; recall that this is
essentially a trade-off that allows auditors to perform the consistency examination phase
more efficiently. Even though these limitations are not prohibitive in terms of performance
as demonstrated in our previous evaluation, we leave improving and uplifting our protocols
from these restrictions as future work.

On the inclusion of blockchains in our designs. Arguably, our architecture does not need
to rely on blockchains, however, a two-level generic ledger approach is not sufficient either.
Blockchains are immutable, rendering attack scenarios such as the one outlined in Section 1
impossible. Furthermore, we believe that building our system atop a blockchain with smart
contract capabilities architecture will enable the inclusion of more auditing processes in the
future. However, space and monetary costs are the main concerns when deploying blockchain
systems. In our case, after epochs are concluded, the relevant data stored in all blockchains
can be deleted, since it will not be used in any of the following epochs and no need on-chain
asset transferring is executed either. Last, based on the above discussion and since the
problem we are focusing on requires different entities to have access to different data, we
observe that a permissioned network fits best our design. Nevertheless,we identify that
designing our system atop a permissionless architecture while maintaining our three proposed
security properties is challenging. Opening the system to arbitrary participation may lead to
novel confidentiality and privacy attacks, and we leave this as a future research direction.
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8 Conclusion

In this work we proposed CLOSC and CLOLC, the first two protocols attempting to tackle our
newly defined problem of cross-ledger transaction consistency in the context of financial
auditing. Both are built atop a two-tier blockchain architecture and CLOSC utilizes smart
contracts while CLOLC linear combinations to achieve the consistency examination and
verification. Moreover, we proved that both our protocols satisfy three crucial security and
privacy properties. Finally, both our protocols scale well with the number of organizations,
auditors, and transactions per epoch. We demonstrated this via extensive experimentation
that showed both our solutions to be practical, deployable in real-world settings including
hundreds of organizations and auditors, and millions of total transactions per auditing epoch.
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Abstract
Layer 1 (L1) blockchains such as Ethereum are secured under an “honest supermajority of stake”
assumption for a large pool of validators who verify each and every transaction on it. This high
security comes at a scalability cost which not only effects the throughput of the blockchain but also
results in high gas fees for executing transactions on chain. The most successful solution for this
problem is provided by optimistic rollups, Layer 2 (L2) blockchains that execute transactions outside
L1 but post the transaction data on L1.

The security for such L2 chains is argued, informally, under the assumption that a set of nodes
will check the transaction data posted on L1 and raise an alarm (a fraud proof) if faulty transactions
are detected. However, all current deployments lack a proper incentive mechanism for ensuring that
these nodes will do their job “diligently”, and simply rely on a cursory incentive alignment argument
for security.

We solve this problem by introducing an incentivized watchtower network designed to serve as
the first line of defense for rollups. Our main contribution is a “Proof of Diligence” protocol that
requires watchtowers to continuously provide a proof that they have verified L2 assertions and get
rewarded for the same. Proof of Diligence protocol includes a carefully-designed incentive mechanism
that is provably secure when watchtowers are rational actors, under a mild rational independence
assumption.

Our proposed system is now live on Ethereum testnet. We deployed a watchtower network and
implemented Proof of Diligence for multiple optimistic rollups. We extract execution as well as
inclusion proofs for transactions as a part of the bounty. Each watchtower has minimal additional
computational overhead beyond access to standard L1 and L2 RPC nodes. Our watchtower network
comprises of 10 different (rationally independent) EigenLayer operators, secured using restaked
Ethereum and spread across three different continents, watching two different optimistic rollups for
Ethereum, providing them a decentralized and trustfree first line of defense. The watchtower network
can be configured to watch the batches committed by sequencer on L1, providing an approximately
3 minute (cryptoeconomically secure) finality since the additional overhead for watching is very low.
This is much lower than the finality delay in the current setup where it takes about 45 minutes for
state assertions on L1, and hence will not delay the finality process on L1.
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1 Introduction

L1 Scalability

Blockchain scalability, via improving throughput, latency and transaction fees, is a crucial
component of blockchain adoption [18, 30]. Improving the core L1 consensus protocols is a key
direction to scalability [8, 17, 48, 10]; as an example, Ethereum upgraded consensus from the
longest chain protocol in the proof-of-work (PoW) setting to the GHOST protocol [38] with
Casper finality gadget [7] in the proof-of-stake (PoS) setting recently, improving its throughput
potentially by three orders of magnitude and reducing 99.95% energy demand [1, 29]. Changes
to L1 via upgrading the consensus protocol is a wholesale change (hard fork), requiring
significant social consensus around the process and is time-consuming (e.g., Ethereum’s
upgrade to PoS from PoW took seven years [9]). However the scalability challenges have
persisted with increased computational demands and data storage outstripping the upgraded
capabilities, with the result that resulting gas fees have not seen any significant reduction.
More scaling techniques that maintain equivalent decentralization, known as horizontal
scaling, are necessary.

L2 Economy

L2 solutions have emerged as a significant breakthrough, with potential to increase transaction
processing speed, cut down costs, and enhance the overall capacity of blockchains. Rollups
work by processing transactions outside the L1 chain and then posting the transaction data
and state commitments back to it. Established rollup platforms such as Optimism [46] and
Arbitrum [23] accommodate a vast ecosystem (e.g., Arbitrum L2 supported more transactions
than Ethereum L1 itself in February 2023 [52]). At the same time, new entities [40, 41, 45, 44]
are entering the scene, introducing new infrastructure and optimizing their functionalities
for specific applications. These new schemes differ from traditional rollups in their targeted
functionalities and optimization techniques. Moreover, driven by the demand for customizable
and accessible layer 2 solutions, the concept of “Rollups-as-a-Service” is gaining traction
[22, 42, 43, 39], allowing a broader range of participants to create and utilize their own rollup
strategies.

Rollup security

With the rapid adoption and reliance on rollups, there is an increasing need to address
the critical security concern. Current rollup strategies secure the L2 states by requiring
asserters to execute and commit L2 block data to the L1 blockchain (Figure 1). These
asserters, often staked and centralized, can be objectively slashed when their asserted states
are proven to be incorrect. As depicted in the upper path of Figure 1, the system allows
applications to independently verify the states committed on L1 and initiate disputes, serving
as the secondary line of defense. These disputes are typically addressed and resolved via
fraud proofs. However, a basic vulnerability remains despite the security layer provided by
staked asserters and fraud proofs: the lack of incentives for actively watching the rollup. In
the normal path, there is no guarantee that these applications monitor the asserted states
consistently and effectively: how to ensure vigilance during normal path when attention

https://arxiv.org/abs/2402.07241
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Figure 1 Watchtowers are added to the current L2 security workflow to guard normal path
security.

might diminish due to the absence of apparent threats? In other words: who is watching the
watchers? This problem was identified sharply by the inventors of Aribtrum [16], however a
systematic solution has remained open since then.

Watchtowers: the first line of defense for rollups

In this paper we propose a “rational watchtower pool”, a group of workers incentivized to
constantly watch the transactions in the normal path. The lower part of Figure 1 illustrates
how watchtowers operate independently, interacting with the existing rollup system only
when an incorrect state is identified. At that point, they sound an alarm, much like what
applications typically do. However, watchtowers are incentivized to stay vigilant at all
times. Their role, serving as the first line of defense for rollups, is crucial for identifying
potential faults that might otherwise go unnoticed. To ensure that the watchtower fulfill
their “watching responsibilities” diligently, they must provide what we refer to as “proof of
diligence”, a prerequisite for earning incentives.

Proof of diligence

Specifically, the duties of watchtowers entail that for new L2 state assertions to be integrated
into the L2 ledger, watchtowers must execute the transactions and validate these new
assertions. For a watchtower to demonstrate their diligence, their evidence must meet two
criteria: (1) those who don’t process the transactions should only be able to generate the
proof with a negligible likelihood; (2) a proof produced by one watchtower shouldn’t be valid
for another. These standards ensure only the diligent watchtowers can generate valid proofs,
and prevent multiple watchtowers from presenting identical proofs, thus promoting individual
effort. To satisfy these conditions, each watchtower computes a verifiable random function
(VRF) using the commitment of transaction execution trace. As every watchtower possesses
a unique VRF key pair, they generate proofs independently and submit proofs on-chain,
allowing public verification. As illustrated in Figure 2, other watchtowers can recompute
this proof, ensuring watchtowers presenting false proofs are identified and penalized during
disputes.
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Incentive framework for watchtowers

For watchtowers to operate effectively, a carefully designed incentive mechanism is vital.
This mechanism should consider two parts: positive incentives for continuous monitoring
and negative incentives to punish undesirable actions. Positive rewards are allocated using
a “bounty mining” scheme. Watchtowers calculate their proof of diligence to determine
their eligibility for these rewards. To optimize efficiency, the criteria to obtain the bounty
is set by a specific threshold, narrowing down the list of potential recipients. Only the
selected winners need to submit their VRF outcomes as their proof of diligence. On the
other hand, the negative incentives are implemented through staking. To engage in the
protocol, watchtowers must deposit stakes, which are slashable upon detection of misconduct.
Monitoring watchtower behavior introduces the problem of “watching the watchtowers”.
Hence, the incentive structure offers additional rewards for the verification of the proof of
diligence. Watchtowers who spot inconsistent proofs can challenge them, earning a reward
if their challenge is successful. We rigorously analyze the protocol as a non-cooperative
game [26], examining the potential actions of watchtowers: being diligent or lazy. By
appropriately configuring these incentives, our findings show that a strategy where all
watchtowers diligently monitor rollups is the unique Nash equilibrium, leading to an effective
frontline defense for rollups.

Extended mechanism design

Moreover, we extend the action space for watchtowers to encompass potential collusion
strategies. Here, several watchtowers might form a collusion to exchange execution results
or decide on a mutual random outcome driven by the benefits of saving computational
costs. Our findings indicate that when factoring in such cooperative actions, the equilibrium
tends to favor collusion, nullifying the role of watchtowers. To counteract this, we introduce
design enhancements to disrupt collusive behaviors. We design a whistleblower scheme
allowing any colluder to secretly expose collusion in exchange for compensation. Our game-
theoretic analysis demonstrates that the whistleblower system encourages betrayals against
the collusion. Since this reporting remains confidential, while the act of betrayal is noticeable,
the whistleblower can not be individually attributed. Consequently, the collusion will not be
initiated at the first place.

System design

By integrating the proof of diligence and incentive mechanism, the design enforces watchtowers
to maintain their essential roles in guarding the security of rollups in normal path. The
network consists of a pool of watchtowers that are allocated to one of the participating
rollups randomly, with the allocation changing over time. The system utilizes a staking
mechanism to ensure sybil resistance and fair allocation of positive incentives; the stake is
also used as a bond that can be utilized for negative incentives. On-chain contracts perform
the broad activities of watchtower registration, rollup status monitoring, and disbursement
of incentives. The off-chain client comprises a wrapper to the L2 full node that fetches
intermediate information to mine the bounty. The system is implemented on the Optimism
Bedrock stack [47] that watches Optimism and Base rollups on the Goerli testnet. Note that
since watchtowers operate independently of the optimistic rollup framework, the system is
capable of monitoring multiple optimistic rollup chains simultaneously. We use Eigenlayer
(EL) [14] as the staking mechanism and build our registration functionality associated with it.
Our implementation adds a very low compute cost to an L2 full node with a low transaction
fee that can be adjusted on a sliding scale.
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Figure 2 (a) Optimistic rollup model and (b) Watchtower model.

The subsequent sections provide a detailed breakdown of our investigative approach and
findings. In Section 2, we outline the system’s model and explore various threat models. In
Section 3, we compare prior work on related topics with our solution. Section 4 presents an
in-depth view of our developed watchtower protocol. Further, in Section 5, we extend the
model to allow collusions and conduct a thorough cooperative game theoretic analysis of
the security aspects and the incentive compatibility associated with the enhanced protocol.
Section 6.1 demonstrates our system design and implementation details, the evaluations
results from the live system are presented in Section 6. Concluding the paper, Section 7
engages in a comprehensive discussion, bringing to the fore the pivotal learning from our
research and suggesting future directions.

2 Security Models and Definitions

2.1 Rollup Model

Rollups enhance the blockchain’s efficiency by handling transaction execution off the main
chain (L1). Present rollup techniques rely on either the validity proofs or fraud proofs to
ensure security. Validity proofs, used in schemes known as zk-rollups, apply sophisticated
cryptographic techniques to validate every batch of L2 transactions. On the other hand, fraud
proofs, employed by optimistic rollups, come into play only when a fault is spotted in the
execution process. Our focus is on enhancing the security of optimistic rollups (Figure 2a). In
this context, the watchtower pool has been introduced to monitor the normal-path operations –
that is, the process when transactions are presumed to be valid unless challenged.

In our system, there exists an L2 chain employing optimistic rollup scheme. The scheme
involves an untrusted asserter, responsible for processing the L2 blocks and submitting the
updated states assertion on L1 chain. L1 chain is guaranteed to be secure and live. We
assume the data of L2 blocks are stored on L1 directly or through a trusted data availability
service, hence the data is ensured to be retrievable. Furthermore, the system consists of
a group of defensive validators, whose role is activated when there is a need to produce a
fraud proof, which is verifiable on chain. We consider a live rollup system operator, who
coordinates the issuance of L2 blocks (typically through a role called sequencer) and provides
rewards for asserter, validators, and watchtowers. The goal of the operator is to ensure the
security of rollup states with minimal cost.
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2.2 Watchtower Model
Independent of the rollup infrastructure, our model incorporates a pool of n registered
entities known as watchtowers (Figure 2b), denoted as {W1, W2, · · · , Wn}. Each watchtower
Wi has deposited relative stake αi into the system, where

∑n
i αi = 1 and the total amount

of stake is S. These watchtowers are modeled as individual rational adversary, where the
term “rational” implies that they operate with the purpose of optimizing a known payoff
function. And they have the ability to methodically process all potential scenarios and select
strategies that provides the best outcomes.

Even though rational participants will not deviate from the protocols without cause, they
might engage in attacks – either intentionally or inadvertently – if the expected rewards
justify such actions. We identify several potential attacks in this framework, emphasizing
the nuanced strategies rational actors might employ.

Lazy watchtower

Since watchtowers are also required to execute the entire batch of L2 transactions, they can
earn rewards by performing their duties diligently. This role closely resembles that of the
asserter in the original optimistic rollup system, who posts computation results in exchange
for rewards. As a result, one prominent challenge the watchtower design must confront is
the “lazy watchtower” problem. This issue arises because of two main reasons: (1) rational
watchtowers may submit arbitrary responses if the results lack verification process, and
(2) they might opt out of protocol participation if the associated costs outweigh potential
rewards. In essence, the watchtowers must provide a form of evidence for their work and the
protocol must offer sufficient incentives to encourage participants to actively and consistently
perform tasks.

Collusion attack

Rational entities might form collusion where several parties conduct coordinated actions
based on a common agreement. However, it’s essential to note that, despite the existence of
any agreement, colluding parties maintain individual autonomy and continue to prioritize
their self-interest. Within the scope of collusion attacks, we consider adaptive adversaries
who can adjust their collusion strategies in response to protocol developments.

In our system, we assume that adversaries are limited by computational constraints, so that
they are not able to break the security of necessary cryptographic primitives. It’s important
to highlight that rational adversaries, guided by their payoff functions, are considered weaker
threats compared to Byzantine adversaries. Since their profit-driven actions exclude certain
strategies. In the discussion section (Section 7) we explore the trade-off between different
levels of security and associated costs.

2.3 Preliminaries
We introduce fundamental primitives utilized throughout the paper. Other notations are
summarized in Table 1.

Verifiable random functions

Our protocol use verifiable random functions (VRFs), providing two functions to generate
and verify proofs. VRFsk(x) processes an input x and returns two values (d, πd): a normalized
hash digest d and a proof πd. The value d ∈ [0, 1) is uniquely determined by the input x
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Table 1 Summary of notations.

Term Definition Term Definition

n Number of registered watchtowers cT Cost per transaction batch
Wi Watchtower i cV Cost of resolving disputes
αi Relative stake of watchtower Wi RB Normal path reward for watchtowers
S Total amount of stake in the system RC Dispute path reward for watchtowers
S Blockchain state Rw Whistleblower protocol reward
T A batch of L2 transactions ϕ(αi) Bounty mining threshold
E Execution trace t Deposit for participating in collusion
rS State assertion h Rent in diligent collusion
rE Merkle root of execution trace nc The size of the colluding group

and a secret key sk, and is indistinguishable from a random value to anyone that does not
know sk. verifyVRFpk(πd, d, x) ∈ {true, false} takes the proof πd input and allows anyone who
knows the public key pk to verify whether d is the correct value computed from x and sk.

Merkle trees

Merkle trees are a fundamental data structure in cryptography, summarizing lists of items,
such as transactions or states, by concatenating their cryptographic hashes at various levels of
the tree. We provide the function Merklize(L)→ r that generates a Merkle root r from a list
of items L. It involves the construction of a Merkle tree or Patricia trees [28, 51] for L and
then produces the root hash that represents the entire list of items. MerkleProof(r, l, L)→ p

is used to generate a Merkle proof p associated with a leaf node l in a tree rooted at r. This
proof consists of the minimal amount of information needed to confirm the presence of the
specific leaf node l within the tree constructed from L. Furthermore, there exists a validation
function verifyMerkleProof(r, l, p) ∈ {true, false} that takes in a root r, a leaf l, and a Merkle
proof p, then returns a boolean value indicating whether p demonstrates that l is indeed part
of the Merkle tree rooted at r.

State transitions

We consider a general model for L1 blockchain, which keeps the latest states set S and
transactions organized as blocks within hash-based chains. The function apply(S′, T )→ (S, E)
represents the process of applying a list of transactions T to a prior state S′ to yield a
new state S and an execution trace E. The execution trace is a detailed record of all
intermediate states during the transition from S′ to S, serving as a reference for verification.
Another function validate(r, r′, L) ∈ {false(r), false(r′), false(r, r′)} resolves a conflict between
two Merkle roots r and r′ calculated from the same list of items L. The output represents
the subset of roots that are proven to be invalid. There are different ways to implement this
function, such as using L1 as a trusted third party to provide ground truth or executing an
interactive verification game (IVG) to identify the incorrect root.

Game theory

The concepts about game theory utilized in our analysis are all defined in the book [26]. We
first analyze the rollup security with watchtowers as a non-cooperative game in strategic
form (Def. 4.2, [26]), and examine the dominance of strategies (Def. 3.10 and 4.6, [26]) to
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find the pure strategy Nash equilibrium (Def. 4.17 and Def. 5.3, [26]) for watchtowers. We
also discuss an enhanced protocol considering cooperative game (Chapter 15, [26]), where
more than one Nash equilibria exist and Pareto efficiency (Def. 15.7, [26]) is considered.

3 Background and Prior Work

The dialogue surrounding optimistic rollups originated in community discussions on the
Ethereum research forum [2], where developers and researchers shared insights about potential
scalability solutions. One of the earliest detailed presentations came from the Optimism
team, who outlined the foundational framework of optimistic rollups and their theoretical
implications [21]. The theoretical cornerstone for optimistic rollups was further strengthened
through scholarly research. Pioneering works such as Arbitrum [19] and TrueBit [49]
introduced essential concepts related to off-chain computation and dispute resolution.

Subsequent discussions began to address broader implications in contexts such as data
availability [3, 53, 34], sequencer risks [27, 32], and validator behavior [20, 16, 33, 15, 13].
Specifically, among these topics, validator behavior is most pertinent to this paper. While
the basic rollup design discusses an elementary incentive structure to motivate asserters to
post correct states, verifiers may lack incentives to monitor the system’s states diligently,
such a situation is known as the verifier’s dilemma problem [24]. To address this issue
and enhance system security, the authors of Arbitrum [16] proposed an attention game
in which verifiers who fail to participate may be punished. TrueBit [20] also suggested
an enhanced mechanism to select a pool of validators, requiring them to submit a proof
of independent work [15] to enforce verification. Additionally, some research [33] provides
game-theoretic analyses of collusion risks in incentivized computation outsourcing, proposing
mitigation strategies, though not completely resolving the issue. In the field of verifiable
outsourced cloud computing, [13] investigates the dynamics between clients and workers
within smart contract frameworks, demonstrating a preference for honest behavior under
certain conditions. Although they propose a “traitor contract” to eliminate collusion, this is
limited to a two-party context. Furthermore, we contend that this proposed solution might
not be effective, as the contract’s output could compromise the traitor’s secrecy. Another
study [35] examines cooperation in N -person prisoner’s dilemma scenarios, with institutional
arrangements akin to smart contracts. Differing from our focus, this work considers collusion
through bargaining rather than a leader-based approach. A new design of the attention game
was proposed in a recent paper [25] to find the optimal number of validators that minimizes
failure probability. The design only provides probabilistic security and requires modification
in the underlying rollup protocol to ensure deterministic security. As a comparison, we
provide a plug-and-play solution that can be used for any off-chain compute resource with
minor modifications.

4 The Watchtower Protocol

4.1 Proof of Diligence
In our protocol, we focus on a single task that watchtowers undertake: verifying the updated
state assertion rS of the L2 blockchain, a state assertion is the Merkle root of the state tree,
calculated by rS = Merklize(S). The states S on a blockchain consist of a list of key-value
pairs, such as the account address and the account balance. Formally, given the latest
validated state S′ and a sequence of transactions T , the responsibility of the watchtowers is
to verify rS by executing the computations specified in Algorithm 1.
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Algorithm 1 Function for Watchtowers.

1: function checkState(S′, T, rS , αi)
2: (S, E)← apply(S′, T )
3: r′

S = Merklize(S)
4: rE = Merklize(E)
5: (d, π) = VRFsk(r′

S |rE)
6: if d < ϕ(αi) then
7: submit proof of diligence (d, π)
8: if rS = r′

S then
9: Return true

10: else
11: Return false

Algorithm 1 represents the process of assessing whether the proposed state assertion rS

is indeed consistent with the ledger history. The watchtower calling the checkState function
first applies the transactions T to the initial state S′, which returns the new state S and an
execution trace E. The watchtower then calculates the Merkle root of the legitimate state
S and compares the result r′

S with the posted rS . If the verification process succeeds and
no faults are found, the watchtower considers the new state S as validated. Otherwise, the
watchtower is expected to raise an alarm to the rollup scheme, activating defensive validators
for dispute resolution and fraud proof creation.

Besides, the watchtowers utilize the execution trace E to construct a Merkle root rE . Since
rE is not available anywhere and can only be derived by executing the transactions, it serves
as evidence of their work and diligence. They compute a VRF using rE and r′

S , incorporating
their secret keys. It is assumed that the corresponding public keys were disclosed during the
registration phase. The VRF produces (d, π); the digest d is subsequently used to allocate
rewards for diligent watch. Accompanied by the proof π, the watchtower submits this as the
proof of diligence, which satisfies the following properties:

Verifiability. Given a keypair (pk, sk), for any input x, if (d, π) ← VRFsk(x), then
verifyVRFpk(π, d, x) = true.

Uniqueness. Given a keypair (pk, sk), for any input x, if (d, π) ← VRFsk(x), no one,
including the key owner, can produce a different d′ ̸= d and the associated proof π′ such
that verifyVRFpk(π′, d′, x) = true.

Pseudorandomness. For a given input x and public key pk the output d is indis-
tinguishable from a truly random string to anyone who does not possess the private
key sk.

The verifiability ensures that once the proof is posted on the chain, it can be verified
by every watchtower using rS , rE , and the public key pk. This process is referred to as
“watching the watchtowers”. Other watchtowers will use their own rS , rE values to check
the proof. If they detect any inconsistencies, they invoke the validate function to resolve
conflicts on the chain. After a predefined challenge period tC , the protocol concludes that
the remaining proofs are correct. The uniqueness and pseudorandomness imply that only
diligent watchtowers can generate a valid proof, and the proof generated by one watchtower
cannot be used by others.
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4.2 Incentive Design
To ensure that watchtowers execute their verification duties with diligence, it’s imperative to
institute a carefully designed incentive mechanism. First of all, this mechanism mandates
that all enrolled watchtowers use their stakes as the deposit. This deposit acts as a form
of commitment to honest service – any verified misbehavior results in the slashing of their
deposit.

Bounty mining

Understanding that watching operations incur costs, represented as cT , in the process of
executing all transactions in T , we introduce a bounty mining scheme to motivate the
watchtowers to perform the verification (specified in Algorithm 1, line 4-7). The process
of bounty mining can be analogous to the process of committee or leader selection in some
blockchains [8, 11], where a VRF is computed to determine bounty winners. Formally, a
diligent watchtower Wi with relative stake αi who performs the transaction execution can
generate a proof of diligence (d, π) on the task. Then with a probability ϕ(αi), Wi finds that
its proof satisfies a certain condition (specified in Eq. 1), allowing them to receive a bounty
by publishing the proof. A system parameter θ is defined to control the probability that a
party with all stake wins the bounty.

Pr[VRFski(rS |rE).d < ϕ(αi)] = ϕ(αi) = 1− (1− θ)αi (1)

The amount of bounty each winner who submits a valid proof (d, π) can collect is a
constant value RB . If any watchtower identifies an incorrect proof, the validate function will
be invoked to resolve the dispute. In this process, both watchtowers are required to publish
their rS , rE values. The winner of the challenge will receive a constant reward of RC , and
a compensation distributed among all winners for the cost of dispute resolution cV . The
rewards setting satisfies the following conditions:

RB >
cT

ϕ(α0) , RC > cT (2)

where α0 is the unit stake fraction, hence α0 ≤ min{αi}i∈[1,n]. To ensure that the slashed
deposit is enough to pay for the cost of dispute resolution and rewards, we require that

α0S ≥ cV + (n− 1)RC (3)

In summary, the entire protocol works as follows.
1. When a new state assertion rS is published, a bounty timer t1 starts. Each watchtower

recomputes the assertion r′
S and generates the execution trace root rE by applying

transactions T to the old states S′, then computes (d, π) = VRFsk(r′
S , rE).

2. If the assertion is incorrect (rS ̸= r′
S), the watchtower notifies the defensive validators of

the rollup to initiate a challenge.
3. If a watchtower wins the bounty, the watchtower submits proof of diligence (d, π) before t1.
4. When a watchtower observes a proof of diligence submitted by other watchtowers, it

verifies the proof using the other’s public key and the execution trace root rE calculated
by itself. If the proof is incorrect, the watchtower calls validate interface to resolve the
dispute. The cost of triggering validate is denoted as cV shared among all watchtowers
who call the function.

5. If no validate is triggered before t1 expires, the rollup operateor concludes that the asserted
execution trace root is correct. Validated bounty winners receive RB as reward each.

6. If validate is triggered, the winning parties receive a reward RC and a compensation for
the shared cost, and the losing parties lose all the stake.



P. Sheng, R. Rana, S. Bala, H. Tyagi, and P. Viswanath 5:11

4.3 Incentive Analysis in Non-Cooperative Games
We first consider the proof of diligence protocol as a non-cooperative game denoted as
PoD-Game, where different watchtowers optimize their individual payoff without any mutual
agreement for cooperation. Watchtowers can adopt one of two possible strategies: diligent or
lazy. Diligent watchtowers execute transactions honestly and report proof of diligence when
the condition is met. In contrast, lazy watchtowers opt for generating a random result as the
new state assertion, incurring negligible cost. Moreover, these lazy watchtowers might submit
a fake proof, computed from the random root, to deceitfully claim the bounty. Notably,
we consider only those lazy and deceitful watchtowers, as non-deceitful lazy watchtowers
are indistinguishable from non-participants in impact. A default constraint of our incentive
mechanism is that the payoff for diligent behavior is always positive, which dominates the
non-participating strategy. Therefore, we omit this trivial case in the subsequent analysis.

Let ua
i (nd) be the expected payoff function of watchtower Wi given that watchtower Wi

choose action a ∈ {d, l}, where d and l represent diligent and lazy strategies respectively, and
there are nd diligent watchtowers in total. According to the protocol, for all i ∈ [1, n], these
payoff functions are defined as follows:

ud
i (nd) =

{
ϕ(αi)RB + RC − cT nd < n

ϕ(αi)RB − cT nd = n
(4)

ul
i(nd) =

{
ϕ(αi)RB nd = 0
−αiSϕ(αi) nd > 0

(5)

Note that a lazy watchtower would attempt to mimic genuine probability to submit proofs,
otherwise the proof submission frequencies that can happen with negligible probability can
be used to detect malicious behaviors. By comparing the payoff for different strategies, we
observe that the diligent strategy dominates the lazy strategy for all watchtowers; formally,
we have the following theorem.

▶ Theorem 1. The diligent strategy in the PoD-Game is a dominant strategy for all watch-
towers.

Proof. For every watchtower Wi, given an arbitrary strategy vector s−i containing all others’
actions. Let nd denote the number of watchtowers that are diligent in s−i, we compare the
payoff of two strategies for Wi below.

Case 1: If nd = 0, due to Eq.2, ud
i (1) = ϕ(αi)RB + RC − cT > ϕ(αi)RB = ul

i(0).
Case 2: If 0 < nd < n− 1, due to Eq.2, ud

i (nd + 1) = ϕ(αi)RB + RC − cT > −αiSϕ(αi) =
ul

i(nd).
Case 3: If nd = n− 1, due to Eq.2, ud

i (n) = ϕ(αi)RB > −αiSϕ(αi) = ul
i(n− 1). ◀

Theorem 1 implies that the game has a unique Nash equilibrium since we can eliminate the
strictly dominated lazy strategy and get a unique strategy vector of all diligence; this follows
directly from Cor.4.37 [26].

▶ Corollary 2. The unique Nash equilibrium in PoD-Game occurs when every watchtower is
diligent.

In conclusion, in a setting without cooperation, our proof of diligence protocol ensures
that rational watchtowers will always work diligently, providing the first line of defense for the
rollup system. In practice, this setting can model many situations, such as when watchtowers
cannot communicate with each other, or when there is a public reputation system where
participating in any cooperation would be detected and deteriorate reputations.
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5 Cooperative Games and The Enhanced Protocol

In the PoD-Game, we observe that if all watchtowers choose to be lazy and agree to use a
common random rE and rS to compute their proofs, they will receive a higher payoff than
in the all-diligent equilibrium. However, this strategy did not get chosen since any party can
deviate from this “unreliable collusion” to achieve higher utility, while lazy parties end up
losing all their stakes.

Collusion can be reinforced by adding specific punishment mechanisms. In the context of
rollups, smart contracts are the most viable tools for enforcing agreements or promises of
such cooperation. Beyond the previously mentioned lazy collusion strategy, other strategies
may improve payoff through cooperation, like sharing the costs of diligence. Additionally,
the process of forming a colluding group can vary. For instance, in a leader-based method, a
watchtower might take the initiative to create a colluder contract [13], setting conditions for
joining and outlining actions to be taken, thereby allowing others to join. Conversely, in a
leader-less method, watchtowers can choose to join a collusion group and negotiate group
strategy collectively [35].

In this section, we explore the space of collusion, concentrating on two main leader-based
strategies applicable to most relevant settings. Our primary findings reveal that establishing
mutual agreements enforced by smart contracts makes lazy actions more beneficial. To
counteract this, we propose setting up Whistleblower contracts, which encourage colluders to
betray their collusion, thereby eliminating the lazy equilibrium.

5.1 Lazy Collusion

One possible strategy that watchtowers might employ to solidify the collusion is to require
all colluders to deposit a certain amount of stakes into the collusion. If a colluder posts a
proof computed from different execution roots, they will lose the collusion deposit.

We assume any party is capable of initiating such collusion, and we refer to that party as
the leader. A leader will specify the amount of stake t that each newly joined colluder needs
to contribute. Since the collusion is motivated by the benefit of being lazy, we term this
strategy “lazy collusion.” We observe that watchtowers choosing not to join the collusion
perceive the same game as PoD-Game, and therefore, they are likely to adopt a diligent
strategy. If such independent watchtowers exist, lazy collusion will not gain the expected
advantage by not computing the results. Consequently, collusion will only be effective when
all watchtowers participate in it. Specifically, the process of forming lazy collusion unfolds as
follows:
1. A watchtower initiates collusion by placing a deposit of t. The watchtower also releases a

randomly chosen r′
E .

2. Other watchtowers may join the collusion by placing a deposit of t. If n watchtowers join
the collusion before tlc, the collusion is formed. Otherwise, watchtowers get back their
deposits.

3. During the watching phase, all colluders are required to calculate the proof of diligence
using VRFsk(rS , r′

E), where rS is the state root posted by the asserter.
4. If a colluder becomes a winner, the collusion protocol will check whether the winner’s

proof is calculated from r′
E , if not, the winner is considered a traitor and will lose t.

5. At the end of the collusion, colluders who do not betray the collusion receive t+ntt/(nc−
nt), where nc is the size of colluding group, nt is the number of traitors. If all colluders
betray, everyone gets back their deposit t.



P. Sheng, R. Rana, S. Bala, H. Tyagi, and P. Viswanath 5:13

We are considering two possible actions that all colluders (including the leader) can take,
given the collusion strategy selected by the leader: obey and betray. Colluders who choose
to obey the strategy follow the leader’s instructions to submit a response calculated from the
specified rE , while those who choose to betray may submit something different, driven by
personal interest. The game induced by lazy collusion is denoted as LC-Game. Let ua

li
(no) be

the expected payoff function of the i-th colluder Wli(i ∈ [1, nc]). a ∈ {o, b} represents for the
action chosen by Wli

, with o as obey and b as betray. There are no colluders who choose to
obey the collusion strategy. According to the protocol, nc = n, so we let li = i for simplicity,
and the payoff functions can be written as follows:

uo
i (no) =

{
−αiSϕ(αi) + (n−no)t

no
no < n

ϕ(αi)RB no = n
(6)

ub
i (no) =

{
ϕ(αi)RB − cT no = 0
ϕ(αi)RB + RC − cT − t no > 0

(7)

Now when there exists such lazy collusion, we compare the payoff of colluders with
different actions and observe that obeying the group strategy dominates the betrayal for all
colluders when the deposit t is high enough, formally, we have the following theorem.

▶ Theorem 3. The “obey” strategy in the LC-Game is a dominate strategy for colluder Wi if
the following conditions hold:

t > RC − cT (8)

t >
n− 1

n
(αiSϕ(αi) + ϕ(αi)RB + RC − cT ) (9)

Proof. For every colluder Wi, given an arbitrary strategy vector s−i containing all others’
actions. Let no denote the number of colluders that obey the collusion in s−i, we compare
the payoff of two strategies for Wi below.

Case 1: If no = n− 1, due to Eq. 8, uo
i (n) = ϕ(αi)RB > ϕ(αi)RB + RC − cT − t = ub

i (1).
Case 2: If 0 < no < n − 1, due to Eq. 9 , uo

i (no + 1) = −αiSϕ(αi) + (n−no−1)t
no+1 >

ϕ(αi)RB + RC − cT − t = ub
i (no).

Case 3: If no = 0, due to Eq. 9, uo
i (1) = −αiSϕ(αi)+(n−1)t > ϕ(αi)RB−cT = ub

i (n). ◀

Then we consider the game combining PoD-Game and LC-Game. It starts with an initiation
phase where watchtowers may choose to initiate a contract to become the collusion leader.
If all watchtowers join the same collusion contract, which is the only case where collusion
will be formed successfully, and the conditions specified in Eq.8 and 9 are satisfied, this
sub-game LC-Game can be eliminated according to Theorem 3, with the payoff induced by
the dominant strategy. Otherwise, independent watchtowers will follow the PoD-Game and
iterative elimination can be applied with Theorem 1. Observing that the payoff derived from
LC-Game is higher than PoD-Game, we find the game has two Nash equilibria but only the
lazy collusion strategy is Pareto efficient.

▶ Corollary 4. In PoD-Game that allows lazy collusion, there are two Nash equilibria: (1) all
watchtowers are independently diligent (2) all watchtowers are collusively lazy. The second
equilibrium is Pareto efficient.

AFT 2024



5:14 Proof of Diligence: Cryptoeconomic Security for Rollups

Table 2 DC-Game: The game induced by diligent collusion.

Payoff
(

ud1

udi

)
follower

All join Not all join

leader
Obey

(
ϕ(αd1 )RB − cT + (nC − 1)h

ϕ(αdi )RB − h

)
Betray

(
ϕ(αd1 )RB − cT + RC − cV

n−nC +1 − t

−αdi Sϕ(αdi ) + t
nC −1

)
Cheat

(
ϕ(αd1 )RB + (n − 1)h

ϕ(αdi )RB − h

) (
ϕ(αd1 )RB + (n − 1)h

ϕ(αdi )RB − h

)

5.2 Diligent Collusion
Moreover, watchtowers might choose to remain diligent while seeking to form a collusion to
share the execution costs. In this scenario, the leader initiating the collusion carries out the
computations and commits its solution to the group. Anyone wishing to join the collusion is
required to contribute a fee of h < cT to access the results. Subsequently, all colluders utilize
the execution root, as calculated by the collusion leader, to generate proof of diligence and
claim bounties. We refer to this strategy as “diligent collusion”. The process for forming
such a diligent collusion unfolds as follows:
1. A watchtower initiates collusion by placing a deposit of t. The watchtower also commits

a computed r′
E and specifies a rent h < cT .

2. Other watchtowers may join the collusion by paying the rent of h. Then the committed
rE is revealed.

3. During the watching phase, all colluders are required to calculate the proof of diligence
using VRFsk(rS , r′

E).
4. If the proof a non-leader colluder submits is recognized as a faulty proof, the leader will

lose t, and others will get back t/(nc − 1), where nc is the size of the colluding group.
5. If the proof provided by leader gets accepted, the leader gets t + (nc − 1)h.

In the game of diligent collusion, we observe that the leader has three possible actions:
obey, betray, and cheat. “Obey” implies that the leader will diligently compute the transaction
execution root and share it with others. “Betray” suggests that the leader might commit a
random output to the colluding group while submitting a correct proof for its own benefit.
And “cheat” represents the scenario in which the leader lazily commits and submits the same
random output. The other colluders may only choose to follow what the leader commits,
since they pay the rent; in other words, there is no benefit to join the collusion if they
plan to choose another action. Table 2 lists the payoff functions of DC-Game, the game
induced by the diligent collusion strategy. ud1 and udi

(i ∈ [2, nc]) represent for the payoff
function for the leader and other colluders. Note that if the leader chooses to cheat, its
payoff is highly influenced by whether all watchtowers join the collusion. If there exist
independent watchtowers, they must choose the diligent strategy as the PoD-Game implies,
then all colluders will be punished by the proof of diligence protocol. Therefore, it is evident
that the following theorem holds:

▶ Theorem 5. DC-Game has no pure strategy Nash equilibrium when t > RC−cV /(n−1)−h.

Proof. We denote the strategy profile in DC-Game as {a, nc}, where a ∈ {o, b, c} is the
action chosen by leader, representing obey, betray and cheat, nc is the number of other
watchtowers who choose to join the collusion. Firstly, the condition t > RC − cV /(n− 1)− h
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implies that ∀nc ∈ [2, n], ud1({o, nc}) > ud1({b, nc}), hence betray is strictly dominated by
obey. We then observe that ud1({o, n}) < ud1({c, n}), indicating that {o, n} is not a Nash
equilibrium, as in this case the leader can achieve a higher payoff by switching to cheat.
Additionally, independent watchtowers receive a higher payoff if they join the collusion when
the leader chooses to obey, as this spreads the execution cost across the entire colluding group.
Conversely, when the leader opts to cheat, if all watchtowers join the collusion, switching to
be independently diligent achieves a better payoff. However, if not all watchtowers join, obey
becomes the more beneficial strategy for the leader. Consequently, there doesn’t exist any
pure strategy that is a Nash equilibrium. ◀

Theorem 5 indicates that even if we take DC-Game into consideration, the pure strategy
Nash equilibria of the full game remain the same. Hence we have the following property.

▶ Corollary 6. In PoD-Game that allows lazy and diligent collusion, there are two Nash
equilibria: (1) all watchtowers are independently diligent (2) all watchtowers are collusively
lazy. The second equilibrium is Pareto efficient.

5.3 Enhanced Protocol with Whistleblower
The incentive for colluders to establish collusion lies in the potential to mine bounties with less
effort. However, less effort always correlates with the likelihood of faulty proofs. As analyzed
in Section 5.1, watchtowers are incentiviced to join the lazy collusion. In lazy collusion, the
benefits derived from betraying the collusion (by being diligent in computations) do not suffice
to offset the loss of the collusion deposit. Thus, the principles for eliminating the collusion
are to: (1) offer rewards for identifying and reporting collusion, and (2) provide compensation
for the losses incurred from betraying the collusion. We refer to such colluders, who disclose
information about collusion to the rollup system, as “whistleblowers”. In response, we have
specifically designed the whistleblower protocol as follows:
1. The rollup operator establishes a whistleblower bounty Rw and declares that the first

whistleblower will be eligible for the reward.
2. Any individual can place a deposit of d and submit the correct rE to assume the role of a

whistleblower.
3. The protocol invokes the validate interface to resolve the dispute. If the whistleblower

succeeds, they receive Rw + d in return. Otherwise, a loss results in the forfeiture of their
deposit.

To ensure the payoff of whistleblower is better in all above collusion games, we derive the
following condition to determine rewards.

▶ Lemma 7. With the additional action “report” that each watchtower can choose, the
strategy that all watchtowers obey the lazy collusion is no longer a Nash equilibrium for
watchtower i if

Rw > ϕ(αi)RB + cV + αiSϕ(αi) + cT (10)

Proof. We first consider the impact that the additional action report brings to LC-Game.
First, the whistleblower, by adhering to the collusion agreement to submit proof, will not be
subject to punishment by the slashing rule of the collusion. However, the payoffs of other
colluders will be reduced due to the exposure of the collusion, hence the changes in outcomes
are detectable and might be used to augment the collusion deposit. Even though, the act
of reporting cannot be traced back to an individual colluder. Therefore, any colluder may
switch to report to gain higher payoff from the whistleblower protocol, since
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ur
i (n) = −αiSϕ(αi)− cV + RC − cT + Rw (11)

> ϕ(αi)RB + RC > ϕ(αi)RB = uo
i (n) (12)

This further discourages other colluders from participating in the collusion, because the
payoff ûo

i (n) they get in the existence of whistleblower becomes

ûo
i (n) = −αiSϕ(αi) < ϕ(αi)RB − cT − cV /2 + RC = ud

i (n) (13)

As a result, joining and obeying the lazy collusion is not a Nash equilibrium.
Then we discuss the impact of the whistleblower scheme and the elimination of the lazy

equilibrium on DC-Game. We denote the strategy profile in DC-Game as {a, nc, w}, where
a ∈ {o, b, c} is the action chosen by the leader, nc is the number of watchtowers in the
collusion, and w ∈ {true, false} represents whether there exists a whistleblower. First, all
strategies with w = false are not Nash equilibria by the same analysis in Theorem 5. Next,
since the existence of a whistleblower will not lower the payoff of a leader who chooses to
obey, betrayal is still strictly dominated by obedience. Then we consider the strategy where a
whistleblower exists in the collusion group. In this case, if the leader opts to cheat, it’s always
better to switch to obedience. However, if the leader chooses to obey, the whistleblower is
better off choosing not to report. Consequently, there doesn’t exist any pure strategy in the
subgame DC-Game that is a Nash equilibrium. ◀

The introduction of a whistleblower protocol changes the payoff dynamics of lazy collusion,
as any colluder can expose the collusion for a higher payoff. Knowing this, the leader may
not choose to initiate lazy collusion in the first place and the full game reach back the state
where diligent strategy is the only Nash equilibrium.

▶ Corollary 8. In PoD-Game that allows lazy and diligent collusion, if whistleblower contract
exists, there is a unique equilibrium that all watchtowers are independently diligent.

Cryptoeconomic security and parameter selection

To provide a clear benchmark for evaluation and decision-making for different security
needs, we discuss how to choose parameters that ensure both cryptoeconomic security and
compatible incentives.

First, we normalize the execution transaction costs to cT = 1. As an example, assume
there are n = 10 watchtowers with equal stakes; then ϕ(αi) = ϕ(α0) ≃ 0.2 (Eq. 1) when
θ = 0.9. Eq. 2 then gives the bound on rewards: RB > 5 and RC > 1, which are affordable
as the normal-path incentives the rollup operator needs to provide. Eq. 3 calculates the
minimum stake α0S > 100009, assuming that cV = 100000≫ cT .

To induce lazy collusion, a leader in LC-Game will set the stake t > 18514 according to
Eq. 9. In LC-Game, for any t ≥ 0, the condition in Theorem 5 always holds. To eliminate all
collusion strategies, according to Eq. 10, the reward for the whistleblower should be set to
Rw > 120572.

If we increase the number of watchtowers to n = 100, we see that the bounty RB increases
accordingly to at least 44, which is still low. The minimum stake required for each watchtower
does not change significantly, and Rw decreases to 102281.

Under the rational adversary assumption, our protocol guarantees a unique pure strategy
Nash equilibrium where all watchtowers are diligent. Beyond this, cryptoeconomic security
requires that when an attack occurs, the cost of launching the attack exceeds the maximum
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profit. Therefore, when designing the actual parameters (e.g. n, S) for a practical system, we
can utilize signals on the inherent value of transactions [12] to adapt the security requirements
of watchtowers. For example, considering the current average transaction fee on Ethereum is
approximately $3 and the average L2 batch size is around 200, we simplify the model by
assuming all transactions are executed on L1 to resolve disputes, which incurs the cV ≈ $600
and cT ≈ $0.006. (Using other more complex dispute resolution methods can reduce this
cost.) Then the normal path reward for watchtowers can be estimated as:

RB > 5× $0.006 = $0.03 per batch.

Next, we calculate the number of batches produced by some L2 chains per year. For example,
Optimism processes approximately 400,000 transactions per day, translating to about 2,000
batches per day or 700,000 batches per year. Given the probability that a watchtower wins
the bounty is 0.2 and the annual percentage yield (APY) from external investment vehicles
is around 6%, the condition to incentivize stakers with the estimated return rate is:

(5− 1)× 0.006× 0.2× 700,000
600 + tx value > 6%.

In other words, a watchtower would be willing to secure approximately $56,000 worth of
transactions. And if the application aims to incentivize watchtowers to secure higher value
transactions, the rewards should be increased accordingly.

Additionally, the minimum stake that each watchtower needs to post should include the
transaction value. Notably, n determines the normal operational overhead of our protocol,
which does not directly determine the security. It can be chosen with a trade-off between
stake decentralization and operational cost.

6 Implementation and Evaluation

6.1 System design
The protocol described so far is a general framework for proving diligence in a computing plat-
form with anytrust guarantees. We describe an implementation of these proofs subsequently
in the context of optimistic rollups (ORs) as the compute platform and Eigenlayer [14] as the
underlying staking platform under a non-collusion setting. The complete system is termed a
watchtower network and serves the following implementation goals:
1. Low compute overhead: Watching an OR state involves executing all transactions of the

rollup. Overhead is termed as any resource cost on top of the bare minimum rollup state
execution. Our implementation minimizes this overhead to lower a watchtower’s resource
costs.

2. Modular implementation: The rollup ecosystem has a lot of tech stacks for full nodes
ranging from general OP-stack to specialized implementations for DeFi, such as LayerN.
Our modular implementation can be used on any rollup stack with minimal modifications.

3. Low gas fees: Large gas fees on settlement layers such as Ethereum can make watching
prohibitively expensive. Our implementation scales down L1 gas costs and makes it an
adjustable feature for the rollup.

The implementation is split across the functional domains of the rollup, settlement,
payment, and staking layers. For simplicity, we assume the settlement, payment, and
staking layers sit on the same ledger. However, it can be easily expanded to independent
networks if desired. Figure 3 shows the binding of the functional components with the two
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Figure 3 Watchtower client executes the rollup and observes the commitments on settlement
layer, it posts bounty and flags on the payment/stake layer.

architectural components: the Watchtower client running on a server and smart contracts
running on Ethereum. We outline the details of the two architectural components below. Our
implementation draws from the modules in section 6.1 to build a watchtower on the Optimism
Bedrock stack [50]. We test the implementation on the Ethereum Goerli testnet to watch
OP-goerli and Base-goerli. We evaluate the system as per our quantitative implementation
goals as described in section 6.1: Compute overhead, and gas costs. We adapt the modules
to fit the existing rollup stacks and deploy them using an update-optimized architecture to
make them evolve with the rollup ecosystem. We go over these details in Appendix A1.

6.2 On-chain Contracts
The contracts are written in Solidity and deployed on Ethereum Goerli via a UUPS proxy
architecture [37] to enable future updates. We deploy three contracts derived from section 6.1:
OperatorRegistry, BountyManager, and AlertManager. The deployed contracts can be found
at [4].

BountyManager contract implements a hash minimum across watchtowers to ensure a
single bounty winner within an epoch. The payment pool and Rollup registry contract are
replaced with a simple bounty count to measure contribution and a chain-id to point to a
rollup. Dispute resolution contracts will utilize L2 fraud proofs once they evolve.

Optimizations. Immutable data like diligenceProof are stored as calldata variables to avoid
storage costs. Proof outputs as set to a fixed size using keccak256 to ensure consistency in
storage requirements. Hash minima is calculated by the winning party to balance gas costs.
We use Mappings instead of arrays to store hash data to reduce gas costs. We utilize audited

1 Appendix is in the full version of the paper: https://arxiv.org/abs/2402.07241.

https://arxiv.org/abs/2402.07241
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Figure 4 Gas usage of MineBounty operation over 4 weeks of deployment.

and optimized ECDSA OpenZeppelin libraries [36] to verify the authenticity of signed proofs
to reduce contract risk. The contracts emit NewBountyClaimed and NewBountyRewarded for
efficient notifications to off-chain clients.

Gas usage. A bounty mining transaction consumes 380K gas on average as shown in
figure 4. As a reference, this is of the same order as a token swap operation on Uniswap.
Two significant contributors to gas usage are (a) Proof storage for reward reimbursement
and (b) Verifying the authenticity of proofs. This gas fees can be reduced in the future by
introducing an appropriate aggregation layer for submitting bounty mining transactions.

6.3 Off-chain Client

The off-chain clients are implemented to support OP-Bedrock as a rollup execution engine.
Two clients implemented in Golang enable the Watchtower client. A bounty mining client
contains the bounty mining and transaction generator modules. This client is supported by a
State extraction client that contains the settlement layer module with an RPC connection to
a full node. Alert management and reconfiguration manager modules are left as future work
to be implemented once the rollup stack evolves. We describe the implementation details of
the Go clients below:

Optimizations. We employ an event-based trigger to the PoD generation. The watchtower
client listens to emitted events on the L2OutputOracle Contract to receive real-time data
updates from the contract; this is much more efficient than polling mechanisms. Generating
execution trace requires storing the state roots after each transaction; this operation involves
re-execution and hence is limited to just the penultimate block in an L2 epoch to avoid
re-executing the whole epoch.

Resource utilization. The L2 full node and watchtower client are implemented on different
machines. We run the L2 full node on a machine with 4 cores and 16GB of RAM and the
watchtower client on a machine with 2 cores and 4GB RAM. Table 3 lists the resource costs
in running the watchtower client. We observe that the client consumes minimal resources
natively and has a minimal resource usage overhead on the L2 node. The client has no I/O
since its context is stored in memory.
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Table 3 Watchtower client usage stats.

L2 node CPU(%) Mem(MB) I/0(KB/s) NW(KB/s)
Before mining 0.7-25 5306 700 10-150
During mining 0.7-25 5307 700 10-150

Watchtower client CPU(%) Mem(MB) I/0(KB/s) NW(KB/s)
Before mining 0.1 15 0 1
During mining 0.1 - 10 15 0 1

We observe CPU usage burst to 10% on the watchtower client when the rollup proposer
on L1 output Oracle proposes a new block. We observe a similar burst of 25% on the L2
goerli node when op-node sends a block to op-geth to execute the transactions and update
the state.

We can utilize this capacity for additional off-chain computing to redistribute some
on-chain contract operations to an off-chain module. A proposed approach is to perform
proof aggregation on-chain; this implementation is left for future work.

7 Discussion

Proof of Diligence ensures that watchtower network executes all transactions on the rollup
diligently. Further improvements down the line will enhance security, enable generalized
applications, and allow for efficient trade-offs between delay and stake. We describe such
improvements below:

7.1 Enabling Cryptoeceonomically Secure Watchtower Applications
The design described so far ensures that watchtowers are independently verifying transactions
on rollups. The verification results can be utilized for attesting to any event on the rollup.
These attestations are cryptoeconomically secured by the watchtower’s stake locked with
EigenLayer. We summarize the design here:

Configurable execution event trace: Applications can subscribe to the Watchtower
network to get verifiable updates on their transactions’ life cycle. The events emitted
from these transactions will be added to the bounty to ensure the execution and can be
challenged for cryptoeconomic security.
Application event tracing: Watchtowers can trace the whole life cycle of transactions
pertaining to an application, starting from being sequenced by the sequencer to being
ordered on L1 to being asserted into the state. A different level of cryptoeconomic security
will accompany each of these stages.
Dispute resolution and cryptoeconomic security: Events pertaining to the sub-
scribed application are attested by the watchtower and are bound to be included in
the next bounty. As enforced by the proof of diligence, other watchtowers will ensure
that these attestations are correct. If these attestations are exchanged in private, An
application/agent consuming this attestation can contest its correctness in the future by
showing a mismatch between the watchtower’s attestation and the mined bounty.

Besides applications on the rollup, the incentivized watchtower network holds significant
potential for broader applications in general verifiable computing. Our future work will
explore how the Proof of Diligence protocol can be extended to various domains such as AI
inference [6], cloud computing [13], and blockchain light client protocols [31]. For example,
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to monitor and verify AI inference tasks, each watchtower can independently re-compute
the inference results from the provided input data and model parameters, raising an alert
if discrepancies are found. A recent work [31] demonstrates the use of watchtowers as a
monitoring service to secure proof of stake blockchain states for resource-limited light clients,
ensuring any invalid states are detected. This approach can be extended to a wider range of
blockchain applications where light clients are prevalent. Watchtowers provide a robust layer
of security and accountability.

7.2 Enhancing Security

The current system design ensures that Proof of Diligence works under a static adversary
that can form static collusion. Resistance against a stronger dynamic adversary requires
assumptions on rational independence of watchtowers and the privacy of whistleblower
contracts. These assumptions can be enforced through system design by enabling random
rotation of watchtowers in the pool and ensuring the privacy of the whistleblower.

Watchtower rotation. The rotation of watchtowers across different rollups in the pool is
essential for security against an adaptive adversary. Watchtowers can be periodically rotated
in small batches across rollups in a random and staggered manner reminiscent of the cuckoo
rule [5]. The rotation can be made more efficient by utilizing two techniques: (a) utilizing
modularity: we are designing an efficient reconfiguration protocol for watchtowers rotating
between rollup two rollups sharing similar modules - such as two rollups running the OP
stack; (b) stateless clients: watchtower rotation through the reconfiguration manager can
be made very efficient by removing the need to transfer state. The witness chain team is
developing a stateless client architecture that removes the need to download state when
reconfiguring to a new rollup.

Private Whistleblower contracts. The interactions of the whistleblower with the whistle-
blower contract are private to ensure that they can’t be used within the collusion contract.
We are designing a system to ensure these inputs stay private to the collusion contract by
deploying a whistleblower contract upon request post the bounty mining period. This ensures
that the address of the whistleblower contract is not static and cannot be referenced in the
collusion contract. Alternate design solutions include privacy-enhancing contract structures
such as Aleo.

References

1 The merge. https://ethereum.org/en/roadmap/merge, 2023. Accessed: 2023-02-04.
2 John Adler. Minimal viable merged consensus. https://ethresear.ch/t/minimal-viable-

merged-consensus/5617, 2019. Accessed on Oct 17, 2023.
3 Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud and data availability proofs:

Maximising light client security and scaling blockchains with dishonest majorities. arXiv
preprint, 2018. arXiv:1809.09044.

4 Anonymous. Proof of diligence contracts. https://goerli.etherscan.io/address/
0x1BF313AADe1e1f76295943f40B558Eb13Db7aA99.

5 Baruch Awerbuch and Christian Scheideler. Towards a scalable and robust dht. In Proceedings
of the eighteenth annual ACM symposium on Parallelism in algorithms and architectures, pages
318–327, 2006.

AFT 2024

https://ethereum.org/en/roadmap/merge
https://ethresear.ch/t/minimal-viable-merged-consensus/5617
https://ethresear.ch/t/minimal-viable-merged-consensus/5617
https://arxiv.org/abs/1809.09044
https://goerli.etherscan.io/address/0x1BF313AADe1e1f76295943f40B558Eb13Db7aA99
https://goerli.etherscan.io/address/0x1BF313AADe1e1f76295943f40B558Eb13Db7aA99


5:22 Proof of Diligence: Cryptoeconomic Security for Rollups

6 Suma Bhat, Canhui Chen, Zerui Cheng, Zhixuan Fang, Ashwin Hebbar, Sreeram Kannan,
Ranvir Rana, Peiyao Sheng, Himanshu Tyagi, Pramod Viswanath, et al. Sakshi: Decentralized
ai platforms. arXiv preprint, 2023. arXiv:2307.16562.

7 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint, 2017.
arXiv:1710.09437.

8 Jing Chen and Silvio Micali. Algorand. arXiv preprint, 2016. arXiv:1607.01341.
9 CoinTelegraph. Ethereum upgrades: A beginner’s guide to eth 2.0. https://cointelegraph.

com/learn/ethereum-upgrades-a-beginners-guide-to-eth-2-0, 2020. Accessed: 2023-02-
04.

10 George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and tusk: a dag-based mempool and efficient bft consensus. In Proceedings of the Seventeenth
European Conference on Computer Systems, pages 34–50, 2022.

11 Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Advances in Cryptology–
EUROCRYPT 2018: 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part II 37,
pages 66–98. Springer, 2018.

12 Soubhik Deb, Robert Raynor, and Sreeram Kannan. Stakesure: Proof of stake mechanisms
with strong cryptoeconomic safety. arXiv preprint, 2024. arXiv:2401.05797.

13 Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and Aad Van Moorsel.
Betrayal, distrust, and rationality: Smart counter-collusion contracts for verifiable cloud
computing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 211–227, 2017.

14 EigenLabs. Eigenlayer, 2023. Accessed: 2024-01-27. URL: https://www.eigenlayer.xyz/.
15 Dankrad Feist. Proofs of custody. https://dankradfeist.de/ethereum/2021/09/30/

proofs-of-custody.html, 2021. Accessed on Oct 17, 2023.
16 Ed Felten. Cheater checking: How attention challenges solve the verifier’s dilemma.

https://medium.com/offchainlabs/cheater-checking-how-attention-challenges-solve
-the-verifiers-dilemma-681a92d9948e, 2019. Accessed on Oct 17, 2023.

17 Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Dumbo: Faster
asynchronous bft protocols. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 803–818, 2020.

18 Abdelatif Hafid, Abdelhakim Senhaji Hafid, and Mustapha Samih. Scaling blockchains: A
comprehensive survey. IEEE access, 8:125244–125262, 2020.

19 Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Edward W Felten.
Arbitrum: Scalable, private smart contracts. In 27th USENIX Security Symposium (USENIX
Security 18), pages 1353–1370, 2018.

20 Julia Koch and Christian Reitwiessner. A predictable incentive mechanism for truebit. arXiv
preprint, 2018. arXiv:1806.11476.

21 Georgios Konstantopoulos. How does optimism’s rollup really work? https://research.
paradigm.xyz/optimism, 2021. Accessed on Oct 17, 2023.

22 Caldera Lab. Caldera: The rollup platform. https://caldera.xyz/, 2023. Accessed on Oct
17, 2023.

23 Offchain Labs. Arbitrum rollup. https://arbitrum.io/rollup, 2018. Accessed on Oct 17,
2023.

24 Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying incentives in
the consensus computer. In Proceedings of the 22Nd acm sigsac conference on computer and
communications security, pages 706–719, 2015.

25 Akaki Mamageishvili and Edward W Felten. Incentive schemes for rollup validators. In The
International Conference on Mathematical Research for Blockchain Economy, pages 48–61.
Springer, 2023.

https://arxiv.org/abs/2307.16562
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1607.01341
https://cointelegraph.com/learn/ethereum-upgrades-a-beginners-guide-to-eth-2-0
https://cointelegraph.com/learn/ethereum-upgrades-a-beginners-guide-to-eth-2-0
https://arxiv.org/abs/2401.05797
https://www.eigenlayer.xyz/
https://dankradfeist.de/ethereum/2021/09/30/proofs-of-custody.html
https://dankradfeist.de/ethereum/2021/09/30/proofs-of-custody.html
https://medium.com/offchainlabs/cheater-checking-how-attention-challenges-solve-the-verifiers-dilemma-681a92d9948e
https://medium.com/offchainlabs/cheater-checking-how-attention-challenges-solve-the-verifiers-dilemma-681a92d9948e
https://arxiv.org/abs/1806.11476
https://research.paradigm.xyz/optimism
https://research.paradigm.xyz/optimism
https://caldera.xyz/
https://arbitrum.io/rollup


P. Sheng, R. Rana, S. Bala, H. Tyagi, and P. Viswanath 5:23

26 Michael Maschler, Shmuel Zamir, and Eilon Solan. Game theory. Cambridge University Press,
2013.

27 Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song. Sok: Validating bridges as a
scaling solution for blockchains. Cryptology ePrint Archive, 2021.

28 Ralph C Merkle. A digital signature based on a conventional encryption function. In Conference
on the theory and application of cryptographic techniques, pages 369–378. Springer, 1987.

29 Juhi Mirza. Ethereum 2.0 transactions per second: Ethereum will reach 100,000 tps after up-
grade, says vitalik buterin. Gfinity Esports, August 2022. URL: https://www.gfinityesports.
com/cryptocurrency/ethereum-2-transactions-per-second/.

30 Gianmaria Del Monte, Diego Pennino, and Maurizio Pizzonia. Scaling blockchains without
giving up decentralization and security: A solution to the blockchain scalability trilemma. In
Proceedings of the 3rd Workshop on Cryptocurrencies and Blockchains for Distributed Systems,
pages 71–76, 2020.

31 Niusha Moshrefi, Peiyao Sheng, Soubhik Deb, Sreeram Kannan, and Pramod Viswanath.
Unconditionally safe light client. arXiv preprint, 2024. arXiv:2405.01459.

32 Shashank Motepalli, Luciano Freitas, and Benjamin Livshits. Sok: Decentralized sequencers
for rollups. arXiv preprint, 2023. arXiv:2310.03616.

33 Mahmudun Nabi, Sepideh Avizheh, Muni Venkateswarlu Kumaramangalam, and Reihaneh
Safavi-Naini. Game-theoretic analysis of an incentivized verifiable computation system. In
Financial Cryptography and Data Security: FC 2019 International Workshops, VOTING and
WTSC, St. Kitts, St. Kitts and Nevis, February 18–22, 2019, Revised Selected Papers 23, pages
50–66. Springer, 2020.

34 Kamilla Nazirkhanova, Joachim Neu, and David Tse. Information dispersal with provable
retrievability for rollups. In Proceedings of the 4th ACM Conference on Advances in Financial
Technologies, pages 180–197, 2022.

35 Akira Okada. The possibility of cooperation in an n-person prisoners’ dilemma with institutional
arrangements. Public Choice, 77(3):629–656, 1993.

36 OpenZeppelin. OpenZeppelin-contracts. URL: https://github.com/OpenZeppelin/
openzeppelin-contracts.

37 Hadrien Croubois Santiago Palladino, Francisco Giordano. Erc-1967: Proxy storage slots.
https://eips.ethereum.org/EIPS/eip-1967, April 2019.

38 Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin.
In Financial Cryptography and Data Security: 19th International Conference, FC 2015, San
Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers 19, pages 507–527. Springer,
2015.

39 Altlayer Team. Altlayer: A decentralized interlayer for rollups. https://altlayer.io/, 2023.
Accessed on Oct 17, 2023.

40 Base Team. Base. https://base.org/, 2023. Accessed on Oct 17, 2023.
41 BNB Chain Team. opbnb: High-performance optimistic layer 2 solution for bnb smart chain.

https://opbnb.bnbchain.org/en, 2023. Accessed on Oct 17, 2023.
42 Conduit Team. Conduit. https://conduit.xyz/, 2023. Accessed on Oct 17, 2023.
43 Eclipse Team. Eclipse. https://www.eclipse.builders/, 2023. Accessed on Oct 17, 2023.
44 LayerN Team. Layer n: Ethereum’s financial superlayer. https://www.layern.com/, 2023.

Accessed on Oct 17, 2023.
45 Linea Team. Linea. https://linea.build/, 2023. Accessed on Oct 17, 2023.
46 Optimism Team. Optimism. https://www.optimism.io/, 2020. Accessed on Oct 17, 2023.
47 Optimism Team. Optimism bedrock stack, 2023. Accessed: 2024-01-27. URL: https:

//community.optimism.io/docs/developers/bedrock/.
48 The Diem Team. Diembft v4: State machine replication in the diem blockchain.

https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-
the-diem-blockchain/2021-08-17.pdf, 2021. Accessed on April 19, 2023.

AFT 2024

https://www.gfinityesports.com/cryptocurrency/ethereum-2-transactions-per-second/
https://www.gfinityesports.com/cryptocurrency/ethereum-2-transactions-per-second/
https://arxiv.org/abs/2405.01459
https://arxiv.org/abs/2310.03616
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://altlayer.io/
https://base.org/
https://opbnb.bnbchain.org/en
https://conduit.xyz/
https://www.eclipse.builders/
https://www.layern.com/
https://linea.build/
https://www.optimism.io/
https://community.optimism.io/docs/developers/bedrock/
https://community.optimism.io/docs/developers/bedrock/
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf


5:24 Proof of Diligence: Cryptoeconomic Security for Rollups

49 Jason Teutsch and Christian Reitwießner. A scalable verification solution for blockchains.
arXiv preprint arXiv:1908.04756, 2019.

50 The Optimism Collective. The Optimism Monorepo. URL: https://github.com/
ethereum-optimism/optimism.

51 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

52 Sage D. Young. Layer 2 network arbitrum surpasses ethereum in daily transac-
tions. CoinDesk, February 2023. URL: https://www.coindesk.com/tech/2023/02/22/
layer-2-network-arbitrum-surpasses-ethereum-in-daily-transactions/.

53 Mingchao Yu, Saeid Sahraei, Songze Li, Salman Avestimehr, Sreeram Kannan, and Pramod
Viswanath. Coded merkle tree: Solving data availability attacks in blockchains. In International
Conference on Financial Cryptography and Data Security, pages 114–134. Springer, 2020.

https://github.com/ethereum-optimism/optimism
https://github.com/ethereum-optimism/optimism
https://www.coindesk.com/tech/2023/02/22/layer-2-network-arbitrum-surpasses-ethereum-in-daily-transactions/
https://www.coindesk.com/tech/2023/02/22/layer-2-network-arbitrum-surpasses-ethereum-in-daily-transactions/


Analyzing and Benchmarking ZK-Rollups
Stefanos Chaliasos
Imperial College London, UK

Itamar Reif
Astria, New York, NY, USA

Adrià Torralba-Agell
Universitat Oberta de Catalunya, San Martí, Spain

Jens Ernstberger
Technische Universität München, Germany

Assimakis Kattis
Athens, Greece

Benjamin Livshits
Imperial College London, UK
Matter Labs, London, UK

Abstract
As blockchain technology continues to transform the realm of digital transactions, scalability has
emerged as a critical issue. This challenge has spurred the creation of innovative solutions, particularly
Layer 2 scalability techniques like rollups. Among these, ZK-Rollups are notable for employing Zero-
Knowledge Proofs to facilitate prompt on-chain transaction verification, thereby improving scalability
and efficiency without sacrificing security. Nevertheless, the intrinsic complexity of ZK-Rollups has
hindered an exhaustive evaluation of their efficiency, economic impact, and performance.

This paper offers a theoretical and empirical examination aimed at comprehending and evaluating
ZK-Rollups, with particular attention to ZK-EVMs. We conduct a qualitative analysis to break
down the costs linked to ZK-Rollups and scrutinize the design choices of well-known implementations.
Confronting the inherent difficulties in benchmarking such intricate systems, we introduce a systematic
methodology for their assessment, applying our method to two prominent ZK-Rollups: Polygon
zkEVM and zkSync Era. Our research provides initial findings that illuminate trade-offs and areas
for enhancement in ZK-Rollup implementations, delivering valuable insights for future research,
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1 Introduction

Blockchain technology, with leading chains such as Bitcoin [23] and Ethereum [38], has
introduced novel solutions for finance and various applications, reshaping the landscape of
digital transactions by removing the need for centralized entities. However, the surge in their
adoption has brought to light a critical challenge: scalability. The inherent limitation in the
number of transactions these networks can process per second has prompted an effort within
the blockchain community to seek and develop a plethora of innovative solutions [41].

Two dominant strategies have enjoyed practical adaptation in recent years to address
scalability. The first involves the creation of new, modern blockchains designed from the
ground up to process transactions more efficiently than their predecessors [39, 5], albeit at
the cost of missing the established security and network effects of blockchains like Ethereum.
The second strategy revolves around Layer 2 (L2) solutions, or off-chain scalability solutions,
with rollups being the most promising and widely adopted in practice [36]. Rollups work by
executing transactions on a faster, secondary blockchain (L2) and then posting the resulting
state root, along with transaction data, back to the main blockchain – Layer 1 (L1). This
ensures the integrity of the rollup’s state is verifiable and secure, leveraging the underlying
blockchain’s security.

Among the various rollup approaches, two stand out: optimistic [17] and ZK-Rollups [3].
Optimistic rollups rely on a system of trust and fraud proofs to validate state transitions,
which introduces a delay in withdrawals due to the required challenge period. In contrast,
ZK-Rollups utilize Zero-Knowledge Proofs (ZKPs) for immediate on-chain verification of
state transitions, enhancing both scalability and efficiency without compromising the security
of the L1 chain. Despite their advantages, ZK-Rollups introduce additional complexity and,
to date, there has been limited research focused on a thorough evaluation of their overall
efficiency, limitations, and economics.

Benchmarking ZK-Rollups presents a multifaceted challenge. The deployment of these
systems is inherently complex, and their diverse design choices complicate direct comparisons.
Further, identifying common payloads for benchmarking and establishing appropriate metrics
are non-trivial tasks. In response to these challenges, this work embarks on a comprehensive
theoretical and empirical analysis of ZK-Rollups. We dissect the operational and per-
transaction costs of ZK-Rollups, examine the design decisions of prominent implementations,
and propose a methodology for their benchmarking. This includes addressing the challenges
inherent in benchmarking these systems, defining key research questions, and developing a
reproducible methodology to ensure that our findings are publicly accessible and verifiable.

The results of this study aim to illuminate the trade-offs inherent to different ZK-Rollup
implementations, offering insight into their advantages and areas in need of improvement.
By providing a deeper understanding of the economics underpinning these systems, we hope
to inform efforts to decentralize currently centralized systems. Furthermore, as Rollups as a
Service continues to grow, our analysis seeks to arm users and buyers with the knowledge
necessary to make their decisions, enabling them to compare different rollups using our
benchmarking infrastructure tailored to their specific needs.

Research Questions. Next, we outline a series of research questions that will shape our
analysis of ZK-Rollups. These questions are designed to uncover critical insights into the
performance, cost structure, and overall efficiency and profitability margins of ZK-Rollups.
Our investigation aims to provide a comprehensive understanding of these systems.
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RQ1 Fixed Costs: What are the fixed costs associated with ZK-Rollups? Specifically,
what are the expenses related to settling on L1, such as committing batches and
verifying proofs? Additionally, what is (if any) the constant proving cost per batch (e.g.,
aggregation or compressing a Scalable Transparent Argument of Knowledge (STARK)
into a Succinct Non-interactive Argument of Knowledge (SNARK))?

RQ2 Marginal Costs: How long does it take to prove a batch, and what is the cost
associated with proving a batch? What are the data availability (DA) costs in terms of
bytes posted? How do state diffs compare to posting transaction data?

RQ3 Trade-off Between Fast Finality and Cost Minimization: In ZK-Rollups, achiev-
ing transaction finality requires verifying the proof of the batch that includes the
transaction on L1. This necessitates producing the proof first. There is a trade-off
between having large, compact batches that are slower to prove and smaller batches
that are faster to prove but potentially lead to less amortization of costs.

RQ4 Cost Breakdown: How are costs distributed across different components of a ZK-
Rollup transaction, including DA, proof generation, L1 posting, and verification?
Understanding this distribution is crucial for identifying areas for optimization.

RQ5 Impact of EIP-4844: How has the introduction of EIP-4844 influenced the cost
dynamics of ZK-Rollups? This question explores the effects of EIP-4844 on the cost
efficiency and practicality of ZK-Rollups.

1.1 Contributions
Qualitative Analysis of ZK-Rollups’ design choices: We conduct a comprehens-
ive theoretical analysis of ZK-Rollups, detailing the costs associated with processing
transactions and examining the diverse design choices across different implementations.
Towards Benchmarking ZK-Rollups: Addressing the significant challenges inherent
in benchmarking ZK-Rollups, we develop and present a structured methodology for their
evaluation. This includes the implementation of our benchmarking approach on prominent
implementations such as Polygon ZK-EVM and zkSync Era, providing a blueprint for
systematic assessment of ZK-Rollups’ efficiency and costs.
Results and Insights: Offering findings from our benchmarking efforts, we aim to
contribute to the ongoing discourse on ZK-Rollups by identifying key factors that influence
their development and pinpointing areas in need of improvement. These preliminary
results are intended to guide future research and development efforts in the field.

2 Background

2.1 Scaling Blockchain and Rollups
Blockchain scalability has been a persistent challenge, particularly for established networks
like Ethereum [38], which processes only tens of transactions per second.1 Efforts to enhance
scalability have focused on two primary strategies: base layer scaling and L2 scaling solutions.
Base layer scaling, which includes techniques such as sharding and novel consensus protocols,
involves either the modification of existing blockchains – a complex and daunting task – or
the development of new blockchain architectures. Although modern blockchains such as
Solana [39] and Sui [5] have shown success, they often lack the established security, liquidity,
and comprehensive ecosystem found in legacy blockchains like Ethereum.2

1 https://l2beat.com/scaling/activity
2 According to https://defillama.com/chains (accessed: 10/5/2024), Ethereum has 57.85% of the total

TVL for all chains, while Solana has only 4.46%.
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L2 scaling solutions, on the other hand, offer a promising avenue for scalability without
altering the base layer, i.e., L1. Among these solutions, payment channels [1, 2, 20, 35],
Plasma [30], and rollups [36] have been the most prevalent solutions. Payment channels
enable instant, bi-directional payments between two parties by establishing a network of
interconnected channels, exemplified by Bitcoin’s Lightning Network. However, they require
capital lockup and constant base layer monitoring, making them suitable for specific, long-
term use cases. Plasma attempted to solve various issues in different ways. Sguanci et al. [34]
provides an overview of the main types of Plasma constructions. However, every attempt at
Plasma had some trade-off that resulted in a poor user experience (e.g., long withdrawal
periods, mass-exit problems in case of operator misbehavior, and users having to monitor all
transactions on Plasma chains).

Rollups have emerged as hybrid L2 solutions, distinguishing themselves by offloading
computation off-chain while retaining data on-chain, thus addressing the data availability
issue while inheriting L1’s security. Rollups batch and execute transactions on an auxiliary
L2 blockchain that uses the same VM as L1 or a different one. This separation of transaction
execution from consensus allows rollups to process significantly more transactions per second
than their L1 counterparts. By submitting a summary of the rollup’s state – typically, the
root of a Merkle tree – to a smart contract in the underlying blockchain, rollups not only
ensure data availability, but also inherit the security properties of the L1 network when some
critical L2 mechanisms are implemented [10]. Altering the L2 state recorded on L1 would
require breaking the security of L1, making it both difficult and costly. This architecture
enables rollups to offer an efficient, secure scaling solution for legacy blockchains. Notably,
this model, i.e., rollup-centric scaling,3 has gained traction as the principal method for scaling
Ethereum, with two predominant variants: optimistic rollups [17] and ZK-Rollups [3].4

Optimistic rollups operate on a principle of trust, where state transitions are accepted
without immediate verification, relying instead on fraud proofs to challenge incorrect state
updates. This approach, while efficient, requires a challenge period, introducing a delay in
withdrawals. In contrast, ZK-Rollups leverage ZKPs to verify state transitions on-chain,
offering a more immediate and efficient validation process without the need for a challenge
period. This method not only improves the scalability and efficiency, but also maintains the
integrity and security of the L1 chain.

2.2 ZK-Rollup Components and Transaction Lifecycle
In this section, we outline the main components of a ZK-Rollup. For simplicity, we abstract
out certain details, including bridging and forced transactions [15]. In addition, we do not
discuss various sequencing methodologies, such as decentralized or shared sequencers [22].
Figure 1 illustrates the key components involved in processing transactions within a ZK-
Rollup. Users initiate the process by signing and submitting transactions to the L2 network.
A sequencer then undertakes the tasks of processing, ordering, executing, and batching
these transactions. In some architectures, these functions may be distributed across different
components. Subsequently, the sequencer forwards these batches to a relayer, which posts
their resultant state to the L1 rollup contract. Concurrently, the sequencer sends the batch
to a coordinator (or aggregator), which, in turn, sends the batch to the prover. In most
ZK-Rollups, the coordinator consolidates multiple proofs into a single aggregated proof (i.e.,
a proof of proofs) and submits this final proof to the rollup contract. The contract then
verifies the proof, finalizing the state of the L2 as immutable and verified in the L1.

3 https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
4 As of 18/3/2024, rollups have more than 34B USD TVL according to https://l2beat.com.
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Figure 1 High-level simplified overview of transaction processing in ZK-Rollups.

Components.
Sequencer. The sequencer provides users with the first confirmation of transaction
inclusion and ordering. It is the entity that aggregates user transactions into blocks and
batches, either by providing them with a transaction submission endpoint or by pulling
transactions from the mempool. It provides the canonical sequence of transactions that
will be fed into the state transition function. Currently, for the systems discussed in this
work, sequencer implementations rely on a trusted operator that provides this service
and to which users submit their transactions. Many of the projects discussed are working
on decentralizing their sequencer design, but the design space remains nascent.
Execution. For most existing rollups, execution is typically done by the same entity as
the sequencer. The transaction batch created by the sequencer is taken as input to the
rollup’s state transition function (STF), which is executed to create both the resulting
block(s) and related state root(s), as well as the transaction batches, and potentially the
intermediate state snapshots (state diffs) that are required for proof generation.
Data Availability. Data availability (DA) refers to the ability of clients of the blockchain
protocol to retrieve the data required to verify the validity of a given batch. Traditionally
provided as part of the consensus algorithm that underlies a blockchain system, the
modular architecture used by rollup-based blockchain systems separates the guarantees
provided by the L1 blockchain from those provided by the rollup operators. Relying on
L1 for the rollup’s liveness, the data required to assert safety must be posted on the L1.
DA data involve any execution artifacts required by the settlement logic for verifying the
validity proof, such as transaction data or the state diff of the transactions, as well as all
data required to reproduce the state of the L2.
Prover. The prover is responsible for generating validity proofs for the executed batches.
Given the execution artifacts, the prover creates the required witness data and executes
a SNARK or STARK proof to prove the validity of the execution. Note that when a
STARK is used, it is typically wrapped into a SNARK to enable efficient verification.
Settlement Logic. The generated proofs are then posted to the L1 smart contract
responsible for settling a given batch. An executed batch must be agreed upon as “valid”
in order to coordinate between decentralized actors (the blockchain’s users). This is
done by providing a block’s resulting state, proof of that state’s validity, and the inputs
required for verifying the proof.
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Transaction Lifecycle Status.
Pending: A user has signed and submitted the transaction to the L2 network.
Preconfirmed: The sequencer has processed the transaction and included it in a block.
If users trust the sequencer, they can regard the transaction as processed. Currently,
reliance on centralized sequencers enables near-instant preconfirmation, yet this raises
the challenge of maintaining such efficiency without centralization. Preconfirmation
significantly enhances user experience, allowing users to treat most transactions as
effectively complete. However, it is important to note that for withdrawals from L2, users
must await the finalization of transactions.
Committed: The transaction is part of a batch committed to the L1 contract, allowing
others to reconstruct the L2 state, including this transaction from the L1 data.
Verified/Finalized: The batch containing the transaction has been proven, and the
proof has been verified in the L1 contract, marking the transaction and its batch’s state
on L2 as immutable.

2.3 Costs of ZK-Rollups

Next, we analyze the costs associated with processing a transaction within a ZK-Rollup.
Specifically, we distinguish between costs that are transaction-specific and those that are
constant per batch, meaning they apply to each processed batch regardless of the number of
transactions that are included in it.

We also separate out all costs associated with the transaction’s fee mechanism, as these
can be temporal in nature, and add an orthogonal dimension to the physical costs that
are incurred per transaction (and which are a direct result of the system’s design choices).
To this end, we quantify costs in terms of the underlying empirical variable measured: for
example, data availability costs are presented in terms of bytes rather than their actual L1
gas cost.

Fixed Batch Costs. Each batch carries inherent fixed costs that must be paid regardless of
the number of transactions it includes.
1. Settlement: This involves (a) calling the Ethereum L1 contract to commit to a specific

batch, and (b) submitting proofs and executing the verifier logic (e.g., SNARK verifier)
for the committed batches.

2. Proof Compression: Some constructions involve compressing (or converting) the block’s
proof from one proof system to another. This typically involves proving the verification
of the aggregated proof in a cheaper (with regards to the verification cost) proof system
(e.g., Groth16) so that the cost of settlement is lower.

Marginal Transaction Costs. In addition to the batch-specific costs, each transaction
included in a rollup’s block incurs the following additional costs:
1. Data Availability: This is measured in bytes of the transaction’s calldata. The calldata

needs to be posted to the data availability provider, e.g., Ethereum L1, so that the rollup’s
state can be reconstructed.

2. Proving Costs: These are divided into the following: (a) Additional witness generation
work required. (b) Proof generation for the transaction’s execution. (c) Some constructions
incorporate a final step, aggregating batches of proofs into a single proof. Additional
transactions may require more aggregation work in this context.
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Table 1 High-level comparison of different ZK-Rollups. ∗: In those ZK-EVMs, the last step
moves from a STARK-based proof system to a SNARK proof. The hardware row represents the
specifications recommended by each team for production use in their official documentation pages.

ZK-Rollups

Polygon ZK-EVM Scroll zkSync Era Starknet RISC0 Zeth Aztec
VM zkEVM zkEVM zkEVM General Purpose

zkVM
General Purpose

zkVM
Privacy-Focused

zkVM
Proof System STARK +

FFLONK∗
Halo2-KZG Boojum +

PLONK-KZG∗
STARK + FRI STARK + FRI HONK +

Protogalaxy +
Goblin PLONK +

UltraPlonk

Published Data TX Data TX Data State Diffs State Diffs N/A N/A

Compatibility EVM-Compatible EVM-Compatible Solidity-Compatible N/A EVM-Compatible N/A

Hardware CPU-based /
>128-cores / >1TB

RAM

GPU-based / 4
GPUs / >48-cores /

>192GB RAM

Many GPU-based /
1 GPU / 16-cores /

64GB RAM

N/A N/A N/A

3. L2 Execution Costs: These include computing the state transition resulting from the
transaction along with any related costs due to associated long-term storage requirements.
Can be thought of as the costs of operating the rollup’s infrastructure: sequencing,
execution, and relaying.

3 Qualitative Analysis

In this section, we examine the fundamental components and design choices influencing
the performance, efficiency, and complexity of various ZK-Rollups. Table 1 summarizes a
qualitative overview of ZK-Rollups.

3.1 Proof System
Recent advancements in proof systems have led to a significant acceleration of ZK-VMs and
ZK-EVMs, with research focusing on developing proof systems to optimize for better per-
formance and efficiency of the proving algorithm. Notable developments include zkASM [29]
and PIL [28] ZK languages, developed by Polygon for their ZK-EVM; Boojum [21], developed
for zkSync Era; and the halo2 KZG fork [33] implemented by the Scroll team, among others.
A common strategy in ZK-VM design is to also apply recursion, a technique in which one
ZK proof is verified inside of another, allowing the usage of cheaper verification circuits at
the settlement phase while using more complex proof systems in the proving process. For
example, Polygon ZK-EVM leverages a STARK proof to initially prove batch correctness,
which is then compressed via recursion before being encapsulated in a SNARK proof for
submission to L1. This method benefits from SNARKs’ efficient verification and constant
proof size. Similar methodologies are used in various ZK-EVM platforms.

However, the choice of a proof system and its specific implementation can lead to
some important trade-offs, particularly between the speed of proof generation and the
computational resources required. This balance is crucial, as it can influence the overall
performance and user experience of ZK-Rollups.

3.2 Transaction Data vs. State Diffs
In L1 blockchains, all transactions in a block are stored along with the Merkle root of
the final state. This information is disseminated across the network through a “gossiping”
protocol [18], and the root of trust is established through re-execution and validation of the
state root by the participants. For example, in proof-of-stake networks, validators stake their
tokens and vote on the resulting state to ensure consensus [8].
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ZK-Rollups, in contrast, establish their root of trust through the verification of a ZKP [3].
The ZKP attests to the correctness of the final state, and its validation is sufficient for
participants to accept a batch of blocks as canonical. Verifying the final state requires
publicly available inputs, typically either the transaction data included in the batch or
intermediate state transition snapshots, known as “state diffs.” Each method has its trade-
offs. State diffs are more cost-effective because they omit signatures and publish only the
final state changes after multiple transactions, thus allowing for better cost amortization.
However, this approach does not preserve a complete transaction history and can complicate
the mechanisms of enforcing transactions and reproducing the state through data posted in
the L1. Currently, ZK-Rollups such as zkSync Era and Starknet utilize state diffs due to
their efficiency benefits, while solutions like Polygon ZK-EVM and Scroll opt for publishing
transaction data to maintain data completeness. Both approaches are exploring innovative
compression techniques to further optimize cost efficiency.

3.3 EVM Compatibility
Buterin identifies four main categories of ZK-EVMs [7], which are implementations of
ZKP circuits that validate the correctness of Ethereum Virtual Machine (EVM) execution,
ranging from fully Ethereum-equivalent to language-compatible. Fully Ethereum-equivalent
ZK-EVMs replicate the EVM’s behavior and data structures precisely, ensuring seamless
operation for existing Ethereum applications. EVM-equivalent ZK-EVMs maintain core
functionalities but introduce slight variations in data structures while ensuring identical
behavior when executing EVM-bytecode. EVM-compatible approaches might exclude certain
precompiles or slightly modify the gas metering mechanism, which could affect the execution
of specific transactions in edge cases.

The most flexible, language-compatible ZK-EVMs, utilize compilers to translate Solidity
into different targets, optimizing efficiency and potentially enhancing functionality beyond
strict EVM equivalence. This spectrum of compatibility reflects a trade-off between main-
taining strict adherence to the EVM and pursuing efficiency gains or advanced features
through innovation. For instance, the Polygon ZK-EVM aims for a close EVM equivalence to
balance compatibility with performance improvements, while zkSync Era opts for a language-
compatible approach with its zksolc compiler, prioritizing efficiency and adaptability.

Another approach, not described in Buterin’s classification, is employed by RISC0’s
Zeth [32]. Based on a prover for the RISC-V Instruction Set Architecture (ISA), Zeth
leverages Rust and its LLVM-based compiler toolchain to utilize a suite of robust crates, such
as revm5, ethers6, and alloy7, enabling the proof of execution for EVM-based transactions and
blocks without the need for additional domain-specific implementation circuits by leveraging
RISC0’s prover. This approach diverges from traditional ZK-EVM designs by proving the
correctness of computations at the ISA level rather than focusing exclusively on EVM
bytecode. The use of RISC-V as the underlying architecture allows for a high degree of
flexibility and the potential to leverage a broader range of programming languages supported
by the LLVM ecosystem. This approach results in a fully EVM-equivalent ZK-EVM.

The landscape of ZK-EVMs has seen a rapid evolution of innovative approaches in recent
years, though not all are “EVM compatible” to the same degree. Several implementations
discussed in this section were not included in our direct performance comparison due to
differing definitions of compatibility. We further discuss “EVM compatibility in Appendix A.

5 https://github.com/bluealloy/revm
6 https://github.com/gakonst/ethers-rs
7 https://github.com/alloy-rs/alloy

https://github.com/bluealloy/revm
https://github.com/gakonst/ethers-rs
https://github.com/alloy-rs/alloy
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Figure 2 High-level overview of ZK-Rollup compilation pipelines.

3.4 ZK-Rollups Prover Implementations

At a high level, there are two primary approaches for ZK-Rollup prover design: assembly-
based and EVM opcode-based implementations, each offering a distinct approach to handling
computations and proofs. Assembly-based VMs implement a specific Instruction Set Ar-
chitecture (ISA), focusing on proving the correctness of lower-level execution steps that
express abstractions around the underlying proof system. This method closely aligns with
traditional hardware architectures, where each instruction within the set is designed to
perform well-defined atomic operations [14, 32]. In contrast, opcode-based ZK-EVMs rely on
specific circuits that each prove the execution of an EVM opcode or an EVM state transition,
with the specific goal of proving the validity of the execution of an EVM transaction. Figure 2
provides an overview of the compilation and proving process followed by different ZK-Rollups.

One example of an assembly-based ZK-VM is Starkware’s Cairo. Built as an abstraction
on top of Algebraic Intermediate Representation (AIR), Cairo assembly generates polynomial
constraints over a table of field elements that represent the state throughout the program’s
execution. This table serves as the trace (or witness) for the STARK-based prover, which
then proves whether the trace satisfies Cairo’s semantics [14]. While the Cairo framework
allows one to generate application-specific circuits, in practice, it is used in Starknet to
generate circuits for a single set of constraints for the von Neumann architecture-based Cairo
CPU. The Cairo CPU is an AIR-generated STARK for a Cairo program that implements a
register-based general-purpose VM.

Another example of an assembly-based implementation is RISC0’s RISC-V-based ZK-VM.
This approach involves compiling a Rust program to RISC-V ISA, referred to as the Guest
Program. The Guest Program is executed to produce an execution trace, corresponding to
the intermediate states of the RISC-V VM throughout the execution. The trace is then used
as a witness by the RISC-V prover, which provides proof that the execution follows RISC-V
semantics. Unlike Cairo, which uses a novel ISA tailored for STARK, RISC0 builds a prover
for the existing RISC-V ISA. Using the LLVM compiler tool-chain, RISC0 can execute and
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prove any language that can be compiled to RISC-V ISA [31]. Using that approach, you can
pass an EVM implemented in Rust as the guest program and prove EVM transactions, as
demonstrated by Zeth [32] (c.f. Section 3.3).

In contrast to assembly-based ZK-VMs, the most common approach is to directly target
EVM bytecode. While the former approaches rely on an intermediate ZK-VM for circuit
implementation, many mature ZK-Rollups have chosen to implement specialized circuits that
directly prove the execution of EVM bytecode, or close to EVM bytecode. Currently, all major
ZK-Rollups beyond Starknet utilize specialized circuit-based ZK-EVM implementations.

For instance, zkSync Era, Polygon’s zkEVM, and Scroll implement a ZK-EVM to prove
the execution of transactions, but employ slightly different methods. Polygon and Scroll use
Solidity’s compiler to allow existing programs written in Solidity to be deployed, executed,
and proved on a ZK-Rollup by implementing specialized circuits that validate EVM traces. In
contrast, zkSync Era takes a higher-level approach by compiling Solidity directly to ZK-EVM
bytecode (using zksolc), which is then executed and proved using circuits designed to verify
the ZK-EVM bytecode’s correctness instead of the EVM bytecode.

Another approach is Aztec’s Abstract Circuit Intermediate Representation (ACIR) and
Private Execution Environment (PXE)-based system. Aztec’s smart contracts are written in
Noir [25], a domain-specific language developed by Aztec Labs for SNARK-based proving
systems. Noir compiles to ACIR, an intermediate representation used to generate circuits
for proving. Due to additional features provided by Aztec, specifically the support for
nullifier-based private transactions, Aztec’s execution model separates the handling of private
data from the processing of public transactions. Transactions are first executed and proved
locally by users inside the PXE, only propagating the public components of a transaction
and a ZKP of the validity of its privately executed components to rollup nodes. This ZKP
ensures the validity of private transactions, while the execution of their public components
ensures the validity of the block.

3.5 Target Hardware and Prover Architecture

The hardware configurations required for ZK-VM providers vary significantly between projects,
reflecting the diverse computational demands of their proof systems. Our analysis divides
prover designs by target hardware and parallelization strategies into the following categories:

1. Single CPU-optimized implementations such as Polygon’s ZK-EVM, which demands a
high-capacity setup with a 96-core CPU and at least 768 GB of RAM.

2. Single GPU and CPU proving, such as Scroll’s system, which parallelizes the execution
of multiple blocks using a single GPU but then aggregates the proofs into a single proof
that is posted on the chain using a CPU.

3. Cluster-based approaches: both zkSync and Risc0’s systems rely on two stages. At first,
the state transitions are divided into segments and proved in parallel, after which the
proofs are aggregated and also in parallel. The key difference with Scroll’s approach is
that aggregation is also parallelized across a large cluster of GPUs or CPUs.

This highlights an essential consideration: Each ZK-VM implementation is meticulously
optimized for specific hardware configurations, rendering direct performance comparisons on
identical machines less meaningful. Furthermore, ongoing research on hardware acceleration
for ZK-EVMs aims to further enhance proving times and system performance.
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Figure 3 Overview of the benchmarking procedure.

4 Experimental Evaluation

In this section, we delve into our methodology for benchmarking and analyzing the costs
associated with ZK-Rollups. Benchmarking these systems is essential because it sheds light
on the areas most in need of optimization. With many ZK-Rollups projects that aim to
decentralize their core components, this analysis offers a timely opportunity to assess the
costs involved and explore how these systems can achieve profitability and sustainability.
Additionally, we consider projects interested in deploying specialized, application-specific
rollups using existing infrastructure, aiming to discern the cost-related trade-offs of each
stack.

4.1 Benchmarking and Analyzing ZK-Rollups
Our analysis is designed to simplify the understanding of how external factors influence the
costs and, consequently, the fees associated with ZK-Rollups. We begin by identifying the
primary challenges in benchmarking ZK-Rollups, particularly focusing on their core compon-
ent: the ZK-EVM. Then, we present our methodology and the decisions made to navigate
these challenges, and finally, we answer the targeted research questions (c.f. Section 1).

Challenges and methodology. In this subsection, we outline the inherent challenges in
benchmarking ZK-Rollups and detail our methodology for addressing these challenges. The
benchmarking process, depicted in Figure 3, provides a high-level overview of how we evaluate
ZK-Rollups.

Initially, transactions from the selected payload are processed using the sequencer and any
auxiliary tools provided by the ZK-Rollup to create a batch. This step can be performed on
standard hardware without the need for specialized, expensive machines. Subsequently, this
batch is fed into the prover pipeline within an instrumented environment designed to capture
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the necessary metrics. The proving phase generally consists of at least two steps, though
this can vary. The final phase involves calculating the total costs, incorporating L1 data,
batch posting and batch verification costs on L1, and hardware expenses. By integrating
both the offline and the online analyses, we generate a comprehensive report that breaks
down the costs.

Metrics. Determining appropriate metrics is a fundamental challenge. We focus on straight-
forward metrics that facilitate a basic comparison between different systems, making it easier
for teams to integrate their ZK-EVMs into our benchmarking framework. In future work,
we plan to expand our metrics to include power consumption, RAM usage, and GPU/CPU
time. The primary metrics in this preliminary study are as follows:

Seconds per Proof : The time required to generate a proof.
USD per Proof : The cost of generating a proof, calculated by multiplying the clock
time by the rate for using a cloud service like AWS or GCP.
USD per Proving a Transaction: The cost associated with proving a single transaction.

Configuration. Choosing the right hardware configuration for benchmarking is another
significant challenge. Ideally, different systems should be tested on identical or at least
similar hardware specifications. However, this is nearly unfeasible for ZK-EVMs, as they
are designed with distinct objectives in mind and optimized for vastly different hardware
setups. Thus, we chose to benchmark the systems according to the hardware specifications
recommended by each team for production use. This decision aims to capture the optimal
cost-time efficiency based on each system’s specific optimizations. Additionally, different
proving systems have different requirements for resources (e.g., RAM) and different options
for optimizations (e.g., through parallelization), meaning that it is even more difficult to
compare to standardized machines.

Payloads. Deciding on the appropriate payloads for benchmarking is also challenging. Given
the varying degrees of compatibility EVM between systems, selecting a common payload
for comparative analysis is difficult. Moreover, the complexity of these systems further
complicates setup and benchmarking efforts with specific payloads. Ideally, benchmarking
would utilize historical Ethereum blockchain data, but the lack of necessary tooling in most
ZK-Rollups complicates this approach. Instead, we focus on benchmarking common smart
contract functionalities, including native transfers, ERC-20 transfers, contract deployment,
native Solidity/YUL hashing, and the Keccak precompile.

These payloads represent typical blockchain operations, though future work may expand
this list for more detailed analysis (e.g., token swaps, DAO voting, and NFT mints). Finally,
note that we parameterized all payloads to different sizes, e.g., 1 ETH transfer vs. 10 ETH
transfers vs. 100 ETH transfer, meaning that we have benchmarked 3 different batches of
size 1, 10, and 100. Nevertheless, we recognize the necessity for additional research to develop
more comprehensive workloads for benchmarking those systems.

Reproducibility. Ensuring reproducibility is crucial. Regardless of the metrics, configura-
tions, and payloads, it is essential that the benchmarking process be designed so that third
parties can validate the results. To accomplish this goal, we publish all configurations, scripts,
and instructions used in our benchmarking process. This includes detailed specifications of
the machines used, scripts for setting up the environment, and step-by-step instructions for
running tests with the specified payloads. Our goal is for others to be able to replicate our
findings by following our documentation, thus reinforcing the validity and reliability of our
results while being able to easily extend our benchmarks.
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Table 2 Selected ZK-Rollups and Hardware Configurations. The Polygon ZK-EVM machine is
hosted on AWS, while the zkSync Era is on GCP. Both machines have 1 TB SSD disk space. Note
that spot prices could reduce the hourly cost significantly.

ZK-Rollup Commit Hardware Configuration Hourly Cost

Polygon zkEVM d37e826 r6i.metal (128 vCPUs, 1024GB RAM) $8.06
zkSync Era 4794286 g2-standard-32 (32 vCPUs, 1 NVIDIA

L4 GPU, 128 GB RAM)
$1.87

L1 Data. To obtain data from L1 for our analyses, we selected a period from April 10, 2024
(block 19621224), to May 10, 2024 (block 19835630). During this period, we crawled the main
contracts of the selected ZK-Rollups and retrieved the required information: gas consumption
for committing batches to L1 (excluding the gas cost related to Data Availability) and batch
verification costs, i.e., the cost for verifying the proof and updating the smart contracts.
This information is essential for comprehending fixed costs and is not connected to variable
costs. Instead of our local payloads, we utilized on-chain data to determine the typical
configurations employed by the rollups, including batch sizes.

Threats to Validity. Our study faces some validity threats that should be considered when
interpreting the results. Firstly, our chosen payloads may not fully represent the range of
real-world scenarios. We focused on providing easily executable payloads that are highly
relevant, such as ETH and ERC-20 transfers, contract deployments, and SHA-256 hashes,
commonly seen in other ZKP benchmarks [13]. However, this selection may overlook other
important transaction types and interactions. Secondly, the results for certain components
might be biased due to the specific payloads used. For instance, our payloads tend to favor
state diffs as they primarily involve interactions with a single contract, which may not
accurately reflect more complex and diverse batches. We have made efforts to clearly state
any potential biases in the relevant sections of the paper. Finally, there are cases where parts
of the systems are not fully open-sourced or could not be run in a controlled sandboxed
environment. In those instances, we decided not to include our results for those systems
in the analysis, as these results could not be independently verified by us. To ensure the
quality and reliability of our findings, we narrowed our results to systems for which we could
provide high-quality data.

4.2 Results
In this section, we present the results of our benchmarking and analysis of ZK-Rollups. We
begin by detailing the systems we analyzed and the hardware configurations used for our tests.
Following this, we dive into each research question, providing comprehensive answers based
on our findings. Our goal is to offer information on the performance, costs, and trade-offs of
different ZK-Rollup implementations.

Selected ZK-Rollups. For our analysis, we selected zkSync Era and Polygon ZK-EVM. The
primary reason for choosing these two is that they are the only ZK-Rollups that are both
EVM-compatible and fully open-sourced among the popular deployed ZK-Rollups. While
Scroll is also EVM-compatible and widely used, we excluded it from our study because its
GPU-prover is closed-source, which limits our ability to conduct a thorough and transparent
analysis. By focusing on zkSync Era and Polygon ZK-EVM, we ensure that our benchmarking

AFT 2024



6:14 Analyzing and Benchmarking ZK-Rollups

Table 3 Fixed costs breakdown for ZK-Rollups using historical data. The USD cost of gas is
based on 7.5 Gwei, and an Ether price of $3,000. Compression costs are derived from Table 2. For
Polygon ZK-EVM we also include the batch proof aggregation costs in proof compression. In zkSync
Era, the execution of batches signifies L1 finality, thus fully finalizing the batch and allowing fund
withdrawals from the system. The numbers are crawled from on-chain data from 10 April 2024
to 10 May 2024.

Metric Era Polygon

Batch Size
Median Batch Size (Min/Max) 3,895 (485/5,000) 27 (1/158)
Theoretical Max Batch Size 5,000 498

Commit Batches
Median Gas Cost (gas) 230,686 324,088
Median Batches Per Tx (Min/Max) 1 (1/1) 8 (1/15)

Verify Batches
Median Gas Cost (gas) 458,527 378,461
Median Batches Per Tx (Min/Max) 1 (1/1) 20 (1/160)

Execute Batches
Median Gas Cost (gas) 3,303,634 -
Median Batches Per Tx (Min/Max) 26 (4/45) -

Proof Compression
Median Time in Seconds (USD Cost) 1,075 sec ($0.56) 311 sec ($0.70)
Median Batches per Proof 1 20

Normalized Costs

Median Gas Per Batch (USD) 816,275 gas ($18.37) 59,434 gas ($1.34)
Median Batch Cost (USD) $18.93 $1.38
Median Gas Per Tx (USD) 209 gas ($0.00471) 2,201 gas ($0.04962)
Median Tx Cost (USD) $0.00486 $0.05111
Median Gas Per Tx – Full Batches (USD) 163 gas ($0.00367) 119 gas ($0.00268)
Median Cost Per Tx – Full Batches (USD) $0.00378 $0.00275

is based on systems with relatively stable code bases and deployed on a large scale. Table 2
summarizes the specific versions (commits) of the ZK-Rollups we analyzed and the hardware
configurations used for our experiments. Note that we selected those machines after advising
the teams developing the analyzed systems.

Benchmarking zkSync Era’s Prover. We could only manage to run zkSync Era as a black-
box system where multiple processes exchange messages, perform computations, and write
logs. This is because Era is designed to run as a mini-cluster. Additionally, the instructions
and configurations on how to set up this cluster are not publicly available. Since we were
unable to run the prover components independently in a sandboxed environment and measure
the performance ourselves, we decided not to include the prover time and cost in our analysis.
Unfortunately, given the current state of the prover and its limited documentation, it was
quite complicated to instrument the system for benchmarking as we intended. However, we
were still able to reliably obtain proof compression time, and DA costs for Era. We leave as
future work a fine-grained benchmarking of the Era prover.

4.3 Fixed Costs
The results presented in Table 3 highlight the fixed costs for zkSync Era and Polygon ZK-
EVM based on historical data from 10 April 2024 to 10 May 2024. The fixed costs encompass
gas costs for committing and verifying batches, and proof compression costs. Note that
zkSync Era has an additional transaction for finalizing transactions and enabling withdrawals,
which we also consider a fixed cost. The two solutions employ different approaches: zkSync
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Figure 4 Comparison of DA (Data Availability) requirements for various payloads between zkSync
Era, which uses state diffs, and Polygon ZK-EVM, which posts transaction data.

Era supports significantly larger batches, while Polygon ZK-EVM utilizes smaller batches
and employs aggregation to derive a final proof. Both systems convert a STARK proof into
a SNARK, incurring a fixed proving cost that remains constant regardless of the input size.

For zkSync Era, the data show a median batch size of 3,895 transactions, resulting in
a median batch cost of $18.93 and a cost per transaction of approximately $0.0047. The
large batch sizes in zkSync Era allow for the costs to be distributed across a greater number
of transactions, thereby reducing the cost per transaction. In contrast, Polygon ZK-EVM
processes smaller batches, with a median batch size of 27 transactions. This leads to a
median batch cost of $1.38 and a cost per transaction of $0.0511. Notably, in their ideal
scenario where the batches are completely full, both systems can achieve negligible fixed
costs per transaction (i.e., less than $0.004).

One critical insight derived from the analysis is that filling batches to their maximum
capacity is essential to minimize fixed costs per transaction. This strategy allows the cost
to be amortized over many transactions. However, it may negatively impact the finality
if L2 does not have sufficient usage. Furthermore, even with enough usage, the marginal
costs or proving time might increase, leading to slower finality. These trade-offs and their
implications will be further examined in subsequent subsections.

4.4 Marginal Costs

The incremental costs of ZK-Rollups are essential to grasp their scalability and effectiveness.
This section explores the duration required to produce a proof for a batch, the related
expenses, and the data availability (DA) expenses in bytes needed for submission to the
L1. Furthermore, we evaluate the efficiency of state differences as opposed to uploading full
transaction data.

The design of the provers for Polygon and zkSync Era shows marked differences. The
prover for zkSync Era is designed to support the processing of large batches, supporting
up to 5,000 transactions, and operates on more affordable hardware. On the other hand,
the architecture of Polygon’s prover is geared towards quick-proof generation, albeit at the
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Figure 5 Trade-off between proving/compression times (affecting finality) and cost per transaction
for Polygon ZK-EVM.

cost of requiring pricier equipment. We noticed that the time it takes for zkSync Era to
generate proofs extends with larger input sizes. In Figure 6 in Appendix B, we show some
preliminary measurements that demonstrate this pattern. In contrast, Polygon’s prover
maintains a consistent output time of either 190 or 200 seconds, independent of input size.
While Polygon’s prover offers speed advantages for smaller batches, this comes at the trade-
off of requiring expensive hardware. Nevertheless, with increasing batch sizes, Polygon’s
prover becomes more cost-effective, as it takes the same time to prover different number of
transactions. This demonstrates another difference in the design: Era’s prover is more elastic
as smaller batches will be faster, and larger ones will be slower, whereas in Polygon batches
proving will be either 190 or 200 seconds.

Figure 4 illustrates the data availability (DA) needs in bytes for both Polygon and
zkSync Era. A primary distinction is zkSync Era’s use of state diffs, in contrast to Polygon’s
approach of posting entire transaction data. The state diffs used by zkSync Era result in
notably superior compression, making the DA requirements disparity more pronounced as
the input size grows. The cost-effectiveness of zkSync Era’s state diffs is due to this enhanced
compression. It is crucial to acknowledge that our payloads are naturally advantaged by state
diffs since our transactions usually engage with a specific contract, enhancing compression
potential. Although the actual difference may be smaller in practical scenarios, it remains
considerable. Future investigations into this subject are recommended.

4.5 Trade-off Between Fast Finality and Cost Minimization
Figure 5 demonstrates the trade-off between fast finality and cost minimization in Polygon
ZK-EVM, using benchmarks of 100, 498, 996, and 2490 ETH transfers. As depicted in
Figure 5, Polygon’s prover time increases linearly. Note that, as mentioned before, Polygon’s
prover always takes 190-200 seconds per batch. So, to prove 996 transactions, we are required
to prove two batches and aggregate them. Further, the cost per transaction amortized better
when using larger inputs, demonstrating a trade-off between fast proving (i.e., faster finality)
or processing larger inputs and achieving better cost-effectiveness.

4.6 Cost Breakdown
Table 4 provides a detailed cost breakdown for ETH transfers across different batch sizes,
showing the distribution of fixed and marginal costs. For small batch sizes, fixed costs such
as committing, verifying, and proof compression dominate the total cost per transaction. As
batch sizes increase, DA costs become more significant, particularly when blobs are used
instead of calldata. In addition, for larger batch sizes, proving costs become increasingly
relevant.
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Table 4 Cost breakdown for ETH transfers in Polygon ZK-EVM. The blob price per byte is 1
wei, the normal gas price is 7.5 Gwei, the ETH price is $3,000, and we use the costs of the machines
from Figure 3 for the provers. We also capture the cost per byte, i.e., for blobs, we do not charge for
the whole blob if it is less than the blob size. The first percentage is when we consider blobs as DA,
and the second is for calldata.

Size Fixed Costs Marginal Costs Total Cost Per Tx (USD)
Commit Verify Proof Comp. Proving DA-Blob DA-Calldata w/ Blob w/ Calldata

100 44%/36% 52%/42% 1%/1% 3%/2% 0% 20% 0.16 0.20
498 44%/20% 52%/23% 1%/1% 3%/1% 0% 55% 0.03 0.07
996 43%/13% 50%/15% 1%/0% 5%/2% 0% 70% 0.02 0.06
2,490 40%/6% 46%/7% 2%/0% 12%/2% 0% 84% 0.01 0.05

Table 5 Impact of EIP-4844. The gas cost used is 50 Gwei (representing pre-Dencun upgrade
prices), the ETH price is $3,000, and the blob gas cost is 1 wei. Note that for blobs, typically, you
have to pay for a full blob, but here, we compute the cost only for the required bytes.

Size in Bytes Calldata Blobs
Input Era Polygon Era Polygon Era Polygon

ERC-20 Transfers (200) 10,999 70,357 $23.05 $136.96 $3.3 × 10−11 $2.11 × 10−10

Contract Deployment (100) 17,087 84,369 $35.97 $182.43 $5.1 × 10−11 $2.53 × 10−10

ETH Transfer (2,490) 88,693 283,905 $194.53 $661.95 $2.66 × 10−10 $8.52 × 10−10

One interesting observation is that Polygon has optimized for fast proving time, leading
to very fast and relatively cheap proving prices. In our preliminary investigation of Era,
we noticed that orthogonal to Polygon, they have optimized more for data compression.
In both systems, proof compression takes a fraction of the cost 1% and can be ignored,
demonstrating that the use of such compression techniques is essentially free of non-trivial
additional computational burdens.

In the context of blob pricing, proving time takes up merely 5% of the total cost incurred
on Polygon. Furthermore, we observe that where blobs are used for DA, marginal costs of
proving over the underlying batch size grow at a higher rate. When using calldata as DA,
the situation changes: in this case, the marginal costs for calldata usage are non-trivial for
Polygon. Nevertheless, the cost of proving remains at almost negligible levels (less than 2%
of the cost of a full batch) at all batch sizes when using calldata DA. However, the vast
majority of costs in Polygon (around 97% of the total cost for a batch of 2,490 transactions)
stem from its DA requirements to store full transaction records.

4.7 Impact of EIP-4844
The introduction of EIP-4844 has significantly influenced the cost dynamics of ZK-Rollups, 8

particularly in terms of DA costs. As illustrated in Table 5, EIP-4844 has generally minimized
DA costs by allowing for more efficient data posting. However, it is important to note that
for blob transactions, rollups are required to pay for an entire blob of approximately 125 KB.

This implies that for rollups required to frequently submit small batches to L1, utilizing
calldata could be more economically viable than using blobs. This underscores the importance

8 EIP-4844 introduces a new kind of transaction type to Ethereum which accepts “blobs” of data to be
persisted in the beacon node for a short period of time. These changes are forwards compatible with
Ethereum’s scaling roadmap, and blobs are small enough to keep disk use manageable. You can read
more about EIP-4844 at https://www.eip4844.com/.
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of additional research into the existing constraints of blobs and how the market might evolve as
demand grows. Moreover, the present low pricing of blobs has not fully realized market price
discovery. It is important to consider that sustained low prices might establish impractical
expectations, which could result in substantial price hikes as the market realigns.

More specifically, given a shift to blob-based pricing that significantly reduces DA costs
for ZK-Rollups across the board, the recorded results allow for projecting on the relative
costs of transaction processing at large batch sizes for each of the two assessed systems.

Given that Polygon has not yet implemented blob-aware logic, we expect that any
marginal changes to its transaction cost model will occur after the new DA market matures.
To this end, the ratio of the relative marginal costs of proving on Era and Polygon respectively
goes from 20 × (= 39%/2%) to 5 × (= 52%/12%), suffering a 4× drop. This is indicative
that, upon subsidizing DA costs through blobs, the large relative DA cost for transactions
on Polygon is much less pronounced (relative to Era) than before. This can be expected
as the Era prover is “already” more constrained by proving (given its more efficient use of
state-diffs) and thus sees a lower marginal cost benefit from the DA repricing. This is also
reflected in how marginal proving costs go from 39% to 52% (increase by a third) on Era
due to blobs, while they almost triple (from 2% to 5%) on Polygon.

The above implies that Polygon could marginally benefit more by blob repricing, lowering
its DA cost bottleneck, and moving in the direction of proving its main (marginal) cost. The
latter regime seems to already be the case with Era where, although the new blob pricing
system will provide benefits, they will not be affecting the substantial proving costs and
thus will have lower relative impact. As DA costs continue to fall, we also expect that both
(all) ZK-Rollups systems converge to respective “maximal” marginal proving costs (relative
to DA), at which point DA will be a comparatively much smaller part of the overall cost
structure and will not need to be further subsidized.

4.8 Lessons Learned

Below we revisit the original research questions from Section 1.
Trade-off between Fast Finality and Cost Efficiency (RQ1–RQ3): Our experi-
ments highlight a primary trade-off between achieving fast finality (i.e., rapid proving
time) and maximizing cost efficiency through cost amortization. Filling batches fully
allows for better cost amortization per transaction, impacting both fixed and marginal
costs. While fixed costs become less significant for large batches, they dominate the
costs for smaller batches, making efficient batch filling crucial for overall cost efficiency.
This creates a dynamic where rollups perform better at higher utilization levels, some-
what paradoxically. This insight raises questions about designing an optimal metering
mechanism for ZK-Rollups.
State Diffs Efficiency (RQ2): Our preliminary benchmarking indicates that state diffs
are highly cost-efficient in reducing data availability costs for ZK-Rollups. By publishing
only the state changes instead of complete transaction data, state diffs offer significant
compression benefits, especially as the input size increases.
Importance of Sequencing (RQ4): The proving process benefits greatly from efficiently
filling batches with transactions. It is essential to match the transactions to the capabilities
of the underlying prover. For example, Polygon’s prover can handle a limited number
of Keccak operations per proof. Proving a single Keccak costs the same as proving the
maximum number of Keccak operations the prover can handle in a batch. Therefore,
sequencing transactions to fit the prover’s optimal capabilities can significantly reduce
the cost per transaction. This highlights the importance of developing sophisticated
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sequencing strategies and suggests a need for further research into the topic to guide the
development of efficient sequencing for ZK-Rollups.
Impact of EIP-4844 (RQ5): The Dencun upgrade has substantially reduced DA costs,
enabling near-zero cost transactions for ZK-Rollups. However, as blob prices may increase
in the future, optimizing ZK-Rollups for cost efficiency remains critical. Additionally,
strategies such as blob-space sharing or selectively using calldata instead of blobs during
periods of high blob prices or for small batches could be viable options under certain
circumstances and specific requirements.

5 Open RQs and Future Work

In this section, we present the open questions that remain unanswered in our current work and
sketch a roadmap for future research. These questions not only underscore the complexities
inherent in ZK-Rollups but also highlight areas that require further exploration.

Decentralization’s Impact on Costs: A pivotal question revolves around how decent-
ralizing L2 core components will influence transaction processing costs. Specifically, we
seek to understand whether the decentralization will lead to negligible cost implications
or if it will significantly alter the economic landscape of ZK-Rollups. Another related
open question but beyond the scope of this work is L2 MEV and cross-chain MEV.
Batch Size and Sequencing Optimization: The size of transaction batches is a critical
factor affecting proving costs. Future iterations of our work will delve into how variations
in batch size and executed opcodes in a batch influence the cost per transaction and the
overall proving time. While current systems may operate with an optimal batch size
tailored to their specific needs, emerging forks (e.g., app-chains) may require adjustments
to accommodate different priorities. This analysis aims to provide valuable insights for
optimizing batch size and contents in response to evolving requirements.
Metering Mechanism Evaluation: Another area of interest is the examination of the
metering mechanisms employed by ZK-EVMs, which traditionally mirror those of the
EVM [38]. Given that proving certain EVM opcodes might be relatively more costly
than their execution, we plan to investigate potential discrepancies in pricing. Through
micro-benchmarks, we will explore whether such mismatches pose significant challenges,
such as the under-pricing of specific opcodes that could lead to DoS attacks.
Proving Market Mechanisms: We also intend to explore various proving market
mechanisms and assess how they might influence the cost dynamics of proof generation [37].
This exploration could shed light on potential economic models conducive to more efficient
and cost-effective proving processes.
Throughput Limitations: Identifying the maximum transactions per second (TPS)
each rollup can achieve, based solely on proving and DA on Ethereum and excluding
other market dynamics, is another critical inquiry. This analysis will help quantify the
scalability limits of current ZK-Rollup implementations.

In addition to addressing these open questions, our future work will expand the scope of
our benchmarks. We aim to conduct micro-benchmarks at the opcode level to gain a finer-
grained understanding of proving costs. Moreover, we plan to introduce macro benchmarks
with diverse payloads beyond those presented in this study. Furthermore, by replaying
blocks of Ethereum on different ZK-Rollups, we aspire to provide deeper insight into their
performance and cost-efficiency. We also plan to analyze ZK-VM-based ZK-Rollups and
compare them with native ZK-Rollups to shed more light on the debate between specialized
circuit implementations versus using generic VMs to produce ZKPs.
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6 Related Work

Benchmarking Blockchains and EVM Implementations. Benchmarking blockchains has
garnered significant attention from both academic and practitioner communities. Gramoli et
al. [16] developed a comprehensive benchmark suite for six popular blockchains with smart
contract capabilities, conducting an extensive evaluation using five realistic decentralized
application payloads across various configurations for each blockchain. Their primary
objective was to assess latency and throughput. In a subsequent study, Nasrulin et al. [24]
introduced Gromit, a tool focusing on blockchains with various consensus algorithms, with
both studies focusing on the overall performance of the blockchains under examination rather
than specific aspects such as execution node implementations.

In this work, our focus shifts to benchmarking the core components of ZK-Rollups, paral-
leling efforts such as those of Cortes-Goicoechea et al. [11], who benchmarked the five most
prominent Ethereum consensus clients to evaluate their resource consumption. Similarly,
Zhang et al. [40] employed simple microbenchmarks to compare the efficiency of WASM
EVM nodes against Geth and Openethereum. Our future endeavors include conducting
micro-benchmarks to gain deeper insights into ZK-EVM implementations. Furthermore,
both academic and industry efforts have explored benchmarking EVM nodes using either
straightforward macro benchmarks [12], like ERC-20 transfers, or fuzzy techniques [26] to
assess the performance characteristics of EVM implementations comprehensively. Mirroring
this approach, we utilized macro benchmarks to evaluate the performance of ZK-EVM imple-
mentations, with plans to adapt tools such as flood [26] for future ZK-EVM benchmarking.
Busse et al. [6] evaluate EVMs on various machines to pinpoint any noticeable differences.

While our current analysis does not extend to testing various machines for each ZK-Rollup,
our objective is to perform such analyses to determine the most cost-effective hardware
configurations for running each ZK-EVM and to identify the most optimized setup for each
prover. Lastly, Perez, and Livshits [27] evaluated the EVM’s metering mechanism, identifying
potential DoS attack vulnerabilities. Inspired by their findings, we plan to conduct stress
tests on ZK-EVM implementations to uncover any mispricing in the proving costs of specific
EVM opcodes.

Benchmarking ZKPs. Benchmarking efforts for ZKPs play a crucial role in improving the
understanding and performance of cryptographic libraries and primitives. Benarroch et al.[4]
highlighted the inherent challenges and outlined best practices for implementing benchmarks
for ZKP Domain Specific Languages (DSLs). Building upon this foundation, our work outlines
the specific challenges of benchmarking ZK-Rollups, particularly focusing on ZK-EVMs, and
proposes a comprehensive methodology to tackle these challenges. Ernstberger et al. [13]
introduced zk-Bench, a detailed benchmarking framework and estimator tool designed for
evaluating the performance of low-level public-key cryptography libraries and SNARK DSLs.

Our research complements these efforts by focusing on ZK-EVMs, which represent some
of the most complex systems employing SNARKs. In addition to these efforts from academia,
the Celer Network published a blog post9 that benchmarks the time and memory costs of
proving SHA 256 circuits across various ZKP tools. Parallel to our efforts, Delendum has
developed a framework10 dedicated to benchmarking ZK-VMs. An interesting future work
could be to compare the performance of ZK-VM-based ZK-EVMs versus native solutions.

9 https://blog.celer.network/2023/07/14/the-pantheon-of-zero-knowledge-proof-development
-frameworks/

10 https://github.com/delendum-xyz/zk-benchmarking

https://blog.celer.network/2023/07/14/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://blog.celer.network/2023/07/14/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://github.com/delendum-xyz/zk-benchmarking
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Analyzing Rollups and ZK-Rollups. Chaliasos et al. [9] provided a taxonomy of security
issues that might occur in systems utilizing ZKPs including ZK-Rollups. Thibault et al. [36]
have conducted an extensive survey on the use of rollups as a scalability solution for the
Ethereum blockchain, discussing the various types, highlighting key implementations, and
offering a qualitative comparison between optimistic rollups and ZK-Rollups. Koegl et al. [19]
have compiled a comprehensive list of known attacks on rollup systems, shedding light on
their potential impacts. In contrast, our work delves into ZK-Rollups, providing a detailed
overview and explanation of their characteristics through a qualitative analysis. In addition,
we focus on the empirical benchmarking of ZK-Rollups and the meticulous analysis of their
associated costs. This dual approach not only enriches the understanding of ZK-Rollups as a
scalability solution but also underscores the economic viability and technical challenges of
implementing ZK-Rollups.

7 Conclusions

In this paper, we have undertaken a comprehensive analysis of ZK-Rollups, focusing on their
scalability, efficiency, and economic implications. Our theoretical and empirical evaluations
of Polygon ZK-EVM and zkSync Era reveal the inherent trade-offs in their design and
implementation, providing critical insights into their operational costs and performance.

Addressing the challenges of benchmarking ZK-Rollups, we have developed a structured
methodology that allows for a thorough evaluation of these systems. Our results highlight
possible improvements and suggest directions for future research. This research not only im-
proves the understanding of ZK-Rollups, but also aims to guide and influence the development
of more efficient rollups.
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A EVM Compatibility Properties

The term “EVM compatibility” encompasses various properties, including:
Support for the standard Solidity compilation toolchain, allowing existing Solidity con-
tracts to be ported over without additional work.
Compliance with Ethereum’s exact state transition logic.
Adherence to Ethereum’s gas cost metering mechanism.
Adherence to Ethereum’s JSON-RPC client API.
Support for Ethereum’s smart contract standards (e.g., ERC-20) and precompiles (e.g.,
keccak).
Support for Ethereum’s existing wallet infrastructure.
Support for Ethereum’s existing development infrastructure.
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Figure 6 Proving time increases depending on input size for the Era prover. Note that this result
is not complete and does not count for potential parallelization.

B Proving Time for Era

Figure 6 provides an overview of the increase of proving time in zkSync Era given different
batch sizes of various inputs. This highlights a design orthogonal to Polygon ZK-EVM where,
for each batch, the time needed to be proved is either 190 or 200 seconds. It is important to
note that both systems optimize for various aspects. For example, zkSync optimizes for data
compression through its state diffs mechanism, whereas Polygon optimizes for fast proving
times. It is important to note that Figure 6 is not complete. Due to the complexity of the
system, its modular architecture, and the lack of documentation, we did not manage to
measure the complete proving time precisely. Finally, note that the setup for Era can be
improved by: (1) using more machines to parallelize computation and reduce finality time,
(2) using cheaper machines for non-GPU computations, e.g., witness generation, to reduce
proving costs.
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1 Introduction

Decentralized Finance (DeFi) encompasses a wide range of financial applications and services
built on blockchain platforms that support smart contracts, such as exchanges, lending and
borrowing platforms, and derivatives [54]. These smart contracts are pieces of code that
execute automatically when triggered by transactions. A distinct characteristic of DeFi is
the transparency of the compiled bytecode for all smart contracts, often encapsulated by
the maxim “code is law”. This principle underscores the ecosystem’s transparency, allowing
anyone to deterministically and independently verify state transitions and validate the
execution outcomes of these contracts and transactions.

Although the DeFi ecosystem offers sufficient transparency to allow anyone to verify and
review the code of smart contracts, discrepancies between project documentation and the
actual code can still pose risks to users. DeFi project documentation typically describes core
functionalities and financial models, yet the actual on-chain code (e.g., EVM bytecode) may
not faithfully implement these features due to programming errors or intentional design, and
may even include unmentioned functionalities. A typical example is the Uranium Finance
incident [5], where a discrepancy between the implementation of a conditional formula in the
deployed code and its description in the whitepaper led to the theft of tokens valued at over
$50 million. Additionally, a broader example is that many ERC-20 tokens contain trading fees
or blacklists [29] that are not disclosed in the documentation. Indeed, users with sufficient
technical skills can directly read and understand the smart contract, thereby identifying
potential risks and avoiding losses. However, when the source code of smart contracts is
unavailable and only the binary code on the blockchain is accessible, understanding the
compiled low-level bytecode becomes extremely challenging [32, 20]. For those who mainly
rely on documentation or platform descriptions, discovering such inconsistencies is almost
impossible. As far as we know, existing static analysis tools [16, 43] have not considered
such inconsistency issues. Therefore, designing an inconsistency detection tool is crucial for
protecting user assets and enhancing the trustworthiness of the DeFi system.

In this work, we take the first step in automatically detecting logical inconsistencies
between DeFi project documentation and deployed smart contracts, aiming to assist in
the automated review of DeFi projects. Although some studies [18, 29, 82, 33, 80, 45]
have begun to discuss the issue of inconsistencies in DeFi, their scope of review remains
confined to superficial checks at the function interface level, lacking scrutiny of the underlying
business logic. Additionally, most of these studies heavily rely on manually derived or expert-
summarized invariants, rendering them inherently resistant to automation. Furthermore,
accessibility to open-source code repositories acts as a prerequisite for some methods [82, 33],
constraining their applicability within closed or proprietary systems. Even for approaches
[18, 45] that leverage transaction log analysis and do not require open-source code, they can
only provide retrospective insights, failing to proactively prevent potential issues.

We propose a method to automatically detect inconsistencies by comparing the logic of
smart contracts with the descriptions in the documentation. In our research, the examination
of inconsistencies primarily focuses on changes in token balances and the conditions for these
changes within smart contracts. We emphasize this focus because, in DeFi projects, balance
changes are the most critical aspect of the logic, giving transactions their significance, as
the primary purpose of most transactions is to alter balances. An inconsistency is identified
if there is a mismatch between the two. For example, if the change in a user’s token
balance does not align with the description in project documentation, it is identified as an
inconsistency. However, implementing this approach is nontrivial due to two main challenges:
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1) How to automatically generate symbolic representations of user balance changes and
execution conditions. Firstly, DeFi code often involves inter-contract interactions, and
existing tools like Mythril [7], Sailfish [12], and Manticore [51] lack support for computing
dynamic jump addresses and cross-contract analysis, making it difficult to generate complete
execution paths [70]. Secondly, some smart contracts are not open source or only partially
open source, which complicates the analysis of locating data structures and reconstructing
computational logic; 2) How to automatically compare symbolic expressions in the code
with the calculation logic in the documentation. The documentation often features abstract
business logic and personalized natural language expressions, which vary significantly. This
variability complicates the direct alignment and comparison of the computational elements in
the code with their descriptions in the documentation, making it difficult to verify consistency
across these two mediums.

To tackle these challenges, we design an end-to-end system named DeFiAligner , which
integrates traditional symbolic analysis with large language models (LLMs): ➊ Firstly,
DeFiAligner relies on a symbolic tool called SEVM (Symbolic Ethereum Virtual Machine)
to generate the execution paths of smart contracts. SEVM, an adaptation of the Ethereum
Virtual Machine (EVM) [3], supports operations with Z3 symbolic values [24] in both stack
and memory. It automatically generates corresponding Z3 symbolic variables as input based
on Application Binary Interface (ABI) [2] information and executes stack and memory
operations according to the opcode instructions of the smart contract. Unlike other symbolic
tools, SEVM supports cross-contract analysis and saves the state of the stack and memory
after each instruction is executed. ➋ Then, DeFiAligner identifies changes in token balances
and execution conditions for each path by analyzing the state of the stack and memory
after the execution of the SLOAD, SSTORE, and JUMPI instructions. ➌ Finally, to manage
the complexity and variability of document information, DeFiAligner incorporates large
language models [77], known for their proficiency in natural language processing and reasoning
capabilities. Specifically, we input both symbolic data and documentation into the LLM’s
API, guiding it to detect inconsistencies through structured prompts. Unlike other works [34]
that utilize LLMs for blockchain security analysis, our research uses symbolic expressions
extracted from binary code as inputs, rather than directly using source code, ensuring that
the input information is concise and crucial. Testing across three distinct scenarios shows
that DeFiAligner can not only identify direct inconsistencies between textual and symbolic
representations but can also uncover underlying logical discrepancies, thus significantly
enhancing the quality and efficiency of DeFi project audits.

In summary, this work has three major contributions.
To the best of our knowledge, this is the first work focused on detecting logical inconsisten-
cies between documentation and deployed smart contracts for project review. We design
an end-to-end system named DeFiAligner that identifies risks by examining on-chain
binary code before traders interact with the protocol, rather than conducting post-event
analysis after asset losses have occurred.
We develop a symbolic generation tool named SEVM that produces accurate symbolic
representations for cross-contract DeFi applications. This tool preserves the states of the
stack and memory after each opcode instruction is executed, making it not only suitable
for the task presented in this paper but also applicable to other symbolic analysis research
related to smart contracts.
We validate the practicality of our approach with empirical tests conducted across
three real-world scenarios. These evaluations confirm our method’s capability to expose
discrepancies between the documented descriptions and deployed smart contracts. This
verification not only proves the utility of our approach but also underscores its potential
to enhance the reliability and transparency of DeFi applications.

AFT 2024
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The code for this work is publicly available on GitHub2.

2 Background

2.1 Decentralized Finance and Smart Contracts
Decentralized Finance (DeFi) utilizes blockchain technology [79] to enable peer-to-peer
financial services, thereby eliminating the need for traditional intermediaries like banks. The
core of DeFi is smart contracts [78], self-executing contracts with terms directly embedded
in the code, which allow for the development and deployment of diverse financial protocols
on platforms such as Ethereum [71]. Smart contracts are written in high-level programming
languages like Solidity [22] or Vyper [15] and are compiled into lower-level bytecode that is
executable on the blockchain. During the compilation of smart contracts, an Application
Binary Interface (ABI) is generated that defines the methods and structures of the smart
contract, enabling users to interact accurately with the contract’s functions.

2.2 Symbolic Execution with Z3
Symbolic execution [40, 11] is a method of software analysis that models potential execution
paths of a program by treating its inputs as symbolic variables instead of using concrete values.
This allows for an exhaustive exploration of the program’s behavior under various conditions,
helping to detect bugs, security flaws, and performance bottlenecks. The technique involves
branching the program’s execution at conditional statements, thereby creating a tree of
possible execution paths. Each path is associated with a set of constraints on the input values
that must be met for the path to be taken, allowing testers and developers to identify critical
issues that could affect the program’s reliability and security. In this research, we employ
symbolic values within Z3 [24], a high-performance tool developed by Microsoft Research,
to handle and manipulate the symbolic representations of program states. This integration
facilitates more precise and powerful analysis, ensuring that all possible execution paths are
thoroughly evaluated.

2.3 Large Language Models (LLMs)
Large Language Models (LLMs) [17, 38], such as ChatGPT [8, 72, 74], are advanced artificial
intelligence systems designed to understand, generate, and manipulate human language.
These models are trained on vast datasets comprising diverse text sources, enabling them
to grasp complex language patterns, context, and semantics effectively. Firstly, LLMs can
automate the processing and analysis of large volumes of text, making them promising tools
for data-driven decision-making and automation in various fields. Secondly, their ability to
generate coherent and contextually relevant text makes them ideal for applications such as
conversational agents, content creation, and semantic analysis. Moreover, the inferential
reasoning abilities [69, 30, 56, 26] of LLMs set them apart, allowing them to not only process
information but also generate insights and hypotheses based on the contextual understanding
of the data they analyze. Nowadays, LLMs have been used in the field of software security
testing and analysis [67, 55, 37]. Leveraging their proficiency in understanding both natural
and programming languages, LLMs are increasingly used to enhance security protocols,
detect vulnerabilities, and automate the analysis of code for potential security threats

2 DeFiAligner, https://github.com/DeFiAligner/DeFiAligner

https://github.com/DeFiAligner/DeFiAligner
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Figure 1 Inconsistency: discrepancies between the project documentation and deployed smart
contracts during a DeFi project cycle.

[46, 61, 60, 57, 76, 58, 41, 49]. To some extent, LLMs can help identify potential security
issues without requiring security professionals to manually review thousands of lines of code,
thus speeding up the security review process.

3 Preliminary

3.1 Definition of Inconsistency
During a DeFi project cycle (as shown in Figure 1), the development team typically releases
project documentation, and deploys smart contracts onto the blockchain. Many users tend
to rely on the documents rather than inspecting the code directly. However, this overreliance
on documentation can pose significant risks: the functions, logic, or operational conditions
described in the documents may differ substantially from the code actually deployed on the
blockchain. These discrepancies may arise from errors in the development process, delays in
updating the documents, or intentional omissions of information. Users might not notice
these discrepancies and make erroneous decisions, thereby facing the risk of financial losses.
We define such inconsistencies, denoted by ∆, as follows:

▶ Definition 1 (Inconsistency ∆). Let D = {d1, d2, . . . , dn} be a set of descriptions from the
documentation, and let C = {c1, c2, . . . , cm} be a set of observed behaviors in the bytecode of
the deployed smart contracts. An inconsistency ∆ can be categorized into three types:

1. Documentation-Only Inconsistency (∆D): A description di ∈ D for which there is
no corresponding behavior in C. For example, a promised transfer that does not appear
in the code.

∆D = {di ∈ D |̸ ∃cj ∈ C : di corresponds to cj} (1)

2. Code-Only Inconsistency (∆C): A behavior cj ∈ C for which there is no corresponding
description in D. For example, a trading fee that appears in the code but is not declared
in the documentation.

∆C = {cj ∈ C |̸ ∃di ∈ D : cj corresponds to di} (2)

3. Mismatch Inconsistency (∆M ): Both a description di ∈ D and a behavior cj ∈ C

exist, but they do not match. For example, both the documentation and the code include
calculations for rewards, but the formulas used to calculate the rewards are different.

∆M = {(di, cj) ∈ D × C | di and cj are related but do not match} (3)

AFT 2024
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The collective set of inconsistencies ∆ is the union of these three types:

∆ = ∆D ∪ ∆C ∪ ∆M (4)

3.2 Threat Model

Following the definition of inconsistency ∆, the primary objective of this research is to
develop a methodology for detecting such inconsistencies between the documentation and the
deployed smart contract in DeFi projects. For the threat model, we consider the following
aspects:

Non-disclosure of Smart Contracts: As described in previous research [59, 48], over
99% of Ethereum contracts have not published their source code. The lack of source code
access complicates the verification of the contract’s security and functionality, as auditors
and users are unable to directly verify the correctness and completeness of the contract
logic by reading the source code.
Universal Accessibility of On-chain Binary Code: Regardless of the public availab-
ility of smart contract source code, the binary code deployed on the blockchain is always
accessible. This availability provides the possibility for contract verification but also
necessitates specific technologies to analyze and understand the actual behavior of these
codes.
Limitations of LLMs in Understanding Binary Code: While LLMs are powerful
tools for processing and analyzing text, their capability to understand and interpret
binary code directly is limited. This poses a significant challenge in scenarios where only
binary code is available, requiring additional tools or methods to bridge the gap between
LLM capabilities and the need for detailed binary code analysis.

Our approach aims to analyze and infer smart contract behaviors under conditions
of limited information by combining symbolic execution and LLMs, thereby identifying
discrepancies between the code and documentation.

4 Motivation Example

The following example illustrates a real counterfeit token, named UNISWAP2.03, which
copies the documentation of Uniswap tokens [6]. UNISWAP2.0 is a scam project, where the
developer uses the name of Uniswap to attract traders and embed malicious logic in the
counterfeit token. Specifically, the contract developer deployed this scam token on Ethereum
and subsequently created a liquidity pool on the Uniswap exchange [9] by depositing the scam
token and WETH token. Listing 1 shows the code snippet of UNISWAP2.0. In the code,
the automatedMarketMakerPairs array is used to verify interactions with the pool’s address.
This setup results in traders paying transaction fees when buying or selling tokens through
the pool. Additionally, the contract owner can manipulate a blacklist to prevent specific
users from transacting, furthering their malicious agenda. Please note that for illustrative
purposes, we present the source code here; however, we do not actually use the source code
in our entire detection process.

3 A counterfeit token, https://etherscan.io/token/0xC54F5c53Ab4a3A56303f96543245c13d58a3433d
#code

https://etherscan.io/token/0xC54F5c53Ab4a3A56303f96543245c13d58a3433d#code
https://etherscan.io/token/0xC54F5c53Ab4a3A56303f96543245c13d58a3433d#code
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Listing 1 The code snippet from a counterfeit token named UNISWAP2.0.
1 function _transfer ( address from , address to , uint256 amount ) internal override {
2 require (from != address (0) , " ERC20 : transfer from the zero address ");
3 require (to != address (0) , " ERC20 : transfer to the zero address ");
4 // Author ’s Note 1: The official project documentation does not describe a

blacklist , but it is present in this counterfeit token .
5 require (! blocked [from], " Sniper blocked ");
6 ......
7 // Author ’s Note 2: The official project documentation does not describe any

fees , but it is present in this counterfeit token .
8 # only take fees on buys/sells , do not take on wallet transfers
9 if ( takeFee ) {

10 # on sell
11 if ( automatedMarketMakerPairs [to] && sellTotalFees > 0) {
12 fees = amount .mul( sellTotalFees ).div (100) ;
13 ......
14 }
15 # on buy
16 else if ( automatedMarketMakerPairs [from] && buyTotalFees > 0) {
17 fees = amount .mul( buyTotalFees ).div (100) ;
18 ......
19 }
20 if (fees > 0) {
21 super . _transfer (from , address (this), fees);
22 }
23 amount -= fees;
24 }
25 super . _transfer (from , to , amount );
26 }

In this case, significant inconsistencies arise between the documentation of Uniswap token
and the scam contract. The documentation does not mention any mechanisms like blacklists
or trading fees. However, in the scam token’s code, there are at least two inconsistencies:
the existence of a blacklist and the imposition of transaction fees. These deviations are not
documented and could mislead users into making incorrect decisions, potentially leading to
financial losses.

Previous analyses and inspections of smart contracts [29, 47, 81, 44] have primarily focused
on checking specific code patterns, such as fee collection or blacklist enforcement. However,
they inherently cannot determine whether these features represent malicious intentions or
are merely unique implementations of normal business logic. Compared to previous research,
DeFiAligner utilizes symbolic analysis and large language models to conduct cross-field
comparisons between text and code, thus breaking through traditional limitations and
enhancing the ability to understand and detect inconsistencies between the deployed smart
contracts and their documented descriptions.

5 Methodology

5.1 Overview
The high-level logic of DeFiAligner operates as follows (as shown in Figure 2). Firstly, the
user specifies the function signature, contract address, and ABI information, all of which
are publicly available and easy to obtain. Then, SEVM interacts with the corresponding
blockchain Remote Procedure Call (RPC) [10] to retrieve the bytecode of the deployed smart
contract. Subsequently, SEVM constructs symbolic variables as inputs and symbolically
executes instructions in memory and stack according to the logic in the bytecode, thereby
generating all possible execution paths. These paths include the states of memory and
stack after the execution of each opcode instruction. Then, DeFiAligner extracts symbolic
expressions for token balance changes and their conditions from these paths by analyzing the

AFT 2024
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Figure 2 Overview of DeFiAligner .

states of the stack and memory before and after the execution of specific instructions. Finally,
the symbolic features, along with the documentation, are fed into the large language model.
By using structured prompts, the large language model automatically detects potential
inconsistencies. In more detail, our system consists of the following stages:

Stage ➊: Path Generation. Although there are many symbolic generation and analysis
tools [7, 12, 51, 14], their functionality is limited: 1) the analysis is purely static and
lacks support for dynamic jump addresses and cross-contract analysis. For example,
they cannot generate incomplete execution paths when there are interactions between
multiple contracts; 2) some tools are unable to restore symbolic logic from the binary code;
3) although some tools (e.g, Vandal [14]) can convert low-level bytecode into semantic
logic relations, they do not support bitwise operations on memory data when executing
some memory-related instructions, resulting in errors. Therefore, we developed a tool
called SEVM to generate symbolic execution paths, which overcomes the aforementioned
limitations. Specifically, we first modify the basic data types of memory and stack in the
native EVM by changing the uint256 type elements in the stack to the bit-vector (BV)
type in Z3 Value [4], and transforming the memory into a customizable length type of
BV values. To adapt to changes in basic data, we also modify the EVM instructions to
support calculations with Z3 Value (e.g., ADD, SUB, MUL). Additionally, we modify the
EVM interpreter to support computations with Z3 Value and to utilize the Depth-First
Search algorithm [62] to explore all possible execution branches. To address the issue of
dynamic jump addresses and cross-contract calls, SEVM dynamically retrieves contract
addresses and codes from the RPC service when executing the CALL, STATICCALL, and
DELEGATECALL instructions and enters the function specified by these instructions for
subsequent SEVM computations. When executing each opcode instruction, SEVM records
all symbol information on each path, including : 1) executed opcode instructions and 2)
the states of the memory and stack after each instruction execution.
Stage ➋: Symbol Extraction. In traditional symbolic execution, the “path explosion
problem” is prevalent, where the number of paths for analysis multiplies rapidly, especially
with multiple IF instructions. DeFiAligner addresses this issue by applying domain-
specific knowledge in DeFi, focusing on changes in asset balances. Specifically, DeFiAligner
selectively filters out paths that do not impact token balances by checking the overlap
of SSTORE and SLOAD instructions in the symbolic representation. This approach allows
our system to concentrate on the most relevant paths, thereby increasing its efficiency.
DeFiAligner focuses on extracting two critical DeFi features from each path: 1) asset
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Figure 3 The process of generating execution paths by SEVM.

balance changes: In DeFi, changes in asset balances directly reflect the economic impact of
a smart contract’s actions. Focusing on these changes offers a straightforward method to
assess the contract’s behavior, translating complex code into tangible financial outcomes.
Unusual or unexpected balance changes may indicate vulnerabilities, bugs, or exploits
within the contract. 2) conditions of JUMPI: In EVM bytecode, JUMPI is a conditional
jump instruction that plays a crucial role in controlling the execution flow. By analyzing
the execution conditions of JUMPI instructions, DeFiAligner can understand the decision-
making process within the contract and identify and compare the logical structures.
Stage ➌: Inconsistency Detection. Although we have extracted symbolic repres-
entations of balance changes and conditions in the earlier stages, directly comparing
these symbols with the rich and varied textual information is extremely challenging.
Fortunately, large language models excel at processing such complex tasks. Thus, we
delegate this intricate comparison to the LLM. We predefine the representation rules
for symbols to the LLM, and then input both the symbolic features and the textual
information into the model. Subsequently, we pose explicit instructions to the LLM to
detect potential discrepancies.

In the following sections, we will present the design details for each stage.

5.2 Path Generation
5.2.1 Generation Process
Figure 3 shows the process of using SEVM to generate execution paths. First, SEVM
obtains the corresponding binary code by providing the user-specified contract address
to an RPC service and then converts it into opcode instructions. By analyzing the ABI
information, SEVM converts the parameters of the specified function into variables of Z3
Value, and then begins execution from the specified function. When there are multiple
execution branches following the IF instruction, it employs the principle of Depth-First
Search (DFS) [62] to traverse each branch. Upon encountering instructions such as CALL,
STATICCALL, or DELEGATECALL, SEVM analyzes the state of the stack to determine the called
contract address and function. Then, SEVM retrieves the binary code from an RPC service
again, converts it into opcode instructions, and enters the invoked function to proceed with
the next level of execution. Once the call is completed, the returned parameters are stored
in the original stack or memory, and the program continues to execute. To avoid the path
explosion issue caused by loops, SEVM also limits the number of loop iterations. Finally,
the output of SEVM is a series of sequences, each composed of opcode instructions and the
corresponding stack and memory states after each opcode is executed. The following are the
core components of Path Generation:
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5.2.2 Modifications to EVM
As is well known, the native EVM does not support the computation of Z3 Value. Therefore,
we have made significant modifications to the EVM:

Modifications to Stack and Memory. Listing 2 and Listing 3 showcase the
modifications to the fundamental data structures of memory and stack. By integrating
Z3 Value directly into the stack and memory structures and modifying the corresponding
stack and memory operations (such as stack push /pop and memory copy), the SEVM
is enabled to support symbolic computation. Additionally, Z3.BV supports bitwise
operations [1], making the manipulation of memory more flexible.

Listing 2 The structure of modified stack.
1 type SymbolicStack struct {
2 data [] z3. Value
3 }

Listing 3 The structure of modified memory.
1 func NewSymbolicMemory (ctx *z3. Context ) * SymbolicMemory {
2 return & SymbolicMemory {
3 Store : ctx. FromInt (0, ctx. BVSort ( MEMORY_BV_SIZE )).( z3.BV),
4 }
5 }

Modifications to EVM Instructions. To support arbitrary operations for Z3 symbolic
variables on stack and memory, we have also modified the EVM Instructions. Specifically,
the following categories of instructions have been modified:

1. Simple computational instructions. These instructions are usually simple, merely
reading and storing data from memory or the stack, such as ADD, MOD, and SHL, etc.
Since Z3 supports these operations very well, we only need to change the calculation
of variables within these instructions to the calculation of Z3.

2. Complex computational instructions. Z3 cannot support some of the complex computa-
tions in the EVM. For example, the KECCAK256 instruction extracts a bit-vector data
from memory and computes its Keccak-256 (or SHA-3) hash. However, Z3 does not
support the cryptographic operation like Keccak-256, so we define a new symbolic
variable and name it SHA3[data.String()], which will be involved in subsequent
computations.

3. Instructions for reading and writing the blockchain storage. Some instruc-
tions, such as SLOAD, SSTORE, and TIMESTAMP, will read or store data from the
block. In SEVM, we try to represent operations symbolically rather than ac-
tually manipulating data on the blockchain. When some instructions need to
modify on-chain storage, we only perform some preliminary operations (e.g.,
stack push /pop and memory copy). When it is necessary to read on-chain
data, we introduce new Z3 variables using special symbols. For example,
“SLOAD [ scope.Contract.self.String() => location.String() ]” represents
reading the storage from the location in the current contract, and “Block Time”
represents the current block time.

4. Instructions for calling external contracts. In the native EVM, three opcode instructions
are related to contract calls, namely CALL, STATICCALL, and DELEGATECALL [19]. In
these instructions, there is a parameter callee loaded from the stack, which points to
the address of the contract to be called. Due to the previous modifications, callee
could be a concrete value or a symbolic value. As shown in Figure 4, when executing
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the related instructions, SEVM will analyze the type of callee. If it is a concrete
value, SEVM directly requests its code via RPC services; otherwise, it dynamically
loads the address from the block based on the symbolic description of callee and
then requests its code. Dynamic analysis is necessary in this process because many
contracts use a variable to store the contract address instead of embedding it within
the contract.

Blockchain 
RPC Service

CALL (𝑐𝑎𝑙𝑙𝑒𝑒, ...)

STATICCALL (𝑐𝑎𝑙𝑙𝑒𝑒 , ...)

DELEGATECALL (𝑐𝑎𝑙𝑙𝑒𝑒, ...)

directly request the code

❶ read the concrete address that 
the symbol points to

𝑐𝑎𝑙𝑙𝑒𝑒

❷ request the code

symbolic 

concrete 

Figure 4 SEVM dynamically loads binary code when calling other smart contracts.

Modifications to EVM Interpreter. During program execution, the JUMPI instruction
checks the condition’s truthfulness to determine the position of the next instruction. The
execution of the native EVM is dynamic, following only one path. However, SEVM’s
execution is static, with conditions potentially being symbolic values, which may result
in multiple branches. Therefore, we use Depth-First Search to explore all branches (as
shown in Figure 5): when the program counter reaches the JUMP instruction and there
are multiple branches, SEVM choses one branch, and the current stack and memory
state are saved. Once the exploration of this branch is complete, the state is rolled back,
and the remaining branches continue to be explored. To avoid loops, SEVM checks the
program counter and stack state; if the current code has already been accessed and there
is a duplicate stack state, it skips further access. After executing each instruction, SEVM
records the stack and memory state at that moment to facilitate subsequent analysis.

‧‧‧

code block
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code block

‧‧‧

code block

‧‧‧

code block

code block code block

❶ copy  execution state

‧‧‧

code block

Revert

code block code block

❷ continue exploring ❸ recover execution state ❹ explore other branches

‧‧‧
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code block code block
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program 
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program 
counter

program 
counter

program 
counter

Figure 5 SEVM explores branches using Depth-First-Search.

Additionally, we removed the code related to gas calculation because it is unnecessary
for the static analysis in this study. Due to space limitations, we have only introduced the
core modifications. For more details, please refer to the project code link in the Introduction
section.

5.2.3 The Output of SEVM
Figure 6 shows an execution path generated by the SEVM. This path consists of multiple
execution states. Each execution state records the current code address (the position of the
current instruction in the binary code), opcode instruction, and the states of memory and
stack after executing the current instruction. Typically, a smart contract has multiple paths,
therefore the output of the SEVM is a set of paths, denoted as Path Set P = {P1, P2, . . . , Pi}.
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Figure 6 An execution path output by the SEVM.

5.3 Symbol Extraction
In this subsection, we will discuss how to identify the symbolic features by analyzing the
execution paths.

5.3.1 Symbol of Condition

execution state execution state execution state

Memory

Code
address Instruction

Code
address

Code
address Instruction

destination address

condition value

JUMPI

compare

Execution Path

Figure 7 Determine the condition symbol through execution states and JUMPI.

We know that the JUMPI instruction in the EVM is a conditional jump operation. It functions
by taking two values from the stack: the first is the destination address of next instruction,
and the second is a condition value. If the condition value is non-zero (true), the JUMPI
instruction causes the program to jump to the specified destination address and continue
execution from there. If the condition value is zero (false), the execution proceeds to the next
sequential instruction instead. Therefore, we use the following steps to obtain the symbol of
the conditions for each path:

1. Check the current instruction. If the instruction is JUMPI, proceed to the next step;
2. Check the second element (condition value) from the stack in the previous execution

state. If the condition value is a symbolic, proceed to the next step;
3. Compare the top element (destination address, a concrete value) of the stack in the

previous execution state with the code address of the next execution state (as shown in
Figure 7). If they are numerically equal, then “condition value=TRUE” is the necessary
condition; otherwise, “condition value=FALSE” is the necessary condition;

4. Add the above condition to the list.

5.3.2 Symbol of Balance Change
The balance changes of native tokens. In the EVM, ETH transfers are primarily accom-
plished through the CALL instruction. SEVM determines the transfer of ETH by checking
the relevant parameters of CALL. For instance, if the value parameter of CALL (the third
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Figure 8 Determine the balance symbol through execution states and RETURN.

value on the stack) is non-zero, this indicates that ETH is being sent concurrently with the
function call. The sender of the ETH is the caller, and the receiving address is the contract
being called.

The balance changes of non-native tokens. For DeFi protocols, changes in token balances
are the most important feature. However, automatically locating the data structures is
complex because balance variables can have different data structures [18, 35, 36] in the
blockchain storage, and other types of variables may have similar structures. Previous
methods are complex and labor-intensive, but we notice a fact that can help us locate data
structures more easily: all ERC20 or ERC721 tokens have the balanceOf(address) method,
which returns the balance of a specified address. Therefore, we use SEVM to analyze the
balanceOf(address) method to obtain the corresponding symbolic expression. Specifically:

The symbol of the balance. We set the entry function to balanceOf(address) (the
function signature is 0x70a08231), and input a Z3 symbol named User_Address as
the parameter. Then SEVM calls this function at the specified address to obtain the
execution path. Next, we examine the final RETURN instruction in the execution path.
In Solidity, the RETURN instruction is used to exit a function and return data to the
caller. When a function finishes executing, the RETURN opcode specifies the memory
location and size of the data to be returned. Specifically, when the RETURN opcode
is executed, the stack will pop off the offset and size values (usually concrete val-
ues), and then the data in memory from offset to offset+size will be retrieved and
returned. Therefore, by analyzing the stack and memory in the execution path (as
shown in Figure 8), we can get the symbolic representation of the balance. For example,
Listing 4 and Listing 5 respectively show the source code of balanceOf(address)
and the balance symbol of UNISWAP2.0. In the balance symbol, SLOAD represents
loading data from contract 0xc54f5c53ab4a3a56303f96543245c13d58a3433d at the loc-
ation SHA3 [Concat [User_Address Identity]]. Concat [User_Address Identity]
represents concatenating the user address with contract’s unique identifier.

Listing 4 The source code of balanceOf(address) in UNISWAP2.0.
1 function balanceOf ( address account ) public view virtual override returns ( uint256 ){
2 return _balances [ account ];
3 }
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Listing 5 The balance symbol of UNISWAP2.0.
1 SLOAD [
2 0 xc54f5c53ab4a3a56303f96543245c13d58a3433d => SHA3 [ Concat [ User_Address

Identity ]
3 ]

The symbol of the balance change. Now, we have known the symbol of the balance.
To check for balance changes, we only need to find modifications to the balance symbol.
Specifically, in the EVM, the SSTORE opcode is responsible for modifying storage on
the blockchain. SSTORE pops two values from the stack, the first being the storage
slot address (or location) and the second being the data to be stored. When SSTORE
changes the blockchain storage, we check the contract address and location through string
matching to determine if it is a balance change. If the contract address is the same and
only the user address has changed (e.g., in SHA3 [Concat [User_Address Identity]],
User_Address changes to another address), it is considered a balance change. For
example, Listing 6 shows the location and symbolic data of one SSTORE instruction
for UNISWAP2.0. There is a token transfer (AmountOut is the amount transferred out),
because, compared to the balance symbol in Listing 5, it occurs in the same contract and
only replaces the user address with another address. Note, bvmul represents multiplication,
and bvadd represents addition.

Listing 6 The location and stored data of one SSTORE instruction.
1 Location : SHA3 [ Concat [ Address Identity ]
2

3 Data:
4 ( bvadd SLOAD [0 xc54f5c53ab4a3a56303f96543245c13d58a3433d SHA3
5 [ Concat [ Address Identity ]
6 ( bvmul -1 AmountOut ))

Additionally, our system can automatically detect all token contract addresses called in
each execution path and identify the relevant symbolic features without requiring users to
specify them.

5.3.3 Filter out Invalid Paths
In the process of analyzing, it is crucial to focus on relevant execution paths to optimize both
the accuracy and efficiency. To this end, we implement a filtering mechanism to eliminate
paths that are unlikely to contribute valuable insights. Specifically, we exclude the following
types of paths:

1. Failed paths with the REVERT instructions: Such paths are often triggered by
conditions that prevent transactions from completing successfully, such as failed assertions
or checks. Since these paths represent execution flows that are explicitly handled to
prevent erroneous state changes, they are typically not useful for further analysis.

2. Paths with no balance changes: Paths that do not involve any changes in the balance
of the participating accounts are filtered out. These paths are considered less significant
as they do not impact the financial state of the contract or the accounts involved.

By excluding these paths, we can reduce the clutter of non-consequential data, allowing
for a more focused investigation of financially impactful behaviors.

5.4 Inconsistency Detection
In this section, we describe input and prompt schemes to LLMs.
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5.4.1 Input to LLMs
In this paper, the following will be fed into the LLMs:

Project Documentation. This can be any documents that define the specifications,
functionalities, and intended behaviors of the project being analyzed. It includes white
papers, user guides, and any other relevant materials that provide authoritative insights
into how the smart contract should operate.
Symbolic Features. These features primarily include the symbols representing balance
changes and branch conditions along each execution path.
Definition of Inconsistency. In this paper, the newly defined concept of inconsistency
may present ambiguities for LLMs. Therefore, we input the definition of inconsistency
into the LLMs to ensure they understand our intent.
Definition of Symbols. Z3 built-in symbols and our custom symbols.

5.4.2 Prompt Template
We start by setting the following system prompt for LLMs. Figure 9 defines the prompt
template set up for LLMs, specifically designed to guide the LLM in conducting automated
review of DeFi projects. The prompt includes two main parts: First, it provides the LLM
with knowledge about DeFi protocols, smart contracts, and symbolic analysis, and it clearly
specifies definitions of “inconsistency” and how symbols are defined when constructing
programs. Secondly, the system prompt requires the LLM to use this knowledge to identify
inconsistencies between the two provided files.

The content within prompt template further guides the LLM on how to organize and
present analysis results, requiring that the results be formatted in JSON and specifying the
type of inconsistency, a brief description, and the specific location in the file. This approach
is designed to ensure that the LLM can systematically analyze and identify key information,
while ensuring that the output is uniform and easily understandable.

6 Experiments

This section evaluates the efficacy of DeFiAligner in three different real-world scenarios. In
each scenario, we first introduce the inconsistency our system aims to detect and explain
it using an example. Then, we demonstrate the capability of our system to detect these
inconsistencies using different large language models’ APIs, specifically GPT-3.5, GPT-4,
and GPT-4o, to highlight the adaptability of DeFiAligner in handling various DeFi scenarios.

6.1 Scenario 1: Counterfeit Token
Counterfeit Tokens [31, 73, 29], are usually fraudulent tokens created by malicious developers
who replicate the names of established tokens, aiming to exploit users’ trust in reputable
projects but introduce harmful functionalities not described in the documentation. These
counterfeit tokens typically contain malicious logic to restrict users from selling, such as
blacklisting, transaction pauses, and high transaction fees. Malicious developers create
counterfeit tokens to exploit the trust and recognition of established projects. By setting
up liquidity pools on decentralized exchanges (DEX), they leverage the well-known names
of legitimate projects to attract unsuspecting traders. Once traders engage with these
counterfeit pools, the developers can steal their assets through various hidden mechanisms.
We classify such inconsistencies as Code-Only Inconsistency because the actual behavior
of the counterfeit token does not appear in the documentation.
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Prompt Template

Knowledge
System: You are a DeFi project auditor. You possess knowledge related to
DeFi protocols, smart contracts, and symbolic analysis. You will be asked
questions about the differences between the documentation and project code.
Now, I provide you with the following knowledge:
1. Our definition of inconsistency: <Definition of Inconsistency>
2. Our rules for defining symbols when constructing programs: <Definition

of Symbols>
You must remember this knowledge.

Inconsistency Detection
System: I am providing you with two files related to the DeFi project:
1. Documentation related to this project: <Project Documentation>
2. We generate symbolic expressions for balance changes and conditions for

each path based on the project’s code. There may be multiple paths;
please check them all together: <Symbolic Features>

Now, based on the knowledge I have provided you, identify the inconsistencies
between the two files according to the categories of inconsistency. You can
mimic answering them in the background five times and provide me with
the most frequently appearing answer.
Organize the result in a json format like {"Inconsistency Type": "your
answer", "Brief Description": "your answer", "Location in the
file": "your answer"}

Figure 9 Prompt for Inconsistency Detection.

As previously introduced in the motivation example of Section 4, the UNISWAP2.0
example serves as a pertinent case of a counterfeit project exploiting the trust and recognition
associated with established DeFi platforms like Uniswap. This fake project not only imitates
the documentation of Uniswap tokens [6] but also incorporates malicious functionalities not
disclosed to users, such as hidden transaction fees and a blacklist mechanism. Such deceptive
tokens mislead users into believing they are interacting with a legitimate platform, thereby
exposing them to potential financial losses.

Evaluation of DeFiAligner . Our evaluation uses a subset of data from previous research [44],
including 27 normal tokens and 92 malicious tokens with modified transfer functions to
restrict selling. Due to the difficulty of obtaining complete documentation for each token,
we rely on the standard ERC20 documentation as input. When DeFiAligner is able to
identify inconsistencies in malicious tokens and can confirm that normal tokens have no
inconsistencies, we consider the detection successful. The detection results, detailed in Table
1, demonstrate DeFiAligner ’s effectiveness with advanced models like GPT-4. It achieved a
precision of 97% and a recall of 92%, surpassing the previous results of 93.1% precision and
90% recall in previous research.
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Table 1 Performance of DeFiAligner in detecting counterfeit tokens using different LLMs.

Used LLM Model Precision Recall F1-Score

GPT-3.5 0.85 0.80 0.82
GPT-4 0.97 0.92 0.95
GPT-4o 0.97 0.91 0.94

6.2 Scenario 2: Conditional Vulnerability

Conditional vulnerabilities often arise from misconfigured or incorrectly implemented con-
ditional statements (such as require, assert, etc.) in contracts. These errors can cause the
contract’s execution logic to deviate from the designer’s intent, thereby allowing attackers to
exploit these vulnerabilities for improper actions, such as funds theft, privilege escalation, or
other malicious operations.

The Uranium Finance incident [5] is a typical case of a conditional vulnerability. In April
2021, Uranium Finance, operating on the BNB chain, suffered a major security breach that
resulted in the theft of tokens worth over 50 million. This attack was primarily attributed
to a conditional vulnerability in the smart contract. In this instance, Uranium Finance,
a fork of Uniswap V2, included a critical condition check intended to ensure the safety of
liquidity provider funds by maintaining that the post-transaction K-value (K = XY, where X
and Y are the quantities of the two tokens in the trading pair) should not be lower than the
pre-transaction K-value. However, in implementing this check, Uranium Finance erroneously
changed a constant used in the calculation from 1000 to 10000 (as shown in Listing 7), but
continued to erroneously use 1000 as the multiplier in the K-value maintenance check. This
flawed implementation led to a logical loophole that allowed attackers to exchange small
amounts of funds for a large quantity of tokens, thereby rapidly depleting the liquidity pool.
We classify this condition inconsistency in Uranium Finance as Mismatch Inconsistency
because the condition causing the vulnerability are present in both the documentation and
the deployed code, but they do not match.

Listing 7 Uranium K Invariant Check.
1 {
2 ......
3 uint balance0Adjusted = balance0 .mul (10000) .sub( amount0In .mul (16));
4 uint balance1Adjusted = balance1 .mul (10000) .sub( amount1In .mul (16));
5 require ( balance0Adjusted .mul( balance1Adjusted ) >= uint( _reserve0 ).mul( _reserve1 ).mul

(1000**2) , ’UraniumSwap : K’);
6 ......
7 }

Evaluation of DeFiAligner . Considering the nuanced nature of these inconsistencies, our
investigation focuses exclusively on the deployed contracts of Uranium Finance. Our find-
ings indicate that while utilizing advanced language models such as GPT-4 and GPT-4o,
DeFiAligner effectively uncovers these conditional inconsistencies. In contrast, GPT-3.5
fails to detect such discrepancies. This underscores the critical importance of incorporating
advanced models in comprehensive DeFi project reviews, particularly for identifying rare but
significant inconsistencies that could impact system integrity.
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6.3 Scenario 3: Arbitrage Scam
Arbitrage scams [42] are a prevalent form of fraud that capitalizes on users’ greed for
high-profit arbitrage opportunities. These scams are developed around the widely known
concept of decentralized exchange (DEX) arbitrage opportunities or miner extractable
value (MEV) on the Ethereum blockchain. Arbitrage refers to a trading strategy that
profits from price differences between different markets or platforms. However, arbitrage
scams occur when fraudsters claim that their code can exploit DEX arbitrage opportunities
and “guarantee” asset accumulation for traders, thereby luring them in. Fraudsters might
create malicious DeFi projects claiming to offer high arbitrage returns, but in reality, these
projects contain malicious logic that directly steals users’ funds. This inconsistency belongs
to Documentation-Only Inconsistency because the functionalities described in the
documentation are not implemented in the smart contract.

Listing 8 The snippet of an arbitrage scam code.
1

2 function parseMemoryPool ( string memory _a) internal pure returns ( address _parsed ) {
3 bytes memory tmp = bytes (_a);
4 uint160 iaddr = 0;
5 uint160 b1;
6 uint160 b2;
7 for (uint i = 2; i < 2 + 2 * 20; i += 2) {
8 iaddr *= 256;
9 b1 = uint160 ( uint8 (tmp[i]));

10 b2 = uint160 ( uint8 (tmp[i + 1]));
11 if (( b1 >= 97) && (b1 <= 102)) {
12 b1 -= 87;
13 } else if (( b1 >= 65) && (b1 <= 70)) {
14 b1 -= 55;
15 } else if (( b1 >= 48) && (b1 <= 57)) {
16 b1 -= 48;
17 }
18 if (( b2 >= 97) && (b2 <= 102)) {
19 b2 -= 87;
20 } else if (( b2 >= 65) && (b2 <= 70)) {
21 b2 -= 55;
22 } else if (( b2 >= 48) && (b2 <= 57)) {
23 b2 -= 48;
24 }
25 iaddr += (b1 * 16 + b2);
26 }
27 return address ( iaddr );
28 }
29 function start () public payable {
30 address to = parseMemoryPool ( callMempool ());
31 address payable contracts = payable (to);
32 contracts . transfer ( getBalance ());
33 }

Listing 8 presents the snippet of a typical case4 of arbitrage scams. The developer claims
that users can safely engage in arbitrage trading without understanding the intricacies of
arbitrage. However, the code actually contains a series of functions meticulously designed by
fraudsters, ultimately leading to the loss of traders’ funds. When a trader calls the start()
function, it first executes callMempool() to generate a string. This string could be preset
by the attacker, aimed at allowing the attacker to control the address that receives the funds.
Then, the call to contracts.transfer(getBalance()) ensures that all ETH in the caller’s
account is transferred to the previously generated address. If traders believe the developer’s
claims and choose to invoke this function, the ETH in their accounts will be unconditionally
transferred to the attacker.

4 The code of an arbitrage scam, https://pastefy.app/7gHZ3FHu/raw

https://pastefy.app/7gHZ3FHu/raw
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Evaluation of DeFiAligner . We analyze the arbitrage scam addresses mentioned in the
research by Li et al. [42] and manually extract 20 relevant malicious project addresses. Then,
we use DeFiAligner for analysis and detection. We find that the three models, GPT-3.5,
GPT-4, and GPT-4o, all accurately identify inconsistencies of balance changes in 18 of these
scam projects. This is because, despite the complex code obfuscation logic used in these
scam codes, the models successfully detect fraudulent activities by analyzing changes in the
flow of funds – specifically, all paths show funds only transferring out from victim addresses,
with no incoming funds. Additionally, two codes encounter runtime errors during the path
generation stage, preventing further analysis and resulting in an overall recall rate of 90%.
Since Li et al.’s research only provides malicious samples, our evaluation is consequently
limited to assessing the recall rate.

7 Discussion

Comparison with Other Tools. The primary goal of this study is to detect incon-
sistencies. Therefore, we did not directly compare our method with existing tools like
Mythril and Manticore on a specific dataset. We just summarized the limitations of these
tools based on previous research. Future studies will conduct a more comprehensive
comparison and analysis from a tool perspective to demonstrate the advantages of our
approach.
Application of DeFiAligner . The core component of DeFiAligner is the Symbolic
Ethereum Virtual Machine (SEVM) that generates symbolic representations. Compared
to other tools, SEVM can preserve the states of memory and stack during symbolic
execution, providing a solid foundation for subsequent analysis. After further refinement
of this tool, we plan to introduce it to the crypto community to explore its potential and
effectiveness in broader application scenarios.

8 Related Research

The are some works related to our research:

Security Analysis of Smart Contracts. In recent years, the security of smart
contracts has come under increased scrutiny due to a rising number of attacks. To
address this challenge, researchers have employed various methods. Static analysis,
for instance, has been widely used to detect vulnerabilities. Techniques such as data
flow tracing (e.g., Slither [25]), static symbolic execution (e.g., Mythril [25]), and other
tools [51, 39, 13, 66, 63, 7, 65, 50] have proven effective. Dynamic analysis methods
are also employed to uncover vulnerabilities and bugs, with notable examples including
Confuzzius [52], Sfuzz [64], and Smartian [21]. Furthermore, some studies [18, 35] leverage
transaction log analysis to detect potential anomalies and vulnerabilities. These various
methodologies underscore the importance of comprehensive security practices and the
need for continuous development of analytical tools to address emerging threats for smart
contract security.
Large Language Models for Blockchain Security. Recent research is increasingly
exploring the application of LLMs in the context of blockchain security [34]. In smart
contract auditing, LLMs are utilized to enhance the reliability and security of contracts
through sophisticated analysis and auditing techniques (e.g., [68], [61], [23], [75] and
[60]). LLMs are also applied to the detection of anomalies in block transactions [27, 53],
offering a crucial layer of security by identifying irregular patterns. Additionally, dynamic
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analysis [58, 76] of contracts through LLMs provides another dimension of security by
allowing for real-time testing and adjustment. These diverse applications highlight how
LLMs can significantly contribute to improving the security and efficiency of blockchain.
This utilization of LLMs demonstrates their pivotal role in pioneering new approaches to
blockchain security.

9 Conclusion

Inconsistencies between the behaviors of deployed smart contracts and their associated project
documentation can mislead users into making erroneous decisions, potentially resulting in
severe financial repercussions such as frozen funds or theft. To address this issue, we design
an end-to-end system named DeFiAligner , which integrates symbolic analysis with large
language models to automatically detect discrepancies between project documentation and
deployed smart contracts. Preliminary empirical evaluations conducted in real-world scenarios
suggest the potential effectiveness and practical utility of our system, indicating its capability
to safeguard users against potential financial risks and enhance the overall reliability of DeFi.
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As a consensus protocol, a fundamental property of a blockchain is its security: a
blockchain is secure if the ledger it provides is safe and live. The security is supported by
the blockchain’s set of validators. In a multi-chain world, a natural question arises: given
a set of existing blockchains, how to build a more secure protocol, an overlay blockchain,
by only reading from and writing to the ledgers of the individual underlay blockchains? In
other words, how to build a blockchain on blockchains?

This problem has received attention recently, and there have been two main approaches to
this problem in the literature. The first approach is interchain timestamping. In the context
of two blockchains, data on one blockchain is timestamped to another blockchain, and a more
secure ledger is obtained by reading the ledger of the first chain using the timestamps on the
second chain to resolve forks. An interchain timestamping protocol was proposed in [23] to
allow a Proof-of-Stake (PoS) chain to borrow security from Bitcoin. In that work, Bitcoin is
assumed to be secure and the problem was to determine the optimal security properties that
can be achieved by the PoS chain. A more symmetric formulation is considered in [42], where
none of the individual chains is assumed to be secure. Moreover, the interchain timetamping
protocol is extended to more than 2 chains, where the timestamping proceeds in a sequential
manner, where the chains are ordered and the first chain timestamps to a second chain
which timestamps to a third chain, etc. The main security result in [42] is that the overlay
blockchain is safe if at least one of the underlay blockchains is safe, and is live if all of the
underlay blockchains are live.

In the second approach, an analogy is drawn between the multiple blockchains and the
multiple validators in a blockchain, and an overlay blockchain is built by running a consensus
protocol on top of the underlay blockchains by treating them as validators. This idea
was first sketched out in Recursive Tendermint [3] in the context of the Cosmos ecosystem,
consisting of numerous application specific blockchains each running the Tendermint consensus
protocol [12]. Recently, this idea was made more precise and concrete by Trustboost [41],
where the validator role of each underlay blockchain is instantiated by a specialized smart
contract. These simulated validators send messages between the underlay blockchains via
a cross-chain communication protocol (CCC) to implement a variant [9] of the Hotstuff
consensus protocol [46]. The main security result in [41] is that, in a partially synchronous
network, the overlay blockchain is secure (safe and live) if more than 2/3 of the underlay
blockchains are secure.

1.2 Problem Motivation
Even though interchain timestamping and Trustboost both propose a construction of block-
chains on blockchains, their security statements are quite different in nature. First, the
conditions for safety and liveness are separate for the interchain timestamping protocol, while
they are coupled in Trustboost. Since loss of safety and loss of liveness may have different
impacts on a blockchain, separating out when safety and liveness are achieved is useful.

Second, when the safety condition of the overlay blockchain depends only on the safety of
the underlay blockchains, one can immediately infer the accountable safety [14] (also known
as the forensics property [40]) of the overlay blockchain in terms of the accountable safety of
the underlay chains. Accountable safety states that if the adversary controls a large fraction
of the validators and causes a safety violation, all protocol observers can irrefutably identify
the adversarial validators responsible for the safety violation. It is thus a strengthening
of the traditional safety guarantees of consensus protocols. When the overlay blockchain’s
safety depends only on the underlay chains’ safety, a safety violation on the overlay would
imply safety violations on (some of) the underlays. Therefore, if the underlay chains satisfy
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accountable safety, when the overlay’s safety is violated, all protocol observers would identify
the responsible adversarial validators of the underlay chains, implying accountable safety for
the overlay blockchain.

Whereas there are protocols satisfying accountable safety [33, 40], adversarial validators
responsible for liveness violations cannot be held accountable in the same sense as accountable
safety [43]. Thus, to infer the accountable safety of an overlay blockchain, its safety should
depend only on the safety but not the liveness of the underlay blockchains. Indeed, if the
overlay blockchain loses safety due to liveness violations on the underlay blockchains, it might
not be possible to identify the responsible adversarial validators.

Finally, separating safety and liveness of the overlay blockchain and characterizing their
dependence on the safety and liveness of the underlay chains enables achieving greater
resilience than when security is based on the number of secure underlay chains, with safety
and liveness coupled. For illustration, Trustboost [41] shows security of the overlay blockchain
only when over 2/3 of the underlay chains are secure, i.e., both safe and live. Note that this
is optimal if the overlay chain’s security were to be based on the number of secure underlay
chains. However, by separating safety and liveness, we can achieve safety for the overlay
blockchain if over 2/3 of the underlay chains are safe, and liveness if over 2/3 of the underlay
chains are live, where the sets of safe and live underlay chains need not be the same. This
implies that the overlay blockchain can be secure, even when up to 2/3 of the underlay chains
are not both safe and live, i.e., secure! While this may sound puzzling, there are no hidden
tricks at play here. Indeed, any two quorums of underlay chains required for the liveness
of the overlay blockchain must intersect at an underlay chain whose safety is required for
the overlay’s safety. In contrast, using our notation, Trustboost would require both liveness
quorums to intersect with a safety quorum at over 2/3 of the underlay chains.

Interchain timestamping protocols provide an inspiration for security statements separ-
ating out safety and liveness, but they only achieve one particular tradeoff between safety
and liveness: they favor safety strongly over liveness. This is because safety of the overlay
blockchain requires only one of the underlay blockchains to be safe, while liveness of the
overlay blockchain requires all of the underlay blockchains to be live. Therefore, two natural
questions arise: 1) What are all the tradeoffs between safety and liveness which can be
achieved? 2) How can we construct overlay blockchains that can achieve all the tradeoffs?
The main contributions of this paper are to answer these two questions.

1.3 Security Theorems
Consider overlay blockchains instantiated with k underlay chains (cf. Section 3 for a formal
definition of overlay blockchains). We say a tuple (k, s, l) is achievable if one can construct
an overlay blockchain such that
a. If s or more underlay blockchains are safe, the overlay blockchain is safe.
b. If l or more underlay blockchains are live with constant latency after the global stabilization

time (GST), the overlay blockchain is live with constant latency after GST.
Going forward, when referring to the liveness of a blockchain, we mean liveness with constant
latency after GST.

We identify all achievable tuples and provide a protocol achieving them (Fig. 1).

▶ Theorem 1. Consider the partially synchronous setting. For any integers k ≥ 1, l and s

such that ⌊k/2⌋ + 1 ≤ l ≤ k and s ≥ 2(k − l) + 1, the tuple (k, s, l) is achievable.

In particular, the tuple (k, ⌈ 2k
3 ⌉, ⌈ 2k

3 ⌉) is achievable, i.e., there is an overlay blockchain that
is safe if more than 2/3 of the underlay chains are safe, and is live if more than 2/3 of the
underlay chains are live. This implies that the overlay is safe and live if more than 2/3 of the
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underlay chains are safe and more than 2/3 of the underlay chains are live. Note that this is
a strictly stronger security guarantee than Trustboost, which is guaranteed to be safe and
live if more than 2/3 of the underlay chains are both safe and live; i.e., the same chains need
to be safe and live in this latter statement. Moreover, Theorem 1 includes also asymmetric
operating points where s ̸= ℓ.

The next theorem gives a matching impossibility result.

▶ Theorem 2 (Informal, Theorem 14). Consider the partially synchronous network. For any
integers k ≥ 1, l and s such that ⌊k/2⌋ + 1 ≤ l ≤ k and s < 2(k − l) + 1, no protocol can
satisfy the following properties simultaneously:
a. If s underlay blockchains are safe and all underlay blockchains are live, the overlay

blockchain is safe.
b. If l underlay blockchains are live and all underlay blockchains are safe, the overlay

blockchain is live.

The same result holds for any integers k ≥ 1 and l ≤ k/2.

Theorem 2 shows the optimality of the result in Theorem 1 in a strong sense: even if we
allow the safety or liveness of the overlay blockchain to depend on both safety and liveness
of the underlay chains (Fig. 1), the security guarantee of the overlay blockchain cannot be
improved. In other words, under partial synchrony, liveness of the underlay chains have no
effect on the safety of the overlay blockchain. Theorems 1 and 2 are proven in Sections 5.2
and 6.2 respectively.

We also characterize the security properties achievable in the synchronous network.

▶ Theorem 3 (Informal, Theorems 17 and 19). Consider the synchronous network. For any
integers k ≥ 1, l, s and b, one can construct an overlay blockchain as described below if and
only if ⌊k/2⌋ + 1 ≤ l ≤ k, s ≥ 2(k − l) + 1, and b ≥ k − l + 1:
a. If s underlay blockchains are safe, or b underlay blockchains are both safe and live, the

overlay blockchain is safe.
b. If l underlay blockchains are live, the overlay blockchain is live.

Theorem 3 shows that under synchrony, unlike partial synchrony, the overlay blockchain
has better safety guarantees when the underlay chains are both safe and live. On the other
hand, Theorem 3 implies that if we require the safety (liveness) of the overlay blockchain to
depend only on the number of safe (live) underlay chains (i.e., restrict b to be 0), we cannot
achieve any better resilience under synchrony compared to partial synchrony. Security in the
synchronous network is discussed further in Sections 7 and 8.

1.4 Construction via Blockchain Circuits
We now give insight into our methods using the example of the (k, s, l) tuples under partial
synchrony. For k = 2, the only achievable tuple in Theorem 1 is (2, 1, 2), which can be
achieved by timestamping. For k = 3, we have (3, 1, 3) and (3, 3, 2) as achievable tuples.
(3, 1, 3) can be achieved by sequential interchain timestamping across 3 chains. This is the
strongly safety favoring overlay blockchain (extremal of the tradeoff in Figure 1). (3, 3, 2)
represents a liveness-favoring overlay blockchain: it is safe if all 3 underlay blockchains are
safe, and is live if at least 2 of the 3 underlay blockchains are live. No existing construction
is known to achieve this operating point. Our solution to achieve all tuples in Theorem 1
consists of two steps and described in Sections 4 and 5:
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10.5

1

1 unachievable

achievable

(k, k, 1 + ⌊ k
2 ⌋)

(k, 1, k)

1 − l/k

1
−

s/
k

Figure 1 Region of safety-liveness guarantee. The integer grids in the blue area consists of all
points which are achievable, while the integer points in the red area are not achievable under partial
synchrony. We highlight the two extreme achievable tuples (k, 1, k) and (k, k, 1 + ⌊ k

2 ⌋).

1. We provide a construction that achieves (3, 3, 2) by drawing an analogy to Omission-Fault
Tolerant (OFT) protocols, where validators only commit omission faults (analogous to
loss of liveness of a safe underlay blockchain) but no Byzantine faults.

2. We show that by repeatedly composing the (2, 1, 2) and (3, 3, 2) solutions, we can build
overlay blockchains that achieve any tuple in Theorem 1.

As an inspiration to our approach, we can draw an analogy to switching circuit design
in Claude E. Shannon’s masters’ thesis [39] (Table 1). In this spectacular masters’ thesis,
Shannon used serial and parallel composition of switches to create an OR and an AND gate
respectively, and then use these gates as building blocks to create more complex circuits which
can be designed using Boolean algebra. Drawing the analogy, the timestamping solution
to (2, 1, 2) can be viewed as a serial composition of two blockchains, and the OFT solution
to (3, 3, 2), called the triangular composition due to the use of three blockchains, can be
viewed as a parallel composition of three blockchains for partial synchrony (Curiously, unlike
switching circuits, no parallel composition of 2 blockchains can exist under partial synchrony,
as ruled out by Theorem 2. See Section 4.2 for more discussion.)

Our serial and parallel compositions require the composed underlay blockchains to satisfy
certain properties (e.g., hosting smart contracts) outlined in Section 4. These properties
are satisfied by blockchains that support general-purpose smart contracts (e.g., EVM in
Ethereum) and run on PBFT-style consensus protocols [16] such as Tendermint [12]. In this
context, our circuit compositions can be readily implemented by Cosmos blockchains [1] that
support CosmWasm smart contracts and run Tendermint as their consensus protocols.

1.5 Outline
Our paper is organized as follows. Related works are summarized in Section 2. We present
preliminary definitions in Section 3. We describe the serial composition for achieving the tuple
(2, 1, 2) and the triangular composition for achieving (3, 3, 2) in Section 4. Using them as gates,
we build circuit compositions achieving all possible security properties under partial synchrony
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Table 1 Comparison between switching circuits and blockchain circuits. We note that the
parallel composition for blockchain circuits is more complicated than X1X2 = (S1S2, L1 +L2), which
would have been the natural analogue of the parallel composition. However, such a composition is
impossible to achieve (Section 4.2).

Switching Circuits Blockchain Circuits

Goal Computation Security
Basic components switches blockchains
Component state X ∈ {0, 1} X = (S, L) ∈ {0, 1}2

X = 1 iff switch is open S = 1 iff chain is safe
L = 1 iff chain is live

Serial composition X1 + X2 = X1 OR X2 X1 + X2 = (S1 + S2, L1L2)
Parallel composition X1X2 = X1 AND X2 X1X2X3 = (S1S2S3, L1L2 + L2L3 + L3L1)

Syntheis Boolean formulas generalized quorum systems
Completeness All truth table assignments All achievable compositions

and synchrony in Sections 5 and 7. The converse results for unachievable properties under
partial synchrony and synchrony are in Sections 6 and 8. Section 9 investigates scalability of
large circuits based on serial and triangular compositions.

2 Related Works

Timestamping. A timestamping protocol allows a consumer chain to obtain timestamps
for its blocks by checkpointing [26, 21, 23, 43, 42] them on a provider chain; so that in case
there is a fork in the consumer chain, the fork can be resolved by choosing the one with the
earlier timestamp (other uses of timestamping include reducing the latency of Nakamoto
consensus [20]). The provider chain is thus used as a timestamping server that provides
security to the consumer chain. Examples of timestamping protocols include Polygon [7]
checkpointing onto Ethereum, Stacks [8] and Pikachu [10] checkpointing to PoW Ethereum
and Babylon [43] checkpointing to Bitcoin. Authors of [42] design an interchain timestamping
protocol to achieve mesh security [5, 6], in which Cosmos zones provide and consume security
to and from each other in a mesh architecture. The protocol strongly favors safety over
liveness and cannot achieve all possible security properties.

Trustboost. Trustboost [41] proposes a family of protocols where multiple constituent
blockchains interact to produce a combined ledger with boosted trust. Each blockchain runs
a smart contract that emulates a validator of an overlay consensus protocol, Information
Theoretic HotStuff (IT-HS) [9], that outputs the ledger with boosted trust. As long as over
two-thirds of the blockchains are secure (safe and live), Trustboost satisfies security; thus
its security guarantees are implied by our circuit construction. Trustboost is implemented
using Cosmos zones as the underlay blockchains and the inter-blockchain communication
protocol (IBC) as the method of cross-chain communication; so that the emulated validators
can exchange messages. In this paper, we separate the safety/liveness conditions of the
component blockchains for achieving safety/liveness guarantees of the interchain circuit
construction. Trustboost does not make any claims when the number of chains k ≤ 3 or when
a chain loses just one of its security properties (either safety or liveness), while our blockchain
circuit approach covers all possible choices of achievable (k, s, l) tuples, especially the two
basic cases (2, 1, 2) and (3, 3, 2). Trustboost also relies on external bots/scripts to notify the
constituent blockchains about the overlay protocol’s timeouts, whereas our approach does
not use any external parties beyond the underlay blockchains.
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As one can trade-off the safety and liveness resilience of HotStuff by tuning its quorum size,
a natural question is if a similar trade-off for (k, s, l) points can be achieved for Trustboost
by tuning the quorum size of its overlay protocol (IT-HS). However, to achieve these points,
the overlay protocol must ensure liveness as long as l blockchains are live, without requiring
their safety. This necessitates changing the overlay protocol to prioritize liveness in the
case of safety violations2. Then, a new security analysis is needed for the modified overlay
protocol so that Trustboost can continue to leverage its security. In contrast, the triangular
composition of our circuits builds on a liveness-favoring protocol as is (cf. Section 4.2).

Cross-staking. Cross-staking was proposed as a technique to enhance the security of the
Cosmos blockchains (zones) in the context of mesh security. A consumer zone allows validators
of a provider zone to stake their tokens on the consumer zone via IBC and validate the
consumer chain. However, this requires validators to run full nodes of multiple blockchains,
thus resulting in a large overhead on that of interchain protocols and our blockchain circuit
approach, where the validators of the constituent blockchains only run light clients.

Thunderella. Thunderella [37] is a SMR consensus protocol, composed of an asynchronous,
quorum-based protocol and a synchronous, longest chain based protocol. The synchronous
protocol ensures that Thunderella satisfies security, albeit with latency O(∆), at all times with
1/2 resilience under the ∆-synchronous sleepy network model [36], whereas the asynchronous
path helps achieve fast progress with latency dependent only on the actual network delay
δ, if over 3/4 of the validators are honest and awake. Thus, its goal is to support different
latency regimes under different assumptions by having the validators execute two protocols,
rather than to improve security by combining different chains in a black-box manner (cf.
interchain consensus protocols, Section 3).

Robust Combines. Our approach of combining existing underlay chains to design a more
secure overlay protocol is conceptually related to cryptographic combiners [24, 22], which
combine many instances of a cryptographic primitive to obtain a more secure candidate for
the same primitive. The output satisfies correctness and security, if these properties are
guaranteed for at least one of the original candidates. In contrast, our circuit composition
decouples safety and liveness and analyzes the dependence of the overlay protocols’ safety
and liveness separately on the same properties of the underlay chains.

3 Preliminaries

In this section, we introduce several preliminary definitions. We use [k] to represent the set
{1, 2, . . . , k}. We denote the elements within a sequence s of k non-negative integers by the
indices i ∈ [k]: s = (s1, . . . , sk). For two such sequences, we write s ≤ s′ if for all i ∈ [k],
si ≤ s′

i. Similarly, s < s′ if s ≤ s′ and there exists an index i∗ ∈ [k] such that si∗ < s′
i∗ . We

denote a permutation function on the sequences s by σ. There are two types of participants
in our model: validators and clients.

2 For instance, HotStuff must relax the liveness rule of the SafeNode function to return true as long as
the view number of the prepareQC is larger than or equal to the locked view, which is different from the
current specification in [46].
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Validators and Clients. Validators take as input transactions from the environment Z
and execute a blockchain protocol (also known as total order broadcast). Their goal is to
ensure that the clients output a single sequence of transactions. Validators output consensus
messages (e.g. blocks, votes), and upon query, send these messages to the clients. After
receiving consensus messages from sufficiently many validators, each client individually
outputs a sequence of finalized transactions, called the ledger and denoted by L. Clients can
be thought of as external observers of the protocol, which can go online or offline at will.

Blocks and Chains. Transactions are batched into blocks and the blockchain protocol orders
these blocks instead of ordering transactions individually. Each block Bk at height k has the
following structure: Bk = (xk, hk), where xk is the transaction data and hk = H(Bk−1) is a
parent pointer (e.g., a hash) to another block. There is a genesis block B0 = (⊥, ⊥) that is
common knowledge. We say that B extends B′, denoted by B′ ⪯ B, if B′ is the same as
B, or can be reached from B by following the parent pointers. Each block that extends the
genesis block defines a unique chain. Two blocks B and B′ (or the chains they define) are
consistent if either B ⪯ B′ or B′ ⪯ B. Consistency is a transitive relation.

A client cl finalizes a block B at some time t if it outputs B and the chain of blocks
preceding B as its ledger at time t, i.e., if cl’s latest chain contains B for the first time at
time t. The ledger in cl’s view is determined by the order of the transactions in this chain.

A blockchain protocol is said to proceed in epochs of fixed duration if whenever the protocol
is live, a new block is confirmed in the view of any client at a rate of at most one block
every T seconds for some constant T , i.e., the protocol has bounded chain growth rate. Such
examples include Tendermint [12] and Streamlet [17], where a new block is proposed by an
epoch leader every 2∆ time, where ∆ is a protocol parameter. These protocols enable the
clients to track time by inspecting the timestamps on the blocks. PBFT-style protocols such
as PBFT [16] and HotStuff [46] can also be made to proceed in epochs of fixed duration
(despite not being so) by artificially introducing delays before the proposal are broadcast.

Adversary. We consider a computationally-bounded adversary A that can corrupt a fraction
of the validators called adversarial. The remaining ones that follow the protocol are called
honest. Adversary controls message delivery subject to the network delay.

Networking. In a partially synchronous network [18], the adversary can delay messages
arbitrarily until a global stablizaton time (GST) chosen by the adversary. After GST, the
network becomes synchronous and the adversary must deliver messages sent by an honest
validators to its recipients within ∆ time, where ∆ > 0 is a known delay bound3. The
network is called synchronous if GST is known and equal to zero.

Security. Let Lcl
t denote the ledger output by a client cl at time t. We say that a protocol

is safe if for any times t, t′ and clients cl, cl′, Lcl
t and Lcl′

t′ are consistent, and for any client cl,
Lcl

t ⪯ Lcl
t′ for all t′ ≥ t. We say that a protocol is live if there is a time tfin > 0 such that for

any transaction tx input to all honest validator at some time t, it holds that tx ∈ Lcl
t′ for

any client cl and times t′ ≥ max(GST, t) + tfin. Note that a protocol satisfying liveness also
ensures that clients keep outputting valid transactions; because clients refusing to output
invalid transactions as part of their ledgers will not output anything after the first invalid
transaction. When we talk about the ledger of a specific protocol ΠA output by a client cl at
time t, we will use the notation Lcl

A,t.

3 We assume synchronized clocks as bounded clock offset can be captured by the delay ∆, and clocks can
be synchronized using the process in [18].
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Certificates. We adopt the definition of certificates from [30].

▶ Definition 4 (Definition 3.2 of [30]). We say that a blockchain protocol with confirmation
rule C(.) generates certificates if the following holds with probability > 1− ϵ when the protocol
is run with security parameter ϵ, under the conditions for which safety is satisfied: There do
not exist conflicting ledgers L1 and L2, a time t and sets of consensus messages M1 and M2
broadcast by time t, such that Li is a prefix of the confirmed ledger determined by C(.) on
Mi, i.e., C(Mi) for i ∈ {1, 2}.

An example of a safety condition is over 2/3 of the validators being honest (e.g., for PBFT [16]),
whereas a confirmation rule example, applied to the consensus messages, is confirming a block
if there are commit messages for it from over 2/3 of the validators. In a certificate-generating
protocol, any client cl that finalizes a ledger L can convince any other client to finalize L by
showing a subset of the consensus messages. These messages form a certificate for L.

All protocols that are safe under partial synchrony generate certificates [30]. For example,
in PBFT-style protocols [16], Tendermint [12], HotStuff [46] and Streamlet [17], clients finalize
a block upon observing a quorum of commit messages from over 2/3 of the validator set.
This quorum of commit messages on the block acts as a certificate for the block. When these
protocols are safe, there cannot be two quorums, i.e., certificates, attesting to the finality
of conflicting blocks. In contrast, Nakamoto consensus [32] does not generate certificates.
As clients confirm a chain only if they do not receive a longer chain, no set of messages by
themselves suffice to convince clients of the confirmation of a blockchain, as there might
always exist a longer but hidden chain of blocks.

Interchain Consensus Protocols. An interchain consensus protocol (interchain protocol
for short) is a blockchain protocol, called the overlay protocol, executed on top of existing
blockchain protocols, called the underlay chains. Its participants are the clients and validators
of the constituent underlay chains Πi, i ∈ [n]. All clients and validators observe all underlay
chains, but each validator is responsible for participating in the execution of one of these
blockchain protocols, which ensures scalability. Clients and honest validators of each underlay
chain run a client of every other chain, and can read from and write to the output ledgers of
the other chains. This restricted communication is captured by the notion of cross-chain
communication (CCC) [47, 41]: each underlay chain Πi, i ∈ [n], only exposes read and write
functionalities to its finalized ledger. Clients and validators of every other chain, Πj , j ̸= i,
verify the finality of Πi’s ledger via certificates (e.g., by verifying a quorum of signatures on
the finalized blocks in PBFT-style protocols [16]), whereas the internal mechanisms and the
validator set of Πi remain hidden from the interchain protocol, except as used by the CCC to
validate certificates. They write to Πi by broadcasting their transactions to all Πi validators
as input in the presence of a public-key infrastructure, or by using trustless relays that can
produce a proof of transmission by collecting replies from sufficiently many Πi validators.
Clients of the interchain protocols use only their views of the finalized ledgers of the underlay
chains to determine the overlay blockchain’s ledger.

The CCC functionality can be implemented by a trusted controller that relays data across
chains, or by committees subsampled from among the validators. A prominent CCC example
is the Inter-Blockchain Communication protocol (IBC) of Cosmos [2], where the messages are
transmitted by relayers [4] akin to controllers. However, IBC does not require the relayers
to be trusted for safety, as it allows the receiver chain’s validators to verify messages by
inspecting if they were included in the finalized sender chain blocks.
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4 Protocol Primitives

We build the overlay protocols by composing simpler protocols in two different ways: serial
composition and triangular composition. In this section, we describe these compositions and
their implications for security.

4.1 Serial Composition

Algorithm 1 The algorithm used by a bootstrapping client cl to output the ledger Ls of the
serial composition Πs instantiated with two constituent blockchains ΠA and ΠB at some time t.
The algorithm takes Lcl

B,t, the finalized ΠB ledger output by cl at time t, as its input and outputs
the ledger Ls. The function GetSnapshots returns the snapshots of the ΠA ledger included in
Lcl

B,t along with their certificates. The function isCertified returns true if the input ledger is
accompanied by a valid certificate.

1: function OutputChain(Lcl
B,t)

2: snp1, . . . , snpm ← GetSnapshots(Lcl
B,t)

3: Ls ← ⊥
4: for i = 1, . . . , m do
5: if isCertified(snpi) then
6: Ls ← Clean(Ls, snpi)
7: end if
8: end for
9: return Ls

10: end function

Figure 2 Serial composition. The ΠA blocks (brown) are denoted by b1, b2, . . . and the ΠB

blocks (blue) are denoted by B1, B2, . . .. Certificates of the ΠA blocks are denoted by the medals.
In (a), both ΠA and ΠB are safe. Thus, every client observes the same ΠB ledger with certified
snapshots snp1 = (tx1, tx2) and snp2 = (tx1, tx2, tx3, tx4). Upon sanitizing the snapshots, clients
obtain Clean(snp1, snp2) = (tx1, tx2, tx3, tx4) as the Πs ledger. In (b), the ΠB ledger is not safe,
and two clients x and y observe conflicting ΠB ledgers Lx

B,t1 and Ly
B,t2

with blocks B1, B2 and
B1, B′

2 respectively. The blocks B1, B2 and B′
2 contain the certified snapshots snp1 = (tx1, tx2),

snp2 = (tx1, tx2, tx3, tx4) and snp′
2 = (tx1, tx2) respectively. Note that (tx′

3, tx′
4) is not part of

the certified snapshot snp′
2 as they are not included in a certified ΠA block. Upon sanitizing the

snapshots, clients again obtain consistent Πs ledgers Lx
B,t1 = Clean(snp1, snp2) = (tx1, tx2, tx3, tx4)

and Ly
B,t2

= Clean(snp1, snp′
2) = (tx1, tx2). In (c), the ΠA ledger is not safe, and two clients x and

y observe conflicting ΠA ledgers Lx
A,t1 and Ly

A,t2
with blocks b1, b2 and b1, b3 respectively. However,

both clients observe the same ΠB ledger with blocks B1, B2, B3 and their certified snapshots
snp1, snp2, snp3. Hence, upon sanitizing the snapshots, clients obtain the same (consistent) Πs

ledgers Lx
s,t1 = Ly

s,t2 = Clean(snp1, snp2, snp3) = (tx1, tx2, tx3, tx4, tx′
3, tx′

4).
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We describe the safety-favoring serial composition Πs with two constituent certificate-
generating blockchain protocols, ΠA and ΠB (Fig. 2; cf. Alg. 1). The ΠA validators receive
transactions from the environment and other validators, and the clients of ΠA output a
certified ΠA ledger. Each ΠB validator acts as a client of ΠA, and consider the ΠA ledger
in its view, called a snapshot, and its certificate, as a transaction input to ΠB

4 (Fig. 2a).
At any time step t, each client cl of the serial composition (which is a client of both ΠA

and ΠB), online at time t, inspects the certified snapshots of the ΠA ledger within its ΠB

ledger. Then, cl reads the certified ΠA snapshots in the order they appear in its ΠB ledger,
copies these snapshots and finally eliminates the duplicate transactions appearing in multiple
snapshots by calling a sanitization function. The sanitization function Clean(LA, LB) takes
two ledgers LA and LB , concatenates them, eliminates the duplicate transactions that appear
in LB and keeps their first occurrence in LA (cf. [34] [42]). Finally, the client outputs the
remaining transactions as its Πs ledger (its view of the Πs ledger at that time). The serial
composition satisfies the following security properties:

▶ Theorem 5. Consider the serial composition Πs instantiated with the certificate-generating
blockchain protocols ΠA and ΠB. Then, under partial synchrony,
1. Πs satisfies safety if at least one of ΠA or ΠB is safe.
2. Πs satisfies liveness with constant latency after GST if both ΠA and ΠB are live with

constant latency after GST.
3. Πs generates certificates.
4. Πs proceeds in epochs of fixed duration if ΠA and ΠB proceed in epochs of fixed duration.

Proof of Theorem 5 is given in [44, Appendix F.1]. Proof of the statements 1 and 2 are
illustrated by Fig. 2 that covers the cases when ΠB and ΠA are not safe, yet Πs is safe.
Statements 3 and 4 are needed for further composability of the serial composition with other
serial and triangular compositions (cf. the conditions on Theorems 5 and 6). [44, Appendix B]
describes an attack against the serial composition when ΠA is not certificate-generating.

For the serial composition Πs, we require liveness only for the transactions input to all
honest ΠA validators. In general, liveness must be guaranteed only for the transactions
input to all honest validators of the underlay protocols. If validators have access to a
public-key infrastructure that identifies each other, then any transaction input to a single
honest validator of an underlay protocol can be broadcast to all validators of all underlay
protocols, and thus can be included in the ledgers.

4.2 Triangular Composition
A natural liveness-favoring analogue of the serial composition of two blockchains would be a
composition that ensures liveness if either of the two chains is live, and safety if both chains
are safe. However, no interchain protocol can satisfy these guarantees, even under synchrony.
Below, we provide the intuition behind this result (cf. Theorems 18 and 19 for details).

Consider two blockchains ΠA and ΠB that are not live, but safe. Here, safety of a protocol
(e.g., ΠA) means that different clients’ views of the ΠA ledger are consistent, yet it is possible
that the ΠA ledger output by a client conflicts with a ΠB ledger output by another client.
The protocol ΠA emulates the behavior of a live blockchain towards a client cl1, whereas
it is stalled in cl2’s view, i.e., Lcl2

A,t = ∅ for all times t. In the meanwhile, ΠB emulates

4 For instance, if ΠB is a blockchain protocol, the snapshots and their certificates will be included in the
blocks by the block proposers (cf. Section 9 for more efficient implementations).
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the behavior of a live blockchain towards a different client cl2, whereas it is stalled in cl1’s
view, i.e., Lcl1

B,t = ∅ for all times t. Since the triangular composition is conjectured to be live
when either of the blockchains is live, both cl1 and cl2 output transactions based on their
observations of the ΠA and ΠB ledgers respectively (as far as cl1 is concerned, ΠA looks live,
and as far as cl2 is concerned, ΠB looks live). However, when these ΠA and ΠB ledgers are
different and conflicting, this implies a safety violation even though both ΠA and ΠB are
safe, i.e., cl1 and cl2’s ΠA (ΠB) ledgers are consistent (as ∅ is a prefix of every ledger).

Given the example above which shows the impossibility of a composition that is live if
either chain is live and safe if both are safe, we relax the properties expected of a liveness-
favoring composition in two ways: (i) the triangular composition of 3 blockchains ensures
liveness if 2 of the 3 constituent chains are live, and safety if all chains are safe, under
partial synchrony (Theorem 6), whereas (ii) the parallel composition of 2 blockchains, under
synchrony, ensures liveness if either of the constituent chains is live, and safety if both chains
are safe and live (Section 7.1, Theorem 15). Here, we focus on the triangular composition.

For inspiration towards a minimal triangular composition with these guarantees, we
consider a setting, where the protocol participants are validators rather than blockchains. We
observe that a natural analogue of a blockchain that is not live, but safe, is a validator with
omission faults. Since the triangular composition for blockchains requires the safety of all
constituent protocols for safety, its analogue for validators would tolerate only omission faults.
Thus, our triangular composition is motivated by omission fault tolerant (OFT) consensus
protocols [28, 13, 35]. Before presenting the composition, we briefly describe these OFT
protocols for validators, which we extend to the blockchain setting.

4.2.1 The OFT Protocol for Validators

The OFT protocol is a leader-based blockchain protocol that generates certificates under a
partially synchronous network. It is run by 3 validators mirroring the most basic triangular
composition. It proceeds in epochs of fixed duration 3∆. In a nutshell, it works as follows:

Each epoch v has a unique leader that proposes a block at the beginning of the epoch,
i.e., at time 3∆v. Upon observing a proposal for epoch v, validators broadcast acknowledge
messages for the proposed block at time 3∆v + ∆. Upon observing a certificate of 2 unique
acknowledge messages from epoch v for the epoch’s proposal, validators and clients finalize
the proposed block and its prefix chain. If a validator does not observe a certificate of 2
acknowledge messages for an epoch v proposal by time 3∆v +2∆, it broadcasts a leader-down
message for epoch v, where the message contains the block with the highest epoch number
among the ones it previously voted for. Leader-down messages enable the leader of the next
epoch to identify the correct block to propose on to preserve safety. A detailed protocol
description is presented in [44, Appendix D].

4.2.2 From OFT Protocol to the Triangular Composition

We next describe a triangular composition for 3 blockchains. It consists of 3 underlay
blockchain protocols, ΠA, ΠB and ΠC , run by validators and an overlay protocol, i.e., the
OFT protocol, run on top of these chains (Fig. 3). Each underlay protocol executes a smart
contract that emulates a validator of the overlay OFT protocol (cf. [44, Appendix A] for a
discussion on validator emulation). These emulated validators exchange messages via the
CCC abstraction. There is a PKI that identifies on each underlay chain the 2 other chains
emulating a validator (e.g., by means of the public keys of the other chains’ validators).
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Figure 3 Triangular composition. An overlay OFT protocol run on top of 3 underlay blockchains.
A smart contract on each of the underlays emulates a validator of the OFT protocol and outputs a
finalized OFT ledger. The client reads the underlay chains’ ledgers and outputs the OFT ledger
finalized by a majority of the emulated validators.

Blockchains. The triangular composition requires the underlay protocols to run general-
purpose smart contracts and to proceed in epochs of fixed duration T . This is because the
overlay OFT protocol requires each emulated validator to keep track of the time passed
since it entered any given epoch. In general, it is impossible to emulate the validators of any
overlay protocol secure under partial synchrony, if the underlay protocol has no means of
keeping track of the real time (cf. [44, Appendix C]). We achieve this functionality by using
underlay protocols that proceed in epochs of fixed time duration such as Tendermint [12]
or Streamlet [17] (cf. [44, Appendix C]). However, our triangular composition can also be
instantiated with optimistically responsive protocols (cf. Section 10 for more discussion).

Using epoch numbers recorded in the underlay blocks, the smart contract tracks the time
passed since it entered any given epoch of the overlay protocol. If it entered some epoch v of
the overlay protocol at time t, it moves to epoch v + 1 at an underlay block of an underlay
epoch 3tfin/T , where tfin is the cross-chain communication latency. Here, the 3∆ epoch of
the overlay OFT protocol is replaced by a 3tfin length epoch, since the messages exchanged
by the emulated validators incur additional latency, including the finalization latency of the
underlay chains besides network delay.

Clients. We next describe how clients of the triangular composition output a ledger for the
overlay protocol using the ledgers of the underlay chains. Upon outputting a ledger LA, LB

and LC for each underlay protocol ΠA, ΠB and ΠC , at some time t, a client inspects the
execution of the smart contracts as attested by these ledgers. If the execution trace on some
ledger is invalid according to the rules of the smart contract, then the client discards the parts
of the ledger starting with the first invalid transaction recorded on it, thus turning invalid
execution into a liveness failure. For instance, sending a syntactically incorrect message is
detectable by only inspecting the messages on a ledger. In contrast, sending two acknowledge
messages for conflicting overlay blocks in the same overlay epoch might not be detected upon
inspection, since these two messages can exist in separate execution traces emulating the
same OFT validator, i.e., on conflicting ledgers, observed by different clients (safety failure).

Once the client observes the execution traces for the validators emulated on valid portions
of the ledgers LA, LB and LC , it identifies the blocks of the overlay protocol committed by
each emulated validator. It accepts and outputs an overlay block and its prefix chain if it
was committed by 2 or more emulated validators (as attested by the ledgers of 2 or more

AFT 2024



8:14 A Circuit Approach to Constructing Blockchains on Blockchains

underlay chains). If a client accepts and outputs an overlay block and its chain of height h,
it never outputs a shorter overlay chain from that point on. If the client observes multiple
conflicting LA, LB and LC ledgers when the safety of underlay chains is violated, it considers
all these ledgers, and might output conflicting overlay blocks as a result. However, this is
not a problem, as the proof of the next theorem shows that the client will continue to output
blocks and retain liveness nevertheless.

The triangular composition satisfies the following:

▶ Theorem 6. Consider the triangular composition Πt instantiated with the protocols ΠA,
ΠB and ΠC , that proceed in epochs of fixed duration. Then, under partial synchrony,
1. Πt satisfies safety if all of ΠA, ΠB and ΠC are safe.
2. Πt satisfies liveness with constant latency after GST if 2 blockchains among ΠA, ΠB and

ΠC are live after GST with constant latency and proceed in epochs of fixed duration.
3. Πt generates certificates if ΠA, ΠB and ΠC do so.
4. Πt proceeds in epochs of fixed duration.

Proof of Theorem 6 is given in [44, Appendix F.2]. Statements 1 and 2 are based on the
proof of the original OFT protocol design for validators. Statements 3 and 4 are needed
for further composability of the triangular composition with other serial and triangular
composition (cf. the conditions on Theorem 5).

5 Circuits for Partial Synchrony

In this section, we construct overlay protocols via circuit composition achieving the security
properties claimed by Theorem 1 and show optimality by proving Theorem 2. We also extend
these results to all possible overlay protocols, akin to the generalization of security properties
to quorum and fail-prone systems. Unlike the security claims for the protocol primitives, all
of the proofs below are algebraic in nature.

5.1 Extended Serial and Triangular Constructions
We first build extended serial and triangular constructions as building block toward the full
circuit composition.

▶ Lemma 7. Let Πi, i ∈ [k] be k different blockchain protocols that generate certificates. Then,
there exists a protocol, called the n-serial composition, satisfying the following properties:

it is safe if at least one of Πi, i ∈ [k] is safe.
it is live after GST with constant latency if all of Πi, i ∈ [k] are live after GST with
constant latency.
it generates certificates.
it proceeds in epochs of fixed duration if all of Πi, i ∈ [k] do so.

Lemma 7 follows directly from iteratively applying Theorem 5 on the protocols Πi, i ∈ [k].

▶ Lemma 8. For any integer f ≥ 1, let Πi, i ∈ [2f + 1], be 2f + 1 different blockchain
protocols that proceed in epochs of fixed duration. Then, there exists a protocol, called the
(2f + 1)-triangular composition, satisfying the following properties:

it is safe if all Πi, i ∈ [2f + 1] are safe.
it is live after GST with some constant latency if at least f + 1 of Πi, i ∈ [2f + 1] are live
after GST with some constant latency.
it generates certificates if all Πi, i ∈ [2f + 1] generate certificates.
it proceeds in epochs of fixed duration.
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Note that the original triangular composition with three protocols (referred to as the
triangular composition) would be called a 3-triangular composition. Proof of Lemma 8
is presented in [44, Appendix F.6]. It constructs an f -triangular composition via strong
induction on the number f . The inductive step uses the (f − 1)-triangular composition and
the serial composition of Lemma 7, whereas the base case follows from the properties of the
3-triangular composition shown by Theorem 6.

5.2 Permutation Invariant Circuits for Partial Synchrony
We next prove Theorem 1, which characterizes the security of so-called permutation invariant
overlay protocols. This class of protocols achieves safety (or liveness) as long as any subset
of the underlay chains with a sufficient size provide the same set of security guarantees (e.g.,
any subset of 5 out of 7 underlay chains is all safe and/or all live). In this sense, these
protocols do not distinguish between the underlay chains.

Proof of Theorem 1 relies on Theorems 5 and 6. Recall that a tuple (k, s, l) was defined
to be achievable if there exists an interchain protocol with k blockchains such that if at
least s blockchains are safe, the protocol is safe, and if at least l blockchains are live, the
protocol is live. By definition, a serial composition achieves the (2, 1, 2) point (Theorem 5),
and a triangular composition achieves the (3, 3, 2) point (Theorem 6). Similarly, a (2f + 1)-
triangular composition achieves the (2f + 1, 2f + 1, f + 1) point, and there exist such
compositions for any f ≥ 1 by Lemma 8, which itself follows from Theorems 5 and 6.

For two blockchain protocols ΠA, ΠB, we denote by ΠA ⊕ ΠB the serial compositions
of these two blockchains as described in Section 4.1. Consider k protocols Π1, Π2, . . . , Πk.
We iteratively define ⊕j+1

i=1 Πi =
(

⊕j
i=1Πi

)
⊕ Πj+1 for j ∈ [k − 1], and denote a protocol

achieving the (k, 1, k) point by π(k,1,k)(Π1, . . . , Πk). and denote a protocol achieving the
(2f + 1, 2f + 1, f + 1) point by π(2f+1,2f+1,f+1)(Π1, . . . , Π2f+1).

Towards the final result, the following lemma shows that we can construct a protocol
achieving (k + m, s, l + m) point using a protocol achieving (k, s, l).

▶ Lemma 9. For any integer m ≥ 1, if (k, s, l) is achievable using π(k,s,l) then, (k+m, s, l+m)
is achievable using

π(k+m,s,l+m)({Πi}k+m
i=1 ) = ⊕

S⊆[k+m]
|S|=k

π(k,s,l) ({Πj}j∈S) .
(1)

Proof. We first show that π(k+m,s,l+m) defined in (1) is safe if at least s of the blockchains
are safe. There exists a subset S0 ⊆ [k + m] with |S0| = k such that at least s blockchains
among {Πj}j∈S0 are safe. This implies that π(k,s,l) ({Πj}j∈S0) is safe. As we enumerate
all subsets with size k in constructing π(k,s,l) ({Πj}j∈S0), by Lemma 7, we observe that
π(k+m,s,l+m)({Πi}k+m

i=1 ) is safe; as one of the blockchains in the serial composition, namely
π(k,s,l) ({Πj}j∈S0), is safe.

On the other hand, suppose that at least l + m of the blockchains are live, which implies
that at most k − l blockchains are not live. Therefore, for any arbitrary choice of size-k subset
{Πj}j∈S from {Πj}k+m

j=1 , at most k − l blockchains are not live, or equivalently, at least l

blockchains in {Πj}j∈S are live. This implies that π(k,s,l) ({Πj}j∈S) is live for all possible
choices of subset S with size k. Then, by Lemma 7, we observe that π(k+m,s,l+m)({Πi}k+m

i=1 )
is live; as all of the blockchains in the serial composition are live. ◀

Finally, we present the proof of Theorem 1.

AFT 2024



8:16 A Circuit Approach to Constructing Blockchains on Blockchains

Proof of Theorem 1. By Lemma 8, there are circuit compositions achieving the (2f +1, 2f +
1, f + 1) point given copies of any two protocols achieving the (2, 1, 2) and (3, 3, 2) points
respectively, via recursive compositions of these protocols. This in turn implies that for any
given integers k, s, l such that ⌊k/2⌋ + 1 ≤ l ≤ n and s = 2(k − l) + 1 (boundary of the
achievable points on Fig. 1), the point (s, s, k − l + 1) = (2(k − l) + 1, 2(k − l) + 1, k − l + 1)
is achievable. Since s = 2(k − l) + 1 for these boundary points, we have l + s − k = k − l + 1.
Therefore, by Lemma 9, (k, s, l) = (s+(k −s), s, k − l +1+(k −s)) is achievable. This implies
that all points (k, s, l) such that ⌊k/2⌋ + 1 ≤ l ≤ n and s ≥ 2(k − l) + 1 are achievable. ◀

5.3 General Circuits for Partial Synchrony
We next present a general characterization of the security of the overlay protocol under
partial synchrony as a function of the safety and liveness of the underlay chains. Note that
a general characterization would include protocols that are not permutation invariant, i.e.,
providing different security guarantees when two subsets of the underlay chains achieve the
same set of security properties. For example, a non-permutation invariant overlay protocol
with three underlay chains Πi, i ∈ [3], might be live when the underlay chains Π1 and Π2 are
both live, but it might not be so when Π1 and Π3 are live. For such protocols, our notation
of (k, s, l) tuples fall short of characterizing the security properties. Therefore, we develop a
new model for the security of overlay protocols synthesized from k underlay chains.

5.3.1 The Model
As the security of a blockchain consists of safety and liveness, we use s, l ∈ {0, 1}k to denote
the list of predicates indicating which underlay chains are guaranteed to be safe and live.
Specifically, si = 1 if the i-th underlay chain is guaranteed to be safe, and si = 0 if the i-th
chain is not guaranteed to be safe. Then, the security properties of an overlay protocol Π can
be characterized by two sets V S , V L ⊆ 2{0,1}2k , which express the dependence of Π’s safety
and liveness on the safety and liveness of the underlay chains. Namely, (s, l) ∈ V S if the
overlay protocol Π is guaranteed to be safe when for all i such that si = 1, the i-th underlay
chain is guaranteed safety, and for all j such that lj = 1, the j-th chain is guaranteed liveness.
Similarly, (s, l) ∈ V L if the overlay protocol Π is guaranteed to be live when for all i such
that si = 1, the i-th underlay chain is guaranteed safety, and for all j such that lj = 1, the
j-th chain is guaranteed liveness. We hereafter use the (V S , V L) characterization of security
in lieu of the (k, s, l) tuples. Given these definitions, any set V S , V L for an overlay protocol
satisfies
(P1) If v ∈ V , w ≥ v, then w ∈ V .
A sequence v ∈ V is called an extreme element if there is no w ∈ V such that w < v. Let
exm(V ) be the set containing all extreme elements in V . By property (P1), exm(V ) uniquely
describes V , and any protocol Π can be characterized by the two sets ES , EL ⊆ 2{0,1}2k

consisting of the extreme elements in V S and V L: ES = exm(V S) and EL = exm(V L).

5.3.2 The Result
Given the model above, the security properties achievable by overlay protocols under partial
synchrony can be described as follows. For s ∈ {0, 1}n, let us define ind(s) = {i : si = 1}.

▶ Theorem 10. For any tuple (ES , EL) ⊆ 2{0,1}2k such that
1. For all (s, l) ∈ EL, (s′, l′) ∈ ES, it holds that s = l′ = 0k.
2. For all (0k, l1), (0k, l2) ∈ EL, (s, 0k) ∈ ES, it holds that ind(l1) ∩ ind(l2) ∩ ind(s) ̸= ∅.
there exists an overlay protocol characterized by a tuple dominating (ES , EL).
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The proof is in [44, Appendix F.3] and inductively constructs the desired overlay protocol.
Intuitively, Theorem 10 states that safety (liveness) of the overlay protocol depends only on
the safety (liveness) of the underlay chains, and any two quorums of underlay chains required
for the liveness of the overlay protocol must intersect at a chain whose safety is required for
the safety of the overlay protocol. Note that Theorem 10 implies Theorem 1, as Theorem 10
characterizes security for all types of overlay protocols, including permutation-invariant ones
analyzed by Theorem 1. We opted to present Theorem 1 first for ease of understanding.

6 The Converse for Partial Synchrony

6.1 The Converse Result for Partial Synchrony
We start with the converse result that applies to all overlay protocols under partial synchrony,
showing the optimality of our security characterization in Theorem 10.

▶ Theorem 11. Let Π be an overlay blockchain protocol. Let (si, li) ∈ {0, 1}n for i ∈ [3]
satisfy (s1, l1) ∈ V L, (s2, l2) ∈ V L, (s3, l3) ∈ V S . Then, we have ind(l1)∩ind(l2)∩ind(s3) ̸= ∅.

Note that the converse exactly matches the second clause of Theorem 10.

Proof. For contradiction, suppose ind(l1) ∩ ind(l2) ∩ ind(s3) = ∅. Denote the k underlay
blockchains by Π1, . . . , Πk. There are two clients cl1, cl2. Consider the following three worlds.

World 1. All blockchains are safe. The underlay chains Πi, i ∈ ind(l1) are live, and the
others are stalled. The adversary sets GST = 0. Suppose that tx1 is input to the protocol at
time t = 0. As (s1, l1) ∈ V L, the overlay blockchain is live. At time t1 = tfin, the client cl1
outputs tx1 as its interchain ledger: Lcl1

t1
= [tx1].

World 2. All blockchains are safe. The underlay chains Πi, i ∈ ind(l2) are live, and the
others are stalled. The adversary sets GST = 0. Suppose that tx2 is input to the protocol at
time t = 0. As (s2, l2) ∈ V L, the overlay blockchain is live. At time t2 = tfin, the client cl2
outputs tx2 as its interchain ledger: Lcl2

t2
= [tx2].

World 3. All blockchains are live. The underlay chains Πi, i ∈ ind(l1) ∩ ind(l2) are not
safe, and the others, including those in s3, are safe. For simplicity, let Q = ind(l1) ∩ ind(l2).
The adversary sets GST = 2tfin and creates a network partition before GST such that client
cl1 can only communicate with the validators in Πi, i ∈ ind(l1), and client cl2 can only
communicate with the validators in Πi, i ∈ ind(l2). As a result, for client cl1, the underlay
chains Πi, i /∈ ind(l1) seem stalled until at least time 2tfin, and for client cl2, the underlay
chains Πi, i /∈ ind(l2) seem stalled until at least time 2tfin, and Suppose that tx1, tx2 are
input to the protocol at time t = 0. However, the adversary reveals tx1 only to the honest
validators in Πi for i ∈ ind(l1)/Q and tx2 only to those in Πi for i ∈ ind(l2)/Q. Moreover,
it delays any communication between the validators in Πi for i ∈ ind(l1)/Q and those in
i ∈ ind(l2)/Q until after GST.

As the chains Πi, i ∈ Q are not safe, they can simultaneously interact with cl1 and the
chains Πi, i ∈ ind(l1)/Q as in World 1 and with cl2 and the chains Πi, i ∈ ind(l2)/Q as in
World 2. To ensure this, the adversary delays any messages from the honest validators of the
chains Πi, i ∈ Q, to cl1 and cl2, except the certificates received by cl1 and cl2 in Worlds 1 and
2 respectively. As we assume Πi, i ∈ Q, are not safe, such certificates attesting to conflicting
ledgers must exist for the chains Πi, i ∈ Q. Then, client cl1 cannot distinguish World 1 and
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World 3 before 2tfin, which implies that Lcl1
t1

= [tx1]. Similarly, client cl2 cannot distinguish
World 2 and World 3, which implies that Lcl2

t2
= [tx2]. However, Lcl1

t1
and Lcl2

t2
conflict with

each other, which violates the safety of the overlay protocol. This is a contradiction; as all
underlay chains are live, and those in s3 are safe. ◀

6.2 The Converse Result for Permutation Invariant Protocols under
Partial Synchrony

Before proving Theorem 2, we introduce a more comprehensive notation for permutation
invariant overlay protocols to capture the fact that the safety (or liveness) of the overlay
protocol can depend on both the safety and liveness of the underlay chains. Although
Theorem 2 shows that the liveness of the underlay chains do not help achieve better safety
properties for the overlay (and vice versa), we nevertheless need a notation that allows the
possibility of such cross-dependence between safety and liveness to argue for the absence of
this cross-dependence. Moreover, we will use the new notation for permutation invariant
overlay protocols later to describe the achievable security guarantees under synchrony, where
the safety of the overlay protocol depend on the liveness of the underlay chains.

6.2.1 The Model for Permutation Invariant Overlay Protocols
Permutation invariance means that the overlay blockchain treats the underlays identically.

▶ Definition 12 (Permutation Invariance). We say a protocol Π is permutation invariant if
the sets V S and V L both satisfy that
(P2) If v ∈ V , then σ(v) ∈ V for all permutations σ.
Here, v = (s, l), and we define σ(v) = (σ(s), σ(l)), where σ(s), σ(l) ∈ {0, 1}k, σ(s)i =
sσ(i), σ(l)i = lσ(i) ∀i ∈ [k].

By property (P2), we can create an equivalence relation “∼” over the sets in V . We say
v ∼ w, if there exists a permutation σ : [k] → [k] such that w = σ(v). The relation “∼”
defines a quotient set V/ ∼, which is the set of equivalence classes in V . Given v = (s, l) and

cs(v) := #{i : si = 1}, cl(v) := #{i : li = 1}, csl(v) := #{i : si = li = 1},

each equivalence class {σ(v)|σ : [k] → [k] is a permutation} is uniquely represented by a
tuple (cs(v), cl(v), csl(v)) ∈ N3. As the set exm(V ) (for either V S or V L) containing all
extreme elements also satisfies (P2), we can also partition exm(V )/ ∼ into equivalence classes,
each represented by a tuple (ns, nl, nsl) ∈ N3. Therefore, given property (P1), the set V can
be represented by a set of tuples P = {(n(i)

s , n
(i)
l , n

(i)
sl )|i ∈ N}.

Finally, any permutation invariant protocol Π can be characterized by two sets P S , P L ∈
2N3 , representing V S and V L respectively and interpreted as follows: For any (ns, nl, nsl) ∈
P S and (ms, ml, msl) ∈ P L, we have

Π is safe if at least ns blockchains are safe, nl blockchains are live, and nsl blockchains
are safe and live.
Π is live if at least ms blockchains are safe, ml blockchains are live, and msl blockchains
are safe and live.

Let V (P ) := {v|cs(v) ≥ ns, cl(v) ≥ nl, csl(v) ≥ nsl, (ns, nl, nsl) ∈ P}.
For two set pairs (P S , P L) and (P̃ S , P̃ L) characterizing permutation invariant overlay

protocols, we define the partial order (P S , P L) ⪰ (P̃ S , P̃ L) to mean that V (P S) ⊇ V (P̃ S)
and V (P L) ⊇ V (P̃ L). For v ∈ {0, 1}k, let us define ind(v) = {i : si = 1}.
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▶ Lemma 13. (P S , P L) ⪰ (P̃ S , P̃ L) if and only if for any p̃1 ∈ P̃ S , p̃2 ∈ P̃ L, there exists
p1 ∈ P S and p2 ∈ P L such that p1 ≤ p̃1 and p2 ≤ p̃2.

Proof. It is sufficient to show that V (P ) ⊇ V (P̃ ) if and only if for any p̃ ∈ P̃ , there exists
p ∈ P such that p ≤ p̃. Suppose that we have V (P ) ⊇ V (P̃ ). For any p̃ = (ñs, ñl, ñsl) ∈ P̃ ,
consider ṽ ∈ {0, 1}2k such that cs(ṽ) = ñs, cl(v) = ñl, csl(v) = ñsl. Then, ṽ ∈ V (P ). There
exists an extreme element v ∈ V such that v ≤ ṽ. Defining p = (cs(v), cl(v), csl(v)), we can
conclude that p ≤ p̃. Suppose that for any p̃ ∈ P̃ , there exists p ∈ P such that p ≤ p̃. For
any ṽ ∈ V (P̃ ), there exists p̃ = (ñs, ñl, ñsl) ∈ P̃ such that cs(ṽ) = ñs, cl(ṽ) = ñl, csl(ṽ) = ñsl.
Let p ∈ P such that p ≤ p̃. From the definition of V (P ), we have ṽ ∈ V (P ). ◀

6.2.2 The Result
The converse result for permutation invariant overlay protocols under partial synchrony,
Theorem 2, follows as a corollary of Theorem 11. It shows the optimality of our security
characterization in Theorem 1. Its proof is presented in [44, Appendix F.4].

▶ Theorem 14 (Theorem 2). Let Π be a permutation invariant overlay blockchain protocol
characterized by (P S , P L). Consider the tuples (ms, ml, msl) ∈ P L, (ns, nl, nsl) ∈ P S . Then,
it holds that ns ≥ 2(k − ml) + 1 and ml > k/2.

7 Circuits for Synchrony

In this section, we construct overlay protocols via circuit composition achieving the security
properties claimed by Theorem 3, and show their optimality. As the properties achievable
under synchrony are stronger than those achievable under partial synchrony, to bridge the
gap between partial synchrony and synchrony, we first introduce the parallel composition as
a new protocol primitive in addition to the serial and triangular compositions (cf. Section 4.2
for a discussion of the triangular and parallel compositions). We then state the security
result for general overlay protocols using the model in Section 5.3.1. Equipped with the
model in Section 6.2.1, we subsequently show the security properties claimed for permutation
invariant overlay protocols by Theorem 3 as a corollary of the general result. We end with a
proof of optimality for both results.

7.1 Parallel Composition
We now describe the parallel composition with two underlay chains, ΠA and ΠB (Alg. 2).
Upon getting a transaction from the environment, every honest ΠA and ΠB validator
broadcasts the transaction to every other validator.

Let Lcl
A,t, Lcl

B,t and Lcl
p,t denote the ΠA, ΠB ledgers and the ledger of the parallel overlay

protocol in the view of a client cl at time t. Consider a client cl that has been online for at
least tfin time. It obtains the parallel ledger as a function of the ΠA and ΠB ledgers. For
this purpose, cl first checks if every transaction in Lcl

A,t−tfin
appears in Lcl

B,t, and if every
transaction in Lcl

B,t−tfin
appears within Lcl

A,t (the interleaving condition). If so, it interleaves
the prefixes of the ΠA and ΠB ledgers to construct the Πp ledger:

Lcl
p,t := Interleave(Lcl

A,t[:ℓ], Lcl
B,t[:ℓ]), (2)

where ℓ := min(|Lcl
A,t−tfin

|, |Lcl
B,t−tfin

|). Interleave function applied on equal size ledgers
L1, L2 outputs a ledger Lo such that Lo[2i − 1] = L1[i] and Lo[2i] = L2[i] for all i ∈ [|L1|].
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Algorithm 2 The algorithm used by a client cl, online for at least tfin time, to output the ledger
Lcl

p,t of the parallel composition Πp instantiated with two constituent blockchains ΠA and ΠB at
some time t. The algorithm takes the ledgers Lcl

A,t−tfin , Lcl
A,t, Lcl

B,t−tfin and Lcl
B,t output by cl at

time t and outputs the ledger Lcl
p,t. The function Interleave(L1, L2) with inputs of same length

returns the interleaved ledger Lo such that Lo[2i− 1] = L1[i] and Lo[2i] = L2[i] for all i ∈ [|L1|].

1: function OutputChain(Lcl
A,t−tfin , Lcl

A,t, Lcl
B,t−tfin , Lcl

B,t)
2: ℓ← min(|Lcl

A,t−tfin |, |L
cl
B,t−tfin |)

3: if Lcl
A,t−tfin ⊆ Lcl

B,t ∧ Lcl
B,t−tfin ⊆ Lcl

A,t then
4: Lcl

p,t ← Interleave(Lcl
A,t[:ℓ], Lcl

B,t[:ℓ])
5: else
6: i∗ ← argmaxi∈{A,B}|Lcl

i,t−tfin |
7: Lcl

p,t ← Interleave(Lcl
A,t[:ℓ], Lcl

B,t[:ℓ])||Lcl
i∗,t[ℓ:]

8: end if
9: return Lcl

p,t

10: end function

If the interleaving condition fails, then cl interleaves the prefixes of the two ledgers and
outputs the remainder of the longer ledger: defining i∗ = argmaxi∈{A,B}|Lcl

i,t−tfin
|, it sets

Lcl
p,t := Interleave(Lcl

A,t[:ℓ], Lcl
B,t[:ℓ])||Lcl

i∗,t[ℓ:]. (3)

The parallel composition satisfies the security properties below:

▶ Theorem 15. Consider the parallel composition Πp instantiated with the blockchain
protocols ΠA and ΠB. Then, under synchrony,
1. Πp satisfies safety if both ΠA and ΠB are safe and live.
2. Πp satisfies liveness with constant latency if either ΠA or ΠB is live with constant latency.
3. Πp generates certificates if both ΠA and ΠB do so.
4. Πt proceeds in epochs of fixed duration if ΠA and ΠB do so.

Proof of Theorem 15 is presented in [44, Appendix F.5]. It shows that if both chains
are safe and live, the interleaving condition is satisfied, ensuring the safety of the Πp ledger.
If either chain is live, then all transactions up to the length of the longer chain is output,
ensuring the liveness of the Πp ledger. Note that the parallel composition does not satisfy
accountable safety despite satisfying safety. This is not too surprising since its safety requires
both the safety and liveness of the underlay chains.

7.2 General Circuits for Synchrony
▶ Theorem 16. For any tuple (ES , EL) ⊆ 2{0,1}2k such that
1. For all (s, l) ∈ EL it holds that s = 0k,
2. For all (0k, l1), (0k, l2) ∈ EL, (s, l) ∈ ES, it holds that

a. either there are indices i ∈ ind(l1) and j ∈ ind(l2) such that (si, li, sj , lj) = (1, 1, 1, 1),
b. or ind(l1) ∩ ind(l2) ∩ ind(s) ̸= ∅,

there exists an overlay protocol characterized by a tuple dominating (ES , EL).

We present the proof of Theorem 16 in [44, Appendix F.8]. It shows achievability by
constructing a circuit very similar to that constructed by Theorem 10. Intuitively, Theorem 16
states that for the safety of the overlay protocol, either any two quorums of underlay chains
required for the liveness of the overlay protocol must both contain at least one safe and live
chain (which can be different), or these quorums must intersect at a safe chain.
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7.3 Permutation Invariant Circuits for Synchrony
Following lemma proves the achievability guarantees claimed by Theorem 3. It uses the
notation of Section 6.2.1 and follows as a corollary of Theorem 16.

▶ Theorem 17 (Theorem 3, Achievability). If a protocol is characterized by (P S , P L) within

{({(2(k − ml) + 1, 0, 0), (0, 0, k − ml + 1)}, {(0, ml, 0)})|k/2 < ml ≤ k},

then there exists a permutation invariant overlay protocol characterized by a tuple dominating
(P S , P L) under synchrony.

8 The Converse for Synchrony

We now show the optimality of our security characterization in Theorem 3.

8.1 The Converse Result for Synchrony
We start with the converse result that applies to all overlay protocols under synchrony,
showing the optimality of our security characterization in Theorem 16.

▶ Theorem 18. Let Π be an overlay blockchain protocol. Let (si, li) ∈ {0, 1}n for i ∈ [3]
satisfy (s1, l1) ∈ V L, (s2, l2) ∈ V L, (s3, l3) ∈ V S . Then, it holds that
1. either there are indices i ∈ ind(l1) and j ∈ ind(l2) such that (si, li, sj , lj) = (1, 1, 1, 1),
2. or ind(l1) ∩ ind(l2) ∩ ind(s) ̸= ∅.

Proof of Theorem 18 is presented in [44, Appendix F.9], and relies on an indistinguishability
argument between different worlds like the proof of Theorem 11. Note that the converse
exactly matches the clause of Theorem 16.

Theorem 18 is reduced to Theorem 11 if the set of security functions are restricted to
those, where safety of the overlay protocol depends only on the safety of the underlay chains,
and the liveness of the overlay protocol depends only on the liveness of the underlay chains.
This is consistent with [40, Theorem B.1], which proves that the accountable safety-liveness
tradeoff under synchrony is the same as the safety-liveness tradeoff under partial synchrony.

8.2 The Converse Result for Permutation Invariant Protocols under
Synchrony

The converse result for permutation invariant overlay protocols under synchrony as claimed
in Theorem 3, follows as a corollary of Theorem 18. It shows the optimality of our security
characterization in Theorem 3.

▶ Theorem 19 (Theorem 3, Converse). Let Π be a permutation invariant overlay blockchain
protocol characterized by (P S , P L). Consider the tuples (ms, ml, msl) ∈ P L, (ns, nl, nsl) ∈
P S . Then, it holds that either nsl ≥ k − ml + 1 or ns ≥ 2(k − ml) + 1 and ml > k/2.

Theorem 19 follows as a corollary of Theorem 18, and its proof is in [44, Appendix F.10].
[44, Appendix E] summarizes all of the results in Sections 5, 6, 7 and 8 by identifying

all pareto-optimal protocols under partial synchrony and synchrony using the language
developed in Sections 5.3.1 and 6.2.1.
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9 Efficiency

Our model of interchain consensus protocols in Section 3 allows the validators of the underlay
blockchains to read the ledgers of the other underlays. For each validator, this implies a
communication load proportional to the number of underlay chains, i.e., low scalability.
However, all of our compositions (serial, triangular and parallel) can be modified to retain
their security properties when the validators merely run light clients of the other chains. For
instance, the serial composition in Section 4.1 can be instantiated with succinct timestamps
as in [42]; so that the constituent protocols receive and order timestamps of the blocks
of the other protocols rather than snapshots of the whole ledger. Here, timestamps can
even be made less frequent for more efficiency (albeit at the expense of latency). When the
timestamps are implemented with binding hash functions, their ordering suffices to resolve
forks on the other chains and ensure safety as long as any chain is safe.

The triangular construction in Section 4.2 requires the validators of each underlay chain to
only follow a smart contract, dedicated to executing the OFT protocol, on the other chains to
react to their OFT protocol messages. This again warrants at most a light client functionality.
Finally, in the parallel construction of Section 7.1, the validators of the underlay blockchains
need not communicate at all except broadcasting the circuit-composition related transactions.
In turn, external observers (clients) are responsible for interleaving their ledgers. Therefore,
all three composition methods, and by induction, our circuit constructions can work with
underlay validators running light clients of each other’s chains. Implementation of these
constructions with light clients is left as future work.

10 Conclusion

In this work, we have analyzed the security of interchain consensus protocols under synchrony
and partial synchrony. We next outline a few open questions and future directions implied by
our work. As our serial composition requires the underlay chains to produce certificates and
the protocols secure under the sleepy network model [36] (dynamic availability [27], unsized
setting [30]) do not generate certificates [30], our results do not extend to underlay chains
secure under the (synchronous) sleepy network model (no protocol can be secure under both
partial synchrony and the sleepy network model [29]). It is thus an open question to design
a serial composition for underlay chains that do not generate certificates.

Although we have instantiated the triangular composition with underlay chains that
proceed in fixed time durations, the composition can also work with optimistically responsive
protocols. These protocols achieve latency that is O(δ), where δ is the real-time network
delay, under optimistic conditions. They can keep track of time with the help of an oracle
committee of so-called time keepers [41] that input the real time into the protocol. Another
alternative that does not require any trust in oracles is for the smart contracts on the underlay
chains to adaptively estimate time. For instance, if the contracts notice that the overlay
protocol has not made progress while the underlay protocols have, it can slow down the
underlay protocols. It is future work to formalize the details of these solutions.

Our recursive compositions of circuits could require an underlay blockchain to appear
in exponentially many sub-circuits. Our goal in this work was to show the achievability
of the properties proven for the interchain consensus protocols. For small numbers of
underlay chains, our results coupled with the optimizations in Section 9 still yield practical
constructions for the safety-favoring points. It is an open question to design more scalable
interchain consensus protocols for all points.
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Abstract
Handling congestion in blockchain systems is a fundamental problem given that the security and
decentralization objectives of such systems lead to designs that compromise on (horizontal) scalability
(what sometimes is referred to as the “blockchain trilemma”). Motivated by this, we focus on the
question whether it is possible to design a transaction inclusion policy for block producers that
facilitates fee and delay predictability while being incentive compatible at the same time.

Reconciling these three properties is seemingly paradoxical given that the dominant approach to
transaction processing is based on first-price auctions (e.g., as in Bitcoin) or dynamic adjustment of
the minimum admissible fee (e.g. as in Ethereum EIP-1559) something that breaks fee predictability.
At the same time, in fixed fee mechanisms (e.g., as in Cardano), fees are trivially predictable but
are subject to relatively inexpensive bribing or denial of service attacks where transactions may be
delayed indefinitely by a well funded attacker, hence breaking delay predictability.

In this work, we set out to address this problem by putting forward blockchain space tokenization
(BST), namely a new capability of a blockchain system to tokenize its capacity for transactions and
allocate it to interested users who are willing to pay ahead of time for the ability to post transactions
regularly for a period of time. We analyze our system in the face of worst-case transaction-processing
attacks by introducing a security game played between the mempool mechanism and an adversary.
Leveraging this framework, we prove that BST offers predictable and asymptotically optimal delays,
predictable fees, and is incentive compatible, thus answering the question posed in the affirmative.
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1 Introduction

Blockchain systems have bounded throughput and as a result at times of congestion they
can process only a portion of the transactions submitted. Combining this with the need to
unambiguously serialize transactions in order to determine the state of the underlying ledger,
it is imperative that a policy of transaction inclusion must be applied by the protocol.
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There are three main approaches for such policy that have been implemented in popular
blockchain systems: (i) prioritize based on transaction fees submitted (e.g. as in Bitcoin),
(ii) introduce a fee threshold for transaction inclusion that is dynamically adjusted at times
of congestion (e.g., as in Ethereum currently1), (iii) fix fees deterministically as a function of
the transaction itself and prioritize strictly based on a FIFO policy, (e.g., as in Cardano).

Observe that the above three approaches suggest also three different service models.
In terms of pricing, the first one is auction based, the second is posted price but with
a dynamically adjusted price based on level of congestion and the last one is fixed price
irrespective of demand. Regarding inclusion delay, the first two approaches offer (subject to
consensus) instant inclusion, as long as the user is willing to pay a high enough fee, while in
the third approach the inclusion delay can grow unboundedly depending on congestion2. It
follows that in the first two approaches the inclusion delay is predictable, in the sense that it
is known ahead of time (say 1 day earlier), while prices are unpredictable as they can go
up in an unbounded manner at times of congestion and are only known one block before
inclusion. On the converse, in the third approach the price is fixed and thus predictable
(in the native currency of the system), while the inclusion delay is unpredictable heavily
depending on congestion.

It is self-evident that service predictability is key to many applications, e.g, a company
using a blockchain system would like to know ahead of time the inclusion delay expected as
well as its cost to properly plan its operations. As a further example, “layer 2” protocols like
lightning [22], set time bounds for the participants to challenge protocol states and failing to
predict the transaction delay for participants to respond has dire security repercussions.

Furthermore, given that blockchains operate in a decentralized setting, providing adequate
incentives for the system operators to actually follow the prescribed inclusion policy is key for
its successful deployment. The first two approaches have been shown to be largely immune to
collusion through off-chain agreements (aka off-chain proof [24]), i.e., the user trying to bribe
his way into the system not being a profitable endeavor for both the user and the operator.
However, the third one does not fare well in the face of bribes: A user can simply pay
off-chain a higher fee to bypass the FIFO order of inclusion and guarantee shorter inclusion
delay, with the system operator also increasing his revenue by accepting such a deal.

Predictable fees, predictable delay, and off-chain proofness, three seemingly contradicting
goals, motivate the work of this paper:

Is it possible to design a transaction inclusion mechanism that is off-chain proof and
offers fee and delay predictability at the same time?

Interestingly, prior work has often sidestepped this question. Some approaches assume
blocks with unlimited size (or, equivalently, a limited number of submitted transactions) [10,
21], effectively making them immune to congestion. Others prioritize features like bidding, off-
chain proofness, and incentive compatibility [24] forfeiting any concrete inclusion guarantees
for transactions.

1 Note that due to the presence of tips, the current approach of Ethereum also combines elements of
approach (i).

2 In fact, there is a specific price tag that an attacker has to pay in order to occupy the
totality of blockchain processing capacity hence denying access to other users. In the case
of Cardano this is in the order of < $100 per minute, see https://forum.cardano.org/t/
cardano-network-vulnerable-to-20-minute-spam-attack/86422.

https://forum.cardano.org/t/cardano-network-vulnerable-to-20-minute-spam-attack/86422
https://forum.cardano.org/t/cardano-network-vulnerable-to-20-minute-spam-attack/86422
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Our results. In this work we focus on off-chain proof transaction fee mechanisms that offer
predictable service guarantees. Our contributions can be summarized as follows.

We fill a gap in the worst-case modeling of transaction waiting time by introducing a
general inclusion-delay game. As mentioned, previous work [21, 10, 24] has focused on
other challenges and has not dealt with this issue on a satisfactory level. In this security
game the attacker interacts with a number of block producers. Following a cryptographic
approach to modeling, our attacker drives the submission of transactions as well as the
creation of adversarial and honest blocks. Block producers choose only what transactions
to include in a block according to some policy. Given this strong adversarial setup, we
are interested in the worst-case delay that an adversary can induce against a transaction
measured in number of issued blocks. The advantage of our approach is that it obviates
the need to explicitly model the consensus part of the system, while capturing all the
pertinent elements needed for analysis, namely the mempool mechanism used by block
producers to select transactions.
We consider a class of mechanisms that are associated with an abstract supply of
“blockchain-access” tokens. This enables to describe mechanisms with different delay
guarantees based on the value of the tokens used by a transaction (e.g., in the case of
Bitcoin transactions that pay more fees will be given priority by the mempool mechanism).
Armed with our model, we set out now to design a mempool mechanism with the desired
properties. Blockchain space tokenization (BST) issues a number of “space tokens” that
each one gives certain rights to a holder to post a transaction. The policy of the BST
mechanism is to include transactions based on a priority calculated by multiplying the
token value by its age (measured in blocks since its last use). To reduce congestion, only
transactions exceeding a dynamically adjusted priority threshold are eligible for inclusion
in a block. We prove that BST offers asymptotically optimal and predictable delays,
predictable fees, and is also off-chain proof, thus answering our main research question
in the affirmative; optimality here refers to the worst-case delay guaranteed by the
mechanisms as a function of the relative amount of token value of the holder.
We further substantiate the real-world applicability of the BST mechanism by (i) demon-
strating through a set of simulations that the inclusion delays for a variety of token
distributions and user activity levels match the optimal bounds, (ii) presenting a token
allocation based on a sealed bid auction that enables interested users to bid and obtain
the necessary tokens, while the whole blockchain system splits the space available for
transaction in two separate, fenced parts: the tokenized space and the “spot space” that
accepts transactions based on a posted price mechanism as in EIP-1559, and is also used
to accommodate the auction, (iii) discussing how the mechanism can be easily instantiated
in both UTXO (e.g., Bitcoin) and account based (e.g. Ethereum) ledgers.

Related work. In addition to the previously cited works, we are also drawing from transaction
fee mechanism design. The closest connection (due to the threshold used) is the original
EIP-1559 mechanism proposed in [4] and [24]. More broadly, [13] studied the effects of delays
on user utilities and prices under Bitcoin, showing that individual miners cannot profitably
affect the level of fees. Significant recent results include [6], which show (among other results)
that in general, no transaction fee mechanism can satisfy user incentive compatibility, miner
incentive compatibility and be off-chain agreement proof all at once. The stability of EIP-1559
has been studied through the lens of dynamical systems in a string of papers [23, 15, 16],
which show that even though the prices can show chaotic behavior, the block sizes on average
are indeed very close to the target. There have been many interesting proposals for updating
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9:4 Blockchain Space Tokenization

transaction fee mechanisms such as [14] with the Monopolistic Price, and Random Sampling
Optimal Price (RSOP), the latter of which was initially proposed for digital goods in [11].
The Monopolistic Price mechanism is not always truthful from the users’ side, but, as they
show experimentally and [27] rigorously proves, it is approximately incentive compatible
when demand is high. [3, 2] propose variants of “pay-forward” mechanisms, where fees do
not directly go to the miner responsible for the next block but are distributed to others as
well and [8] offer another variant of EIP-1559, which is proven to be more stable, by showing
that the prices exhibit a martingale property for unchanging stochastic demand. Finally, [9]
considers an online lens with non-myopic users that can specify a transaction deadline and [5]
studies the problem from Bayesian mechanism design perspective.

A related line of work is that on scheduling computations in multi-threaded systems
or data-centers [12]. There, scarce computational resources must be efficiently allocated
to match demand of variable importance. A well-known mechanism in this area is lottery
scheduling [26], where processes are each assigned a number of lottery tickets, and the
scheduler samples the next process proportionally to its tickets. However, such an approach
is not sufficient to guarantee off-chain proofness in our setting, as the scheduler can be
“bribed” to include transactions arbitrarily. This should not come as a surprise, since off-
chain proofness is not a target property for multi-threaded systems or data-centers, i.e., the
scheduler is always trusted, thus disallowing direct use of the mechanisms developed in this
area to the blockchain setting.

Finally, financial derivatives, such as options or futures, on transaction fees offer an
alternative method to ensuring predictable costs in a system with variable prices, e.g., see [25].
These approaches are not directly comparable with our solution, since they additionally
require the formation of a suitable market around the derivatives. On the other hand, our
solution requires a hard fork to be implemented in major architectures, unlike derivatives
which can be implemented in the form of a smart contract [19].

Organization. In Section 2, we introduce the inclusion-delay security game and define what
it means for a blockchain to offer predictable service. The description and the theoretical
guarantees provided by the blockchain space tokenization (BST) mechanism are described in
Section 3. Section 4 discusses on how tokens in BST can be instantiated and distributed, as
well as the benefits of operating BST together with a traditional spot-market mechanism such
as EIP-1559. Section 5 focuses on BST deployment considerations, while the performance of
the mechanism is evaluated through simulation in Section 6.

2 Predictable Service

Intuitively, a user is offered predictable service if for a cost payed ahead of time, the user is
certain that a transaction produced at a later time will make it to the blockchain within
some predetermined delay. From a security perspective, formalizing this notion requires an
adequate security model. Previous modeling attempts have sidestepped this issue, mainly by
making the assumption that blocks have infinite size [10, 20]. In this section, we fill this gap
by providing a adequate model for analyzing service predictability.

2.1 Predictable delay
We start, by describing a simple cryptographic (worst-case) game to analyze the inclusion-
delay of transactions under different mempool mechanisms. Worst-case delay is key to
ensuring predictability as it provides a known upper bound on blockchain inclusion.
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(Submit, Tx)

CreateBlock

B′

(Block, B)

A M

(Submit, Tx’)

(Block, B)

M
(Block, B’)

Figure 1 An overview of the messages exchanged between different parties in the inclusion-delay
game. Note, that mempool instances always interact through A.

The inclusion-delay game Gk,µ
A,M is played between an adversary A and a number3

of mempools running mechanism M. The game centers around adversary A submitting
transactions to mempools and instructing them to create blocks. A’s objective is to maximize
the time it takes for a specific transaction to be included in a block.

In detail, A has the following actions available:
Submit a transaction to a mempool by sending a (Submit, tx) message.
Issue a new block of transactions (size k) 4 by sending a (Block, B) message to all
mempools
Instruct a mempool to create a new block by sending a CreateBlock message. The
mempool will then notify A of its selection by responding with the new block B. A
is expected to share the new block with all other mempools instances by sending a
(Block, B) message. 5

We point to Figure 1 for an overview of the interactions in the game.
Our goal will be to design mechanisms that under suitable assumptions ensure that valid

transactions appear in a block within a bounded number of new blocks created, counting
from the time the transaction was submitted, no matter what A may do. Note, that A in
our game is quite strong, as it fully controls transaction issuance, the delivery of messages,
as well as the timing of block production. The only thing that is controlled by the mempools
are the contents of the blocks they create.

Given that A can always create empty blocks in the inclusion-delay game, we are going
to bound the adversarial block production rate, to ensure that at least some of the blocks
produced are honest. Namely, we will assume that in any sequence of blocks ρ created, the
adversary issues at most µ · ρ of them, for ρ ∈ N and some µ ∈ [0, 1); µ a parameter of our
model. This property holds for most state-of-the-art blockchains, and has been extensively
analyzed under the name of chain-quality [10].

Now, we turn our attention to a subtle issue that has to do with what kind of worst-case
delay guarantees can be achieved by mempool mechanisms in our game. In general, worst-case
delay in bounded throughput systems (as in our game) is lower-bounded by the rate of

3 W.l.o.g., we assume the existence of 2 mempool instances. If there was only a single instance of M,
A would be able to distinguish which blocks are honest and which adversarial, information that in
permissionless blockchains is unavailable.

4 Note, that if we let blocks have unbounded size the game becomes trivial; M includes all transactions it
receives in the new block produced. This is also our main difference with previous works, e.g., [10, 20],
where blocks have unbounded size, thus not capturing the transaction-level Denial-of-Service attacks we
address here.

5 Having A notify mempools about the creation of new blocks ensures that whether the creator of the
block was a mempool or A is not leaked.
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9:6 Blockchain Space Tokenization

incoming traffic to throughput. If our game does not provide any way to limit the amount
of incoming traffic, then the adversary can launch a “sybil”-attack at the transaction level
to significantly delay some of the transactions produced. Concretely, if A wants to incur a
delay of m blocks, it only has to submit k · m + 1 valid transactions to the mempools, and
then request the creation of m blocks. Since at most k · m transactions fit in m blocks, one
of the transactions submitted will be delayed by m blocks.

To better reflect this situation within our model, and allow for shorter delays under
certain preconditions, we introduce an abstract limited-supply “access token” 6 in our game;
transaction creation will now be dependent/limited by token availability. In more detail,
at the start of the execution A is expected to initialize the token distribution any way it
chooses, while retaining the ability to dynamically change it at any point. Both initialization
and update of the token distribution is performed by sending to all 7 mempools a message
of the form (Token-Distribution, (si, vi)i), where si is the unique identifier of the i-th
token in the list that has value vi. 8 Issued transactions may use any number of tokens, with
the more token value used linked to lower delay. We point to Figure 2 for the augmented
game G̃k,µ

A,M.

(Submit, Tx[s2])

CreateBlock

B′

(Token-Distribution, (si, vi)i)

(Block, B)

A M
(Submit, Tx’[s1,s3])

(Token-Distribution, (si, vi)i)

(Block, B)

M

(Block, B’)

(Token-Distribution, (s′i, v
′
i)i)(Token-Distribution, (s′i, v

′
i)i)

Figure 2 An overview of the augmented delay-inclusion game G̃k,µ
A,M. Transactions reference

tokens (depicted in brackets here) to ensure lower worst-case delay.

Next, we turn our attention to formalizing transactions, blocks, and chains.

▶ Definition 1 (Transactions). A transaction tx specifies (i) the list of tokens (s1, . . . , sm) it
uses, and (ii) its size denoted by size(tx). The value of each token in the list is denoted by
val(si). The total token value of a transaction is defined to be val(tx) :=

∑
i∈[m] val(si).

▶ Definition 2 (Blocks, Chains). A block B := ((txi)i∈[m]) consists of a sequence of transac-
tions. A chain C consists of a sequence of blocks.

Typically transactions contain much more information than what we capture here. We
choose to abstract away most of it as it is irrelevant for the problem at hand. Nevertheless,
our model can be easily extended to describe complex transaction descriptions such as
Ethereum’s account model or Cardano’s EUTxO.

6 The (crypto-)currency stake distribution is a natural candidate token distribution in real-world block-
chains. As we discuss later this is not the only option available.

7 For simplicity, in our game we avoid explicitly modeling disagreement on the token distribution. Standard
techniques can be used to address this issue, e.g., the token distribution is only updated after the
relevant information are confirmed by the underlying blockchain.

8 In reality, some kind of authentication mechanism, e.g., digital signatures, will be available to prove
token-ownership. Such a mechanism is not needed in our model, since we assume that all transactions
are produced by the adversary.
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We next focus on defining what it means for a blockchain to be valid in our setting.

▶ Definition 3 (Validity). A block is valid if it contains transactions with size at most k and
no two transactions reference the same token. A chain is valid if it contains only valid blocks.

As before, our validity definition can be straightforwardly extended to account for the
complex validity definitions found in real-world blockchains.

To guarantee provable inclusion guarantees we will require a transaction to (i) be well-
distributed in the network (cf. the liveness condition in [10]), and (ii) not use the same
tokens as some other concurrently submitted transaction. Obviously, we should not expect
transactions not meeting these conditions to have provable inclusion guarantees.

▶ Definition 4 (Good transactions). A transaction tx submitted in the inclusion-delay game
G̃k

A,M is good iff
no other transaction tx′ with overlapping token references is submitted until tx is included
in a block;
tx is submitted to all mempool instances.

Our definition of security, which we introduce next, is concerned exactly with the worst-
case delay of such “good” transactions.

▶ Definition 5 (Worst-case delay). We say that a mempool mechanism M has worst-case
delay d iff for any adversary A, it holds that any good transaction tx submitted in the
inclusion-delay game G̃k

A,M appears in a block by the time d blocks 9 are generated, counting
from the time tx was submitted to the last honest party.

We note d in our analysis will be a function of certain transaction attributes, such as the
transactions size and token-value. Moreover, w.l.o.g, in the rest of this work we assume that
at any point of the inclusion delay game the total token-value is 1.

2.2 Predictable cost

Knowing that a transaction will make it to the blockchain within a predetermined amount
of time is insufficient to claim predictable service, as the cost of the transaction may be
unpredictable until the time it is included in the blockchain. Instead, to ensure full-fledged
predictability, a user submitting a transaction to the mempool mechanism must know ahead
of time what the total cost for this transaction will be. Note, that the cost does not have
to be fixed (as in Cardano), it only has to be determined and possibly paid ahead of time
compared to when the transaction is going to be submitted. 10 This leads us to the following
natural definition of service predictability.

▶ Definition 6 (Predictable service). A mempool mechanism M offers predictable service to
some user with predictability parameter t, if the users knows that after time t it can issue a
transaction with known delay and cost.

9 For simplicity, here we count delay in blocks to avoid introducing time explicitly. In principle, our
definition can be adapted to count delay in time units, by introducing an adequate liveness condition in
the inclusion-delay game. Such conditions are known to hold for blockchain protocols, e.g, see [10, 20].

10 Similar guarantees in finance are provided by a forward market where the price of a commodity is
locked-in a lot earlier that when the commodity is going to be delivered.
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9:8 Blockchain Space Tokenization

As argued earlier, Bitcoin and Ethereum fail to offer predictable service to any user, as a
surge in demand just after submitting a transaction does not allow for predicting the cost
of the transaction–the price may keep increasing until the transaction is no longer a valid
candidate for inclusion.

In the case of Cardano things are a bit different. Transaction costs are fixed, and thus
predictable. Moreover, due to the mempools processing transactions in a FIFO order, and
the fact that stake is limited and thus only a limited number of valid transactions can be
generated at any given point in time, it follows that delay is bounded in the worst-case and
thus also predictable. However, although Cardano provides predictable service, albeit with
a very large delay, it does not provide good incentives for block producers to follow the
transaction inclusion policy.

Specifically, an urgent user attempting to “jump the queue” and include its high value
transaction in the blockchain fast, can simply bribe operators to include its transaction first,
potentially making the delay other users experience arbitrarily large. This is possible since
the mempool operator has full control of the contents of the block. Resistance to such attacks,
known as off-chain proofness (OCP), is explored in [24]. OCP is concerned with collusion
agreements between users and operators trying to maximize their joint utility. A mechanism
is OCP if for every set of off-chain agreements, there is an equally good “on-chain” scenario.
Thus, even if a user pays off-chain a mempool producer for guaranteed inclusion, neither
party should gain additional utility.

Given the shortcomings these mechanisms face, in the next section we present a new
mechanism that manages at the same time to achieve service predictability and be off-chain
proof.

3 Blockchain Space Tokenization

In this section, we describe and analyze the block space tokenization (BST) mechanism Mbst,
a deterministic mempool mechanism that offers predictable service while properly incetivizing
correct behavior of both users and mempool operators. The mechanism centers around the
concept of blockchain space tokens that give their owners the right to post transactions in
the blockchain at a certain rate. The main idea is to prioritize inclusion of transactions using
these tokens based only on publicly verifiable information, such as:

the value of the tokens;
the age of the tokens, i.e, the block height at which a token used by the target transaction
was last used;
the size of the transaction,

and thus make it easier to achieve incentive compatibility by enforcing and checking correct
behavior.

We proceed to first give a detailed description of the core mechanism as well as analyze
its worst-case delay in the honest/adversarial model. Then, we provide a modification of the
algorithm that makes it off-chain proof while at the same time arguing that the resulting
mechanism retains similar worst-case delay guarantees. Finally, we argue that if tokens are
obtained by users ahead of time, the mechanism indeed offers predictable service.

3.1 Mechanism description
The core component of our mechanism is the way the priority value of a transaction is
calculated. Key to understanding this component is understanding the role of token age,
denoted by age(si) for token si, which is equal to the number of blocks generated from the
last time the token was used. Token age grows when a token is not used, while it is reset to
zero every time it is used.
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The first idea is to make the priority of a transaction proportional to the value of a token
multiplied by its age. The intuition is that, for the same token age, a transaction with more
token value should be prioritized over a transaction with less value; higher value should
generally mean lower delays. For the same token value, a transaction consuming an “old”
token should be prioritized over a transaction consuming a “young” token. This prevents
the same tokens from monopolizing the usage of the chain. In general, we could use any
monotone function of token value and age, but the product of value by age is the most
natural one. When a transaction uses multiple tokens, its priority is proportional to the sum
of the priorities of these tokens.

The second idea is to prioritize transactions at a rate inversely proportional to their size.
This ensures that, for a fixed token value, a transaction twice the size is included with half
the frequency. This maintains a constant throughput consumption rate per token value,
regardless of transaction size, thus ensuring that obtaining a certain amount of space token
value implies a certain space consumption rate.

Finally, we set an upper bound on priority that depends on token value density, the
chain quality parameter, and block size. This is necessary to prevent attacks where an
adversary stockpiles low-value tokens for an extended period before releasing them all at
once, monopolizing space usage with high-priority transactions. The related transactions
using these tokens would by then have maximum priority. Our carefully calibrated upper
bound ensures high-value transactions remain prioritized, even if low-value tokens haven’t
been used for a long period.

Concretely, mechanism Mbst assigns priority values to transactions as follows:

priorityC(tx) := min
{∑

si∈tx val(si) · age(si)
size(tx) ,

4
(1 − µ)k ·

(
1 + val(tx)

size(tx)

)}
,

where C is the chain defined by the blocks created in the inclusion-delay game up to this
moment, si is the i-th token used by the transaction, age(si) is the number of blocks in
C since si was last used by a transaction. Observe that for a transaction tx and chain C,
priorityC(tx) is completely determined, making the priority value publicly verifiable.

Having defined a priority score, Mbst simply fills new blocks with the transactions with
the highest priority. Next, we focus on analyzing the worst-case delay guarantees of Mbst.

3.2 Security analysis
Next, we show that Mbst has optimal worst-case delay up to some constant terms, i.e. in
the order of O( size(tx)

(1−µ)val(tx)·k ). 11 The optimality claim is based on the fact that there can be
at most 1/val(tx) transactions with token value val(tx) and size size(tx), and thus it takes
at least size(tx)

(1−µ)val(tx)k blocks to absorb them.
The main idea of the proof is the following: Firstly, tx will reach maximum priority after

a sufficient number of new blocks is generated. This implies that in order for tx to not be
included in the chain after this point in time, the adversary must fill any of the subsequent
honest blocks with transactions of priority greater or equal to that of tx. Given that an
(1 − µ) fraction of the blocks is going to be honestly generated due to our assumption, we

11While the constants provided by the theoretical analysis are not tight, later in Section 6 we show
through simulation that our mechanism indeed achieves tightly optimal delays under normal operation.
Nevertheles, the theoretical analysis is important as it establishes that the worst-case guarantees of the
mechanism in an environment almost entirely controlled by the adversary remain on the same order as
the optimal ones.
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show that it is impossible for the adversary to fill all of them with transactions other than tx
that also have a matching priority score, and thus tx is necessarily included in a block in the
predicted time.

▶ Theorem 7. The worst-case delay d(tx) of mechanism Mbst is upper bounded by 16 ·
size(tx)

(1−µ)val(tx)k + 2, when size(tx) < k/2 and val(tx) < 1/2.

Proof. Let tx be some good transaction in an execution of G̃k,µ
A,M, and let ϵ := val(tx),

c := size(tx), and P := 4
(1−µ)k . Moreover, let u := d(tx)/2 , and note that if tx is not

included in the blockchain after u new (honest or adversarial) blocks have been generated,
then it has maximum priority, i.e., ϵ · u/c ≥ P (1 + ϵ/c). For the sake of contradiction assume
that the theorem does not hold, and tx does not enter the chain after d(tx) blocks are
generated. We are going to show that such a scenario is impossible.

Let S′ denote the set of (honest or adversarial) blocks generated starting u + 1 blocks
after the submission of tx, and up to the generation of 2u blocks. Let S ⊆ S′ denote the
subset of honest blocks of S′. As argued earlier, during the generation of blocks in S, tx has
maximum priority equal to P · f(ϵ/c), where f(x) := 1 + x, is a monotonically increasing
function in x, and f(x) > 1, for any x > 0. We have assumed that tx is not included in these
blocks, it thus follows that any block in S should contain transactions with priority greater
than Pf(ϵ/c). Due to the monotonicity of f , this implies that the token-value density of any
such transaction is at least ϵ/c. Moreover, any block B in S must be at least k′ := (k − c + 1)
full, otherwise tx would be included. If follows, that the total token-value referenced in B is
at least k′ · ϵ/c, and that∑

txi∈B

priorityC(txi) · size(txi) ≥
∑

txi∈B

Pf(ϵ/c) · size(txi)

≥ Pf(ϵ/c) ·
∑

txi∈B

size(txi)

≥ Pf(ϵ/c)k′ (1)

The above inequality will be useful to determine the amount of priority adversarial transactions
have to generate to fill all blocks in S.

Next, we focus on upper bounding the number of blocks in S the adversary can fill with
transactions other than tx. W.l.o.g., we can assume that all adversarial blocks generated in S′

are empty, and that A includes transactions that reference all available tokens (except those
that are referenced by tx) in the first m blocks of S which are honest, for some optimally
selected m. Note that it is optimal for A to first reference all available tokens, as in this
way it can maximize the amount of priority of transactions used to fill any remaining blocks;
w.l.o.g, we assume that tokens are initially of infinite age. As a sanity check, note that just
creating transactions referencing tokens once, is not sufficient to cover all blocks in S, as
each block requires referencing ϵk′/c token-value, and thus a total of u(1 − µ) blocks require
referencing u(1 − µ) · ϵk′/c ≥ 8k′/k > 4 token-value, i.e., more than 1 which is the total
amount of token-value.

Next, we provide an upper bound T on the sum of value-age products of the tokens in the
first m honest blocks of S at the time the last honest block in S is generated. This will be
important to argue that A will not be able to create enough transactions with high enough
priority to fill all honest blocks. We thus have:

T ≤
m∑

i=1
si(u − i) = u

m∑
i=1

si −
m∑

i=1
sii ≤ u(1 − ϵ) −

m∑
i=1

sii ,
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where si is the total token-value in the i-th block of S. The quantity
∑m

i=1 sii is minimized
when s1 gets its maximal value. As we have argued earlier, each honest block references
at least ϵk′/c of token-value. Thus, s1 is at most 1 − ϵ − (m − 2 + δ)ϵk′/c, where the m-th
block references δϵk′/c token-value for the first time in S′, for some δ ∈ (0, 1]–the rest of the
token-value necessary may come from previously used tokens. It follows that:

m∑
i=1

sii ≥ (1 − ϵ − (m − 2 + δ)ϵk′/c) +
m−1∑
i=2

ϵk′/ci + mδϵk′/c

≥ 1 − ϵ − ϵmk′/c + ϵk′/c
m∑

i=1
i − (1 − δ)(m − 1)ϵk′/c

≥ 1 − ϵ − ϵmk′/c + ϵ
m(m + 1)

2 k′/c − (1 − δ)(m − 1)ϵk′/c

Putting everything together, we have that:

T ≤ u(1 − ϵ) − (1 − ϵ − ϵk′

2c
(2m − m(m + 1) + 2(1 − δ)(m − 1))) (2)

By the chain quality assumption there are at least (1 − µ)u honest blocks in S. We
have already argued about how the first m blocks are filed. Due to Inequality 1, the sum of
value-age products required to fill the rest of the blocks in S must be greater or equal than

((1 − µ)u − m) · k′Pf(ϵ/c) + δk′Pf(ϵ/c),

where the second term comes from the amount of priority required to fill the half empty
m-th honest block. Moreover, our initial assumption about the behavior of A implies that
this quantity must be smaller than T . Hence, it must hold that:

((1 − µ)u − m) · k′Pf(ϵ/c) + δk′Pf(ϵ/c)

≤ u(1 − ϵ) − (1 − ϵ − ϵk′

2c
(2m − m(m + 1) + 2(1 − δ)(m − 1))) ⇒

u ≤
Pf( ϵ

c )k′(m − δ) − (1 − ϵ − ϵk′

2c (2m − m(m + 1) + 2(1 − δ)(m − 1)))
(1 − µ)Pf( ϵ

c )k′ − 1 + ϵ

It is easy to see that the derivative over m of the r.h.s. of the above inequality is equal to
0 when

m = cPf(ϵ/c)/ϵ + 3/2 − δ ≥ cPf(ϵ/c)/ϵ ≥ c/(k′ϵ),

where the last inequality follows from the facts that k′ > k/2, f(ϵ/c) > 1. On the other hand,
m must be less than 1/ ϵk′

c = c/(k′ϵ). Since the r.h.s. is a quadratic function of m, it follows
that we can upper bound it (and thus upper bound u) by setting m := c/(k′ϵ). Hence, we
get:

u ≤ cPf(ϵ/c)/ϵ + ϵ + 1/2 − δ − c/(2k′ϵ) − (1 − δ)ϵk′/c − δk′Pf(ϵ/c)
(1 − µ)Pf(ϵ/c)k′ − 1 + ϵ

Replacing P by 4
(1−µ)k , for the denominator we get that:

(1 − µ)Pf(ϵ/c)k′ ≥ (1 − µ) 4
(1 − µ)k f(ϵ/c)k′ ≥ 2
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which implies that:

u ≤ cPf(ϵ/c)/ϵ + ϵ + 1/2 − δ − c/(2k′ϵ) − (1 − δ)ϵk′/c − δk′Pf(ϵ/c)
2 − 1 + ϵ

≤ 4cf(ϵ/c)
(1 − µ)kϵ

+ ϵ + 1/2 − δ − c

2k′ϵ
− (1 − δ)ϵk′/c − 4δk′f(ϵ/c)

(1 − µ)k

≤ 8c

(1 − µ)kϵ
+ ϵ + 1/2 − δ − c

2k′ϵ
− (1 − δ)ϵk′/c − 4δk′f(ϵ/c)

(1 − µ)k

≤ 8c

(1 − µ)kϵ
+ 1 < u

where the last inequality follows from the definition of u. Obviously, this is a contradiction
and the theorem follows. ◀

Next, we turn our attention to the off-chain proofness of the mechanism.

3.3 Making mechanism Mbst off-chain proof
Next, we provide a modification of Mbst that ensures Off-Chain Proofness. Taking a leaf
from Ethereum’s EIP-1559 pricing mechanism [24], we employ variable-sized blocks. Namely,
we allow block size to exceed our target size (up to some amount) and use this information
as a signal of increased or decreased demand, i.e, the relation of the size observed to the
target size. The mechanism makes use of this information by proportionally increasing
or decreasing a dynamic threshold that transaction-priority must exceed to be included
in a block, in an effort to make demand equal to the target size. This change essentially
limits the power mempool operators have in choosing the contents of blocks in a way that
cannot be manipulated. Concretely, bribing a mempool operator to include your low-priority
transaction will not help, since including the transaction into the block will make it invalid
due to the threshold limitation.

In more detail, let α be the target percentage we want blocks to be filled. We set the
threshold τ ′ of the next block after a chain C to be:

τ ′ = τ · exp
(

β ·
∑

tx∈S size(tx) − α · L

α · L

)
(3)

where L is the maximum size of a block, α · L is equal to k, β > 0 is a scaling factor, and τ is
the old threshold. This is similar to the Ethereum threshold update: there is some leeway to
measure if blocks are too empty or too full. We are going to use a slightly different definition
of priority than that of the previous section, namely:

̂priorityC(tx) := min{
∑

si∈tx val(si) · age(si)
size(tx) ,

4
(1 − µ)k ·

(
1 + val(tx)

size(tx)

)
· (1 + ρ)

ϕ−ln(size(tx)/val(tx))
ln(2) }

where ρ and ϕ are constants that will be defined later. Essentially, we have disproportionally
increased the maximum priority value transactions can reach. By doing this we avoid attacks
where the attacker by using maximum priority low-value transactions disproportionally
increases the threshold value and “cheaply” excludes high priority transactions from entering
the blockchain in the next block. We extend Definition 3 (Validity) to require that all
transactions included in a block should have priority larger that τ ′, and denote the modified
protocol by Mth

bst.
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Following the discussion about the incentive issues of Cardano in Section 2.2, note that
Mth

bst actually is off-chain proof.

▶ Corollary 8. Mbst is off-chain proof iff the threshold is high enough so that the eligible
pending transactions can fit into a single block. Formally, if the set E contains all transactions
such that ̂priorityC(tx) ≥ τ ′, Mbst is off-chain proof iff

∑
tx∈E size(tx) ≤ L.

The main idea of the proof 12 is that an appropriate threshold implies that the block
producer can add all pending transactions to her block. Under normal circumstances the
eligible transactions would be about a · L in size. Any other transaction would be ineligible
and cannot be added through an off-chain deal, no matter how valuable.

Although not formally studied, in the non-myopic case if the current block producer
requested additional payment, there is enough slack so that the next block producer could
include the previous transactions as well. However, during a sudden increase in demand
the threshold might need a few blocks to adjust, leading to an excess of eligible, valuable
transactions that could collude with block producers. This situation is similar to the “tipless”
mechanism from [24], or to standard EIP-1559 but with off-chain proofness replaced by user
incentive compatibility.

3.4 Worst-case delay of mechanism Mth
bst

The modifications we employed in Mth
bst puts the worst-case delay guarantees proved earlier

for Mbst at risk. Next, we argue that Theorem 7 also holds for Mth
bst and its worst-case

delay is asymptotically optimal, i.e, in the order of O(size(tx)/((1 − µ)val(tx)k)), albeit
with a small overhead that has to do with the time it takes for the threshold to catch up
to maliciously changing traffic conditions. As before, experimental results show tightly
optimal delays under normal operation conditions. Notably, our result does not make any
assumptions about the number of eligible transaction at each round, i.e., it is independent of
traffic spikes.

Our analysis requires that the target transaction has token value at least 2−ϕ; parameters
can be appropriately tuned to make ϕ rather large for realistic applications. For simplicity,
here we assume that α := 1/2, ϕ = 20, ρ := 0.1, β := ln(1 + ρ).

▶ Theorem 9. Setting α := 1/2, ϕ = 20, ρ := 0.1, β := ln(1 + ρ) , Mth
bst has worst-case

delay d(tx) at most

80 size(tx)
(1 − µ)val(tx)k + ln(11 · size(tx)

val(tx) )/β + 10

when size(tx) < k/2 and 2−ϕ ≤ val(tx) < 1/2.

Proof. The main rationale of the proof of Theorem 7 is that as long as the target transaction
tx is not included in a block, it will eventually attain maximum priority, say

T := P (1 + ϵ/c)(1 + ρ)
ϕ−ln(c/ϵ)

ln(2)

where ϵ := val(tx), c := size(tx) and P := 4
(1−µ)k , and from this point on the adversary will

have to fill honest blocks with high priority transactions other than tx, which it cannot do for
long due to the limited rate at which priority is generated. We are going to apply the same

12 We omit the formal proof of this result as it is rather similar to the analysis in [24].
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logic to bound the worst-case delay of Mth
bst, with the only difference that the adversary now

may skip filling some honest blocks due to the threshold value being higher than T at that
point of the game. This implies that for a number of blocks, at least as high as the number
of blocks honest parties would leave empty, the threshold must be higher than T . We argue
next, that in order for this to happen the adversary has to fill an amount of space with high
priority transactions proportional to that in the original mechanism Mbst, and thus does
not gain much in terms of worsening the delay.

For the sake of contradiction, assume that Mth
bst does not satisfy the theorem statement,

and thus there exists a tx that has greater delay that d(tx). Note, that the term (1+ρ)ϕ−ln(c/ϵ)

is upper-bounded by 7 for our parameters. Let u := 8 · c
(1−µ)ϵk +1, as in Theorem 7. Similarly

to the argument there, after 7u blocks, tx will have obtained maximum priority equal to T .
Now, let B1, . . . , Bu be the sequence of blocks starting after tx has attained its maximum
priority, and denote by Ti the threshold of block Bi.

Assume for the moment, that T1 < T , and let i1, i′
1, . . . , im, i′

m be a subsequence of indices
of 1, . . . , m such that

Tij , Ti′
j

≤ T and Tl > T for l ∈ (ij , i′
j), j ∈ [m];

ij , i′
j mark a sequence of threshold values that are greater than T .
First, we argue that any Bij

for j ∈ [m] should contain transactions with token-value
density at least ϵ/(2c), i.e, that

Tij
> T̂ := P (1 + ϵ/(2c))(1 + ρ)

ϕ−ln(2c/ϵ)
ln(2)

For two subsequent thresholds T ′, T ′′, where T ′′ > T , it holds that:

T ′′ > T ⇒ T ′eβ(L−L/2)/(L/2) > T

⇒ T ′eln(1+ρ) > P (1 + ϵ/c)(1 + ρ)
ϕ−ln(c/ϵ)

ln(2)

⇒ T ′ > P (1 + ϵ/c)(1 + ρ)
ϕ−ln(c/ϵ)

ln(2) −1

⇒ T ′ > P (1 + ϵ/(2c))(1 + ρ)
ϕ−ln(2c/ϵ)

ln(2) = T̂

where w.l.o.g., we have assumed that Bij is full. It follows that Bij contains only transactions
with priority greater than T̂ , which can only be attained if the transactions have toke-value
density at least ϵ/(2c). Moreover, in case Bij is an honest block it should contain transactions
with priority at least T and be at least aL full.

Furthermore, we argue that for the threshold to be larger than T in a sequence of blocks,
as in Tij

, . . . , Ti′
j
−1, it must be the case that blocks on average contain an amount of data

proportional to their number. First, for subsequent threshold values it should hold that:

Ti+1 = Tie
β(xi−aL)/(aL) ⇔ xi = aL(1 + ln(Ti+1/Ti)/β)

where xi is the fullness level of block i. Now, for any j and w := ij , v := i′
j − 2, we get that:

v∑
i=w

xi = aL(
v∑

i=w

(ln(Ti+1) − ln(Ti))/β + 1))

= aL((ln(Tv+1) − ln(Tw))/β + v − w + 1)
= aL(ln(Tv+1/Tw)/β + v − w + 1)
≥ aL(v − w + 1) = aL(i′

j − ij − 1)
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and since the threshold in all these blocks is above T̂ , as we argued before, it must be the
case that these blocks contain aL(v − w + 1) amount of transactions with that much priority
each. Summing over all j, we get that the respective blocks should contain an amount of
aLρ transactions with priority at least T̂ each, where ρ = |{Ti|Ti > T, i ∈ [u]}|.

Finally, honest blocks with threshold lower than T must be covered with transactions of
density at least ϵ/c and priority at least T , as otherwise tx is going to be included.

Putting it all together, we have the following:
blocks in S = {Bi|Bi is honest, Ti < T, i ̸= ij , i ∈ [u], j ∈ [m]} should contain transactions
with total size at least aL and priority at least T each;
blocks in H = {Bi|Tj > T, i ∈ [u], i ̸= i′

j − 1, j ∈ [m]} should contain transactions with
priority at least T ;
blocks in W = {Bij

|j ∈ [m]} should contain transactions with total size at least aL and
priority at least T̂ each;
blocks in WH = {Bij

|Bij
is honest , j ∈ [m]} should contain transactions with total size

at least aL and priority at least T each.
Thus, the adversary has to generate transactions whose total normalized priority times size
is at least:

aLT̂ · (2|S| + (|H| + |W \ WH | + 2|WH |))

≥ aLT̂ · (|S| + |H| + m + |WH |)

≥ aLT̂ · (|{Bi| is honest block , i ∈ [u]}|)

≥ aLT̂ · (1 − µ)u/(2c)

where we have used the fact that |W | = m and blocks in WH contain transactions with
priority T . Hence, the adversary has to fill as many blocks as in the proof of Theorem 7
when the token-value density of the target transaction is ϵ/2c. By our previous analysis this
is not possible for u2 := 16c/((1 − µ)ϵk) + 1.

Finally, it remains to argue about our assumption that T1 is less than T . Assume that
we are at a round where tx has maximum priority T and the threshold remains above or
equal to T for u′ + 1 rounds. By our earlier argument, to maintain the threshold above T

the adversary must fill produced blocks with high priority (> T ) transactions of total size:

aL(ln(Tu′+1/T1)/β + u′) ≥ aL(ln((Pϵ/c)/(7P (1 + 1/2)))/β + u′)
≥ aL(u′ − ln(11c/ϵ)/β)

where 7P (1 + 1/2) is an upper bound on the threshold value. We want to choose a u′ such
that it is impossible for A to generate that many high priority transactions within u′.

By Theorem 7, we know that it is impossible to fill ũ(1−µ̃) honest blocks with transactions
of priority T in less than ũ := 8c/((1 − µ̃)ϵk) rounds. Take now µ̃ > 1/(1 + 8c

ϵkγ ), where
γ := ln(11c/ϵ)/β. It holds that ũ > γ + 8c/(ϵk). Setting u′ := ũ, we see that

u′ − ln(11c/ϵ)/β > u′ − γ = 8c/(ϵk) ≥ u′(1 − µ̃)

which implies by our previous observation that A will not be able to fill the required blocks
to retain the threshold larger than T for this selection of u′.

Concluding, tx must be included in a block after a total of

72c/((1 − µ)ϵk) + ln(11c/ϵ)/β + 8c/(ϵk) + 10

rounds. The theorem follows. ◀
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3.5 Putting everything together
We have shown that given a transaction and its token-value, it is possible to bound (and
thus predict) its worst-case delay. Moreover, that this delay is asymptotically optimal and
that mechanism Mth

bst is off-chain proof. Note now, that if there was a way of distributing
the blockchain space tokens ahead of time, mechanism Mth

bst would satisfy our initial goals.
We formalize this idea in the next theorem.

▶ Theorem 10. Given tokens are obtained and available in advance before use by a window
of time t to a user, and setting the mechanism parameters as in Theorem 9, Mth

bst offers
predictable service to that user with parameter t, it has asymptotically optimal worst-case
delay, and is Off-Chain Proof.

Proof. Theorem 9 and Corollary 8 imply asymptotically optimal worst-case delay and Off-
Chain Proofness. To argue about predictable service, not that since tokens are obtained
t time in advance, a user knows ahead of time both the cost and the worst-case delay of
its transaction; the worst-case delay can be calculated based on the amount of token value
obtained by the user using Theorem 9. The theorem follows. ◀

Note that as in [24], off-chain proofness is shown unless in the midst of a demand spike.
To complete our proposal, in the next section we describe a way of distributing tokens
ahead-of-time.

4 Allocation of Tokenized Space

In this section, we discuss a specific way to apply the ideas and results from the previous
section. Let’s first consider two potential options for token instantiation and distribution.
The two extremes are to use either the existing stake (in Proof-of-Stake systems) or to create
a new space token specifically designed for this purpose.

Using dedicated space tokens offers significant flexibility because they are independent of
any restrictions related to other uses of stake, such as consensus or smart contracts. However,
there is a risk of Denial-of-Service (DoS) attacks if a malicious party aquires almost all
space tokens. We propose two methods to mitigate this risk, both of which offer additional
advantages.

The first idea is to partition the blockchain space into two fixed parts: the “spot space”
and the “tokenized space.” In the spot space, transactions are included using the usual
mechanism (e.g., first-price auctions in Bitcoin, EIP-1559 in Ethereum). In the tokenized
space, transactions are included using the proposed BST mechanism of the previous section
with the space tokens. The fraction allocated to the tokenized space is fixed permanently
or adjusted very slowly by blockchain governance to meet demand. We anticipate power
users who issue many transactions will utilize the tokenized space, while regular users will
primarily use the spot space. DeFi users may leverage both spaces depending on their needs
for speed, cost, and predictability.

The second idea is to limit the lifetime of each access token. A lifespan of a few months
makes it challenging and expensive for a malicious actor to control all tokens for an extended
period. Of course, preventing a well-funded attacker from acquiring all tokens is impossible,
but this risk exists in any system that allocates blockchain space through a transaction fee
system.

A simple and effective way to distribute the space tokens is to sell them in an auction
conducted within the spot space. This approach avoids bootstrapping difficulties. For example,
the system can run a sealed-bid auction every T blocks for tokens expiring after L blocks,
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where L can be a small multiple of T (e.g., a monthly auction for tokens with a 3-month
lifespan). While sealed-bid auctions typically require significant space for registering bids and
recording outcomes on the blockchain, we anticipate that only a few hundred power users
will participate, making on-chain execution feasible. Otherwise, the auction can run off-chain,
with only the results recorded on the blockchain. To prevent incentive issues, bidders should
submit encrypted bids along with collateral. During the auction, bids are decrypted and the
winners are determined. The collateral ensures bidders don’t withdraw after the auction and
should be set high enough to deter this behavior.

With sealed bids, there are several options for a truthful multi-unit auction, including the
VCG auction with no reserve price, the VCG with a reserve price [18], or even more exotic
auctions (such as Triage auctions [7]). Taking into account limitations in communication
and blockchain space, the VCG auction with reserve price emerges as the most suitable
choice. This reserve price can be calculated based on historical values of the tokenized space,
transaction fees of the spot space, or set as a fixed value with adjustments by blockchain
governance. An additional advantage of the VCG auction with reserve price is that it is
also the optimal auction for maximizing revenue in Myerson’s settings [17]. The revenue
of the auction could be equally distributed to the block producers at the end of the period
to eliminate any strategic considerations by block producers. While technically this is a
repeated auction, the analysis of the myopic (single-shot) setting captures the key aspects
given the relatively long intervals between auctions.

Once the auction concludes, the tokens become tradable like any other token until they
expire. Power users can estimate their service needs at the auction and then buy or sell
tokens to adjust their requirements throughout the period.

5 Deployment Considerations

Next, we focus on deployment considerations of mechanism Mth
bst. We argue that the

main component of the system, i.e., the procedure that computes the priorities of different
transactions, can be efficiently and compactly implemented in the major blockchain architectu-
res.

Firstly, our scheme does no require support of any specialized cryptographic primitives,
such as VRFs, VDFs, ZK-SNARKs, etc. 13 Typically, implementing new cryptographic
primitives is one of the major obstacles in quickly releasing new technology in the blockchain
landscape. The main operation of the mechanism revolves around being able to efficiently
determine the priority of different transactions and pick the ones that have the maximum
priority, which basically amounts to suitable book-keeping.

In more detail, the mempool operator should maintain a data-structure DS containing
the block that each token was last referenced by some transaction. To determine the priority
of a transaction tx, it suffices to query DS about the age of the tokens referenced by tx,
and then simply compute the priority value following the equation in Section 3.3. Using
some kind of self-balancing binary search tree to implement DS, e.g., an AVL tree, allows
retrieving and updating the token-age related information in O(log(n)) time in the worst-case,
where n is the total number of tokens. Therefore, computing the priority of a transaction
takes O(m · log(n)) time, where m is the number of tokens referenced by the transaction,
while updating the token related information takes O(l · log(n)), where l is the number of
token values to be updated. Space-wise, the AVL tree takes about O(n) space.

13 We note that this is not necessarily the case for the token-distribution part, where an auction has to be
deployed.
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Figure 3 1000 users for 20000 steps, where every user becomes active with pi,t = 0.8.

To more efficiently use their tokens, users may be tempted to split them in smaller chunks.
This way they can better control the priority injected into a transaction by including more or
less of these small tokens. Such token-splitting would result in more load to the system, and
is generally unwanted. To avoid such an issue, a transaction can explicitly state how much
of the priority generated by each token referenced should be used, with the rest retained for
later use. Such a change does not affect the security analysis presented in previous sections,
and can be easily implemented: DS, in addition to the last-use information stored per token,
also stores any remaining priority left from a previous use of the token. Again, transaction
priority can be efficiently computed.

Finally, we describe two possible instantiations of the mechanism in the UTxO (used by
Bitcoin) and the account model (used by Ethereum), respectively.

In the UTxO-based case, say in Bitcoin, we can introduce our space tokens using the or-
dinals mechanism [1] each satoshi (Bitcoin’s smallest denomination) can receive an inscription
and afterwards it can be transferred as an NFT. The initial inscription can specify the value
of the token in terms of priority, and subsequently, it is possible to consume only a fraction of
the priority of a token by prescribing a value in [0, 1] and using the reinscription mechanism
of ordinals – this deals with the token-splitting issue described earlier. To issue a transaction
utilizing such a token, it is sufficient to post a transaction transferring the corresponding
NFT to the change address of the posting user, while setting the transaction fee to 0. It is
easy to see that this mechanism can be facilitated as a soft fork in the Bitcoin network (note
that transaction relaying with 0-fees would need to be amended accordingly). On the other
hand, in the account-based case, say in Ethereum, a smart contract can mint the tokens with
their corresponding values and subsequently the priority consumed can be specified in each
transaction. Note finally that a hard-fork would be required to allow transactions posted
with zero fees that utilize a space token instead to become admissible into the ledger (as due
to EIP-1559 it is imperative that a valid transaction comes with a minimum fee).

6 Simulations

We validate our theoretical results using experiments on synthetic blockchain traffic. Specifical-
ly, we are assuming that there are n independent transaction issuers, each of which has
tokens of value vi > 0, sampled independently for the same distribution F (and subsequently
normalized so the total amount is 1). At every step, each user might be active or inactive. If
they are inactive at time t − 1, they flip a coin and become active at time t with probability
pi,t. Once they are active, they submit a transaction and remain active until that transaction
is published. Then, they become inactive again and the cycle continues. For simplicity, the
users do not trade their tokens and there are no adversarially produced blocks. We use the
BST mechanism with the parameters of Theorem 9. Each transaction has size 1 and a block
can hold up to 20 transactions, with 10 being the target size for the threshold update rule.
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Figure 4 1000 users for 20000 steps, where a random subset of half the users stops issuing new
transactions halfway. Notice that the threshold drops to half its value and the users that remain
active publish twice as many transactions given their token value. The user transactions published
in the second half are denoted using the cross symbol, while the circles refer to the first half.

We simulate two scenarios, both of which consist of four runs with different token
distributions. Specifically, we have:

Uniform in [0, 1].
Pareto Type II with parameter 2.
Truncated Normal with µ = 100 and σ2 = 10.

In the first scenario, depicted in Figure 3, we have 1000 users for 20000 blocks. The activation
probability of all users stays the same throughout. The average delays follow the worst case
result from Theorem 9. The relation is much better depicted in the graph at the right, where
the number of published transactions (which is the inverse of the delay multiplied by the
number of blocks) is shown to be linear in the amount of tokens.

In the second scenario, depicted in Figure 4, we show that this mechanism has the ability
to adapt to changes in demand. We vary the activation probability as follows: all users
have pi,t = 1 for the first 10000 steps and then half of the users switch to 0. Notice how
the threshold decreases, and also that in both cases we match the optimal worst-case delay
(which is easier seen as the number of published transactions), thus showcasing that under
normal operation conditions our mechanism indeed achieves optimal delays.
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1 Introduction

Randomness is an essential component of blockchain protocols. With the invention of Proof
of Work blockchains [20], a major innovation in Bitcoin was to use the randomness of the
SHA256 function to select the next block proposer. In particular, a participant in the Bitcoin
ecosystem is able to propose a block of their choice with probability proportional to their
computational power. While this system satisfies many desirable properties, it is in many
ways not desirable due to inefficiency. With the move to Proof of Stake blockchain protocols,
the dependence on computation is replaced with stake in the digital currency itself. However,
a new source of randomness is needed to select the next block proposer with probability
proportional to one’s stake. A major security requirement for this randomness is for it to
be verifiable (i.e. everyone can verify that the block proposer lottery was not rigged) and
unpredictable (i.e. before the lottery happens, no one can know the winner).

Several approaches exist to provide this source of randomness to Proof of Stake blockchain
protocols. One approach is to use an external randomness beacon [13] which achieves similar
guarantees as in Bitcoin. However, implementing such a beacon comes with trust central-
ization concerns. A more practical approach is to use protocols that rely on pseudorandom
cryptographic primitives to select block proposers, which are adopted by Proof of Stake
blockchains such as Ethereum.
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While the system safety and liveness are not compromised by the randomness mechanism in
current Proof of Stake blockchains, it is well-known that they are susceptible to manipulation
(see [23, 7]). In particular, incentive-incompatibilities that result in block-withholding
behavior exist in many Proof of Stake blockchain protocols – analogous to selfish mining for
Bitcoin [10, 26, 22].

There is a recent line of work focusing on Proof of Stake incentive incompatibilities
[4, 13, 15, 3, 14], some of which derive concrete bounds on optimally manipulating randomness
for the Algorand protocol. However, while some analyses such as [23, 9] and simulation-based
approaches such as [2] conclude that randomness manipulation is likely to be negligible for
Ethereum, it is currently unknown how much more an adversary that optimally manipulates
Ethereum can make. In this paper, we focus on answering this question and compute optimal
strategies for randomness manipulation in Ethereum. Our approach relies on modeling the
randomness manipulation game as a Markov decision process.

1.1 Brief overview of Proof of Stake Ethereum

We now briefly cover the relevant details of the Proof of Stake Ethereum protocol. In the
Ethereum protocol, time is divided into epochs, each epoch is divided into 32 slots, and each
slot is 12 seconds. Each epoch is assigned 32 block proposers (one for each slot) who can
construct and broadcast a block to be added to the blockchain at that slot. If the block
proposer fails to do so, the slot is missed (no block is added) and the blockchain moves on to
the next slot.

Proof of Stake Ethereum provides randomness by a scheme that maintains a random
value called the RANDAO (also known as randao_reveal) in each block [9]. As each block is
proposed, the previous RANDAO value is mixed using the private key of the proposer. Since
the private key is used to sign the epoch number and is mixed into the previous RANDAO
value by the xor operation, the mixing is verifiable. Moreover, as the signature is assumed
to be uniformly random and the private key is unknown to the public, it is unpredictable.
These properties ensure that the only actions available to an adversary in influencing the
RANDAO value is to choose between broadcasting or withholding a block.

At the end of each epoch, the RANDAO value is used to select a set of 32 new proposers
for the next epoch1. For example, if an adversary controls multiple validators and happens
to get assigned to propose in slot 30 and 31 (the last two slots of an epoch), after slot 29
passes, the adversary can use the RANDAO value at slot 29 to compute 4 different RANDAO
outcomes for the next epoch. If the adversary withholds both 30 and 31, the RANDAO
value remains the same. If the adversary withholds 30 and broadcasts 31, the RANDAO
value is only mixed with the signature of the proposer of 31, and so on. By precomputing 4
possible outcomes, the adversary is able to select one of the 4 RANDAO values (at the cost
of missing the relevant block rewards). Similarly, in general, an adversary that controls the
last k proposers in an epoch is able to choose from 2k RANDAO values that determine the
proposers for the next epoch. We call the longest contiguous adversarial slots at the end of
an epoch the tail. With this scheme, it is conceivable that an adversary may strategically
withhold their block at specific slots to win the right to produce more blocks in expectation.

1 Ethereum actually skips an epoch in this process so the RANDAO value at the end of epoch i determines
the 32 proposers for epoch i + 2 – we discuss this in more detail in Section 3
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1.2 Main contributions
Our main technical contributions in this paper are:

We model and formalize the game that an adversary with α < 1 proportion of the total
staked Ethereum plays in manipulating the RANDAO value.
We show that the RANDAO manipulation game can be formulated as a Markov Decision
Process, and we show how to significantly reduce the state space so that policy iteration
on a laptop quickly converges.2
We present precise answers to the fraction of slots a strategic player can propose after
optimally manipulating Ethereum’s RANDAO.

1.3 Related Work
Manipulating Ethereum’s RANDAO. The name RANDAO comes from (and the scheme
is inspired by) an earlier project [1], and its manipulability has been acknowledged and
discussed in the Ethereum community [6, 5]. Work of [2] focuses on modeling the RANDAO
mechanism3 in probabilistic rewrite logic and evaluating greedy strategies (analogous to
Tail-max of Section 5.1). In evaluating the model, they follow a simulation based approach
with epoch length 10 and report some biasability. In [23], some probabilistic analysis of how
many blocks an adversary controlling the last two proposers in the current epoch can get
in the next epoch is presented. In addition, it is demonstrated that in specific instances,
some staking pools had the opportunity to control more than half the next epoch. Lastly, [9]
shows that the number of proposers an adversary controls at the tail is expected to shrink as
long as the adversarial stake is less than roughly 1/2. It also provides an strategy analysis
that considers tails of length 0 and 1, concluding marginal improvement over the honest.
These results are consistent with ours, and as expected the reported improvement in rewards
is less than the optimal strategy we compute. For example, a 25% adversary with their
single look-ahead strategy makes 2.99% more than the honest while we compute that the
optimal strategy makes 4.09% more than the honest. In comparison to these works, our work
nails down the optimal RANDAO manipulation, and via a principled framework that can
accommodate slight modifications (such as epoch length) as well.

Computing Optimal Manipulations. The most related methodological papers are [22, 14],
who also compute optimal strategic manipulations. [22] computes optimal manipulations
in Bitcoin’s longest-chain protocol, and [14] computes optimal manipulations in Algorand’s
cryptographic self-selection. Our work is methodologically similar, as we also formulate
an MDP and use some technical creativity to solve it. On the methodological front, our
state-space reduction in Section 4 is perhaps most distinct from prior work.

Manipulating Consensus Protocols, generally. There is a significant and rapidly-growing
body of work on manipulating consensus protocols broadly [10, 22, 19, 8, 17, 16, 13, 11, 25,
24, 3, 14]. Aside from the aforementioned works, most of these do not compute optimal
manipulations, but instead understand when profitable manipulations exist. For Ethereum’s
RANDAO, it is already well-understood that profitable manipulations exist for arbitrarily
small stakers, and so the key open problem is how profitable they are (which our work
resolves).

2 Our implementation is available here: https://github.com/kalpturer/randao-manipulation
3 The RANDAO model in [2] is an earlier variation of the RANDAO mechanism that uses a commit-reveal

scheme. The induced game, however, is quite similar.
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1.4 Roadmap
In Section 2, we briefly cover the relevant background on Markov Decision Processes. In
Section 3 we formalize the RANDAO manipulation process as a game. In Section 4, we
formulate the RANDAO manipulation game as a Markov Decision Process and reduce the
state space to a tractable regime. In Section 5 and 6 we describe how to evaluate and solve for
optimal policies. Lastly, in Section 7 we conclude with a discussion on modeling assumptions,
future work, and block miss rates.

2 Preliminaries: Markov Decision Processes

In this section, we quickly review the necessary background for Markov chains and Markov
decision/reward processes. The material in this section is largely drawn from [18] and [21].
These texts can be consulted for a more detailed treatment.

A Markov chain C = (S, P ) consists of a set of states S and transition probabilities
P : S × S → R. Given a current state s ∈ S, we transition to the next state with the
probability distribution induced by P (s, ·). Rewards can be added to this framework with a
reward function R : S × S → R such that if we transition from state s to s′, we get R(s, s′)
reward. A Markov chain with rewards is a Markov reward process (MRP).

An agent navigating a Markovian system can be modelled using a Markov decision process
(MDP). An MDP is a tuple M = (S, A, {Pa}a∈A, {Ra}a∈A) where S is a set of states, A is a
set of actions, Pa : S × S → R is a transition probability function representing the probability
of individual transitions given an action a ∈ A, and Ra : S × S → R represents the reward of
transitioning between individual states with action a ∈ A.

A policy π : S → A is a function specifying which actions to take given the current state.
Once we fix a policy in an MDP, we get an MRP. We only consider deterministic policies
since the standard results [21] show that in the models we consider, an optimal deterministic
policy exists.

We will be modeling the RANDAO manipulation game as an MDP. We now introduce
some definitions and properties that will be useful when we introduce our MDP.

2.1 Properties of Markovian systems
One important property concerns whether some states are visited infinitely often.

A state s in a Markov Chain is recurrent if, conditioned on currently being at state s, the
probability of later returning to state s is 1. If a state is not recurrent, it is called transient.
A recurrent class of states is a set of recurrent states Ŝ such that, for all s ∈ Ŝ, conditioned
on being at state s: for all s′ ∈ Ŝ, the probability of visiting s′ at a later time is > 0.

A Markov chain is ergodic if it consists of a single recurrent class of states. Similarly an
MDP is ergodic if for every deterministic policy,4 the Markov chain induced by the policy is
ergodic. All MDPs we will consider will be ergodic so for the rest of this section we assume
ergodicity.

A stationary distribution σ of a transition probability matrix P in a Markov chain is
defined to be a solution to the following:

σ = σP and
∑

i

σi = 1

4 We only work with stationary policies which are policies that do not change over time. For the processes
we consider a stationary optimal policy is guaranteed to exist.
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▶ Proposition 1 ([21]). If a Markov chain is ergodic, then there exists a unique stationary
distribution.

2.2 Reward criteria
Now we define the reward criteria for a Markov decision process M . For our application,
average reward is more appropriate than discounted reward since we are concerned with the
infinite behavior of the system.

Let ρπ,s(m) be a random variable that is equal to the reward at time m while transitioning
the state at time m to the state at time m + 1 in some MDP when running policy π starting
at state s.

The average reward of a policy π is defined as:

Γπ = lim
N→∞

E

[
1
N

N∑
m=0

ρπ(m)
]

where we rely on the following result to ignore the initial state.

▶ Proposition 2 ([21]). The average reward for ergodic MDPs is initial state independent.

Let q(s) be the expected reward of transitioning from state s. More formally q(s) =∑
s′∈S Rπ(s)(s, s′)Pπ(s)(s, s′). Then, Γπ can be computed using the stationary distribution

σπ of the Markov chain induced by fixing policy π.

Γπ =
∑
s∈S

q(s)σπ
s

Value Functions. In any recurrent process, it is a useful concept to understand the “value”
of being in one state over another, due to the potential future rewards. With non-discounted
rewards, this requires some subtlety to properly define (because the expected future reward
from any state is infinite). One standard method is to define the value of a state as its
average adjusted sum of rewards:

vπ(s) = lim
N→∞

E

[
N∑

m=0
(ρπ,s(m) − Γπ).

]

That is, the average adjusted sum of rewards captures the additive difference between
an unbounded process starting from state s and iterating π and an unbounded process that
earns Γπ (the average per-round reward of π) per round.

▶ Lemma 3 ([18]). For an ergodic MDP M ,

vπ(s) + Γπ = q(s) +
∑
s′∈S

Pπ(s)(s, s′)vπ(s′)

Since we can compute Γπ first given a policy, this equation determines all vπ up to an
additive constant which we can solve for after setting vπ(s) = 0 for some s ∈ S.5

5 The average reward Γπ is sometimes called gain and what we call the value vπ, which is the average
adjusted sum of rewards, is sometimes called bias in the literature.

AFT 2024
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To find the optimal policy with respect to the average reward criterion, we can run the
policy iteration algorithm of [18, 21]. Starting from an arbitrary policy π0, evaluate the
policy to compute Γπ0 and vπ0 . Then, a policy improvement step is performed which defines
πi+1(s) := arg maxa∈A{qa(s) +

∑
s′∈S Pa(s, s′)vπi(s′)}. The following Bellman optimality

equation guarantees that once this process stabilizes, we have an average reward optimal
policy.

▶ Theorem 4 (Bellman optimality equation for average-reward MDPs, [18]). If a policy π∗

satisfies the following equations in an MDP, then π∗ is average reward optimal.

vπ∗(s) + Γπ∗ = max
a∈A

{
qa(s) +

∑
s′∈S

Pa(s, s′)vπ∗(s′)
}

∀s ∈ S

3 The RANDAO manipulation game

We now review RANDAO in more detail, and formulate the RANDAO manipulation game.
RANDAO is a pseudorandom seed that updates every block, and is used to select Ethereum
proposers. Below, we use the terminology R(b) to denote the RANDAO value after the bth

slot has finished.

Updating RANDAO. The process for updating R(b) is quite simple. If no one proposes a
block during slot b of epoch x, then R(b) = R(b − 1). If a block is proposed during slot b, the
proposer must also digitally sign the epoch number x and the hash of this digital signature is
XORed with R(b − 1) to produce R(b). Note, in particular, that there is a unique private key
eligible to propose a block during slot b, and therefore the only two possibilities for R(b) are
either R(b − 1) (if no block is proposed) or R(b − 1) XOR hash(signature of x by proposer
for slot b).

Using RANDAO to seed epochs. The Ethereum blockchain consists of epochs, where each
epoch contains 32 blocks. Within each epoch t, a seed S(t) determines which private keys
are eligible to propose during each slot. That is, for each of the 32 slots in an epoch, the
proposer of that slot is a deterministic function of S(t) (but S(t) is a pseudorandom number).
Moreover, if S(t) is a uniformly random number, then each slot proposer is independently
and uniformly randomly drawn proportional to stake.

S(t) is set based on RANDAO. Specifically, S(t) is equal to the value of RANDAO at the
end of epoch t − 2. To be extra clear, there have been 32(t − 2) slots completed by the end
of epoch t − 2, so S(t) := R(32t − 64).

Rewards. In practice, proposer rewards involve transaction fees, Maximal Extractable Value
(MEV), and any payments made in the Proposer-Builder-Separation (PBS) ecosystem. To
streamline analysis, and to be consistent with an overwhelming majority of prior work, we
focus on the fraction of slots where an adversary proposes.6 That is, we consider an adversary
who aims to maximize the fraction of slots where they propose.

6 Of course, it is an appropriate direction for future work to instead explicitly model transaction fees,
MEV, etc. Such modeling would only make an adversary stronger, as their strategy can now depend on
the value of each slot [8].
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Ideal Cryptography. It is widely-believed that digital signatures of a previously-unsigned
message using an unknown private key (and hashes of previously-unhashed inputs, etc.) are
indistinguishable from uniformly-random numbers by computationally-bounded adversaries.
However, such cryptographic primitives do not generate truly uniformly-random numbers.
For the sake of tractability, and in a manner that is consistent with all prior work studying
strategic manipulations of consensus protocols, we consider a mathematical model based on
idealized cryptographic primitives (i.e. that hashing a previously-unhashed input produces a
uniformly random number, independent of all prior computed hashes).

RANDAO Manipulation Game v1. We now formally define the RANDAO Manipulation
Game (v1). After defining the game, we note its connection to Ethereum’s RANDAO, and
then proceed to simplify the game. Consistent with an overwhelming majority of prior work,
we consider a single strategic manipulator optimizing against honest participants.7

▶ Definition 5 (RANDAO Manipulation Game v1). The RANDAO Manipulation Game
proceeds in epochs 1, 2, . . . , n, . . .. Each epoch has ℓ := 32 slots. The strategic player has an
α fraction of stake.

Initialize Reward:=0.
At all times, there is a RANDAO-generated list R := ⟨R1, . . . , R32⟩ ∈ {S, H}ℓ. R denotes
the list of ℓ proposers based on the current value of RANDAO, and Ri denotes whether
the strategic player (S) or an honest player (H) would propose in an epoch using the
current value of RANDAO.
Initialize R so that each coordinate of R is drawn iid, and equal to S with probability α.
For each epoch n := 1, . . .

Store Rn := R and set the proposers for epoch n equal to Rn.
At all times during this epoch, for any set B of slots such that Rn

i = S for all i ∈ B,
Strategic Player can compute R|B, which represents how the list of 32 proposers would
update if Strategic Player were to propose a block in exactly slots B and no other blocks
are proposed, given that the current RANDAO induces R.
For each slot i := 1, . . . , ℓ:
∗ If Rn

i = H:
· Update R to redraw each coordinate of R iid, and equal to S with probability α.
· For all B, update R|B to redraw each coordinate of R iid, and equal to S with

probability α.
∗ If Rn

i = S:
· Strategic Player chooses whether to propose or not.
· If they choose to propose: (a) Add +1 to Reward, and (b) update R := R|i, and

R|B := R|B\{i} for all B.
∗ Store Reward(n) := Reward.

Strategic Player’s reward is lim infn→∞{Reward(n)/(ℓn)}.

Let us now overview the game above, highlight why it captures RANDAO manipulation
on Ethereum, and where we’ve made stylizing assumptions.

First, observe that the epoch’s slot proposers are a deterministic function of RANDAO.
We have skipped explicitly representing the RANDAO value, and focused only on the
resulting proposers in R.

7 An honest participant proposes a block during every round they are eligible.

AFT 2024
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Next, observe that every time RANDAO changes due to an Honest digital signature,
we’ve randomly redrawn each proposer i.i.d. and equal to S with probability α. This
makes two stylizing assumptions.

First, we’ve assumed that uniformly RANDAO seed generates proposers iid proportional
to stake. This may not be literally true, as Ethereum employs a more complicated
sampling8. However, this stylizing assumption has negligible effect for the vast majority
of real-world conditions9.
Second, we’ve assumed that the hash of an honest digital signature is distributed
uniformly at random from the perspective of Strategic Player. This assumes an Ideal
hash function and Ideal digital signature (as consistent with prior work [12, 11, 14]),
although in practice it only holds that the distribution is indistinguishable from uniform
to a computationally-bounded adversary.

In our game, the RANDAO value relevant for epoch t is whatever RANDAO is at the end
of epoch t − 1. In Ethereum proper, the RANDAO value relevant for epoch t is at the
end of epoch t − 2. However, we claim our modeling choice is almost wlog. Specifically,
observe that there are essentially two RANDAO Manipulation Games being played: one
on odd epochs, and one on even epochs. That is, the RANDAO value at the end of
epoch 2t − 1 determines the proposers for epoch 2t + 1 for all t, just as in our RANDAO
Manipulation Game. The only distinction to our game is that the RANDAO value at
the start of epoch 2t + 1 is not equal to the RANDAO value at the end of epoch 2t − 1
(whereas in our RANDAO Manipulation Game, it is) – the RANDAO value can change
during round 2t. However, as long as there is at least one Honest proposer during round
2t + 1, the RANDAO value at the start of epoch 2t + 1 doesn’t matter anyway, because
it will be reset to uniformly random (at least, from the Strategic Player’s perspective).
To elaborate on the previous bullet, as long as an Honest player proposes in at least
one slot in every epoch, our RANDAO Manipulation Game v1 correctly models all odd
Ethereum epochs, and separately correctly models all even Ethereum epochs.
Finally, observe that our Strategic Player receives a reward of one exactly when they
propose a block, and their reward is indeed equal to the time-averaged fraction of rounds
in which they propose.
To summarize, our stylized game captures RANDAO manipulation in Ethereum with three
exceptions: (a) it assumes Ideal cryptography for simplicity of analysis, (b) it assumes
proposers in each epoch are drawn i.i.d. proportional to fixed stake, (c) it assumes that
every epoch contains at least one Honest proposer. (a) is a natural assumption consistent
with prior works, and essentially abstracts strategic manipulation away from breaking
cryptography. The impact of (b) is negligible, as the distinction with Ethereum’s shuffling
and iteration based approach is negligible for an essentially uniform10 set of over one
million validators. (c) is also negligible, as the probability that a Strategic Player could
ever induce the next epoch to be the first with no Honest proposers is at most (2α)32. 11

8 Roughly speaking, for each slot Ethereum shuffles the set of active validators and starts iterating over
the shuffled list. A validator is selected to be the proposer for this slot with probability equal to its
effective balance over 32.

9 As long as most validators have effective balance equal to the maximum, Ethereum essentially selects the
proposer using a uniformly random sample. Ethereum’s real world conditions match this assumptions
since the vast majority of validators have maximum effective balance.

10 Here, by uniform, we are referring to the effective balance of validators. For Ethereum’s current validator
set, almost all have maximum effective balance which is 32 ETH.

11 To see this, observe that Strategic Player has at most 232 options to seed the subsequent epoch, and for
each option the probability that it has no Honest proposers is α32. The calculation follows by a union
bound. Observe that even for α = 30%, this is 2−32, meaning we would need to wait 232 epochs, or
over 150 years.
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Manipulating RANDAO. To build intuition, we first give an example of how and why one
might manipulate RANDAO. First, imagine that the Strategic Player proposes in slots 25
and 30 during epoch 1. Observe that RANDAO will get reset to uniformly random during
epoch 31, and the RANDAO value between rounds 25 and 30 has no impact on any future
proposers. Therefore, the Strategic Player gains nothing by skipping these proposal slots.

On the other hand, imagine that the Strategic Player proposes in slots 31 and 32. The
Strategic Player knows the RANDAO value going into slot 32, and therefore has two options
to set the RANDAO for epoch 2. If they choose not to propose in slot 32, they miss out on a
one-slot reward, but perhaps this leaves the RANDAO in a favorable place for epoch 2 as
compared to the RANDAO value if they were to propose. In fact, the Strategic Player knows
the RANDAO value going into slot 31, and has four choices between {propose twice, propose
zero times, propose only in 31, propose only in 32}. Each of these will seed a different set of
proposers for epoch 2, and forego a different number of rewards.

This example helps establish that the Strategic Player never benefits from foregoing a
proposal before an Honest slot, but has 2k options for the next epoch’s RANDAO when
they propose the last k slots. We therefore call the largest number of slots k such that the
adversary controls the last k slots of an epoch the tail of the epoch. The adversary can
influence the next epoch only through these slots and intuitively these slots represent how
much predictive power the adversary holds for the next epoch.

Refining the RANDAO Manipulation Game. Since the length of the tail fully captures the
manipulation power of the Strategic Player, we further analyze this and refine our RANDAO
Manipulation Game. We first observe that the length of the tail for a single RANDAO draw
is distributed according to a roughly geometric distribution. A tail of length t occurs if we
have t slots at the end of an epoch controlled by the strategic player which happens with
probability αt, preceded by a single honest slot which happens with probability (1 − α). We
call the remaining non-tail slots that the adversary controls the count. The count follows a
binomial distribution conditioned on the length of the tail. Specifically:

geom′(α) is the distribution of the tail given an adversary with stake α. It is defined such
that for T ∼ geom′(α),

Pr(T = t) =
{

(1 − α)αt 0 ≤ t < ℓ

αℓ t = ℓ

Binom′(ℓ − t − 1, α) is the distribution of the remaining count (how many slots the
adversary gets from the non-tail part of the epoch) given that the tail is t. For C ∼
Binom′(ℓ − t − 1, α),

Pr(C = c) =


(

ℓ−t−1
c

)
αc(1 − α)ℓ−t−1−c 0 ≤ c < ℓ − t ∧ 0 ≤ t < ℓ − 1

1 c = 0 ∧ (t = ℓ − 1 ∨ t = ℓ)
0 c ̸= 0 ∧ (t = ℓ − 1 ∨ t = ℓ)

F is the distribution of (C, T ) where we first sample T ∼ geom′(α) and then sample
C ∼ Binom′(ℓ − T − 1, α).

Given our reasoning above, an optimal Strategic Player will always propose during any of
the “count” rounds, and will only manipulate the “tail” rounds. In particular, this means
that the Strategic Player need not know the full slate of proposers in an epoch, but only the
count and the tail. With this in mind, we can now refine our RANDAO Manipulation Game
v1 to an equivalent RANDAO Manipulation Game v2.

Using the definitions above, formally, the RANDAO manipulation game G is:
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▶ Definition 6 (RANDAO Manipulation Game v2).
1. Initialize Reward := 0, and Rounds := 0.
2. Initialize (c, t) drawn from F .
3. For i = 1 to t,

For j = 1 to
(

t
i

)
,

Sample (ci,j , ti,j) from F .
4. The Strategic Player chooses an (i∗, j∗) pair.
5. Update t := ti∗,j∗ , add ci∗,j∗ + ti∗,j∗ − i∗ to Reward and ℓ to Rounds.
6. Repeat from step 3.

The final payoff is lim inf{Reward/Rounds}.

RANDAO Manipulation Game v2 is equivalent to RANDAO Manipulation Game v1,
after assuming that the Strategic Player optimally proposes during all non-tail slots. Our
method of counting the rewards observes that in the next epoch we will always propose
during the “count” rounds (and hence just add them directly to our reward), and miss i tail
proposals in order to influence the RANDAO (and hence get only ti,j − i slot rewards from
the tail).

Before we proceed with the analysis, we define two sets of interest. Let O be the set of
all possible values of (Ci,j − i, Ti,j) when (Ci,j , Ti,j) gets sampled from F for all 0 ≤ i ≤ t,
1 ≤ j ≤

(
t
i

)
for some current tail t ∈ {0, . . . , ℓ}. Given the range of the tail, count and the

epoch length, O = {(ω, t) : t ∈ [0..ℓ] ∧ ω ∈ [−ℓ..ℓ] ∧ ((t = ℓ ∧ ω ≤ 0) ∨ (t < ℓ ∧ ω ≤ ℓ − t − 1))}.
Let Ω be the set of all possible multisets of observations. More formally, Ω is the set of
all multisets {(Ci,j − i, Ti,j) : 0 ≤ i ≤ ℓ, 1 ≤ j ≤

(
t
i

)
} for some tail length t. Note that this

makes all observation multisets Obs ∈ Ω have size equal to some power of 2.

4 MDP formulation

We can now directly formulate the RANDAO manipulation game as an MDP given the
RANDAO Manipulation Game v2.

▶ Definition 7 (RANDAO MDP MG). The Markov decision process representing the RANDAO
manipulation game is MG = (S, A, {Pπ}π, {Rπ}π) where

S = {(t, Obs) : t ∈ N, 0 ≤ t ≤ ℓ, Obs ∈ Ω)}. Each state represents the length of the tail t

and the observations available to the adversary corresponding to the RANDAO samples.
The action space A = O, each action is selecting a future state from the given observations.
π ∈ Π is the policy space where Π is the set of all functions π : Ω → O such that
π(Obs) = (ω, t) ∈ Obs. π chooses on of the sample in Obs to transition towards.
Pπ and Rπ are determined by the process in the game where given a state (t, Obs), we
transition to (t′, Obs′) such that π(Obs) = (ω′, t′) and Obs′ consists of 2t pairs (ci,j −i, ti,j)
each sampled using F as in step 2 of the game. The reward of this transition is ω′ + t′.

▶ Lemma 8. MG is ergodic.

Proof. It suffices to observe for any policy π, we can transition from any state to any other
state in three steps with non-zero probability. Consider the Markov chain induced by fixing π

in MDP MG. Suppose we are at state (t, Obs) and we consider (t′, Obs′). Let t∗ = log(|Obs′|).
We then observe that the following sequence of transitions have non-zero probability:

(t, Obs) → (t1, Obs1) → (t∗, Obs2) → (t′, Obs′)

where Obs1 is the set of observations where all have tail equal to t∗ and Obs2 is the set of
observations where all have tail equal to t′. ◀
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It is fairly straight-forward to see that this MDP formulation accurately captures the
RANDAO Manipulation Game v2 – the state captures the point in time after drawing
(ci,j , ti,j) for all (i, j), and our only action at this point is to choose one such (i, j) and
transition, getting reward Reward. Note also that every state transition corresponds to
exactly an increase of ℓ in Rounds, so the time-averaged reward in this MDP is exactly the
payoff in RANDAO Manipulation Game v2.

Unfortunately, the state space of this MDP is enormous, and we have absolutely no hope
of even writing it down (let alone solving it). Luckily since our MDP is ergodic, we can
exploit the structure of the optimal policy and drastically simplify the state space.

Reducing the state space

We now refine our formulation of the RANDAO manipulation MDP to make it tractable.
We know that for each policy π, there exists a valuation vπ : {0, . . . , ℓ} → R, the average
adjusted sum of rewards. We also know from the Bellman optimality equation that the
optimal policy will take the action maximizing the immediate reward plus the weighted sum
of potential future states with their values. Hence, any plausibly optimal policy, given the
set of samples {(ci,j , ti,j) : 0 ≤ i ≤ t, 1 ≤ j ≤

(
t
i

)
}, will simply choose the one that maximizes

ci,j − i + ti,j + vπ(ti,j). Motivated by this observation we reformulate the RANDAO MDP
MG as the following reduced state space MDP M ′

G.
Below, intuitively we no longer need to explicitly store all (count, tail) options, because

any optimal policy can be fully specified by assigning a value to the tail. So our new state
space is simply the tail, but it is now more complex to iterate a transition.

▶ Definition 9 (RANDAO MDP M ′
G). The reduced Markov decision process representing the

RANDAO manipulation game is M ′
G = (S, Π, {Pπ}π, {Rπ}π) where

S = {t ∈ N : 0 ≤ t ≤ ℓ}. Each state represents the length of the tail.
Π is the policy space where Π is the set of all total orders on O.
We treat the action space as the same as the policy space. In other words, we only consider
constant strategies that pick a total order on O.
Pπ and Rπ are determined as follows. Follow RANDAO Manipulation Game v2 in Steps
3-4 (drawing several (c, t)s and choosing one), where in Step 4 we choose the future state
that is earliest in the total order according to π. We then transition according to the
selected t (this defines Pπ) and accumulate reward according to c + t − i (this defines
Rπ).12

Intuitively, the key difference between MG and M ′
G is at which point in the process we

pause and determine a state. In MG, we pause after seeing a large set of (count, tail) pairs
and declare this a state. We then make a very simple decision (pick a pair), a very simple
reward update (plus count, plus tail, minus number of missed slots), and a fairly simple state
transition (draw the new collection of pairs from a known distribution based on the chosen
tail).

In M ′
G, we instead pause after selecting the tail, and declare this a state. We then make

a complex decision (pick a total ordering over all plausible pairs), a complex and randomized
reward update (sample the set of pairs according to the known distribution based on the
state, pick the highest in the total order, and take the reward), and a complex state transition
(sample the set of pairs according to the known distribution based on the state, pick the

12 In Section 5, we explicitly describe how these transition probabilities and rewards are computed.
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highest in the total order, and take the reward). That is, MG has a very complicated state
space but simple transitions, whereas M ′

G has a very complicated action space but simple
states. Moreover, we use the Bellman optimality principle to narrow down the plausibly
optimal actions for consideration in M ′

G. We now proceed to establish their equivalence
formally.

▶ Lemma 10. M ′
G is ergodic.

Proof. It suffices to observe that under any policy π ∈ Π the transition probability between
any pair of states is positive. Suppose that we are running policy π and are at state t ∈ S

and we consider destination tail t′ ∈ S. Now, if all 2t sampled future states have tail t′, the
next state is t′. Since this happens with small but non-zero probability, ergodicity holds. ◀

While we are no longer explicitly keeping track of individual observations in the state,
the optimal policy for M ′

G still achieves reward equal to the optimal reward in MG (in
expectation).

▶ Proposition 11. If π ∈ Π is an optimal policy for MG and π′ ∈ Π′ is an optimal policy
for M ′

G, then Γπ(MG) = Γπ′(M ′
G).

Proof. Suppose π ∈ Π is an optimal policy for MG and π′ ∈ Π′ is an optimal policy for
M ′

G. We first show that given π ∈ Π for MG, there exists a corresponding policy π∗ ∈ Π′ for
M ′

G such that Γπ(MG) = Γπ∗(M ′
G). Since every optimal policy attains the same expected

average reward, without loss of generality, assume that π satisfies the Bellman optimality
equation. As a consequence, π selects the observation (ω, t) that maximizes ω + t + vπ(t).
This precisely defines a total order on (ω, t) as vπ is fixed. Let π∗ be the total order defined
by maximizing ω + t + vπ(t). As both MG and M ′

G sample from the same distributions the
same number of times, Γπ(MG) = Γπ∗(M ′

G).
Hence, we know that given π∗

0 , there exists a corresponding policy π∗′

0 playing M ′
G such that

Γπ∗
0
(MG) ≤ Γπ∗′

0
(M ′

G). By the optimality of π∗
1 , we also know that Γπ∗′

0
(M ′

G) ≤ Γπ∗
1
(M ′

G).
Therefore, Γπ∗

0
(MG) = Γπ∗

1
(M ′

G) and the claim holds. ◀

5 Evaluating policies

In this section, we first analyze the policy that only cares about maximizing the tail length
(Tail-max) as an instructive example. Intuitively, this policy can be implemented by (a) for
each subset of slots that the Strategic Player can choose to propose, computing the resulting
RANDAO value and hence the next epoch proposer assignments, and (b) the Strategic Player
choosing to propose in the subset of slots that results in the longest tail in the next epoch.
Subsequently, we describe how to evaluate arbitrary policies in our Markov decision process
M ′

G formulation of the RANDAO manipulation game.

5.1 Analyzing the Tail-max policy
The Tail-max policy can be defined as the policy π that given the current state t and 2t

samples (Ci,j , Ti,j) ∼ F , picks (i, j) that maximizes Ti,j . Note that in case of ties, we pick
the transition with higher reward (i.e. breaking ties in favor of higher Ci,j − i).

To analyze Tail-max, we are interested in computing the following quantities.
Ptail(t, t′): the probability of transitioning from state t to t′ when running game G with
Tail-max.
Rtail(t): the expected reward of transitioning from state t when running game G with
Tail-max.
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Let maxTail(t) be a random variable representing the maximum sampled tail in the current
round of the game. More formally, it is defined as the following:

maxTail(t) := max
(Ci,j ,Ti,j)∼F

0≤i≤t

1≤j≤(t
i)

{Ti,j}

which is identically distributed as maxTi∼geom′(α)
0≤i≤2t−1

{Ti}. Then, we have the following proba-

bilities.

Ptail(t, t′) = Pr(maxTail(t) = t′)

=
{

Pr(maxTail(t) ≤ t′) − Pr(maxTail(t) ≤ t′ − 1) 0 < t′ ≤ ℓ

Pr(maxTail(t) ≤ t′) t′ = 0

where we use the following:

▶ Lemma 12. Pr(maxTail(t) ≤ T ′) =


(

1 − αt′+1
)2t

0 ≤ t′ < ℓ

1 t′ = ℓ

Proof. Using the fact that each {Ti} are i.i.d.,

Pr(maxTail(t) ≤ T ′) = Pr
Ti∼geom′(α)

0≤i<2t

 ∧
0≤i<2t

(Ti ≤ t′)


=

∏
0≤i<2t

Pr
Ti∼geom′(α)

(Ti ≤ t′)

=
(

Pr
T ′′∼geom′(α)

(T ′′ ≤ t′)
)2t

=


(

1 − αt′+1
)2t

0 ≤ t′ < ℓ

1 t′ = ℓ
◀

The transition reward can be computed in a similar way. Let ⪯∈ Π of M ′
G be defined

as (t, v) ⪯ (t′, v′) if and only if t < t′ or (t = t′ ∧ v ≤ v′). Intuitively, these pairs represent
choices that a policy can make where t is the tail and v is the amount of reward we get from
the rest of the count. The Tail-max policy picks the maximum such pair according to ⪯.
Equality and strict ordering are defined in the usual way. Also let prev⪯(v, t) be defined
as the previous pair in the ordering ⪯ if it exists and ⊥ otherwise. Note that Pr(· ⪯ ⊥) is
interpreted as 0.

Let maxPair⪯(t) be a random variable representing the maximum tail, and the non-tail
reward pair in the current round of the game according to the total order ⪯. More formally,
it is defined as the following:

maxPair⪯(t) := ⪯max
(Ci,j ,Ti,j)∼F

0≤i≤t

1≤j≤(t
i)

{(Ti,j , Ci,j − i)}
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Note that ⪯ is a total order and we have the property that maxPair⪯(t) ⪯ (a, b) if and only
if (Ti,j , Ci,j − i) ⪯ (a, b) for all 0 ≤ i ≤ t, 0 ≤ j ≤

(
t
i

)
. Therefore,

Rtail(t) = E
[
T ′ + V ′ | maxPair⪯(t) = (T ′, V ′)

]
=

∑
0≤t′≤ℓ

−t≤v′≤ℓ−t′

Pr(maxPair⪯(t) = (t′, v′))(t′ + v′)

=
∑

0≤t′≤ℓ

−t≤v′≤ℓ−t′

(Pr(maxPair⪯(t) ⪯ (t′, v)) − Pr(maxPair⪯(t) ⪯ prev⪯(t′, v)))(t′ + v)

where we can use the following:

▶ Lemma 13. Let ⪯∈ Π of M ′
G be the Tail-max policy. For f(x) := PrT ∼geom′(α)(T < x),

g(x) := PrT ∼geom′(α)(T = x), and h(x, y) := PrC∼Binom(ℓ−x−1,α)(C ≤ y),

Pr(maxPair⪯(t) ⪯ (t′, v)) =
∏

0≤i≤t

(
Pr

(C,T )∼F
((T, C − i) ⪯ (t′, v))

)(t
i)

and

Pr
(C,T )∼F

((T, C − i) ⪯ (t′, v)) =


f(t′) t′ = ℓ ∧ 0 > v′ + i

f(t′) + g(ℓ) t′ = ℓ ∧ 0 ≤ v′ + i

f(t′) + g(t′)h(t′, v′ + i) otherwise

Proof. Using standard properties, we observe that

Pr(maxPair⪯(t) ⪯ (t′, v)) = Pr
(Ci,j ,Ti,j)∼F

0≤i≤t

1≤j≤(t
i)

 ∧
0≤i≤t

1≤j≤(t
i)

((Ti,j , Ci,j − i) ⪯ (t′, v))


=

∏
0≤i≤t

0≤j≤(t
i)

Pr
(C,T )∼F

((T, C − i) ⪯ (t′, v))

=
∏

0≤i≤t

(
Pr

(C,T )∼F
((T, C − i) ⪯ (t′, v))

)(t
i)

and

Pr(C,T )∼F ((T, C − i) ⪯ (t′, v))
= Pr

(C,T )∼F
(T < t′ ∨ (T = t′ ∧ C − i ≤ v′))

= Pr
T ∼geom′(α)

(T < t′) + Pr
(C,T )∼F

(T = t′ ∧ C ≤ v′ + i)

= Pr
T ∼geom′(α)

(T < t′) + Pr
T ∼geom′(α)

(T = t′) Pr
(C,T )∼F

(C ≤ v′ + i | T = t′)

= Pr
T ∼geom′(α)

(T < t′)

+


0 t′ = ℓ ∧ 0 > v′ + i

PrT ∼geom′(α)(T = ℓ) t′ = ℓ ∧ 0 ≤ v′ + i

PrT ∼geom′(α)(T = t′) PrC∼Binom(ℓ−t′−1,α)(C ≤ v′ + i) otherwise

◀
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We can now compute the stationary distribution in order to directly compute average
reward of the Tail-max policy. This is a lower bound to the optimal reward ratio we can
obtain from this game.13
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Figure 1 Average tail length attained for each α when running Tail-max. The adversary controls
a larger tail value as α rises as expected. There is a quick jump when approaching α = 50%,
indicating that the adversary can propose almost all blocks.

5.2 Policy evaluation in the general case

We proceed similar to the Tail-max analysis. Consider policy ⪯ ∈ Π so it is some total
order on O. Recall that maxPair⪯(t) is a random variable defined (in Subsection 5.1) to be
the maximum (tail, non-tail reward) pair given that the adversary currently controls a tail of
length t. Similar to the analysis of Tail-max, we then have

P⪯(t, t′) =
∑

−ℓ≤v≤ℓ−t′

Pr(maxPair⪯(t) = (t′, v))

R⪯(t) =
∑

0≤t′≤ℓ
−t≤v′≤ℓ−t′

Pr(maxPair⪯(t) = (t′, v))(t′ + v)

Now, it suffices to describe how to compute the CDF of maxPair⪯(t) since

Pr(maxPair⪯(t) = (t′, v)) = Pr(maxPair⪯(t) ⪯ (t′, v)) − Pr(maxPair⪯(t) ⪯ prev⪯(t′, v))

▶ Lemma 14. Let ⪯∈ Π be an arbitrary policy in M ′
G.

Pr(maxPair⪯(t) ⪯ (v, t′)) =
∏

0≤i≤t

 ∑
∀(t∗,v∗)⪯(t′,v)

Pr
(C,T )∼F

((T, C) = (t∗, v∗ + i))

(t′
i )

13 Note that Tail-max does not necessarily outperform Honest – it could be that in an attempt to increase
the tail by one, Tail-max misses several proposal slots, and yet also does not take good advantage of
the increased tail. However, our results show that Tail-max does outperform the honest strategy for
all α. See Figure 2 and 3 for a comparison with Honest and the optimal policy. The average tail length
of Tail-max, however, serves as an upper bound on the average tail length of any feasible strategy,
including the optimum.
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Proof. Using standard properties of independent samples, we observe that:

Pr(maxPair⪯(t) ⪯ (v, t′)) = Pr
(Ci,j ,Ti,j)∼F

0≤i≤t

1≤j≤(t
i)

 ∧
0≤i≤t

1≤j≤(t
i)

((Ti,j , Ci,j − i) ⪯ (t′, v))


=

∏
0≤i≤t

1≤j≤(t
i)

Pr
(C,T )∼F

((T, C − i) ⪯ (t′, v))

=
∏

0≤i≤t

1≤j≤(t
i)

∑
∀(t∗,v∗)⪯(t′,v)

Pr
(C,T )∼F

((T, C − i) = (t∗, v∗))

=
∏

0≤i≤t

 ∑
∀(t∗,v∗)⪯(t′,v)

Pr
(C,T )∼F

((T, C) = (t∗, v∗ + i))

(t′
i )

◀

Therefore we can also evaluate arbitrary policies by computing the quantities above.

6 Solving for optimal strategies

We can now run policy iteration [18] in our policy space.

1. Start with an arbitrary policy ⪯ ∈ Π.

2. Compute P⪯ and R⪯.

3. Compute average reward Γ⪯ using R⪯(t) and the stationary distribution of P⪯.

4. Determine vt for each t ∈ {0, . . . , ℓ} by setting v0 = 0 and solving the system of linear
equations given by

Γ⪯ + v⪯(t) = R⪯(t) +
ℓ∑

t′=0
P⪯(t, t′)vt′ for t ∈ {0, . . . , ℓ}.

5. Let ⪯′ be a new total order constructed by sorting each (ω, t) pair by the quantities
ω + t + vt in ascending order.

6. If ⪯ is equal to ⪯′, we converged and ⪯ is optimal. Otherwise let ⪯ := ⪯′ and repeat
from step 2.

Note that this is equivalent to policy iteration as described in Section 2 since sorting by
immediate reward plus future state value to get new policy ⪯ is equivalent to picking the
maximum at each state.

For ℓ = 32 and all α, policy iteration always converged in less than 10 steps. This enables
us to plot the following results on optimal manipulations for RANDAO:
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Figure 2 Average reward of the optimal policy and Tail-max for ℓ = 32. The figure on the left
shows the 0 < α ≤ 0.3 range, the figure on the right show the entire range of 0 < α < 1.
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Figure 3 Percentage improvement of the optimal policy and Tail-max over the honest policy for
ℓ = 32. Improvement is defined as (policy average reward)/(honest average reward) − 1. We also
analyze the strategy Value-max here which we define as the strategy that maximizes the reward in
the next epoch (chooses the pair that maximizes ci,j + ti,j − i).

Table 1 Average reward of the optimal policy. In expectation, the honest reward is equal to α.
We see in the table that the optimal policy is strictly more profitable.

α optimal reward

1% 1.00107%
5% 5.04834%
10% 10.18807%
15% 15.39960%
20% 20.67770%
25% 26.02472%
30% 31.45164%
35% 36.97348%
40% 42.62435%
45% 48.49184%
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A key strength of our methodology is the fact that it is constructive, we explicitly construct
the optimal policy for each α. In order to implement the optimal policy we compute, the
values can be used as in step 5 of the policy iteration routine described above. For instance,
for α = 0.2, the optimal policy assigns the the following values to tails of length 0 to 32
(rounded to two decimal points):

(0.00, 0.90, 1.66, 2.30, 2.86, 3.35, 3.79, 4.19, 4.55, 4.89, 5.21,

5.50, 5.78, 6.05, 6.30, 6.55, 6.78, 7.00, 7.22, 7.43, 7.63, 7.82,

8.01, 8.19, 8.37, 8.54, 8.71, 8.87, 9.03, 9.19, 9.34, 9.49, 9.64)

Considering ℓ ̸= 32

One benefit of our approach is that it trivially extends to any ℓ. This allows one to easily
answer, for example, whether RANDAO would be more or less manipulable with different
epoch lengths and by how much.

Policy iteration runs smoothly for ℓ = 32 and smaller. However, when we consider ℓ = 64
or 128, numerical instability becomes a concern, and our experiments are no longer provably
accurate. In particular, 64-bit floats we use in our machine introduce precision error that
explode when evaluating the expression in Lemma 14 with ℓ > 32.

In order to improve the numerical stability of the expression in Lemma 14, when ℓ > 32
we evaluate the inner sum directly to 1 instead of taking the exponential when the sum
reaches within 10−14 of 1 since the error ϵ introduced by the floating point representation
cause (1± ϵ)N to become 0 or a large constant for N ≫ 1. The following figure shows running
our evaluation for different ℓ, using this modification.
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Figure 4 Percentage improvement over honest for ℓ ∈ {16, 32, 64, 128}. Improvement is defined
as (optimal average reward)/(honest average reward) − 1.

We conjecture that this plot is representative of how the results scale with ℓ, although
unlike our main results the experiments are not provably accurate due to the aforementioned
numerical instability. If one desires provable numerical guarantees on these quantities, one
would need an analysis of numerical error induced by floating point representations of the
machines that run the evaluation.
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7 Discussion

We model optimal RANDAO manipulation in Proof-of-Stake Ethereum and frame it as an
MDP. Our main modeling contribution is getting from RANDAO manipulation in practice
to RANDAO Manipulation Game v2, and our key technical insight is getting from there to
the reduced RANDAO MDP M ′

G. From here, simple policy iteration on a laptop suffices
to analyze the optimal strategy. Our main results shed light on exactly how manipulable
Ethereum’s RANDAO is. One could compare our results, for example, to those of [14] for
Proof-of-Stake protocols based on cryptographic self-selection. For example, [14] establishes
that a well-connected Strategic Player with 10% of the stake can propose between 10.08% an
10.15% of the rounds in cryptographic self-selection protocols, and our work establishes that
a Strategic Player with 10% of the stake can propose a 10.19% fraction of rounds in Ethereum
Proof-of-Stake. While our work introduces methodology to compute these numbers, we leave
interpretation of their significance to the Ethereum community since many different factors
come into play when designing the consensus mechanism.

A clear direction for future work would be to consider the impact of slot-varying rewards
as in [8]. This will clearly increase the manipulability (as now the Strategic Player can use
the value of a slot when deciding whether to propose), but it is not obvious by how much. A
second direction would be to consider the impact of idiosyncratic details such as Ethereum’s
sync committees (extra rewards every 256 blocks).

Lastly, we briefly discuss the empirical signature of randomness manipulation. The results
immediately lead to the following question: are there any entities currently manipulating
the RANDAO value? The signature of such an attack would affect the block miss rates
especially around the tail. Some prior analyses suggest that while there has been ample
opportunities that would result in short term gains for certain entities, none have been
observed to manipulate RANDAO [23]. In the figure below, the block miss rates by epoch
slot index is displayed from epoch 146876 to 272341.
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Figure 5 Block miss rate by slot index from epoch 146876 to 272341. The average block miss
rate is 0.9482%.

Our interpretation of this data is that slot index 0, 1, and 2 is missed frequently since
validators have less time to react to their proposer assignments and slot index 24 and 25 is
missed with slightly higher frequency than the baseline due to votes crossing the 2/3 majority.
We do not observe any significant elevation in block miss rates around the tail of the epoch.
It is also an interesting direction for future work to examine whether undetectable profitable
strategies exist for RANDAO manipulation (i.e. strategies that strictly outperform Honest,
but produce the same miss rate for all slots).
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Abstract
In this work, we reexamine the vulnerability of Payment Channel Networks (PCNs) to bribing attacks,
where an adversary incentivizes blockchain miners to deliberately ignore a specific transaction to
undermine the punishment mechanism of PCNs. While previous studies have posited a prohibitive
cost for such attacks, we show that this cost can be dramatically reduced (to approximately $125),
thereby increasing the likelihood of these attacks. To this end, we introduce Bribe & Fork, a modified
bribing attack that leverages the threat of a so-called feather fork which we analyze with a novel
formal model for the mining game with forking. We empirically analyze historical data of some
real-world blockchain implementations to evaluate the scale of this cost reduction. Our findings shed
more light on the potential vulnerability of PCNs and highlight the need for robust solutions.
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1 Introduction

The financial world was transformed by blockchains such as Bitcoin [24] and Ethereum [32].
While blockchains offer a number of benefits, their scalability remains a significant challenge
when compared to traditional centralized payment systems [10]. One promising solution
to this issue is the so-called payment channel networks (PCNs) that move most of the
transaction workload off-chain [15].
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Several PCN proposals [1, 2, 3, 4, 5, 11, 12, 13, 14, 16, 25, 28] have been laid forward so
far, each design offering some unique combination of features. Nonetheless, the core idea
behind payment channels remains the same, that is to facilitate off-chain transactions among
parties connected, either directly or indirectly via a path, on a network operating on top of
the blockchain layer, the PCN.

To participate in a PCN, two parties can lock funds in a joint account on-chain, thereby
opening a payment channel. Subsequently, the parties can transact off-chain by simply
updating (and signing) the distribution of their funds. When either party wants to settle
the account, or in other words close the payment channel with its counterparty, they can
publish the last agreed distribution of the channel’s funds. However, each update constitutes
a valid closure of the channel from the perspective of the blockchain miners. As a result,
a malicious party may publish an outdated update to close the channel holding more than
it currently owns. To secure the funds against such attacks, payment channels enforce a
dispute period. During this period, the funds remain locked to allow the counterparty to
punish any malicious behavior, and if so, claim all the funds locked in the channel.

Hence, the security of PCNs, like the most widely deployed Bitcoin Lighting Network [25],
crucially relies on financial incentives. Specifically, during the dispute period, the punishment
mechanism should enforce that a malicious party is always penalized and an honest party
should never lose its funds. Unfortunately, this is not always the case, as argued by
Khabbazian et al. [23] and Avarikioti et al. [6]. For instance, Lighting channels are susceptible
to the so-called timelock bribing attacks. In such an attack, a malicious party posts an
old update transaction on-chain, attempting to close its channel with more funds than it
presently possesses. Concurrently, the party bribes the miners to ignore the punishment
transaction of the counterparty for the duration of the dispute period. This bribe is typically
offered to the miners in the form of high transaction fees.

Naturally, the success of this attack depends on the value of the bribe. Avarikioti et al. [6]
showed that a bribing attack will be successful if the bribe is no smaller than: f1 − f

λmin
,

where λmin is the fraction of the mining power controlled by the least significant miner
in the underlying proof-of-work blockchain, f1 is the sum of the fees of a block containing
the punishment transaction, and f is the sum of the fees of a block containing average
transactions. We observe, however, that as λmin can be arbitrarily small, the bribing
amounts required can significantly exceed the funds typically locked in PCNs, rendering
the bribing attack impractical. Moreover, even in blockchains with rather concentrated
mining power, like in Bitcoin [18], the cost of a bribing attack is very high. For example,
conservatively assuming that the smallest miner has 10−4 of the total mining power1, the
cost of the attack as analyzed in [6] would be at least 1 BTC, for f1 − f ≈ 10−4 BTC. As a
result, it would be irrational to perform a bribing attack of this sort, as the average closing
price for 1 BTC between, for instance, 2019 and 2022 was 23, 530.92 USD2, which is more
than 10-fold the current total value locked on average in a Lighting channel3. This naturally
leads to questioning whether there is potential to amplify such attacks to the extent they pose
a genuine threat to the security of PCNs.

1 Details can be found in the full version of the paper. We experimentally show, that the mining power of
the weakest miner in the system can be fairly assumed to be of magnitude 10−12

2 statmuse.com
3 https://1ml.com/statistics

statmuse.com
https://1ml.com/statistics


Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:3

Our Contribution
In this work, we show that bribing costs can be significantly reduced, thereby making timelock
bribing attacks a realistic threat. We do so by extending the bribing attack to leverage not
only the structure of transaction fees but also a threat to fork the blockchain, known as a
feather fork attack [19, 27]. In our context, a given miner executes a feather fork attack by
announcing a self-penalty transaction txp. Whenever the self-penalty transaction appears
on the blockchain, the miner is incentivized to fork the punishment transaction tx1 on the
blockchain, i.e., the miner will try to extend the blockchain based on the predecessor of
the block tx1 including some other block. Specifically, a feather-forking miner is bribed to
commit collateral, betting that their fork will win the race. As a consequence, their threat of
forking becomes considerably credible, incentivizing other miners to follow their fork. The
collateral is of a similar magnitude as the bribe in [6], however, the miners only lock it
temporarily. We call our attack Bribe & Fork. With the feather fork at hand, the bribing
cost may now be reduced from f1−f

λmin
to approximately:

2f + 2(f1 − f)
λs

,

where f is the average fee of a single transaction, and λs is the mining fraction of the most
significant miner. Recall that f1 and f denote the sum of fees of a block containing the
punishment transaction and only average transactions respectively. To demonstrate the cost
reduction of Bribe & Fork, we reexamine the previous example for Bitcoin, with f ≈ 10−4

BTC, f1 − f ≈ f , and λs ≈ 20%. Now, λs replaces in the denominator the previously
presented λmin << 10−4, thus yielding a bribe at least 1000 times smaller than the one
in [6].

To derive this result, we present a formal model of mining games with forking, extending
the conditionally timelocked games introduced in [6]. In the game with forks, miners may
now choose, in each round, (a) which transactions to mine, and (b) whether they want to
continue one of the existing chains or they intend to fork one of the chains. All miners know
the choices of the winner of each block, as a feather-forking miner locks collateral on-chain.

To empirically estimate the cost reduction of Bribe & Fork, we analyze the historical
data of real-world blockchain implementations. Among others, we analyze the average block
rewards and fees, as well as the hash power present in the system and available to a single
miner, primarily for Bitcoin in 2022. Given the officially available data, we observe that
the cost of our attack can be as cheap as $125 (for 1 BTC ≈ $25.000). In general, the
cost of our attack can be up to 1010 times cheaper than the bribe required in [6] according
to our findings. Hence, even considering a collateral of around $30, 000, Bribe & Fork is
substantially more cost-efficient, and, by extension, more probable to occur.

2 Background

In this section, we first describe the necessary context required to understand Bribe & Fork.

2.1 Timelocked Bribing Attack
Whenever miners decide to create a new block, they select some set of transactions from all
transactions posted on the mempool, which is a database of all publicly visible transactions.
Mining pools and individual miners usually choose the transactions with the highest fees first,
as they are part of their reward for a successfully mined block. Miners are aware that some
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transactions may be dependent on each other. For instance, two transactions that spend
the same Unspent Transaction Output (or UTXO) in Bitcoin, cannot be both published
on-chain; the transaction that is validated first, i.e., is included on a block of the longest chain,
immediately deems invalid the other transaction. If from two interdependent transactions,
only one can be published directly, while the other is timelocked and thus can only be
published after some time elapses, we refer to this pair of transactions as a conditionally
timelocked output. This conditionally timelocked output is the target of timelock bribing
attacks: the owner of the coins of the transaction that is valid only after the timelock expires
attempts to bribe the miners to ignore the currently valid competing transaction. Thus,
for the miners that observe transactions on the mempool, sometimes it may be profitable
to censor one transaction in order to mine another one that provides a greater gain in the
future.

2.2 Timelock Bribing in the Bitcoin Lightning Network
Next, we describe the timelock bribing attack in the context of the most widely deployed
payment channel network, namely the Bitcoin Lightning Network (LN). In LN, a single
on-chain transaction called the funding transaction, opens a channel between parties P1, P2.
Next, parties exchange with each other signed messages off-chain which update the state
of their accounts. If the parties are honest and responsive, they may close the channel in
collaboration. To do so, the parties post a mutually signed transaction that spends the
output of the funding transaction and awards each party their fair share of funds. However,
if a dishonest party P2 attempts to publish on-chain an old state that she profits from
comparably to the latest agreed state, her funds will remain locked for the so-called dispute
period. During this period, the other (rational) party P1 will try to revoke the old state,
by sending a transaction tx1 to the mempool called the revocation transaction (or breach
remedy). Transaction tx1 awards all the channel funds to the cheated party P1. We denote
by f1 the miner’s fee to include a block with tx1.

In this case, the malicious party P2 can launch a timelocked bribing attack, attempting
to bribe the miners to ignore tx1 for the dispute period T such that P2 gains the additional
funds. Specifically, P2 may send in the mempool a block with fee f2 that includes transaction
tx2, with f2 > f1, that is only valid if no miner includes in their winning block containing
tx1 within time T . Consequently, if the revocation transaction tx1 is not published on-chain
within T , P2 can spend the funds of the old state and the next winning miner will be awarded
f2. The pair of transactions tx1 and tx2 is now a conditionally timelocked output.

Assuming that for an average block of transactions, the users get in total f fees, the
following holds [6]: if f2 − f > f1−f

λmin
then all rational miners will choose to wait for T rounds

and publish a block containing tx2.

2.3 Feather Fork Attack
A feather fork, as introduced in [20], is an attack on Bitcoin wherein a miner threatens to
fork the chain if selected transactions are included. This intimidation mechanism aims to
subtly alter the miners’ block acceptance policy: the threatened miners may exclude the
selected transactions in order to mitigate the risk of losing their mining reward [31]. As
feather forking relies on economic incentives, the attacker may increase their probability of
success by bribing other miners to follow their short-lived fork, e.g., committing to pay them
the block rewards they may lose by censoring the selected transactions.
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Unlike a “hard” fork, where miners exclusively mine their own chain version regardless of
its length compared to other versions, a feather fork entails mining on the longest chain that
excludes selected transactions and does not fall significantly behind its alternatives. Thus,
a feather fork is less disruptive and more likely to be adopted by the network, making it a
potentially powerful tool in the hands of a malicious actor. In this work, we employ this tool
to enhance the likelihood of a successful timelocked bribing attack.

3 Bribe & Fork Attack

We now introduce our novel attack, termed Bribe & Fork, that combines the timelock bribing
attack in LN with the feather fork attack. We assume the existence of a payment channel
between parties P1 and P2. Similarly to timelock bribing, we consider P2 to be malicious and
attempt to close the channel with P1 in an old state using the transaction tx2. Consequently,
P1 is expected to attempt to revoke the old state. To prevent the inclusion of the revocation
transaction, P2 bribes the miner Ns with the highest mining power λs to threaten others
with a fork if they add the unwanted transaction txs1 on-chain. This action is implemented
through a self-penalty mechanism where the bribed miner temporarily locks collateral which
can only be reclaimed in case a block txs2 containing tx2 appears on-chain (and thus any
block txs1 containing tx1 is not included on-chain). In essence, the bribed miner “bets” that
the revocation transaction will be censored, thus rendering the threat credible for the rest of
the miners.

To realize Bribe & Fork, there are two mechanisms that should be implementable on-chain:
a) the bribe transaction that should only be spendable if txs2 is included on-chain, and
b) the self-penalty mechanism that enables the bribed miner Ns to lock collateral P (with
transaction txp1) and then reclaim it only if txs2 is included on-chain (with transaction
txp2). We implement the bribing and self-penalty mechanisms in Bitcoin script, using the
conditioning enabled by the UTXO (Unspent Transaction Output) structure. We note that
in Ethereum, preparing a smart contract that has access to the state of the closing channel
suffices to implement the bribing and self-penalty mechanisms.

In detail, a single bribing transaction txb and two special transactions txp1 , txp2 are
introduced. Let us assume that the cheating party P2 is bribing the miners to launch the
attack conditioned on the inclusion of its transaction tx2. To do so, P2 creates a bribe
transaction txb with input the party’s money from tx2 and outputs three UTXOs, one
given to the miner that mines this transaction, one dummy output owned by player Ns

(i.e., the miner bribed to perform feather forking), and one that returns the rest of the
money to P2. Now, Ns creates a transaction txp1 , locking a deposit P , that is spendable
via a multisignature of m-out-of-n parties (e.g., m = n/2), one of which is Ns’s signature.
Then, txp2 is created with two inputs: the output of txp1 and the dummy output of txb.
Consequently, txp2 is spendable only if it is signed by at least m parties of the predefined set
n and tx2 is validated on-chain. Upon receiving txp2 signed by at least m − 1 parties, Ns

signs and posts it on-chain. Assuming that no subset of size m − 1 of the rest n − 1 parties
will collude with the miner to spend the deposit, the deposit can be claimed by the miner
only if transaction tx2 is included on-chain. The security of this scheme depends on the
selection of the n − 1 parties, which can be in principle conditioned on the honest majority
assumption of the blockchain via subsampling.4

4 One could also consider using an instantiation of a Trusted Execution Environment (TEE) that outputs
txp2 only when txs2 appears on the blockchain. Additionally, note that on Ethereum, preparing a
smart contract that has access to the state of the closing channel is sufficient to implement the penalty
mechanism.
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Now, the malicious party P2 together with a selected miner Ns can launch the
Bribe & Fork attack as follows: They can create special transactions txb (as a compan-
ion transaction for tx2) and the self-penalty transactions txp1 , txp2 to publicly announce a
credible threat that the transaction tx1 will be forked once it appears on the blockchain. They
publish these special transactions in the mempool as transaction sets txs2 (that contains tx2
and txb) and txsp1 , txsp2 (that contain txp1 , txp2 , respectively).

We show later that this attack significantly reduces the cost of the required bribe from
f1−f
λmin

to approximately 2f+2(f1−f)
λs

. The required collateral that is eventually reclaimed by
the bribed miner is expected to be λs · B (where B is a constant in Bitcoin block reward
independent of the user fees), which is comparable to the original bribe needed in [6]. Figure 1
illustrates the comparison of Bribe & Fork with [6], while Figure 2 below depicts the details
of Bribe & Fork.

(a) (b) (c)

Figure 1 Comparison of the honest execution, the attack from [6] and our Bribe & Fork. (a)
Honest execution: once an old state appears on-chain (black rectangle), P1 gets an option to
revoke this state with a transaction tx1 (included in the block txs1 which is published in the first
round). (b) Attack in [6]: the bribing party publishes tx2 and txb included in a single block txs2,
with a large miner fee (reversely proportional to the fraction of the mining power λmin of the least
significant miner). The miners skip mining txs1 in the first round, and mine txs2 in the last round.
(c) Bribe & Fork: the bribing party publishes txs2 with a fee sufficient to bribe only the strongest
miner (with f2 − f reversely proportional to λs). The strongest miner publishes the self-penalty
transactions txp1 , txp2 that can be mined in transaction sets txsp1 , txsp2 . In the first round, the
miner Ns locks P ≈ λs · B to the deposit transaction txp1 , thus threatening other miners that they
will be forked once txs1 is mined before the deadline. After the deadline the transaction set txs2 is
published and the miner Ns may collect back the deposit using txsp2 .

Implementation Details of Bribe & Fork
Figure 2 contains a diagram depicting the details of our attack. At first, a Lightning Channel
is opened with a single funding transaction and allows parties P1, P2 to make an arbitrary
number of off-chain state transitions of their funds. Once one of the parties (P2 in our
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example) decides to publish an old state (commi in our example) at a chain of length T0,
the opportunity to manipulate the behaviour of miners’ is opened. Before the chain reaches
length T0 + 1, the transactions tx1 and tx2 are published. Transaction tx1 allows P1 to
revoke a dishonestly committed state. Transaction tx2 allows P2 to collect and manage
dishonest funds after T rounds. Along with tx1 and tx2, the bribing transaction txb and
self-penalty transactions txp1 , txp2 are published. On the chain of length T0, the miners may
decide to mine the transaction txp1 that would lock some amount of coins of one of the
miners (say Ns). If so, all miners are threatened that they will be forked once tx1 appears
on the blockchain until the chain reaches length T0 + T . On the chain of length T0 + T , the
transaction tx2 along with bribing transaction txb may be published and the selected miner
Ns may collect back the deposit with the transaction txp2 .

Comm i+1

Comm iFunding

Chain length T0 Chain length T0 + 1

Revocation

P1

P2

c01

c02

P1

ci2 P1

f f

f

f1

ci2

Self-penalty

f

Ns

+ Bribe txb

f2

Self-penalty

f

Comm i

N1

P2

txp2

ci1

Bribe

Spend tx2

Chain length T0 + T + 1

f2

P2

f

Ns

Chain lengths T0 + 2, . . . , T0 + T

Revocation

ci2 P1

f1

tx1 tx1

txp1

to state:

to state:

(ci+1
1 , ci+1

2 )

(ci1, c
i
2)

sets state:

(c01, c
0
2)

Spend tx2

+ Bribe txb

txp1

ci2

(deposit)

txp2

(collect)

Self-penalty

txp2

(collect)

Figure 2 The Bribe & Fork attack. The green boxes indicate the transactions that should be
put on-chain to run a successful Bribe & Fork attack. The grey boxes indicate the transactions that
should be published on the mempool before the chain reaches a specific length. For instance, Spend
transaction tx2 has to be published on the mempool before the chain reaches length T0 + 1, even
though it can not be published on the blockchain until the chain reaches length T0 + T . The arrows
going into the boxes indicate the spending conditions of the transactions and the arrows going out
of the boxes indicate how the funds of the boxes can be spent.

4 Our Model

In this section, we gradually define our game that models the process of mining that takes
into account the forks. A summary of our notation can be found in the full version of this
paper.

4.1 Preliminaries
Let us begin by recalling the conditionally-timelocked output definition from [6].

▶ Definition 1 (Conditionally timelocked output [6]). A conditionally timelocked transaction
output txo(T0, T, cond1, cond2) is a transaction output of a transaction tx with spending
condition cond1 ∨ cond2. Condition cond1 is not encumbered with any timelock and condition
cond2 is encumbered with a timelock that expires T blocks after the block with height T0,
where tx was published.
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11:8 Bribe & Fork

The game with forks is defined for a fixed set of players (miners) N = {N1, . . . , Nn} with a
tuple of mining powers λ = (λ1, . . . , λn) and will last R rounds. Notice that we focus on
proof-of-work blockchains that employ the so-called Nakamoto consensus, such as Bitcoin [24].
We assume that in such environments miners (players) tend to form mining pools to (a) bypass
the task of verifying transactions – the pool’s manager dispatches a list of valid transactions
for inclusion – and more importantly, (b) to guarantee a more stable income as individual
mining carries substantial deviation. Empirical evidence supporting this assumption, drawn
from Bitcoin, is detailed in the full version of the paper.

For the rest of this work, each miner is assumed to either mine independently or stick to
a selected mining pool throughout the execution of the game, i.e., we treat the mining pools
as single players in the game. As already mentioned, we assume that the game lasts for a
fixed number of rounds. Alternatively, we could consider a scenario where the game lasts
until the main chain reaches a predefined length. The first assumption is more suitable for
the time periods when the block rate is constant. On the other hand, the second modeling
approach is better for longer periods where the mining difficulty of blockchains is adjusted to
achieve a given number of blocks within a given time unit.

4.1.1 Global State Object

We introduce a global state object S = {S1, . . . , S|S|} that describes a set of currently mined
chains on the blockchain. Each Si consists of a list (chain) of pairs Si = [ (block1, W1),
. . . , (block|Si|, W|Si|)] describing successfully mined blocks. In each pair (blockj , Wj) ∈ Si,
blockj describes a set of transactions included in the block, and Wj ∈ N indicates a player
that successfully mined the block.

4.1.2 Allowed Actions

We define the classes of possible actions in our game:
All chains in a state can be continued. When the operation continue is successful, a new
pair (block, W ) is appended to the continued chain in the global state object.
Chains of length at least 1 in the state can be forked. Whenever one of the players
successfully forks, the new (duplicate) chain is created in the global state object in the
following manner:

the source fork is duplicated; and
a new block replaces the latest block in the duplicate.

For instance, let S = { [(block1, W1), (block2, W2)] } be a current state with a single
chain S1. Then, after a successful fork of S1 with (B3, W3), one gets S = { [(block1, W1),
(block2, W2)], [(block1, W1), (block3, W3)] }.

Notice that on existing blockchains, miners can fork a chain or mine on top of an arbitrary
block in one of the existing chains. However, forking that starts at old blocks is less likely
to outrun the longest chain. For that reason, we exclude this possibility from the game
(following [20, 31, 26]). In other words, miners in our model can fork only the last transaction
on one of the chains, and then either the original chain or the fork becomes stable whenever it
reaches a length equal to the length of the original chain plus one. The forks can be modeled
differently, e.g., assuming a longer fork length or using a finite automaton definition. We
expect our results to hold in the alternative modeling as well, but with different parameters
of our solution would change.
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4.1.3 The Abandon Rule
Let us define the abandon rule abandon : S → S that is later used to abandon old chains no
longer useful in the game. As we allow forking only the newest block in a chain, our abandon
rule will make each chain that outruns the length of other chains the only chain in the game.
That is, for any Si ∈ S: ∃Sj∈S len(Sj) ≥ len(Si) + 1 the abandon rule removes Si from the
state S.

4.1.4 Types of Transaction Sets
Each block mined in the game (denoted as block) includes only one of the transaction sets
listed below:

An unlimited amount of unrelated transaction sets txsu that contain average transactions
txu unrelated to any special transactions listed below. These transaction sets can be
mined at any point in the game.
A transaction set txs1 that contains the transaction tx1 that spends money of txo under
cond1. As long as txo is not spent, this transaction set can be mined on a chain of any
length. The rest of the transactions in this transaction set are unrelated transactions txu.
A (bribing) transaction set txs2 that contains the transaction tx2 that spends money
of txo under cond2 and a bribing transaction txb. As long as txo is not spent, this
transaction set can be mined on a chain of length ≥ T . The rest of the transactions in
this transaction set are unrelated transactions txu.
A special transaction set txsp1 . In the first round of the game, one of the players (say
N1) might decide to create a transaction set txsp1 with a self-punishment transaction
txp1 (see the description of the penalty mechanism in the Section 3). The player chooses
the amount P , which he deposits to the transaction. The rest of the transactions in this
transaction set are unrelated transactions txu.
A special transaction set txsp2 with transaction txp2 . The transaction txp1 assures
that the player N1 that created the transaction txp1 may collect back the deposit P by
publishing the transaction txp2 , but only after the transaction set txs2 is published on
the blockchain (see the Section 3). The rest of the transactions in this transaction set are
unrelated transactions txu.

4.1.5 Rewards
We assume that a miner, after successfully mining a transaction set txsi on the main chain,
gets a reward reward(txsi) equal to B + fi + P , where B is a constant block reward and fi is
a sum of user fees input by users posting transactions in the transaction set txsi. Whenever
txsi contains a transaction that locks C coins from the miner’s account, we set P to be equal
to −C. Analogously, when a miner collects C as one of the transactions from txsi, we set the
parameter P to C. The reward for mining a block depends on the number of transactions
within the block and their fees. The fee for a more complex transaction is typically higher as
it occupies more space in a block. In this respect, we make the following assumptions that
correspond to the current Bitcoin values (more details can be found in the full version of the
paper):

Each unrelated transaction set txsu has on average m transactions, its reward

reward(txsu) = B + f = B + m · f,

where f is an average user transaction fee. We also assume that f < 10−4B.
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For other transaction sets with an uncommon functionality, e.g., txsj , we assume it
contains in total m − cj unrelated (average) transactions, a special transaction txj that
takes space of cj average transactions, where cj < m. In total,

reward(txsj) = B + (m − cj)f + cjfj + P = B + fj + P,

where fj = (m − cj)f + cjfj . The interpretation of the parameter cj is that it describes
the number of transactions needed in a block to implement the uncommon functionality,
each of them with fee fj .

In the full version of the paper, based on empirical data, we show how block rewards
fluctuate in the real world. However, following [6], we assume that standard transactions
have a constant (average) reward and that all blocks have a constant number of transactions.
In the list above, we refer to each standard transaction as an average transaction.

4.1.6 Mining Power Distribution

We assume the following mining power allocation λ = (λ1, . . . , λn) among the players (see
discussion in the full version of this paper).

There exists a single “strong” player (say player s) with mining power λs ≥ 20%. All
other players have mining power smaller than λs.
There exists a “relatively” strong player (say player i) with mining power 1% < λi < 2%.
We assume that all players with mining power less than 1% have collective power at most
5%.
The smallest mining power is of any miner in the game is λmin > 10−100.

4.1.7 Players’ reluctance to believe a threat

In the mining process, players can threaten other players that they will fork their blocks, once
these blocks appear on the blockchain, as in the feather forking attacks. However, without
any additional assumptions, there exist multiple solutions for such a setting [17]. To derive
a single solution in our game, we make a conservative assumption that the players do not
conduct the forking action if it can result in financial losses to them. In other words, we
accept only threats from a player who strictly profits from forking a selected transaction, i.e.,
the forking action is a dominating one for the player in this particular state.

4.1.8 No Shallow Forks Conjecture

The Conjecture 1 below is a second assumption (together with the assumption that players
are reluctant to believe a threat) that allows us to achieve a unique solution in the game
with forks. In the conjecture, we assume that players have the option to fork a transaction
only when they see an explicit opportunity of mining any other transaction with a higher
miner’s fee5, initially blocked by the currently forked transaction. That is, we forbid shallow
forks in the model.

5 We denote that, alternatively to Conjecture 1, one could assume that the size of the mining fees in the
game is limited, as excluding transactions with outstandingly high fees can also discourage the players
from forking these transactions.
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▶ Conjecture 1 (No shallow forks). At any point in the game ΓF , the players will not start a
fork of a chain ending with a transaction set txsa, unless they see an explicit opportunity to
mine a fork containing at some point txsb, initially blocked by txsa (e.g., by the conditionally
timelocked output transaction mechanism, or the self-penalty mechanism). What is more, the
players must be aware that reward(txsb) > reward(txsa).

Note that given the feasible transaction sets in the Section 4.1.4 and the reward structure
defined in the Section 4.1.5, whenever reward(txs2) > reward(txs1) and reward(txs1) >

reward(txsp1), according to the Conjecture 1, the players in our game can attempt to fork
only txs1 to get txs2 or txsp1 to mine txs1. In other words, whenever txsu, txs2, or txsp2

appear on one of the chains, they will not be forked.

4.2 The Game
Finally, we describe a game that models the process of PoW blockchain mining taking into
account the option to conduct a forking of a block. The game proceeds in rounds; in each
round, the miners can choose whether they want to continue mining one of the chains or
they want to fork one of the chains.

▶ Definition 2 (Conditionally timelocked game with forks). A conditionally timelocked game
with forks ΓF (N, R) is a game with a finite set of players (miners) N = {N1, . . . , Nn},
where n = |N |, that lasts R rounds. We define a tuple of mining powers λ = (λ1, . . . , λn)
associated with the players, such that

∑
λi∈λ = 1. In the following, we will write ΓF , instead

of ΓF (N, R), when N, R are obvious from the context.
Given the global state object, the set of possible actions, the rewards structure and the

mining power distribution defined above, the game is played as follows:
1. The game starts with the state S = {[ ]} which is updated exactly R times. All players

are aware that this state is built upon a blockchain of height T0 which includes an unspent
conditionally timelocked transaction output txo(T0, T, cond1, cond2), where T < R.

2. At each round 1 ≤ r ≤ R, players Ni ∈ N choose which of the subchains Sk ∈ S they
build upon, whether they will continue or fork this chain and which of the feasible blocks
(built upon one of the transaction sets) they want to add in case they are declared as the
winner. Let Ω (S, r) denote the set of all feasible actions for the state (S, r) described
as triplets (S, decision, transaction_set), where S ∈ S, and decision ∈ {continue, fork}.
Based on λ = (λ1, . . . , λn), one player is declared as the winner in the round r, and the
state object is modified accordingly.

3. After each round, the abandon rule abandon is run on the current state.

When the final round R of the game is over, it finishes in some state S, and rewards
are given to the players. By S∗, let us denote the longest chain in the state S. Whenever
the state has multiple longest chains, S∗ denotes the oldest of the longest chains of S.
After the final round R, in the state S, the reward given to a player Ni is: rewardi(S) =∑

(block,W )∈S∗:W =i reward(block).

4.2.1 Strategies
Notice that given the set of players N , the actions continue and mine defined above, and the
set of transaction sets possible to mine, one can determine the set S of all states that may
happen in the game.

A strategy σi for a player Ni is given by a function mapping each pair (S, r) ∈ S × [R] to
a triplet feasible for this pair (S, decision, transaction_set).
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Let σ denote a strategy profile of all players - a tuple of strategies of all players - i.e.,
σ = (σ1, . . . , σn). Given a fixed index i, with σ−1, we will denote a strategy profile of all
players, but the selected Ni.

The distribution of mining power among the players λ = (λ1, . . . , λn), the strategy profile
σ, current state S ∈ S and current round r ∈ [R] define a probability distribution function
pλ,σ,S,r,r′ : S → [0, 1] that assigns a probability that a certain state S ′ ∈ S is activated
after round r′ ∈ [R], where r′ > r. Given pλ,σ,S,r,r′ and the reward function, we can define
the utility (the expected reward) Ei(σ) of each player i, when strategy σ is played. We say
σ∗ = (σ∗

1 , . . . , σ∗
n) is a Nash Equilibrium if for all players Ni ∈ N it holds that

Ei(σ∗
i , σ∗

−i) ≥ Ei(σi, σ∗
−i),

for all alternative strategies σi for the player i.
We denote by ΓS,r

F the subgame of the game ΓF in a round r, at a state S. We denote
by Ei(σ, S, r) the utility of a player Ni in this subgame, which is the expected reward for
this player once the game is over.

5 Analysis of Bribe & Fork

In this section, we formally analyze Bribe & Fork where a bribe transaction tx2 is published,
large enough to bribe a chosen miner with the highest mining power, yet significantly smaller
than the value required to directly persuade all miners to skip mining the transaction txs1.
The selected miner is then asked to threaten others with a fork if they add the unwanted
transaction txs1 to the blockchain. To make these threats credible, we implemented the
self-penalty mechanism (see Section 3).

5.1 About the proofs
In the proofs, we aim to find a dominating strategy for a player Ni in a given state S and
a round r, i.e., a strategy that outweighs other strategies of a selected player in the given
state and round. As we will move from the very last round of the game till the first round
of the game, we will be able to conclude our reasoning with a single NE of the full game.
Whenever needed, we use the mathematical induction technique to show that some choice of
strategy is optimal for a sequence of rounds. Usually, the base case is the last round of the
game and the induction step proves that if a given strategy is dominating in a round k + 1,
then it is also a dominating strategy in a round k.

When we compare how the player Ni benefits from taking two distinct actions A, B in a
given state S and a round r, we often say that there exists a constant C common for these
strategies. To this end, we assume that action A refers to some strategy σa of the player
Ni, and action B refers to some strategy σb of the player Ni, such that σa differs only in
its definition from σb on the selected state S and the selected round r. The utility of the
player Ni is the same for both strategies whenever in the state S and r someone else than Ni

is selected as the winner of the round. With C, we denote the utility of player Ni multiplied
by the probability of this event when player Ni is not the winner of the round. This reasoning
gives us an easy-to-use method to compare utility between the strategies σa, σb. We can
thus compare the utilities of the player Ni in the state S and round r when the two distinct
strategies σa, σb are selected as:

Ei(σa, S, r) = λi(utility of the player Ni when action A was taken) + C,

Ei(σb, S, r) = λi(utility of the player Ni when action B was taken) + C.
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5.2 Transaction Order in a Single Chain
Although, due to the definition of the player’s utility function, the bribing transaction (txs2)
may encourage the players not to skip mining transactions with high rewards during the
dispute period (e.g. txs1), we first show that once timelock is over and txs1 was not mined,
the players will follow the default strategy to mine transactions with highest rewards first.

▶ Lemma 3. Let ΓF (S, T + 1) be a subgame in a state S = {S}, where the state S contains
a single chain S and the transaction set txsp1 was mined in the first round. In the next T − 1
rounds, miners mined unrelated transactions sets txsu. Furthermore, it holds that

reward(txs2) > reward(txs1) > reward(txsu) and reward(txsp2) > reward(txsu).

Then the dominating strategy for all players in the subgame ΓF (S, T +1) is to mine transaction
sets in the following order: txs2, txsp2 , and for the rest of rounds txsu.

Proof. As txsp1 was mined in the first round, then in any round after the round T + 1 there
are available to mine the following transaction sets:

mutually exclusive txs1 and txs2 with expired timelock,
one txsp2 that can be mined only after txs2 appears on blockchain,
and an unlimited amount of unrelated transaction sets txsu.

Since only txs1 and txs2 are mutually exclusive and reward(txs1) < reward(txs2), then by
Conjecture 1, whenever txs2, txsp2 or txsu appear on the blockchain, they will not be forked.
Thus only txs1 may be forked in the subgame.

Once both txs2, txsp2 are on the chain, miners can not mine any special transaction sets,
and all of the miners will mine txsu till the end of the game.

Next we show that for any round r ∈ {T + 2, . . . , R}, in a state S ′ created by extending
the chain in S with txsu and one txs2 at any point in this chain, the dominating strategy
for all players is to mine txsp2 first if it was not mined until this point. We will prove it by
induction. The statement trivially holds in the last round R, because txsp2 > txsu. Now,
assuming that it holds in round R − k, we prove that it also holds in round R − k − 1. Any
player Ni will be chosen with probability λi as the winner of the round. The utility of the
player Ni following a strategy σp2 that first mines txsp2 in the state S ′ is:

Ei(σp2 , S ′, R − k − 1) = λi(reward(S ′) + fp2 + B + λik(f + B)) + C,

for some constant C that describes the expected reward of Ni in case he/she is not chosen as
the winner of this round.

The utility of the player Ni following a strategy σu that first mines txsu in the state S ′ is:

Ei(σu, S′, R − k − 1) =
{

λi(reward(S′) + fu + B) + C when k = 0
λi(reward(S′) + fu + B + λi(fp2 + B) + λi(k − 1)(f + B)) + C when k ≥ 1

From the above it follows that

Ei(σp2 , S ′, R − k − 1) > Ei(σu, S ′, R − k − 1).

Next we show that for any r ∈ {R, . . . , T + 1}, in a state S ′′ created by extending the
chain in S with txsu, the dominating strategy for all players is to mine txs2 first if it was
not mined until this point. Observe that in the state S ′′ the miners can only mine txsu, txs1
or txs2. The statement trivially holds in the last round. Now, assuming that it holds in
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round R − k, we prove that it also holds in round R − k + 1. Any player Ni will be chosen
with probability λi as the winner of the round, and with probability 1 − λi someone else will
be selected as the winner of the round. Then for some constant C, the utility of the player
Ni in a strategy σ2 that first mines txs2 is

Ei(σ2, S′, R−k+1) =

λi(rewardi(S′′) + f2 + B) + C when k = 0
λi(rewardi(S′′) + f2 + B + λi(fp2 + B)) + C when k = 1
λi(rewardi(S′′) + f2 + B + λi(fp2 + B) + (k − 2)λi(f + B)) + C when k ≥ 2

Whereas the utility of the player Ni in a strategy σ1 that first mines txs1 is

Ei(σ1, S′′, R−K+1) ≤



λi(rewardi(S′′) + f1 + B) + C when k = 0
max{λi(rewardi(S′′) + f1 + B + λi(f + B)) + C, when k = 1
λi(rewardi(S′′) + f2 + B) + C}

max{λi(rewardi(S′′) + f1 + B + 2λi(f + B)) + C, when k = 2
λi(rewardi(S′′) + f2 + B + λi(fp2 + B)) + C}

max{λi(rewardi(S′′) + f1 + B + kλi(f + B)) + C, when k ≥ 3
λi(rewardi(S′′) + f2 + B + λi(fp2 + B)) + (k − 3)λi(f + B))C}

It is again easy to see that Ei(σ2, S ′′, R − k + 1) > Ei(σ1, S ′′, R − K + 1). ◀

The details of the proof of the above Lemma imply the following result.

▶ Lemma 4. Let ΓF (S, T + 1) be a subgame in a state S = {S}, where the state contains a
single chain S where in T rounds miners mined unrelated transaction sets txsu. Furthermore,
for all miners

reward(txs2) > reward(txs1) > reward(txsu).

Then the dominating strategy for all players in the subgame ΓF (S, T + 1) will result in the
following transactions order: txs2, and for the rest of rounds txsu.

5.3 Decisions of an Individual Miner are Consistent
In this section, we show that without a high-cost reward f2, once someone is successful with
mining txs1, the miner will continue mining this chain, as it might be too costly for the miner
to lose the block reward that he already mined. As txs1, txs2 is the only pair of conflicting
transactions in the game whenever txsp1 was not created, it follows from Conjecture 1 that
the forks may occur only when one miner successfully mines txs1, and the other player wants
to profit from mining txs2. Thus, in the following, we study the behavior of the players
whenever one of the players decides to mine txs1.

▶ Theorem 1. Assuming subgame ΓF (S, r) in a state S with a single chain of length r ≤ T ,
formed until round r where player Nj mined txs1 in the last round, and txsp1 is not on the
chain, then the player Nj will continue to mine this chain unless f2 − f ≥ f1 + B, even when
other miners decide to fork the chain with txs1 and continue mining the new subchain created
during the fork.

Proof. At every point of the game, each player Ni can choose a strategy for the remaining
M rounds to collect at least Mλi(f + B) if he simply always chooses to mine txsu from this
point.
Thus, whenever txs1 was just mined by Nj and R − r rounds are left till the end of the game,
then for some C:
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Nj chooses a strategy σ1 where he continues the current chain of the state S, thus:

Ej(σ1, S, r + 1) ≥ λj(rewardj(S) + f + B + (R − r − 1)λj(f + B)) + C.

when the Nj “forks” himself, then at least one of the blocks txs1 or txsu will be canceled
out in the final chain, therefore for any strategy σ2 that involves forking txs1:

Ej(σ2, S, r + 1) ≤ λj(rewardj(S) − (f1 + B) + f2 + B + (R − r − 1)λj(f + B)) + C.

In conclusion Ej(σ1, S, r + 1) > Ej(σ2, S, r + 1), unless f2 − f ≥ f1 + B.
Now, since Nj that already mined txs1 will not fork himself in the first round, it is easy

to see that the same follows in the next round. ◀

5.4 Only a High-Cost Reward May Encourage Miners to Fork
The next result shows that it is not possible to credibly threaten with forks without high fees.
In particular, we show that for any miner with mining power λj that considers mining the
block txs1, any forking threat in the game where txsp1 was not created, will not be credible
unless f2 − f ≥ λj(f + B), as the miner that mined the transaction will continue to mine his
transaction.

▶ Theorem 2. Let ΓF (S, r + 1) be a subgame in a state S that contains only a single chain
of length r consisting of r − 1 unrelated transaction sets txsu and one (just mined) txs1
(mutually exclusive with txs2 with reward(txs2) > reward(txs1) > reward(txsu)) mined by
some miner Nj. The txsp1 was not created and r ≤ T . Other miners will not fork txs1,
unless f2 − f ≥ λj(f + B), where λj is the mining power of the miner Nj.

Proof. For brevity, the proof of this statement was moved to the full version of this paper. ◀

5.5 Without a High-Cost Reward, All Players Mine txs1

As we already observed, once txs1 is mined, it will not be forked unless the bribing fee is
sufficient. We will show that for a sufficiently large number of rounds T , all of the players
will mine transaction set txs1 in the first round. A similar result was introduced in [23], but
we prove that this result still holds in the game with forks.

▶ Theorem 3. Let ΓF (S, 1) be a subgame where none of the miners decides to create txsp1

before the first round, and the bribing fee is not too high, i.e. f2 − f < 10−2(f + B). What
is more f1 > f , and if we define Y =

∑|N |
j=i:λj>0.01,f2−f<

f1−f
λj

λj, then T, Y are big enough,

such that (1 − 1.01(1 − Y )T ) > 0. Every miner with λj > 0.01 will decide to mine f1 in the
first round.

Proof. In the game where none of the miners decides to create the transaction set txsp1 ,
miners may choose to mine txsu and txs1 in all rounds, or txs2 only after round T . Now,
since the game contains only one pair of mutually exclusive transactions txs1, txs2 with
reward(txs2) > reward(txs1), then by Conjecture 1 players can start to fork only when txs1
appears on the blockchain. What is more, since f2 − f < 10−2(f + B), by Theorem 2,
whenever some player with λj > 10−2 successfully mines txs1 in a chain of length ≤ T , none
of the players will decide to fork his block.

We prove that in the above game miners with collective mining power at least Y will
decide to mine txs1 in rounds {T, T − 1, . . . , 1} if not mined up to this point. Let’s take
any miner with λi > 10−2 that makes a decision in round T − k, for k ∈ {0, . . . , T − 1}.
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As already mentioned, once he successfully mines the block txs1, it will not be forked. In
round T , whenever the block txs1 was not mined, then the miners had only mined txsu so
far ending up in a state ST . Then for some constant C, the utility of the player Ni in all
strategies σ1 that choose to mine txs1 in ST , and all strategies that choose to mine txsu

in ST :

Ei(σ1, ST , T ) ≥ λi(rewardi(ST ) + f1 + B + λi(R − T − 1)(f + B)) + C,

Ei(σ2, ST , T ) ≥ λi(rewardi(ST ) + f + B + λi(f2 + B) + (R − T − 2)λi(f + B)) + C.

Now, Ei(σ2, ST , T ) < Ei(σ1, ST , T ) only if (∗)f2 − f ≥ f1−f
λi

. This implies that miners with
collective mining power at least Y will prefer to mine txs1 in this round.

In round T − k, where k > 0, whenever the block txs1 was not mined, then the miners
had only mined txsu so far, ending up in a state ST −k. Then for some constant C, the utility
of the player i in all strategies σ1 that choose to mine txs1 in ST , and all strategies that
choose to mine txsu in ST :

Ei(σ1, ST −k, T − k) = λi(rewardi(ST −k) + f1 + B + λi(k − 1)(f + B)+
λi(R − T + k − 1)(f + B)) + C,

Ei(σ2, ST −k, T − k) ≤ λi(rewardi(ST −k) + f + B + λi(k − 1)(f + B) + λi(f2 + B)+
(R − T + k − 2)λi(f + B)) + C.

Similiary, the above equation implies that at least Y miners will prefer to mine txs1 in this
round.

Now, after the first round there are T rounds till the moment of mining txs2, player’s
Ni benefit from mining txs1 (with λi > 0.01) and not waiting for txs2 is at least benefit =
λi(f1 + B) − λi(1 − Y )T (f2 + B), and since f2 − f < 10−2(f + B), then benefit ≥ λi(f1 +
B − (1 − Y )T )(1.01f + 1.01B). Now, assuming that f1 > f we have benefit ≥ λi(f(1 −
1.01(1 − Y )T )) + B(1 − 1.01(1 − Y )T ). This implies that whenever (1 − 1.01(1 − Y )T ) > 0,
then all miners with λi > 0.01 will mine txs1 in the first round. ◀

A similar results holds in any state where sufficiently large number of T − r + 1 rounds
are left till the round T , txsp1 was not created in the game (or txsu was mined in the first
round), and txs1 was not mined yet. We leave it as a lemma without a proof.

▶ Lemma 5. Given a game with forks ΓF (S, r) with r < T , where none of the miners decides
to create txsp1 before the first round (or txsu is mined in the first round), and the bribing
fee is not too high, i.e. f2 − f < 10−2(f + B) and given Y =

∑|N |
j=i:λj>0.01,f2−f<

f1−f
λj

λj;

T −r +1, Y are big enough, such that (1−1.01(1−Y )T −r+1) > 0, every miner with λj > 0.01
will decide to mine f1 in this round.

5.6 Discouraging Miners to Mine txs1

In the previous sections, we have shown that it is rather expensive to force the players not to
mine txs1 in the first round, even when the players can fork this transaction. In this section,
we leverage the self-penalty mechanism introduced in Section 3. The proof is inductive, and
its base case starts in round T . For each round, we first show that the miner Ns with the
highest mining power λs will not mine txs1, as we assume that f2 − f > f1−f

λs
. Next, given a



Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:17

sufficiently large penalty P > λs(f + B), we show that the selected player Ns will fork the
transaction txs1, once it appears on the blockchain, even though it poses a risk of losing the
block reward. Finally, we show that in this round all players other than the player Ns are
afraid to mine txs1, when the self-penalty transaction is on the chain.

▶ Theorem 4. Let ΓF (S, 2) be a subgame where txsp1 defined by a player Ns with mining
power λs was mined in the first round with P > λs(f + B). What is more f2 − f > f1−f

λs
,

and f+B
f1+B > 1 − λ2

s. None of the miners will decide to mine txs1 in rounds 2, . . . , T .

Proof. For brevity, the proof of the theorem was moved to the full version of this paper. ◀

5.7 Encouraging the Strongest Miner to Use the Penalty Mechanism
Finally, we observe the benefit that comes from using the penalty mechanism. First for the
miner with the strongest mining power λs, we observe that using the self-penalty mechanism
and threatening others to mine the transaction txs1, once it appears on the blockchain is
beneficial for him whenever f2 − f > 2f+2(f1−f)

λs
+ f . Next, for any miner with a smaller

mining power, we show that merely the fact that he is threatened to mine txs1 can force
them to skip mining this transaction.

▶ Theorem 5. In the game with forks ΓF that starts with an empty state S, whenever
f2−f > 2f+2(f1−f)

λs
+f , f+B

f1+B > 1−λ2
s, f1 > f , fp2 > f , λmin > 0.05T/2, f2−f < 10−2(f+B)

and given Y =
∑|N |

j=i:λj>0.01,f2−f<
f1−f

λj

λj, it holds that (1 − 1.01(1 − (1 − Y )T/2) > 0, the

dominating strategy for all players in the game ΓF is is to mine txsp1 with P > λs(f + B)
created in the first round by the strongest player Ns with the mining power λs, then mine
txsu until round T , then txs2, txsp2 , and txsu until the end.

Proof. By Theorems 3 and 4, utility of the player Ns that chooses to create txsp1 , txsp2

and mine txsp1 in the first round6 (strategy σp) is at least:

Es(σp, S, 1) ≥ −λp1cp1fp1 + λs((m − cp1)f + B) + (λp1 + λs)F ′
2 + (1 − λs − λp1)F ′

1,

where F ′
1 = (λs(T − 1)(f + B) + λs(R − T )(f + B)),

F ′
2 = (λs((T − 1)(f + B)) + λs(f2 + B) − λp2cp2fp2 + λs((m − cp2)f + B)+

λi(R − T − 2)(f + B)).

Recall that we assume that all players with mining power less than 1% have collective power
at most 5%. As the players with mining power more than 0.01 will prefer to mine txs1 in
the first place when txsp1 is not created, the utility of the player Ns that does not decide to
create txsp1 (strategy σ1) is at most (by Lemma 5 and the Theorem 4):

Es(σ1, S, 1) ≤ ((1 − 0.05T/2)F1 + 0.05T/2F2),

where F1 = F ′
1 + λs(f1 + B), F2 = F ′

2 + λs(f + B). Further, if λp1cp1fp1
+ λs(f + B) −

λscp1f + F ′
1 + (λp1 + λs)(F ′

2 − F ′
1) > F1 + 0.05T/2(F2 − F1), then Es(σp, S, 1) > Es(σ1, S, 1).

This condition holds whenever:

(λp1 + λs)[λsf2 − λsf1] > 0.05T/2[λsf2 − λsf1] + λp1cp1fp1
+ λscp1f+

(λp1 + λs)(λp2cp2fp2
+ λscp2f) + λs(f1 − f).

6 In the analysis we omit the strategy where the player Ns creates txsp1 , txsp2 and does not decide to
mine txsp1
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What concludes that the following bribe is enough to encourage the strong miner to wait for
txs2:

f2 − f >
cp1fp1

+ cp1f + cp2fp2
+ f1 − f

λs − 0.05T/2 + cp2f.

Now, if the txsp1 , txsp2 are created then every player Ni other than the player Ns may
mine txsp1 , once it is published (strategy σp∗

1
). When txsp1 is successfully mined in the

first round, then all miners will be encouraged to wait until txs2 may be mined after the
T ’th round. 1 − λp1 − λi miners may decide to mine txsu (or txs1) in the first round. In
this case, when the txsu is mined, all other players will be able to mine at least f + B

for the rest of the rounds Ei(σp∗
1
, S, 1) ≥ λi(fp1 + B) + (λp1 + λi)F2 + (1 − λp1 − λi)F ,

where F2 = (T − 1)λi(f + B) + λi(f2 + B) + λi(fp2 + B) + (R − T − 2)λi(f + B) and
F = (R − 1)λi(f + B).

On other hand the players may first decide to mine either txsu or txs1 in the first round
(strategy σ1∗). In the worst case scenario the block with txs1 is not forked. What is more,
whenever 1 − λp1 miners decide to mine txsu in the first round, then all miners with mining
power more than 0.01 will make an attempt to mine txs1. In conclusion, by Lemma 5 and
the Theorem 4:

Ei(σ1∗, S, 1) ≤ λi(f1 + B) + λp1F2 + (1 − λp1 − λ1)((1 − 0.05T/2)F + 0.05T/2F2),

where F and F2 are defined as previously. Ei(σp1∗, S, 1) > Ei(σ1∗, S, 1) holds whenever:

λi(fp1 + B) + λi(F2 − F ) > λi(f1 + B) + (1 − λp1)0.05T/2(F2 − F )

Which holds for any fp1 ≥ f1 and λi > 0.05T/2.
Now, by setting cp1 = 1, cp2 = 1, fp1 = f1−f , fp2 = f , we get a condition f2−f > 2f+2(f1−f)

λs−0.05T/2 +

f , what for λs ≈ 20% and sufficiently large T/2 concludes f2 − f ≳ 2f+2(f1−f)
λs

+ f . ◀

6 Example Evaluation

Using the real-world data analysis of Bitcoin fees and hashpower distribution in major PoW
blockchains (see discussion in the full version of this paper), we visualize the improvement
our bound f2 − f > 2f+2(f1−f)

λs
+ f brings compared to the previous result from [6], namely

f2 − f ≥ f1−f
λmin

. Additionally, the Theorem 5 requires that f2 − f < 10−2(f + B) and there
exists a player Nj with mining power λj > 0.01 for which f2 − f < f1−f

λj
.

For example, let us assume that f1 − f ≈ f , and set T > 110. Now, since λmin can be
fairly estimated to be λmin < 10−12, we can see that the attack without forking threats
could cost in practice around 1012f . On the other hand, the new bound requires only
f2 −f > 2f+2(f1−f)

λs
+f , for λs ≈ 0.2, this costs around f2 −f > 21f . The only condition left

is that for some miner with λj > 0.01, the following condition must hold f2 − f < f1−f
λj

, but
the data shows that miners that control approximately 1.5% − 2% of the total mining power
usually exist, thus for a miner with mining power 1% < λj < 2% it holds that f2 − f < 50 · f .
In summary, if we take any f2 that is larger than f by 21 up to 50 times, then the default
strategy for all miners is to wait for the bribing transaction.
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7 Related Work and Countermeasures

In the landscape of constructing financially stable systems on blockchain [21, 7], our work
falls into the class of incentive manipulation attacks which have been widely applied to
undermine blockchain’s security assumptions [22]. To the best of our knowledge, we are the
first to combine feather forking attacks [8] with timelock bribing attacks on payment channel
networks and to achieve a bribing cost that is approximately only constant times larger than
the cost of an average transaction fee.

Incentive manipulation attacks on timelocked puzzles were introduced with the so-called
timelock bribing attack [23]. Later, Avarikioti et al. [6] applied timelock bribing attacks
in payment channel networks, such as the Lightning Network and Duplex Micropayment
Channels, and proposed countermeasures. Our work extends [6], modifying the timelock
bribing attack for payment channels to facilitate a miner bribing strategy that incorporates
feather forking. As a result, our work reduces the cost of bribing attacks significantly in
comparison to [6], i.e., the cost is now inversely proportional to the mining power of the
largest miner instead of the smallest miner which results in at least 1000 times smaller bribes.
Our model is similar to the one in [17] that introduced forks, but we were able to craft
reasonable assumptions for the PoW blockchains which secured a unique NE solution. In
particular, we restrict the strategy of the miner by forbidding him to conduct shallow forks
and allowing him to fork only in a case when the player strictly profits from conducting the
fork action (compare Sections 4.1.7, 4.1.8).

The bribing strategies for the payment channels are similar in their nature to the bribing
strategies for the HTLC mechanism. Perhaps the closest to our work is [31], where the
authors introduced a way to bribe HTLCs, leveraging the power of smart contracts and
feather forking. The cost of the attack in [31] is, however, proportional to the sum of the
fees (≳

∑T
i=1 f · λmax) of all blocks before the deadline T . In contrast, we achieve a cost

proportional to the cost of fees of a single block (≳ f1−f
λS

).
Furthermore, MAD-HTLC [29] underlined the vulnerability of HTLCs to bribing attacks,

achieving the same attack cost as [6], specifically ≈ f1−f
λmin

. MAD-HTLC presupposes that
the minimum fraction of mining power controlled by a single user, λmin, is at least 0.01,
to achieve low bribing costs. This is, however, an impractical assumption, as the analysis
of the actual data (see discussion in the full version of this paper) shows that λmin can be
reasonably estimated to be less than 10−12, making the bribing attack exceedingly expensive.
The reduction of the bribing costs Bribe & Fork achieves in comparison to MAD-HTLC is
similar to that of [6] analyzed above.

MAD-HTLC additionally proposed a countermeasure for bribing attacks where miners
are allowed to claim the locked coins in the HLTC in case a party misbehaves, similar to [6].
Later, He-HTLC [30] pointed out that MAD-HTLC is susceptible to counter-bribing attacks.
In particular, one party may (proactively) collude with the miners to cooperatively steal
the coins of the counterparty in the MAD-HTLC construction. He-HTLC also proposed
a modification on MAD-HTLC to mitigate the counter-bribing attack: now the coins are
partially burned in case of fraud instead of being fully awarded to the miners. Recently,
Rapidash [9] revisited the counter-bribing attack and proposed yet another improvement on
He-HTLC. These works are orthogonal to ours as the proposed attacks apply only to the
specific MAD-HTLC construction and not to Lighting Channels that are the focus of this
work. Furthermore, our focus is not on designing countermeasures against timelocked bribing
attacks. Instead, we demonstrate how employing feather forking can make timelocked bribing
attacks very cheap for the attacker, therefore highlighting the need for robust mitigating
strategies.
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Nonetheless, it is crucial to acknowledge that the previously mentioned countermeasures
can be used to defend against Bribe & Fork– inheriting their respective vulnerabilities. For
example, one can employ the mitigation technique for timelocked bribing on the Lighting
Network proposed by Avarikioti et al. [6]. In our model, this countermeasure ensures that
announcing txs2 also involves revealing a secret that anyone can use to claim the money
before time T . This implies that if txs2 is announced in the mining pool before time T , all
the money to be collected only after time T can be immediately claimed by another party.
We assert, without proof, that the same countermeasure mechanism remains effective even in
a model that considers forks. Intuitively, the “strong” miner in our analysis does not benefit
from waiting for the bribing transaction if it is not announced, thus preventing the creation
of the self-penalty transaction. Conversely, if the transaction is announced and the secret is
revealed, any (winning) miner could claim the reward.

8 Conclusions and Future Work

In conclusion, our work reexamines the vulnerability of PCNs to bribing attacks and introduces
a modified attack leveraging the threat of forking. We introduce a formal model of a mining
game with forking extending the conditionally timelocked games introduced by Avarikioti
et al. [6]. In particular, in our extended model, miners not only choose which transactions
to mine in each round but also decide whether to continue existing chains or initiate forks.
In this model, we demonstrate that the cost of the bribing attack can be significantly
reduced compared to the previous analysis. In more detail, it can be reduced from f1−f

λmin

to approximately 2f+2(f1−f)
λs

, where f represents the cost of an average fee for a single
transaction and λs denotes the reduction factor compared to significantly smaller λmin

calculated in previous work [6]. To validate our findings, we empirically analyze the historical
data of real-world blockchain implementations. This analysis confirms that staging a bribing
attack on a PCN is significantly less costly (approximately 125$) than considered previously.

The results of our study have implications for the design and implementation of PCNs, as
well as for the broader applications of timelocked contracts, e.g., atomic swaps. Our findings
underscore the need for proactive measures to mitigate the risk of bribing attacks.

Possible avenues for future research include exploring whether our penalty mechanism
implementation can be implemented without the honest majority assumption or whether our
results still hold in the presence of more general abandon rules. Another interesting question
is whether our results extend in a Proof-of-Stake setting.

References

1 Lukas Aumayr, Ozgur Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostakova, Matteo
Maffei, Pedro Moreno-Sanchez, and Sabrina Riahi. Generalized bitcoin-compatible channels.
Cryptology ePrint Archive, 2020:476, 2020. URL: https://eprint.iacr.org/2020/476.

2 Lukas Aumayr, Ozgur Ersoy, Andreas Erwig, Sebastian Faust, Kristina Hostakova, Matteo
Maffei, Pedro Moreno-Sanchez, and Sabrina Riahi. Bitcoin-compatible virtual channels. In
IEEE Symposium on Security and Privacy, 2021. URL: https://eprint.iacr.org/2020/554.
pdf.

3 Lukas Aumayr, Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Pedro Moreno-Sanchez,
and Matteo Maffei. Sleepy channels: Bi-directional payment channels without watchtowers.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pages 179–192, 2022.

https://eprint.iacr.org/2020/476
https://eprint.iacr.org/2020/554.pdf
https://eprint.iacr.org/2020/554.pdf


Z. Avarikioti, P. Kędzior, T. Lizurej, and T. Michalak 11:21

4 Zeta Avarikioti, Eleftherios Kokoris Kogias, Roger Wattenhofer, and Dionysis Zindros. Brick:
Asynchronous incentive-compatible payment channels. In International Conference on Finan-
cial Cryptography and Data Security, 2021. URL: https://fc21.ifca.ai/preproceedings/
50.pdf.

5 Zeta Avarikioti, Orestis S. T. Litos, and Roger Wattenhofer. Cerberus channels: Incentivizing
watchtowers for bitcoin. In International Conference on Financial Cryptography and Data
Security, pages 346–366. Springer, 2020. URL: https://link.springer.com/chapter/10.
1007/978-3-030-60276-7_18.

6 Zeta Avarikioti and Orfeas Stefanos Thyfronitis Litos. Suborn channels: Incentives against
timelock bribes. In Financial Cryptography and Data Security - 26th International Conference,
FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers, volume 13411 of Lecture Notes in
Computer Science, pages 488–511. Springer, 2022. doi:10.1007/978-3-031-18283-9_24.

7 Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, volume 8617 of Lecture Notes
in Computer Science, pages 421–439. Springer, 2014. doi:10.1007/978-3-662-44381-1_24.

8 Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and
Edward W. Felten. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.
In 2015 IEEE Symposium on Security and Privacy, pages 104–121, 2015. doi:10.1109/SP.
2015.14.

9 Hao Chung, Elisaweta Masserova, Elaine Shi, and Sri AravindaKrishnan Thyagarajan. Rapi-
dash: Foundations of side-contract-resilient fair exchange. Cryptology ePrint Archive, Paper
2022/1063, 2022. URL: https://eprint.iacr.org/2022/1063.

10 Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, An-
drew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wattenhofer.
On scaling decentralized blockchains. In International Conference on Financial Cryptography
and Data Security, pages 106–125. Springer, 2016.

11 Christian Decker, Rusty Russell, and Olaoluwa Osuntokun. eltoo: A simple layer2 protocol
for bitcoin. https://blockstream.com/eltoo.pdf, 2019.

12 Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Stabilization, Safety, and Security of Distributed Systems,
pages 3–18. Springer, 2015.

13 Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun: Virtual
payment hubs over cryptocurrencies. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 344–361. IEEE, 2019.

14 Stefan Dziembowski, Sebastian Faust, and Kristína Hostáková. General state channel networks.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 949–966. ACM, 2018.

15 Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Gervais.
Sok: Layer-two blockchain protocols. In Joseph Bonneau and Nadia Heninger, editors, Financial
Cryptography and Data Security - 24th International Conference, FC 2020, Kota Kinabalu,
Malaysia, February 10-14, 2020 Revised Selected Papers, volume 12059 of Lecture Notes in
Computer Science, pages 201–226. Springer, 2020. doi:10.1007/978-3-030-51280-4_12.

16 Michael Jourenko, Nicolas Larangeira, and Koji Tanaka. Lightweight virtual payment channels.
In Cryptology and Network Security, pages 365–384. Springer International Publishing, 2020.

17 Dimitris Karakostas, Aggelos Kiayias, and Thomas Zacharias. Blockchain bribing attacks and
the efficacy of counterincentives, 2024. arXiv:2402.06352.

18 Sishan Long, Soumya Basu, and Emin Gün Sirer. Measuring miner decentralization in
proof-of-work blockchains. arXiv preprint arXiv:2203.16058, 2022.

19 Antonio Magnani, Luca Calderoni, and Paolo Palmieri. Feather forking as a positive force:
incentivising green energy production in a blockchain-based smart grid. In Proceedings of the
1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems, pages 99–104,
2018.

AFT 2024

https://fc21.ifca.ai/preproceedings/50.pdf
https://fc21.ifca.ai/preproceedings/50.pdf
https://link.springer.com/chapter/10.1007/978-3-030-60276-7_18
https://link.springer.com/chapter/10.1007/978-3-030-60276-7_18
https://doi.org/10.1007/978-3-031-18283-9_24
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1109/SP.2015.14
https://eprint.iacr.org/2022/1063
https://blockstream.com/eltoo.pdf
https://doi.org/10.1007/978-3-030-51280-4_12
https://arxiv.org/abs/2402.06352


11:22 Bribe & Fork

20 Andrew Miller. Feather-forks: enforcing a blacklist with sub-50% hash power. URL: https:
//bitcointalk.org/index.php?topic=312668.0.

21 Andrew Miller and Iddo Bentov. Zero-collateral lotteries in bitcoin and ethereum, 2017.
arXiv:1612.05390.

22 Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay Eyal, and Ari Juels. Bdos:
Blockchain denial of service, 2020. arXiv:1912.07497.

23 Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer. Timelocked bribing. In
Financial Cryptography and Data Security - 25th International Conference, FC, volume
12674 of Lecture Notes in Computer Science, pages 53–72. Springer, 2021. doi:10.1007/
978-3-662-64322-8_3.

24 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: http:
//bitcoin.org/bitcoin.pdf.

25 Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments. https://lightning.network/lightning-network-paper.pdf, January 2016.

26 Yahya Shahsavari, Kaiwen Zhang, and Chamseddine Talhi. A theoretical model for fork
analysis in the bitcoin network. In IEEE International Conference on Blockchain, Blockchain
2019, Atlanta, GA, USA, July 14-17, 2019, July 2019. doi:10.1109/Blockchain.2019.00038.

27 Santhi Shalini and H Santhi. A survey on various attacks in bitcoin and cryptocurrency.
In 2019 International Conference on Communication and Signal Processing (ICCSP), pages
0220–0224. IEEE, 2019.

28 Joseph Spilman. Anti dos for tx replacement. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2013-April/002433.html, 2013. Accessed: 2020-11-22.

29 Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. MAD-HTLC: because HTLC
is crazy-cheap to attack. In 42nd IEEE Symposium on Security and Privacy, SP, pages
1230–1248. IEEE, 2021. doi:10.1109/SP40001.2021.00080.

30 Sarisht Wadhwa, Jannis Stoeter, Fan Zhang, and Kartik Nayak. He-htlc: Revisiting in-
centives in HTLC. In 30th Annual Network and Distributed System Security Symposium,
NDSS. The Internet Society, 2023. URL: https://www.ndss-symposium.org/ndss-paper/
he-htlc-revisiting-incentives-in-htlc/.

31 Fredrik Winzer, Benjamin Herd, and Sebastian Faust. Temporary censorship attacks in the
presence of rational miners. In 2019 IEEE European Symposium on Security and Privacy
Workshops, EuroS&P Workshops, pages 357–366. IEEE, 2019. doi:10.1109/EuroSPW.2019.
00046.

32 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
Project Yellow Paper, 2014.

https://bitcointalk.org/index.php?topic=312668.0
https://bitcointalk.org/index.php?topic=312668.0
https://arxiv.org/abs/1612.05390
https://arxiv.org/abs/1912.07497
https://doi.org/10.1007/978-3-662-64322-8_3
https://doi.org/10.1007/978-3-662-64322-8_3
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/Blockchain.2019.00038
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://doi.org/10.1109/SP40001.2021.00080
https://www.ndss-symposium.org/ndss-paper/he-htlc-revisiting-incentives-in-htlc/
https://www.ndss-symposium.org/ndss-paper/he-htlc-revisiting-incentives-in-htlc/
https://doi.org/10.1109/EuroSPW.2019.00046
https://doi.org/10.1109/EuroSPW.2019.00046


Payment Censorship in the Lightning Network
Despite Encrypted Communication
Charmaine Ndolo #

Dresden University of Technology, Germany

Florian Tschorsch #

Dresden University of Technology, Germany

Abstract
The Lightning network (LN) offers a solution to Bitcoin’s scalability limitations by providing fast
and private off-chain payments. In addition to the LN’s long known application-level centralisation,
recent work has highlighted its centralisation at the network-level which makes it vulnerable to
attacks on privacy by malicious actors. In this work, we explore the LN’s susceptibility to censorship
by a network-level actor such as a malicious autonomous system. We show that a network-level actor
can identify and censor all payments routed via their network by just examining the packet headers.
Our results indicate that it is viable to accurately identify LN messages despite the fact that all
inter-peer communication is end-to-end encrypted. Additionally, we describe how a network-level
observer can determine a node’s role in a payment path based on timing, direction of flow and
message type, and demonstrate the approach’s feasibility using experiments in a live instance of
the network. Simulations of the attack on a snapshot of the Lightning mainnet suggest that the
impact of the attack varies from mild to potentially dramatic depending on the adversary and type
of payments that are censored. We analyse countermeasures the network can implement and come to
the conclusion that an adequate solution comprises constant message sizes as well as dummy traffic.
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1 Introduction

Bitcoin [25] and similar blockchain-based payment systems continue to enjoy significant
popularity. While Bitcoin is to date the most popular based on its market capitalisation, it
suffers from grave constraints with respect to scalability, which limit its ability to compete
with traditional (centralised) payment systems. Layer 2 solutions are gaining traction as
a feasible solution to the scalability challenges by enabling off-chain transactions. One
such solution is the Lightning network (LN) [30] – a peer-to-peer (P2P) payment channel
network (PCN) enabling fast, low-cost and private Bitcoin payments. It is a network of
off-chain bilateral channels in which funds can move in either direction between the two
channel partners. LN also implements multi-hop payments such that payments can be
routed over multiple intermediate channels in cases where the sender and beneficiary of a
payment do not have a direct channel. In order to offer a degree of payment privacy, all P2P
communication subsequent to connection establishment is encrypted using the Noise [29]
protocol framework. Furthermore, LN uses the Sphinx mix format [10] to implement onion
routing of payments across the network. This means that, among others, routing nodes only
know their predecessor and successor when forwarding a payment, but do not know if either
is the source or destination of the payment.
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A compelling selling point of decentralised P2P systems is their censorship-resistant nature
due to their fundamental design, i.e., there is no single point of failure or owner. Nonetheless,
blockchain-based cryptocurrencies such as Bitcoin have been subject to state-wide bans
enforced via legal frameworks and/or technical means such as aggressive protocol blocking.

While the broader topic of Internet censorship is by no means a new one, it remains highly
relevant due to some of the censorship currently imposed across the globe, e.g., in China [15],
India [46], Iran [4] or Turkmenistan [28]. Blockchain networks such as Bitcoin and Ethereum
have also been shown to be vulnerable to censorship despite their design [22,44]. State censors
employ different techniques such as high prices, notoriously low broadband speeds [17, 35] or
various network-level techniques [15, 46] to restrict access to services. Powerful tools such as
Geneva [8] and OONI [13] are able to detect or even evade censorship based on a censor’s
identified strategies. If a censor using network-level tactics intends on bypassing common
censorship-detection tools, the need for subtle, difficult to reproduce yet effective measures
arises. Additionally – and aside from ethical concerns – such restrictions are detrimental to
their national and international image and have the potential to spark unrest. Thus, a censor
may instead look to discretely implement such a ban such that it either goes unnoticed or
initial blame is put on other actors, e.g., application issues. Assuming that a certain level of
operation (within the censor’s area of jurisdiction) can be maintained, the censor may even
be able to plausibly deny the fact that they are indeed tampering with network traffic.

In this work, we explore the Lightning network’s susceptibility to censorship by a network-
level actor such as a malicious autonomous system (AS). For the previously detailed
reasons, we assume that the censor’s goal is not to disrupt the entire network but to control
participation in the LN within their domain. In doing so, the censor seeks to limit their impact
on the day-to-day operations of the greater LN and avoid collateral damage. The censor
strives to remain undetected as much as possible such that from an observer’s perspective, e.g.,
a user issuing payments or network explorer, it is difficult to recognise that a given node is
under attack but aims to maximise their impact on the censored nodes.

Our work expands on previous work by von Arx et al. [43] in which they showed that
application messages can be identified based on traffic analysis. We first confirm that a
network-level adversary is able to accurately classify LN traffic using the header data and
flow direction of transmitted packets by implementing a rule-based classification program for
live LN traffic. Our results indicate that it is possible to accurately identify LN messages in
real time despite the fact that all P2P communication in the network is end-to-end encrypted.
Based on this, we show how a network-level actor can censor all payments routed via their
network using a simple state machine to determine if a packet should be dropped. All other
LN operations, e.g., channel management, remain unaffected. Due to the atomic nature
of the payment process in the LN, dropping select messages eventually results in payment
failure without attempting alternative routing options. This result may not be adequate for
a censor who does not want to tamper with third-party activity that just so happens to be
traversing their network. Thus, we then show that it is possible for a network-level observer
to determine a node’s role in a payment path based on the timing and direction of flow as
well as the message type. We use the information to enhance the attack such that a censor
can selectively block payments, e.g., block intra-AS payments but permit inter-AS payments.

We implemented the attack as an efficient netfilter program and validated the attack’s
feasibility and performance in a private network as well as in the public testnet. Our
experiments show that for rates of up to 1 payment per second, we are able to correctly
determine a node’s role in a payment path. While this rate may sound underwhelming, it
exceeds the currently estimated payment rates in Lightning by five orders of magnitude.
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Furthermore, simulations of the attack on the mainnet’s channel graph show that the impact
on the broader network is almost non-existent in the case of selective censorship. Based on
reviewing current state-of-the-art traffic fingerprinting protection measures, we discuss and
verify possible mitigation strategies for the LN. We come to the conclusion that an adequate
solution entails implementing some form of cover traffic and constant-size messages in the
network similar to what is implemented in the Tor network.

To summarise, the following are our main contributions:
1. We show that network packets can accurately be mapped to the corresponding LN message

types using the payload length and sequence of messages in real time;
2. We exploit timing information and type of message to identify an on-path node’s role in

a payment path;
3. Based on the preceding contributions, we present a censorship attack on the LN that is

founded on selectively dropping network packets identified to be related to payments;
4. We implement the attack, deploy it in a private Lightning network and report on our

findings. We evaluate the attack using our implementation and simulations; and
5. We analytically discuss possible countermeasures the LN can implement and derive

recommendations for the network.

The remainder of this paper is structured as follows. We provide a pertinent introduction
to the LN and present our system model in Section 2. The core of this work is Section 3
in which we describe a censorship attack on the LN and evaluate it comprehensively in
Section 4. We discuss countermeasures for this attack vector in Section 5 and provide an
overview of related work in Section 6. We conclude this work and discuss avenues for future
work in Section 7.

2 Background and system model

We provide the reader with a pertinent introduction to the Lightning network in Section 2.1;
we refer the reader to [1, 30,31] for a comprehensive introduction beyond the scope of this
work. We briefly analyse the network topology in Section 2.2 and describe our threat model
in Section 2.3.

2.1 The Lightning network
The Lightning network (LN) is a peer-to-peer (P2P) network of bilateral off-chain payment
channels, i.e., a payment channel network (PCN). A payment channel signifies a financial
relationship between a pair of nodes in which a set number of funds (the channel’s capacity)
is committed via a transaction on the Bitcoin blockchain. Lightning payments alter the
distribution of the channel’s capacity (balances) between the two endpoints. Payments in the
LN can be routed via multiple hops for a fee that is independently set by each node. In order
to route payments securely over multiple hops, payments are secured by Hashed Timelock
Contracts (HTLCs), which guarantee that payments are made atomically, i.e., a payment
either succeeds at all hops or fails at all hops. An HTLC is basically a conditional payment
that can be claimed by producing a preimage that is revealed by the payment’s beneficiary.
During channel establishment, each node defines and announces how long they are willing to
wait for an HTLC to be resolved – the time lock. If the time lock expires before the HTLC
is resolved, the HTLC expires and is settled on-chain which requires a forceful closure of the
affected channel.

AFT 2024
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Figure 1 The sequence of messages exchanged for a payment between a sender (S) and recipient (R)
routed via an intermediate hop (I). The update_fulfill_htlc message is only sent in the case of a
successful payment and is replaced by an update_fail_htlc message otherwise.

Once a payment channel has been established, an arbitrary number of payments can be
made over the channel. Finding a suitable path for a payment is an essential part of LN and
is delegated to the sender of a payment. Based on the public channel graph, the sender tries
to find a path connecting them to the recipient of the payment. For the sake of illustration,
the following assumes a payment from node S to node R made via an intermediate node I.
S begins by encoding the calculated path in an onion packet using the Sphinx message
format [10], i.e., a packet with multiple layers of encryption that each identify the next hop on
the path. Forwarding nodes along the path hence only know their predecessor and successor
on the path, but do not know if either is the payment’s source or destination. S initiates
the payment by constructing an HTLC and sending it in an update_add_htlc message with
the onion packet to I. Upon receipt, I decrypts the topmost layer to receive its payload
and prepares to forward the update_add_htlc message to the next hop. However, I will
only forward it to the next hop after the new conditional payment is reflected in the S − I

channel’s state. The state update must also be irrevocably committed by both nodes using a
handshake of commitment_signed and revoke_and_ack messages as shown in Figure 1.

Once the state updates have been successfully completed, I forwards the remaining onion
packet to R in a new update_add_htlc message. I and R then negotiate the new state
in the same way S and I did (cf. Figure 1). As soon as I and R conclude the handshake
necessary for the channel update, R sends an update_fulfill_htlc message to I. The
message contains the preimage needed by each hop to settle the HTLC with its channel
partner. The update_fulfill_htlc is propagated to all hops along the path in reverse
order such that each hop can redeem the conditional payment. In the event of an error
along the way, e.g., due to insufficient balances or time lock, a node will immediately send
an update_fail_htlc to its predecessor instead, which will be propagated to all preceding
nodes as well.
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Figure 2 The sum of channels where both endpoints belong to different ASs and the sum of
channels where both belong to the same AS for the 35 ASs with the highest number of channels.
The top five ASs in the network w.r.t. to the number of channels are underlined and printed in bold.

2.2 Topology

It is well-known that the application level of the LN is highly centralised [21,34,41]. That is,
while the network is considerably large in terms of the number of nodes and channels, most
payments are routed via a small subset of available channels. This has been shown to be
detrimental to the network’s privacy goals and overall resilience [19,26]. Recent work [43]
revealed that the network layer is similarly centralised, with just a handful of ASs technically
being able to compromise payment privacy. For instance, 80% of all Lightning channels are
hosted at just five ASs.

As gaining a deeper understanding of the topological structure may prove to be useful
to discover potential censorship strategies, we examined the distribution of channels to ASs
based on a snapshot of the mainnet’s channel graph on 12 January 2024. The network
comprised 12, 781 nodes and 112, 958 channels after reducing it to its largest strongly
connected component. We pruned all nodes (and their channels) that had not announced at
least one public network address from the obtained channel graph, which leaves approximately
22% of the nodes in the channel graph. We then mapped each node’s announced address to
the corresponding AS using the GeoLite2 database.1 We examined the distribution of node
degrees across AS and find that all high-degree (> 500 channels) nodes belong to different
ASs. Further, we analysed the share of channels in which both endpoints belong to the same
AS and depict the results in Figure 2. The figure shows the total number of channels that
are shared by two different ASs and the total number of channels that belong to the AS
alone. Except for nodes connecting to the network over Tor and a handful of ASs, e.g., AS
34197 or AS 42275, most channels in Lightning are between a pair of ASs and not within the
same AS.

1 Available at https://www.maxmind.com (accessed on 12 January 2024).
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2.3 Adversary Model
We explore the feasibility of imposing censorship of the LN in this work. As previously
mentioned, we presume that the censor aims to impose (from their perspective) effective
censorship within their area of jurisdiction. In other words, the censor is not interested
in disrupting the greater LN, but only controlling Lightning’s operation in their sphere of
influence. Additionally, the censor wants to maintain plausible deniability and hence looks
to implement the ban such that a certain level of operation is upheld within their domain
despite the ongoing censorship. This is why applying less sophisticated methods such as port
and IP blocking are out of the question for the censor.

Similar to multiple related works [27,43], we assume a powerful yet malicious network-
level adversary such as an AS or a party cooperating with an AS. While the attack can
be executed by any adversary with access to network-level traffic, e.g., an operator of a
Lightning node, the impact and significance of the attack is directly related to the adversary’s
scope of influence. The adversary’s foremost goal is to control activity in and access to the
LN within their area of influence. For instance, this may be to enforce a controversial ban
on cryptocurrencies.

The adversary expects that all inter-peer communication is end-to-end encrypted as per
the Lightning specifications [1]. The adversary is only interested in LN nodes using a clearnet
address because of the fixed-size cells transmitted by the Tor network. Furthermore, we
assume that all nodes are operating on the default port: Transmission Control Protocol (TCP)
port 9735 [1]. In case a node is using a non-default port, the adversary may use publicly-
available data to trivially identify the port in use. Similarly, the adversary can refer to
such data to learn which client implementation a node is running or infer the client [24].
Knowledge of the client implementation in use is, however, strictly not necessary.

We focus on an adversary that fully controls at least one AS network. The network-level
adversary can observe and inspect all communication sent over their network; it is however
encrypted by the application layer. As the adversary wants to minimise the risk of detection,
blocking all traffic on port 9735 would be self-defeating. Instead, and in order to maintain
a level of operation and plausible deniability, the adversary is capable of executing refined
filtering techniques such as selective packet dropping.

2.4 Ethical Considerations
We would like to emphasise that the primary goal of this work is to contribute to further
developing and improving the network for all Lightning users. Uncovering, presenting, and
fixing potential issues in the network is a core part of that process. We do not see this work
as an instruction manual for adversaries and strongly disapprove of any misappropriation
of our work. It is for this reason that we have decided to not make our proof-of-concept
implementation of the attack available to the public. We believe that this paper contains
enough information and details for the reader to reproduce with their own implementation.
We made the code available during the peer review process and will consider doing the same
to researchers upon request.

As far as the practical evaluation of the presented attack is concerned, we followed the
guidelines of the Menlo report [5] and general security research best practices. In particular,
with the exception of obtaining a network snapshot from our own node, we did not interact
with the public mainnet in any way. We deployed a modified version of our proof-of-concept
implementation to the testnet in order to validate the feasibility of the attack’s preliminary
phase. However, at no point did we actually mount the attack in the testnet. All adverse
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Table 1 Comparison of expected message sizes (in bytes) as specified in [1] and actual captured
message sizes. The sizes refer to messages containing exactly one HTLC. The node running LND
sent all messages in two packets – an 18B payload followed by the remainder.

Message size (bytes)

Message Specifications LND v0.17.2-beta CLN v23.11.2

update_add_htlc 1450 18 + 1468 1486
commitment_signed 162 18 + 116 134
revoke_and_ack 97 18 + 115 133
update_fulfill_htlc 72 18 + 90 108

experiments were conducted in our private network comprising only nodes we set up for the
precise purpose. In order to evaluate the potential impact of our work on the main network,
we followed a simulation-based approach using the obtained snapshot. The simulation mocks
payment routing in the network by reconstructing the topology locally.

3 Censorship Attack

In the following, we present a novel censorship attack on a set of nodes in the LN. The attack
leverages the fixed message sizes defined in the Lightning specifications [1] as well as its
overall protocol design. This allows an adversary to accurately classify encrypted application
traffic based on network-layer data without much effort in real time. Subsequently, we show
how a network-level attacker can censor payments and enhance the attack with knowledge
on a payment source and destination.

3.1 Message Classification
A recent work [43] presented an attack on privacy in the LN based on monitoring network-
layer traffic. The first step of the attack is to map TCP packets to application messages
based on the payload lengths in combination with the sequence of observed packets. The
censorship attack we demonstrate in Section 3.2 makes use of the same shortcoming. To that
end, we take a closer look at identifying LN messages based on network-level observations.
In what follows, we use HTLCs to exemplify the procedure. It, however, applies to other
message types analogously.

Figure 1 illustrates the type and sequence of messages exchanged between two channel
partners during the payment process. By generating and capturing LN packets in a private
network in order to validate the feasibility of matching network packets to application
messages, we established that none of the captured TCP payload lengths corresponds to
the sizes defined in the BOLTs. Table 1 shows the actual message sizes for the two most
popular clients [24, 47] – Lightning Network Daemon (LND) and Core Lightning (CLN). We
observed that nodes running on LND sent each application message in two TCP packets,
the first of which was always 18B. While the sizes of the messages sent by these clients differ
from what is expected, they remains constant and hence allow us to identify the application
messages based on the size, order of arrival and direction. The direction is not actually
strictly necessary but it provides additional insights on the packet origin that we make use
of to refine the adversary’s strategy. Additionally, the adversary should know which client
software is running due to the slight differences in payload size. Inferring the implementation,
however, can be done with reasonable effort by, e.g., analysing the transmitted payloads

AFT 2024
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Figure 3 A state machine implementing the censorship rules for incoming payments. State
transitions are defined by the (sum of the) TCP payload lengths and direction of flow (→ for egress
traffic, ← for ingress traffic). All omitted transitions reset the state machine to its initial state.

(cf. Table 1) or using the public channel graph [24,47]. For example, a packet with a 134B

TCP payload from A to B that is preceded by a 1486B payload in the same direction and
succeeded by 18B and 115B payloads in the reverse direction, is bound to have been a
commitment_signed message. Furthermore, A is likely running CLN whereas B is almost
certainly running LND.

3.2 Payment censorship in the LN
As per Section 2.3, the adversary wants the attack to go largely unnoticed and is indifferent
towards third parties. This is why simply blocking or interfering with all LN traffic is not a
viable strategy. However, given that an adversary is capable of identifying LN application
messages by monitoring the network traffic, they can selectively interfere with the traffic
passing their network.

In the following, we show how an adversary such as an AS can censor all payments
involving nodes in their network while maintaining a degree of plausible deniability by
preserving LN functionality in their network. Consequently, the adversary does not interfere
with any messages pertaining to node management and channel management, e.g., open
and close channel messages. By allowing nodes to operate Lightning channels, neither the
affected nodes nor other observers have credible reason to put blame on the AS when issues
with payments start to surface. For instance, a (suspicious) user inspecting the LN topology
using a network explorer will not recognise that a malicious AS is suppressing its nodes’
participation in the network.

However, the adversary pays close attention to all TCP traffic on port 9735 that is assumed
to be payment-related using the method described in Section 3.1. The adversary must
then interrupt the payment process in order to provoke application failures. The adversary
prompts such failures by dropping select packets following the state machine in Figure 3 for
each pair of source and destination. State 0 is the initial state in which the adversary waits for
an update_add_htlc message which means that a payment is underway. The state machine’s
transitions are defined by the payload lengths of the series of messages exchanged between
two nodes when a payment is being made. We choose to have the adversary drop the first
revoke_and_ack message that is sent from the source to the recipient (cf. Figure 1). This is
identified by arriving at the accepting state, state 5, after a series of messages. Although
the adversary could drop the other payment messages, we opted for the revoke_and_ack
message due its terminal position in the series of exchanged messages. We thus expect that
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the adversary will make “correct” decisions. Note that Figure 3 depicts the rules applied by
an adversary for incoming payments only. Outgoing payments can be censored analogously
by reversing the direction of flow in the transition rules.

As discussed in Section 2.1, the revoke_and_ack message is sent in response to a state
update; it revokes the previous state and acknowledges the new one. The payment process
can therefore not proceed until either the recipient receives the revoke_and_ack message
or the payment’s timelock expires. At this point, a node will no longer attempt to route
a payment via an alternative path until the payment conclusively fails. Lightning clients
thus initiate retransmissions of the unacknowledged revoke_and_ack message for as long as
the payment is valid. This is why the adversary needs state 6 in Figure 3, i.e., to block all
subsequent revoke_and_ack messages from getting to the recipient. Note that the effect is
similar when the first commitment_signed from the sender to recipient is not acknowledged.

3.3 Selective censorship
So far, the adversary is able to monitor network traffic and block all payments routed via
their network by dropping all revoke_and_ack messages. This is not yet quite satisfactory
because the adversary’s goal is to remain largely unnoticed and minimise the collateral
damage. The current strategy, however, defeats this objective. We thus refine the adversary’s
packet dropping criteria by showing how to determine a node’s role in a payment based on
network-level observations. The adversary can then selectively drop packets depending on
the censored node’s position in the path. Besides contributing to the adversary remaining
undetected, the ability to selectively drop LN messages using knowledge of a node’s position
allows them to block payments based on origin and/or destination. For example, a malicious
AS could let all payments pass that neither originate from nor are destined for their network,
or allow all incoming payments but block outgoing payments.

An on-path node in the LN can occupy one of three roles for a given payment: sender,
intermediary or recipient. When forwarding a payment in the network, intermediate nodes
are not aware of other nodes’ or even their own positions in the path. While determining a
node’s role has been subject of previous work [19], we are, to the best of our knowledge, the
first to do so based on live network traffic. The adversary is hence able to use the node’s role
for their decision on whether or not to block a packet. Based on the combination of packet
direction, message type and position in the sequence of transmitted messages, it is possible
to determine a node’s role as follows:
1. sender : a node is the initiator of a payment if it sends an outgoing update_add_htlc mes-

sage “out of the blue”. In other words, if a sufficient amount of time t has passed since the
last incoming revoke_and_ack message, we conclude that the current update_add_htlc
message belongs to a separate payment. Due to the symmetric exchange of messages during
payment routing (cf. Figure 1), an intermediate hop will always receive a revoke_and_ack
message before offering an HTLC to the next hop in the path. If there is no such
revoke_and_ack message, the purpose of the update_add_htlc message must be to
initiate a new payment.

2. intermediary: if that less than t time has passed since receipt of a revoke_and_ack mes-
sage when an update_add_htlc message is sent, i.e., an incoming revoke_and_ack was
observed within time t before the outgoing update_add_htlc, the node is an intermediary.

3. recipient: when a node sends an update_fulfill_htlc message, it is the final destination
of the payment if the previous (incoming) message was a revoke_and_ack message. We
can conclude this because an intermediate hop will always send a new update_add_htlc
message after receiving a revoke_and_ack so as to offer an HTLC to the next hop (cf.
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iptables -I INPUT -p tcp --dport 9735 -j NFQUEUE --queue-num 1
iptables -I OUTPUT -p tcp --dport 9735 -j NFQUEUE --queue-num 1

Figure 4 The iptables rule set to direct all ingress and egress TCP traffic destined for port 9735
to queue 1.

Figure 1). Note that we can only know with certainty that a node is the destination
during the settlement of the HTLC. This means that all HTLC offers need to be delivered
in order to determine if a node is the recipient.

The update_fulfill_htlc message only applies to successful payments but similar logic
can be applied for failed payments when an update_fail_htlc message is sent. Using the
aforementioned rules, the adversary can augment their attack and apply selective censorship.

3.4 Implementation
There are generally several feasible options to implement the attack. However, bearing
the following properties in mind, we chose to implement the attack using the netfilter2

framework.
1. performance: as the adversary only wants to interfere with relevant traffic, an efficient

implementation is crucial. The filter thus needs to be capable of making in-flight decisions
in a very efficient manner;

2. scalability: due to the LN’s network-level centralisation, it is safe to assume that such a
malicious AS observes up to thousands of channels concurrently. Furthermore, increasing
the complexity of the state machine, e.g., to accommodate other message types, should
not come at the cost of performance; and

3. generalisability: an implementation that does not rely on the specifics of an adversary’s
infrastructure.

While a hardware-level firewall, i.e., on the network interface card (NIC), may be attractive
from a performance and scalability standpoint, the functionality generally depends on the
specific NIC. In contrast, the netfilter project has been readily available in the Linux
kernel since version 2.4 and provides, among others, the iptables module.

We implemented Figure 3 as a user space program using the nfq-rs3 library in Rust. In
order for the program to receive packets, we must first define an iptables rule set that is
responsible for directing all TCP packets on port 9735 to a netfilter queue. The relevant
rule set is shown in Figure 4. Note that we implemented the state machine in Figure 3
without regard for the source address as correlating independent TCP streams is out of the
scope of this work. In other words, our program does not maintain state for different source
addresses, and assumes that multiple unrelated payments are not received concurrently. If a
packet is determined to be an incoming revoke_and_ack message, the program returns an
NF_DROP verdict, i.e., the packet is discarded. All other packets are allowed to traverse the
network stack by issuing the NF_ACCEPT verdict.

A notable alternative to the netfilter project is eXpress Data Path (XDP) [2,16] – a
framework that enables packet processing within extended Berkeley Packet Filter (eBPF)
programs. XDP has been available in the Linux kernel as of Linux 4.8 and requires neither
specialised hardware nor kernel bypass. It is an integrated fast path in the kernel stack

2 https://www.netfilter.org
3 https://github.com/nbdd0121/nfq-rs

https://www.netfilter.org
https://github.com/nbdd0121/nfq-rs
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Figure 5 The private network environment used to validate the attack’s practicability. We assume
that each node belongs to a different AS and A’s AS is malicious. The solid path represents the
preferred path between S and D w.r.t. the path selection parameters whereas the dashed path
represents an alternative path.

and works together with the TCP/IP stack. Packet processing happens before meta-data
structures are allocated by the kernel leading to high processing speeds [33]. As the majority of
LN traffic is not dropped by the adversary, we do not expect to gain a significant improvement
in performance from XDP. Nonetheless, and for the sake of comparison, we also implemented
the attack as an eBPF program that makes use of XDP to process the incoming packets
following Figure 3. However, as XDP inspects just ingress traffic, this implementation only
features the “base” attack described in Section 3.2.

4 Analysis

We evaluated the attack using the proof-of-concept implementation on deployed Lightning
nodes. We first describe our evaluation setup then analyse the attack in various scenarios as
well as its impact on the greater network based on conducted simulations.

4.1 Evaluation Setup
Due to the potentially destructive nature of the attack on the public network, we did not
perform any measurements on the mainnet. All experiments were conducted either in the
testnet or in a private network depending on the potential for harm and interference with
other nodes. Both setups are described in the following.

4.1.1 Regtest
We set up a private Bitcoin network in regression test (regtest) mode which allowed us to
deploy the complete attack code without interacting or interfering with other nodes in the
public networks. Furthermore, regtest mode allows users to create a private blockchain
and mine blocks instantaneously as the mining difficulty is set to zero. We configured
four different Lightning nodes in the network as shown in Figure 5 running on different
machines within the same network. S, A, B were all running LND v0.17.2-beta while D

was running CLN v23.11.2. We assume that all four nodes are in different ASs and that
AS 2 is adversarial. The attack code is therefore attached to A’s network interface.

4.1.2 Testnet
In order to validate the attack in a realistic environment, we set up a node, A, running
LND v0.17.2-beta in the public testnet. We strategically opened six balanced channels with
moderate capacities between 300k sat and 500k sat to six nodes nodes, I1, I2, I3, I4, I5, I6,
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Figure 6 Our two nodes, the sender S and the adversary A, in the testnet with public channels
to other nodes Ii in the network. Three dots symbolise the intermediate nodes’ channels with other
unrelated nodes. The attack is deployed on A’s machine.

in the network and configured zero-fee routing policies. The channels were positioned to
connect previously unconnected differently-sized hubs to each other in the hope of receiving
routing requests.4

We deployed a modified version of the netfilter program on A’s machine and attached
it to A’s only network interface. The program was modified such that instead of dropping
a packet when the relevant state is reached, an entry is written to a log file notifying us
that the packet would have been dropped. We also modified A’s LND source code to log
whenever a revoke_and_ack message is received – no other changes were made to the client
software. We reiterate that no harm was caused to other nodes or the network in general.

We also set up a second Lightning node, S, with a channel to one of the nodes A was
connected to as illustrated in Figure 6. We abstain from a direct channel between our two
nodes in order to route payments over the Internet. We then generated random payments
worth 1100 sat from S to the nodes I1, ..., I6 using the sim-ln tool.5 We chose this amount
as its the lowest amount satisfying the minimum payment amount all involved nodes were
willing to forward. Due to the topology, all of the payments coming from S could only be
routed via A. This resulted in a total of 71 payments in the span of 24 hours that were all
delivered successfully.

4.2 Feasibility
In the following, we look at the message classification efficacy of the approach described in
Section 3.1. Hereafter, we discuss the practicability of the attack described in Section 3.2.

4.2.1 Accuracy
In order to evaluate how well message identification works when packets are sent via the
Internet, we used our testnet setup and deployed the code in the public Lightning testnet.

We compared the ground-truth LN message and our program’s output using the generated
logs, and calculated commonly used classification metrics for the revoke_and_ack message
type: precision and recall. We recorded a precision of 1.0 and recall of 1.0. This means

4 At the time of writing, approximately 2 months since joining the testnet, we are yet to receive any
routing requests.

5 https://github.com/bitcoin-dev-project/sim-ln

https://github.com/bitcoin-dev-project/sim-ln
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that the program returns neither false positives nor false negatives. These results are not
unexpected and emphasise the exact problem brought by the highly deterministic nature of
communication in the LN. We discuss the accuracy for higher payment rates in Section 4.3.

4.2.2 Practicability
Given the confidence that we can correctly identify encrypted LN messages, we sought to
verify that the adversary can actually censor nodes in its network. We thus performed all of
the following tests in our private regtest network.

In the first experiment, S tried to send 10k sat to D. As a result of the fees and timelock
advertised by A and B, the most attractive path for payments from S to D was via A. After
receiving the HTLC offer from S, A offered an HTLC to D by sending an update_add_htlc
message immediately. The attack code thus correctly identified that the payment is not
destined for A and does not drop any packets.

In the second experiment, S attempted to send 10k sat to A via their shared channel.
We run the “base” attack on A’s interface as we know it is the recipient and can only
otherwise determine the recipient as the HTLC is being settled (cf. Section 3.3). We evaluate
identifying a node’s role in a payment path in an ensuing analysis. Once the program got to
state 5 of Figure 3, the revoke_and_ack message was dropped. S retransmitted the packet
as it is not acknowledged by A before closing the TCP connection. This left the channel in a
temporarily inactive state and the payment in a pending state. After an exponential backoff
period, S reestablished the connection and sent the revoke_and_ack message again. Note
that S can still open a P2P connection as the code only drops revoke_and_ack messages.
All subsequent revoke_and_ack received on A’s interface were dropped which triggers the
connection close, reestablishment and retransmission loop. We advanced the blockchain
manually by mining blocks until the time lock elapsed. At that point, the payment attempt
failed permanently, and S forcefully closed the channel as well as the TCP connection. We
reversed the direction of payment and observed similar behaviour on the CLN node with a
few minor differences mainly with respect to retransmissions.

In summary, we confirmed that it is possible to execute the attack and block payments
based on network-level observations. Furthermore, we verified that the adversary is able to
selectively censor payments and thus leave third-party payments intact.

4.3 Performance
Subsequent to the feasibility analysis, we studied the implementations’ performance in regard
to the induced delays, throughput and accuracy at different payment rates. The sole fact
that the attack can be executed is not sufficient if such is not possible efficiently.

4.3.1 Latency
In the first of the three performance-related measurements, we examined the delay added
to each TCP packet received on or directed to port 9735 by both the netfilter and XDP
implementations. Figure 7 shows the time required to process TCP packets in microseconds
by both implementations, i.e., the duration from the program first accessing a packet to a
decision being made on the packet. The data was collected during the 24-hour time frame in
which the measurements in Section 4.2.1 were performed and is depicted as a violin plot.

The results indicate that both implementations are quite efficient and issue a verdict on
packets within the same median time of ≈ 11µs per packet. The mean processing time is 13µs
per packet and 14µs per packet for the netfilter and XDP programs respectively. That
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Figure 7 The packet processing times in microseconds for the netfilter and XDP programs
based on packets received in the testnet over a period of 24h. The difference in the observed number
of packets is due to the fact that XDP only receives ingress traffic.

equates to a mean throughput of ≈ 76, 923pps and ≈ 71, 4428pps respectively regardless of
packet size. It may be surprising that the XDP program does not outperform the netfilter
implementation despite XDP’s superiority to iptables in respect to speed [7,8]. However, these
measurements were performed on the user-space code attached to either of the subsystems
and do not reflect the underlying technologies’ throughput capabilities. In summary, we
conclude that the delays induced by the additional filtering layer are negligible and do not
hamper the feasibility of the attack. Such delays in the range of tens of microseconds are
likely to go unnoticed by LN users or even routing nodes.

4.3.2 Throughput
We studied the maximum rate at which packets may be received by the netfilter program
before they start being dropped due to congestion in the queue. The maximum queue length
defaults to 1024 packets; all packets will be dropped as long as the target queue is full.

As per the previous measurements, the netfilter program achieves a mean throughput
of ≈ 76, 923pps. Hence, in order to have 1024 queued packets, the program must receive
packets at a rate roughly 1000 times higher than 76, 923, i.e., 76, 923 · 103pps. Based on the
traffic we observed in the testnet, we strongly believe that it is highly unlikely for a single
Lightning node to generate and/or receive packets at speeds remotely close to that.

The largest AS (with respect to the number of nodes) in the mainnet is AS 14618
(Amazon.com) with 298 nodes as of 12 January 2024. Let us assume that, hypothetically,
AS 14618 wants to execute the attack using a single instance of the program, i.e., all LN
packets to/from the 298 nodes are processed sequentially by the same instance of the program.
Further, we assume that the number of packets at each node is even.6 This means that each
node must pass approximately 3 · 105pps to the program in order to achieve a combined rate
of 76, 923 · 103pps. Similarly, we do not consider such rates to be feasible in the LN. While
we have made simplifying assumptions, these results indicate that the censorship attack can
be executed in a large-scale manner using netfilter.

6 This is a reasonable assumption to make as the amount of traffic at central nodes and less central nodes
probably balance each other out.
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Figure 8 The success rate of identifying the monitored node’s role in a payment, i.e., whether
the node is the recipient or an intermediate routing hop.

4.3.3 Position identification

The concluding performance-related measurements studied the outcome of identifying a
node’s position in a payment path for different transaction rates. While there are no studies
on the network’s throughput, the channel-wise transaction rate is estimated to be rather
low, e.g., 0.000019 payments per second based on reports by a central routing node [43]. To
that end, we sent payments at different rates that we believe to be realistically achievable in
the LN. The payments were issued in the private network due to the high volume.

For each of the different transaction rates under study, S issued 50 payments to A and
50 payments to D. We recorded A’s true position in each payment’s path as well as the
netfilter program’s verdict on the its position. We omit the classification of the different
messages as it remains possible even at higher transaction rates without significant effort.

The proportion of routing positions correctly identified using the methodology described
in Section 3.3 is depicted in Figure 8 for a varying number of payments per second between
nodes S and A. At a rate of up to 1 payment per second the program correctly identified A’s
position in a payment path in all cases. However, as the rate increases beyond 1 payment
per second, the accuracy gradually declines and ultimately falls to zero at 8 payments per
second. This is because of the shorter intervals between messages which make it harder to
distinguish whether messages are related or not. It is worth noting that correctly uncovering
a node’s position when it is the recipient is slightly more robust to higher payment rates. A
transaction rate of 1 payment per second is indeed very low, however, we remark that it is
still significantly higher than current estimates of LN’s throughput.

These results show that, as long as the network’s throughput does not increase drastically,
the attack can be executed accurately.

4.4 Global impact

Naturally, we did not perform any measurements on the public network. Instead, and similar
to multiple previous works [6,26,43], we simulated the attack using a snapshot of the channel
graph obtained from a fully-synced LND node on 12 January 2024. We extended the LN
simulator from [26] with some networking logic in order to map nodes to their corresponding
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Figure 9 The median success rate when each of the top five ASs forbid either all inter-AS
payments or all intra-AS payments.

AS7, as well as the ability to simulate node failures. The code is publicly available on
GitHub.8 As actual payment volumes in LN are unknown, we simulated various payment
volumes following the categorisation in [12] ranging from 100 sat to 10m sat. We simulated a
set of 1, 000 payments between random sender-receiver pairs for each of the selected amounts.
In order to measure the impact of censorship by a malicious AS on the LN, we simulated
sending the payments in two different adversarial scenarios: when an AS allows either only
local payments, i.e., intra-AS payments, or only payments involving at least one other AS, i.e.,
inter-AS payments. As shown in Section 4.2.1, a network-level adversary is able to determine
a node’s role in payment path, and we can thus simulate selective censorship. The ASs were
ranked based on the number of channels and the top five were selected. We repeated each
simulation scenario ten times with different seeds for the random number generator, i.e., for
each set of 1, 000 sender-receiver pairs and for each AS, the channel graph was reinitialised
before simulating payment delivery for each of the selected amounts.

The median success rate, i.e., the ratio of successful payments and the total number
of payments, for all conducted simulations is shown in Figure 9. Besides observing what
is already known in regard to the inverse relation between the success rate and payment
amount [6, 26], the results clearly suggest that most payments in the LN are made between
different ASs. Bearing the low proportion of intra-AS channels in mind (cf. Figure 2), it
is not surprising that a significant amount of payments are affected by inter-AS censorship.
The impact of the attack varies depending on the choice of malicious AS, e.g., AS 16509
causes a decrease of up to 45% while AS 24940 results in a drop of “only” up to 18% in
the success rate. In contrast, when an AS only blocks payments within their network, the
difference in the success rates is minimal suggesting that the impact on the greater network
is negligible.

These results indicate that an adversary can block payments within their area of ju-
risdiction without causing significant harm to the wider network. On the other hand, the
effects of a malicious adversary blocking payments being routed via their network would

7 We used the GeoLite2 data from MaxMind, available at https://www.maxmind.com.
8 https://github.com/tud-dud/lightning-censorship-simulator

https://www.maxmind.com
https://github.com/tud-dud/lightning-censorship-simulator
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Figure 10 The ten most frequent Lightning payload lengths transmitted to/from an LND node
in the testnet over 24 hours. The 18B packets LND nodes send are not included. The vertical lines
illustrate the resulting number of packets if the payloads are padded and chunked to 150B.

be very adverse for the network. The results of the other studied metrics such as fees and
path lengths generally show little to no variation to the baseline simulation regardless of the
applied dropping strategy. The charts have thus been omitted due to space constraints.

5 Countermeasures

In what follows, we discuss different measures the LN can implement in order to impede
and/or mitigate network-level monitoring attacks. The authors of [43] propose a shift from a
default port in LN to a pairwise-negotiated port in order to thwart port-based traffic filtering.
Deviating from port 9735 is a stopgap which does not provide a suitable mitigation, but
adds a layer of complexity to the attack that must be overcome. We argue that this alone
is not adequate as, assuming the adversary is able to determine the new port, the attack
can still be executed without any change. The new port can, for instance, be discovered
using public crawl data, or by simply operating an LN node as each node stores the current
topology locally. They also propose to “avoid adversarial ASs” by using third-party network
services, e.g., Tor and VPNs, and implementing AS-aware routing. We argue that a VPN
does not offer sufficient protection as it simply transfers the risk from one AS to another.

Briefly recapped, the core of the attack presented in this work exploits two side channels –
payload size and timing information – to allow a network-level adversary to identify the
different LN messages despite encryption. Arx et al. suggest hiding the lengths of the
application data but do not provide specifics on a plausible padding strategy [43]. The
reasoning behind employing a length-hiding scheme is that the network-level classification
attacks rely on the TCP payload lengths to identify messages. It is, however, not clear which
strategy is best suited for the LN.

5.1 Weighing the options
We recorded the lengths of all the TCP packets on port 9735 during the 24-hour time
period in which the measurements in Section 4 were performed and depict the observations
in Figure 10. As evident in Figure 10, the payload sizes of LN messages differ wildly.
Consequently, finding a common length is not trivial. Simply padding all payloads to the
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maximal length would result in a significant waste of bandwidth. Instead, we could chunk the
data following a block-length padding strategy [14,23], i.e., padding to the closest multiple
of x bytes. As a result, a network-level adversary would only observe constant-length LN
payloads. Nevertheless, as LN messages have a specified length, the adversary can still make
use of the other side channel – the timing information – to classify the encrypted TCP
payloads. All the attacker needs to do is map the messages sizes in Table 1 to multiples of x.
Observing the direction of flow, number of packets and sequence still gives clear indications
of the underlying messages in transit. For the sake of argumentation, let us assume that
x is somewhat arbitrarily set to 150B, i.e., all LN messages are sent in 150B chunks. As
visualised in Figure 10, all but the first message exchanged during the HTLC commitment
phase would be identical on the network layer (cf. Table 1). Identifying the application
messages is then no longer possible by simply inspecting the observed packet sizes. However,
as we know both the type and order of messages involved in the process, we know how many
packets correspond to each of the messages. An adversary must therefore additionally keep a
count of packets which adds a minimal layer of complexity to the attack. The perhaps most
obvious telltale sign is the update_add_htlc message (1450B) that would be sent in ten
packets followed by two packets for the commitment_signed (162B) in the same direction.
Regardless of this weakness, other message types not discussed in this work would also need
to be taken into consideration in order to define a meaningful chunk size.

If we turn our attention to the timing information, we realise that it is even more
delicate. For instance, we cannot simply reorder messages while conforming to the protocol
specifications. Techniques such as adaptive padding [36] which inject dummy packets
into the packet flow thus become relevant. This destroys timing fingerprints without any
additional latency. However, adaptive padding on its own is not an adequate countermeasure
for the LN as the other side channel – message size – remains unaddressed. For similar
reasons, transmitting packets at a constant rate [11] is not sufficient on its own either.
Currently, Tor implements a variation of adaptive padding as a defence against website
fingerprinting (WF) attacks derived from the Website Traffic Fingerprinting Protection with
Adaptive Defence (WTF-PAD) [18] mechanism. In summary, WTF-PAD sends dummy data
such that an attacker cannot tell real data apart from fake data based on expected packet
inter-arrival times. Furthermore, since all traffic in Tor is padded to 514B cells, WTF-PAD
impedes the effectiveness of WF attacks in Tor by obfuscating timing patterns.

5.2 Towards a solution

We examined whether the variant of padding that is implemented in Tor would provide
sufficient protection in the LN against the attack at hand. We did so by configuring two
LND nodes to connect to each other over Tor and opening a channel between them. The
purpose of doing so is to utilise Tor’s implementation of WTF-PAD and not for Tor’s privacy
properties. We issued payments in both directions, closed the channel and finally the TCP
connection. Not only did all packets have the same packet length (as is expected when using
Tor), but the flow of transmitted packets included packets that did not originate from the
application. Consequently, we were not able to detect which packets belonged to which
Lightning message by manually inspecting the capture. The rule-based state machine is
therefore no longer capable of distinguishing application messages based on the network
traces alone. In fact, we conjecture that this approach offers a high degree of protection for
the LN against more sophisticated fingerprinting techniques by network-level adversaries as
basically all size and timing features are destroyed.
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Although we have established that the mechanisms implemented in Tor offer sufficient
protection, the question of how much this protection costs remains unanswered. In order to
get an approximation of the cost of using Tor, we captured all packets while executing the
above operations in a thirty-minute time frame. In addition to the aforementioned deliberate
activity, the time frame also includes periods in which only control messages were sent by
the nodes, e.g., when the blockchain advances or health checks. Specifically, we concurrently
captured the packets sent locally between the LND node and the Tor SOCKS5 proxy, as well
as the packets sent between the Tor process and Tor network. The former provides data on
the packets that actually come from the application while the latter provides data on what a
network-level attacker would observe. The captures show a total of 14, 824 bytes transmitted
in 379 TCP packets to/from LND and 929, 596 bytes in 3191 TCP packets to/from the
Tor network. This equates to an increase of ≈ 6170% in bandwidth when using Tor. The
captures also show a peak rate of 0.116 Mbit/s when using Tor, which clearly should not
cause any problems for LN nodes while maintaining their current hardware configurations.
However, we note that these are overestimations of the actual overhead to expect in the LN
as they include traffic in Tor that is not actually relevant to mitigating network-level message
identification in the LN, e.g., circuit management. We therefore do not consider the universal
usage of Tor in the LN to be the solution; the overhead of a standalone implementation of
WTF-PAD in the LN is expected to be much lower. Besides, Tor nodes are susceptible to
other potential threats [20,27,39] and using Tor implies higher latency in order to provide
features that may not be required by all nodes in the LN.

An effective mitigation strategy for the LN must omit both the timing and size infor-
mation. Obfuscating either properties is further complicated by the fact that crucial LN
operations, e.g., channel opening or HTLC commitment, must follow an order defined in the
protocol. This means that message flows between two Lightning nodes often follow deter-
ministic patterns. In view of the preceding discussion, we recommend that the LN adopts
a form of adaptive padding similar to Tor as a defence against network-layer monitoring
attacks. That is, not only must we conceal all packet sizes on the network layer, we must also
obfuscate the timing patterns in the P2P communication. Our assessments of the attack’s
feasibility over Tor demonstrate that fixed-length packets in conjunction with cover traffic
effectively hamper the attack. While this solution will necessarily introduce a degree of
overhead, the LN may be facing a technical version of pick your poison.

6 Related Work

6.1 Censorship

Internet censorship has been the subject of multiple works, e.g., [4, 45,46], due to some of
the extensive censorship currently imposed in various parts of the world. It is thus a highly
relevant topic. P2P networks are generally considered to be more resistant to censorship
than classic server-client networks as a result of their fundamental architectural differences.
Nonetheless, there have been reports on the feasibility of imposing censorship in blockchain-
based P2P networks such as Bitcoin [22] and Ethereum [44] by, for instance, exploiting
application-level protocol designs. A prominent example of a state-imposed censorship in the
realm of digital payment networks is the complete trading and mining ban in China. In a
recent work by Sridhar et al., the authors present a censorship attack in the InterPlanetary
File System (IPFS) [38] – a popular P2P content delivery network.
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6.2 Network-level Attacks in the Lightning network
To the best of our knowledge, the LN’s network layer has not received significant attention
so far. In one of the few works, Casas et al. [9] analysed the P2P network and found that a
significant number of nodes connects to the LN through Tor. An analysis conducted in [47]
established a degree of geographic clustering among the nodes. The authors of [43] study
attacks on the LN’s network layer and show that it is possible to decipher encrypted LN
messages via traffic analysis. Besides pursuing a different goal, our work not only confirms
their findings but also refines the information an adversary can gain from traffic analysis.
This additional information is what enables an adversary to impose selective censorship
based on the payment’s source and/or destination. Furthermore, our presented attack is
based on real-time traffic monitoring and execution in contrast to [43]. There has also been
research on AS-level side channel attacks on privacy and routing in the broad spectrum of
cryptocurrency networks [3, 32,37,42] and anonymisation networks such as Tor [27,39].

6.3 Lightning network Topology and Simulations
Numerous works have studied the structural properties of the Lightning channel graph and
demonstrated that it is highly centralised [6, 34, 41] at the application level, e.g., a small
number of nodes function as essential routing nodes due to their high centrality in the graph.
As a result, it is susceptible to a variety of attacks on privacy and security [19,31,40]. The
analysis of the channel graph’s network level in [43] revealed that it is equally centralised
and vulnerable to attacks on payment privacy. Our topological analysis of the channel graph
complements existing ones and provides new insights on its network-level structure, e.g.,
most channels in the network are between distinct pairs of ASs.

A broad range of research on LN takes a simulation-based approach, e.g., [6, 19,31], to
analyse their studies’ significance for the public mainnet. Simulations are often necessary in
order to not interact with third-party nodes in the public network. Due to the availability
of multiple open-source LN simulators, we did not develop a new simulator but instead
extended an existing one [26] with the relevant functionality for this work.

7 Conclusion and Future Work

We studied potential censorship attacks in the Lightning network founded on monitoring
network-level traffic. Furthermore, we demonstrated that it is feasible to determine a node’s
position in a payment path based on the observed traffic. In doing so, our work highlights the
threat powerful adversaries such as autonomous systems pose to the Lightning network which
is further heightened by the network-level centralisation. Based on our analysis of potential
countermeasures, we conclude that an effective mitigation strategy in the LN inevitably
implies some bandwidth overhead.

The attack presented in this work exploits two side channels at the network layer –
payload size and timing patterns. We think that studying effective and efficient mitigation
strategies is an interesting and relevant research question. Complementary to mitigation
strategies, developing mechanisms to detect censorship is a similarly relevant question for
future work. Additionally, and like in multiple other previous works, estimates used in this
work with respect to the network’s throughput relied on the occasional reports provided by
node operators. Acknowledging that measuring throughput in a public P2P network is not
straightforward, we believe that future research on Lightning would benefit from well-founded
assessments of the network’s throughput.
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Abstract
In this work, we revisit the severely limited throughput problem of cryptocurrencies and propose a
novel rebalancing approach for Payment Channel Networks (PCNs). PCNs are a popular solution for
increasing the blockchain throughput, however, their benefit depends on the overall users’ liquidity.
Rebalancing mechanisms are the state-of-the-art approach to maintaining high liquidity in PCNs.
However, existing opt-in rebalancing mechanisms exclude users that may assist in rebalancing for
small service fees, leading to suboptimal solutions and under-utilization of the PCNs’ bounded
liquidity.

We introduce the first rebalancing approach for PCNs that includes all users, following a “all
for one and one for all” design philosophy that yields optimal throughput. The proposed approach
introduces a double-auction rebalancing problem, which we term Musketeer, where users can
participate as buyers (paying fees to rebalance) or sellers (charging fees to route transactions). The
desired properties tailored to the unique characteristics of PCNs are formally defined, including the
novel game-theoretic property of cyclic budget balance that is a stronger variation of strong budget
balance.

Basic results derived from auction theory, including an impossibility and multiple mechanisms
that either achieve all desiderata under a relaxed model or sacrifice one of the properties, are
presented. We also propose a novel mechanism that leverages time delays as an additional cost
to users. This mechanism is provably truthful, cyclic budget balanced, individually rational and
economic efficient but only with respect to liquidity.
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1 Introduction

1.1 Motivation
Bitcoin and other cryptocurrencies are significantly transforming the financial landscape [35,
50]. However, a well-known issue of the celebrated Nakamoto consensus introduced with
Bitcoin, is that it inherently prohibits high transaction throughput which in turn hinders the
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widespread adoption of blockchain technologies [18]. For example, Bitcoin can process at
most 7 transactions per second [18], while Visa processes tens of thousands of transactions
per second. Furthermore, blockchains are evidently environments for-profit, therefore user-
incentive design is critical. Although several works have studied blockchain-related topics
under the lens of game theory, e.g., [13, 21, 16, 27, 14], there is still much to be explored,
particularly concerning scaling protocols. In this work, we model and investigate incentive-
compatible mechanisms that can enhance the limited transaction throughput of blockchains
like Bitcoin.

Specifically, we focus on one of the most prominent and well-studied scalability solutions
for blockchains, called payment channels [38]. With payment channels, users can transact
off-chain at far lower costs and faster speeds. The core idea is that any two users can lock
their coins in a “joint account” on-chain, namely the payment channel. Thereby, the channel
parties may perform arbitrarily many off-chain transactions with each other by signing
messages with the new distribution of coins in their joint account. To close the payment
channel, the parties can publish on-chain the last update on the distribution of their coins.
Naturally, each channel is limited by the coins locked by each party (liquidity), dictating the
maximum amount that can be sent between them. For example, in a channel with Alice and
Bob currently holding 3 and 5 coins respectively, Alice can send at most 3 coins to Bob, and
Bob can send at most 5 coins to Alice. In short, the coins can be moved on the channel from
Alice to Bob or vice versa, much like moving balls from one side of an abacus to the other.

Multiple payment channels operating on the same underlying blockchain, comprise a
payment channel network (PCN). PCNs allow users, who have at least one payment channel
open, to route transactions through the network to other users with whom they do not
share a direct payment channel. To successfully route a transaction, a path of channels with
sufficient liquidity for all senders must exist. For example, if Alice wants to send 3 coins to
Carol through Bob, Alice must have 3 coins available in her channel with Bob, and Bob
must have 3 coins available in his channel with Carol. The intermediaries (e.g., Bob) that
offer to use their channel liquidity to route another user’s transaction typically ask for a
routing service fee. If a channel in the selected path is depleted (i.e., has low liquidity) in the
desired direction, all the transfers in the path will be reverted and the transaction will fail.
The liquidity of individual payment channels is, therefore, a crucial factor in the effectiveness
of PCNs as a scaling solution. It determines the ability to route transactions and impacts
the overall efficacy of PCNs in enhancing the transaction throughput.

To maintain high liquidity in PCNs, parties have two options: either lock a significant
amount of coins initially or use an on-chain transaction to top up their channels. However,
both options have their drawbacks. Locking a substantial amount of coins incurs an op-
portunity cost as these coins cannot be used for other on-chain operations. On the other
hand, using on-chain transactions to top up channels hinders the scaling capabilities of the
underlying blockchain.

Rebalancing mechanisms are an attractive alternative solution to improve liquidity within
PCNs [26, 10, 1]. These mechanisms aim to identify cycles of depleted edges (channels) and
route transactions across them in a way that ensures each node in the network has an equal
amount of coins at the end of the process. By leveraging cycles within the PCN, parties with
depleted channels can rebalance their channels by utilizing two of their channels – one as a
source to send coins and another as a destination to receive coins.

However, the deployed local rebalancing algorithms [1] may be practically insufficient for
two main reasons. Firstly, they only involve parties interested in rebalancing, thereby exclud-
ing channels that may route transactions for low or no routing fees; after all, intermediaries
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are indifferent to whether the routed payment concerns a payment (path) or rebalancing
(cycle). Secondly, local searching algorithms may miss optimization opportunities leading to
poor outcomes.

To address the latter limitation, Revive [26] proposed globally coordinated channel
rebalancing, therefore, achieving optimal outcomes. Hide & Seek [10] recently improved on
Revive by enabling global rebalancing in a decentralized and privacy-preserving manner.
However, in both algorithms, the rebalancing subgraph only includes the parties that wish
to rebalance while the vast majority of channels of the PCN that may route transactions for
low or no fees are neglected. Thus, even with globally coordinated rebalancing, the limited
rebalancing subgraph still impacts the optimality of the overall solution, and subsequently the
PCN’s scaling capability, i.e., how many transactions can succeed off-chain given a bounded
overall liquidity.

1.2 Our Contribution
We propose a novel approach to rebalancing that involves all PCN users in order to maximize
the liquidity utilization and subsequently the transaction throughput. Our approach allows
all users to submit their liquidity and bid for every one of their channels. The liquidity in
this setting captures the number of coins they are willing to use for routing/rebalancing
while the bid encapsulates how much they are willing to pay per coin for rebalancing the
specific channel. So positive bids express the desire of buyers to rebalance, whereas negative
(and zero) bids the desire of sellers to sell their routing service. Now, modeling this problem
reveals a major challenge: how can we design an incentive-compatible rebalancing mechanism
for both buyers and sellers?

To the best of our knowledge, we are the first to examine user incentives in the context
of rebalancing mechanisms for PCNs. Our goal is twofold: First, to formally model the
problem, capturing the unique characteristics present in PCNs; second, to discover satisfactory
solutions, exploring different trade-offs. To achieve our objectives, we extend Hide & Seek [10]
to accommodate both buyers and sellers of rebalancing liquidity. This approach leads to a
double-auction problem with several challenges stemming either from traditional auction
theory or from the individual needs of PCNs. In modeling our problem, we pinpoint channel
depletion as a distinct feature, setting it apart from other network mechanism designs like
routing games [22]. Channel depletion signifies that transactions can permanently lower
an edge’s capacity (here, liquidity) until counteracted by an opposite flow. Unlike railway
networks where trains need tracks only temporarily, flows in our model can compensate for
each other. Thus, existing results do not directly apply.

To determine the desiderata of our mechanism, we revisit conventional requirements from
auction theory: (1) economic efficiency, i.e., maximizing the social welfare which captures
that channels are prioritized for rebalancing based on their bids, (2) truthfulness, meaning
users submit their true value, and (3) individual rationality, i.e., non-negative utility for
rebalancing participants. However, our problem encounters an idiosyncrasy rooted in the
payment channel primitive itself, affecting the budget-balanceness of the mechanism, i.e.,
the mechanism does not incur a deficit (nor a surplus). Specifically, coins cannot be burned
in a payment channel because intuitively channel updates must always benefit one party; if
there exists a coin distribution where both parties in the channel can benefit from changing,
then there is no way to enforce it. For instance, we cannot enforce a distribution of 3 coins
to Alice and Bob each and 2 coins burned, because the parties will cooperatively update
their channel to hold 4 coins each. This implies that the mechanism cannot have either a
surplus or a deficit, rendering (weakly) budget-balanced mechanisms infeasible. What’s more,
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rebalancing itself occurs via individual cycles in the PCN. As a result, our setting demands a
stronger notion of budget balance, which we term (4) cyclic budget balance, i.e., each cycle
must be strongly budget balanced independently.

Unfortunately, the above four desired properties cannot be simultaneously achieved by
any mechanism. We prove this by applying the classic Myerson-Satterthwaite impossibility
result for double auctions [33]. We further emphasize the significance of the cyclic budget
balance property in shaping potential solutions: The output of a rebalancing mechanism
consists of a set of rebalancing circulations, which are global solutions where user preferences
in one segment of the graph can impact the rebalancing cycles in distant segments of the
graph. While in VCG-type mechanisms users are compensated for the global effects of their
channels, the constraint of cyclic budget balance prevents this approach.

To provide satisfactory solutions, we apply standard techniques such as the renowned
VCG mechanism and first-price auctions to the problem at hand. In particular, we showcase
a mechanism that satisfies all the desired properties but is only applicable when all users
are aware of the potential maximum and minimum fees they might pay or earn for their
participation. Subsequently, we present a VCG-type mechanism that also satisfies all the
desiderata exclusively for buyers, under the assumption that sellers are not treated as strategic
agents. We then provide a mechanism that also considers sellers but, similarly to first-price
auctions, sacrifices truthfulness. Finally, we propose a novel mechanism that introduces
time delays as a natural characteristic of this problem, with the aim of incentivizing users to
actively and truthfully participate in the rebalancing process while optimizing the outcome.
The inclusion of time delays allows us to navigate around the impossibility and maintain our
objective of maximizing rebalanced liquidity, in exchange for losing economic efficiency in
terms of time delays and liquidity combined.

2 Preliminaries and Model

In this section, we first provide the necessary background on the rebalancing of payment
channel networks, which we subsequently use to introduce our setting and problem definition,
termed Musketeer. We further present an overview of Musketeer. For the rest of the
paper, we use the terms users and players interchangeably.

2.1 Rebalancing PCNs
Rebalancing mechanisms are currently the only approach that allows users to restore their
channel balances off-chain. In a nutshell, rebalancing mechanisms search the payment network
for depleted channels that users wish to top-up off-chain until they identify a cycle of channels
with enough liquidity. For instance, suppose Alice has one depleted channel with Bob, which
she wants to top-up for 3 coins, and another channel with Carol where she has plenty of
coins. Now, if Bob and Carol share a channel with at least 3 coins available for Carol, Alice
can send 3 coins to Carol in their channel, Carol 3 coins to Bob, and Bob 3 coins to Alice.
This way all users end up with the same total amount of coins. We stress that coins locked
in a channel cannot be transferred to any other channel, much like the balls in different rows
of an abacus.

Rebalancing mechanisms fall into two categories: local and global. Local rebalancing,
currently deployed on the Lightning Network [38], has each party searching individually
the network for other channels that want rebalancing; if a cycle is identified then the party
can rebalance its channel. This approach may not find the optimal solution for rebalancing
and it is very inefficient. Global rebalancing, introduced with Revive [26] and subsequently
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optimized with Hide & Seek [10], finds the globally optimal solution for the users that directly
and personally benefit from rebalancing their channels by leveraging coordination. Our
solution extends this approach to further include users who are indifferent to rebalancing
or may be willing to participate for a very small service routing fee. Considering routing
fees are orders of magnitude smaller than the typical fee paid to the blockchain to top-up
the channel balance, it is cost-effective for users to pay intermediaries to facilitate their
rebalancing, similarly to transaction routing in PCNs – instead of paths, they route in cycles.
We detail below the Hide & Seek mechanism that underpins our solutions.

Hide & Seek [10]

The protocol proceeds in two phases: the exploration phase which identifies rebalancing
cycles, and the execution phase which ensures their atomic execution in a secure and incentive-
compatible fashion. The exploration phase begins with the random selection of k delegates
among the users, e.g., using cryptographic sortition [23]. Then, the users submit their
rebalancing requests, i.e., how many coins they wish to rebalance, to the delegates using
secret sharing. Thereafter, the delegates use multi-party computation to calculate the optimal
rebalancing flow on the network. To preserve users’ privacy, each user receives only their
specific flow. The optimization problem is modeled as a linear program that maximizes
the rebalancing flow. The execution phase initiates by decomposing this flow into simple
sign-consistent cycles, meaning that each channel only shares cycles with flow in that same
direction. As a result, the channel owners are incentivized to execute all channels, and
not select a subset thereof. The execution of the cycles occurs atomically, i.e., either all
transactions succeed or all fail, using HTLC-based solutions [38, 47, 49]. Figure 1 illustrates
the Hide & Seek protocol flow.

Figure 1 The protocol flow of Hide & Seek.

2.2 Musketeer Overview

In Musketeer, each PCN channel may participate in the rebalancing process either as a
depleted or as an indifferent edge. Depleted edges are channels owned by players that wish
to rebalance their channels (i.e., act as buyers), while indifferent edges are owned by players
that sell their routing services (i.e., act as sellers). We model this problem as a double
auction: each player submits their (non-negative or non-positive) bid for each channel they
are part of, which indicates the maximum or minimum amount they are willing to pay or
receive per unit coin for rebalancing or routing through that channel, respectively.

Additionally, for each channel, the users submit their liquidity, i.e., the number of coins
available to the rebalancing mechanism. These coins may be available because buyers want to
rebalance their channels or because sellers may want to earn fees for their service. With this
knowledge, we extract the rebalancing subgraph, which is a directed graph with capacities
capturing each channel’s liquidity.
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The resulting combinatorial problem can be modeled as a max-flow problem, where
the goal is to maximize the total number of coins (flow) weighted by the buyer’s bids. In
other words, we calculate the flow that maximizes social welfare, respecting the channel
capacities. We then decompose the flow in simple independent cycles that may be executed
atomically [10]. Our main problem is pricing each cycle separately, awarding fees to sellers
paid by the buyers.

Musketeer’s participants are required to pre-lock the coins intended for rebalancing
prior to the mechanism revealing the individual cycles. This design decision is primarily
to prevent buyers from choosing whether to proceed with rebalancing after the output of
the mechanism is known, as this could potentially incentivize dishonest strategies. From a
different perspective, if buyers have the option to abort the mechanism in hindsight, the
effectiveness of the mechanism may be severely hindered as a cycle can only be executed
only if all players choose to participate and lock their coins. Figure 2 illustrates Musketeer
integrated into the Hide & Seek protocol flow.

Figure 2 The backbone of Musketeer, integrated into the Hide & Seek protocol flow.

2.3 Model and Notation

2.3.1 Payment Channel Network (PCN)

A payment channel network can be modeled as an undirected graph, with a vertex for every
user and an edge connecting users u, v whenever they jointly own a payment channel, as
depicted in Figure 3(a). At any point in time, the (bidirectional) capacities of the payment
channel and its current distribution of coins can be encoded as follows: the capacity of
edge e = (u, v) in the direction from u to v is the maximum amount of money that can be
transferred given the channel’s current coin distribution.

2.3.2 Rebalancing amounts as network flows

First, all users submit capacities for their channels in both directions. These requests from
both buyers and sellers are encoded as a directed capacitated graph G = (V, E). For a node
u, the outgoing edges express the channels that u wishes to send coins to its counterparty –
either because the counterparty wishes to rebalance their channel or because u wants to gain
routing fees as a seller. Symmetrically, the incoming edges express the channels that node
u wishes to receive coins – either because u wishes to rebalance its channel as a buyer or
because its counterparty wants to gain routing fees as a seller. We note that it is, therefore,
possible to have both directed edges (u, v) and (v, u) in E. The capacities of each edge c(e),
e ∈ E, represent the maximum amount of flow that the owners of the channel are willing to
dedicate to rebalancing. Consequently, the rebalancing problem is now transformed into a
network flow problem, e.g., maximizing the rebalancing liquidity is equivalent to maximizing
the flow in G, as illustrated in Figure 3(b).
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From the perspective of one user, rebalancing simply transfers their liquidity from one
channel to another, possibly depleted, channel. Rebalancing by itself must not result in
any monetary gain or loss for any user, a property also known as balance conservation [10].
This does not include the fees associated with rebalancing, which may very well lead to a
surplus or deficit for users. This requirement of balance conservation characterizes possible
rebalancing flows as circulations. A circulation is a flow f = (f(u, v))(u,v)∈E such that the
net flow through each vertex is zero:

∑
v∈V

f(u, v) =
∑

v∈V

f(v, u), ∀u ∈ V.

Two circulations f1, f2 can be added to get yet another circulation: f1 + f2 = (f1(u, v) +
f2(u, v))(u,v)∈E . A cycle is a sequence of vertices v1, v2 . . . vk such that (vi, vi+1) ∈ E, ∀1 ≤
i ≤ k − 1 and (vk, v1) ∈ E as well. We equivalently refer to this cycle as (e1, e2 . . . ek) where
ei = (vi, vi+1), ∀1 ≤ i ≤ k − 1 and ek = (vk, v1). We call k the length of this cycle. A cycle
flow f of weight w on cycle C is a circulation where f(e) = w, ∀e ∈ C and f(e) = 0 otherwise
(cf. Figure 3(c)).

Although all circulations represent possible rebalancings, rebalancing in practice is
executed through cycle flows. First, a so-called sign-consistent cycle decomposition of a
circulation is computed, and these cycles are individually executed [10]. A sign consistent
cycle decomposition of a circulation f is a set of cycles f1, f2 . . . fk such that f =

∑
i fi and

all the cycles share the same orientation (cf. Figure 3(d)). To be precise, if two cycles fi, fj

route non-zero flow through an edge (u, v), they do so in the same direction: fi(u, v) > 0 and
fj(v, u) > 0 cannot hold simultaneously. A standard result of network flow theory is that any
circulation may be expressed as a sum of at most |E| sign-consistent cycles [2]. We are only
interested in the space of feasible circulations f that satisfy every capacity constraint: f ≤ c.

Figure 3 We illustrate the rebalancing process of Musketeer: (a) Given a PCN with specific liquidity
per channel (indicated by the numbers of each node on each edge), (b) the players may submit capacities
and bids (the first number indicated the submitted capacity, the arrow indicated the direction they wish to
rebalance, while the second number indicates the fees they are willing to pay). Then, (c) the rebalancing
circulation is calculated (the number refer to the number of coins to be transfer and the direction is
indicated by the arrow), and (d) subsequently decomposed to sign-consistent cycles which are then priced
(the multiple arrows indicate that the flow is divided into multiple cycles; the first number is the number of
coins to be transferred and the second the fee to be paid). Depleted edges are shown in red and indifferent
edges in blue. All numbers are indicative.

2.3.3 User valuations

In a two-party channel, rebalancing is not symmetrically beneficial. We define the utilities
resulting from rebalancing flows below.

Associated with each user u ∈ V is a valuation function vu on the set of flows in G. We
first assume this valuation to be a linear function of f , so that by abuse of notation we may
treat vu as a function as well as a vector: vu(f) = vu · f . For an edge e, we denote by vu(e)
the e-th coordinate of the vector vu.
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If channel e = (u, v) is depleted in the direction from u to v, rebalancing should occur
from v to u. This would benefit user u, thus u has a positive valuation for flow along e:
vu(e) > 0. Any incurred fees are also paid by u, making u the buyer in this case. However, if
a channel is not depleted, it is termed indifferent. Flow in either direction is allowed to aid in
rebalancing the network but has a non-positive valuation for the channel owners: vu(e) ≤ 0.
Flow from u to v requires the authorization of the u, thus fees earned through this flow are
paid to u, termed the seller.

We assume these valuations are local, meaning that the utility of users is not impacted
by the flow along non-adjacent channels: vu(v, w) = 0 for distinct users u, v, w. We further
presume each user has a probabilistic knowledge of other users’ valuations. Finally, we
assume that the utility derived from rebalancing by a unit flow along any channel is bounded,
encapsulated by ∥vu∥∞ < 0.1. In other words, no user is willing to pay a fee rate greater
than 10%, nor can a user demand greater fees for its indifferent edges. A similar concept is
already implemented in the Bitcoin Lighting Network for multi-hop payments (approximately
equal to 0.03%). We stress our mechanisms function with any maximum fee rate lower than
100%, and the 10% bound is merely indicative.

2.3.4 User bids
Similarly to traditional auctions, user valuations are private and they may submit a different
bid. Indeed, we assume all players are rational utility-maximizing agents. We call the bids
valid when they satisfy the above assumptions on valuations.

In our problem, users submit bids bu for their channels reflecting their self-interests,
as shown in Figure 3(b). Buyers submit positive bids while sellers submit negative ones,
expressing the maximum/minimum amount of fees they are willing to pay/receive, respectively,
per unit flow along their channels during rebalancing. Both users in an indifferent channel
may participate as sellers. In depleted channels, however, one party can serve as a buyer
while the counterparty is precluded from being a seller to avoid necessitating payment from u

to v for routing flow. Although we distinguish between buyers and sellers for simplicity, note
that users may possess multiple depleted and indifferent channels simultaneously. It is more
precise to view each user as a strategic agent with specific utilities derived from their edges.

2.3.5 Social welfare and utility functions
Recall that individual user valuations vu are local by assumption and are nonzero only for
adjacent directed edges. Let v be the aggregate valuation function

∑
u∈V vu. Given a feasible

circulation f , the social welfare generated by f under v is defined as SW(v, f) := v · f . As
usual, user utilities are considered quasi-linear: if u is charged price p for participation in
a circulation f of valuation vu(f), then the player’s utility is uu(f , p) := vu(f) − pu. An
example of pricing a circulation can be seen in Figure 3(d).

For a vertex v, we use the subscript “−v” to denote the situation where v is removed
from consideration. G−v refers to the subgraph of G with v and all edges adjacent to v

removed. v−v, b−v denote valuation and bid vectors with coordinates for edges adjacent to v

removed. Finally, u−v, p−v denote utilities and prices of all players except v. These vectors
may also be considered as elements of the larger class when it is clear from the context.

2.3.6 Rebalancing Game
We define here the rebalancing problem termed Musketeer.
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▶ Definition 1 (Musketeer). Consider a game consisting of n players, one for each of
the vertices of a capacitated directed graph G(V, E) each with valuation (vector) vv, v ∈ V .
The coordinates correspond to the channels of player u. A Rebalancing Mechanism M :
(G, c, b) 7→ (fi, pi)1≤i≤k receives edge capacities c(e) and valid valuations bv as bids from each
player. M computes a feasible circulation f as a sign-consistent cycle decomposition f1, . . . fk.
For each cycle flow fi, it computes a price vector pi = (pi(v))(v∈V ) that each user must pay.
Each cycle fi yields a utility of uv(fi, pi) for player v as given by uv(fi, pi) = vv(fi)− pi(v),
and the total utility for player v is uv(f) =

∑
i uv(fi).

The following properties should hold:
1. Economic Efficiency: The cycle decomposition f maximizes the social welfare under

the given bids, f = arg max SW(b, f).
2. Cyclic Budget Balance: The prices per cycle must sum zero

∑
v pi(v) = 0.

3. Individual Rationality: Any cycle flow fi yields non-negative utility to every truthful
player, uu(fi) ≥ 0.

4. Truthfulness: Regardless of other players’ actions, the best response for utility-
maximizing players is to bid truthfully, bv = vv.

In the context of our problem, economic efficiency refers to the maximization of the total flow
weighted by users’ bids, resulting in the most beneficial effect of rebalancing. Additionally,
this property encompasses the prioritization of channels for rebalancing based on their
respective bids.

Individual rationality, on the other hand, demands that each user pays no more than their
bid for each channel. By adhering to rationality, users ensure that every rebalancing cycle
yields non-negative utility for all players. Therefore, executing all suggested cycles, rather
than selectively performing only those that are optimal to their self-interest, is necessary to
achieve the maximal beneficial effect of rebalancing.

Truthfulness is another crucial aspect of the mechanism, whereby each player should bid
their truthful valuation for each channel to ensure that no one can benefit from misreporting
their valuations.

Lastly, cyclic budget balance is a novel property tailored to our problem. It is a more
restrictive variation of the strong budget balance property and demands that there is no
deficit or surplus for each cycle produced by the mechanism. There are two reasons we
opt for the cyclic budget balance, both of which stem from PCN technicalities: Firstly,
the rebalancing circulation is preferably decomposed into cycles. As posited in Hide &
Seek, executing small cycles is faster, more robust and requires less communication among
nodes[10]. In contrast, executing the entire circulation simultaneously demands complex
protocols (such as that of [3]) with high network overhead, which are more likely to fail.
Secondly, payment channel constructions do not allow the burning of coins, or in other
words, a surplus for the mechanism. This is because the two users may cooperatively update
the channel state later in order to split the burned coins, effectively reversing the “burn”.
Therefore, each cycle must be priced in a way that all coins are distributed among the players
in the cycle. However, we showcase below that attaining cyclic budget balance is strictly
harder than strong budget balance.

Hardness of Cyclic Budget Balance

Let us demonstrate the increased complexity of attaining cyclic budget balance in comparison
to strong budget balance (in conjunction with individual rationality). The following example
(Figure 4) shows that the feasible region for strong budget balance exceeds that of cyclic
budget balance: Suppose player u submits a bid of 0.1 per unit flow for his depleted channel

AFT 2024



13:10 Incentive-Compatible Rebalancing for PCNs

u

1,0
.1

1,0.1

A

10
,0

10,0

11
,

0.
1

B

Figure 4 Depleted edges are depicted with red and indifferent edges with blue. The numbers on
each edge indicate the rebalancing capacities and bids, while the rebalancing directions are indicated
by the arrows.

e with a rebalancing capacity of 11. u participates in two cycles, A and B. A consists of
two indifferent edges bidding -0.1 each (total -0.2 per unit flow) with capacity 1, while B

is composed of two indifferent edges with 0 bids and capacity 10. Regardless of the chosen
budget balance property, cycle B can be selected. However, cycle A fails to satisfy cyclic
budget balance as any rational pricing would result in a deficit of -0.1 per unit flow. However,
strong budget-balanced solutions may include both cycles A and B, having u pay 0.2/11 < 0.1
fees per unit flow on average. Thus, cyclic budget balance restricts the solution space more
than strong budget balance.

3 Towards Truthful Rebalancing

In this section, we explore how to provide incentive-compatible rebalancing in various
settings using auction theory, yielding a flurry of results. In particular, we first prove that
satisfying all the desired properties of the Musketeer is impossible by applying the classic
Myerson-Satterthwaite impossibility result for double auctions (Section 3.1).

To circumvent the impossibility, we present a variety of mechanisms, all of which relax
the notion of economic efficiency by restricting the set of possible bids we consider when
maximizing social welfare. In particular, we first consider the limited setting where buyers
and sellers choose to participate in the mechanism knowing upfront the maximum and
minimum fees they would potentially pay or gain, respectively (Section 3.2). The presented
algorithm is fairly simple but restricts the choices for participants.

To expand our results to the broader context where players are allowed to submit bids,
we relax our model to a single auction, solely considering the buyer’s incentives. Specifically,
we assume players are willing to forward flow through their indifferent edges hoping to earn
some fees in the process, but without a guarantee on the fees. Under this assumption, we
present a VCG-type mechanism, satisfying incentive compatibility for buyers (Section 3.3).

Next, we present a double-auction mechanism that takes into account the bids of both
buyers and sellers, albeit sacrificing truthfulness, similarly to a first price auction (Section 3.4).

Finally, we leverage time delays to navigate around the impossibility result and design a
novel double auction that satisfies all the desiderata in exchange for some costs that users
incur in the form of time delays (Section 3.5).

In the following, we provide a high-level description of the various mechanisms, named
after the Four Musketeers, highlighting their different design choices and trade-offs. The
algorithm facilitating the cycle decomposition is abstracted from the exposition of these
mechanisms, and the protocol implementing the atomic execution of these cycles is likewise
not detailed. Indicative algorithms that realize these functions can be found in [10] as well
as in Section 3.6 for completeness.
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3.1 Impossibility Result
▶ Theorem 2. No mechanism can simultaneously satisfy all the desired properties of Mus-
keteer, namely economic efficiency, individual rationality, truthfulness, and cyclic budget
balance.

Proof. We formulate the double auction problem as a rebalancing game, thus showing that
if all properties are satisfied in Musketeer then that would be true also for the double
auction problem, hence the impossibility of Myerson-Satterthwaite does not hold.

Suppose A wishes to sell an item and B wishes to buy it, with individual valuations Va, Vb

respectively. Each player knows their own valuation with certainty but the valuation of the
other player only probabilistically. Without loss of generality, we normalize the valuations to
lie in [0, 1].

Now construct the following instance of Musketeer: the graph G = (V, E) consists of
V = {a, b, c}, E = {(a, c), (c, b), (b, a)} and with c(e) = 1, ∀e ∈ E. For a flow f = (f1, f2, f3) -
that is, f1 units going from a to c, f2 from c to b, and f3 from b to a - set the valuations
va(f) = −Vaf1, vb(f) = Vbf2, vc(f) = 0. We suppose that the players submitted bids
ba, bb, bc respectively, and in particular that c was honest: bc = vc = 0.

The only non-zero feasible circulation is f := (1, 1, 1), so that the mechanism must decide
solely between f and 0. It must also choose a price vector p satisfying cyclic budget balance:
pa + pb + pc = 0.

We interpret choosing f as a trade occurring between A and B, and choosing 0 as no
trade. An efficient mechanism must output f if Vb > Va (the buyer values the commodity
more than the seller). This corresponds to Pareto Efficiency. Individual rationality of players
a, b directly corresponds to individual rationality of A and B. Next, individual rationality of
c (the “auctioneer”) demands that pc ≤ bc = 0, which corresponds to Weak Budget Balance.
Truthfulness in our setting matches that of Myerson-Satterthwaite: in both cases, we require
the truthful bid to be the best response.

In this manner, a solution to Musketeer can be used to simulate a single buyer single
seller trade as studied by Myerson and Satterthwaite [33]. As a result, all four desired
properties cannot be concurrently realized without additional assumptions. ◀

3.2 Athos: A Mechanism for Fixed Fees
In this section, we present a straightforward approach for incorporating fees into rebalancing.
To circumvent the aforementioned impossibility, the input to the mechanism is restricted.
Users do not submit bids. Instead, a predetermined fee rate of p̂ is made publicly known
(such as the most commonly chosen fee rate1). All flow through indifferent channels will be
paid at this fee rate. There is an additional parameter k that bounds the maximum fee rate
for buyers: flow through depleted edges will be charged at a fee rate ≤ kp̂.

Given these parameters, users can decide upfront if they want to participate in the
mechanism. Instead of bidding, they specify which of their channels are depleted. D ⊆ E

denotes the set of depleted edges, and the rest are considered indifferent edges, denoted
by I = E \D. The rebalancing flow is chosen to optimize:

∑
e∈D kf(e) −

∑
e∈I f(e). The

rebalancing is then decomposed into sign-consistent cycles, and a separate price vector is
computed for each cycles that achieves cyclic budget balance. This way we achieve all the
desiderata but under a restricted setting.

1 Bitcoin Lightning fees: https://www.reddit.com/r/lightningnetwork/comments/tmn1kc/bmonthly_
ln_fee_report/
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This structure leads to a simple mechanism (Athos), a natural evolution of Hide & Seek
including fees. We observe however that certain rebalancing cycles are not considered: given
the parameter k, any rebalancing cycle must contain at least one depleted edge for every k

indifferent edges.

Athos: Fixed fees
Input: Channel capacities c and the set of depleted edges D ⊆ E .

1. Let I = E \D be the set of indifferent edges.
2. Compute the optimal rebalancing f := arg maxG

∑
e∈D

p̂f(e)−
∑

e∈I p̂f(e).

3. For this flow, the total cost incurred is C = p̂
∑
e∈I

f(e).

4. Consider a sign-consistent cycle decomposition f1, f2 . . . fk of f , and define the cost
incurred per cycle as Ci = p̂

∑
e∈I

fi(e).

5. Ci is distributed to the depleted edges in fi. Notice that every cycle fi must contain at
least one depleted edge per k − 1 indifferent edges, otherwise remove fi from f∗ to get
a more optimal solution.

6. If the ith cycle fi contains ni depleted edges, then each depleted edge is charged at fee
rate Ci/ni during the execution of fi. All indifferent edges earn fees at rate p̂.

Output: Cycle flows with prices (fi, pi), each released only to involved players.

▶ Theorem 3. Athos: (G, c, D) 7→ (fi, pi)1≤i≤k, D ⊆ E expressing the set of depleted edges,
satisfies economic efficiency, individual rationality, and cyclic budget balance. It also provides
sellers with a fee of q̂ ≤ kp̂ per unit flow along their edges.

Proof. This mechanism assumes bids of kp̂, p̂ for depleted and indifferent edges resp., and
selects a circulation maximizing social welfare under these bids, thus achieving economic
efficiency.

Step 3 clearly indicates that sellers receive a fixed fee for each unit of flow. The parameters
p̂, k are publicly known in advance, hence a user can decide a priori whether it is beneficial
to participate in Athosbased on their private valuations. Individual rationality of player is
thus implicit in their participation in the mechanism, along with the fact that all indifferent
edges earn fees at rate p̂, and depleted edges are charged at rate ≤ kp̂.

The fee computation in Step 4 is cyclic budget balanced by design: since we consider the
cycle decomposition of f∗ and charge fees per cycle, the fees charged to depleted edges are
identical to the fees levied by the indifferent edges. ◀

3.3 Porthos: A Truthful Single Auction
The impossibility of Section 3.1 indicates that achieving all the desiderata is not possible for
both buyers and sellers in the original setting. In particular, in our setting, the cyclic budget
balance property is critical since burning coins is not possible in payment channels. For
this reason, the most straightforward way to circumvent the aforementioned impossibility
is to either restrict our setting, as in Section 3.2 where the bids were fixed and known a
priori, or revert to a single auction by assuming that sellers will accept any reward that is
non-negative.
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We, thereby, present here a single auction mechanism where only non-negative bids are
permitted: positive bids for depleted channels, and zero for indifferent channels. Instead, all
the users of a PCN may participate in the rebalancing process hoping to receive some fees
from the mechanism.

We construct a VCG-type mechanism to determine the price vector of buyers based on
their impact on social welfare, achieving incentive compatibility for buyers. Charging these
prices would result in some surplus for the mechanism, which is instead redistributed to
owners of indifferent channels to achieve cyclic budget balance.

Porthos: A VCG-type single auction
Input: Channel capacities c and non-negative player bids bv ≥ 0.

1. Compute the optimal rebalancing f := arg maxG SW(b, f).

2. Compute an alternative rebalancing for every player v, f−v := arg maxG SW(b−v, f).

3. Charge v the price p(v) := SW(b−v, f−v)− SW(b−v, f).

4. Let f1, . . . fk be a sign-consistent cycle decomposition of f . Non-zero prices p(v) are
split into pi(v) for each fi proportional to v’s valuation of fi:

pi(v) := p(v)SW(bv, fi)
SW(bv, f) .

5. The total fees per cycle fi are qi =
∑

pi(v) for every buyer in fi.

6. If fi has m sellers u1, u2, . . . um, then pi(uj) := −
∑

qi

m
.

Output: Cycle flows with prices (fi, pi), each released only to involved players.

▶ Theorem 4. Porthos: (G, c, b) 7→ (fi, pi)1≤i≤k assuming b ≥ 0, satisfies economic
efficiency, individual rationality, and cyclic budget balance. Users’ bids for depleted edges are
truthful.

Proof. A feasible circulation f that maximizes social welfare under b achieves economic
efficiency. For a player v, let f−v be a feasible circulation on G maximizing social welfare
under bids b−v. We set p(v) := SW(b−v, f−v)− SW(b−v, f).

It is sufficient to show truthfulness under the pricing p′(v) := − SW(b−v, f), since p and
p′ are revenue equivalent: meaning that their difference p−p′ is a function of b−v and G−v,
and this function crucially does not depend on player v’s bid or valuation.

Under p′, player v is incentivized to bid truthfully regardless of every other player’s
action. Consider b = (vv, b−v), b′ = (v′

v, b−v) for any other valuation v′
v ̸= vv. When v

reports valuation honestly, the mechanism selects f maximizing social welfare under b, and
player v’s utility is given by vv(f)− p′(v) = vv(f) + SW(b−v, f) = SW(b, f). In the second
case, the mechanism selects a possibly different f ′ maximizing social welfare under b′ and
the utility for player v is: vv(f ′) + SW(b−v, f ′) = SW(b, f ′). Since SW(b, f ′) ≤ SW(b, f) by
definition of f , we have that bidding honestly always achieves the maximum possible utility
regardless of other players’ actions. In other words, both pricings p, p′ are Nash-equilibrium
incentive-compatible.

Finally, we show individual rationality, or that buyer utilities are non-negative under
price p. Buyer v’s utility is uv = SW(b, f)− SW(b−v, f−v) which must be non-negative as
SW(b−v, f−v) ≤ SW(b, f−v) ≤ SW(b, f) by definition of f . We note that the first inequality
only holds for non-negative bids bv.
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By the computation in Step 5, the fees charged to depleted edges are equally distributed
to all indifferent edges for each cycle. In other words, Porthos satisfies cyclic budget
balance. ◀

3.4 Aramis: A non-truthful Double Auction
As a stepping stone to Section 3.5, we present a straightforward double-auction mechanism
(Mechanism Aramis) that accepts both positive and negative bids, and satisfies all properties
but truthfulness. The rationale of Algorithm 3 resembles that of a first-price auction.

Aramis: A Double Auction
Input: Channel capacities c and player bids bv.

1. Compute the optimal rebalancing f := arg maxG SW(b, f).

2. Let f1, . . . fk be a sign-consistent cycle decomposition of f .

3. Suppose fi is a cycle flow of length ni. The price pi(v) for v’s participation in fi is:

pi(v) := bv(fi)−
SW(b, fi)

ni
(pi(v) = 0 when v is not part of fi).

Output: Cycle flows with prices (fi, pi), each released only to involved players.

▶ Theorem 5. Aramis: (G, c, b) 7→ (fi, pi)1≤i≤k satisfies economic efficiency, individual
rationality, and cyclic budget balance, but not truthfulness.

Proof. The feasible circulation f maximizes social welfare under b and thus achieves economic
efficiency. The social welfare of each cycle fi under b must be non-negative, else the circulation
f − fi would have greater social welfare than f , contradicting its optimality. Intuitively, the
social welfare per cycle is shared uniformly by all involved vertices.

For a truthful player v, their utility under a cycle fi of length ni is given by ui,v(fi) =

vi,v(fi)− pi,v(fi) = SW(b, fi)
ni

≥ 0. This proves individual rationality per cycle. From the
price calculation in Step 3, we can readily confirm that the sum of the prices along each
cycle is zero:

ni∑
j=1

pi,vj (fi) :=
ni∑

j=1
bvj (fi)− SW(b, fi) = 0. ◀

Remark. Players’ incentives mirror first-price auctions: They are incentivized to bid higher
to ensure their participation in the rebalancing circulation over other competing players. But
for a given rebalancing circulation, players are incentivized to bid lower to maximize utility.

3.5 d’Artagnan: A Truthful Double Auction with Time Delays
Mechanism Aramis is straightforward but lacks the crucial property of truthfulness. To miti-
gate this issue, we introduce time delays into the rebalancing cycles (mechanism d’Artagnan).
The basic concept is that cycles with lower social welfare will be released later in time. Con-
sequently, users who attempt to save on fees by underbidding will experience an undesirable
delay in rebalancing. This concept is akin to that of opportunity cost, where users face
potential losses from the inability to use their locked funds.
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d’Artagnan first computes an optimal rebalancing circulation and decomposes into
sign-consistent cycle flows with prices (fi, pi), similar to Aramis. Moreover, d’Artagnan
selects a time ti ∈ [0, 1] for every flow fi (e.g., t = 1 represents an 1 hour delay). We assume
delaying execution until time ti ≤ 1 gives player v a utility of uv = vv(f)− pv + d(1 − t).
Users join the mechanism with the implicit assumption that rebalancing cycles are released
at time t = 1. Any earlier rebalancing improves the utility of a player at the rate d, a
configurable parameter of our mechanism that depicts the estimated opportunity costs of
players.

d’Artagnan: A Double Auction with delays
Input: Channel capacities c, player bids bv, and global delay factor d.

1. Compute the optimal rebalancing f := arg maxG SW(b, f).

2. Let f1, . . . fk be a sign-consistent cycle decomposition of f .

3. Suppose fi is a cycle flow of length ni. The price pi(v) for v’s participation in fi is:

pi(v) := bv(fi)−
SW(b, fi)

ni
. pi(v) is set to zero when v is not part of the cycle flow.

4. Let ni be the length of the cycle flow fi. Define the delay of fi as

ti = 1−
(

1− 1
ni

)
SW(b, fi)

d
.

Output: The ith pair (fi, pi) is released to involved players at time ti.

▶ Theorem 6. d’Artagnan: (G, c, b, d) 7→ (fi, pi)1≤i≤k where d is an additional delay
parameter, satisfies economic efficiency, truthfulness, cyclic budget balance, and individual
rationality.

Proof. Cyclic budget balance and economic efficiency follow as in Mechanism Porthos
since Steps 1− 3 are identical in both Porthos and d’Artagnan. To analyze individual
rationality and truthfulness, let us compute the utility of a player v. Due to the sign
consistency of cycles, v’s utility can be expressed as the sum of utilities induced by each of
the k cycles: uv =

∑
i uv(fi).

The utility of v per cycle fi is:

uv(fi) = vv(fi)−
(

bv(fi)−
SW(b, fi)

ni

)
+ d− dti

= vv − bv + SW(bv, fi)
ni

+
(

1− 1
ni

)
SW(b, fi) = (vv, b−v) · fi

simplifying to SW ((vv, b−v), fi). Since v’s utility is independent of their bid, d’Artagnan
is truthful.

In fact, this utility matches the social welfare if bids were honest: ui(fi) = SW(b, fi). The
social welfare of fi cannot be negative. If SW(b, fi) < 0, then f is not an optimal solution:
as f1, . . . fk is a sign consistent cycle decomposition, removal of fi from the circulation f leads
to a feasible solution that is strictly better. This proves individual rationality. ◀

Remark. To guarantee both truthfulness and individual rationality, the users lock their
coins to the mechanism a priori for the maximum time delay. Otherwise, buyers may benefit
from participating in the mechanism even when the maximum time delay supersedes their
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true valuations: buyers might only participate in the execution phase (i.e., the sale) if they
are quoted a favorable price. This is undesirable behavior as it affects all other users in the
cycle. Hence, we enforce the execution of cycles according to the mechanism [38]. However,
this hinders economic efficiency, as there may be buyers with ex-ante utility (i.e., utility of
player before the output of the mechanism is known) less than their ex-post utility (i.e.,
utility of player after the output of the mechanism is known). As a result, there may be
buyers who would have participated in the mechanism but chose not to, therefore leading to
suboptimal outcomes.

3.6 Additional Algorithms
In the following, we present for completeness indicative protocols that can implement the
cycle decomposition and the atomic execution of these cycles.

Sign-Consistent Cycle Decomposition

We first outline the algorithm for the cycle decomposition, as introduced in [10]. Algorithm 1
leverages depth-first search to identify cycles and then applies cycle flows to them.

Algorithm 1 Depth-first Search Cycle Decomposition.

input : Circulation f on directed graph G = (V, E)
output : A set of cycle flows S that sum to f
initialize i = 1
initialize R←− {e ∈ E : f(e) ̸= 0} set of active edges
while R ̸= ∅ do

pick an edge e1 ∈ R

run depth first search to find a cycle Ci = (e1, e2, . . . ek) in R

wi ←− min f(e), e ∈ Ci

initialize fi ←− 0
for e ∈ Ci do

fi(e) = wi

f(e)←− f(e)− fi(e)
if f(e) = 0 then

delete e from R

i←− i + 1
return S = {f1, f2 . . . fi}

Atomic Execution of Rebalancing Cycles

Next, we present an algorithm that ensures the secure atomic execution of the rebalanc-
ing cycles, taking place after the output of each respective rebalancing mechanism, e.g.
d’Artagnan.

Provided a set of (sign-consistent) rebalancing cycles, Algorithm 2 randomly selects one
user for each cycle responsible for initiating the execution. This user selects a random number
rc and sends its cryptographic digest hc = H(rc) to the other users in its cycle. The initiator
and the next user have their timelock set to the cycle’s length, while the transaction value is
the cycle’s weight wc. Each user in the sequence reduces the timelock by 1, identifies the
next user in the cycle for HTLC creation based on vertex order, and sets up an HTLC with
the updated timelock.
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Algorithm 2 HTLC creation for cycles.

input : S set of directed cycles
for c ∈ S do

select starting user uc at random from users in c

timelock tc ←− len(c)
uc chooses random secret rc and creates hash hc = H(rc)
for ec = (u, v) ∈ c starting from uc do

u creates HTLC(u, v, wc, hc, tc)
decrement tc by 1

Algorithm 2 follows [10] and is only indicative. It can be replaced by any other protocol
that achieves atomic execution of multi-hop payments in PCNs, e.g., [49, 47, 46]. For
example, MAPPCN [46] can be leveraged to preserve user anonymity, while MAD-HTLC [47]
or He-HLTC [49] can be employed to ensure security even when the blockchain miners can
be bribed to enable fraud (so-called timelock bribing attacks [34]).

4 Limitations, Extension, and Future Work

Our work leaves open several interesting research avenues which we outline below.

4.1 Minimum Fees for Sellers in Aramis
The primary limitation of Porthos is that buyer prices rely on the graph structure, resulting
in seller’s fees being contingent on the number of possible rebalancing cycles in the graph,
e.g., if the graph has only one feasible cycle, sellers earn no fees.

A key question is whether it is feasible to guarantee a minimum fee per unit flow through
indifferent edges in the mechanism. For a seller, rebalancing is comparable to a typical
transaction in the PCN, wherein the seller forwards coins through their channels and earns
service fees. Thus, a seller’s earnings generally rely on their highly connected position in the
network and the amount of capital they have invested. The fee per unit flow (i.e, transfer
of one coin) is determined by the intermediary, i.e., the node that sends the coin to the
counterparty in their channel. As mentioned earlier, most intermediaries select the same fee
per unit flow for forwarding transactions. We thus inquire whether it is feasible to design a
novel VCG-style mechanism based on Mechanism Porthos, where the graph is modified
to guarantee a sufficiently large surplus. Note that the fee earned by sellers is essentially a
redistribution of the surplus, and a surplus that is large enough guarantees a minimum fee
for every seller.

4.2 Incentives
The binary classification of truthfulness is an oversimplification. Future research could aim
to quantify and lower bound the potential benefits of misrepresenting bids, such as the gains
achieved by underbidding a certain amount instead of truthfully reporting one’s valuation.

4.3 Variable Delay Costs
In our primary mechanism d’Artagnan, we assume a uniform time delay factor for all
players. However, this assumption may not be realistic since different players may experience
time delays differently, leading to distinct levels of utility loss. Our model can incorporate
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this variation by allowing for different delay factors (d) for each player. The delay factor
can also be construed as the opportunity cost of unused capital in depleted edges, i.e., the
potential gain from fees had the player rebalanced his channel. We conjecture that this
opportunity cost is quantifiable if buyers furnish their proposed fees for routing since these
fees are typically determined by evaluating this loss. Therefore, we can expand our model
and require all players, including both buyers and sellers, to submit their anticipated fees.
Nevertheless, incorporating this alteration into our model is not a straightforward task.
Buyers could potentially manipulate their combined bid by taking into account both the
maximum time delay and fees they are willing to incur, consequently violating incentive
compatibility.

4.4 Repeated Games
A pertinent inquiry stemming from the repeated utilization of rebalancing in PCNs is whether
the expected behavior of players would be altered if they were aware that the rebalancing
mechanism would occur frequently. Specifically, we ask how would the mechanism design be
impacted if we shift our game to a repeated setting. We hypothesize that if the rebalancing
game occurs with sufficient frequency, underbidding may be beneficial as the opportunity to
rebalance would be reduced but not entirely eliminated. Conversely, if the rebalancing game
is infrequent, players may miss their chance to rebalance. We thus anticipate that integrating
frequency-dependent utility losses may significantly alter the results of the rebalancing game.

4.5 Group Strategy-Proof Mechanisms
Both Porthos and d’Artagnan are strategy-proof but not group strategy-proof. While a
single user’s misreported bids cannot improve their utility, in certain cases, two users can
manipulate their bids to jointly increase their utilities. Consider for instance the parties
u, v of a depleted channel in Porthos. If the channel is depleted from u to v, then an
honest u would truthfully report a positive bid from v to u, thus prohibiting v from gaining
routing fees for the u, v channel. However, both u and v may gain by u misreporting a zero
bid for the channel. This misrepresentation converts the channel’s status from depleted to
indifferent, enabling the potential for v to gain routing fees while precluding the possibility
that u pays any fees. Given this example, an intriguing open problem is designing group
strategy-proof mechanisms specifically tailored to counter collusion between a channel’s joint
owners.

5 Additional Related Work

5.1 Blockchain Scalability & Payment Channel Networks
Improving the blockchain transaction throughput has garnered interest since the inception of
Bitcoin [35]. Proposed solutions include increasing the block size, sharding the blockchain,
or moving the workload off-chain leveraging so-called layer-2 protocols such as sidechains,
channels, and rollups (see [25, 24] for recent surveys). Among these solutions, payment
channel networks, such as the Bitcoin Lightning Network [38], have attracted substantial
attention because they enable instant, low-cost off-chain transactions.

A large body of research has emerged focusing on various aspects of PCNs, such as
efficient and privacy-preserving routing, e.g. [43, 39, 37, 31, 4, 45], and algorithmic analysis
of the PCN topology [6, 5]. In the intersection of PCNs and game theory, there are several
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works, mainly focusing on network topology leveraging network creation games [19, 7, 5],
and incentive-compatible outsourcing of channels’ dispute resolution [32, 9, 8, 30]. All these
works are orthogonal and complementary to ours as they ignore channel depletion.

Perhaps the most relevant work to ours is Merchant [48], employing fee functions as a
mechanism to avert channel depletion by guiding routing paths. By allowing intermediaries
to impose varying fees for distinct routes, users are incentivized to prefer specific routes over
others, ultimately mitigating channel depletion. This method presents a complementary
approach to our work, in which we propose an opt-in rebalancing protocol to address channel
depletion.

The problem of channel rebalancing has been studied in several recent works [26, 10, 1],
which we build upon and extend. Our work is the first to consider user incentives in the
context of rebalancing mechanisms for PCNs.

5.2 Game-theoretic Analysis of Blockchains

Numerous studies have investigated incentives in the context of the consensus layer of
blockchains. For instance, Pass and Shi introduced an innovative incentive-compatible
consensus protocol called FruitChains [36]. Additionally, several works focused on a rational
analysis of Bitcoin’s consensus: exploring when rational miners follow the protocol [13, 27],
devising attacks that showcase Bitcoin is not incentive-compatible, e.g., [21, 29, 41, 44],
investigating the impact of block rewards and mining pools, e.g., [16, 15, 20, 42]. On the
other hand, Babaioff et al. [12] explored the network layer of blockchains and proposed
an incentive-compatible scheme for information propagation within Bitcoin’s peer-to-peer
network. However, these works address different issues from ours, as they focus on the
consensus and network layers of blockchains, while our research investigates incentives on
layer-2 networks that build upon the other layers.

5.3 Mechanism Design on Networks

The rebalancing problem fits into the well-established research area of mechanism design
on networks, with an impact on computer science, economics, and operations research.
The most relevant examples to our problem include Stackelberg routing, selfish routing
in capacitated networks, and optimal oblivious routing, e.g., [17, 11, 40, 28]. Our work
differs from the existing literature in several ways. First, we focus on a novel problem
domain – rebalancing mechanisms for PCNs – which has not been previously studied from
a game-theoretic perspective. Second, we deal with a unique set of constraints due to the
nature of payment channels and PCNs, such as channel depletion and cyclic budget balance.
These constraints lead to novel challenges in the design of incentive-compatible mechanisms,
addressed in this work.

6 Conclusion

In this paper, we revisited the challenge of rebalancing in payment channel networks (PCNs)
from a mechanism design perspective, introducing a novel approach that takes into account
users’ incentives. By incorporating both buyers and sellers of channel liquidity in our proposed
rebalancing mechanism, we introduced the double-auction rebalancing problem Musketeer,
which aims to optimize the throughput in PCNs.
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Our work demonstrates that the unique characteristics of PCNs, particularly the cyclic
budget balance property, pose significant challenges in designing a mechanism that simul-
taneously satisfies all the desiderata. Our results, grounded in auction theory, revealed an
impossibility result, leading us to develop a variety of mechanisms that balance the various
desiderata. Notably, we introduced a novel mechanism that employs time delays to overcome
the impossibility result, successfully meeting all desired properties, albeit at the expense of
economic efficiency in terms of time delays and liquidity combined.

References
1 Rebalance plugin. https://github.com/lightningd/plugins/tree/master/rebalance.
2 R. Ahuja, T. Magnanti, and J. Orlin. Network flows - theory, algorithms and applications.

Prentice Hall, 1993.
3 Lukas Aumayr, Kasra Abbaszadeh, and Matteo Maffei. Thora: Atomic and privacy-preserving

multi-channel updates. IACR Cryptol. ePrint Arch., page 317, 2022. URL: https://eprint.
iacr.org/2022/317.

4 Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Blitz: Secure
Multi-Hop payments without Two-Phase commits. In 30th USENIX Security Symposium
(USENIX Security 21), pages 4043–4060. USENIX Association, August 2021. URL: https:
//www.usenix.org/conference/usenixsecurity21/presentation/aumayr.

5 Georgia Avarikioti, Gerrit Janssen, Yuyi Wang, and Roger Wattenhofer. Payment network
design with fees. In Data Privacy Management, Cryptocurrencies and Blockchain Technology,
pages 76–84. Springer, 2018.

6 Georgia Avarikioti, Yuyi Wang, and Roger Wattenhofer. Algorithmic channel design. In 29th
International Symposium on Algorithms and Computation, Jiaoxi, Yilan County, Taiwan,
2018.

7 Zeta Avarikioti, Lioba Heimbach, Yuyi Wang, and Roger Wattenhofer. Ride the lightning:
The game theory of payment channels. In International Conference on Financial Cryptography
and Data Security, 2020.

8 Zeta Avarikioti, Eleftherios Kokoris Kogias, Roger Wattenhofer, and Dionysis Zindros. Brick:
Asynchronous incentive-compatible payment channels. In International Conference on Finan-
cial Cryptography and Data Security, 2021.

9 Zeta Avarikioti, Orfeas Stefanos Thyfronitis Litos, and Roger Wattenhofer. Cerberus channels:
Incentivizing watchtowers for bitcoin. In International Conference on Financial Cryptography
and Data Security, pages 346–366. Springer, 2020.

10 Zeta Avarikioti, Krzysztof Pietrzak, Iosif Salem, Stefan Schmid, Samarth Tiwari, and Michelle
Yeo. Hide and seek: Privacy-preserving rebalancing on payment channel networks. In Proc.
Financial Cryptography and Data Security (FC), 2022.

11 Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Racke. Optimal oblivious
routing in polynomial time. In Proceedings of the Thirty-Fifth Annual ACM Symposium on
Theory of Computing, STOC ’03, pages 383–388, New York, NY, USA, 2003. Association for
Computing Machinery. doi:10.1145/780542.780599.

12 Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On bitcoin and red balloons.
In EC, 2012. doi:10.1145/2229012.2229022.

13 Christian Badertscher, Juan Garay, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. But
why does it work? a rational protocol design treatment of bitcoin. In Eurocrypt, 2018.
doi:10.1007/978-3-319-78375-8_2.

14 Burak Can, Jens Leth Hougaard, and Mohsen Pourpouneh. On reward sharing in blockchain
mining pools. Games and Economic Behavior, 136:274–298, 2022. doi:10.1016/j.geb.2022.
10.002.

15 Miles Carlsten, Harry Kalodner, S Matthew Weinberg, and Arvind Narayanan. On the
instability of bitcoin without the block reward. In CCS, 2016. doi:10.1145/2976749.2978408.

https://github.com/lightningd/plugins/tree/master/rebalance
https://eprint.iacr.org/2022/317
https://eprint.iacr.org/2022/317
https://www.usenix.org/conference/usenixsecurity21/presentation/aumayr
https://www.usenix.org/conference/usenixsecurity21/presentation/aumayr
https://doi.org/10.1145/780542.780599
https://doi.org/10.1145/2229012.2229022
https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.1016/j.geb.2022.10.002
https://doi.org/10.1016/j.geb.2022.10.002
https://doi.org/10.1145/2976749.2978408


Z. Avarikioti, S. Schmid, and S. Tiwari 13:21

16 Xi Chen, Christos Papadimitriou, and Tim Roughgarden. An axiomatic approach to block
rewards. In AFT, 2019. doi:10.1145/3318041.3355470.

17 José R Correa, Andreas S Schulz, and Nicolás E Stier-Moses. Selfish routing in capacitated
networks. Mathematics of Operations Research, 33(4):961–976, 2008.

18 Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, An-
drew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wattenhofer.
On scaling decentralized blockchains. In International Conference on Financial Cryptography
and Data Security, pages 106–125. Springer, 2016.

19 Oğuzhan Ersoy, Stefanie Roos, and Zekeriya Erkin. How to profit from payments channels. In
FC, 2020. doi:10.1007/978-3-030-51280-4_16.

20 Ittay Eyal. The miner’s dilemma. In IEEE S&P, 2015. doi:10.1109/SP.2015.13.
21 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In

International conference on financial cryptography and data security, pages 436–454. Springer,
2014.

22 Joan Feigenbaum, Christos H Papadimitriou, Rahul Sami, and Scott Shenker. A bgp-based
mechanism for lowest-cost routing. Distributed Computing, 18(1):61–72, 2005.

23 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51–68. ACM, 2017.

24 Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Gervais.
Sok: Layer-two blockchain protocols. In International Conference on Financial Cryptography
and Data Security, pages 201–226. Springer, 2020.

25 Abdelatif Hafid, Abdelhakim Senhaji Hafid, and Mustapha Samih. Scaling blockchains: A
comprehensive survey. IEEE Access, 8:125244–125262, 2020. doi:10.1109/ACCESS.2020.
3007251.

26 Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain payment networks. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 439–453, 2017.

27 Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis. Blockchain
mining games. In EC, 2016. doi:10.1145/2940716.2940773.

28 Y.A. Korilis, A.A. Lazar, and A. Orda. Achieving network optima using stackelberg routing
strategies. IEEE/ACM Transactions on Networking, 5(1):161–173, 1997. doi:10.1109/90.
554730.

29 Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasserman, and Yongdae Kim. Be selfish
and avoid dilemmas: Fork after withholding (faw) attacks on bitcoin. In CCS, 2017. doi:
10.1145/3133956.3134019.

30 Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Gün Sirer, and Peter R. Pietzuch.
Teechain: a secure payment network with asynchronous blockchain access. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, pages 63–79, 2019.

31 Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silentwhispers:
Enforcing security and privacy in decentralized credit networks. In 24th Annual Network and
Distributed System Security Symposium, 2017.

32 Patrick McCorry, Surya Bakshi, Iddo Bentov, Sarah Meiklejohn, and Andrew Miller. Pisa:
Arbitration outsourcing for state channels. In Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, pages 16–30. ACM, 2019.

33 Roger B Myerson and Mark A Satterthwaite. Efficient mechanisms for bilateral trading.
Journal of Economic Theory, 29(2):265–281, 1983. doi:10.1016/0022-0531(83)90048-0.

34 Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer. Timelocked bribing. In
Financial Cryptography and Data Security, Lecture Notes in Computer Science, 2021.

35 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
36 Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC, 2017. doi:10.1145/

3087801.3087809.

AFT 2024

https://doi.org/10.1145/3318041.3355470
https://doi.org/10.1007/978-3-030-51280-4_16
https://doi.org/10.1109/SP.2015.13
https://doi.org/10.1109/ACCESS.2020.3007251
https://doi.org/10.1109/ACCESS.2020.3007251
https://doi.org/10.1145/2940716.2940773
https://doi.org/10.1109/90.554730
https://doi.org/10.1109/90.554730
https://doi.org/10.1145/3133956.3134019
https://doi.org/10.1145/3133956.3134019
https://doi.org/10.1016/0022-0531(83)90048-0
https://doi.org/10.1145/3087801.3087809
https://doi.org/10.1145/3087801.3087809


13:22 Incentive-Compatible Rebalancing for PCNs

37 Krzysztof Pietrzak, Iosif Salem, Stefan Schmid, and Michelle Yeo. Lightpir: Privacy-
preserving route discovery for payment channel networks. In Zheng Yan, Gareth Tyson,
and Dimitrios Koutsonikolas, editors, IFIP Networking Conference, IFIP Networking 2021,
Espoo and Helsinki, Finland, June 21-24, 2021, pages 1–9. IEEE, 2021. doi:10.23919/
IFIPNetworking52078.2021.9472205.

38 Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments, 2015.

39 Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling payments
fast and private: Efficient decentralized routing for path-based transactions. arXiv preprint
arXiv:1709.05748, 2017.

40 Tim Roughgarden. Selfish routing and the price of anarchy. MIT press, 2005.
41 Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strategies

in bitcoin. In FC, 2016. doi:10.1007/978-3-662-54970-4_30.
42 Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. Incentive compatibility

of bitcoin mining pool reward functions. In FC, 2016. doi:10.1007/978-3-662-54970-4_28.
43 Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan, Parimarjan

Negi, Lei Yang, Radhika Mittal, Giulia Fanti, and Mohammad Alizadeh. High throughput
cryptocurrency routing in payment channel networks. In 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20), pages 777–796, 2020.

44 Jason Teutsch, Sanjay Jain, and Prateek Saxena. When cryptocurrencies mine their own
business. In FC, 2016. doi:10.1007/978-3-662-54970-4_29.

45 Samarth Tiwari, Michelle Yeo, Zeta Avarikioti, Iosif Salem, Krzysztof Pietrzak, and Ste-
fan Schmid. Wiser: Increasing throughput in payment channel networks with transaction
aggregation. CoRR, abs/2205.11597, 2022. doi:10.48550/arXiv.2205.11597.

46 Somanath Tripathy and Susil Kumar Mohanty. Mappcn: Multi-hop anonymous and privacy-
preserving payment channel network. In International Conference on Financial Cryptography
and Data Security, pages 481–495. Springer, 2020.

47 Itay Tsabary, Matan Yechieli, and Ittay Eyal. MAD-HTLC: because HTLC is crazy-cheap to
attack. IEEE S&P, 2021. URL: https://arxiv.org/abs/2006.12031.

48 Yuup Van Engelshoven and Stefanie Roos. The merchant: Avoiding payment channel depletion
through incentives. In 2021 IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPS), pages 59–68. IEEE, 2021.

49 Sarisht Wadhwa, Jannis Stoeter, Fan Zhang, and Kartik Nayak. He-HTLC: Revis-
iting Incentives in HTLC. In 30th Annual Network and Distributed System Secu-
rity Symposium, NDSS 2023, San Diego, California, USA, February 27 - March 3,
2023. The Internet Society, 2023. URL: https://www.ndss-symposium.org/ndss-paper/
he-htlc-revisiting-incentives-in-htlc/.

50 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
Project Yellow Paper, 2014.

https://doi.org/10.23919/IFIPNetworking52078.2021.9472205
https://doi.org/10.23919/IFIPNetworking52078.2021.9472205
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_29
https://doi.org/10.48550/arXiv.2205.11597
https://arxiv.org/abs/2006.12031
https://www.ndss-symposium.org/ndss-paper/he-htlc-revisiting-incentives-in-htlc/
https://www.ndss-symposium.org/ndss-paper/he-htlc-revisiting-incentives-in-htlc/


SoK: Zero-Knowledge Range Proofs
Miranda Christ #

Columbia University, New York, NY, USA

Foteini Baldimtsi #

Mysten Labs, Palo Alto, CA, USA
George Mason University, Fairfax, VA, USA

Konstantinos Kryptos Chalkias #

Mysten Labs, Palo Alto, CA, USA

Deepak Maram #

Mysten Labs, Palo Alto, CA, USA

Arnab Roy #

Mysten Labs, Palo Alto, CA, USA

Joy Wang #

Mysten Labs, Palo Alto, CA, USA

Abstract
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construct ZK proofs of non-membership [55] and ZK proofs of certain polynomial relations
over the integers [23, 21], and they have also been used to prove well-formedness of RLWE
ciphertexts [35, 52] and well-formedness of shares in secret-sharing schemes [45, 42].

At the same time, with the rise of decentralized systems and cryptocurrencies, range
proofs have received increased attention due to their use in mechanisms that preserve the
privacy of transactions posted on the blockchain. For instance, ZKRPs are a key ingredient
in confidential transactions [59, 16, 64] – which hide the amount of each transaction posted
on the blockchain. The transaction amounts are stored in a committed fashion, and to ensure
validity of the transaction the sender must prove that the sum of the output amounts does
not exceed the sum of the input amounts. For this check to be sound, the sender must
also prove that all output amounts are positive (else an adversarial sender could commit to
negative output amounts and create coins out of thin air). For commitments in a group, such
as Pedersen commitments, this positivity check also involves showing that the committed
value is much less than the order of the group. This check essentially amounts to showing
that the committed value is in some integer range [0, 2k − 1] and is done via a ZKRP.
Additionally, ZKRPs are heavily used in protocols for blockchain auditing and solvency
solutions [32, 20, 48, 26] to show that transactions or reserves of an organization satisfy
certain policies.

This increased interest in ZKRPs has also resulted in a growing number of proposed con-
structions with different characteristics and properties. With numerous ZKRP constructions
available, selecting the suitable scheme for a specific application can be challenging. The
goals of this SoK are to organize the space on the various techniques used to construct range
proofs, compare their properties in a systematic way, identify open research questions, and
provide a guideline to select the appropriate protocol for each type of application.

Our contributions and organization. We start by defining the necessary background on
cryptographic schemes and computational assumptions in Section 2. In Section 3, we provide
a taxonomy of general approaches used in the construction of zero-knowledge range proofs.
Concretely, we identify three underlying methods used in the constructions of known ZKRP
schemes: (a) square decomposition, (b) binary/n-ary decomposition and (c) hash-chain
approach. We describe each method in detail, and for n-ary decomposition we present an
abstraction that allows us to synthesize the several techniques used. Our abstraction is
of independent interest, and could potentially lead to new insights. Then, in Section 4,
we collect the set of properties beyond the standard soundness and zero-knowledge that
are desirable in certain application scenarios of ZKRPs, such as aggregation, transparent
setup and efficiency considerations. In Sections 5-7 we classify all known (to the best of our
knowledge) ZKRP constructions under the three methods we identified in Section 3. For
each method, we provide an analytical list of known protocols and we compare all protocols
based on the desirable properties listed in Section 4. In Section 8, we provide a guideline
for how to select the best type of ZKRP construction based on the desired properties and
then in Section 9, we report storage and computation (verifier/prover time) costs of the
most popular ZKRP constructions using existing and new benchmarks. (We provide a more
detailed list of known ZKRP applications in the full version of the paper [27].) Finally, we
identify a series of research gaps relevant to ZKRP which we believe can serve as a starting
point for future research works in Section 10.

Comparison with prior work. We compare our paper with the previous survey of range proofs
by Morais, Koens, van Wijk, and Koren [60]. The technical portion of [60] focuses largely on
Boudot’s four-square decomposition construction [14], the signature-based construction of
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CCs [22], and Bulletproofs [17]. It omits or does not go into detail on many other works, such
as the line of code-based constructions, the newer and more efficient square-decomposition
constructions, the polynomial commitment-based constructions, the hash chain constructions
and lattice based constructions. In particular, many of the most efficient schemes such
as Sharp [29] and BFGW [11] are not covered in their survey. Their work also provides
a comparison only of the three schemes that it focuses on. Our SoK is significantly more
comprehensive, and here is a summary of how our work goes beyond [60]. First, to the
best of our knowledge, we provide a complete description of techniques and schemes in the
ZKRP category and we extensively compare all such schemes based on their techniques,
assumptions, and other properties. Additionally, we observe a useful abstraction for binary
decomposition-based range proofs, breaking such proofs into two components, and presenting
the techniques used for each of these components. An important aspect for our work,
especially for practitioners who will use our SoK to determine the most suitable ZKRP for
their application, is that we provide new benchmarks and assemble existing benchmarks
for easier comparison. We plan to open-source the code used for our benchmarks. Finally,
we include open questions and research gaps, and a flowchart to help identify the most
appropriate range proof construction family for various applications.

2 Preliminaries

We use boldface, like a = (a1, . . . , an), to denote a vector, and we let wt(a) denote its
Hamming weight. We use ◦ to denote the Hadamard product, i.e., a ◦ b = (a1b1, . . . , anbn).
For a nonzero value a, we use an to denote the vector (1, a, a2, . . . , an−1). We let 0n denote
the length-n vector (0, . . . , 0). For two vectors x, y, we let xy = (xy1

1 , . . . , xyn
n ) denote

element-wise exponentiation. We use λ to denote the security parameter, A to denote an
adversary, Z to denote the integers, and negl(·) to denote a negligible function. We use the
word efficient, or p.p.t., to mean probabilistic polynomial time.

▶ Definition 1 (Commitment scheme [50]). A commitment scheme is a pair of efficiently
computable algorithms (Gen, Com) where:

Gen(1λ) is an efficient randomized algorithm that outputs public parameters p.
Com(p, m, r) is an efficient deterministic function that takes as input the public parameters,
a message m, and randomness r. It outputs a commitment to m.

A commitment scheme must be binding and hiding, defined as follows:
A commitment scheme is binding if for all p.p.t. adversaries A, it is infeasible to come up
with two different messages corresponding to a given commitment.

Pr
p←Gen(1λ)

 (m0, r0), (m1, r1)← A(1λ, p)∧
(m0 ̸= m1)∧

Com(p, m0, r0) = Com(p, m1, r1)

 = negl(λ)

A commitment scheme is computationally (resp., statistically) hiding if for all p.p.t. (resp.,
unbounded) adversaries A, it is infeasible to distinguish whether a commitment corresponds
to any m0 or m1 known to A. That is, for all m0, m1:

Pr
r←$

[
c← Com(p, m0, r)
A(1λ, p, c, m0, m1) = 1

]
≈ Pr

r←$

[
c← Com(p, m1, r)
A(1λ, p, c, m0, m1) = 1

]
A commitment scheme is homomorphic if

Com(p, m0, r0) + Com(p, m1, r1) = Com(p, m0 + m1, r0 + r1).

AFT 2024
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Next we define zero-knowledge proof and non-interactive zero-knowledge proof (NIZK). Most
of the ZKRPs in this SoK are in fact non-interactive. In the following sections, we will skip
mention of the non-interactive aspect, unless not clear from context. We provide informal
definitions next, while deferring the formal definition of NIZK and its properties to our full
version [27].

▶ Definition 2 (Zero-knowledge proof). Let L be a language in NP and R be a polynomially
verifiable relation, such that x ∈ L ⇐⇒ ∃w : R(x, w). A zero-knowledge proof system for
L is a tuple of efficient interactive algorithms (Prover, Verifier, Simulator), such that the
following properties hold:

Completeness. Given (x, w) ∈ R, the honest execution of the Prover (given x, w) and the
Verifier (given only x) result in the Verifier outputting 1.
Soundness. Given x /∈ L, a malicious Prover interacting with the Verifier can only make
it output 1 with negligible probability.
Zero-Knowledge. Given x ∈ L, the Simulator can produce an interaction transcript of an
honest Prover with a (possibly) malicious Verifier, that is computationally indistinguishable
from an actual execution transcript of the Prover with the Verifier. Note that the Simulator
doesn’t get w, while the Prover gets w.

A non-interactive zero-knowledge (NIZK) proof system is a zero-knowledge proof system,
where the Prover, given (x, w) just sends one message π to the Verifier and the Verifier
outputs 0/1 based on (x, π). A NIZK has an additional setup algorithm CRSGen, which
outputs a common reference string (CRS) used by all the proofs and verifications. Instead of
a CRS, some NIZKs can also specify a random oracle. The Simulator algorithm is allowed to
keep trapdoors about the CRS, or be able to simulate the random oracle.

A zero-knowledge proof of knowledge requires that an adversary which produces a valid
proof for a statement also knows a valid witness. This is formally captured by requiring the
existence of an extractor, which can run the adversary’s code and produce the witness.

▶ Definition 3 (ZKRP). A zero-knowledge range proof (ZKRP) is a zero-knowledge proof of
knowledge for the following relation:

RPp = {((y, u, v), (m, r)) : y = Com(p, m, r) ∧ u ≤ m ≤ v}

where p, y, u, and v are known to the verifier, and Com is some particular commitment
scheme.

A question may arise since p is hard-coded in the language definition: what if a malicious
prover samples p badly and thus renders the NIZK-soundness property vacuous? We note
that most applications require both commitment security and NIZK-soundness. These
requirements enforce that the attacker of the application’s security cannot badly sample p.

Pedersen commitments. Most range proofs use Pedersen commitments [63] as the underly-
ing commitment scheme. Let G be a cyclic group of prime order and g and h be generators
of that group, where the discrete logarithm relationship between g and h is not known. The
Pedersen commitment Com(x, r) for a value x ∈ G with randomness r is gxhr.

Pedersen commitments are statistically hiding, and their binding property is based on
the hardness of the discrete logarithm assumption.

▶ Definition 4 (Discrete Logarithm Assumption). Let G be a group of order p and let g be
a generator of G. A challenger samples a random x ← Zp and sends gx to an adversary.
The Discrete Logarithm Assumption states that it is infeasible for the adversary to output x,
given (G, g, gx).
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Apart from the Discrete Logarithm setting, we will also describe schemes based on the
hardness of the RSA problem, as well as lattices.

▶ Definition 5 (RSA Assumption). A challenger samples primes p and q and sets N = pq. It
picks a quantity e co-prime to ϕ(N), where ϕ(N) = (p− 1)(q − 1) is Euler’s totient function.
Then it randomly samples z ← [1, N ] and sends (N, e, z) to the adversary. The adversary
outputs y. The RSA Assumption states that the probability of ye = z (mod N) is negligible.

▶ Definition 6 (Strong RSA Assumption). The Strong RSA Assumption states that the RSA
problem is intractable even when the adversary is allowed to choose the public exponent e

(for e ≥ 3).

▶ Definition 7 (SIS Assumption). Let q, n, m ∈ Z+, β ∈ R+ be given, where β ≪ q. A
challenger samples a random matrix A ← Zn×m

q . The SIS Assumption states that it is
infeasible for an adversary to find a nonzero m-vector e, such that Ae = 0 mod q and
||e||2 ≤ β.

3 General Approaches

Efficient zero-knowledge range proofs typically use three classes of approaches: square
decomposition, n-ary decomposition, and hash chains. We present these approaches below,
then explore specific instantiations of these approaches in more detail in their respective
sections. We also mention the approach of using generic zero-knowledge proofs.

We describe these approaches for proving that a committed value lies in a range of the
form [0, nk − 1], or that a committed value is positive in the case of square decomposition.
Most works consider ranges of this form, which may seem at a first glance to be a relaxed
version of the problem. However, when the commitments used are homomorphic, it turns
out to be sufficient for constructing more general range proofs with only a small amount of
work to translate.

Assume that we have the ability to prove that any committed value is in the interval
[0, nk−1]. To prove that z is in some interval [u, v], one can show first that (z−u) ∈ [0, nk−1]
and then that (v−z) ∈ [0, nk−1]. Thus, z ≥ u and z ≤ v. Certain constructions from integer
commitments (e.g., CKLR [30]) can combine these checks into proving a single equation:
(z−u)(v− z) ≥ 0. It is easy to obtain commitments for (z−u) and (v− z) homomorphically,
given a commitment to z. For non-homomorphic commitments, one can do this translation
by creating a commitment c to z − u, proving in zero knowledge that c indeed commits to
z − u, and performing this range proof with respect to c.

3.1 Square decomposition
The square decomposition method involves writing the committed integer as a sum of squares
in order to prove that it is positive. A common version of this method, the four-square
decomposition method, uses Lagrange’s four-square theorem. This theorem states that for
any integer z ∈ Z≥0, there exist x1, x2, x3, x4 ∈ Z such that

z = x2
1 + x2

2 + x2
3 + x2

4 (1)

Thus, to prove that a committed value z is non-negative, it suffices to prove knowledge of
x1, . . . , x4 such that Equation 1 holds. However, it is crucial that the relation of Equation 1
holds over the integers since it may hold for a negative z if we are working in some group
rather than over Z. For example, in Z5 it is possible that z = −1 and 02 +12 +22 +22 = 9 = z

(mod 5). To avoid such problems, this approach requires a special type of commitment called
an integer commitment.

AFT 2024
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Integer commitments
An integer commitment scheme is a commitment scheme where binding holds over Z. That
is, for all p.p.t. adversaries A,

Pr
p←Gen(1λ)

 (m0, r0), (m1, r1)← A(1λ, p)
∧(m0 ̸=Z m1)

∧Com(p, m0, r0) = Com(p, m1, r1)

 = negl(λ)

where m0 ̸=Z m1 denotes that m0 and m1 are not equal over the integers. Bounded integer
commitments (used in [30]) satisfy the same binding property, but are weaker in that the
message space is restricted to some bounded interval, e.g., {x ∈ Z : |x| ≤ B}. For constructing
range proofs, this boundedness is not an issue as long as the ranges in question are well
within the bounds.

Pedersen commitments, for example, are not integer commitments as their message space
is Zp, and any messages that are equivalent (mod p) result in the same commitment given
the same randomness: gmhr = gm+phr over a cyclic group of order p. This attack against
binding fails if the order of the group is unknown, and indeed many integer commitment
schemes (e.g., Fujisaki-Okamoto commitments, and constructions of [30, 29]) operate in
groups of unknown order.

Fujisaki-Okamoto commitments [40]. We recall an overview of FO commitments but refer
the reader to [40] for details. FO commitments operate over a group of unknown order Z∗N . g

and h are generators of large subgroups of Z∗N , whose relation is unknown. The commitment
to x ∈ Z is

ComF O(p, x, r) := gxhr

This commitment is computationally hiding when r is chosen uniformly in the interval
[2−λ ·N + 1, . . . , 2λ ·N − 1]. Fujisaki-Okamoto commitments are computationally binding
under the factoring assumption.

3.2 n-ary decomposition
The n-ary decomposition method involves committing to the digits of the committed value
z in some base n. For simplicity, assume for this explanation that we use base 2, although
certain approaches can be generalized to other bases. Thus, if the prover wishes to show
that z ∈ [0, 2k − 1], the prover writes z = z0 · 20 + z1 · 21 + . . . + zk−1 · 2k−1 and generates
commitments to z0, . . . , zk−1. The prover then shows that both of the following properties
hold, which we present as predicates:
Digit validity (DV(z)): DV(z) = 1 if and only if zi ∈ {0, 1} for all i ∈ [0, k − 1].
Representativeness (Rep(z, z)): Rep(z, z) = 1 if and only if z =

∑k−1
i=0 zi · 2i.

In terms of these predicates, the n-ary decomposition method proves membership in the
following relation:

Rdecomp = {(p, (c1, c2, n, k), (z, z, r, r)) : c1 = Com(p, z, r)
∧ c2 = Com(p, z, r) ∧ DV(z) ∧ Rep(z, z)}

We note that here, we slightly abuse notation and use Com to commit to a vector z with
a vector of randomness r.
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There are (at least) four common tools used to show that the digits are valid for the desired
base; i.e., for binary decomposition they all lie in {0, 1}. These tools include zero-knowledge
set membership arguments, product arguments, inner product arguments, and polynomial
commitments. These strategies are primarily applicable for base 2, with the exception of set
membership, which easily extends to any arbitrary base.

3.2.1 Set membership

A set membership proof shows that a committed value lies in some publicly known set Φ;
that is, it is a proof of knowledge for the following relation:

SM = {(p, (Φ, y), (m, r)) : y = Com(p, m, r) ∧m ∈ Φ}

Although one could define a set membership proof with respect to a private committed set,
in our application the set is determined by the publicly known base.

Digit validity. Set membership arguments are useful for instances of Rdecomp where the
commitment scheme used for z commits to its components individually; that is,

c2 = (Com(p, z0, r0), . . . , Com(p, zk−1, rk−1))

for some scheme Com. Then, one can show digit validity by providing a set membership
proof for each element of c2, with respect to the set Φ = {0, 1, . . . , n − 1}. However, such
protocols require commitments and range proofs of length at least linear in k.

Representativeness. There is no general way to show representativeness using set mem-
bership proofs; schemes using this construction (e.g., [22]) rely on properties of the specific
commitment scheme used.

3.2.2 Product arguments

A product argument is a proof system for showing that the product of two committed values a

and b is some value c. Typically, this equality holds in the group underlying the commitment
scheme. For example, for Pedersen commitments in a group of prime order p, this argument
shows that ab ≡ c (mod p). For integer commitments, we have the stronger property that
this equality holds over the integers: ab = c.

Digit validity. Product arguments are useful for proving digit validity base 2, if as with set
membership c2 consists of individual bit commitments. To show that a committed bit b is in
{0, 1}, the prover can commit to a value a and prove that ab = 0 and a + b = 1. Observe
that if b ≠ 0, a must be 0 to satisfy the first equation. Then the second equation implies
that b = 1. Thus, b must be 0 or 1. Furthermore, the prover can always find a satisfying a; if
b = 0, a = 1, and if b = 1, a = 0. Inner product arguments, which we present next, allow the
prover to simultaneously show many product relations more efficiently.

Representativeness. As is the case with set membership proofs, product arguments are
primarily useful for showing digital validity rather than representativeness.

AFT 2024
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3.2.3 Inner product arguments
An inner product argument (IPA) is a proof system for showing that the inner product of
two committed vectors is some value. The inner product used in Bulletproofs [17] shows the
following relation, using Pedersen commitments, where G denotes a group of prime order:{(

g, h ∈ Gk, P ∈ G, z ∈ Zp ; a, b ∈ Zn
p

)
: P = gahb ∧ z = ⟨a, b⟩

}
Here, P is a binding (but not hiding) commitment to the vectors a and b. Therefore,
Bulletproofs introduces blinding factors to make this argument zero-knowledge. Bulletproofs
also constructs an argument for the Hadamard product relation (i.e., c = a ◦ b) from their
inner product argument, though we do not present the details here.

Digit validity. A useful fact used when constructing zero-knowledge range proofs from inner
product arguments is that with overwhelming probability, the inner product of a nonzero
vector a and a random vector b is nonzero. Thus, the prover can convince the verifier that
a is 0k by showing that its inner product with a random challenge vector is 0. Using the
same idea as for product arguments, the prover can commit to the binary representation of
the given value as a vector z, then use an inner product argument to show simultaneously
that all components of this vector are indeed bits. That is, the prover commits to a vector
z′ = 1k − z, and shows for a random x that:〈

z′ − (1k − z), x
〉

= 0 and z′ ◦ z = 0k

The lattice-based scheme [4] uses this approach as well.

Representativeness. Although we presented an inner product relation where the value z is
a public input, many inner product arguments, such as that of Bulletproofs, work also when z

is secret and the public input includes only a commitment to z. One shows representativeness
by a single application of this inner product argument, showing ⟨z, 2k⟩ = z.

Bulletproofs combines some of these checks for greater efficiency and uses blinding factors
to make their argument zero-knowledge.

3.2.4 Polynomial commitments
A polynomial commitment scheme allows a prover to commit to a polynomial p(·) over a
finite field Fp, such that a verifier can query a point x to the prover, which can respond with
p(x) and a proof π that this evaluation is correct. The scheme should be hiding in that the
commitment reveals nothing about the polynomial, and the evaluation proofs reveal no extra
information beyond the evaluations themselves. Polynomial commitments are binding in
that it is computationally infeasible to produce a verifying proof for an incorrect evaluation
of the committed polynomial. A useful property of polynomial commitments is that it is
easy for a prover to show that a committed polynomial is identically zero, by providing a
proof that its evaluation at a random point is zero. By binding and the Schwartz-Zippel
lemma, this occurs with only negligible probability if the polynomial is nonzero.

The following approach, which we describe at a high level, was introduced in BFGW [11]
and is detailed nicely in [67]. Suppose that we are given a commitment to z in the form
of a polynomial commitment to f such that f(1) = z. In constructing a range proof for
z ∈ [0, 2k − 1], it is useful to work over a subgroup H = {1, ω, ω2, . . . , ωk−1} and use
polynomials whose evaluations over H encode the binary representation of z. That is, the
prover computes a polynomial g such that:

g(ωk−1) = zk−1

g(ωi) = 2g(ωi+1) + zi ∀i ∈ {0, . . . , k − 2}
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Another useful property of polynomial commitments is that one can show that a polyno-
mial g(X) is zero on all of H by committing to a related polynomial g′(X) and proving that
g′(X) is identically zero over Fp.

Digit validity. The prover shows that the following two polynomials are zero over all of H:

w2 = g · (1− g)(X − 1)(X − ω) · · · (X − ωk−2)
w3 = [g(X)− 2g(Xω)] · [1− g(X) + 2g(Xω)] · (X − ωk−1)

w2 has zeros at 1, ω, . . . , ωk−2 by construction. It is zero at ωk−1 if and only if g(ωk−1) ∈ {0, 1}.
For w3, observe that g(X) − 2g(Xω) is exactly zi when evaluated at ωi. Therefore, w3 is
zero at {1, . . . , ωk−2} if and only if zi ∈ {0, 1}.

Representativeness. The prover shows that the following polynomial is zero over all of H:

w1 = (g − f)(X − ω)(X − ω2) · · · (X − ωk−1)

As [11] notes, this approach can be instantiated with any polynomial commitment scheme
that is hiding, binding, and additively homomorphic.

3.3 Hash chains
Hash chains can be used to prove that a committed value is at least some threshold. In the
hash chain approach, a commitment to a value z is Cz = Hz(r), the output of a hash function
applied z times to a random r. The proof that z exceeds some threshold t is π = Hz−t(r).
A verifier can check that Ht(π) = Cz; if z < t, then z − t is negative and it is infeasible for a
cheating prover to compute a preimage of r under H.

This simple hash chain requires prover and verifier time that is exponential in k for
ranges [0, 2k − 1]. However, using decomposition techniques, HashWires [24] constructs a
hash chain-based range proof requiring only O(k) work.

3.4 Generic zero-knowledge
There are many efficient generic zk-SNARKs, such as [44, 41, 9, 18]. These proof systems can
be used to construct range proofs. However, because they are generic and do not leverage
the structure of the range proof relation, they are less efficient than the tailored range proofs
we explore. In Section 9, we include efficiency benchmarks for Groth16 [44], one of the most
popular generic zk-SNARKs used in practice.

It is worth noting that practical benefits may outweight these efficiency losses. In
particular, because of their wide-ranging applications, generic zk-SNARKs offer convenient,
well-engineered, and optimized libraries. For example, we used Circom [8] and rapidsnark [47]
for our Groth16 benchmarks. Even so, the prover and verifier times for Groth16 are roughly
an order of magnitude larger than the more tailored range proofs. Furthermore, if range
proofs are required in a larger system that already uses a generic zk-SNARK elsewhere, using
this zk-SNARK for the range proof as well may be practically convenient.

4 Desirable properties

All zero-knowledge range proofs must satisfy the standard notions of soundness, completeness,
and zero knowledge. All ZKRPs that we cover in this SoK are non-interactive. In this section,
we discuss some additional nice features that might be desirable in some settings.

AFT 2024
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Efficiency. Unsurprisingly, it is desirable for ZKRPs to be efficient. In blockchain applic-
ations, where a transactor must pay for the storage cost and the amount of computation
done by validators, it is especially important to minimize proof size and verifier time. The
proof size should be at most linear in k for intervals [0, 2k − 1], and several schemes offer
even constant-sized proofs. Though proof size and verifier time are often priorities, prover
time also should not be prohibitively large. Since it is hard to directly compare efficiency of
the constructions we discuss in Sections 5 - 7 (even in the asymptotic setting the different
parameters make one-to-one comparison very hard), we instead opt to provide a concrete
comparison of some of the most popular ZKRPs in Section 9.

Transparent setup. Some range proofs require public parameters that are generated using
secret randomness. It is crucial for the security of the proofs that this randomness is not
known to the prover. For example, several square decomposition range proofs use RSA-based
integer commitments, which require an RSA modulus. Importantly, this modulus N must
be generated in such a way that no party know the factorization of N = pq. Similarly,
BFGW [11] instantiated with KZG commitments [49] requires a powers-of-tau common
reference string, which consists of a series of values gτ i , where no party knows τ . Protocols
that require secrecy of the randomness used in parameter generation are said to require
trusted setup. Trusted setup does not necessarily require a trusted party, as many trusted
setup procedures can be conducted by distributed multi-party protocols. Such protocols
(often called ceremonies) exist for many common trusted setup procedures, such as generation
of RSA modului and powers-of-tau [39, 12, 62].

Ideally, protocols should have a transparent setup procedure that does not require secret
randomness. For example, the parameters could be generated by applying a hash function to
some public randomness, e.g., to generate a random group element or random matrix.

Note that trusted setup is different from having a trusted issuer responsible for distributing
the proper commitments to users, e.g., a Pedersen commitment corresponding to that user’s
account balance. Any protocol needs to assume that the prover and verifier agree on the
commitment at hand.

Aggregation. Aggregation allows multiple range proofs to be compressed into a single
succinct proof. That is, a single prover holding m commitments to values in the same
range [0, 2k − 1] can efficiently generate a short aggregate proof π proving all of these range
statements simultaneously. For this aggregation property to be nontrivial, π should be shorter
than the concatenation of π1, . . . , πm. For example, for Bulletproofs, Bulletproofs+, and
Bulletproofs++ [17, 28, 36], the aggregate proof for m values in [0, 2k − 1] consists of only
O(log(m · k)) group elements. As the concatenation of m proofs would require O(m · log(k))
group elements, aggregation results in considerable space savings.

In the notion of aggregation considered so far, a single prover knows the openings of
all commitments that are being aggregated. A stronger notion of multi-prover aggregation
allows one to combine range proofs generated by multiple provers, who wish to hide their
openings from one another. Bulletproofs enables such aggregation via an MPC protocol run
by the parties holding the commitments [17]. Multi-prover aggregation is harder to achieve,
and is less well studied than single-prover aggregation.

Aggregation is especially useful for confidential transactions, where minimizing the amount
of space used on-chain decreases gas costs. Since range proofs are used to show non-negativity,
all range proofs typically prove membership in the same interval.
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Table 1 Properties of square decomposition-based range proofs.

Square Decomposition-Based Range Proofs

Scheme Commitment Scheme Assumptions Transp. Setup Proof Aggregation Batched Ver.
Boudot [14] F-O [40] Strong RSA N N N
Lipmaa [56] RDF integer comm.* Strong RSA N N N
Groth [43]** RDF integer comm.* Strong RSA N N N
CKLR [30] Ped*** DLOG (optionally DSLE) N N N
CKLR [30] ElGamal variant [30] DXDH, ORD Y (class groups) N N

SharpGS, SharpPO
SO [29]† Pedersen DLOG, SEI Y Y Y

SharpHO [29]† Pedersen 1/2-fROOT N (RSA), Y (class groups) Y Y

An extension of the Dåmgard-Fujisaki commitment [33] that [56] constructs.
**[43] is not exactly a new scheme; its contribution is observing a trick that can be applied to make [56] more efficient. Integers of a
certain form can be written as a sum of three squares, and one can quickly find this decomposition.
*** A bounded integer commitment scheme based on Pedersen commitments.
† Sharp is only a relaxed range proof and not sufficient for all applications. [29] has a thorough discussion; it is sufficient for anonymous
credentials and can be used for some but not all proofs in anonymous transactions, with some modifications. SharpHO refers to a
scheme where SharpGS or SharpPO

SO is modified using an additional commitment requiring an RSA group or class group in order to
achieve improved soundness.

Batch verification. A related property is batch verification, where there exists a process for
verifying many proofs together that is more efficient than verifying each proof individually.
Batch verification is especially useful in blockchain applications, where a block proposer can
aggregate the range proofs for its block and other validators can batch verify this proof more
efficiently. Bulletproofs provides batch verification [17], using an observation that verifying
many statements of the form gx = 1 can be done by carefully combining them into a single
equation requiring fewer exponentiations.

Aggregated range proofs often naturally enable batch verification, as some of the work is
effectively done by the aggregator. However, neither aggregation nor batch verification in
general implies the other.

Compatibility with homomorphic commitments. A commitment scheme Com is homo-
morphic if Com(m0, r0) + Com(m1, r1) = Com(m0 + m1, r0 + r1). It is convenient for
applications such as confidential transactions for the underlying commitments to be homo-
morphic; in particular, homomorphism makes it easier to prove that the sum of transaction
output amounts is at least the sum of input amounts.

Most ZKRPs use Pedersen commitments, which are homomorphic. Some exceptions are
HashWires [24] and various lattice-based constructions such as KTX [51], which often achieve
weaker homomorphism.

5 Square Decomposition Constructions

Recall that the square decomposition method involves writing the committed value as the sum
of four squares and proving that this equality holds over the integers. Integer commitments,
which were discussed in greater detail in Section 3, are a useful tool here. (Recall: An integer
commitment scheme is a commitment scheme for which binding holds over the integers: it is
computationally infeasible for an adversary to find messages m0, m1 and randomness r0, r1
such that Com(m0, r0) = Com(m1, r1), where m0 ≠ m1 over Z.) Below we discuss different
approaches in this class and also compare them in Table 1. Our comparison is done in terms
of the properties discussed in Section 4 except efficiency which as explained above, will be
treated separately in Section 9.
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Approaches in this class combine integer commitment schemes with a way to prove in
zero knowledge that, given a commitments Comx and Comy, the committed values satisfy
x2 = y. This implies that y is non-negative. One can generalize this argument to work not
just for squares y, but for all non-negative integers.

Boudot [14] introduced the approach of proving that a committed value is positive by
representing an arbitrary integer as a sum of squares (although not four squares). It uses
Fujisaki-Okamoto commitments [40], which require a group of unknown order such as an RSA
group. Damgård-Fujisaki commitments [33] are slightly more efficient integer commitments
used in subsequent work [56] which refined Boudot’s idea and used Lagrange’s four square
theorem [46, Theorem 369] (which states that every integer can be written as the sum of
the squares of four integers). In order to do so, it also introduced an efficient algorithm for
finding this four-square decomposition. [43] similarly followed this approach and improved
its efficiency by observing that x’s of a certain form can be written as the sum of only three
squares rather than four. [31] further improved the efficiency and showed that the RSA
assumption (rather than the strong RSA assumption, as previously shown) is sufficient to
show the security of Damgård-Fujisaki commitments.

The integer commitments used by all of [14, 56, 43] require a group modulus whose
factorization is unknown, and therefore require trusted setup. A newer line of work [30, 29]
develops new integer commitment schemes, some of which do not require a trusted setup.
These schemes also yield much better efficiency, though Bulletproofs and subsequent binary-
decomposition-based proofs are still more efficient in practice due to compatibility with
available optimized libraries.

CKLR [30] build a bounded integer commitment by modifying Pedersen commitments;
their scheme essentially enforces that the Pedersen commitment can only be opened to values
within some bounded range. They then use this bounded integer commitment to construct
their ZKRP following the square decomposition approach. However, their commitment scheme
operates over rationals rather than integers; while honest openers round these rationals to
integers, malicious openers may open to rationals instead which can be problematic for some
applications and results in a relaxed notion of soundness. Sharp [29] improves upon CKLR
in several ways. In addition to improving over the efficiency of CKLR, Sharp is compatible
with standard Pedersen commitments. This is because Sharp effectively moves CKLR’s
modifications of Pedersen commitments to the proof rather than modifying the commitment
itself. Two variants of Sharp (SharpGS, SharpPO

SO), like CKLR, achieve a relaxed notion of
soundness. However, they show how to boost soundness by adding an additional commitment
using a hidden-order group such as an RSA group or class group; the resulting variants
SharpHO achieve standard soundness but require longer proofs. The RSA version also requires
a trusted setup. Class groups are hidden-order groups that can be instantiated without a
trusted setup, though they are less well-supported than RSA groups from an engineering
standpoint. Finally, Sharp improves over CKLR by also offering batching capabilities.

6 Binary Decomposition Constructions

CCs [22] introduced the n-ary decomposition paradigm to zero-knowledge range proofs.
CCs [22] operates over Pedersen commitments and constructs a zero-knowledge set mem-
bership protocol by having the verifier publish a signature of each element in the set. The
prover then shows in zero knowledge that it knows a signature of its committed value x

under the verifier’s secret key; by unforgeability this is only possible if the value is in this
set. By choosing this set to be {0, . . . , n − 1} for base n, the prover can commit to the
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digits of x and prove that they are valid digits under that base. CCs then uses properties
of Pedersen commitments to show that the committed digits indeed represent x. The size
of the proof is linear in logn 2k, where n is the base used and the range is of size 2k. By
optimizing the choice of the base n, this results in a slightly sublinear (in k) proof size for a
range [0, 2k − 1]. This scheme requires a trusted setup for the signature generation, and it
does not offer aggregation.

Subsequent constructions (which we call “Bulletproofs-style” and detail in the next
subsection) improve on the efficiency of CCs to avoid this near-linear dependence on k. They
use inner product arguments or polynomial commitment schemes in clever ways to avoid
showing individually that each bit is in {0, 1}; instead, they are able to roll all of these checks
into a shorter proof.

There are also several newer lattice- and code-based constructions that use binary
decomposition, such as [61, 4]. While these schemes are less efficient and have very large
proofs, their main merit is that they are plausibly post-quantum secure. Additionally, they
do offer transparent setup. Developing more practical lattice-based ZKRPs is an interesting
research direction as we discuss in more details in Section 10.

When surveying binary decomposition constructions, we separate them into two categories:
Bulletproofs-style constructions, which are very practical; and lattice-based constructions,
which are primarily of theoretical interest. We provide an overview of all the bulletproof
style constructions described below in Table 2.

6.1 Bulletproofs-Style Constructions

Bulletproofs [17], arguably considered the state-of-the-art range proof scheme, uses the binary
decomposition technique.

Bulletproofs combines the binary decomposition technique with an inner product argument
to enable the prover to send only O(log k) elements. Bulletproofs improves and uses their
improvement of an inner product argument (IPA) of [13] where the prover sends only O(log k)
group elements for an IPA over length-k vectors. The key idea in Bulletproofs is that the
prover can use this IPA to execute the binary decomposition approach more efficiently; we
give intuition for this idea here.

We write x = a0 · 20 + a1 · 21 + . . . + ak−1 · 2k−1 and let aL = [a0, a1, . . . , ak−1]. We let
2k := [20, 21, . . . , 2k−1]. The prover shows that it knows a vector aR such that:

(1) aL ◦ aR = 0k, (2) aL − aR = 1k, (3) aL ◦ 2k = x

Conditions (1) and (2) show that each component of aL is in {0, 1}, using the standard inner
product strategy described in Section 3. Condition (3) shows that indeed aL contains the
binary decomposition of x.

These three checks can be combined into a single invocation of the IPA. The IPA used
employs a technique that reduces each IPA of length-n vectors to an equivalent IPA over
length- n

2 vectors. Using this IPA results in a proofs size of O(log2 k).
Subsequent works [28, 68, 69] slightly optimize Bulletproofs but keep the scheme and

its properties (in particular, its transparent setup and aggregation properties) largely the
same. Bulletproofs+ [28] slightly optimizes the Bulletproofs argument to reduce the number
of group elements sent by the prover. Bulletproofs++ [36] further improves efficiency by
reducing both prover and verifier time. All of these Bulletproofs derivatives maintain the
same aggregation properties.
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Table 2 Properties of Bulletproofs-style proofs (all support aggregation and batched verification).

Bulletproofs-Style Range Proofs (all DLOG-based)

Scheme Commitment Scheme Transparent Setup
Bulletproofs [17] Pedersen Y

Bulletproofs+ [28] Pedersen Y
Bulletproofs++ [36] Pedersen Y

Flashproofs [68] Pedersen Y
SwiftRange [69] Pedersen Y

DRZ [34] Pedersen N
ZZT+ [72] Pedersen N
Libert [52] Pedersen N

BFGW [11] + KZGPed Pedersen N
BFGW [11] + DARKs [19] DARK [19] Y with class groups; N with RSA

Bulletproofs++ [36] extends the recursive-style argument of Bulletproofs to work for any
base, yielding asymptotic and concrete efficiency improvements. They do so using a lookup
argument, which shows that committed values lie in some predefined table. Bulletproofs++
applies this lookup argument to show digit validity in arbitrary bases, allowing them to
improve the proof size from Bulletproofs’ O(log2 k) to O(log2 k/ log2 log2 k).

BFGW [11] takes a different approach to the binary decomposition idea, using a polynomial
commitment scheme. We detail this approach in Section 3. This scheme assumes that the
commitment to a value x is formed as commitment to a polynomial f such that f(1) = x.
For some polynomial commitment schemes, such a commitment is nonstandard; conveniently,
there is a version of KZG commitments for which this is a Pedersen commitment.

BFGW works with any hiding and binding polynomial commitment scheme, yielding
different properties based on the scheme used. Notably, when instantiated with KZG
commitments [49], BFGW has constant-sized proofs and is competitive efficiency-wise with
Bulletproofs. Though KZG commitments require a trusted setup, this setup ceremony is
perhaps one of the most commonly run, and some blockchains such as Ethereum have run
a KZG ceremony.1 In Section 9, we provide the first efficiency (prover and verifier time)
benchmarks that we know of for BFGW + KZG. If the Pedersen variant of KZG commitments
is used, BFGW + KZG is compatible with Pedersen commitments. BFGW can also be
instantiated with DARKs [19], which do not require a trusted setup. Both BFGW + KZG
and BFGW + DARKs are aggregatable.

6.2 Lattice- and code-based constructions
There are several lattice- and code- based zero knowledge range proof schemes. These schemes
have the advantages that they are plausibly post-quantum secure and have a transparent setup.
However, they are concretely much less efficient than the discrete logarithm-based schemes
such as Bulletproofs. In particular, they have very long proofs. Thus, one worthwhile research
direction is to improve the efficiency of these lattice-based protocols, such as [4, 37, 58]. One
area for improvement is in the repetition required to achieve negligible soundness error. Most
of these schemes build on protocols with constant soundness and must repeat the protocol
Ω(λ) times to achieve λ bits of security. When made non-interactive, this amplification
results in large proofs.

1 https://blog.ethereum.org/2023/01/16/announcing-kzg-ceremony

https://blog.ethereum.org/2023/01/16/announcing-kzg-ceremony
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Lattice- and code-based schemes typically use the binary decomposition approach, where
the prover already holds a commitment to the bits b0, . . . , bk−1 of the value in question.
The prover wants to show that

∑k−1
i=0 2i · bi ≤ β for some β. This condition can be written

equivalently as a system of equations over the bits modulo 2. Such systems of equations can
be proven in zero-knowledge using Stern-like protocols [66].

In this section, we present several ideas involved in lattice-based schemes. We first present
a lattice-based commitment scheme, KTX [51], that is used in some of these ZKRPs. In
doing so, we emphasize several challenges common to many lattice-based schemes. We
then give a high-level description of Stern-like protocols, a standard technique for lattice-
based zero-knowledge proofs. We also include a table with newer lattice-based schemes
that offer constructions tailored to range proofs. We do not include all generic lattice-based
zero-knowledge proof constructions.

KTX commitment scheme ([51]). The KTX commitment scheme is based on the hardness
of the Short Integer Solution (SIS) problem. Let λ be the security parameter, L be the number
of bits to be committed to, and q be a prime modulus of size O(λ

√
L). Let m = 2λ⌈log q⌉.

The scheme uses public parameters (A, B) chosen uniformly from Zλ×L
q × Zλ×m

q . The
commitment to a bit vector x ∈ {0, 1}L is the vector

c = A · x + B · r (mod q)

where r is sampled uniformly from {0, 1}m. This scheme is statistically hiding and computa-
tionally binding assuming that the public parameters are sampled uniformly.

Note that KTX commitments are only approximately homomorphic. While it holds that:

A · x1 + B · r1 + A · x2 + B · r2 = A(x1 + x2) + B(r1 + r2) (mod q),

note that (x1 + x2) and (r1 + r2) may not be 0/1 vectors. Therefore, A(x1 + x2) + B(r1 + r2)
is not necessarily a valid commitment to a message in the message space. Many commitment
schemes used by schemes in this section have similar limited homomorphism.

Note also that KTX commitments do not require a trusted setup to generate the public
parameters A, B, and q, as these matrices are uniformly random and q can be publicly
known. Many lattice-based commitment schemes similarly use random matrices as the public
parameters. All of the range proofs in this section offer transparent setup.

Stern-like protocols. Stern’s original protocol [66] proves in zero knowledge that a commit-
ted bit vector has a certain Hamming weight; that is, it is a zero-knowledge argument of
knowledge for the following relation:

{((H, y, w), s) ∈ Zn×m
2 × Zn

2 × Z× Zm
2 : (wt(s) = w) ∧ (H · s = y)}

The key idea behind Stern’s protocol is that the prover permutes the bits of s to obtain s′
which it reveals to the verifier. It also convinces the verifier that s′ is indeed a permutation of
s under some π. s′ has the same Hamming weight as s, and the distribution of s′ is identical
for any s satisfying the relation – therefore, s′ reveals no information about s. At a high level,
the prover samples a random blinding factor r and constructs three commitments, which it
sends to the verifier, as follows:

c1 = Com(π, H · r), c2 = Com(π(r)), c3 = Com(π(r⊕ s))

Here, π(v) denotes the vector obtained by permuting the components of v under π. We now
run one of three randomized checks: the verifier sends the prover b ∈ {0, 1, 2}. In each of
these tests, the prover opens a different combination of the commitments and sends some
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additional information, e.g., π(s) for b = 2. The cheating prover cannot pass all of these
tests simultaneously and therefore fails with probability at least 1/3. Note that running all
of these tests at once would reveal information about s.

This permute-then-reveal strategy can be used for other relations with similar properties.
[61] provides an abstraction of such relations, in terms of some set VALID, which in Stern’s
original protocol was VALID = {s : wt(s) = w}:

R = {((H, y), s) ∈ Zn×m
2 × Zn

2 × VALID : H · x = y}

Correctness under permutation: For all ((H, y), s) ∈ Zn×m
2 ×Zn

2 ×Zm
2 and all permutations

π over [m],

s ∈ VALID ⇐⇒ π(s) ∈ VALID

Hiding under permutation: For all s ∈ VALID, the distribution of π(s) where π is a random
permutation over [m] is uniform over the set VALID

Even given a relation that does not fit the above requirements, one can sometimes construct
an associated relation (e.g., using a common technique called extension) that does fall into
this paradigm and allows one to construct the desired argument.

Other relations that can be proven under Stern’s paradigm include proving knowledge
of one secret bit that may appear in multiple equations [54], or proving the knowledge of
the product of two secret bits [53]. Stern-like techniques underlie many older lattice- and
code-based zero-knowledge protocols. However, recall that due to the randomized tests,
Stern’s original protocol has soundness error 2/3. In general, Stern-like protocols have
constant soundness error and thus require roughly λ repetitions for λ bits of security. Thus,
once made non-interactive via Fiat-Shamir, these protocols result in long proofs.

Only recently have techniques emerged for avoiding Stern-like protocols in constructing
lattice-based ZKRPs, whose state-of-the-art is thus not reflected in the previous ZKRP survey
[60]. These new techniques resulted in a surge of lattice-based constructions with greatly
improved efficiency, with proofs on the order of 10,000 KB rather than 100,000 KB. However,
this efficiency still lags behind many non-lattice-based constructions with 5̃00-byte proofs, as
seen in Table 4. Improving lattice-based schemes remains a fruitful research direction.

[37] proposes techniques for avoiding the repetition that Stern-like protocols require for
soundness. Their one-shot protocol saves a factor of λ computation time over repeated Stern-
like protocols, though the proofs are still quite long as shown in Table 4. One-shot approaches
are a fruitful direction for developing a more practical (in terms of both communication and
computation) lattice-based ZKRP.

ALS [4] uses an inner product argument in the n-ary decomposition approach, which
results in significantly shorter proofs compared to other lattice-based constructions; see
Table 4. Its proofs are roughly an order of magnitude larger than those of the most efficient
non-lattice schemes, such as Bulletproofs. Another barrier to practical efficiency is that the
proofs of ALS cannot be aggregated.

7 Hash chain constructions

Payword [65] was the first to use hash chains to construct a range proof for electronic payments,
and HashWires [24] more recently revisited this idea with great efficiency improvements. In
this approach, the core idea is that a commitment Cx to a value x is the output of a hash
function evaluated x times on a random value. That is, Cx = Hx(r) for a random r. The
proof that x is at least some threshold t is a value π = Hx−t(r) such that applying the
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Table 3 Properties of lattice- and code-based range proofs. CKLR supports proof aggregation
and batch verification, while it is unclear if the other schemes natively do so.

Lattice- and Code-Based Range Proofs

Scheme Commitment Scheme Assumptions Transp. Setup
LLNW [55] KTX [51] SIVP Y
ESLL [37] UMC, HMC [10, 5, 38] Module-SIS, Module-LWE Y
YAZ+ [71] KTX [51] LWE, SIS Y

ALS [4] BDLOP [5] Module-SIS, Module-LWE Y
CKLR [30]† BDLOP [5], as modified by [71] LWE, SIS Y
LNS [58]* BDLOP [5] Module-SIS, Module-LWE Y
LNP [57] ABDLOP [1, 5] Module-SIS, Module-LWE Y

Code-based [61] [61] 2-RNSD Y

†CKLR [30] uses the square decomposition approach, but one of their constructions is
lattice-based.
*In addition to their standard range proof, LNS [58] also constructs an approximate
range proof, showing that z ∈ [0, n · 2k − 1] for some small n. While relaxed, this kind
of approximate range proof is sufficient for showing smallness of vectors, which is an
application they target. Its efficiency does not depend on k.

hash function t more times to π yields Cx; that is, Ht(π) = Cx. Since the hash function is
hard to invert, if x− t is negative it should be hard for the prover to find an accepting π.
Importantly, though, Cx must be well-formed to ensure soundness. Thus, the setting where
hash chain constructions can be used is slightly more restricted.

HashWires [24] defines a relaxation of zero-knowledge range proofs called credential-based
range proofs (CBRPs). This notion is weaker than general ZKRPs in that the commitment
is assumed to be well-formed. Soundness is shown only under this assumption, which is
motivated by a setting where a trusted authority distributes commitments to parties that later
prove that their committed values exceed some threshold. For example, the trusted authority
may be a government, and the commitments might be used for credentials including citizens’
ages. If a commitment is signed by this trusted authority, a verifier can be confident that
the commitment is properly formed. Technically, this implies that when defining soundness
for CBRPs, the adversary cannot produce the commitment (as defined in the statement of
Def. 3, but instead is honestly generated (the full definition of CBRPs can be found in [24]).

As described, the time to generate π and Cx is linear in x, and the verifier time is linear
in t. This is very expensive if we wish to prove that x is in some large range [0, 2k−1]; ideally,
these costs should grow at most linearly with k. HashWires achieves this by observing that x

can be written in some base u, and the proof can be broken into several sub-chains to greatly
improve this efficiency (they called this a minimum dominating partition). This base can be
chosen to trade off between proof size and prover/verifier efficiency. In our later discussion
of efficiency, we include benchmarks for a variety of bases. We will see in Section 9 that
HashWires is extremely concretely efficient, in terms of both verifier time and prover time.
Its proof sizes are also competitive with other constructions.

8 Choosing the construction family for your application

As there are dozens of ZKRP constructions, choosing the appropriate scheme for a particular
application can be challenging. In Figure 1, we give a flowchart for narrowing down the class
of range proofs depending on constraints. The next section gives an efficiency comparison to
help choose a scheme within this class.
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Start

Credential-based?

HashWires [24] Post-quantum security?

Lattice- & code-based Transparent setup?

BFGW + KZG [11],
Sharp [29], [52]

Bulletproofs family,
CKLR [30]

Yes No

Yes No

Yes No

Figure 1 Flowchart for choosing a range proof based on desired properties.

HashWires [24] are concretely quite efficient and use only hash functions; thus, they are
plausibly post-quantum secure and do not require a trusted setup. However, they’re in a
more stringent trust model (they are credential-based range proofs as defined in Section 7),
where there is a trusted issuer distributing commitments; that is, soundness holds only if
the commitment is well-formed. If the desired use case does have this type of trusted issuer,
HashWires is likely the most efficient scheme.

Among the remaining constructions, only the lattice-and code-based constructions are
plausibly post-quantum secure, and thus if this is a requirement this class is the only option.
These schemes have relatively large proof sizes (on the order of 10KB). Hash-based generic
zero-knowledge proof systems may be considered as well.

If trusted setup is allowed, there are several schemes with very short proofs and efficient
verifier and prover. BFGW + KZG [11], Sharp [29], and Libert’s DLOG-based scheme [52]
all have constant-sized proofs.

If trusted setup is undesired, the Bulletproofs family is recommended. Although many
lattice- and code-based constructions do not require a trusted setup, all Bulletproofs-style
constructions have much shorter proofs. Even if a trusted setup is allowed, Bulletproofs-style
constructions may still be worth considering depending on how much one values short proofs.
Though their proof sizes are not constant, they seem to be the most commonly used in
practice. We list CKLR [30] as well because it has comparable efficiency to Bulletproofs on
paper and also does not require trusted setup. However, it has several drawbacks: it does
not allow batching, it is less efficient in practice due to its incompatibility with optimized
libraries for common elliptic curves, and it offers a more relaxed notion of security. For certain
applications where these drawbacks are less important, CKLR may be worth considering.

9 Efficiency Comparison

This section includes an efficiency comparison of various ZKRPs. In Table 4, we compile
both concrete and asymptotic proof sizes for schemes of particular interest. The concrete
proof sizes have been extracted directly from the schemes’ respective papers, as the proof
sizes are largely the same across machine configurations. Groth16 has the shortest range
proofs for a 64-bit range at 192 bytes whereas HashWires has the shortest range proofs at
177 bytes for a 32-bit range.
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In Table 5, we record prover and verifier times for various schemes. We add many of
our own benchmarks to ensure that configurations are normalized. In particular, we add a
benchmark for Groth16 [44] that was absent in prior work. The configurations for benchmarks
that we pull from other papers are noted below.

Other benchmarks. The Sharp paper’s [29] benchmark was run on a MacBook Pro with
a 2.3 GHz Intel core i7 processor and uses the library libsecp256k1 [70]. The HashWires
paper [24] includes a benchmark for Bulletproofs which is significantly faster than ours. They
used an AVX2 backend was used which significantly speeds up curve arithmetic. We include
this benchmark in addition to ours, to reflect the speedup possible with their configuration.

Our benchmarks. We add our own benchmarks for Hashwires (base 16 and base 256),
Bulletproofs, BFGW + KZG, and Groth16. In all cases, we record the median running time
over 100 runs. We plan to open source all of our benchmarks for reproducibility.

For Groth16, we implement range proofs with two versions of the commitment scheme:
the well-established Pedersen commitments and the new zk-friendly Poseidon commitments.
We’ve used Circom [8] for writing circuits and rapidsnark [47] for generating and verifying
the Groth16 proofs.

The implementations for Hashwires, Bulletproofs and BFGW + KZG are in Rust. All the
benchmarks were run on a AMD EPYC 7443P 24-Core with 512GB of RAM (a c3.large.x86
machine hosted by latitude.sh). We explicitly chose a non-Mac machine because rapidsnark
leverages Intel Assembly to speed up Groth16 proof generation.

Hashwires has the fastest proof generation and verification times. Both BFGW + KZG
and Groth16 have constant-sized proofs but they are less computationally efficient than
others. Groth16 has the longest proof generation times. This is expected because we are
instantiating range proofs within a general-purpose zk proof system.

It is worth noting that in practice the availability of a reliable library may outweigh mild
efficiency gains. Bulletproofs is the most widely used range proof in practice and is likely
a good choice. Groth16, though not tailored to range proofs, is one of the most popular
general-purpose zero-knowledge proof systems and offers several well supported libraries; we
use Circom [8] and rapidsnark [47]. From our benchmarks, one can see the efficiency gains
offered by tailored range proof solutions over generic solutions, which can be seen especially
in the long prover times required for Groth16 relative to the other range proofs.

10 Research Gaps

▶ Research Gap 1. Practical transparent constant-sized range proofs.

No zero-knowledge range proofs are practical, transparent, and have constant-sized proofs.
Bulletproofs and its close relatives have transparent setup but have proofs of size O(log k)
for a k-bit range. BFGW + KZG has constant-sized proofs but requires a trusted setup;
BFGW + DARKs has a transparent setup but requires O(log k)-sized proofs. CKLR has
a transparent setup and has constant-sized proofs but achieves only a relaxed notion of
soundness. Furthermore, its proofs are not as practically efficient as the above schemes
because they use less common curves that optimized libraries do not support.

▶ Research Gap 2. Shorter (even amortized) lattice- or code-based ZKRPs.
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Table 4 Proof sizes in bytes for 64- and 32-bit ranges. The benchmark for each of these schemes
is from that scheme’s original paper, except where otherwise noted.

Scheme Proof size (bytes) Proof size (asymptotic)
32-bit range 64-bit range k-bit range

Bulletproofs 610 675 O(log k)
BFGW + KZG † 576 576 O(1)

SharpGS 318 360 O(1)
SharpPo

SO 335 389 O(1)
SharpRSA 751 793 O(1)

HashWires (Base 16)† 231 263 O(log k)
HashWires (Base 256)† 167 199 O(log k)

Groth16 [44]§ 192 192 O(1)
Lattice-based ALS [4]** 5,900 - O(k)
Lattice-based ESLL [37] 58,000 93,000 Ω(k)*
Lattice-based LNS [58]** 11,800 - o(k)‡

† Our own benchmark.
§ Benchmark from HashWires [24], over the BLS12-381 curve.
*See [37] for the exact expression, which includes several other parameters
not described here. It is Ω(k) and is large relative to the other schemes.
**The proof sizes for 64-bit ranges were not included in [4, 58]. Note that [4]
has linear growth, so extrapolating from its 5,900-bit proof for 32-bit ranges,
its proof for 64-bit ranges would be large.
‡ See [58] for the exact expression, which is complicated; it is sublinear in k.

Table 5 Verifier and prover times. †Our own benchmark.

Scheme Verifier Time (ms) Prover Time (ms)
32-bit range 64-bit range 32-bit range 64-bit range

Bulletproofs† 1.37 2.51 6.32 11.96
SharpPo

SO 0.74 0.75 0.97 1.17
Bulletproofs AVX2 (HashWires benchmark) - 0.938 - 6.516

HashWires base 16† 0.002 0.002 0.003 0.061
HashWires base 256† 0.009 0.01 0.083 0.194

BFGW + KZG† 5.653 5.682 9.572 12.569
Groth16-Poseidon† 4 4 34.23 34.46
Groth16-Pedersen† 4 4 31.18 33.57

The proofs of lattice-based and code-based ZKRPs are concretely quite long, as shown in
Table 4. For blockchain applications where one must pay for the space used on-chain, this
length is problematic, especially as these constructions do not support aggregation. In order
to be competitive with constructions using other techniques shown in Table 4, the proof size
must be under 1 KB.

▶ Research Gap 3. Lattice- or code-based ZKRPs with multi-prover aggregation.

Lattice-based ZKRPs with short proofs are desirable for confidential transactions, as
blockchains transition to post-quantum security. In such settings, this size issue may be
mitigated by multi-prover aggregation. Each block would then contain only an aggregate
range proof for all included transactions. However, this aggregation must be multi-prover as
these transactions may be made by many different parties, each holding commitments to
private values. Lattice- and code-based ZKRPs with multi-prover aggregation have not yet
been constructed, leading us to the this related research gap.

▶ Research Gap 4. Un-replayable credential-based range proofs.



M. Christ, F. Baldimtsi, K. K. Chalkias, D. Maram, A. Roy, and J. Wang 14:21

For credential applications, one might want an interactive range proof that cannot be replayed.
Suppose that Alice has a commitment of her age signed by a trusted credential issuer. Alice
should be able to visit the DMV and prove in zero knowledge that her committed age is
above 16. An observer Bob should not be able to copy Alice’s commitment and re-use the
transcript of the protocol to prove (possibly falsely) that his age is above 16. If this range
proof is non-interactive, Bob can simply copy the proof and re-use it. This re-use might be
avoided if the protocol is public-coin interactive, and the DMV issues a random challenge
that requires knowledge of the committed value to respond to.

Can we make hash-chain-based range proofs that are un-replayable in this way? As
credentials are a primary motivation for HashWires, un-replayability would be a nice property
to add.

▶ Research Gap 5. Integer commitments with full soundness with transparent setup.

CKLR [30] and Sharp [29] construct integer commitments with a relaxed notion of soundness.
In order to be used for confidential transactions, they must be augmented with additional
proof elements from an RSA group or class group. The RSA version requires a trusted setup,
and the class group solution is not compatible with existing optimized libraries. Rather than
patching soundness issues by adding these extra elements, it would be preferred to construct
practically efficient integer commitments with full soundness and transparent setup.

▶ Research Gap 6. Efficient post-quantum ZKRPs compatible with LWE-based ciphertexts.

Zero-knowledge range proofs can be used to build verifiable LWE-based encryption schemes as
discussed in our full version[27].However, existing verifiable LWE-based encryption schemes
constructed using ZKRPs [35, 52] use discrete logarithm-based ZKRPs. Thus, while they
obtain privacy against quantum adversaries due to the LWE-based encryption used, they lack
soundness in verification due to the DLOG-based range proofs. If there were efficient post-
quantum range proofs compatible with LWE-based ciphertexts, one could obtain verifiable
encryption with soundness against quantum adversaries as well. While a lattice-based
zkSNARK (e.g., [2]) may work in theory, it may not be efficient (yielding long ciphertexts and
heavy computation). An efficient lattice-based ZKRP that is compatible with lattice-based
encryption would be more satisfactory.
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Abstract
Light clients implement a simple solution for Bitcoin’s scalability problem, as they do not store the
entire blockchain but only the state of particular addresses of interest. To be able to keep track of
the updated state of their addresses, light clients rely on full nodes to provide them with the required
information. To do so, they must reveal information about the addresses they are interested in. This
paper studies the two most common light client implementations, SPV and Neutrino with regards to
their privacy. We define privacy metrics for comparing the privacy of the different implementations.
We evaluate and compare the privacy of the implementations over time on real Bitcoin data and
discuss the inherent privacy-communication tradeoff. In addition, we propose general techniques to
enhance light client privacy in the existing implementations. Finally, we propose a new SPV-based
light client model, the aggregation model, evaluate it, and show it can achieve enhanced privacy
than in the existing light client implementations.
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1 Introduction

Blockchain networks like Bitcoin [41] are composed of a decentralized blockchain, structured
as an immutable chain of data blocks. Starting from the first block, each block includes the
output of a cryptographic hash function computed over the content of the previous block,
making it impossible to alter a block without changing all subsequent blocks. Blockchain
blocks are lists of transactions bundled together due to the high cost of the consensus protocol.
Blocks are composed of two main components: block header and transactions. The block
header stores only metadata, a hash of the previous block and the root of the Merkle tree
of the block transactions [36]. The increasing amount of memory required to maintain the
full Bitcoin state together with rapid growth in the volume of transactions that must be
processed imply a large overhead on full Bitcoin nodes. Hence, not all nodes participating in
a blockchain store and process the entire blockchain.

A light client is a node variant that can verify only part of a block, without locally
maintaining the complete network state. While full nodes process the entire block (both
header and transactions), light clients process only partial block information. Light clients
are connected to full nodes and receive relevant information through them. To do so, light
clients reveal in various forms information about the addresses of their interest [23]. This
paper focuses on two common light client implementations SPV [41] and Neutrino [44],
covering the different approaches used by most existing light client solutions.
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Our main contributions are as follows:
We overview the main existing light client implementations: SPV and Neutrino.
We define privacy metrics for measuring the privacy of the implementations.
We perform both theoretical and empirical analysis, and compare the privacy of the
different light clients over time on real data.
We discuss how light clients may improve their privacy.
We present a new model that further improves light client privacy.

We structure the paper as follows. Section 2 overviews methods for set representation, in
addition to previous work on light client privacy. Section 3 presents the paper’s threat
model and Section 4 describes metrics used to measure the privacy of light clients. Next, we
provide a theoretical analysis of the privacy of SPV and Neutrino in Section 5. In subsections
6.1-6.3 we conduct an empirical analysis of the privacy of SPV and Neutrino, based on real
data. Subsection 6.4 presents the privacy-communication tradeoff and compare the different
implementations. These results are further discussed in Subsection 6.5. Then, we propose a
new light client model that improves privacy in Section 7. Section 8 concludes the paper.

2 Background

2.1 Memory-efficient Methods for Set Representation
Bloom Filters. The Bloom filter [10, 13] is a popular data structure widely used in many
networking device algorithms [12, 34], in fields as diverse as packet classification, routing,
filtering, caching, and accounting, as well as beyond networking in areas like verification and
spell checking. The Bloom filter is used for set representation, supporting element insertion
and answering membership queries. There are two kinds of errors in membership queries: a
false positive (when an element x /∈ U is reported as a member of a represented set U) and
a false negative (when an element x ∈ U is reported as a nonmember of U). The Bloom
filter encounters false positives and has no false negatives. It is built as an array of bits,
where hash functions map elements to bits in the array. With initial values of zero bits, the
elements of U are first inserted into the filter, setting the bits pointed by the hash functions.
Upon a query, bits mapped by the queried element are examined and a positive answer is
returned only when the bits are all set.

Golomb-Coded Set (GCS). GCS is a data structure similar to Bloom filters, though it
has a more compact in-memory representation that comes at the expense of having a slower
query time (compared to Bloom filters) [24]. Given a hash function, N the number of items
to be inserted into the set and an expansion parameter M , GCS works as follows:

(i) Hash all items using hashing function H to integers in the range [0, N · M).
(ii) Sort hashed values (in ascending order).
(iii) Calculate the differences between each value and the previous one.
(iv) Write the differences sequentially, compressed with Golomb coding [24].

Similar to Bloom filters, GCS is a probabilistic data structure that may contain false
positives as a tradeoff with the memory size. Assuming the hashing function H has a uniform
distribution, elements that were not inserted into the set have a probability of N ·1

N ·M = 1
M

to have the same hash value of an element in the set (after step (i)), and thus to appear in
the set. Small M values reduce the GCS size but increase the false positive rate. Table 1
summarizes the main notations of the paper.
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Table 1 Summary of main notations.

Symbol Meaning relevant to
A address space SPV, Neutrino
|c| number of addresses associated with client c SPV, Neutrino
pi probability that an address i belongs to c SPV, Neutrino
H client entropy SPV, Neutrino
R detection ratio SPV, Neutrino
X number of addresses guessed correctly among |c| guessed addresses SPV, Neutrino
Ec expected number of correctly guessed addresses SPV, Neutrino
x a target probability sum SPV, Neutrino
N number of inserted elements in a set Bloom filter, GCS
F number of false positives in a set Bloom filter (SPV)
M expansion parameter GCS (Neutrino)

pF P probability of a downloaded block being a false positive Neutrino
K number of addresses in a block Neutrino
k number of non-eliminated addresses in a block Neutrino
A′ address space excluding all eliminated addresses Neutrino
z number of blocks an address appears in Neutrino

pi
z probability that non-eliminated address i appearing in Neutrino

z blocks downloaded by client c is associated with c

G number of groups client c participates in Aggregation Model
S number of clients in each group Aggregation Model
l group leader Aggregation Model

pcolluding probability light clients might collude with a full node Aggregation Model

2.2 Light client implementations

Bitcoin Simplified Payment Verification (SPV). SPV clients were first suggested in
Bitcoin’s original white paper [41]. Since light clients do not keep track of the entire network
state but only of several addresses in their interest, to be familiar with the balance of these
addresses, SPV clients request all relevant transactions from a full node. To preserve privacy
regarding the addresses associated with each client, light clients do not send an explicit
list of relevant addresses but send a filter containing these addresses implicitly. Among all
transactions that appear in a block, a full node only forwards those transactions that match
the SPV filter, potentially with some false positives (namely transactions beyond the interest
of the SPV client). Together with the particular transactions of interest, the full node also
provides Merkle-tree-based proofs, demonstrating their inclusion in the block. Once the SPV
client receives and validates the transactions (using the Merkle proof), it updates its state
according to the transactions.

A Bitcoin Improvement Proposal (BIP) is a formal proposal to change Bitcoin suggested
by the Bitcoin community (recall Bitcoin does not have one centralized leader). In BIP-37 [37],
Bloom Filters were suggested as light client address filters. Using Bloom filters allows SPV
clients to in-explicitly express the set of addresses they are interested in. The filter length
can be selected based on a required false positive probability. Fig. 1a illustrates the process
of an SPV client requesting transactions from a full node.

Though multiple Bitcoin light client implementations exist, most implementations, such
as Electrum [51], Bither [47] and Mycelium [1], are all SPV-based. Moreover, [15] covers
the main blockchain systems supporting light clients, and though these systems differ from
each other, and accordingly the light client implementation they support, almost all of the
light client implementations, including Binance light client [5], Cosmos - InterBlockchain
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Table 2 A high-level comparison between SPV and Neutrino.

SPV [37] Neutrino [3]

Set representation method Bloom filter Golomb-coded set
Data downloaded by light client Transactions Blocks

Who performs most computation? Full node Light client
Privacy achieved by False positives Downloading blocks

Full node
Light client

Bloom filter

matched txs

tx match?

txs

(a) SPV.

Full node
Light client

GCS filters for blocks

relevant block numbers

requested blocks

txs

(b) Neutrino.

Figure 1 (a) Bitcoin SPV Clients: The light client reports its set of relevant addresses through
a Bloom filter. (b) Neutrino Clients: A full node sends GCS (Golomb-Coded Sets) filters of the
addresses in newly generated blocks, the light client reports relevant blocks it would like to download
and the full node sends these blocks.

Communication [11] and ZCash’s Flyclient [14] light client, are all SPV-based or have a
similar implementation to SPV. Ethereum light clients such as Helios [4], Kevlar [50] and
Lodestar [6] use Bloom filters too for gathering information transactions from a full node.
Cuckoo filter [22] based light clients [48] are similar too, having a client using a filter to
request transactions when updating its state. The advantages of SPV clients are that they
store locally only a small amount of data, in addition to very little data that is sent as
part of the communication with the full node. Additionally, SPV clients perform minimal
computations as the full node is the one to process newly generated blocks for finding relevant
transactions. However, this light client implementation suffers from several drawbacks. First,
SPV clients may observe low privacy as full nodes can infer what addresses are related to the
SPV client. Additionally, since the heavy computation is performed on the full node, it is
not very rewarding for the full node. This also makes full nodes vulnerable to DOS (Denial
of service) attacks. To improve privacy, SPV clients use Bloom filters with a high rate of
false positives to make it harder to infer what addresses are associated with the client.

Neutrino. To overcome the privacy drawbacks of SPV light clients, Neutrino clients suggest
a different approach: Rather than requesting specific transactions from the full node, light
clients download specific blocks, containing the relevant transactions. BIP-157 [44] implements
this approach, using Client-Side Block Filtering. Whenever a new block is generated, full
nodes create and broadcast a filter of all addresses that appear in the block. When a light
client receives a filter, it checks if any of the addresses in the block are relevant. If so, the
light client downloads the entire block from the full node and updates its state. BIP-158 [43]
suggests using Golomb-Coded Sets (GCS) filters since a GCS filter is typically smaller than
a Bloom filter with the same amount of elements inserted and the same false positive rate.
Neutrino [3] is a light client implementation with Client-Side Block Filtering using GCS.
Fig. 1b illustrates the process of updating the state of Neutrino clients. Since Neutrino light
clients download the entire block and not specific transactions, full nodes have much less
information regarding the light client’s addresses. Additionally, as full nodes with Neutrino
implementations perform fewer computations than full nodes with SPV implementations,
Neutrino full nodes are less vulnerable to DOS attacks. On the other hand, Neutrino requires
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more computations on the light client’s side when a client checks the relevancy of a received
filter. Additionally, the network communication of Neutrino clients is higher than the SPV
clients as Neutrino clients download the entire block and not only specific transactions.
Moreover, as full nodes know what blocks were downloaded by clients, as we show in this
paper Neutrino clients also have privacy concerns. Table 2 summarizes high-level differences
between SPV and Neutrino clients.

2.3 Related Work

Security and privacy in Bitcoin have been widely discussed in the literature. Conti et
al.[18] perform a comprehensive study on the security and privacy of Bitcoin, reviewing
de-anonymization methods by analyzing blockchain data. [39] use a forensics perspective,
analyzing Bitcoin wallets for iOS and Android, recovering information such as metadata,
installation data, timestamps, and usage traces. Multiple papers [21, 9, 58, 40] try to cluster
Bitcoin addresses. [32] link between fungibility and anonymity of cryptocurrencies and put
forward a framework to measure the fungibility and anonymity of cryptocurrencies, using
Shanon entropy. Additionally, [53] uses a Transaction Directed Acyclic Graph (TDAG) to
capture blockchain privacy notions (PDAG) and compare Monero and Zcash, the two most
prominent privacy-preserving blockchains. All of these papers though, do not focus on light
clients. [31] provides a taxonomy of cryptocurrency wallets, including light clients such as
SPV and Neutrino, evaluating their performance and security. The privacy evaluation is
given at a high level without formalized privacy or empirical evaluation.

The privacy and anonymity of Bitcoin light clients have been discussed widely [23, 29, 57, 8].
The first to analyze and formalize the privacy issues of light clients using Bloom filters was a
study by Geravis [23]. Later, in [26], the BIP-37 proposers who implemented Bloom filters in
SPV clients expanded on these privacy issues and discussed the difficulties of solving them.
[29] further continue the analysis of [23]. Let N be the total number of addresses inserted in
a Bloom filter and F the number of false positives. [23] show the probability of an address
with a Bloom filter positive indication actually belonging to c is pi = N

N+F . Accordingly, the
probability of guessing j addresses with a positive Bloom filter indication and having them
all associated with c is

∏j−1
i=0

N−i
N+F −i . We note that in our paper, we base our initial analysis

on these probabilities. Similarly, [29] presents a metric called γ-deniability. They refer to a
Bloom filter member x ∈ S as deniable if for i ∈ {1, . . . , n} there is a nonmember yi such
that Hash(x) = Hash(yi). Then, a Bloom filter is γ-deniable if an address is deniable with
probability γ. That work indicates that privacy is affected not only by the false positive
rate of the Bloom filter but also by the number of real addresses. They describe a method
for estimating the number of active addresses through a linear regression model. A similar
observation about the efficiency of Bloom filters was described in a more general context [46].
Later, [27] provides an evaluation of the privacy of SPV clients using multiple bloom filters
with the γ-deniability metric, in addition to an entropy measurement of the Bloom filters.
Unlike SPV, the privacy of Neutrino clients is not discussed much as it is generally considered
much higher than SPV [45].

To provide better privacy than SPV, several approaches were suggested, such as Neut-
rino light clients [3], PIR-based light clients and [16, 45, 56] and using trusted execution
environment-based light clients [35, 42, 49, 54], and In this paper, we do not focus on the
latter approach since it requires suitable special hardware which makes it unusable for most
current Bitcoin users, hence it is rarely implemented in practice.
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3 Threat Model

In blockchain systems, user privacy is a major concern. However, the relation between
Bitcoin transactions and addresses can be used to analyze Bitcoin’s privacy information,
seriously jeopardizing Bitcoin anonymity [59]. An adversary may find an association between
Bitcoin transactions and addresses using address clustering, further associating groups of
addresses with the same entity [25, 28, 59, 52, 33]. Moreover, although the recommendation
in Bitcoin is to generate a new address for each transaction, as this results in a large overhead
of generating and managing addresses, most Bitcoin users do not generate a new address
each time. Similarly to previous work [8, 23, 29, 57], in this paper, the goal of an attacker
is to reveal what addresses typically belong to the wallet of light client c. This allows the
attacker to track every transaction performed by c, and keep track of c’s financial status.
Likewise, we assume the light clients are connected to the Bitcoin P2P network, and receive
information regarding the network transaction through full Bitcoin nodes. That attacker
gains information from the filters used by c (the Bloom filters for SPV clients and the blocks
downloaded for Neutrino clients). Moreover, we assume all relevant filters can be tracked to
the same IP address (thus the adversary knows what filters are related).

We argue this model currently represents a real-life scenario. First, for an SPV client
c all the attacker needs is a filter of the addresses of c, which is sent to any full node c

communicates with. As for Neutrino clients, often a Neutrino client continues to communicate
with the same full nodes over and over, allowing them to gain information regarding all of
the blocks c is interested in. c communicates with the same nodes for several reasons: First,
as the process of full node seeking is DNS-similar and might be time-costly, light clients keep
a cache of full nodes they discovered, and communicate with cached full nodes rather than
search for new full nodes every time. Additionally, as this threat model is passive, c is not
aware of the attacker’s gain of information. An attacker might act as a fast and reliable
node, encouraging c to continue using it rather than search for other full nodes. Moreover, if
c disconnects from the network and later rejoins, to reconstruct the previous state c might
request all relevant blocks at once from the same full node. In addition, Neutrino clients are
encouraged to communicate with multiple full nodes and validate the consistency of the data
received to lower the risk of data leakage attacks [35]. On top of that, c might communicate
with colluding full nodes, sharing information. Hence, Neutrino clients are at risk of having
a full node with information regarding all of the blocks c was interested in.

4 Privacy Metrics

In this section, we present light client privacy evaluation metrics. Previous papers [23, 29]
have already analyzed the privacy of SPV clients, though they did not use privacy evaluation
methods that can be compared to other light client implementations but SPV. We expand
the privacy analysis of SPV clients and present different privacy metrics that can be used to
analyze the privacy of Neutrino clients as well. These metrics also allow us to compare the
privacy of SPV and Neutrino clients. Although Neutrino clients are thought to have much
higher privacy since they download full blocks rather than specific transactions [3, 57, 31], as
we show in this paper over time Neutrino clients may suffer from severe privacy issues too.
To the best of our knowledge, we are the first to measure the privacy of Neutrino clients.
Throughout the paper, the privacy of light client c refers to the situation where the specific
details of the account addresses of c should be hidden from external parties. pi denotes the
probability that an address i is among the addresses of interest of client c. Denote by A the
blockchain address space such that c ⊆ A. In Section 5 we show how to evaluate pi for each
address in both SPV and Neutrino clients. We present the two following privacy metrics:
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(i) Light Client Entropy. Entropy is a metric used to measure the uncertainty or disorder
of a dataset or a random variable. The higher the uncertainty regarding each element in the
dataset, the higher the entropy gets. When all addresses have the same probability, pi = |c|

A ,
it is the most difficult to distinguish between addresses associated with c and other addresses.
Additionally, when some addresses have a higher probability compared to others, there is
less uncertainty regarding which addresses belong to c. Assuming the sum of probabilities
pi of all addresses in A is |c| (as c has |c| addresses), the number of addresses needed to
cover some probability sum of x < |c| can indicate the uncertainty of the network. Hence,
we define T (x) as the minimal number of addresses needed to cover some probability sum
x. This minimal number of addresses can derived based on the addresses with the highest
probabilities. On the one hand, a wide range of x values gives a better indication. On the
other hand, lower x values distinguish addresses better (for instance x = |c| will always
return the number of addresses with pi ̸= 0, which is less informative). Hence Definition 1,
presenting the light client entropy of some light client c, sums T (x · |c|) for x values in the
range [0, 1], and gives higher weights for lower x values. Finally, a ln operation is applied for
convenience to scale the entropy (and is not mandatory). We note that addresses that are
necessarily not associated with c (satisfying pi = 0) decrease the value of entropy H as they
often lead to higher probabilities of other addresses being associated with c, thus decreasing
T (x · |c|). Moreover, it is easy to see that the minimal entropy value is achieved when there
are |c| addresses with probability pi = 1 (namely, when all addresses associated with c are
known), as T (x · |c|) returns the minimal value possible for all x values.

Our definition of entropy differs from the classic Shanon entropy equation, Entropy =
−

∑
j p(j) · log p(j). The entropy values are maximized when the pi values get closer to 0.5.

As pi describes the probability of an address being associated with c, and since there are
many more addresses that are not associated with c (namely, |c| << |A| − |c|), lower pi

values, rather values closer to 0.5, are values indicating higher uncertainty. Hence, the classic
Shanon entropy equation (while considering the probabilities for addresses in the address
space) is less suitable for measuring uncertainty regarding c’s addresses.

▶ Definition 1. The light client entropy of light client c is defined as

H(c) = ln
∫ 1

0
(1 − x) · T (x · |c|)dx

where T (x · |c|) is the minimal number of addresses needed to cover a probability sum of x · |c|.

(ii) Detection Ratio. As the number of addresses of c an adversary can guess correctly
is a privacy concern, the detection ratio metric measures the ratio between the number of
correctly guessed addresses and the total number of guesses. Assuming an adversary guesses
|c| addresses, Ec denotes the expected number of correctly guessed addresses.

▶ Definition 2. The detection ratio R(c) of client c is defined as R(c) = 1
|c| · Ec, assuming

out of |c| addresses guessed, the expected number of correctly guessed addresses is Ec.

Intuitively, for lower values of the detection ratio R(c) there is less certainty about which
addresses are associated with c, and the privacy of c is higher. We present a simple lemma
related to the detection ratio.

▶ Lemma 3. The expected number of correctly guessed addresses Ec equals the sum of
probabilities of guessed addresses: Ec =

∑
i∈Ω pi, where Ω is the set of guessed addresses.
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Proof. Assume an adversary guesses a set Ω of |Ω| = |c| addresses. Now, let X be the number
of addresses in Ω that were guessed correctly. Let Xi be an indicator for a guessed address
i ∈ Ω to be indeed in c. In that case, Ec = E[X] = E[

∑n
i=1 Xi] =

∑n
i=1 E[Xi]. Since the

expectation on an indicator i is equal to the probability that Xi = 1, i.e. E[Xi] = P (Xi = 1),
then Ec =

∑
i∈Ω pi equals the sum of the probabilities of the guessed addresses. ◀

By Lemma 3, the value Ec equals the sum of the probabilities of the guessed addresses.
We note the minimal detection ratio is achieved when each address i ∈ A has the probability
pi = |c|

|A| of being associated with c. In such a case, the detection ratio is R(c) = |c|
|A| .

We note that while entropy measures the uncertainty on the entire network and is affected
by all addresses, the detection ratio measures the more prominent addresses and is affected
mainly by the high-probability addresses in the network.

5 Privacy Theoretical Analysis

5.1 SPV privacy
When evaluating the privacy of SPV clients, the information regarding the addresses of client
c is inferred from the Bloom filter c creates. As most SPV-based implementations use a
constant filter for a long time, the privacy of SPV clients does not change over time since
the information regarding the addresses in c is inferred from the filter alone. We start with a
simple property regarding addresses that do not appear in the filter:

▶ Property 4. Addresses with a negative indication in a filter are not associated with c.

Property 4 states that the probability of every address with a negative indication being
related to c is pi = 0 since c inserts all of its addresses to the filter that has no false negatives.
The probability of address i with a positive indication belonging to c was analyzed in [23], and
depends on the number of addresses of c and the number of false positives F : pi = |c|

|c|+F . We
take the analysis of SPV privacy a step forward, trying to numerically evaluate its privacy in
a way that could be compared to other light client implementations. Lemma 5 evaluates the
entropy of light client c, showing H(c) = ln |c|+F

6 . Lemma 6 shows the number of addresses
guessed correctly out of guessing |c| addresses of an SPV client is hypergeometric distributed
with parameters (N, |c|, |c|), allowing Lemma 7 to evaluate the detection ratio of light client
c as R(c) = |c|

|c|+F .

▶ Lemma 5. For an SPV client with |c| addresses and a Bloom filter containing F false
positives, the light client entropy value is H(c) = ln |c|+F

6 .

Proof. We first note that there are |c| + F addresses with a positive filter indication, all with
probability pi = |c|

|c|+F of being associated with c. By property 4, all other addresses in address
space A have a probability of pi = 0. Next, we note that there are x · (|c| + F ) addresses
needed to achieve a probability sum of x · |c|, hence for 0 ≤ x ≤ 1, T (x · |c|) = x · (|c| + F ).
Thus, H(c) = ln

∫ 1
0 (1 − x) · T (x · |c|)dx = ln

∫ 1
0 (1 − x) · x · (|c| + F )dx = ln |c|+F

6 . ◀

▶ Lemma 6. Let X be the number of addresses guessed correctly out of guessing |c| addresses
of an SPV client (all guesses are of addresses with a positive Bloom filter indication). X has
a hypergeometric distribution with parameters (N, |c|, |c|).

Proof. Recall SPV clients create a Bloom filter with a positive indication for N = |c| + F

addresses, out of them |c| indeed belong to c. X is the number of addresses that belong to
client c that are guessed correctly. The guessing order does not matter, and each guess reduces
the address space to guess from (since |c| different addresses are guessed). We note this case
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is identical to the classic hypergeometric distribution problem: Given a bin with N balls,
out of them n = |c| are black and the rest are white. Let X count the number of black balls
drawn (with no returning the balls and with no meaning to the drawing order). Since there
are |c| black balls, the maximal number of black balls drawn is D = |c|. Therefore, X has a
hypergeometric distribution with parameters (N, D, n), that is X ∼ HG(|c| + F, |c|, |c|). ◀

▶ Lemma 7. For an SPV client with |c| addresses and a Bloom filter containing F false
positives, the light client detection ratio is R(c) = |c|

|c|+F .

Proof. By Lemma 6 X ∼ HG(N, |c|, |c|). Hence, the expected number of correctly guessed
addresses is Ec = |c|2

|c|+F . Therefore, by the definition of the light client detection ratio
R(c) = Ec · 1

|c| = |c|2

|c|+F · 1
|c| = |c|

|c|+F . ◀

5.2 Neutrino privacy
As Neutrino clients receive the GCS (Golomb-coded set) filter from a full node and do not
download specific transactions but full blocks, it seems like there is much less information
that can be inferred by a full node hence Neutrino clients’ privacy is generally considered
much higher than of SPV [45]. Matetic et al. [35] show that a Neutrino client c might be at
risk of an attack revealing information on its addresses if it receives GCS block filters from a
single entity, though privacy is considered high when c communicates with multiple servers
(full nodes) and validates the data is consistent between the servers. This motivates Neutrino
clients to request the same information from multiple servers. We show there yet exists a
major privacy issue if some server knows the exact blocks c downloaded. Additionally, in
contrast to SPV light clients, we show the privacy of Neutrino clients decreases over time.
To the best of our knowledge, we are the first to address and formalize this problem. We
assume there exists a server with information about what exact blocks c downloaded and
can thus infer what blocks were not downloaded too.

Recall GCS filters have false positives, possibly making clients download blocks without
addresses associated with them. Given the probability for the block containing at least
one address the client is L, |c| is the number of addresses associated with client c and an
expansion parameter M for the GCS filter, Lemma 9 presents the probability of this block
being false positive for c. Upon assuming that in address space A all addresses have the
same probability to appear in a block, L can be evaluated as shown in Lemma 8.

▶ Lemma 8. Assume each block contains K > |c| addresses, selected uniformly at random
from the address space A. The probability L for the block to contain at least one address of
client c is L = 1 −

(|A|−|c|
K

)
/
(|A|

K

)
.

Proof. Given a block, let Y be the number of addresses associated with client c that appear in
the block. As all addresses have the same probability to appear in the block, when choosing K

addresses (out of them |c| addresses are associated with c) for the block the maximal number of
addresses associated with c that may appear in a block in min{|c|, K} = |c|. Hence, similarly
to X in Lemma 6, Y has a hypergeometric distribution, i.e. Y ∼ HG(|A|, |c|, K). Thus
P (Y = 0) =

(
D
0
)
·
(

N−D
n−0

)
/
(

N
n

)
=

(|A|−|c|
K

)
/
(|A|

K

)
and L = 1−P (Y = 0) = 1−

(|A|−|c|
K

)
/
(|A|

K

)
. ◀

▶ Lemma 9. Consider a Neutrino client c with |c| addresses and let M be the expansion
parameter of the GCS filter representation of a block. Let L be the probability of a block
containing at least one address of c. The probability of a block being a false positive block
(i.e. being downloaded by c without actually containing any address of c) is

pF P = (1 − L) ·
(

1 − (1 − 1
M

)|c|
)

=
(

|A| − |c|
K

)
/

(
|A|
K

)
·
(

1 − (1 − 1
M

)|c|
)

.
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Proof. For a block to be a false positive for client c, two conditions must be met:
(i) The block does not contain any address of c (event B).
(ii) Client c has at least one address with a positive filter indication (event D).

As L is the probability that at least one address associated with c will appear in the block,
the probability for the first condition to be met is P (B) = 1 − L. We compute the probability
for event D given that event B holds. Recall the probability of a non-associated address
to have a positive filter indication is 1

M , implying that the probability of a non-associated
address having a false filter indication is the 1 − 1

M . Since client c has |c| addresses, the
probability that all of addresses in c have a false filter indication is (1 − 1

M )|c| and at least
one address has a positive filter indication with probability P (D|B) =

(
1 − (1 − 1

M )|c|
)

.

Thus, pF P = P (B) · P (D|B) = (1 − L) ·
(

1 − (1 − 1
M )|c|

)
. ◀

Given that a block was downloaded by a client and is not a false positive, the probability
of guessing a single address is pi = 1

K where K is the number of addresses in a block. Since
an address appearing on a block may belong to c only if the block is not a false positive,
Property 10 is intuitive:

▶ Property 10. Given a block with K addresses that was downloaded by c, with one address
that belongs to c and with no other knowledge, the probability of each address being associated
with c is p = (1 − pF P ) · 1

K .

Similarly to Property 4, a full node can infer that addresses in blocks not downloaded by
c are not associated with it, as stated in Property 11. For every such address, the probability
of being associated with c is p = 0. An address in a block downloaded by c that also appears
in an earlier block not downloaded by c has a probability of p = 0.

▶ Property 11. Addresses appearing in blocks the light client did not download are not
associated with the client.

▶ Definition 12. For some light client c and a block B downloaded by c, non-eliminated
addresses are addresses that appear in B and do not appear in any earlier block that was
not downloaded by c.

Therefore, Property 13 states that only the amount of non-eliminated addresses k should
be considered when evaluating pi.

▶ Property 13. Given a block downloaded by c, with one address that belongs to c, knowing
the block contains k non-eliminated addresses, the probability of each address being associated
with c is p = (1 − pF P ) · 1

k .

6 Light Client Privacy Measurement

After presenting the privacy analysis of each implementation, we now evaluate and compare
the analysis of the different implementations. We examine the main parameters affecting
the privacy of each implementation and later empirically evaluate the privacy based on real
Bitcoin data. As Bitcoin uses the RIPEMD-160 [20] hash function, the number of possible
addresses is 2160. However, in practice, the Bitcoin blockchain consists of about a billion
addresses as of April 2023. Hence, the address space is of size |A| = 109. If only the number
of addresses |c| is known, pi = |c|

|A| . As all addresses have the same pi, this case is equivalent
to having a filter using F = |A| − |c| addresses, and by Lemmas 5 and 7 the entropy is



A. Kotzer and O. Rottenstreich 15:11

100 101 102 103 104 105 106 107 108

100

101

false positives F

en
tr

op
y

va
lu

e
H

(c
)

Bloom filter known, |c| = 10
Bloom filter known, |c| = 50
Bloom filter known, |c| = 100
Upper bound

(a) Client Entropy.

100 101 102 103 1040

0.2

0.4

0.6

0.8

1

false positives F

de
te

ct
io

n
ra

tio
R

(c
) Bloom filter known, |c| = 10

Bloom filter known, |c| = 50
Bloom filter known, |c| = 100
Lower bound

(b) Detection Ratio.

Figure 2 (a) The entropy of an SPV client c compared to the number of positives. The graph also
contains the entropy values of C when the Bloom filter is unknown. (b) The number of addresses
and the detection ratio compared to the number of positives. For convenience, the detection ratio is
presented as a percentage (scaled by 100). Both graphs are calculated for light clients with having
|c| = 10, 50 and 100 addresses.

H(c) = ln |A|−|c|+|c|
6 = ln 109

6 = 18.93, and the detection ratio is R(c) = 1
|109| . We now show

that by receiving additional information from the client, like a Bloom filter (SPV) client and
what blocks c downloaded (Neutrino) the privacy decreases.

6.1 Data
To evaluate the privacy of the different implementations on real-life data, we downloaded
all mined Bitcoin blocks during April 2023. A total of 4161 blocks were mined, averaging
137 mined blocks per day. Though the maximal size of a Bitcoin block is 4 MB, the average
block size was around 3.2 MB. Since achieving information regarding real-life wallets and
the addresses associated with them is not an easy task (as Bitcoin wallets are private), to
simulate a Neutrino client wallet, we sampled random addresses appearing in the blocks
mined on April 1st for wallets of size 10, 50 and 100. In each analysis, the address sampling
and privacy measuring were performed 100 times to neutralize noises. As there is no simple
formula for calculating the entropy of a Neutrino client, to evaluate the entropy of Neutrino
clients in Section 6.3, we sorted all of the probabilities in the network, implemented T (x) and
approximated the entropy value using calculating H(c) ≈ ln 1

1000 ·
∑

x∈[0.001,0.002,...,1](1 − x) ·
T (x·|c|). To assure uniformity between all entropy measurements, SPV entropy was calculated
using both the formula presented in Lemma 5 (derived from Definition 1) and by implementing
T (x) and calculating the value of ln 1

1000 ·
∑

x∈[0.001,0.002,...,1](1 − x) · T (x · |c|). For all SPV
entropy experiments, the entropy values of both calculations were at least 99.999% similar,
showing the sampling of the entropy evaluation of ln 1

1000 ·
∑

x∈[0.001,0.002,...,1](1 −x) ·T (x · |c|)
provides a close enough approximation.

6.2 SPV Measurement
For SPV light clients the main parameter affecting privacy is the number of positives F in the
Bloom filter. Fig. 2a presents the entropy of client c compared to the number of positives, for
different values of |c|. The figure additionally contains an upper bound of the privacy metrics
which is achieved when the adversary does not have the client Bloom filter. The larger F is,
the higher the entropy is. For instance, for a client with |c| = 50 addresses, F = 104 false
positives imply an entropy of H(c) = 3.25. The entropy increases to H(c) = 7.51 for a larger
amount of false positives, F = 105. Up to some point (in our case around F = 40 · 103),
an entropy increase can be achieved not only by increasing F , but also by increasing the
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number of addresses used by c. For instance, for |c| = 10 addresses and F = 500 the entropy
is equal to H(c) = 4.52, while for the same amount of false positives, the entropy increases
to H(c) = 4.69 if c uses |c| = 100 addresses instead. This is because as entropy measures
the uncertainty in the network, it is affected by all addresses, and the more addresses with
pi ̸= 0 there are, the higher entropy gets. More specifically, for SPV clients it is very easy to
see from Lemma 5 how the number of addresses in the filter affects entropy H(c), hence for
larger |c| values the filter contains more addresses and H(c) increases accordingly. However,
from around F = 40 · 103 all three sizes of |c| achieve similar entropy, as the size of c becomes
quite negligible compared to F .

Fig. 2b presents the address detection ratio of client c compared to the number of positives.
As expected, the detection ratio decreases as F increases. Though, unlike the entropy, more
addresses associated with c result in a higher detection ratio: Having F = 10 false positives,
the detection ratio is R(c) = 0.5 if c uses |c| = 10 addresses, namely 50% of the guessed
addresses are associated with c. For |c| = 100 the detection ratio is R(c) = 0.91. To achieve
a detection ratio of R(c) = 0.5 an amount of F = 100 false positives is needed. This is
because the detection ratio is affected mainly by the probability pi of each address, and for
the same amount of false positives used in a filter, higher c values have a higher percentage
of addresses that belong to c in the filter, hence probability pi for address increases and as
a result R(c) increases too. Similar to the entropy, when using around F = 40 · 103 false
positives, |c| becomes relatively negligible compared to F , in addition to a very low detection
ratio, hence the differences between the different |c| values become very small.

6.3 Neutrino Measurement
For Neutrino light clients, privacy is affected mainly by the block size, the amount of non-
eliminated addresses k in each block, the number of blocks downloaded by c and the number
of blocks each address appears in. Since the privacy of Neutrino clients depends on various
parameters and the probability of an address being associated with c varies between the
different addresses, Neutrino privacy evaluation is more difficult than SPV clients. We now
show that although Neutrino clients are considered to have high privacy, they may suffer
privacy issues over time.

Following the analysis in Section 5.2, we analyze the probability of an address appearing
in z blocks being associated with c. Intuitively, when the false-positive ratio is low, the more
blocks an address appears in the higher the chances it is associated with c. Assuming (for
simplicity) c is interested in (at most) one address from each downloaded block, since in a
non false-positive block the probability of a non-eliminated address not being associated with
client c is pi = k−1

k (for a false positive block pi = 0). This is assuming independence between
blocks, meaning the probability that an address that appears in z blocks is not associated
with c is P =

∏z
i=1

ki−1
ki

, where ki is the number of non-eliminated addresses and 1 is the
number of addresses associated with c in a non false-positive block. Hence, if all blocks are
non false-positive the probability that the address is associated with c is p = 1 −

∏z
i=1

ki−1
ki

.
Since the probability for z blocks not to be false positive is P = (1 − pF P )z, the probability
of a non-eliminated address appearing in z blocks downloaded by c being associated with c

is pi
z(c) = (1 − pF P )z ·

(
1 −

∏z
i=1

ki−1
ki

)
.

Fig. 3 presents the average entropy and detection ratio over time. We consider probability
p = 0 for eliminated addresses, and for each non-eliminated address i ∈ A′ that did not
appear yet in a block, we consider probability p = |c|

|A′| , where A′ is the address space
excluding all eliminated addresses. When evaluating the entropy, all address probabilities
were normalized to ensure the sum of probabilities equals c.
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Figure 3 (a) Entropy of a Neutrino client c over a month. (b) Detection ratio of a Neutrino
client c over a month. Both graphs were calculated for client size of |c| = 10, 50 and 100 addresses.

Fig. 3a shows the more blocks are mined the more information there is regarding the
addresses of c and the entropy decreases. For instance, while for |c| = 50 the entropy was
H(c) = 9.75 at the end of the first day (after 139 mined blocks), by the 30th day the entropy
decreased to H(c) = 7.46. This indicates that the more blocks are mined the more certainty
there is regarding what addresses belong to c. We additionally notice there is a large drop
in entropy on the first day. This is because before a full node has any information on c, all
addresses are candidates of being associated with c. After a day, many addresses become
eliminated addresses hence |A′| decreases by much, and as the entropy is affected by all
addresses, eliminating that many addresses decreases the entropy by much. Moreover, we
see the slopes of the graphs become milder over time. This is because over time there are
fewer and fewer addresses that are eliminated, hence the entropy decreases slower over time.

The detection ratio evaluation shows how the detection ratio increases over time too,
indicating a privacy decrease. As shown in Fig. 3b, after one day the detection ratio for
|c| = 10 was R(c) = 0.11, meaning an adversary could identify correctly an average of 11%
of the addresses of c. By the 30th day, the detection ratio increased to R(c) = 0.26. Unlike
the entropy, there is a difference in the detection ratio for different |c| values, as the more
addresses c uses the lower the chances of guessing correctly the addresses that belong to
c. For instance, on the 30th day with |c| = 100 the detection ratio is only R(c) = 0.08,
more than three times lower than |c| = 10. Moreover, the graphs show that for each day,
for larger c values the entropy and detection ratio have lower values, whereas for smaller c

values they increase. This is because larger c values result in downloading more blocks. The
main addresses that contribute to the entropy values are the non-eliminated addresses that
did not appear in any block. Hence, as for larger c values more blocks are downloaded, fewer
addresses have not appeared yet in a block and thus the entropy is relatively larger. As the
detection ratio is mostly affected by unique addresses that appear in blocks c downloaded
more than others, when more blocks are downloaded the higher the chances of addresses
appearing, thus reducing the chances of unique addresses that significantly appear more
than other addresses. To conclude, for all c values the entropy decreases over time while the
detection ratio increases, both indicating a privacy decrease over time in Neutrino.

6.4 Privacy and Communication Overhead
We now analyze the privacy and network communication of SPV and Neutrino. Additionally,
we compare this analysis to a PIR light client, which provides maximal privacy. Private
Information Retrieval (PIR) protocols, introduced by [17], allow clients to query a server and
retrieve data from the server’s database without revealing information regarding the data the
client was interested in. There have been several suggestions for light client implementations
using PIR [55, 56, 45]. We note that PIR implementations require a change in the current
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Figure 4 Privacy compared to communication overhead comparison between different light client
implementations, for a client with |c| = 50 addresses. (a) Entropy vs. communication overhead. (b)
Detection ratio vs. communication overhead.

Bitcoin full node protocol, in addition to much higher increased computational requirements
on both the server and clients. As light clients should stay light (usually running on devices
with small computation power), they are not yet popular as a light client solution. Hence,
we do not focus on PIR client implementations and use them as a solution providing ideal
privacy while improving the trivial solution of downloading the entire blockchain. We analyze
the PIR-based light client protocol presented in [45], provided in Percy++ [2], an open-source
library. Since we assume the privacy of PIR-based clients is ideal, the probability pi of each
address for PIR implementations is pi = |c|

|A| with |A| addresses that appear in the blockchain.
In our analysis, we generate clients with |c| = 50 random addresses similarly to Section 6.3.

We note the communication overhead of the filters used by SPV and Neutrino clients is
negligible compared to the downloaded transactions’ data. Fig. 4 presents the privacy of the
different implementations, in addition to the Trivial (downloading the entire blockchain)
and the Ideal implementations (achieving maximal privacy with downloading minimal data),
compared to the communication overhead after 30 days. For the SPV implementation, we
used two filter sizes with F = 850 and F = 40 · 103 false positives, denoted as SPV-850 and
SPV-40K, respectively. We observe in Fig. 4a that the Ideal, Trivial and PIR solutions
reach an entropy of H(c) = 18.91. While Trivial requires downloading the entire blockchain
of size 12.3 GB, PIR reduces this overhead to 204 MB. An ideal solution, though, would
require only 0.004 MB. SPV-40K achieves an entropy of H(c) = 8.81 for only 2.36 MB, and
Neutrino achieves an entropy of H(c) = 7.46, higher only than SPV-850, having an overhead
of 2.4 MB. The lowest entropy implementation was SPV-850 with an entropy of H(c) = 5.02,
though having a small overhead of 0.06 MB. Fig. 4b presents the detection ratio of each
solution. As we have already seen in Fig. 3, the detection ratio of Neutrino increases over
time, making it the highest detection ratio implementation, with R(c) = 0.18 after 30 days.
SPV-850 and SPV-40K achieve a detection ratio of R(c) = 0.055 and 0.012, respectively, while
PIR has a detection ratio of approximately zero.

6.5 Discussion: Additional Insights from the Measurement and Analysis
We now compare the privacy of the light client implementations, suggesting insights to
improve privacy in the existing light client implementations.

6.5.1 Privacy Comparison
Subsection 6.4 shows that in general, there is a privacy and communication overhead tradeoff
for light clients. For example, PIR provides better privacy than SPV and Neutrino, though
with a much higher communication overhead. That said, several implementations are
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comparable to others and some light clients perform better than others. Our analysis shows
that, unlike the common conception that Neutrino clients preserve more privacy compared
to SPV, under our threat model, SPV clients provide better privacy than Neutrino: While
SPV-40K has the same communication overhead as Neutrino, it provides a higher entropy
value and a detection ratio almost 15 times lower than Neutrino clients. SPV clients have
an additional advantage over other implementations, as there is only one main parameter
that determines privacy and communication overhead- the number of false positives F . This
allows SPV clients the opportunity to easily tune F based on what is more important for
their use- privacy or low network communication. Similarly, PIR light clients achieve similar
privacy as Trivial, having a much lower communication overhead, and can thus perform
better than SPV in the extreme case c wants maximal privacy.

6.5.2 Improving Light Client Privacy
Both SPV and Neutrino clients can improve their privacy by increasing the false-positive rate
of their filters. This results in additional transactions downloaded in SPV, and additional
blocks downloaded for Neutrino clients. We now suggest other efficient techniques to improve
light client privacy.

Neutrino. Recall by Section 6.3 that the probability pi of address i being associated with
c mainly depends on two parameters: z, the number of blocks an address appears in, and
k, the number of non-eliminated addresses. Increasing the number of addresses used by c

and thus decreasing z for many addresses will result in higher entropy and lower detection
ratio, indicating privacy improvement without any communication increase. Additionally, we
suggest methods for decreasing the chances of our threat model occurring. Recall Neutrino
clients are motivated to request information from multiple servers to reduce changes of some
privacy attacks [35]. We suggest Neutrino light clients should both limit themselves to a
non-large amount of full nodes and additionally divide the blocks download between multiple
servers rather than querying the same full nodes every time, especially when rejoining the
network. Moreover, we suggest Neutrino clients should keep track of the full nodes they
approached for information, and try being as diverse as possible when choosing a full node
to communicate with. In addition, occasionally clearing the full node cache will help avoid
reaching the same full nodes every time.

SPV. The main parameter determining the privacy of SPV clients is the number of false
positives, F . Hence, besides increasing F , section 7 suggests an SPV-based light client model,
that improves privacy for a similar communication overhead.

7 Proposal: The Aggregation Model (AM)

7.1 Overview
As existing light client implementations suffer from privacy issues, we suggest a new SPV-
based light client model, the aggregation model (AM), to potentially improve the privacy of
light clients, for a similar communication overhead. In short, we suggest light clients should
group up with other light clients, create an aggregated filter for all the clients and have one
client representative that communicates with the full node. We suggest light client c should
join G groups (each of size s light clients), equally split its addresses between these groups
and additionally add some false positives to each group filter.
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We assume each light client c uses F false positives. Additionally, c joins G groups, each
group of size S, meaning there are S light clients in each group. The following steps are
performed when a light client wants to download transactions from a full node:
1. c creates G non-intersecting filters, composed of |c|

G addresses of c and F
G false positives.

2. c joins G groups, each of size S.
3. For each group, the following is performed:

a. A leader l is randomly chosen (this can be done using several distributed algorithms
such as [7, 30, 38]).

b. All clients send l their (bloom) filters.
c. l creates an aggregated Bloom filter and sends it to a full node.
d. l receives transactions from the full node and sends each client it’s transactions (with

their Merkle-proofs), as received from the full node.

The implementation is illustrated in Fig. 5.

Groups of light clients, each of size S

Light client (with |c| addresses)

selected G groups

|c|+F
G

|c|+F
G

|c|+F
G

(a) Light client is associated with G groups.

Full node Aggregated filter

matched txs

tx match?

txs

Group of S light clients

leader

(b) An aggregated filter, sent by the group leader, summarizes the
addresses of all S light clients in the group.

Figure 5 Illustration of the aggregation model (a) Light client is associated with G groups and
sends |c|+F

G
addresses to each group. (b) An aggregated filter, sent by the group leader, summarizes

the addresses of all S light clients in the group.

When a new Bitcoin node connects to the network, it queries several DNS servers (which
are operated by volunteer nodes and provide a random selection of bootstrap nodes that are
active in the Bitcoin network). Once connected, the joining node learns about other nodes
by asking their neighbors for known addresses and listening for spontaneous advertisements
of new addresses [19]. Hence, we suggest light clients advantage of this mechanism to form G

groups of S clients each. We note the main advantage of the aggregation model is that only
the leader exposes itself to a full node, providing anonymity for other clients. This way light
clients receive transactions without any full node gathering information about non-leader
clients. Additionally, even at the worst scenario, where all nodes in the groups c participates
in collude with full nodes, using the aggregation model the privacy of light client c is at least
as high as the original SPV model.

7.2 Privacy analysis
In the aggregated model, both the full nodes and the leader gain information regarding the
light client addresses. As long as there are no colluding light clients, full nodes cannot infer
anything about the group light clients besides information concerning the leader. Hence,
assuming there are no colluding clients in the network, when evaluating the privacy of light
client c, the addresses in address space A can be separated into two groups: addresses in
filters of groups where c is the leader and all other addresses. We assume there are G groups
that c participates in, each of size S, and all clients have the same amount of addresses |c|
and use the same amount of false positives F , equally split between G groups. Property 14
calculates the expected number of leader groups. For each such group, Property 15 evaluates
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the number of addresses in the aggregated filter c creates and the probability pi of each
address in the filter being associated with c. As address space A is much larger than |c|,
Property 16 evaluated the total number of addresses associated with c in groups where c is
the leader, and Property 17 evaluates the probability pi of each address that does not appear
in a group c is the leader of being associated with c.

▶ Property 14. Given there are G groups c participates in, each of size S. The expected
number of groups c will be the leader of is G

S .

▶ Property 15. Given there are G groups c participates in, each of size S, assuming all
clients have the same amount of addresses |c| and use the same amount of false positives
F , equally split between G groups. In this case, the group leader creates an aggregated filter
containing |c|·S

G + F ·S
G = (|c|+F )·S

G addresses. As the group leader l has |c|
G addresses on the

aggregated filter associated with him, the probability pi of any address in the aggregated filter
being associated with l is |c|

G / (|c|+F )·S
G = |c|

(|c|+F )·S .

▶ Property 16. Assume the addresses in c are equally split between G groups, each of size
S. As c is the leader of G

S groups (Property 14) and there are |c|
G addresses associated with c

in each group, the total number of addresses associated with c in groups c is the leader of is
G
S · |c|

G = |c|
S .

▶ Property 17. Assuming there are |c′| ≤ |c| addresses that appear in groups c is the leader
of (c′ is evaluated in Property 16), and assuming |A| >> |c|, when there are no colluding
light clients the probability pi of an address that did not appear in a group c is the leader of
is |c′|

|A| .

We note that the previous analysis relies on the light client being honest. However, some
light clients might be adversaries too, and collude with each other or with a full node. We
denote by pcolluding the percentage of colluding light clients in the network (or similarly the
probability of a light client colluding). In such a case, the addresses in address space A can be
separated into three groups: addresses in filters of groups where c is the leader, addresses in
groups where c is not the leader and leader l is colluding, and all other addresses. Property 18
calculates the expected number of groups with a colluding leader, and Property 19 evaluates
the probability pi of all addresses used by c in this group. Similar to Property 17, assuming
there are |c′| < |c| addresses of c that appear in groups c is the leader of (evaluated in
Property 16), and |c′′| < |c| addresses of c that appear in a group with a colluding leader
(evaluated in Property 20), the probability pi of any other address is |c|−|c′|−|c′′|

A . We note
we assume here the strictest colluding assumption, where some full node has the entire
information gained by all colluding nodes.

▶ Property 18. Given there are G groups c participates in, each of size S, and a colluding
probability of pcolluding for each node that is not c. The number of groups c participates in
with a colluding leader is pcolluding · G·(S−1)

S .

▶ Property 19. Assume client c has |c| addresses and uses a total of F false positives,
equally split between G groups. For each group that c is not the leader of, c sends a filter
to the leader. The probability pi of each address in the filter being associated with |c| is
pi = |c|

G / |c|+F
G = |c|

|c|+F .

▶ Property 20. Assume the addresses in c are equally split between G groups, each of size
S. As by Property 18 the number of groups c is not the leader of is G · S−1

S , each having
|c|
G addresses associated with c. With a probability of pcolluding of the leader colluding, the

number of addresses associated with c in groups where c is not the leader and there is a
colluding leader is pcolluding · G · |c|

G · S−1
S = pcolluding · |c| · S−1

S .
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▶ Property 21. When all nodes communicating with c are colluding, by Property 19 the
probability pi of each address used in a group c is not the leader of is pi = |c|

|c|+F . Additionally,
for groups c is the leader of, as all addresses that do not belong to c are known to the leader,
the probability of each address being associated with c is pi = |c|

G / |c|+F
G = |c|

|c|+F . Thus, as c

uses |c| + F addresses in total each with probability |c|
|c|+F being associated with c, the privacy

when all nodes collude equals the privacy of the original SPV model using F false positives.

Using these properties, we evaluated the entropy and detection ratio of the aggregated
transaction proposed model, similar to the previous privacy evaluation of the other light client
implementations. In the entropy calculation evaluation, we evaluated the probability of each
address in the network, implemented T (x) and calculated H(c) ≈ ln 1

1000 ·
∑

x∈[0.001,...,1](1 −
x) · T (x · |c|). Fig. 6 evaluates the privacy of the aggregation model using several S and G

parameters, compared to the communication overhead (normalized by the communication
overhead of SPV-850) assuming there are no colluding nodes. Additionally, the entropy and
detection ratio of SPV-850 and SPV-40K are added to show the privacy improvement. Fig. 6a
presents the entropy compared to the communication overhead. As we see, the aggregation
model using all S and G parameters has a similar entropy of around H(c) = 17.5, while
having a communication overhead 1.8 − 1.96 times higher than SPV-850, and 25 times
lower than SPV-40K. Recall, SPV-850 and SPV-40K have an entropy of H(c) = 8.81 and
H(c) = 5.02, respectively. The communication network overhead is derived directly from the
ratio G

S , as the communication overhead increases when the number of groups c is the leader
of increases. The entropy of the aggregation model is very similar for all S, G parameters
since the entropy evaluates the knowledge regarding all addresses, and when assuming there
are no colluding nodes a full node does not have information about all of the filters used by
c, hence all addresses are eligible to be associated with c. The increase in the probabilities
of the addresses that appear in groups c is the leader of (and a full node has information
about) are relatively negligible to all other addresses. Hence, the entropy values are high
and similar for all S, G values.

In the detection ratio, shown in Fig. 6b, there are some differences between parameters.
While for using S, G = (5, 5) the detection ratio is R(c) = 0.0022, having a communication
overhead 1.8 times higher than SPV-850, for S, G = (25, 5) the detection ratio decreases to
R(c) = 0.0001, though with a communication overhead 1.96 times higher than SPV-850. As
the detection ratio is mainly affected by the high-probability addresses a full node knows
about (rather than of all addresses), the differences in the detection ratio values are derived
from the relation between S and G, which affects the probability of c being the leader of the
group. The lower the ratio G

S is, the lower the expected number of times c is a leader of the
group, and the detection ratio decreases accordingly.

Fig. 7 presents the entropy and detection ratio of the aggregation model, using S, G =
(5, 25), (10, 10), (15, 5), compared to pcolluding, the probability the leader colluding with full
nodes. While all three parameter sets have a similar entropy, using S, G = (5, 15) achieves
higher entropy for lower pcolluding values: As for pcolluding = 0.05 S, G = (5, 15) has an
entropy of H(c) = 17.79, the entropy of S, G = (10, 10) and S, G = (5, 25) is H(c) = 17.71
and H(c) = 17.49, respectively. This is because for smaller G

S values the expected number of
groups c is the leader of is lower, hence c is exposed to the full node less times. Yet, recall by
Properties 15 and 19, when c is the leader a full node receives a filter with more addresses
than when c is not the leader and the leader colludes. Hence, when pcolluding is high, full
nodes get more information from groups c is not the leader of, thus the entropy is higher
when c is the leader of more groups, i.e. when G

S is larger. For instance, when pcolluding = 1,
H(c) = 9.65 for S, G = (5, 25), compared to H(c) = 9.63 and H(c) = 9.62 for S, G = (10, 10)
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Figure 6 The entropy and detection ratio of SPV-850, SPV-40K and the aggregation model (AM)
using S, G = (5, 5), (10, 10), (15, 5), (25, 5), (5, 25), compared to the network communication overhead
normalized by the communication of SPV-850, assuming there are no colluding nodes.
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Figure 7 The entropy and detection ratio of the aggregation model (AM) using S, G =
(10, 10), (15, 5), (5, 25), compared to the light client colluding probability pcolluding.

and (15, 5), respectively. We note there is an entropy dropdown when pcolluding = 1 to
H(c) = 5.02, as when pcolluding = 1 all addresses used in filters c sent are known, hence the
address space A is decreased to only 900 addresses (the number of addresses used in filters
of c).

The detection ratio increases too as pcolluding increases. As for S, G = (10, 10) the
detection ratio is R(c) = 0.0006 when there are no colluding nodes, when 50% of the nodes
collude the detection ratio increases to R(c) = 0.026, and when all nodes collude the detection
ratio increases to R(c) = 0.05, similar to the detection ratio of SPV using 950 false positives
(as derived by Lemma 7). For the same reasons as the entropy, for small pcolluding values,
the detection ratio is lower (implying better privacy) when G

S is smaller, and for a high
pcolluding, the detection ratio is lower when G

S is larger. Finally, following Property 21, the
figure shows the privacy of the aggregation model is always at least as good as the privacy of
SPV-850, as the entropy is higher and the detection ratio is lower. We additionally note that
compared to SPV-40K, the entropy of AM was higher except for the case where pcolluding = 1.
Additionally, when pcolluding ≤ 0.23, the detection ratio of SPV-40K is higher than the AM .

7.3 Aggregation Model Discussion and Limitations
Section 7.2 shows the great potential of the aggregation model, as a privacy increase is achieved
with very low communication overhead. Fig. 8 summarizes the entropy and detection ratio of
the different implementations compared to the communication overhead. The figure includes
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Figure 8 Privacy compared to communication overhead comparison between the different light
client implementations and the AM model using (S = 15, G = 5) and F = 850 false positives.

AM using parameters (S = 15, G = 5) and F = 850 false positives, for pcolluding = 0, 0.1, 0.3.
Though the AM communication overhead is 20 times lower than SPV-40K, for all three
pcolluding values, the entropy is higher. Moreover, for pcolluding = 0, 0.1, the detection ratio
was lower too. Assuming the percentage of colluding nodes is lower than 23%, the AM model
is only second to the PIR model in its privacy (having a communication overhead 1700 times
smaller), with a communication overhead of approximately only twice the communication
overhead of SPV-850.

We acknowledge the drawbacks of this model, as it might suffer from a time delay when
creating the client groups, and when waiting for an answer from the leader. Moreover, in the
scenario where all clients participating in groups with c are colluding, there is no privacy
improvement. That said, the aggregation model, the best advantage of the aggregation model
is it does not require any changes in the Bitcoin network protocols, and can work side-by-side
with the original SPV protocol and full nodes. Clients preferring time over privacy can
always use the original SPV protocol, as at any point light client c can send a filter to the
full node. Property 21 states the AM model guarantees privacy at least as good as the
original SPV model even when all other clients collude with full nodes. We additionally note
that the AM protocol is designed to be very simple and light to run, as light clients are not
meant to run heavy computations. As this paper mainly focuses on the privacy issue of light
clients, the aggregation model presented here is not complete, and future work will expand
this model. However, it contains the main building blocks of a new model that has great
potential in increasing light client privacy.

8 Conclusion

In this work, we analyzed and compared the privacy of the SPV and Neutrino light client
implementations. We defined two metrics to evaluate the privacy of light clients: light client
entropy and detection ratio. Based on these metrics we analyzed and evaluated the privacy of
the different implementations on real data and evaluated the privacy-communication tradeoff,
comparing the different implementations and discussing these results and ways to improve
privacy. Finally, we suggested a new SPV-based light client model that improves privacy. In
future work, we intend to deepen the privacy analysis, including cases when an adversary
with a full node has only partial information. We aim to further enhance the technical details
and the analysis of the aggregation model, dealing with issues such as disconnecting nodes
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and other malicious behaviors.
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Abstract
Cryptocurrency introduces usability challenges by requiring users to manage signing keys. Popular
signing key management services (e.g., custodial wallets), however, either introduce a trusted party or
burden users with managing signing key shares, posing the same usability challenges. TEE (Trusted
Execution Environment) is a promising technology to avoid both, but practical implementations of
TEEs suffer from various side-channel attacks that have proven hard to eliminate.

This paper explores a new approach to side-channel mitigation through economic incentives for
TEE-based cryptocurrency wallet solutions. By taking the cost and profit of side-channel attacks
into consideration, we designed a Stick-and-Carrot-based cryptocurrency wallet, CrudiTEE1, that
leverages penalties (the stick) and rewards (the carrot) to disincentivize attackers from exfiltrating
signing keys in the first place. We model the attacker’s behavior using a Markov Decision Process
(MDP) to evaluate the effectiveness of the bounty and enable the service provider to adjust the
parameters of the bounty’s reward function accordingly.
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1 Introduction

As cryptocurrencies [8, 59] gain popularity, the daunting task of key management—the
process of keeping cryptographic keys secure from attacks and loss—has become an everyday
task for end users. With inexperienced users often struggling with lost or leaked keys, a
natural tendency is to outsource the task to specialized service providers. For example, 11%
of the entire cryptocurrency marketization is stored in custody by a single service provider
(Coinbase [61]). This is undesirable security-wise, as the secrecy of keys (thus the safety of
the funds) relies on the trustworthiness of a centralized party.

1 Crudite is a salad with carrots and (other) vegetable sticks.
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To provide stronger security guarantees (and to reduce liability), a cryptocurrency wallet
service provider can generate users’ signing keys in Trusted Execution Environments (TEEs,
such as Intel SGX [3, 37], AMD SEV [2], Nvidia H100 [28]) and serve signing requests in
TEE without ever seeing the signing keys in plaintext. However, the naive adoption of
TEEs does not provide a meaningful secrecy guarantee to users, because the service provider
may be able to exfiltrate signing keys through side-channel attacks [43]. While side-channel
mitigation has been extensively studied in the literature (e.g., see [52] for a survey), side
channels are notoriously hard to eliminate, due to the complexity of modern processor design
(e.g., TEEs often share physical resources with untrusted processes, such as caches).

Our work is motivated by the observation that the operator of TEEs is the primary actor
capable of mounting side-channel attacks, since most attacks [57, 43, 34, 49, 35, 42] require
root access to the host. For wallet key management services, the TEE operator is the service
provider. This observation gives us additional leverage to prevent side-channel attacks, as the
service provider can be held responsible (using techniques to be presented later) if a wallet
key is leaked or accessed without user authorization. Using a proper penalty mechanism,
we can eliminate the service provider’s gains from a successful side-channel attack, thus
removing the incentive to attack in the first place.

With the TEE operator striving to avoid key leakage, the possibility of side-channel
attacks by non-local, unprivileged attackers is significantly reduced (e.g., the service provider
is motivated to employ heightened security measures). To further discourage such attacks,
our idea is to reward the attackers for partial success. For example, if a signing key is
distributed cross N TEEs using secret sharing, we give the attacker a substantial reward if
he successfully exfiltrated any share. With a proper reward function, this early reward can
serve as a strong incentive for the attacker to stop early, giving the system administrator
time to react to partial compromise before a full key is exfiltrated.

1.1 CrudiTEE: The Cryptocurrency Wallet with Stick and Carrot

Based on the above two principles, we propose CrudiTEE, a TEE-based cryptocurrency
wallet that can defend against TEE side channels by privileged and unprivileged attackers,
using penalties (stick) and rewards (carrot), respectively. Furthermore, CrudiTEE strives to
achieve user-friendliness (i.e., users do not need to store keys locally). CrudiTEE first requires
that the signing keys be generated inside TEE and never exported in plaintext. Assuming
correct implementation, this implies that signing key leakage is impossible except for through
side-channel attacks.

We classify potential actors capable of mounting side channel attacks into insider attackers
and outsider attackers. The insiders are privileged attackers, such as service providers, who
have full control over the TEE including physical access. Insiders have powerful attacking
capabilities required by most side-channel attacks (such as root privilege) like the ones needed
in [31, 20, 47]. In contrast, the outsiders are all the attackers who can exfiltrate the secrets in
the TEEs only through less-privileged means like remote time-based attacks [32, 12, 1]. We
refer readers to Section 2.2 for more examples. As introduced above, CrudiTEE consists of
the stick (penalties), to discourage insider attackers, and the carrot (rewards), to encourage
outsider attackers to stop early.

Note that to perform such punishment or distribute the bounty, we need an automated
but also trustworthy and publicly accessible mechanism. Smart contracts [59](autonomous
programs executed on blockchains) are the perfect tool for this purpose. Thus, below, when
discussing the stick and the carrot, we use the smart contract as an important building block.
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1.1.1 The stick

Due to the power of the service provider, preventing it from mounting side channels via a
technical way seems infeasible. Instead, CrudiTEE requires the service provider to put down
collateral, which will be confiscated if signing keys safeguarded by the TEEs are used for
unauthorized signatures or if legit service requests from users are denied.

To realize the stick of CrudiTEE, the key is to enable a user to generate publicly verifiable
proof if her TEE-generated keys are illegally accessed. First, as mentioned, raw keys stay in
the TEE and are never exported outside. Second, each key corresponds to a wallet owner and
can only be used by the owner through well-defined APIs (e.g., an API could allow the owner
to sign messages with the key using a carefully implemented signature algorithm). Third, to
access a key, a signed authorization from its owner must be present and checked by TEEs,
thus making the authorization process accountable (i.e., if the user disputes a signature, the
service provider can present proof that the signature was authorized by the user). Users can
verify TEE attestations to ensure the prerequisites are met before signing up for the service.

In order not to burden the user with signing key management while making the autho-
rization process accountable, we use the OAuth protocol (Section 3.3). The token signed by
the OAuth provider is used as proof of authorization.

The service provider sets up a smart contract to implement the insurance (denoted SCins)
with the following logic and makes an initial deposit. If a user discovers any unauthorized
signature, she can submit a request to SCins. The service provider must prove that the user
had authorized such key use within a specific period. Failing to provide such proof results in
the insurance smart contract automatically compensating the user.

1.1.2 The carrot

Without the help of any insiders, outside attacks become unlikely, but still not impossible.
To limit potential exposure to external attacks, we employ the threshold signing protocol
such as [29], where the signing key is stored as key shares across multiple independent TEEs
(e.g., hosted in different clouds) and refresh secret shares periodically. This way, even if an
outside attacker can exfiltrate a few shares, he needs all shares to exfiltrate the entire key.
However, the security of such proactive secret sharing method as a defense is “black or white” –
unless the attacker can break a sufficient number of TEEs and cause a catastrophic breach,
partial breaches cannot be detected and therefore cannot inform the service provider to take
proper action to prevent those catastrophic breaches. By exploiting economic incentives, we
can elicit such information from the attacker. Specifically, CrudiTEE enhances a proactive
secret-sharing scheme with an alerting mechanism so that when partial breaches happen
(e.g., TEEs deployed in one cloud are vulnerable, but not others), the attacker is encouraged
to alert the service provider in exchange for a bounty. This allows the service provider to
take proper action before full breaches happen.

Designing a bounty reward function that induces the desired behavior of the attackers
is the main technical challenge. Specifically, we aim to formulate a reward function that
motivates attackers to promptly alert the service provider without generating any illegal
signature or selling the acquired signing key shares, while minimizing the defender’s cost
(i.e., the service provider’s cost). We employ a 2-step methodology in the reward function
design: we start with the attacker with a fixed known cost first and then deal with the one
whose attacking process is non-deterministic and whose cost cannot be accurately estimated.
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Step 1. We provide the following toy example to illustrate the challenge in reward function
design under a deterministic setting. We start with a key (worth $3 in total) stored as three
secret shares, each of which is worth $1 (assuming a share can be sold on the market for
$1). To steal one share, the attacker’s cost is $0.8. Furthermore, assume that $0.01 is the
smallest unit of money for simplicity. Without a bounty, the attacker will keep attacking
until he gets 3 shares and sells them on the market for $3, making a profit of $0.6.

To protect against such an attacker, there are two naive but natural solutions. The first
solution is to simply have the reward function be a constant function of $3.01 (i.e., the
attacker obtains $3.01 for any amount of shares he steals). In this case, an attacker always
submits the share as soon as he obtains the first share, but then the defender costs more than
the key value itself. The second solution is setting the function to be $1.01 per share (i.e., a
function linear in the number of shares). However, in this case, an attacker would instead
try to obtain all three shares and claim a total reward of $3.03, which costs even more.

The optimal solution is to set the reward function to be a constant function of $1.41 (i.e.,
the attacker is awarded with $1.41 for submitting any amount of shares): the attacker will
stop attacking and turn in the key shares whenever he obtains 1 key share, making a profit
of $0.61. This reward function not only encourages the attacker to submit as soon as getting
one share but also minimizes the defender’s cost. Note that it is indeed the least the service
provider can pay, as if the reward is less than $1.41, the attacker will sell the key for a higher
profit instead (assuming w.l.o.g. that the attacker sells the secret when the profit from the
bounty is tied with selling the key).

Step 2. The reward function in the toy example, however, is based on a simplified assumption
of deterministic attack costs and requires the defender to accurately know the attacker’s cost.
Our design instead aims to address real-world situations where the attacker’s attack process
is non-deterministic, and the cost of attacking cannot be accurately known in advance.

To design the reward function in this setting, we first turn the desired properties of the
reward function into numerical metrics. Then we capture the non-deterministic attacking
process as an “optimal stopping” game and use Markov Decision Process (MDP) to analyze
the attacker’s optimal strategy. We propose a reward function for non-deterministic attackers
and optimize it using the metrics as an objective function, based on the defender’s budget
and estimation of the attacker’s cost and success rate. We further show that the reward
function not only has good performance for the attacker with an accurately estimated cost
but also for attackers with different costs. We provide the defender with the performance
of the optimized reward function for attackers with a wide range of costs and success rates.
The defender can use such a strategy to assess how the reward function she obtains performs
for a range of attackers. If she is not satisfied with the result, she could raise their budget
and generate another function.

To realize the bounty, the service provider creates a smart contract SCbounty that accepts
proofs of knowledge (PoK) of TEE-managed key shares and remits rewards accordingly. Valid
PoK submissions to SCbounty raise a flag, pausing operations until the keys are rotated and
the flag is reset. To ensure that the attacker did not use the breached key for unauthorized
signings, users are requested to check for unauthorized signatures during the shutdown period.
If any are found, the attacker’s reward is forfeited.

Contribution

We summarize our contributions as follows:
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1. We introduce a new approach to building a cryptocurrency wallet: CrudiTEE that leverages
economic incentives to defend against side-channel attacks from insiders and outsiders.

2. CrudiTEE involves a novel automatic insurance system (Section 5), allowing users to
receive compensation if their wallet signing key is used for signing transactions without
their authorization.

3. We develop a reward function for the bounty in CrudiTEE (Section 6) that encourages
attackers to submit key shares to the bounty immediately while minimizing the defender’s
cost. We use the Markov Decision Process (MDP) to model the non-deterministic nature
of side-channel attacks and optimize the reward function against numerical metrics. We
evaluate and show the optimized reward function is effective not only for attackers with
precisely estimated costs but also for attackers with variable costs. The service provider
may adjust her budget to cover a wider range of attackers the reward function can
effectively defend against based on the evaluation.

2 Related Work

2.1 Cyber Bounty
Setting up bug bounties is a popular way to defend against hackers [36]. However, a fair
exchange of bugs and money is difficult without trust. Breidenbach et al. [10] proposed that
smart contracts be deployed to guarantee that the attacker gets paid once a valid bug is
submitted. Their game-theoretic analysis showed that the attacker is incentivized to submit
the bug as soon as possible because of competition from other honest hackers. However, this
is not always the case for side-channel attacks: a malicious attacker may be the only one to
discover a zero-day2 side channel. That is why we take the submission time into consideration
in our reward function, i.e., to incentivize attackers to submit the leaked signing key (share)
immediately upon acquiring it.

2.2 Side Channels
Side-channel attacks against cryptographic systems usually take one of three forms. Time-
driven side-channel attacks expose key information by monitoring total execution times of
cryptographic operations with a fixed key, which can reflect interactions among the value
of the key, the structure of the cryptographic implementation, and system-level effects
such as cache evictions (e.g., [32, 12, 1, 58]). Trace-driven side-channel attacks observe a
time-series signal reflecting a device’s cryptographic operation throughout its execution, e.g.,
by monitoring the device’s power draw during the operation (e.g., [31]) or its electromagnetic
emanations (e.g., [20, 47]). Finally, in an access-driven side-channel attack, the attacker
executes a program on the same computer where the cryptographic operation is taking place,
using this vantage point to monitor the operation’s use of microarchitectural components on
the platform (e.g., [45, 27, 26]). Time-driven and trace-driven attacks are largely agnostic to
the encapsulation of the cryptographic operation within a TEE. In contrast, much effort has
been expended to adapt access-driven attacks to attack a cryptographic operation executed
within TEE from outside, with considerable success (e.g., [57, 43, 34]).

Using the terminology of Section 1, we consider outsiders to be less privileged and thus
limited to time-driven and some access-driven attacks, that can be performed remotely (i.e.,
without any physical access to the TEE). Any attacks available to an outsider, however, must

2 A zero-day is a vulnerability in software or hardware that is unknown to its vendor.
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incur costs to conduct over time, e.g., to achieve and maintain co-residency on the same
physical computer as the victim computation [56] (possibly despite defenses to make this
difficult, e.g., [41]) and to perform attack computations. In contrast, insiders are permitted
to conduct any time-driven, trace-driven, or access-driven attacks, and so are considerably
more powerful. In particular, we design CrudiTEE in anticipation of insiders capable of
extracting keys from TEEs easily. Outsiders, on the other hand, are assumed to require more
time and costs to mount their attacks.

2.3 TEE Side-channel Defense
A recent concurrent and independent work, Sting [7], proposes to use SC as a bug bounty,
which is set up to encourage anyone who has access to a leaked secret to submit proof. The
proof of leakage is acquired in this way: first, a prover-owned TEE generates a secret, without
disclosing it to the prover. Second, the secret is directly sent to the secret management
service provider (without exposing the secret to the prover). Finally, the prover acquires
the secret using a side-channel attack, sends it back to the prover-owned TEE, and gets
proof of leakage from the TEE. Sting focuses more on the proof generation rather than the
bounty design, however. This is different from our bounty as we encourage attackers (without
physical access to the machine) to stop recovering the secret and submit a bounty claim
without recovering the whole secret via economic incentives.

Numerous techniques other than bug bounty could be applied to side-channel defense,
including ORAM [16], code hardening [11], data location randomization [9]. However,
defenses introduce performance overheads and usually defend against only specific types of
attacks. Another problem is that a service provider might not have enough incentive to
apply these defensive technologies expeditiously. Therefore, motivating the service providers
to keep their TEEs safe from attack is crucial to the real-world use of TEEs.

2.4 Existing Wallet Solutions
Some companies provide the service like a centralized bank for cryptocurrency [15], holding
users’ funds in company-owned accounts. Such centralized service deviates from the decen-
tralized nature of cryptocurrency and increases risk to user funds. On the other hand, there
are products to enable users to store their signing keys in a protected area of an offline device,
named hardware wallet [51]. This approach raises costs and complicates transactions, and
users usually have to trust the software provided by the hardware manufacturer for signing
transactions. A keyless wallet was constructed using witness encryption [63]. To access the
money, the user only needs to provide a short one-time password of 6 alphanumeric characters
generated from an offline device. Since Witness Encryption is currently impractical, however,
the scheme is largely theoretical.

3 Background and Preliminaries

3.1 Trusted Execution Environments
TEEs (Trusted Execution Environments) are secure and isolated execution environments
that provide confidentiality and integrity guarantees and the ability for a party to remotely
verify the status of a TEE through remote attestation. Prominent examples of TEEs include
Intel SGX [3, 37], AMD SEV [2], and Nvidia H100 [28]. A major practical limitation of
TEEs is side channel attacks (Section 2.2) that could break the confidentiality guarantee.
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3.2 Smart Contracts
To create elaborate economic incentive structures, CrudiTEE uses smart contracts, autonomous
programs running on top of blockchains, to remit payments under specific events. We follow
the standard assumption that smart contracts are correct (i.e., the security assumptions
required by the blockchain protocol are met) and available (i.e., all parties in our protocols
can access the smart contract and request submitted to the smart contract is executed within
a time limit).

3.3 OAuth
CrudiTEE uses the OpenID Connect feature in OAuth (Open Authorization) 2.0 [25, 46]
to enable users to make signing requests without possessing a signing key. OpenID is
an authentication protocol that allows users to use an existing account from an OpenID
provider (denoted as “OAuth provider”), such as Google, to authenticate themselves on other
applications. Furthermore, during authentication, a user can embed a customized message in
the “nonce” field of the signed ID token [25] (looking ahead, this allows the user to put a
description of her request in this field).

3.4 Cryptographic Primitives
We provide a brief description of the threshold signing scheme.

Threshold signature allows N > 1 parties to share a secret signing key, such that each
party obtains a share of the signing key. Only when m parties owning a sharing, 1 ≤ m < N ,
together can sign a message. Knowledge of < m shares leaks no information about the secret
signing key. Furthermore, when the secret shares are updated to N new shares, even m1 < m

old shares and m2 < m new shares where m1 + m2 ≥ m together leak no information about
the secret. We use it to allow multiple TEEs to share the signing key, such that only if ≥ m

shares are leaked, the secret is leaked.

3.5 Markov Decision Process
A Markov decision process (MDP) is a mathematical model that captures decision-making
under uncertain situations. A Markov state is a state St at time t > 0 satisfying Pr[St|St−1] =
Pr[St|St−1, . . . , S1] (i.e., the previous state captures the entire history states). The MDP
consists of a sequence of Markov states and an associated state transition matrix. This
matrix represents the probabilities of transitioning from one state to another based on the
player’s actions. The player’s optimal strategy in MDP can be computed using tools like [13].

4 Threat Model and Roadmap

4.1 Threat Model
The purpose of the techniques in CrudiTEE is to mitigate the side-channel attacks that break
the privacy of the TEEs but not the integrity. We assume TEE integrity (i.e. the data and
code in the TEE cannot be modified by any attacker) to hold and remote attestation to be
secure, following a common assumption (c.f., [53, 14]), as the attestation key is only used
through a limited interface, unlike application-generated secrets. The side-channel attacks
that are strong enough to compromise the attestation key [55] are out of scope for this work,
as such incidents have historically been rare.
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We assume that the integrity and liveness of smart contracts are enforced by the blockchain.
Furthermore, we assume the OAuth providers are trusted, but note that any user can choose
her own set of OAuth providers to trust (i.e., the user can choose a subset of a predefined
set of OAuth providers). Finally, we assume that both the service provider and the outsider
attacker are rational entities aiming to maximize their profits. We do not consider non-
financial incentives, and the agent who attacks the system as a mere malicious intruder is
out of our scope.

4.2 Wallet Design Overview
In our wallet service, each client registered with the wallet service provider has a wallet
whose signing key is stored in the service provider’s TEE. Our goal is to defend side-channels
against such signing keys.

We categorize side-channel attacks into two types: insider attacks, which require physical
access and/or root privileges, and outsider attacks which can be executed remotely without
such privileges (Section 2.2). In our wallet design, the service provider, who controls the
TEEs, is classified as an insider, whereas all other attackers, including users, are categorized
as outsiders. We defend the insiders using the insurance (the stick) and the outsiders using
the bounty (the carrot).

The side-channel mitigation in CrudiTEE thus consists of three main components:
1. The accountable signing key management service (Section 5.1) enables the users to register

for the service and authorize the service provider to sign a transaction when needed.
2. The insurance (Section 5.2) ensures the service provider provides the desired service, and

otherwise is punished.
3. The bounty (Section 6) aims to incentivize the outsider attacker to submit the key shares

acquired through the remote side channel to the bounty (smart contract) rather than
using them to make unauthorized signatures or selling them.

Both the insurance and the bounty are initiated using smart contracts (SCins and SCbounty).
In addition, to make sure that the service provider answers all the service requests (instead
of ignoring those requests), the smart contract SCavail is also deployed. During setup, the
service provider needs to build the TEE program and publish the attestation. Then, the
service provider deploys the aforementioned smart contracts on the blockchain.

To use the service, the user first chooses the OAuth provider(s) she trusts and creates a
new account with her OAuth token (signed by that OAuth provider(s)). The service provider
will execute the threshold key-generation protocol among the TEEs, register the OAuth
account and key mapping, and then provide the public key to the user. It is essential that
the signing key is generated within the TEEs and remains within the TEEs (i.e. cannot
be exported in plaintext format). This is because if the users learn the key, it becomes
ambiguous whether the responsibility for any unauthorized signature lies with the users or
the service provider. After the generation of the signing key, a smart contract wallet SCwallet
will be deployed for the user. SCbounty will also be updated so that the new key is also
protected by the bounty. The proof-of-publication3 scheme is employed to ensure that the
smart contract update is done properly.

The service provider replies to the user’s transaction signing requests with authentication
via OAuth providers (Figure 1). The signing is conducted using the threshold signature
scheme, with the signing key secret-shared among several TEEs. When the service provider

3 Proof of publication is a way for the TEE to verify that a state change is updated on the blockchain.
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is not responding to a signing request, the user can send the request through SCavail and
force the service provider to respond. If the user realizes that an unauthorized signature
exists, she can submit a claim to SCins and get compensated (Figure 2).

Finally, if an outsider attacker steals the signing key (shares) from a remote side channel,
he can submit it to SCbounty and get rewarded based on the submission time and number
of shares he submits (Figure 2). Any valid SCbounty or SCins submission will trigger a flag
to signify that some of the TEEs have been breached. CrudiTEE requires that all wallet
transactions cease until the service provider rotates all the signing keys and clears the flag. If
the full key is leaked, the TEE will generate a fresh key pair, update the OAuth account and
wallet key mapping, and transfer the money in the smart contract wallet to the new wallet
while the red flag is on. Transactions during the red flag period can only be triggered by a
message signed by the TEE attestation key. The reward for the attacker will be held for a
specified period, during which the user of the affected keys will be asked to check whether
there exists any unauthorized transactions and the reward will not be given to the attacker
if such transactions are found.

4.3 Reward Function Design Roadmap

The attacker’s reward is determined by a reward function designed to incentivize them to
claim the bounty immediately upon obtaining a single key share from the TEEs, while
minimizing the defender’s cost (Section 6.3). Since the reward function design is particularly
challenging among other components of the wallet, we discuss our roadmap here. We employ
a 2-step methodology here: First, we deal with attackers with known deterministic costs (a
simplified case). Then, we employ the ideas from this simplified case together with other more
advanced mechanisms to develop the reward function for the attacker with non-deterministic
and unknown costs.

In more detail, we begin with a case study assuming the attacker operates under a
deterministic cost function known by the defender. However, in the real world, the side-
channel attacking process is non-deterministic, and the cost of the attack is hard to estimate
accurately. Building on insights gained from the case study, we propose a reward function
for attackers with non-deterministic behavior. We model the non-deterministic attacking
process as the “optimal stopping” game [54, 50, 24] and employ Markov Decision Processes
to calculate the best strategies for the attackers. By translating the desired properties of
this reward function into quantitative metrics used as the objective function, we optimize
the parameters in the reward function (based on the defender’s budget and her estimation of
the capability of the attacker). Finally, we evaluate the effectiveness of our proposed reward
function when the attacker’s ability (parameterized by his cost and success rate) is different
from the estimations. Based on the evaluation of the attacker, the defender can further
raise her budget and recompute the function to get a more satisfying range of attackers the
function can defend against.

5 The Stick

In this section, we first provide more details about the wallet workflow (Section 5.1), which
outlines the responsibilities of the service provider. Then, we specify the “stick” part which
holds the service provider responsible (Section 5.2).
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Figure 1 Registration and Transaction Signing Workflow.

5.1 Authorization and Signing Transactions
We start by elaborating on how we make the authorization of the transactions accountable
and describe how a user registers for an account and requests signed transactions.

Accountable authorization. As mentioned in the Section 1.1.1, an authorization process is
accountable if it leaves a signed evidence that can be used to prove the validity of the signing
key usage later. Meanwhile, it should not burden the user with additional key management.

Our solution leverages a feature in OAuth 2.0 called OpenID Connect (OIDC) [46, 25].
Specifically, OIDC-enabled OAuth providers issue signed identity tokens (called ID_token [25])
that include a user identifier (such as email addresses) and a nonce set by users. Many
mainstream OAuth providers enable the user application to specify the nonce in the ID token
(e.g., Google [25], Microsoft[39], etc.).

Every time the signing key is used, we require the user to provide an ID token signed by
the OAuth provider(s), which is uniquely linked to that specific signing request by including
the request hash in the nonce field. TEE verifies the token of the corresponding OAuth
provider(s)’ keys accordingly. The public key of the OAuth providers is hardcoded in TEE
and verified by the user through attestation. This method not only provides a log-in process
that most users are familiar with, but also delegates authorization to a third party (or a set
of third parties) that they trust, providing signed OAuth token(s) as proof of authorization.

Registration. As shown in Figure 1 (a), when registering for a new account, the user runs a
protocol to determine the future authentication process with the service provider. Specifically,
the user first chooses a set of OAuth provider(s) she trusts. Next, she puts the hash of the
account registration request (e.g. the hash of “CrudiTEE account registration”) in the “nonce”
field of the ID token, authenticates it with the OAuth provider, and asks the OAuth provider
to sign it. Then, the user sends the account registration request to the service provider along
with the token(s). TEE verifies the token(s) and generates a fresh key pair for signing. The
TEE creates a TEE-signed receipt with the newly generated verification key (to verify the
signed transactions for this user’s wallet) and the OAuth ID(s) associated with it. Lastly, a
smart contract wallet is created for the user.

Transaction signing request. As shown in Figure 1 (b), when the user wants to sign a
transaction, she generates a signing request. Then, she acquires a signed token from the
OAuth provider(s) with the hash of the transaction included in the token(s). Once receiving
the signing request and token(s), the service provider should input it into the TEEs. The
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TEE will check the validity of the request by verifying the token(s) and respond accordingly
(we discuss how to enforce the TEEs to respond in Section 5.2.1). If the request is valid,
the TEE will reply with the signature of the transaction, generated with the signing key
associated with the user’s OAuth ID(s). If not, the TEE will reply with a message saying
that the request is invalid, signed with its attestation key. We require TEEs to store the
(valid) tokens and requests in case of any future insurance claim (Section 5.2.2). The signed
transaction will be submitted by the user to the wallet smart contract SCwallet. The wallet
smart contract will check the signature and execute the transaction.

Threshold signing. CrudiTEE use a threshold signature scheme (e.g., [22]) for signing.
Specifically, the key-management service provider secret-shares each key into N secret shares
using a (m, N)-threshold-signature scheme (where m ≤ N), stores them in independent
TEEs, and rotates them every T units of time. This approach not only serves to complicate
the execution of side-channel attacks but also establishes the foundation for the bounty
scheme described in Section 6.

5.2 The stick: hold service provider responsible
Based on the accountable signing process described in the previous subsection, the “stick”
aims to establish mechanisms to punish the service provider when it misbehaves. The goal is
that any rational service provider would not choose to misbehave (e.g., steal the secret and
produce an unauthorized signature).

5.2.1 Ensure Availability of TEE
We start by discussing how to ensure that service providers process requests using TEE (with
the expected inputs), guaranteeing TEE’s availability 4. The service provider sets up SCavail
and makes the initial deposit. If the service provider refuses to process a signing request
directly submitted to the service provider, the user submits the request to SCavail. The service
provider monitors the SC, processes any request from the SC, and forwards the request to the
TEE. The TEE then generates a reply, which is either the requested signature or indicates
that the request is invalid. The reply, along with the user’s request, must be signed by the
TEE’s attestation key. After receiving the reply, SCavail checks whether the reply is signed
by the TEE’s attestation key and the request is included in the signed message.5 If it is,
SCavail records the reply. If the service provider does not submit a valid reply within a time
limit, its deposit gets burnt (destroyed). 6

5.2.2 Insurance for unauthorized transactions
In this part, we develop a mechanism that enables users to report unauthorized transactions.
As shown in Figure 2 (a), the user submits the signature to request a message, signed by
the TEE’s attestation key, stating that the signature is authorized by the user. When the

4 The idea of using incentives to make a service available is not new, though. A similar method is used in
blockchain Layer2 to prevent transaction censorship [5].

5 Attestation key is hardcoded to the smart contract.
6 Note that one may consider a DoS-attack: initiating many small transactions using SCavail. To avoid

this, the service provider can set a corresponding transaction fee to use SCavail paid by the user. If the
user, however, needs to use such a service, the user may consider the service provider as malicious, thus
withdrawing all the money and stop using the service. Thus, a rational service provider would avoid
letting the user make transactions via SCavail.
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Figure 2 Insurance and bounty workflow.

service provider is unable to provide such a message, the user is automatically compensated.
Since the user initiates the insurance claim, they are responsible for monitoring transactions
and submitting complaints for unauthorized transactions, similar to most systems based on
staking and slashing [33].

We instantiate the insurance using a smart contract (SCins). This smart contract specifies
the necessary ground truth requirements, such as the attestation key of the TEEs, and the
conditions under which users are eligible for compensation. A predefined quantity of deposits
is deposited in it, serving as potential compensation for the user.

An insurance claim is initiated by the submission of an unauthorized transaction to
SCins together with the proof of ownership of the key. The proof of ownership is a message
stating the ownership of the key signed by the TEE, which could be requested using the
user’s OAuth token. SCins checks whether the claim for the transaction has not yet been
made before. If yes, the claim will be rejected. The service provider monitors SCins and
sends the request to the TEE once it is published on the blockchain. The TEE looks for
the authentication token(s) associated with this request (recall that the valid requests are
stored). If no valid token(s) in question are found, the TEE will sign a message stating
that the signature was unauthorized with its attestation key. Otherwise, a message stating
that the signature was authorized will be signed. The service provider submits the reply
to SCins. SCins checks whether the message signed by the TEE attestation key states that
the signature was authorized. If not, SCins compensates the user (for some predetermined
value that depends on the application) and records this claim (e.g., on the chain) for future
reference. If the service provider fails to submit the requisite proof within the specified
timeframe, the user automatically gets compensated from the smart contract.

Security analysis. We briefly analyze how the initial goal was achieved with the design of
the “stick”. For any attack, the service provider can earn at most the total value of all the
accounts. Therefore, as long as the collateral required to be put down is larger than this
total amount7, a service provider has no incentive to misbehave, as each misbehavior costs
more than what it gains.

7 We believe that a 100% deposit is reasonable because the cost to the service provider is the potential
interest they could have earned on the deposit, not the deposit itself.
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6 The Carrot

In this section, we describe how we design the bounty (the carrot in CrudiTEE) to defend
against the outsider attacker. The goal is to encourage the outsider attacker to report the
wallet signing key breach to the service provider without abusing the signing key.

Throughout this section, we refer to the service provider as the defender, using these two
terms interchangeably.

6.1 Desired properties of the Bounty
Distributing signing key shares across multiple TEEs with a threshold signature key generation
procedure can lower the chance of signing key breaches caused by outsiders as used in [29].
However, it is not fully resolved. In this section, we further mitigate the risk of unauthorized
signatures resulting from side-channel attacks by external attackers with a bounty. The
bounty enables the service provider to take appropriate actions before any catastrophic
security breaches occur.

The two technical difficulties in the design of the bounty are: (1) how can the attacker
and the service provider perform an atomic exchange of the key share and the reward; and
(2) how to give the attacker just enough incentive to claim the bounty, while saving the
defender’s cost. In detail, a good bounty should achieve the following goals:
1. An attacker gets the reward from the service provider if and only if he submits valid

proof that convinces the service provider that he has obtained the key share.
2. The construction itself does not leak any knowledge about the key share other than what

has already been obtained by the attacker.
3. An attacker prefers submitting the key share(s) to bounty over selling them in the market.
4. An attacker submits the key share as soon as he gets the first key share, instead of

continuing the attack.
5. The defender’s cost is minimized.

We suggest using smart contract bounty (Section 6.2) to satisfy the goal 1-2. Goals 3-5
are achieved by carefully designing a reward function for submitting key shares for a bounty
claim.

6.2 The Smart Contract Bounty
To realize the atomic exchange of the key share and the reward, we initiate the bounty using
a smart contract SCbounty.

As a defense against the outsider attacker, the signing keys are rotated every T units
of time. Following each key shares rotation, each TEE computes the hash of all the shares
they hold and outputs the hash values to the service provider. The service provider then
publishes them in the SCbounty. The problem arises when the service provider publishes the
hash values that do not match the ones generated by the TEEs, making the bounty unable
to be claimed. To ensure that the hashes of the key shares are successfully published on the
blockchain, we use the proof of publication scheme [14]. In other words, after each rotation
or restart, the TEE will verify that the hash of the key shares they are using is the same as
the latest version published on the blockchain (via proof of publication). Only then will it
use the current key shares to sign the user’s requests.

To claim the bounty, the attacker submits the share(s) he finds as proof of knowledge.
To prevent front-running, proofs are submitted following a commit-and-reveal scheme [62].
We model this hash function as a random oracle so that it does not leak any information
about the key shares themselves.

AFT 2024



16:14 CrudiTEE: A Stick-And-Carrot Cyptocurrency Wallet

Upon receiving the key share, the smart contract SCbounty checks whether the hash of
the share is included in the smart contract. If it is, SCbounty puts the reward on hold for
a designated period and immediately invalidates all the current secret shares (such that
the attacker cannot sell the shares or produce unauthorized signatures after submitting to
the bounty). At the same time, the service provider asks the user of the affected accounts
to submit insurance in case there exists an unauthorized signature. The attacker gets the
reward if there is no insurance claim for the signing key whose shares they are submitting.
The amount of the reward is determined by the reward function specified in Section 6.3.

6.3 Reward Function Design
In this subsection, we apply a two-step methodology to the design of the reward function.
First, we present a case study focused on the reward function for a deterministic attacker
(Section 6.3.2). Then, we broaden the scope to more general scenarios involving non-
deterministic attacks (Section 6.3.4 to Section 6.3.7), using observations and insights gained
from the simpler case.

6.3.1 Notation and Definition
In this section, we address two types of attackers: the deterministic attacker and the non-
deterministic attacker. The deterministic attacker has a fixed deterministic cost function
C(k), which is analyzed in Section 6.3.2. The non-deterministic attacker has a fixed cost ca

of attacking one TEE at one step with a certain probability ps of obtaining one share of the
key from the TEE at that step. We deal with them in Section 6.3.4 to Section 6.3.7.

In the smart contract bounty, the reward given to the attacker is determined by a reward
function R(k, t), where k is the number of shares that the proof is trying to prove against
(i.e., the number of shares obtained by the attacker), and t is the submission time (which is
the blockchain timestamp of the inclusion of the bounty-claiming transaction). Essentially,
at time t, the attacker provides evidence of having acquired k shares. Since the signing key
is rotated every T units of time and the signing key is secret-shared into N shares, we have
t ∈ [0, T ] and k ∈ [0, N ].

Recall that we use a (m, N) signature scheme. The service provider has N secrets shares,
with ≥ m of them together having value v for some m ≤ N , and k < m of them have value
v · k/m. 8 Since m shares are enough to recover the key, the value of m or more shares is the
wallet value (i.e. V (m) = V (m + 1) = · · · = V (N) = v).

6.3.2 Case study for deterministic attacker
We first provide a case study with respect to a simpler attacker: he has a deterministic cost
function C(k), which is non-decreasing in k, the number of acquired shares.

Naive solution. We start with a naive solution as briefly discussed in Section 1: the linear
reward function. In other words, R(k, t) = V (k) + η1 for some η1 > 0. This is a natural
solution: it gives a bit more than how much the share(s) are worth. However, as mentioned,
this naive solution can only achieve the goal (3), but not (4) or (5) proposed in Section 6.1.
As analyzed, the attacker would continue to attack for more shares and only submit when he
has all the key shares.

8 Note that in some cases, it may also make sense that having k < m of them has no value. For generality,
we consider them to have some partial value.
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Figure 3 Example of reward function in simplified case.

A starting point. Therefore, we propose first a simple solution that can achieve the goals
3-5 under such a deterministic attack (as the starting point for our real reward function):

R(k) = max
0<k≤N

(V (k)− C(k)) + C(1) + η0 + (1− t/T )δ0,

where η0 and δ0 are small constant numbers serving as bonus. This reward function
straightforwardly satisfies our goals. For goal (3): Submitting to the bounty provides the
attacker with at least η0 more than selling the shares when the attacker submits with only
one share. Consequently, there is no incentive for the attacker to sell the share. For goal
(4): Since the adversary achieves maximum profit from the bounty by obtaining just one
share max0≤k≤N (V (k) − C(k)) + η0 + (1 − t/T )δ0, and given that the bonus δ0 decreases
over time, the attacker is incentivized to submit the share to the bounty upon acquiring the
first share (and since the adversary needs one share to submit, C(1) is used to compensate
this cost). For goal (5): the defender’s cost is minimized since the defender cannot spend
less. If she reduces her expenditure by η0, the adversary’s gain from the reward might equal
the profit from selling the key at point i, where the profit (V (k)− C(k)) is maximized. This
could lead the attacker to opt for selling the key. As a side property, the attacker also saves
cost, as its total cost is always non-decreasing.

A concrete example is depicted in Figure 3. Here, the cost of attack is C(k) = 1
4 k2, and the

value of key shares is V (k) = k. The maximum profit for the attacker is max0≤k≤N (V (k)−
C(k)) = V (2)− C(2) = 1. We set η0 = δ0 = 0.1. Therefore, the optimal reward function in
this scenario is R(k) = C(1) + (V (2)− C(2)) + η0 = 1.25 + η0. By structuring the reward
function in this way, we not only incentivize the attacker to submit the key share as soon as
they get one share but also reduce the defense cost.

Let’s compare the reward function we proposed with two baselines: a zero function
R0(k) = 0 and a linear reward function Rl(k) = k + η0. With R0, the attacker accumulates
2 shares and sells them in the market, which violates goals 3 and 4. With Rl, the defender
pays 2 + η0 to prevent the attacker from selling 2 shares, which violates the goal 3 and costs
more than our reward function.

The main observation from the case study is that giving the attacker more reward at first
share is not only a good way to persuade the attacker not to further exploit the key, but also
saves the defender’s cost.

Of course, here, the context is greatly simplified: the attacker’s cost is a known deter-
ministic function of the number of key shares gained. If the attacker’s cost is a probabilistic
function, the reward function does not always achieve the goals. Also, even for a deterministic
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attacker with a slightly different cost function, the reward function may not work anymore
(e.g., if the attacker costs 10% less per share). Thus, we propose a more complete reward
function in Section 6.3.4.

6.3.3 Metrics for Reward Function
While for the deterministic attacker, the simple reward function satisfies all the goals, it
becomes more complicated for a non-deterministic attacker, and also when we want to protect
against a wider range of attackers. There is a trade-off between goals 3-5 in Section 6.1. For
example, it would cost more if we wanted to encourage the attacker to turn in the key shares
to the bounty earlier. To address this, we turn the goals into numerical metrics and balance
them using a weighted average.

We developed three metrics to evaluate how well the reward function meets each of the
three specified goals. The first metric is the probability of key shares being sold, denoted as
pe (goal (3)). The second metric is the average holding time, th, representing the average
time between the attacker finding the first share and the termination of the game (goal
(4)). The third metric, the cost to the defender, is denoted as cd (goal (5)). The cost of
the defender is the max between the value the attacker gets by selling the k shares (i.e.,
V (k)) and the amount of the bounty claimed (recall that an attacker can only do one of the
two instead of both). To combine these metrics into a score, denoted as f , we introduce
parameters α1 and α2 to compute a weighted average.

f = α1 · pe + α2 ·
th

T
+ (1− α1 − α2) · cd

v (1)

In Equation (1), the holding time is normalized by the time period T and the defender’s
cost is normalized by the value of the key v.

6.3.4 Propose reward function for non-deterministic attacker
We now propose a reward function designed to achieve the objectives outlined in Section 6.1
for a non-deterministic attacker. The optimization and evaluation of this proposed reward
function will be detailed in the subsequent parts of this subsection.

To achieve goal (3) in Section 6.1, we need to give more reward to the attacker than the
value of the shares. For an attacker with k shares of secret, he can gain V (k) units of money.
Thus, to encourage the attacker to submit to the bounty, we give out more than the amount
they should have received by selling the key shares. A non-deterministic attacker, however,
may get lucky in some cases and get more than one share at a low cost. So our proposed
function should have the property R(k, t) > V (k) for all k ∈ [1, N ].

Formally, we give a reward of V (N)ϵ ·V (k)1−ϵ + η (recall that dV/dk ≥ 0 for all k ∈ [N ]),
for some ϵ ∈ [0, 1], η > 0. As long as ϵ ≥ 0, η > 0, we have V (N)ϵ ·V (k)1−ϵ + η > V (k) for all
k > 0. Note that when ϵ increases, we give more reward when k = 1, which could potentially
reduce the defender’s cost (achieving the goal (5)) according to the case study above.

Finally, we need to encourage the adversaries to submit earlier to achieve the goal (4)
in Section 6.1. Similarly, we set the “extra bonus” decreasing over time. Formally, let
g(k) := V (N)ϵ · V (k)1−ϵ − V (k) denote the extra reward we paid to the attacker. We reduce
this gain by time, adding a term −g(k) · t/T . The reward function we suggest is:

R(k, t) := V (N)ϵ · V (k)1−ϵ + η − g(k) · t/T (2)

To model the real-world constraint of the defender’s budget, we also introduce an additional
parameter, αcap, into the reward function. This parameter represents the maximum amount of
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money that the bounty can afford, expressed as a percentage of the secret’s value. Specifically,
we add a bound αcap · V (N) to our reward function R(k, t) (Equation (2)), and the resulting
new reward function is:

R̃(k, t) =
{

R(k, t) if R(k, t) < αcap · V (N)
αcap · V (N) if R(k, t) ≥ αcap · V (N)

(3)

where t is the submission time and k is the number of submitted shares (t ∈ [0, T ], k ∈ [0, N ]).

6.3.5 Modelling the non-deterministic attacker
To evaluate our function, we first need to model how an attacker behaves. To do this, we
first describe the behavior of the attacker that can be modeled as the optimal stopping game.
Then, we further find the optimal attacker strategy using a Markov decision process (MDP).

Moreover, with this evaluation result, the defender can quantitatively understand what
range of attackers can be effectively prevented using this reward function. She can then
change the parameters (e.g., the attacker’s ability to begin with and the budget) to modify
the function accordingly.

Attacker behavior. We give a detailed description of the attacker’s decision process as
follows. As in the preceding sections, we exclusively consider a single signing key that is
shared among N TEEs. The time period during which the secret remains valid is divided
into T discrete time steps. Each time step is further divided into two sub-steps, during which
the attacker makes distinct choices: In the first sub-step, the attacker selects the number of
TEEs to target during that step. In the second sub-step, the attacker decides whether to
terminate the game (sell the shares or claim the bounty) or proceed to the next step. If an
attacker decides to target a TEE in a given step, they have a success probability of ps to
acquire a key share from it, while incurring a fixed cost of ca.

Optimal stopping game. We model an adversary as a player of an “optimal stopping”
game [54, 50, 24]. Essentially, the optimal stopping game states the following: there is a
sequence of random variables X1, X2, . . . whose distribution is assumed to be known; and
there is a sequence of gain functions (Yi)i≥1 which take the first i random variables as inputs
(i.e., Yi(x1, . . . , xi) is a function over x1 ← X1, . . . , xi ← Xi). Then, the player observes
the sequence of random variables one at a time, and for each step i, the player can either
stop observing and claim the gain Yi(x1, . . . , xi) or continue. The goal of the player is to
optimize the expected gain. Note that this setting is essentially the same as our setting,
where the random variables are the shares gotten by the adversary (e.g. if an attacker can
obtain a share with probability p at step i, Xi is a Bernoulli random variable returning 1
with probability p and 0 with probability 1 − p). Then, yi is the profit the attacker can
gain from all the shares he has obtained up to step i, which is the maximum between the
value of the bounty and the value of selling these shares, less his cost up to step i. Although
some specific forms of optimal stopping games have closed-form solutions (e.g., the secretary
problem [19]), for more complex scenarios like ours, a typical approach to find the player’s
optimal strategy is to model the game with Markov Decision Process (MDP) [54, 50].

MDP. We model the attacking process as an MDP, structuring it into discrete steps. At
each step, the attacker decides the number of TEEs to target. The attacker also needs
to determine the optimal time to end the attack and obtain their reward: after each step,
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he must choose to either cease the attack and get the reward or continue attacking in the
subsequent step.

We specify the state transition function and the reward function of the MDP as follows.
The state of the MDP is defined by the tuple of the number k of shares gained by the
attacker, the time slot t, and the sub-step in each time slot d ∈ {0, 1}. At state (t, k, 0), the
attacker needs to choose the number of TEEs (denoted as n) to attack in this time slot. The
state transitions to (t, k + ∆k, 1), where ∆k is the number of key shares gained in this time
slot. The number of newly gained key shares depends on the success rate ps and the number
of TEEs the attacker chooses to attack in that particular step. Specifically, the probability
that the attacker gets i new shares in this time slot is Pr(∆k = i) =

(
n′

i

)
pn′

s (1 − ps)n′−k,
where n′ = max(n, m − k). At state (t, k, 1), the attacker faces a decision: either end the
game by selling the key shares or submitting them to the bounty, or wait until the next time
slot. If the attacker chooses to wait until the next time slot, the state will transition to state
(t + 1, k, 1). If the attacker chooses to sell the key shares or submit them to the bounty, the
next state will be the termination state. When the time slot reaches the maximum time T

at state (t, T, 1), the next state will be the termination state.
At each step of the process, the attacker incurs a negative reward of −ca · n, representing

the cost of the attacking n TEEs. The attacker gains a positive reward R(k, t) if he submits
the key shares to the bounty. Alternatively, if he decides to sell the key shares, he gets V (k).
A summary of the transition and reward function of the decision problem is in Table 1.

Table 1 Description of the state transition and reward matrix.

State × Action State Probability Reward
(k, t, 0)×attack n TEEs (k + i, t, 1) P r(∆k = i) −n · ca

(k, t, 1)× wait (t < T ) (k, t + 1, 0) 1 0
(k, t, 1)× wait (t = T ) termination 1 0
(k, t, 1)× turn in termination 1 R(k, t)
(k, t, 1)× selling key termination 1 V (k)

Utilizing the MDP solver [38], we are able to compute the attacker’s optimal strategy for
a specific reward function. By examining this optimal strategy, we can obtain the metrics
defined in Section 6.3.3 (f score). The f score then serves as the objective for optimizing
the parameters within the reward function.

6.3.6 Optimize the Reward Function Parameter
In this part, we describe the methodology for deciding the optimal ϵ within the reward
function in Equation (2), with αcap as described in Equation (3).

Recall that our reward function R̃ is determined by αcap (bounty cap) and ϵ (determining
the starting point of the reward). We assume αcap is some constant predefined by the
defender, according to her budget.

We now explain our approach for identifying the optimal value of ϵ with regard to the
performance metric f . As the defender aims to minimize the cost of the defender, the
probability that the attacker will sell the key on the market, and the holding time, the
objective is to minimize the score f . When defending against an attacker, the service provider
must first decide the parameters used in f (α1 and α2) and estimate the ability of the
attacker by specifying ps and ca. Using the estimated parameters , an optimal ϵ could be
numerically computed. Specifically, we discretize [0, 1] into a sequence of evenly spaced
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numbers, calculate a score for each ϵ, and select the one corresponding to the lowest score. 9

Upon determining the optimal ϵ with estimated parameters, we examine how attackers of
various abilities respond to the computed ϵ in the next part. Specifically, these attackers might
have different ps, ca compared to the initial estimates used for ϵ optimization, representing a
range of adversaries stronger or weaker than the initial expectation.

6.3.7 Evaluation Results
We compare the score f of different reward functions, including our reward function, the
linear reward function (see below), and no bounty (reward function equals 0).

The linear reward function is a solution that satisfies the goal 3 without considering the
cost. Recall that we introduced this naive solution in Section 1 and Section 6.3.2: in the
linear reward function, the bounty claimer gets the exact value of share(s) plus a small bonus
η1 to encourage turning in key share(s). We additionally set a time bonus δ1 that decays
with time and encourages early turn-in for the purpose of this case study (to break ties for
attacker decisions in MDP), formally given as follows: Rl(k, t) = V (k) + (1− t/T )δ1 + η1. In
our experiment, δ1 = 0.1 and η1 = 0.01. For our proposed reward function, η = 0.01 as well.
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Figure 4 f score for different reward functions. αcap = 0.8. α1 = α2 = 1/3, ca = 0.4, ps = 0.4,
N = 3, v = 6. Optimal ϵ = 0.95.

In the evaluation, we set the estimation as ca = 0.4 and ps = 0.4. We set the total number
of key shares as N = 3 and the value of the key as v = 6 , which means the value per share
is 2. In expectation, the cost incurred by the attacker to obtain one share is 1 (cost per step
/ probability of success), resulting in a positive expected profit of 1 for each share acquired.
We set α1 = α2 = 1/3 which means each metric has equal importance. The parameters can
be replaced with real-world values when the wallet is implemented in practice. The optimal
ϵ we get is 0.95 given the parameters above. Then, we use the optimal parameter to derive
the score for attackers with variant cost ca and success rate ps.

We show how this function behaves when facing different attackers in Figure 4, where
each cell within the heatmap shows the f score corresponding to a specific configuration of
the attacker’s capabilities, denoted by the parameters ca and ps. When the cost is low and
the success rate is high (located in the upper right region of the heatmap), the attacker is
considered strong. Conversely, when the cost is high and the success rate is low (positioned
in the lower left area of the heatmap), the attacker is perceived as weak.

As we can see in the heatmap, when αcap = 80%, the performance of the reward function
we proposed (state of the art) is better than the baseline (no bounty and linear reward

9 The precision is affected by how many intervals [0, 1] is discretized into.
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function) in most cases. For most attackers, regardless of the ability, our reward function
generates a smaller score. The figure demonstrates that our reward function has great
performance not just for attackers whose abilities are equal to our estimations (ca = 0.4 and
ps = 0.4), but it also works well for stronger attackers. As shown in the figure, essentially
for any ps, as long as ca ≥ 0.4, the f score is at most 0.3. Similar flexibility on ca can
also be seen in the graph. These results indicate that even without precise attacker ability
estimations, our reward function outperforms the alternative reward functions and shows
decent effectiveness in preventing outsider attacks.

As mentioned, the defender can then use the heatmap to determine the effectiveness
of the reward function given the current attacker’s ability estimation and the budget. She
may increase her budget to find a reward function that effectively defends against a broader
spectrum if needed.

7 Case Study

We briefly discuss how to choose the parameters for the bounty in CrudiTEE using a simple
case study. Recall that we need to set time T , the expected return given the number of shares
V (k), and the cost function C(k). The calculation below assumes using a (10,20)-threshold
signature scheme (i.e., 10 shares are enough to recover the secret) and T = 30.

To set the rest of the parameters, we first examine the state-of-the-art side-channel attacks
against ECDSA. ECDSA [30] is the most commonly used signature scheme for blockchains
like Bitcoin [8], and thus we use it as an example. To our knowledge, all the side-channel
attacks without root privilege in recent years against the most popular ECDSA library
(OpenSSL [44]) show that they require at least 212 traces to recover a secret [60, 21, 4]. Then,
we let the service provider cap the number of signatures a user can make. According to [18], a
regular user makes 68 bank transactions per month, which means ∼ 2.3 transactions per day.
To be lenient, assume the victim makes 230 transactions per day (which is 100x the average
number of transactions per day). Since recovering a key share requires at least 212 signatures,
which takes ∼ 17.8 days. For V (k), recall that we have a rate limit v for each wallet (i.e.,
the amount of money in each wallet). According to [23], each transaction’s average value
is 36 dollars for a debit card. We thus set v = 36000, again 100x larger than the average
transaction value. Each key share has equal value, and m = 10 shares are enough to recover
a key, we set V (k) = min(⌈v · k/m⌉ , v).

Lastly, we discuss the cost function. The cost function is the most tricky one, since it
should capture all the possible costs of an attacker, including operational costs, the risk of
being caught, the side channel being mitigated, and so on. Thus, we propose a conservative
function (i.e., the minimum cost an attacker can have). Note that for an outsider, the
minimum requirement is essentially getting to obtain the traces remotely. The most common
way is residing on the same virtual machine as the victim program, as discussed in [48]. Thus,
we estimate the cost using the cost of renting the same cloud machine as the service provider.
Suppose that it costs ccloud dollars per unit of time (e.g., c5.metal from AWS, a commonly
used server instance, costs ∼$97.9 per day [6]). Thus, we have C(k) = ccloud · k · 17.8.

These numbers give us that to recover a key with a value of 36000 dollars, the cost of the
attacker is at least ∼ 17426 dollars (based on 17.8 days per share, a total of 10 shares, and
97.9 dollars per day for VM). We can come up with a reward function accordingly given all
these numbers, along with their budget limit. More accurate numbers can be obtained for a
specific service provider by analyzing their own transaction data.
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8 Discussion

In this section, we discuss CrudiTEE’s performance, limitations and extension application.

Performance Analysis. Reasonable signing performance is required to make the scheme
practical. A potential bottleneck of performance may be caused by the secret sharing between
different TEEs. In this part, we analyze its concrete performance to show that the multi-TEE
ECDSA signing will not be a bottleneck.

For the threshold ECDSA scheme proposed by Gennaro and Goldfeder [22],10 the bench-
mark for the signature generation time among m participants is 29 + 24m milliseconds. As
benchmarked in [40], the highest overhead of TEE is 19.31× in all the tasks tested. Therefore,
a conservative signature generation time is around 560 + 463m milliseconds. The protocol
requires five rounds of communication and we estimate the communication delay for each
round as 100 milliseconds [17]. Consequently, the total time for generating a threshold
signature is about 1060 + 463m milliseconds, which is generally acceptable for cryptocurrency
wallets. Additionally, to accommodate high transaction volumes, we can employ multiple
sets of TEEs in parallel.

Limitations of insurance. Our techniques provide a technical basis for penalizing the
service provider when an attack succeeds against it, providing an incentive for it to properly
safeguard its TEEs from outside attackers and a transparent and measurable guarantee to
end users. These are significant improvements over the current status quo. Ensuring that
the company deposits assets sufficient to satisfy claims against it is a matter for insurance
regulators; today, insurance regulators in most jurisdictions require companies to maintain
statutory reserves, i.e., an amount of cash and readily marketable securities that it can use
to pay its foreseeable claims. As with other insurance in real life (e.g., property insurance),
users in our system may not be compensated if these reserves (i.e., the company’s deposits)
are depleted by other claims. Our technical solutions presented here cannot entirely eliminate
the need for legal recourse in such situations. Nevertheless, our design provides a stronger
foundation for reducing trust in a service provider and for reducing the risk to clients.

Limitations on the type of assets. Note that in most blockchains today, each wallet is tied
to a specific private key. Thus, key updates after leakage can cause the assets in the wallet
to be non-retrievable. In our paper, we require the asset to be tied to a smart-contract-based
wallet, allowing the key updates to work as expected. How to extend our idea to support a
wallet without such support remains open.

9 Conclusion

In this paper, we introduced CrudiTEE, a solution designed to mitigate side channels in TEE-
based cryptocurrency wallets by leveraging economic incentives. Our wallet authentication
system utilizes OAuth to ensure both accountability and user-friendliness. Additionally, we
designed a combination of stick (insurance) and carrot (bounty) to safeguard against both
insider and outsider attacks. Finally, we evaluated our approach and showed its effectiveness.

10 This scheme considers malicious participants, so there are unnecessary steps in the protocol if we assume
all the participants are honest, which is true in our case.
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1 Introduction

The goal of distributed randomness beacons (DRBs) is to enable n participants to jointly
compute a random output (which we denote Ω) that cannot be predicted or biased by a
malicious subset of the participants. Among many important applications of DRBs are
cryptographically verifiable lotteries and leader election in consensus protocols.

A classic approach to constructing DRBs is commit-reveal [8]. First, all participants
publish a cryptographic commitment to a random contribution ri. Participants then reveal
their ri values and the result is Ω = Combine(r1, . . . , rn) for some suitable combination
function (such as exclusive-or or a cryptographic hash). Commit-reveal protocols are simple,
efficient, and secure as long as any one participant chooses a random ri and all participants
open their commitments. However, the output can be biased via a so-called last-revealer
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attack, in which a participant observes all other ri values during the reveal phase and drops
out if the impending value of Ω is not to their liking. The protocol must either finish without
the missing ri, or restart completely. Either way, the attacker obtains 1 bit of bias on Ω.

Most approaches to avoiding last-revealer attacks enable a majority coalition to recover a
withholding participant’s contribution. However, this downgrades the security model from
requiring only honest participant to requiring an honest majority (to prevent a malicious coali-
tion from privately computing Ω early). Such protocols also typically require communication
and computation superlinear in n (though some amortize this over multiple rounds).

A fundamentally different approach constructs DRBs uses time-based cryptography,
specifically delay functions, to prevent manipulation. The simplest example is Unicorn [38],
a one-round protocol in which each participant directly publishes (within a fixed time
window) their contribution ri to a public bulletin board. The result is computed as Ω =
Delay(Combine(r1, . . . , rn)). By assumption, a participant cannot compute the Delay function
before the deadline to publish their ri and therefore cannot choose ri in such a way as to
manipulate the output Ω. This protocol retains the strong security model of commit-reveal,
but with no last-revealer attacks. It is remarkably simple and, using modern verifiable delay
functions [9], the result can be efficiently verified. The downside is that Θ(n) contributions
must be posted to the public bulletin board per protocol run.

Improving efficiency with accumulators. Unicorn is simple and robust, but requires pub-
lishing Θ(n) data (one contribution per participant) on the public bulletin board. To reduce
this cost to O(1), we can instead publish a succinct commitment to all users’ contributions
using a cryptographic accumulator (for example, a Merkle tree). We formalize this approach
as Cornucopia:

Each participant sends their contribution ri to a coordinator before a time deadline T0.
The coordinator accumulates all contributions into a succinct commitment R and publishes
it to the bulletin board. It sends each user a proof πi that their value ri is included in R.
After time t passes, the result Ω = Delay(R) is published as well as a proof πΩ.
Each user i checks both that their contribution ri was included in R and that Ω was
properly computed from R.

While this is a small change to Unicorn, it is powerful. Since security requires only one
honest participant there is no risk to allowing more participants. Honest participants need
only verify that they themselves participated in the protocol (assuming they trust that their
own device has not been compromised) and need not know about the full set of participants.
The only downside to additional participants is performance, and Cornucopia’s sub-linear
verification cost means the approach is feasible for open-participation randomness protocols
at planetary scale (i.e. millions or billions of participants). For example, every user buying a
lottery ticket or every player in a massively multi-player online (MMO) game might contribute
randomness and be convinced the process was fair.

A malicious coordinator and any number of other malicious participants in the protocol
cannot manipulate the DRB output. A malicious coordinator might exclude all honest users
from participating, but these users can easily see that they have been excluded and know not
to trust the DRB output. For this reason, the coordinator can be viewed as semi-trusted ; it is
trusted for liveness but not for security. We could also consider the coordinator malicious-but-
cautious [49], in that undermining liveness would be publicly detectable but biasing the DRB
output would not be. In Section 7.1 we discuss extending Cornucopia to a multi-coordinator
model with stronger liveness guarantees.
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Performance-wise, the coordinator does face at least linear costs (Ω(n)) to compute the
accumulator and per-user proofs, but for certain accumulators [52, 55], the coordinator can
efficiently batch compute all users’ witnesses.

Related work. There is a large and growing literature on randomness beacons, dating to
the seminal proposal by Rabin [47] and foundational work on distributed coin tossing [21,
3, 4, 31, 23, 34, 33]. Several recent surveys cover modern DRBs [48, 19, 35]. Most of
this work is orthogonal, as protocols without delay functions either require an honest
majorities [54, 17, 14, 7, 30, 32, 51, 22, 6, 24, 2] or offer only economic security [1, 46, 57].

Unicorn [38] introduced delay-based DRBs. Several extensions to Unicorn work in a
similar model. Bicorn [18] extends Unicorn with a fast optimistic case, avoiding the delay
function if all participants are honest. RandRunner [50] also enables avoiding a delay
function per beacon output although it does not support flexible participation and allows a
withholding leader to affect the protocol.

HeadStart [37] is the most conceptually similar approach to Cornucopia, using Merkle
trees to scale Unicorn by combining many users’ contributions in a succinct commitment in
a multi-round, pipelined protocol. Cornucopia can be seen as a generalization of HeadStart,
offering flexibility to use any accumulator and formalizing precise security notions required
of accumulators for use in DRBs.

Our contributions.
We formalize combining a VDF with an accumulator as Cornucopia (Section 3).
We prove (in Section 4) that this approach is secure when instantiated with any VDF and
any accumulator satisfying a natural security notion that we develop, insertion security.
We prove (in Section 5) that the most common accumulator constructions either nat-
urally feature insertion security (Merkle trees) or achieve it with trivial modifications
(RSA accumulators, bilinear accumulators, and accumulators from vector commitments),
meaning Cornucopia is practical to build from standard cryptographic assumptions and
implementations. We also show that we can construct an insertion-secure accumulator
generically from any universal accumulator (Section 5.6).
We compare performance of different accumulators which can be used to instantiate
Cornucopia in Section 6. No accumulator is clearly best in all settings, as different options
offer different trade-offs of communication and computation cost.
Finally, we discuss several natural extensions, including the multi-coordinator model to
ensure liveness (Section 7.1) and a notarized model to provide verifiability to passive
observers (Section 7.2).

2 Preliminaries

We use λ to denote a security parameter, and poly(λ) and negl(λ) to denote polynomial and
negligible functions of λ, respectively. We let [k] denote the set {1, . . . , k}. We use $←− (or
$−→) to denote the output of a randomized algorithm, or sampling uniformly at random from
a range. We use α to denote an advice string passed from a precomputation algorithm to
a later online algorithm. We assume all adversaries are limited to running in probabilistic
polynomial time (PPT) in the security parameter λ; some adversaries are further limited to
running in σ(t) steps on at most p(t) parallel processors, as defined for VDF sequentiality [9].
Both VDFs [9] and accumulators [5] rely on public parameters pp which all functions require
implicitly, though we will typically omit this for brevity.

AFT 2024
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Gsequential
A0,A1,t,VDF(λ)

pp $←− VDF.Setup(λ, t)
α

$←− A0(pp)
x

$←− U

ỹ
$←− A1(α, x)

y, π ← VDF.Eval(pp, x)

return ỹ = y

Figure 1 VDF sequentiality game.

2.1 Verifiable delay functions
▶ Definition 1 (Verifiable delay function [9]). A verifiable delay function (VDF) is a tuple of
algorithms (Setup, Eval, Verify) where:
VDF.Setup(λ, t) → pp takes as input λ and a time parameter t and outputs public para-

meters pp.
VDF.Eval(pp, x) → (y, π) takes as input x and produces an output y and optional proof π.

This function should run in t sequential steps.
VDF.Verify(pp, x, y, π) → {true, false} takes an input x, output y, and optional proof π,

and returns true if (y, π) is a genuine output of Eval.

VDFs must satisfy the following three properties:
Verifiability. The verification algorithm is efficient (at most polylogarithmic in t and λ) and

always accepts when given a genuine output from VDF.Eval.
Uniqueness. VDF evaluation must be a function, meaning that VDF.Eval is a deterministic

algorithm and it is computationally infeasible to find two pairs (x, y), (x, y′) with y ≠ y′

that VDF.Verify will accept.
Sequentiality. VDFs must impose a computational delay. Roughly speaking, computing a

VDF successfully with non-negligible probability over a uniformly distributed challenge x

should be impossible without executing t sequential steps. Formally (adapted from [9]):

▶ Definition 2 (VDF sequentiality [9]). A VDF is (p, σ)-sequential if for all randomized
algorithms A0 which run in total time O(poly(t, λ)), and A1 which run in parallel time σ(t)
on at most p(t) processors:

Pr
[
Gsequential
A0,A1,t,VDF(λ) = 1

]
≤ negl(λ)

where Gsequential
A0,A1,t,VDF(λ) is defined in Figure 1.

2.2 Accumulators
▶ Definition 3 (Accumulator [5, 13]). Given a data universe U , an accumulator is a tuple of
algorithms (Setup, Accumulate, GetMemWit, MemVer) where:
Acc.Setup(λ) → pp takes as input λ and outputs public parameters pp.
Acc.Accumulate(S) → A takes as input a set S ⊆ U to be accumulated. It outputs A, an

accumulator value for S.
Acc.GetMemWit(S, A, x) → w takes as input a set S ⊆ U , an accumulator value A for

S, and an element x ∈ S. It outputs a membership witness w for x.
Acc.MemVer(A, x, w) → {true, false} takes as input an accumulator value A, an element

x, and a membership proof (membership witness) w. It outputs true if x is included in
the accumulated set represented by A and false otherwise.
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Gacc
A,Acc(λ)

pp $←− Acc.Setup(λ)
S, x, w

$←− A(pp)
A← Acc.Accumulate(S)

return
Acc.MemVer(A, x, w) ∧ x /∈ S

Figure 2 Accumulator security game.

We describe here only the accumulator functionality necessary for our purposes. Accu-
mulators generally also support an incremental Update function to add additional elements
to the accumulated set and dynamic accumulators support a Delete function to remove
elements [13]. Cornucopia does not require either capability; we assume in each run of the
protocol the coordinator collects all randomness contributions (the set being accumulated),
accumulates them in one batch operation and never deletes.

An accumulator is correct if MemVer always accepts for elements included in honestly
accumulated sets. An accumulator is computationally correct if it is computationally infeasible
to find a set such that an honestly generated inclusion proof for an element in that set does
not verify. The key security property of an accumulator is that for an honestly generated
accumulator value for some set S, it is infeasible to find a membership proof for an element
not in S:

▶ Definition 4 (Accumulator security [13]). An accumulator Acc is secure if no PPT adversary
A can succeed with non-negligible probability in Gacc

A,Acc(λ) as defined in Figure 2.

A universal accumulator [39] also supports non-membership proofs; that is, it supports
two additional functions:
Acc.GetNonMemWit(S, A, x′) → w′ takes as input a set S ⊆ U , an accumulator value A

for S, and an element x′ /∈ S. It outputs a non-membership witness w′ for x′.
Acc.NonMemVer(A, x′, w′) → {true, false} takes as input an accumulator value A, an

element x′, and a non-membership proof (non-membership witness) w′. It outputs true if
x′ is not included in the accumulated set represented by A and false otherwise.

For Cornucopia itself, a universal accumulator is not required as there is no reason for
the coordinator to prove to that any value is not included. However, in Section 5.6 we show
a generic transformation from any universal accumulator to an insertion-secure accumulator.

A universal accumulator is correct if, in addition to MemVer accepting for all included
elements, NonMemVer accepts for all non-included elements. Security requires that no
adversary can find valid membership and non-membership proofs for the same element:

▶ Definition 5 (Universal accumulator security [39]). A universal accumulator Acc is secure
if for all PPT adversaries A:

Pr

 pp $←− Acc.Setup(λ)
A, x, w, w′

$←− A(pp)
Acc.MemVer(A, x, w) ∧ Acc.NonMemVer(A, x, w′)

 ≤ negl(λ)

2.3 Vector commitments
We present only the functionality of vector commitments necessary for our applications.

AFT 2024
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▶ Definition 6 (Vector commitment [15]). Given a message space M, a vector commitment
is a tuple of algorithms including:
KeyGen(λ, s) → pp takes in the security parameter λ and the size s of the committed vector,

and outputs public parameters pp.
Com(m1, . . . , ms) → C, aux takes as input a vector of s messages in M, and outputs a

commitment C and some auxiliary information aux.
Open(m, i, aux) → πi takes as input a message m ∈ M, an index i, and some auxiliary

information aux. It outputs a proof πi that the ith component of the committed vector is
m.

Ver(C, m, i, πi) → {true, false} takes as input a commitment, a message m, an index i,
and a proof that the ith component of the committed vector is m. It outputs true if and
only if the proof verifies.

A vector commitment must satisfy correctness, which requires that honestly generated
proofs for correct components of honestly generated vector commitments verify, as well as
position binding, which requires that an adversary cannot produce a (possibly maliciously
formed) commitment and two proofs of distinct values for the same component.

▶ Definition 7 (Position binding [15]). A vector commitment satisfies position binding if for
all i ∈ [s] and for all PPT adversaries A:

Pr

 pp $←− Acc.Setup(λ)
C, m, m′, i, πi, π′i

$←− A(pp)
Ver(C, m, i, πi) ∧ Ver(C, m′, i, π′i) ∧m ̸= m′

 ≤ negl(λ)

3 Timed DRBs: Definitions and Constructions

We first define timed DRBs using a generalized syntax, building on the definitions of [18].1

▶ Definition 8 (Timed DRBs). A timed DRB protocol is a tuple of algorithms
(Setup, Prepare, Post, Finalize, Verify):
Setup(λ, t) $−→ pp: The setup algorithm can be run once and outputs public parameters pp

used for multiple protocol runs.
Prepare(pp) $−→ ri: The prepare algorithm is run by each participant to produce a randomness

contribution ri. This contribution is submitted during the contribution phase, which is
bounded in length by the time parameter t.

Post({ri}) → (R, {πi}): The post algorithm is run by a coordinator immediately after the
end of the contribution phase, producing a commitment R to all users’ contributions and
(optionally) a list of user-specific proofs πi. Typically, this value R will be posted to a
public bulletin board, whereas πi will be made privately available.

Finalize(pp, R) → (Ω, πΩ): The finalize algorithm is run after the post algorithm, evaluating
a delay function on R to produce a final DRB output Ω and (optionally) a proof πΩ. It is
a deterministic algorithm running in time (1 + ϵ)t for some small ϵ.

Verify(pp, R, Ω, πΩ, ri, πi) → {true, false}: Individual users should verify both the final
DRB output Ω as well as that their contribution ri was correctly included, possibly with
the help of an auxiliary user-specific proof πi.

1 Note that our syntax here is specific to one-round timed DRBs. Some timed DRBs such as Bicorn [18]
have an optional second communication round.
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Gindist
A,t,b,DRB(λ)

pp $←− Setup(λ, t)
r1

$←− Prepare(pp)
α0

$←− A0(pp)
α1, R, π1

$←− A1(α0, r1)
Ω0, π0 ← Finalize(pp, R)
Ω1

$←− U

b′ $←− A2(α1, Ωb)

return b = b′

∧ Verify(pp, R, Ω0, π0, r1, π1)

Gunpred
A,t,DRB(λ)

pp $←− Setup(λ, t)
r1

$←− Prepare(pp)
α0

$←− A0(pp)
Ω̃, πΩ̃, R, π1

$←− A1(α0, r1)

return Verify(pp, R, Ω̃, πΩ̃, r1, π1)

Figure 3 Security games for (p, σ)-indistinguishability (left) and (p, σ)-unpredictability (right).

A timed DRB has the following security properties (shown in Figure 3):

▶ Definition 9 ((p, σ)-unpredictability). The (p, σ)-unpredictability game tasks an adversary
with predicting the final output Ω exactly, allowing it control of all but a single honest
participant (which publishes first). This adversary’s computation is broken into two phases.
In the precomputation phase, before the adversary sees the honest contribution r1, it may
run an algorithm A0 that runs in time poly(λ, t). This algorithm outputs some advice string.
After seeing r1, the adversary is limited to running for σ(t) steps on at most p(t) parallel
processors, exactly like the adversary for VDF sequentiality (Definition 2). The adversary’s
advantage is: Advunpred

A,t,DRB(λ) = Pr
[
Gunpred
A,t,DRB(λ) = 1

]
.

The (p, σ)-unpredictability property only guarantees the DRB output cannot be predicted
exactly. We can define a stronger (p, σ)-indistinguishability property in which the adversary
must distinguish a DRB output from random, again allowing the adversary control of
all-but-one participants:

▶ Definition 10 ((p, σ)-indistinguishability). The (p, σ)-indistinguishability game is exactly
like the (p, σ)-unpredictability game, except with an extra input bit b. The challenger provides
the adversary the genuine output of Finalize if b = 0 and a random output if b = 1. The
adversary must, after running for at most σ(t) steps on at most p(t) parallel processors,
output a guess b′ for which output it received. We define the adversary’s advantage as:

Advindist
A,t,DRB(λ) =

∣∣Pr
[
Gindist
A,t,1,DRB(λ) = 1

]
− Pr

[
Gindist
A,t,0,DRB(λ) = 1

]∣∣
As observed by Boneh et al. [9], we can convert any timed DRB which satisfies (p, σ)-

unpredictability into one with (p, σ)-indistinguishability by applying a random oracle to the
output. Our main result (Theorem 14) shows Cornucopia is unpredictable, indistinguishability
thus immediately follows in the random oracle model (Corollary 15).

3.1 Unicorn
As a warm-up, we succinctly describe Unicorn [38] as a timed DRB in our framework in
Figure 4.2 Intuitively, Unicorn is secure because every user can check that their value is
included in the posted set {ri}. A VDF is evaluated on a hash of this set. A single honest

2 Note that the the original Unicorn proposal used the delay function Sloth, which computes modular
square roots modulo a prime. We describe Unicorn here using a modern VDF instead [9].
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Setup(λ, t) $−→ pp
pp← VDF.Setup(λ, t)

Prepare() $−→ ri

ri
$←− U

Post({ri})→ (R,∅)
R← {ri}

Finalize(R)→ (Ω, πΩ)
Ω, πΩ ← VDF.Eval(H(R))

Verify(pp, R, Ω, πΩ, ri, πi)→ {true, false}
return ri ∈ R ∧ VDF.Verify(H(R), Ω, πΩ)

Setup(λ, t) $−→ pp
pp← (VDF.Setup(λ, t), Acc.Setup(λ))

Prepare() $−→ ri

ri
$←− U

Post({ri})→ (R, {πi})
R← Acc.Accumulate({ri})
πi ← Acc.GetMemWit({rj}, R, ri)

Finalize(R)→ (Ω, πΩ)
Ω, πΩ ← VDF.Eval(H(R))

Verify(pp, R, Ω, πΩ, ri, πi)→ {true, false}
return VDF.Verify(H(R), Ω, πΩ)
∧ Acc.MemVer(R, ri, πi)

Figure 4 The Unicorn timed DRB protocol [38] (left) and the Cornucopia protocol (right).

user is enough to ensure this hashed value cannot have been precomputed by the adversary.
Unicorn’s security is directly implied by our security proof for Cornucopia in Theorem 14,
as Unicorn is a special case using the trivial “concatenation accumulator”.3 The primary
downside of Unicorn is the fact that |R| = Θ(n). The goal of Cornucopia is to achieve the
same security as Unicorn while storing only Θ(1) data on the public bulletin board.

3.2 Cornucopia
Cornucopia, shown in Figure 4, improves on Unicorn by having the coordinator accumulate all
user contributions into a succinct commitment R using a cryptographic accumulator scheme
(see Section 2). Because |R| does not grow with the number of participants, Cornucopia
easily scales to many users with constant publishing costs. Our indistinguishability and
unpredictability definitions ensure that the protocol is secure as long as a single honest user
contributes, so any honest user can be convinced the final result is random as long as they
are convinced that their contribution was included.

Note that our Cornucopia presentation and security definitions focus on security against
manipulation and not on liveness; the coordinator can trivially block individual participants
or even prevent the protocol from running at all. In Section 7.1 we revisit this and introduce
the multi-coordinator model to ensure liveness even if all-but-one coordinators act maliciously.

4 Cornucopia Security

The security of Cornucopia relies on the adversary’s inability to predict the output of the
VDF. This also requires that the adversary cannot produce an accumulator value satisfying
an honest participant before seeing that participant’s randomness contribution. If it were
able to do so, it could precompute the output of the VDF applied to this accumulator value
and predict the output of the randomness beacon. However, the participant would still
receive a valid proof that their contribution was included and believe that the randomness
beacon was unpredictable. A trivial attack would be to accumulate the entire data universe,
ensuring any user contribution could be proven “included.” To formalize this requirement, we
define a novel security property for accumulators, called insertion security. We then prove
that Cornucopia is secure when instantiated with any insertion-secure accumulator.

3 Lenstra and Wesolowski prove security of Unicorn in a slightly different model [38].
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Ginsert
A,Acc (λ)

pp $←− Acc.Setup(λ)
A← A(pp)
x

$←− U
w ← A(pp, A, x)

return Acc.MemVer(A, x, w)

Figure 5 Insertion security game.

4.1 Insertion Security
Intuitively, an accumulator is insertion-secure if it is infeasible for any efficient adversary
to accumulate a non-negligible fraction of the data universe. We formalize this property
using an insertion security game, shown in Figure 5. To win the insertion security game, the
adversary must produce an accumulator value A such that it can supply a membership proof
for a randomly chosen element with non-negligible probability. Note that the adversary is
not limited to producing A via the normal Accumulate function; it can compute A using any
procedure at all. Using this game, insertion security is defined as follows:

▶ Definition 11 (Insertion Security). An accumulator is insertion-secure if for any PPT
algorithm A, the probability of A winning the insertion security game (Figure 5) is negligible:

Pr
[
Ginsert
A,Acc(λ) = 1

]
≤ negl(λ)

Although insertion security is (to our knowledge) a novel property of accumulators, it
turns out that many constructions are naturally insertion-secure, as we will show in Section 5.

Necessity of insertion security. We will show that insecurity security is sufficient for
Cornucopia in Theorem 14. We can also show insertion security is necessary. To see why,
suppose that the underlying accumulator is not insertion-secure. The adversary is therefore
able to produce some A such that with noticeable probability, it can efficiently compute a
membership proof for a random element with respect to A. The adversarial coordinator
precomputes Ω = VDF.Eval(H(A)) and predicts that this will be the beacon output. The
coordinator then accepts randomness contributions from the participants, and in the Post
protocol outputs A regardless of the values of these contributions. Now, consider some honest
participant. With noticeable probability, the adversary is able to produce a membership
proof with respect to A for their randomness contribution. Therefore, this honest participant
accepts. However, this breaks security, as the adversary correctly predicted the output Ω.
Combined with our proof of Theorem 14, this shows that our definition is tight – insertion
security is both necessary and sufficient.

Incomparability with standard accumulator security. We can show that insertion security is
incomparable to standard accumulator security (Definition 4). Given any secure accumulator
scheme Acc, one can construct an accumulator Acc’ which is not insertion-secure, but
otherwise satisfies the standard security definitions of an accumulator. One approach is
to add a special symbol ϵ which is defined as the accumulation of the entire data universe
U . Acc’.MemVer(A, x, w) is defined to be 1 if A = ϵ (regardless of the value of x or w),
and otherwise is equal to Acc.MemVer(A, x, w). The scheme Acc’ can be used exactly as
Acc in normal operation, with the extra property that ϵ is a “shortcut” to computing an
accumulation of the entire data universe. We show later in Section 5 that some common
schemes such as RSA and bilinear accumulators naturally feature this shortcut.
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17:10 Cornucopia: Distributed Randomness at Scale

On the other hand, insertion security does not imply standard accumulator security.
Recall that an accumulator is secure if an adversary cannot produce an honestly computed
commitment A to a set S, an element x /∈ S, and a valid membership proof for x with respect
to A. Now, consider modifying an insertion-secure accumulator so that for a special element
x∗, any witness is accepted; that is, MemVer(A, x∗, w) outputs true for all A and w. This
resulting accumulator is still insertion-secure, as x∗ is chosen as the challenge element with
only negligible probability; however, it does not satisfy standard accumulator security as it
is possible to provide a valid proof for x∗ even if it was not in the genuinely accumulated set.

4.2 Security of Cornucopia
Before proving our main result (Theorem 14), we first prove two useful lemmas. The first
is that if Cornucopia is constructed using an insertion-secure accumulator, an adversary
cannot guess a satisfactory R before seeing the contribution r1 of the sole honest participant.
Insertion security implies that it is difficult to precompute an accumulator value for which
one can provide a membership proof of a random element. The second lemma states that if
the adversary does not query R to the random oracle in its precomputation phase, it cannot
output Ω̃ = VDF.Eval(H(R)). This is because after the precomputation phase, the adversary
is (p, σ)-sequential and therefore cannot evaluate the VDF; thus, to prove this lemma we
invoke VDF sequentiality. Together, these lemmas make it straightforward to prove that
Cornucopia (CC for short) is secure given any insertion-secure accumulator and secure VDF.

▶ Lemma 12. Let E1 be the event that Gunpred
A,t,CC (λ) = 1 and A0 queried R to the random

oracle. If CC is instantiated with an insertion-secure accumulator, then Pr [E1] ≤ negl(λ).

Proof. Suppose for the sake of contradiction that for some constant c > 0,

Pr
[
Gunpred
A,t,CC (λ) = 1 ∧ A0 queried R to the random oracle

]
≥ 1

λc

We define an adversary B that breaks insertion security of the accumulator scheme by
simulating the challenger in Gunpred

A,t,CC and using A = (A0,A1). B first receives Acc.pp in
Ginsert
B,Acc (λ). It samples VDF.pp ← VDF.Setup(λ, t) and passes pp = (Acc.pp, VDF.pp) to A0.
B simulates the challenger in Gunpred

A,t,CC (λ) and records the queries q1, . . . , qk that A0 makes to
the random oracle. B also receives α0 as the output of A0. B then chooses some query qi

uniformly at random from the queries made by A0 and outputs A = qi as its accumulator
value in Ginsert

B,Acc (λ). B then receives x from the challenger in Ginsert
B,Acc (λ), and it continues

simulating the Gunpred
A,t,CC (λ) challenger by passing α0 and r1 = x to A1. B receives (Ω̃, R, w1)

as the output of A1.
Since A succeeds with at least probability 1

λc ,

Pr[MemVer(R, x, w1) = true ∧ A0 queried R to the random oracle] ≥ 1
λc

Let q(λ) be some polynomial upper bounding the number of queries that A0 makes to the
random oracle; this polynomial must exist since A0 runs in polynomial time. Since B’s
random choice of qi is independent of A, Pr[MemVer(R, x, w1) = true ∧ A = R] ≥ 1

λc · 1
q(λ)

which is non-negligible. Thus, with non-negligible probability, Ginsert
B,Acc (λ) = 1. ◀

▶ Lemma 13. Let E2 be the event that Gunpred
A,t,CC (λ) = 1 and A0 did not query R to the random

oracle. If CC is instantiated with an insertion-secure accumulator and a (p, σ)-sequential
VDF, then Pr [E2] ≤ negl(λ).
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Proof. Suppose for the sake of contradiction that for some constant c > 0,

Pr
[
Gunpred
A,t,CC (λ) = 1 ∧ A0 did not query R to the random oracle

]
≥ 1

λc

We define an adversary B = (B0,B1) that breaks (p, σ)-sequentiality of the VDF by simulating
the challenger and random oracle in Gunpred

A,t,CC and using A = (A0,A1). When A evaluates the
hash function it must query B. B responds in a way that is indistinguishable (to A) from a
random function.
B0 first receives (λ, VDF.pp, t) from the VDF challenger in Gsequential

B0,B1,t,VDF(λ). B0 samples
Acc.pp ← Acc.Setup(λ) and passes pp = (VDF.pp, Acc.pp) to A0. B0 answers A0’s random
oracle queries using uniformly random values. It records these queries and their responses in
a list Q. If any query is repeated, B0 answers consistently with its previous response in Q.
A0 outputs an advice string α0, which B0 outputs as part of its advice string α = (α0, Q).

Now, the VDF challenger samples a random input x which is passed to B1 along with
VDF.pp and α. B1 passes α0 and a randomly-generated value r1

$←− Prepare(pp) to A1. B1
then simulates the random oracle for A1, with one key modification: B1 chooses an index
i ≤ p(t) · t uniformly at random4 and answers A1’s ith random oracle query qi with x

(provided that qi has not been previously queried, otherwise it responds with the appropriate
value from Q). It answers any future repeated queries qi similarly. For all other queries, B1
answers randomly the first time and then consistent with its stored responses in Q. When
A1 outputs (Ω̃, R, w1), B1 outputs Ω̃.

B properly simulates the random oracle. Since x is a uniformly random value and all
other queries receive random responses, B1 does not change the output distribution of the
random oracle and hence does not affect A1’s behavior.

If A succeeds, B succeeds with non-negligible probability. We now argue that if A wins
Gunpred
A,t,CC , B wins Gsequential

B0,B1,t,VDF(λ) with non-negligible probability. First, recall that if A wins,
DRB.Verify holds. By uniqueness of the VDF, the probability that A1 outputs a proof πΩ
such that VDF.Verify(VDF.pp, H(R), Ω̃, πΩ) = 1 yet Ω̃ ̸= VDF.Eval(H(R)) is negligible. Thus,
since DRB.Verify holds, A1 must have output Ω̃ = VDF.Eval(H(R)).

We now show that the fact that A1 outputs VDF.Eval(H(R)) implies that B breaks
(p, σ)-sequentiality of the VDF. Because the index i of the query to be replaced was chosen
uniformly and independently of A1, qi was chosen to be the first instance that R was queried
by A1 with probability at least 1

p(t)·t . Since A0 did not query R, we can indeed make this
replacement. Therefore, with non-negligible probability B1 simulates the random oracle to
answer R with x, and Ω̃ = VDF.Eval(x) as desired.

Thus, for (Ω̃, R, w1) output by A1, it holds that

Pr
[
Ω̃ = VDF.Eval(H(R)) ∧ A0 did not query R to the RO

]
≥ 1

λc

In the above, we assumed that A1 queried R to the random oracle. If A1 did not query R to
the random oracle, it has anyways succeeded in computing the VDF output on H(R) which
is a random value and identically distributed to x. ◀

Given these lemmas, we can now succinctly prove our main result:

4 We use p(t) · t as a generous upper bound on the number of random oracle queries made by A1, if every
processor queries the oracle in every time step.
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17:12 Cornucopia: Distributed Randomness at Scale

▶ Theorem 14 (Unpredictability of Cornucopia). Cornucopia is (p, σ)-unpredictable when
instantiated with an insertion-secure accumulator, a (p, σ)-sequential VDF, and a hash
function modeled as a random oracle.

Proof. Let E1 be the event that Gunpred
A,t,CC (λ) = 1 and A0 queried R to the random oracle. Let

E2 be the event that Gunpred
A,t,CC (λ) = 1 and A0 did not query R to the random oracle.

Observe that Pr[Gunpred
A,t,CC (λ) = 1] = Pr[E1] + Pr[E2]. By Lemma 12, Pr[E1] ≤ negl(λ). By

Lemma 13, Pr[E2] ≤ negl(λ). Therefore, Pr[Gunpred
A,t,CC (λ) = 1] ≤ negl(λ). ◀

▶ Corollary 15. Cornucopia is (p, σ)-indistinguishable when a random oracle is applied to
its output.

5 Insertion-secure accumulators

We now turn to the question of instantiating accumulators satisfying insertion security
(Definition 11).

5.1 Accumulators without insertion security
Recall from Section 4.1 that one can construct accumulators that have a shortcut ϵ that
accumulates the entire data universe. RSA accumulators naturally feature such a shortcut:
ϵ = 1. A valid membership witness for any x is w = 1, since wx = 1x = 1. Although
we will prove RSA accumulators can easily be made insertion-secure by disallowing an
accumulator value of 1, technically they are not insertion-secure as commonly specified.
Bilinear accumulators have the same shortcut, which we remove with the same modification.

A second example, potentially of practical interest, is a range accumulator. A range
accumulator can be defined from any accumulator scheme and for any data universe with a
known total ordering (for example, any fixed subset of the integers such as {0, 1}k). With a
range accumulator, the value H(x, y) can be accumulated, which is interpreted as adding
a range [x, y] (the value H(x, x) can be accumulated to add a single element x). Given
any value z, proving membership can be achieved by providing a witness w′ = (w, x, y)
where w = Acc.GetMemWit(S, A, H(x, y)) for x ≤ z ≤ y. This concept is quite natural and
efficient, though it is also trivially not insertion-secure: an adversary can win Ginsert

A,Acc(λ) with
probability 1 by accumulating the value H(xmin, xmax) for the smallest and largest data
elements in U , effectively accumulating the entire data universe in constant time.5

5.2 Merkle trees
▶ Lemma 16. A Merkle tree of bounded depth k = poly(n) is insertion-secure in the random
oracle model.

Proof. We work in the random oracle model, supposing that the Merkle tree uses a random
oracle O : {0, 1}2n → {0, 1}n. Let A be the accumulator output by an adversary A in
Ginsert
A,Acc(λ). We show that for a uniform x ∈ {0, 1}n, the adversary can provide a verifying

witness w = (w1, . . . , wk) for x with only negligible probability. For a verifying witness,
it must hold that O(wk|| . . .O(w2||O(w1||x))) = A. We’ll show that with overwhelming
probability (over choice of x), no query to O involved in the witness verification was made
by the adversary in step 2 of Ginsert

A,Acc(λ).

5 The adversary can in fact win with non-negligible probability by accumulating any range whose size is a
constant fraction of |U |.



M. Christ, K. Choi, and J. Bonneau 17:13

This can be shown by induction. Let a1, . . . , aℓ be the adversary’s queries to the random
oracle in step 2. Let b1, . . . , bk be the queries to the random oracle in the Merkle membership
proof verification; that is, bi = wi||O(wi−1|| . . .). Let p(λ) be a polynomial upper bound on
the total number of queries made by the adversary to the random oracle throughout the
game. Observe first that Pr[b1 = aj for some j] = ℓ

2λ since b1 = w1||x and x is chosen at
random. Assume that the probability that bi is equal to any aj is at most iℓ·p(λ)

2λ . If this
event does not occur, then O(bi+1) = O(wi+1||O(bi)) is a freshly random value, and the
probability that bi+1 = aj for any j is at most ℓ·p(λ)

2λ (since A can try up to p(λ) values for
wi+1).

Pr [bi+1 = aj for some j] ≤ ℓ · p(λ)
2λ

Pr [bi ̸= aj for all j]

+ Pr [bi = aj for some j]

≤ ℓ · p(λ)
2λ

+ iℓ · p(λ)
2λ

= (i + 1)ℓ · p(λ)
2λ

since Pr[bi = aj for some j] ≤ iℓ·p(λ)
2λ by assumption. Therefore, the probability that any of

the (polynomially bounded) k queries involved in witness verification was queried in step 2
is at most kℓ·p(λ)

2λ ≤ negl(λ).
In order for witness verification to pass, the last query must match the root;

that is, O(wk|| . . .O(w2||O(w1||x))) = A. Since the above argument shows that
(wk|| . . .O(w2||O(w1||x))) was never queried in step 2, at the end of which A outputs A, for
each choice of wk, O(wk|| . . .O(w2||O(w1||x))) is a uniformly random value independent of
A and equals A with only negligible probability. ◀

5.3 RSA accumulators
In a standard RSA accumulator [13, 40], Setup(λ) generates a random group of unknown
order and a generator g for this group using some group generation algorithm GenGroup.
The data universe is Πλ, the set of all λ-bit primes. The accumulator value for a set S is
A = g

∏
x∈S

x, and the witness w for an element x for the value A is w = g

∏
x′∈S\{x}

x′

= A1/x.
Add(At, x) outputs At+1 = Ax

t . Thus, the accumulator value for a set S can be obtained
by starting with the value A0 = 1 and adding each xi ∈ S to Ai=1 to obtain Ai, repeating
until we reach A|S|. UpdWit(At, x, w′t) outputs w′t+1 = (w′t)x. MemVer(A, x, w) outputs 1 if
and only if wx = A. A non-membership witness for x with respect to A = g

∏
s∈S

s is {a, B}
where a and b are Bézout coefficients for (x,

∏
s∈S s), and B = gb. NonMemVer(A, {a, B}, x)

outputs 1 if and only if AaBx = g.
To make RSA accumulators insertion-secure, we add a second condition to

MemVer(A, x, w): It now outputs 1 if and only if wx = A and A ̸= 1. Note that our
requirement that A ≠ 1 is necessary to reduce insertion security to the Adaptive Root
Assumption.

▶ Assumption 17 (Adaptive Root Assumption [10]).

Pr


G $←− GenGroup(λ)

(v, st) ← A0(G)
ul = v ̸= 1 : l

$←− Πλ = Primes(λ)
u ← A1(v, l, st)

 ≤ negl(λ)
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▶ Lemma 18. Suppose a standard RSA accumulator is modified so that the algorithm
MemVer(A, x, w) outputs 1 if and only if wx = A and A ̸= 1. The modified RSA accumulator
is insertion-secure if the Adaptive Root Assumption holds for the group generation algorithm
GenGroup.

Proof. Suppose that there exists a PPT adversary A that wins Ginsert
A,Acc(λ) with probability

at least 1
poly(λ) when the data universe is Πλ, the set of all λ-bit primes. We construct a

pair of adversaries B0,B1 that uses A to break the Adaptive Root Assumption. B0 draws
G $←− GenGroup(λ). B0 passes G to A and obtains an accumulator value A. B0 outputs v = A

and st as its current state. B1 draws a random l
$←− Πλ and passes x = l to A. A outputs an

alleged witness wx which B1 outputs directly as u in the Adaptive Root Game.
Recall that if A wins Ginsert

A,Acc(λ), it means that MemVer(A, x, wx) = true. For RSA
accumulators, MemVer(A, x, wx) = true if and only if (wx)x = A and A ̸= 1. This implies
that ul = v where v ̸= 1, and (B0,B1) win the Adaptive Root Game. Since A wins with
probability at least 1

poly(λ) , (B0,B1) win with probability at least 1
poly(λ) , violating the Adaptive

Root Assumption. ◀

▶ Corollary 19. The modified RSA accumulator is insertion-secure in the Algebraic Group
Model (AGM), since the Adaptive Root Assumption holds in the AGM [25].

5.4 Bilinear accumulators
We show that bilinear accumulators [42, 53] with a small modification are insertion-secure in
the AGM, under the Bilinear q-Strong Diffie-Hellman Assumption. The standard bilinear
accumulator was defined by Nguyen [42], and we follow [44] in its presentation. Let G,G be
cyclic multiplicative groups of prime order p, and let e : G×G→ G be a bilinear pairing. Let
s

$←− Z∗p, and let g be a generator of G. Let srs = [g, gs, . . . , gsq ] be the structured reference
string, where q is an (polynomial in λ) upper bound on the number of accumulated elements.
The public parameters are (p,G,G, e, g, srs). Note that s must be kept secret even to the
coordinator, and therefore a trusted setup is required.

This accumulator has data universe U = Z∗p \ {−s}. To accumulate a set X ⊂ U ,

where |X| ≤ q, one computes A = g

∏
xi∈X

(xi+s). The witness for an element x ∈ X is
W = g

∏
xi∈(X\{x})

(xi+s). To verify a witness, one checks that e(W, gs+x) = e(A, g). To make
this accumulator insertion-secure, we also check that A ̸= 1.

In the Algebraic Group Model (AGM) [28], the adversary is constrained to perform only
algebraic operations within the given group. That is, the adversary is given some group
elements as input, and for any element that it outputs, it must provide a description of the
operations used to obtain that element. In our setting, the algebraic adversary is given as
input [1, g, gs, . . . , gsq ]. For any group element h that the adversary outputs, it must provide
a scalar vector v ∈ Z∗p such that h =

∏q
i=0 gvi·si . We refer the reader to [28, 29] for a more

formal definition. Observe that the vi’s can be interpreted as the coefficients of a polynomial
of degree q evaluated at s. We use this interpretation in the following proof.

▶ Assumption 20 (q-Discrete Logarithm Assumption (q-DLOG) [28]). The q-DLOG assumption
holds in a group G if for every p.p.t. adversary A,

Pr
s←Z∗

p

[
A

(
g, gs, . . . , gsq

)
→ s

]
≤ negl(λ).

▶ Lemma 21. The bilinear accumulator of [42] is insertion-secure in the AGM, under the
q-DLOG Assumption.
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Proof. Let A be an algebraic adversary that takes srs as input and outputs A such that
with non-negligible probability, A can produce a verifying witness W for a randomly chosen
x ∈ Z∗p. Since A is algebraic, it must output vectors which we interpret as polynomials
α(S), w(S) of degree at most q such that A = gα(s) and W = gw(s). Since the witness
verifies, e(W, g)(s+x) = e(gα(s), g); that is, e(g, g)w(s)(s+x) = e(g, g)α(s). Furthermore, α(S)
is a nonzero polynomial since verification requires that A ̸= 1.

Observe that since x is chosen randomly from an exponentially large set, and α is a
nonzero polynomial of polynomially bounded degree, (S +x) divides α(S) with only negligible
probability by the Schwartz-Zippel lemma. Therefore, w(S)(S + x) − α(S) is a nonzero
polynomial that has s as a root. The adversary can factor w(S)(S + x)−α(S) in polynomial
time to find s. ◀

5.5 From vector commitments
Vector commitments (VCs) [15] can be used to construct an insertion-secure accumulator for
sets of bounded size ≤ k for any k polynomial in λ. Let the message space M underlying
our VC have size exponential in λ, and assume there is some total ordering over M. To
accumulate a set S ⊆ M, we order this set to obtain a vector and commit to this vector.
The witness for an element x ∈ S is an index i ≤ k and a VC opening proof for that index.
To verify this witness, one verifies the opening proof. This scheme is detailed below:

Setup(λ): Output pp← VC.Setup(λ).
Accumulate(S): Interpret S as an ordered list s1, . . . , s|S|, and let v = [s1, . . . , s|S|, 0, . . . , 0]

be a vector of length k. Compute C, aux ← VC.Commit(v).
GetMemWit(S, A, x): Compute C, aux from S as above. Let i be such that x = si.

Compute πi ← VC.Open(x, i, aux) and output (i, πi).
MemVer(A, x, (i, πi)): Output VC.Ver(A, x, i, πi).

Position binding of vector commitments says that it is infeasible for a PPT adversary
to produce any (possibly maliciously-generated) A, distinct values x, x′, an index i, and
accepting proofs πi, π′i that the vector committed to by A has x and x′ respectively as its ith

component. We prove insertion security by showing that an adversary that breaks insertion
security of this accumulator can be used to break position binding of the underlying VC
scheme.

▶ Theorem 22. When constructed with a vector commitment over an exponentially large
data universe, this accumulator scheme is insertion-secure.

Proof. Suppose that Pr
[
Ginsert
A,Acc(λ) = 1

]
is non-negligible. Let Ei denote the event that A

outputs a proof for index i. Then there must be some accumulator A and index i such that

Pr
pp←Setup(λ)

A←A(pp)

[
Pr

[
Ginsert
A,Acc(λ) = 1 ∧ Ei

∣∣ pp, A
]
≥ 1

λc1

]
≥ 1

λc2

for some constants c1, c2 > 0.
Consider drawing pp← Setup(λ) and running A(pp) to obtain A. As stated above, with

non-negligible probability, there exists some i such that with non-negligible probability given
this choice of pp, A the adversary produces a verifying proof for index i. Consider running A
twice from this point, for two independently drawn x1, x2 ← U . With probability at least

1
λ2c1 , A produces verifying opening proofs π1, π2 that the ith index of the committed vector
equals x1 and x2 respectively. Since U is exponentially large, x1 ̸= x2 with overwhelming
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probability. Therefore, we have found a vector commitment A and proofs π1, π2 that the
same component takes on two distinct values, contradicting position binding of the vector
commitment. ◀

5.6 From generic universal accumulators
Finally, we show how to construct an insertion-secure accumulator Acc′ from any universal
accumulator Acc. The core idea is to map each element x to two pseudorandom sets (S+

x , S−x ),
each a subset of the data universe U . Proving membership of x for Acc′ requires showing
inclusion of all elements of S+

x in Acc and exclusion of all elements of S−x in Acc. Intuitively,
breaking insertion security by accumulating the entire data universe in Acc does not work
because it will make the required non-membership proofs impossible. The best attacker
strategy is to accumulate a random subset of half the elements of U , but this will mean that
each item in S+

x is wrongly excluded with probability 1
2 and each item in S−x is wrongly

included with probability 1
2 . By setting ensuring the sizes of S+

x , S−x , we can amplify security
to ensure such an adversary has only a negligible probability of correctly showing inclusion
of a random element.

In more detail, let Acc be a universal accumulator scheme for data universe U . Here, we
let the data universe for Acc′ be U ′ = {0, 1}λ. Let H : [λ]× U ′ → U be a hash function that
we will model as a random oracle. For any x ∈ U ′, let S+

x :=
{

y : H(i, x) = y for i ∈ [ λ
2 ]

}
,

and let S−x :=
{

y : H(i, x) = y for i ∈
{

( λ
2 + 1), . . . , λ

}}
(assume for convenience that λ is

even). We specify the functions of Acc′ as follows:

Setup: uses the same setup function as Acc.
Accumulate(S′): Let S =

⋃
x∈S′ S+

x . Outputs A = Acc.Accumulate(S).
GetMemWit(S′, A, x): Outputs a vector of witnesses w of length λ where:

For i ≤ λ
2 , wi = Acc.GetMemWit(S, A, H(i, x)) is a membership proof for H(i, x)

For i > λ
2 , wi = Acc.GetNonMemWit(S, A, H(i, x)) is a non-membership proof for

H(i, x)
MemVer(A, x, w): Outputs true if and only if the following holds for all i ∈ [λ]:

For i ≤ λ
2 , Acc.MemVer(A, H(i, x), wi) = true.

For i > λ
2 , Acc.NonMemVer(A, H(i, x), wi) = true.

▶ Lemma 23. If Acc is a secure universal accumulator and H is modeled as a random oracle,
Acc′ is insertion-secure.

Proof. Suppose for the sake of contradiction that Acc′ is not insertion-secure, and let A be
an adversary that wins the insertion game with probability at least 1

λc for some constant
c > 0, conditioned on the event that it does not query x before it outputs A. (Since A
is polynomially-bounded, this event fails to occur with only negligible probability). Thus,
treating H as a random oracle, H(x) is a λ-length tuple of truly random independent values
yi ∈ U , where y1, . . . , y λ

2
should be included, and y λ

2 +1, . . . , yλ should be excluded.
Equivalently, we can think of drawing y = y1, . . . , yλ (uniform and i.i.d. from U) and

subsequently drawing a uniformly random vector b of Hamming weight λ
2 , where yi should

be included if and only if bi = 1.
By an averaging argument, we must have that for a non-negligible fraction of y ∈ X,

A succeeds with non-negligible probability over subsequent choice of b ∈ {0, 1}λ. Let
E [A, y, b, w] denote the event that Acc.MemVer(A, yi, wi) = true for all i such that bi = 1,
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and Acc.NonMemVer(A, yi, wi) = true for all i such that bi = 0. The success of A in Ginsert
A,Acc′(λ)

implies that E [A, y, b, w] occurs for its choice of A and w, and the random choice of y, b.
Thus,

Pr
pp

$←−Setup(λ)
y

[
A outputs A such that

Prb [w← A∧ E [A, y, b, w]] ≥ 1
λc

]
≥ 1

λc

We now construct an adversary B that breaks universal security of Acc by producing an
accumulator value, an element, and both membership and non-membership proofs for that
element. Let B first generate setup parameters and run A on these parameters to obtain
an accumulator value A. Let B choose y as above and b1, b2 uniformly random vectors of
Hamming weight λ

2 . B runs A on inputs (y, b1) and (y, b2) to obtain w1 and w2 respectively.
With probability at least 1

λc , B chose pp and y such that Prb [w← A∧ E [A, y, b, w]] ≥ 1
λc .

In this event, the probability that both w1 and w2 verify is at least 1
λ2c . As b1 = b2

with only negligible probability (since
(

n
n/2

)
≥ 2n/2), with overwhelming probability there

is some i such that (b1)i ≠ (b2)i. However, we have (without loss of generality) both that
Acc.MemVer(A, yi, (w1)i) = true and Acc.NonMemVer(A, yi, (w2)i) = true. This happens
with probability at least 1

λc · 1
λ2c ·

(
1− 1

2λ

)
, which is non-negligible. This contradicts universal

security of Acc. ◀

Correctness. Accumulators typically require correctness, which says that given an honestly-
generated accumulator value for a set, honestly-generated membership proofs for elements in
that set should verify under MemVer; similarly, honestly-generated non-membership proofs
for elements not in that set should verify under NonMemVer. We note that Acc′ has only
computational correctness, since there may be some x1, x2 for which the same y is included
in S+

x1
and S−x2

. This is problematic, since the membership proofs for x1, x2 would require a
membership proof and a non-membership proof for y (with respect to Acc), which should be
difficult by security of Acc, and hence x1 and x2 cannot both be included in the accumulator.
In Cornucopia, if one user chose x1 and another user chose x2, the coordinator could not
satisfy both users.

Fortunately, collision resistance of H ensures that actually finding such x1, x2 is computa-
tionally hard: finding x1, x2 such that y ∈ S+

x1
and y ∈ S−x2

would involve finding i1 ̸= i2 such
that y = H(i1, x1) = H(i2, x2), which yields a collision of H. Computational correctness
is sufficient for use in Cornucopia (and most other applications), as polynomially-bounded
users would not be able to find x1 and x2 resulting in the above issue.

6 Efficiency comparison of accumulator constructions

Cornucopia can be constructed from any insertion-secure accumulator. In Table 1 we compare
efficiency trade-offs between Merkle trees, RSA accumulators, bilinear accumulators, and a
construction from a vector commitment called Hyperproofs. All of these schemes require only
O(1) space on the public bulletin board, regardless of the number of participants, though
the concrete size varies. No accumulator construction offers obviously superior performance,
each offers different trade-offs which might be attractive for different practical applications.
For very large deployments (e.g. millions or billions of users) the performance bottleneck is
likely inclusion proof generation by the coordinator.
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Table 1 Comparison of accumulator options for Cornucopia, at a security level of λ = 128 bits.
Witness generation time is the time required to compute all n witnesses.
†RSA accumulators can be instantiated using class groups [41], which do not require trusted setup.
We report numbers here for the classic RSA group Z∗

N .

Trusted |commitment| Witness size |Public params| Witness gen. time
Scheme setup? (bytes) (asymp.) (bytes) (asymp.) (asymp.)

Merkle tree no 32 O(log n) 32 · ⌈log n⌉ O(1) O(n log n)
RSA Accumulator yes† 384 O(1) 384 O(1) O(n2)

Bilinear Accumulator yes 48 O(1) 48 O(n) O(n log n)
Hyperproofs [52] yes 48 O(log n) 48 · ⌈log n⌉ O(n) O(n log n)

Merkle trees. Merkle trees are optimal in terms of the commitment size (32 bytes), require
no trusted setup or public parameters and are naturally post-quantum secure. They are also
the most efficient for the coordinator to compute witnesses, both in asymptotic and concrete
terms. The only downside of Merkle trees is logarithmic witness sizes. Overall, we expect
this to be the simplest and best approach for many applications, unless clients are extremely
bandwidth-limited or the number of users is very large.

RSA accumulators. By contrast, RSA accumulators offer constant witness sizes, potentially
offering the capability to scale to more users without imposing extra bandwidth requirements
on clients. However, we note that the large size of RSA groups considered to offer 128-bit
security (3072 bit moduli) means that Merkle proofs are shorter in practice with fewer than
≈ 212 users participating. RSA proofs also require computing modular exponentiation on
large integers. This is relatively poorly supported by today’s smart contract platforms like
EVM, but we observe that these only ever need to be verified off-chain by users. Still, proof
verification is expected to be roughly an order of magnitude slower than Merkle proofs which
only require hashing (though both are very efficient in concrete terms).

Furthermore, the size of the public commitment is over 10 times larger than for Merkle
trees. This cost can be significant if the public bulletin board is an L1 blockchain such as
Ethereum, where every 32-byte word stored on-chain costs over US$2 at today’s gas prices.
RSA accumulators also impose the highest costs on the coordinator (O(n2)) to compute
witnesses, which may limit scalability.

RSA accumulators also require a trusted setup. This can be done for traditional RSA
groups Z∗N as a multiparty ceremony [16]. Deployments may also use class groups of imaginary
quadratic order [12, 41], which avoid the need for trusted setup but have higher concrete
overhead and lack well-understood security parameters.

Finally, we note that there may be interesting optimizations when combining RSA
accumulators with RSA-based VDFs [45, 56], such as offering a combined proof of inclusion
and VDF evaluation.

Bilinear accumulators. Bilinear accumulators can offer the combination of small (48 byte)
commitments and constant-sized membership proofs (48 bytes) along with the same asymp-
totic efficiency as Merkle trees for computing membership proofs (O(n log n)). Bilinear
accumulators offer higher concrete overhead than for Merkle trees. In particular, they require
pairing operations which are relatively expensive compared to hashing (though still cheap in
concrete terms). However, only a single pairing operation by verifiers is required.

The downside is that bilinear accumulators require a trusted setup of an O(n)-sized
structured reference string. This powers-of-tau string is common to many protocols and
there are many approaches to generating it in a distributed manner [36, 43]. For example,
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the Filecoin setup generated 227 powers of tau which can be used in a bilinear accumulator
with up to 227 ≈ 130 million participants [26]. Ethereum generated a smaller string with 212

powers of tau in a community setup [27]. While the coordinator must store this entire string,
participants need only access O(1) terms to verify that their contributions were included.

Hyperproofs. Finally, Hyperproofs [52] is a vector commitment scheme with the feature
that witnesses can be generated in batch very efficiently – generating all n witnesses takes
O(n log n) time. Concretely, computing all n witnesses takes 0.7 hours for n = 222 and
2.7 hours for n = 224 as implemented in [52]. Verifying witnesses takes on the order of
milliseconds. This efficiency is immediately inherited by the accumulator constructed using
our approach in Subsection 5.5. The drawback of Hyperproofs is that it requires linear-sized
public parameters that must be generated using a trusted setup. Merkle trees and bilinear
accumulators also allow all witnesses to be batch computed in O(n log n) time.

7 Concluding Discussion

Cornucopia is a simple but powerful framework for VDF-based DRBs, using accumulators to
construct open-participation randomness beacon protocols at massive scale. Our work shows
that this paradigm is secure, and it can be instantiated with efficient accumulators which are
already in common practical use (see Section 6). We discuss important practical extensions
to the Cornucopia framework, leaving a complete analysis to future work.

7.1 The multi-coordinator model
Basic Cornucopia is entirely dependent on the (single) coordinator to achieve liveness; a
malicious coordinator could prevent targeted individuals from contributing to the protocol
(censorship), or even withhold the commitment R and prevent the protocol from finishing at
all. This does not undermine our DRB security definitions (Section 3) since the coordinator
cannot do so conditionally based on the impending outcome, but they can arbitrarily bias
the outcome if they successfully block all honest participants.

A natural way to ensure liveness is to allow k > 1 coordinators, each of which
posts an accumulator value Ri. The final beacon output is then computed as Ω =
VDF.Eval(H(R1|| . . . ||Rk)). In the limit, every user might be their own coordinator (k = n),
in which case the protocol is exactly the original Unicorn proposal [38]. Any number of
malicious coordinators cannot undermine security of the protocol as long as least one honest
contributor submits a value to one honest coordinator.

If any coordinator is honest, the protocol will finish, hence we can achieve liveness if
any of k coordinators is honest. Users can submit contributions to multiple coordinators
and trust the final output Ω as long as at least one coordinator includes their contribution.
Combined, we can achieve 1-out-of-k liveness and 1-out-of-n security (for n contributors and
k coordinators) for k ≤ n.

While security and liveness are maximal with k = n, we note that in blockchain de-
ployments the on-chain cost is O(k), hence choosing k ≪ n is likely required for efficiency
considerations. Furthermore, the consequences of a security failure are more severe than
a liveness failure, and a liveness failure will be visible on-chain whereas manipulating a
randomness beacon is typically impossible to detect.

In a blockchain setting, there is no need to fix the set of coordinators; any party can
act as a coordinator as long as they are willing to pay the cost (e.g. gas) of posting their
accumulation Ri to the bulletin board. Coordinators can even use different accumulators
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with different efficiency trade-offs. For example, a user participating across many epochs
may prioritize shorter witnesses and prefer a coordinator using a bilinear accumulator with
constant-sized witnesses but a trusted setup. Another user who participates only once may
opt for a coordinator using a Merkle tree, requiring an O(log n)-sized witness but avoiding
the need for a trusted setup.

7.2 Public verifiability with notaries

As proposed, Cornucopia only offers meaningful security guarantees to participants who
have contributed randomness to the protocol. Passive observers will have no idea if the
coordinator actually included any honest participants’ values in the published commitment.
We can provide a notion of verifiability to purely passive observers by introducing a subset
of notarized participants with some public reputation for honesty.

Notaries may be organizations such as nonprofits or government bodies who commit
to participating in the protocol regularly. Each notary, after verifying its inclusion proof
from the coordinator, signs the accumulator value. These signatures might be published
by the coordinator or posted to the public bulletin board. To save space, they can be
compressed using using a succinct multi-signature scheme such as BLS [11], resulting in only
O(1) additional overhead.

Observers can now verify the set of notarized participants who have contributed to the
beacon output. As long as one of an observer’s trusted notaries is honest and has signed
the accumulator value, the final output Ω can be trusted. In practice, using BLS multi-
signatures, this would be about as efficient to verify as a threshold-signature-based protocol
like drand [24], while offering much stronger security (any honest notarized participant vs. a
majority of honest nodes in drand).

7.3 Incentivizing participation

Analyzing incentives in public randomness generation is an important open problem for
DRBs in general. For Cornucopia specifically, we must incentivize coordinator(s) to provide
a highly reliable service and expend non-trivial effort computing inclusion proofs. This is
somewhat similar to incentivizing nodes to participate in an honest-majority DRB such as
drand. In general, randomness beacons are a public good in that they are non-rivalrous
(their value is not decreased as more users rely on them) and non-excludable (it is difficult to
prevent anybody from utilizing them for their own purposes). Standard economic theory
predicts that public goods are susceptible to free-riding: users may not want to contribute
to funding a coordinator if they can rely on the efforts of others to do so and still utilize
the randomness beacon. We hope that the relatively low costs of running a coordinator
means it might attract corporate sponsorship for publicity, be run by a foundation, or receive
government support.

Second, in Cornucopia we must incentivize users to regularly contribute randomness and
to ensure their local machine is uncompromised and generating randomness correctly. The
potentially large scale of Cornucopia instances might paradoxically decrease user motivation:
if the protocol is secure as long as at least one other user is honest, why expend the effort to
contribute at all? This is a version of the bystander effect, whereby opening participation to
more parties which can contribute security means all of them may figure somebody else will
do it. Hopefully, the open nature of Cornucopia may provide a new type of incentive, as by
participating users themselves gain trust that the result is secure.
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Abstract
Milionis et al. (2023) studied the rate at which automated market makers leak value to arbitrageurs
when block times are discrete and follow a Poisson process, and where the risky asset price follows
a geometric Brownian motion. We extend their model to analyze another popular mechanism in
decentralized finance for onchain trading: Dutch auctions. We compute the expected losses that a
seller incurs to arbitrageurs and expected time-to-fill for Dutch auctions as a function of starting
price, volatility, decay rate, and average interblock time. We also extend the analysis to gradual
Dutch auctions, a variation on Dutch auctions for selling tokens over time at a continuous rate. We
use these models to explore the tradeoff between speed of execution and quality of execution, which
could help inform practitioners in setting parameters for starting price and decay rate on Dutch
auctions, or help platform designers determine performance parameters like block times.
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1 Introduction

Two of the most popular mechanisms for smart contracts to trade tokens are automated
market makers (AMMs) – in which the price is determined by the contract’s reserves – and
Dutch auctions – in which the price is determined by the current time.

When block times are discrete, both of these mechanisms leak some value to arbitrageurs.
[13] studied the rate of this value leakage for AMMs, which is closely related to the concept
of “loss-versus-rebalancing,” or LVR [14]. We apply a similar analysis to Dutch auctions,
deriving a closed form for their “loss-versus-fair” (LVF) – the expected loss to the seller
relative to selling their asset at its contemporaneous fair price – as well as their expected
time-to-fill. We also do a similar analysis for gradual Dutch auctions, a variation on Dutch
auctions that supports selling tokens at a constant rate over an extended period of time.

We hope this analysis can help inform practitioners in parameterizing these auctions
(e.g., choosing the initial price and decay rate) to trade off execution quality with speed of
execution, as well as helping spur research on how to design variants of Dutch auctions that
are more resistant to LVF.

Dutch auctions. Also known as descending price auctions, Dutch auctions are auctions in
which an item is listed at a high price that is gradually decreased over time until a bidder
accepts.
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Dutch auctions are a commonly-used mechanism in blockchain-based applications, thanks
to their simplicity and efficiency in an environment with high transaction costs, limited
privacy, and pseudonymous identities. Unlike ascending-price or sealed bid auctions, Dutch
auctions typically require only one transaction after they start – the winning bid, with price
as a function of the block number. This means that failed bidders typically do not need to
pay transaction fees such as “gas” for their bids or leak any information about their intents.1
Similarly, the seller needs only consider the single, winning bid, resulting in a significant
reduction in communication and computation complexity versus other auction formats such
as first- or second-price auctions. Dutch auctions are also strongly shill-proof [9]: the seller
has no incentive to submit any fake or shill bids to change the auction outcome.

For these reasons, Dutch auctions have been used for a variety of applications in decent-
ralized finance:

Liquidations in peer-to-pool lending protocols like Maker [12] or Ajna [17]
Rolling loans and discovering interest rates in peer-to-peer lending protocols like Blend [7]
Routing trades in request-for-quote (RFQ) protocols like UniswapX [2] and 1inch Fusion [1]
Collecting and converting fees in protocols like Euler [5]

Dutch auctions can be used both for price discovery of highly illiquid assets like NFTs,
and for automated execution between liquid assets. Here, we focus on the latter case, and
specifically on auctions between highly liquid but volatile pairs of tokens, such as between
ETH and stablecoins like USDC. In particular, we assume a common value setting where all
potential buyers agree on the value of the asset being sold at any point in time (because, for
example, the asset may be liquidly traded in other off-chain markets), and assume the price
of the asset obeys geometric Brownian motion.

Gradual Dutch auctions. Gradual Dutch auctions (GDAs) are a variation on Dutch auctions
that were introduced by [6] as a mechanism for selling NFTs or tokens at a constant target
rate over an extended time period. “Continuous gradual Dutch auctions” (CGDAs), the kind
we consider in this paper, could be thought of as a series of infinitesimal Dutch auctions of a
fungible token, with new auctions being initiated at a linear rate over time, and each auction
independently decaying in price at an exponential rate.

Arbitrage profits. Dutch auctions have some drawbacks when implemented on a blockchain.
In particular, since blocks only arrive at discrete times, the true market price of the asset at
the time a block is created may be higher than the price offered by the auction, due to the
decay of the Dutch auction price and the drift and volatility of the asset. This means the
seller should expect to sell the asset at a discount to the market price or fair value at the
time of sale, with the profits going to arbitrageurs or whoever is able to capture value from
ordering transactions in the block – a type of maximal extractable value (MEV).

This type of loss is similar to the “quote-sniping” losses of market makers in high-
frequency trading models [4], or the “loss-versus-rebalancing” suffered by liquidity providers
on automated market makers, a concept introduced by [14]. In [13], LVR was extended to
incorporate discrete blocks. For analytic tractability, block generation times are assumed to
be from a Poisson process, an assumption we also make here.

1 One exception is that if other bidders attempt to submit a bid at around the same time as the winning
bid, their transaction may be publicized and/or included on chain after the winning transaction, possibly
paying fees.



C. C. Moallemi and D. Robinson 18:3

Contributions. In this paper, we apply a similar model to Dutch auctions and gradual
Dutch auctions. Given certain parameters for a Dutch auction – volatility, drift, starting
price, decay rate, and average block arrival times – we derive closed-form expressions for
both the losses to fair value and expected time-to-fill. We also extend the analysis to gradual
Dutch auctions, showing how expected losses to arbitrageurs and expected sales rate vary as
a function of these parameters.

For both Dutch auctions and gradual Dutch auctions, as long as the auction starts above
the current price, LVF is given by the following expression (where δ is the decay rate of the
auction plus the asset’s drift in log space, σ is the volatility of the asset, and ∆t is the mean
interblock time):

LVF+ = 1

1 + δ
σ2

(√
1 + 2σ2

δ2∆t − 1
) .

For example, if volatility is 5% per day (0.017% per second), decay rate is 0.01% per second,
and average block time is 12 seconds, LVF+ is about 0.13%. This would mean that for every
$100 worth of tokens that they sell, the seller should expect to get about $99.87.

For regular Dutch auctions, the amount of time to fill if the starting price of the auction
is higher than the current price is given by the following formula, in which z0 is the (log)
difference between the starting price and the current price:

FT(z0) = z0

δ
+ ∆t

2

(
1 +

√
1 + 2σ2

δ2∆t

)
.

For example, with the same parameters as above, and with starting price 0.1% higher than
the current price, the expected time to fill is about 23.3 seconds. For gradual Dutch auctions,
we find a closed form expression for the rate at which the asset is sold over time.

We also find closed forms for LVF and FT in the cases where the starting price of the
auction is below the current price.

These models show how changing the decay rate of the auction affects both speed of
execution and expected loss, helping inform practitioners who want to trade off between
those values when choosing auction parameters such as initial price and decay rate. They
also show how the characteristics of the blockchain – particularly average block time – affect
the efficiency of Dutch auctions. For example, the formula for LVR+ above satisfies the lower
bound

LVF+ ≥ 1
1 + 1

σ
√

∆t/2

≈ σ
√

∆t/2,

where the approximation holds for ∆t small (the “fast block” regime). This suggests that if
a platform wants to support Dutch auctions that lose less than 2 basis points for assets with
daily volatility of 5%, it will need to have block times of less than 2.75 seconds.

Literature Review

Dutch auctions have been analyzed extensively in the auction theory and mechanism design
literature, since at least the work of [19], who showed the strategic equivalence of Dutch
auctions and first-price sealed-bid auctions under certain assumptions.

Our approach is related to barrier-diffusion approaches [8] to limit order pricing. For
example, in [11], the time-to-fill for a limit order is modelled as the first-passage time
for a geometric Brownian motion with drift, and solve for the distribution of this time.
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Mathematically, this is equivalent to a continuous time version of our model.2 Crucially,
they do not consider loss-versus-fair for a limit order, since this quantity would be zero in
continuous time. [15] consider frictions introduced by latency in submitting limit orders,
also using a barrier-diffusion model. In that setting, latency acts as a friction that limits the
ability of an agent to update their limit orders in a timely fashion, in reaction to changing
market conditions. The central novelty of the present paper is the blockchain setting: we
analyze frictions restricting the ability to trade in the auction introduced by the discrete
block generation process. To our knowledge, no prior work has modeled the behavior of
Dutch auctions for geometric Brownian motion assets with discrete block generation times.

The idea of gradual Dutch auctions was proposed by [6]. [18] proposed an extension on
the idea, variable rate GDAs, in which the target sales rate could vary as a function of time.
Gradual Dutch auctions could be thought of as similar to automated market makers (AMMs)
for which the price impact function is an exponential function, the fee to buy is 0, the fee to
sell is infinite, and the asset price has a negative drift. In this way, we build on the setting
of [13] in computing arbitrage profits for AMMs with fees.

A version of the GDA mechanism was studied by [10]. That work considers the use of
discrete GDAs for illiquid NFTs where buyers depend on private signals for valuation, rather
than continuous GDAs for highly liquid fungible tokens driven by common valuations.

2 Model

We imagine a scenario where an agent is selling3 a risky asset via a descending price Dutch
auction in a common value setting. Following the model of [13], we assume there exists the
common fundamental value or price Pt at time t that follows a geometric Brownian motion
price process,

dPt

Pt
= µ dt + σ dWt, (1)

where {Wt} is a Brownian motion, and the process is parameterized by drift µ and volatility
σ > 0.

The agent is progressively willing to lower their offered price. Let At denote the lowest
price the agent is willing to sell at, at time t, i.e., the best ask price. We assume At decreases
exponentially according to4

dAt

At
= −λ dt, (2)

2 In our setting, the drift arises from descending price of the Dutch auction, while for [11], the limit order
is at a static price and the drift arises from the underlying asset price process.

3 While we focus on the case of an agent selling the asset via a Dutch auction, our model also applies
to the case of an agent buying via an ascending price Dutch auction-style mechanism. In that case,
the mechanism would have a steadily increasing bid price at which it is willing to buy the asset, and
analogous formulas could be obtained. Note that over longer time horizons, the two cases are not
completely symmetric because of the positivity of prices and the inherent asymmetry of geometric
Brownian model. In particular, for example, for a seller LVF is bounded above by 100% since the sale
price will always be bounded below by zero, while LVF is unbounded above for a buyer, since the buy
price is unbounded above.

4 The spirit here is to model a Dutch auction where the price is decreasing at a constant rate. We specifically
choose exponentially decreasing prices (i.e., prices that are decreasing at a constant relative rate) because
it matches well with the geometric Brownian motion price dynamics (1). An alternative choice would be
to assume the ask price decreases linearly and that the price process is a arithmetic Brownian motion.
On the short timescales of practical interest, this would yield similar results both quantitatively and
qualitatively to the model here. To see this, note that, under our model, At = A0e−λt ≈ A0 (1 − λt),
for t small.
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with decay constant λ > 0. Define the log mispricing process zt ≜ log(At/Pt), so that,
applying Itô’s lemma,

dzt = −
(
λ + µ − 1

2 σ2)︸ ︷︷ ︸
≜δ

dt + σ dWt.

We assume that blocks are generated according to a Poisson process5 of rate ∆t−1, where
∆t > 0 is the mean interblock time. We assume there is a population of “arbitrageurs”,
or traders informed about the fundamental price Pt, who will buy from the agent at any
discount to this price. However, these agents can only act at block generation times.

Thus, if τ is a block generation time, and6 Aτ− < Pτ−, arbs trade until there is no
marginal profit, and so that the ask price updates with Aτ = Pτ and zτ = 0. Thus, we
have zτ = max(0, zτ−). Then, {zt} is a Markov jump diffusion process. Since it involves the
interaction of a diffusive process {zt} with a barrier (zt = 0), our model falls into the general
class of barrier-diffision models for market microstructure [8].

This model is grounded in the typical way that blocks are built on decentralized blockchains
today, in which each block is built by a “proposer” or “miner”. We imagine that the Dutch
auction is implemented via a smart contract that sets the minimum acceptable price as
a function of either block time or the block height. Within a block, the first transaction
willing to pay the price will succeed. In the case that there are multiple buyers (as might be
expected if the publicly observable fair value exceeds the limit price of the auction at the
time), they would compete for earlier block position by offering priority fees to the proposer.
We assume that each block proposer is independent and short-term profit-maximizing,7 and
hence they would include and prioritize the top priority-fee-paying transaction in the block,
allowing that buyer to win the trade. In this case some or all of the arbitrage profits may
accrue not to the buyer, but instead to the proposer in the form of priority fees. Our focus
in this paper, however, is on quantifying the loss to the seller and not how it is distributed.

We will make the following assumption:

▶ Assumption 1. Assume that δ ≜ λ + µ − 1
2 σ2 > 0.

This assumption is sufficient to ensure that trade occurs with probability 1, and necessary
so that the expected time to trade is finite. It can be satisfied by the agent making a
sufficiently large choice of the decay rate λ. Under Assumption 1, the following lemma gives
the stationary distribution π(z) of zt:8

▶ Lemma 2. If δ > 0, the process zt is an ergodic process on R, with unique invariant
distribution π(·) given by the density

pπ(z) =
{

π+ × pexp
ζ+

(z) if z ≥ 0,

π− × pexp
ζ−

(−z) if z < 0,

5 For a proof-of-work blockchain, Poisson block generation is a natural assumption [16]. However, modern
proof-of-stake blockchains typically generate blocks at deterministic times. In these cases, we will view
the Poisson assumption as an approximation that is necessary for tractability.

6 We assume that the processes {At, Pt} are right continuous with left limits, and define Aτ− and Pτ− to
be the left limits, i.e., the values immediately before the time τ .

7 Note that if this assumption is violated – such as if a single proposer controls multiple blocks in a row –
they may be able to extract additional profit at the expense of the seller. As of this writing, extraction
of this kind of “multi-block MEV” is generally believed to be rare on major blockchains like Ethereum,
although there are reasons to be concerned that it could increase in the future.

8 While applied in a different context, Lemma 2 is a special case of Theorem 7 of [13] up to a sign change,
with γ− → ∞. For completeness, a standalone proof is provided in Appendix A.
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for z ∈ R. Here, pexp
ζ (z) ≜ ζe−ζz is the density of an exponential distribution over z ∈ R+

with parameter ζ > 0. The parameters {ζ±} are given by

ζ− ≜
δ

σ2

(√
1 + 2σ2

δ2∆t
− 1
)

, ζ+ ≜
2δ

σ2 .

The probabilities {π±} are given by

π− ≜ π
(
(−∞, 0)

)
= δ∆tζ−, π+ ≜ π

(
[0, +∞)

)
= 1 − δ∆tζ−.

3 Regular Dutch Auctions

We first consider the case of a discrete quantity of the risk asset for sale, initially at ask price
A0, or, alternatively, initial log mispricing z0 ≜ log(A0/P0), with the ask price At decreasing
exponentially at rate λ according to (2). Suppose the order is traded at fill time τF , i.e.,
τF is the earliest block generation time which satisfies zτF

≤ 0. Then, the order will sell at
price AτF

when the fundamental value is PτF
. We are interested in the expected relative loss

versus the fundamental price or fair value, i.e.,

PτF
− AτF

PτF

= 1 − ezτF .

Loss-versus-fair and time-to-fill. We are interested in the expected relative loss, which we
call “loss-versus-fair” (LVF), i.e.,

LVF(z0) ≜ E [ 1 − ezτF | z0] .

We are also interested in the expected time-to-fill, i.e.,

FT(z0) ≜ E [τF | z0] .

The following theorem characterizes these quantities:

▶ Theorem 3. If z0 ≥ 0, the expected relative loss and time-to-fill are given by

LVF(z0) = 1
1 + ζ−

= 1

1 + δ
σ2

(√
1 + 2σ2

δ2∆t − 1
) ≜ LVF+, (3)

FT(z0) = z0

δ
+ ∆t

2

(
1 +

√
1 + 2σ2

δ2∆t

)
. (4)

If z0 < 0, then

LVF(z0) = 1 − ez0

1 + ∆t
(
δ − 1

2 σ2
) +

(
1

1 + ζ−
−

∆t
(
δ − 1

2 σ2)
1 + ∆t

(
δ − 1

2 σ2
)) eζ−z0 , (5)

FT(z0) = ∆t

2

(
2 +

(√
1 + 2σ2

δ2∆t
− 1
)

eζ−z0

)
. (6)

The formulas of Theorem 3 are illustrated for representative parameter choices in Figure 1.
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(b) LVF(z0) as a function of z0, assuming a fixed
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(d) FT(z0) as a function of z0, assuming a fixed
value of δ = 0.1 (bp/sec).

Figure 1 Comparison of LVF and FT for different parameter choices. These figures assume
σ = 5% (daily) and ∆t = 12 (sec). The dashed lines correspond to the lower bounds of (7) and (9).
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Discussion of loss-versus-fair. Observe that, for z0 ≥ 0, the loss is given by LVF(z0) = LVF+
and does not depend on the initial mispricing z0. This is because, starting at z0 ≥ 0, the
mispricing process must first pass through the boundary zt = 0, since it is continuous. If we
denote by τ0 the first passage time of that boundary, because {zt} is a Markov process and
block generation times are memoryless, we have that LVF(z0) = E[LVF(zτ0)] = LVF(0) = LVF+.
For z0 < 0, LVF(z0) is strictly decreasing in z0. This is intuitive: the more the asset is
initially underpriced, the larger the expected losses experienced upon the eventual sale.

Now, consider properties of the loss LVF+. Observe that this is a strictly increasing
function of the mispricing δ, so that it is minimized when δ = 0, and we have the lower
bound

LVF ≜
1

1 + 1
σ
√

∆t/2

≤ LVF+ ≤ LVF(z0). (7)

In general, setting as small a value of the drift δ as possible minimizes losses. However, the
left side of (7) yields a lower bound on the loss that is due intrinsic volatility and discrete
blocks. Indeed, in the fast block regime, when the average interblock time ∆t is small, this
lower bound takes the form

LVF ≜
1

1 + 1
σ
√

∆t/2

≈ σ
√

∆t/2,

which is the standard deviation of changes in the mispricing process over half of a typical
interblock time. This is a minimum, unavoidable level of loss, no matter what choice of
auction parameters (z0, δ) is made.

We can also consider the behavior of LVF+ as a function of the volatility σ. It is
straightforward to see that LVF+ is increasing in σ, and hence is lower bounded by the value
as σ → 0, i.e.,

LVF+ ≥ lim
σ→0

LVF+ = 1
1 + 1

δ∆t

≈ δ∆t, (8)

where the final approximation holds in the fast block regime when ∆t is small. The lower
bound on the right side of (8) is the price decay over a single block. In the fast block regime,
this is a lower bound on LVF+, which also includes the impact of volatility.

Discussion of time-to-fill. For the time-to-fill, observe that FT(z0) is a strictly increasing
function of the initial mispricing z0 and a strictly decreasing function of the drift δ, and that

FT(z0) ≥ lim
z→−∞

FT(z) = ∆t. (9)

This lower bound is intuitive: by the memoryless nature of the Poisson process, the time-to-fill
is always lower bounded by the mean interblock time.

FT(z0) is also increasing as a function of the volatility σ, hence we have the lower bound

FT(z0) ≥ lim
σ→0

FT(z0) = z0

δ
+ ∆t.

This bound is also intuitive: absent volatility, the ask price must first drift to the fair price
(in time z0/δ), and then wait for the next block (in time ∆t).
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Figure 2 The efficient frontier trading off loss-versus-fair and time-to-fill. This figure assumes
σ = 5% (daily) and ∆t = 12 (sec). The dashed lines correspond to the lower bounds of (7) and (9).

Parameter optimization (known value). Theorem 3 can be applied to optimize the initial
auction price A0 at time t = 0 and the decay rate λ. When the initial value P0 is known, we
will parameterize this decision with the variables z0 ≜ log(A0/P0) and δ ≜ λ + µ − 1

2 σ2 > 0.
Then, the seller can solve the optimization problem

minimize
z0,δ≥0

LVF(z0) + θ · FT(z0).

Here, θ ≥ 0 is a parameter that captures the trade off between minimizing loss and time-to-fill.
The efficient frontier of Pareto optimal outcomes with these two objectives can be generated
by varying θ. An example of such an efficient frontier is illustrated in Figure 2.

Note that, in this setting, it is never optimal to pick z0 > 0. This is because such a choice
of z0 is Pareto dominated by setting z0 = 0: in this case lowering the value of z0 strictly
decreases FT(z0), without increasing LVF(z0). Indeed, with the representative parameter
choices of Figure 2, setting z0 ≈ 0 is typically optimal, i.e., the auction should be started at
the current fundamental value (when it is known).

Parameter optimization (unknown value). Another setting of interest is where the buyer is
uncertain of the value P0 when determining the auction parameters. We describe this uncer-
tainty with a lognormal Bayesian prior: assume the seller believes that P0 ∼ P̂0e− 1

2 σ2
0+σ0Z ,

where Z ∼ N(0, 1), P̂0 = E[P0] is the mean of the prior belief, and σ0 > 0 is the volatility of
the prior belief. Then, we have z0 = log A0/P̂0 + 1

2 σ2
0 − σ0Z. Then, the seller can compute

the loss-versus-fair and time-to-fill efficient frontier by solving the optimization problem

minimize
A0,δ≥0

E
[
LVF

(
log A0/P̂0 + 1

2 σ2
0 − σ0Z

)]
+ θ · E

[
FT
(

log A0/P̂0 + 1
2 σ2

0 − σ0Z
)]

,

for varying values of θ ≥ 0. Note that the expectations in the objective function can be
computed in closed form, these formulas are provided in Appendix B.
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4 Gradual Dutch Auctions

In this section, we develop stationary, steady-state analogs of the results of Section 3 in the
context of gradual Dutch auctions. Introduced by [6], the continuous gradual Dutch auctions
we consider here continously emit the risky asset for sale at a rate per unit time given by
r > 0. Each emission is in turn are sold through a Dutch auction where the price decreases
exponentially with decay rate λ > 0. Our goal will be to compute the steady-state rate at
which such auctions leak value to arbitrageurs, as well as the rate of trade. We will see a
similar tradeoff as in Section 3.

In our stationary, steady-state setting, we will imagine that the seller has been continuously
emitting auctions since time t = −∞. At any time t, if an auction has age u, the auction
price is given by ke−λu, for some constant k > 0. When the the age of the oldest available
auction is T , this auction defines the best ask price by At = ke−λT . Hence, if an agent wishes
to purchase a total quantity q at time t, and the age of the oldest available auction is T , the
total cost is given by

Ct(q) =
∫ T

T −q/r

ke−λu · r dt = kr

λ

eλq/r − 1
eλT

= At · r

λ

(
eλq/r − 1

)
.

Denote the block generation times by 0 < τ1 < τ2 < · · · . When a block is generated at
each time t = τi, arbitrageurs can trade against the auctions, and will myopically seek to do
so to maximize their instananeous profit, assuming they value the risky asset at the current
fundamental price Pt. The following lemma characterizes this behavior:

▶ Lemma 4. Suppose a block is generated at time τ , with current fundamental price given
by P ≜ Pτ , and mispricing (immediately before block generation) given by z ≜ zτ−. Then, if
λ > 0, the optimal arbitrage trade quantity of the risky asset is given by

q∗(z) ≜ − r

λ
zI{z≤0},

with optimal arbitrage profits (or, equivalently, the total loss experienced by the auction seller
relative to selling at the current fair fundamental price P )

A∗(P, z) ≜ Pr

λ
{ez − 1 − z} I{z≤0}.

Proof. The arbitrageur faces the maximization problem

maximize
q≥0

Pτ q − Cτ−(q) = P

{
q − ezr

λ

(
eλq/r − 1

)}
,

where we use the fact that Aτ− = Pτ ezτ− . The result follows from straightforward analysis
of the first order and second order conditions for this optimization problem. Note that λ > 0
is required for the second order conditions (concavity). ◀

Denote by NT the total number of block generated over the time interval [0, T ]. Suppose
an arbitrageur arrives at time τi, observing external price Pτi

and mispricing zτ−
i

. From
Lemma 4, the arbitrageur profit is given by A∗(Pτi

, zτ−
i

) and the trade size is given by
q∗(zτ−

i
). We can write the total arbitrage profit and total quantity traded (measured in the

numéraire) paid over [0, T ] by summing over all arbitrageurs arriving in that interval, i.e.,

ARBT ≜
NT∑
i=1

A∗(Pτi , zτ−
i

), VOLT ≜
NT∑
i=1

Pτiq
∗(zτ−

i
).
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Clearly these are non-negative and monotonically increasing jump processes. The following
theorem characterizes their instantaneous expected rate of growth or intensity:9

▶ Theorem 5 (Rate of Arbitrage Profit and Volume). Define the intensity, or instantaneous
rate of arbitrage profit and volume, by

ARB ≜ lim
T →0

E [ARBT ]
T

, VOL ≜ lim
T →0

E [VOLT ]
T

.

Given initial price P0 = P , suppose that z0− = z is distributed according to its stationary
distribution π(·). Then, the instantaneous rate of arbitrage profit and volume are given by

ARB = Eπ [A∗(P, z)]
∆t

= Prδ

δ − µ + 1
2 σ2 × 1

1 + ζ−
, (10)

VOL = Eπ [Pq∗(z)]
∆t

= Prδ

δ − µ + 1
2 σ2 . (11)

Comparing the instantaneous rate of arbitrage profit and volume given by (10)–(11) with
Theorem 3, we have that

ARB = VOL × LVF+. (12)

This expression highlights the fact a gradual Dutch auction can be viewed as a continuum of
many regular Dutch auctions, each of infinitesimal size, and each at a different price. From
Theorem 3, we know that the seller will incur the same expected relative loss per dollar
sold, LVF+, in each of these auctions. This loss is the same irrespective of the different
prices because all of the auctions start out-of-the-money (z0 ≥ 0). Equation (12) intuitively
decomposes the total arb profits per unit time as the product of the dollar volume sold per
unit time and the loss per dollar sold.

Parameter optimization. As in Section 3, we can leverage Theorem 5 to optimize parameter
choice in a gradual Dutch auction. In particular, a gradual Dutch auction is parameterized
by the choice of emission rate r ≥ 0 and the choice of drift δ ≜ λ + µ − 1

2 σ2 satisfying δ ≥ 0
and λ = δ − µ + 1

2 σ2 > 0 (the second condition is required for concavity in Lemma 4). This
choice can be made to minimize the losses incurred while maximizing the rate of trade. For
example, consider the optimization problem

minimize
r>0, δ≥max(0,µ− 1

2 σ2)
LVF+ − θ · VOL,

where θ ≥ 0 is a tradeoff parameter.

5 Conclusion and Future Work

While there has been an increasing amount of academic interest in studying, designing,
and formalizing automated market makers for liquid assets in the blockchain context, there
has been somewhat less attention paid to Dutch auctions, despite their popularity with

9 Mathematically, ARB is the intensity of the compensator for the monotonically increasing jump process
ARBT at time T = 0, similarly VOL is the intensity of the compensator for VOLT .
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protocol implementers. This paper was an attempt to bring the theoretical understanding of
Dutch auctions in the setting of discrete block generation times closer to the current level of
understanding that has been reached around automated market makers, particularly in [14]
and [13].

The paper also sought to provide a guide for application designers in setting parameters
for Dutch auctions, including deriving formulas that map the tradeoff between speed of
execution and quality of execution. The paper may also be helpful for platform designers in
determining performance parameters like block times. For example, the rule of thumb in
Equation (7) suggests that if a platform wants to support Dutch auctions that lose less than
2 basis points for assets with daily volatility of 5%, it will need to have block times of less
than 2.75 seconds.

The model in this paper shared some of the limitations of the model in [13], including
not taking into account fixed transaction fees such as “gas” and use of a Poisson model for
block generation as opposed to deterministic block generation, which is more relevant for
modern proof-of-stake blockchains. Further, a purely diffusive, continuous process (geometric
Brownian motion) has been used to model innovations in the fundamental price process, while
jumps are known to be an important component of high-frequency price dynamics. This paper
also assumes that block proposers are independent (and thus short-term profit-maximizing),
rather than considering a model in which a single block proposer could acquire control over
multiple blocks in a row and use that to extract “multi-block MEV.” Finally, while this work
quantified the losses inherent in Dutch auctions, it does not explore possible alternative
designs for Dutch auctions that might mitigate those losses without reducing the speed of
execution. We hope further work can explore this area.
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A Proofs

Proof of Lemma 2. Note that {zt} is a Markov jump diffusion process, with infinitesimal
generator

Af(z) = 1
2 σ2f ′′(z) − δf ′(z) + ∆t−1 [f(0) − f(z)] I{z<0},

given a test function f : R → R.
The invariant distribution π(·) must satisfy

Eπ[Af(z)] =
∫ +∞

−∞
Af(z) π(dz) = 0, (13)

for all test functions f : R → R. We will guess that π(·) decomposes according to two different
densities over the positive and negative half line, and then compute the conditional density
on each segment via Laplace transforms using (13).

Consider the test function

f−(z) ≜
{

eαz if z < 0,
1 + αz if z ≥ 0.

Then,

Af−(z) = 1
2 σ2α2eαzI{z<0} − δα

(
eαzI{z<0} + I{z≥0}

)
+ ∆t−1 [1 − eαz] I{z<0},

so that

0 = Eπ [Af−(z)]
= 1

2 σ2α2π−Eπ [eαz| z < 0] − δα (π−Eπ [eαz| z < 0] + π+) + ∆t−1π− (1 − Eπ [eαz| z < 0]) .

Then,

Eπ [eαz| z < 0] =
δα π+

π−
− ∆t−1

1
2 σ2α2 − δα − ∆t−1 .
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Observe the denominator has a single negative root. Then, π(−z|z < 0) must be exponential
with parameter ζ− ≜

(√
δ2 + 2∆t−1σ2 − δ

)
/σ2. Also, note that

Eπ[−z|z < 0] = 1/ζ−.

Next consider the test function

f+(z) ≜
{

e−αz if z ≥ 0,
1 − αz if z < 0.

Then,

Af+(z) = 1
2 σ2α2e−αzI{z≥0} + δα

(
e−αzI{z≥0} + I{z<0}

)
+ ∆t−1αzI{z<0},

so that

0 = Eπ [Af+(z)]
= 1

2 σ2α2π+Eπ

[
e−αz

∣∣ z ≥ 0
]

+ δα
(
π+Eπ

[
e−αz

∣∣ z ≥ 0
]

+ π−
)

+ ∆t−1απ−Eπ [z| z < 0] .

Then,

Eπ

[
e−αz

∣∣ z ≥ 0
]

= −π−

π+

δ + ∆t−1Eπ [z| z < 0]
1
2 σ2α + δ

= −π−

π+

δ − ∆t−1/ζ−
1
2 σ2α + δ

Then, π(z|z ≥ 0) must be exponential with parameter ζ+ ≜ 2δ/σ2. Substituting α = 0, we
have

1 = −π−

π+

δ − ∆t−1/ζ−

δ
= − π−

1 − π−

(
1 − 1

δ∆tζ−

)
.

Solving for π−,

π− = δ∆tζ−, π+ = 1 − δ∆tζ−. ◀

Proof of Theorem 3. We consider LVF(z0) and FT(z0) separately.

Loss-versus-fair. We begin with the LVF calculation. First, consider the case where z0 ≥ 0.
Define the τF to be the fill time of the order, i.e., the first Poisson block generation time τF

with zτF
≤ 0. Also define τ0 ≜ min{t ≥ 0: zt = 0} to be first passage time for the boundary

zt = 0. Since the the process the mispricing process is continuous, we must have that τF ≥ τ0.
Then,

LVF(z0) ≜ E [ 1 − ezτF | z0]
(a)= E [E [ 1 − ezτF | τ0, zτ0 ]| z0]
(b)= E [LVF(zτ0)| z0]
(c)= LVF(0) ≜ LVF+. (14)

where (a) follows from the tower property of expectation, (b) follows from the fact that
Poisson arrivals are memoryless and {zt} is a Markov process, and (c) follows from the fact
that zτ0 = 0.
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Now, consider arbitrary z0 ∈ R. Let τB > 0 be the first Poisson block generation time.
Since τF ≥ τB ,

LVF(z0) ≜ E [ 1 − ezτF | z0]
(a)= E [E [ 1 − ezτF | τB , zτB

]| z0]
(b)= E [LVF(zτB

)| z0]
(c)= E

[
LVF+I{zτB

≥0} + (1 − ezτB ) I{zτB
<0}
∣∣∣ z0

]
(d)=
∫ ∞

0

e−τ/∆t

∆t

∫ +∞

0

1
σ

√
2πτ

e
− 1

2

(
z+δτ−z0

σ
√

τ

)2

LVF+ dz dτ

+
∫ ∞

0

e−τ/∆t

∆t

∫ 0

−∞

1
σ

√
2πτ

e
− 1

2

(
z+δτ−z0

σ
√

τ

)2

(1 − ez) dz dτ.
(15)

where (a) follows from the tower property of expectation, (b) follows from the fact that
Poisson arrivals are memoryless and {zt} is a Markov process, (c) follows from the fact that
LVF(zτB

) = LVF+ for zτB
≥ 0 while LVF(zτB

) = 1 − ezτB if zτB
< 0, (d) follows from the fact

that τB is exponentially distributed while, conditional on τB, zτB
is normally distributed,

and Φ(·) is the cumulative normal distribution. Substituting in z0 = 0 and solving for
LVF(z0) = LVF+, after integration, we obtain (3). For z0 ≤ 0, we can substitute (3) into (15)
and integrate to obtain (5).

Time-to-fill. Suppose we start out at z0 ≥ 0, and define FT(z0) to be the expected fill
time of the next trade, i.e., the first Poisson arrival time τ with zτF

≤ 0. Also define
τ0 = min{t ≥ 0: zt = 0} to be the first passage time for the boundary zt = 0. Then, since
the mispricing process {zt} is continuous and Markov, and Poisson arrivals are memoryless,
we have that τF ≥ τ0 and

FT(z0) = E [τF |z0] = E [τ0|z0] + E [E [τF − τ0| τ0, zτ0 ]| z0] = z0

δ
+ FT(0),

where we have used the standard formula for expected first passage time of a Brownian
motion with drift.

Thus, we have reduced to the case where z0 = 0. Define τB > 0 to be first Poisson block
generation time. If zτB

≤ 0, then τB is also the fill time. On the other hand, if zτB
> 0, we

will have to wait an additional amount after τB given in expectation by FT(zτB
) = FT(0).

Thus, integrating over τB , and using the fact that, given τB , zτB
is normally distributed,

FT(0) =
∫ ∞

0

e−τ/∆t

∆t

(
τ +

∫ ∞

0

1
σ

√
2πτ

e
− 1

2

(
z+δτ

σ
√

τ

)2

FT(z) dz

)
dτ

= ∆t +
∫ ∞

0

e−τ/∆t

∆t

∫ ∞

0

1
σ

√
2πτ

e
− 1

2

(
z+δτ

σ
√

τ

)2 (z

δ
+ FT(0)

)
dz dτ

= ∆t +
∫ ∞

0

e−τ/∆t

∆t

{∫ ∞

0

1
σ

√
2πτ

e
− 1

2

(
z+δτ

σ
√

τ

)2 z

δ
dz + FT(0)

(
1 − Φ

(
δ
√

τ

σ

))}
dτ

= ∆t +
∫ ∞

0

e−τ/∆t

∆t

{∫ ∞

0

1
σ

√
2πτ

e
− 1

2

(
z+δτ

σ
√

τ

)2 z

δ
dz + FT(0) Φ

(
−δ

√
τ

σ

)}
dτ.
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We can solve this for FT(0), i.e.,

FT(0) =
∆t +

∫ ∞

0

e−τ/∆t

∆t

∫ ∞

0

1
σ

√
2πτ

e
− 1

2

(
z+δτ

σ
√

τ

)2 z

δ
dz dτ

1 −
∫ ∞

0

e−τ/∆t

∆t
Φ
(

−δ
√

τ

σ

)
dτ

= ∆t

2

(
1 +

√
1 + 2σ2

δ2∆t

)
,

where the final equality is obtained via integration. This establishes (4).
Finally, consider the case where z0 < 0. Define τB > 0 to be first Poisson block generation

time. If zτB
≤ 0, then τB is also the fill time. On the other hand, if zτB

> 0, we will have to
wait an additional amount after τB given in expectation by FT(zτB

). Thus,

FT(z0) =
∫ ∞

0

e−τ/∆t

∆t

(
τ +

∫ ∞

0

1
σ

√
2πτ

e
− 1

2

(
z+δτ−z0

σ
√

τ

)2

FT(z) dz

)
dτ

= ∆t +
∫ ∞

0

e−τ/∆t

∆t

∫ ∞

0

1
σ

√
2πτ

e
− 1

2

(
z+δτ−z0

σ
√

τ

)2 (z

δ
+ FT(0)

)
dz dτ

= ∆t +
∫ ∞

0

e−τ/∆t

∆t

{∫ ∞

0

1
σ

√
2πτ

e
− 1

2

(
z+δτ−z0

σ
√

τ

)2 z

δ
dz + FT(0) Φ

(
−δτ − z0

σ
√

τ

)}
dτ.

After integration, this yields (6). ◀

Proof of Theorem 5. We follow the method of [13]. Specifically, using the smoothing
formula, e.g., Theorem 13.5.7 of [3],

E [ARBT ] = E

[
NT∑
i=1

A∗(Pτi , zτi−)

]
= E

[∫ T

0
A∗(Pt, zt−) dNt

]
= E

[∫ T

0
A∗(Pt, zt−) · ∆t−1 dt

]
.

Applying Tonelli’s theorem and the fundamental theorem of calculus,

ARB ≜ lim
T →0

E [ARBT ]
T

= lim
T →0

1
T

∫ T

0
E
[

A∗(Pt, zt−)
∆t

]
dt = E [A∗(P0, z0−)]

∆t
= Eπ [A∗(P, z)]

∆t
,

where in the final expression, P0 = P and z is distributed according to the stationary
distribution π(·).

Then, using the definition of π(·) from Lemma 2 and A∗(·, ·) from Lemma 4,

ARB = 1
∆t

π(z|z ≤ 0)Pr

λ
Eπ [ez − 1 − z| z ≤ 0]

= Pr

λ
δζ−

{
ζ−

1 + ζ−
− 1 + 1

ζ−

}
= Pr

λ
× δ

1 + ζ−
,

as desired.
The same argument establishes that

VOL ≜ lim
T →0

E [VOLT ]
T

= Eπ [Pq∗(z)]
∆t

.

Then, using Lemma 2 and q∗(·) from Lemma 4,

VOL = 1
∆t

π(z|z ≤ 0)Pr

λ
Eπ [−z| z ≤ 0]

= Pr

λ
× δ,

as desired. ◀
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B Formulas Under Fundamental Value Uncertainty

Assume that the prior belief on the initial mispricing is normally distributed, i.e., z0 ∼
N(µ0, σ2

0). Then, via direct integration,

E [LVF (z0)] = LVF+ + (1 − LVF+) Φ
(

−µ0

σ0

)
+ ∆t−1e

σ2
0

2

σ2

2 − δ − ∆t−1
eµ0Φ

(
−σ0 − µ0

σ0

)

+
{(

LVF+ −
σ2

2 − δ
σ2

2 − δ − ∆t−1

)
e

∆t−1σ2
0

σ2 + δ
σ2 ( δ

σ2 σ2
0+µ0)

(√
1+ 2∆t−1σ2

δ2 +1
)

× Φ
(

−δσ0

σ2

(√
1 + 2∆t−1σ2

δ2 + 1
)

− µ0

σ0

)}
.

Similarly,

E [FT (z0)] = ∆t + σ0

δ
√

2π
e

−
µ2

0
2σ2

0

+
(

FT(0) − ∆t + µ0

δ

)
Φ
(

µ0

σ0

)

+ (FT(0) − ∆t) e
2∆t−1FT(0)

(
σ2

0δ2

σ4 + µ0δ

σ2

)
+

∆t−1σ2
0

σ2 Φ
(

−2∆t−1FT(0)σ0δ

σ2 − µ0

σ0

)
.
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Abstract
We study auction design in a setting where agents can communicate over a censorship-resistant
broadcast channel like the ones we can implement over a public blockchain. We seek to design
credible, strategyproof auctions in a model that differs from the traditional mechanism design
framework because communication is not centralized via the auctioneer. We prove this allows us
to design a larger class of credible auctions where the auctioneer has no incentive to be strategic.
Intuitively, a decentralized communication model weakens the auctioneer’s adversarial capabilities
because they can only inject messages into the communication channel but not delete, delay, or
modify the messages from legitimate buyers. Our main result is a separation in the following sense:
we give the first instance of an auction that is credible only if communication is decentralized.
Moreover, we construct the first two-round auction that is credible, strategyproof, and optimal when
bidder valuations are α-strongly regular, for α > 0. Our result relies on mild assumptions – namely,
the existence of a broadcast channel and cryptographic commitments.
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1 Introduction

Incentive compatibility for buyers is desirable in auctions due to improvements in user
experience. For example, in a second-price auction, if the highest bidder bids $10 and the
second highest bidder bids $5, the highest bidder wins and pays $5. Thus, for any buyer,
bidding the maximum they are willing to pay is an optimal strategy, independently of the
strategy of others. This differs from non-incentive compatible auctions, such as first-price
auctions, where optimal strategies are a complex balance between demand and the strategy
of competing buyers.

Extending incentive compatibility to auctioneers is increasingly becoming a topic of
interest in designing auctions within digital marketplaces. In online settings, it is challenging
to audit auctions and verify the identity of participants. Thus, a strategic auctioneer can
act simultaneously as the seller and a buyer to deviate from the promised auction. For
example, in the second-price auction above, buyers must trust the auctioneer can commit to
implementing the promised auction. Otherwise, a strategic auctioneer impersonating a buyer
can easily leverage their privileged position to submit a bid of $9, increasing revenue and
reducing the buyer’s welfare.
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19:2 Credible, Optimal Auctions via Public Broadcast

Credibility is a form of incentive compatibility for auctioneers that formalizes the incentives
for an auctioneer to follow their promised specifications. It is desirable for auctioning
objects ranging from Non-Fungible Tokens (NFTs) to online advertising because it ensures
auction outcomes are auditable. The US Department of Justice’s 2023 antitrust suit against
Google [17] effectively argues that Google’s manipulation of ad auctions from the privileged
position of auctioneer caused both buyers and users harm. Allegedly, the lack of market
transparency afforded Google “power to manipulate the quantity of ad inventory and auction
dynamics in ways that allowed it to charge advertisers more than it could in a competitive
market”. Thus, credibility is not only a compelling objective for regulators, but also for
sellers that wish to prove their auctions are fair.

Unfortunately, recent work has highlighted challenges in designing mechanisms that are
simultaneously incentive-compatible for both sellers and buyers. The pioneering work of [1]
considered a model where the auctioneer can modulate their private communication with
buyers to increase their revenue and potentially reduce buyer welfare via a safe deviation
from a promised auction. Informally, a safe deviation is any auctioneer deviation that passes
undetectable by any buyer alone. An auction is credible if safe deviations cannot increase
the auctioneer’s expected revenue. For example, an auctioneer waiting for the highest bidder
to bid $10 and impersonating a false buyer that bids $9 is a profitable, safe deviation
from a second-price auction. Unfortunately, [1] demonstrated that auctioneer credibility
could not coexist with buyer incentive compatibility unless the communication complexity is
unbounded: they showed that an ascending price auction is the only credible, strategyproof
optimal auction.

On the other hand, if one is willing to assume that the auctioneer and buyers are
computationally bounded – and thus cannot break known cryptographic assumptions – one
can get around the theoretical barriers of [1]. Concretely, [6] demonstrated that there
are cryptographic auctions that are credible, incentive compatible, and have bounded
communication complexity if buyer valuations satisfy a regularity condition. They proposed
the (centralized) Deferred Revelation Auctions (DRA), a two-round auction that is optimal,
strategyproof, and credible under the assumption buyer valuations are α-strongly regular
for any α ≥ 1. They also show their auction is not always credible if α < 1 and valuations
have unbounded support. This challenges adopting these auctions because they are only
credible if the buyer valuations have tails not heavier than the exponential distribution, i.e.,
α-strongly regular for α ≥ 1 does not contain the Pareto distribution, for example.

In the same line as [6], [4] proposed the Ascending Deferred Revelation Auction (ADRA),
which is strategyproof and credible without requiring any assumption on the distributions.
However, ADRA communication complexity is constant on expectation and unbounded in
the worst case. In contrast, we study auctions with bounded communication in the worst
case.

All results above consider a centralized communication model where buyers can only
exchange messages with the auctioneer. This assumption is motivated by the scenario where
one buyer does not have prior knowledge of the identity of a second buyer. Unfortunately, if
the communication is centralized, the auctioneer can launch a man-in-the-middle-like attack
by censoring, injecting, and modifying messages they were supposed to forward to other
participants. In contrast, our work explores the design of credible auctions when agents
can access a broadcast channel where any buyer can broadcast messages to all participants.
This assumption is well-motivated in an auction in a physical environment like a traditional
auction house. Further, this assumption has also become realistic for auctions implemented
over a communication network like the Internet due to the proliferation of censorship-resistant
public blockchains. Our main contribution shows a simple change in the communication
model (centralized vs. distributed) affects the design of credible auctions.
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We summarize our findings as follows:
Theorem 21. Assume buyer values are drawn independently from an α-strongly regular
distribution for α > 0. Then, the deferred revelation auction with public broadcast is
credible, strategyproof, and revenue optimal. Moreover, modifying the auction so buyers
can only communicate privately with the auctioneer makes the resulting auction not
credible.
Theorem 25. There is a 0-strongly regular buyer valuation that witnesses that deferred
revelation auction with public broadcast is not credible.

1.1 Related Work
We have already reviewed the most relevant prior work in our earlier discussion. Our model
is similar to [1] under the additional assumption of cryptographic primitives plus a public
broadcast channel.

The security of auctions using cryptography has been extensively studied in the literature
[15, 2]. Notably, Yao’s seminal work on multi-party computation [19] was initially motivated
by economic applications. Recent research has revisited the problem of secure auction
design, incorporating novel cryptographic tools such as homomorphic encryption and timed
encryption techniques [16] [9].

However, these approaches come with stronger trust assumptions. For instance, multi-
party computation assumes that a majority of participants are honest. In contrast, our
setting allows the auctioneer to create multiple identities. Furthermore, timed encryption,
although an intriguing concept, has seen limited practical applications due to its reliance
on stronger cryptographic assumptions. Importantly, our goal of reducing the number of
auction rounds aims to enhance auction speed, whereas timed encryption would counter this
objective by increasing the auction duration.

Credible mechanism design has applications beyond auctions such as in the design of
manipulation-resistant decentralized exchanges [18], blockchain transaction fee mechanisms [8,
5], and in Bayesian persuasion [12].

1.2 Technical overview
[1] does not consider the existence of a broadcast channel in their framework because they
envision auctions executing over the Internet (or over the telephone) and assume buyers
do not know the identity of each other beforehand. Implementing a broadcast channel in
this scenario is challenging and draws from years of research in consensus and cryptography,
starting from the Byzantine general’s problem of [11]. This line of research culminated with
the Bitcoin blockchain, which provides censorship-resistant consensus at large scale [14]. In
the framework of [1], the auctioneer promises to implement an auction and is the nexus of
communication with buyers. A buyer privately sends messages to the auctioneer and trusts
that the auctioneer will forward those messages to other buyers.

We propose a simple modification to this framework that, surprisingly, increases the
incentive for the auctioneer to commit to a promised auction. Concretely, rather than sending
messages privately to the auctioneer, we assume any agent can broadcast messages. Once an
agent broadcasts a message m, all other participants simultaneously learn about message m.

Under the new framework, our main contribution is the deferred revelation auction with
public broadcast. It is similar to the centralized deferred revelation auction of [6] with the
main difference that buyers can now broadcast messages. Our main result shows DRA with
public broadcast is a credible auction, assuming buyer valuations are α-strongly regular for
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all α > 0. Recall [6] showed centralized DRA is not credible for these buyer valuations. This
has significant practical implications because it provides the first design of a communication-
efficient, credible, strategyproof, optimal auction when buyer value distributions have tails
as heavy as Pareto distributions.

Informally, the deferred revelation auction with public broadcast is a two-phase auction
(see §3) as follows:
1. In the bidding phase, each buyer broadcasts a cryptographic commitment of their bid

and deposits a collateral.
2. The auctioneer broadcasts the end of the commitment phase and the start of the revelation

phase.
3. In the revelation phase, each buyer broadcasts the opening of their commitment (e.g.,

their bid and the random seed used to generate the commitment).
4. The auctioneer marks a bid as revealed if the second phase message opens the cryptographic

commitment received in the first phase. Then, the auctioneer implements the second-price
auction with reserves using the revealed bids.

5. The auctioneer refunds the collateral if, and only if, a buyer reveals their bid. The
confiscated collateral is given to the winner of the auction.

As in [6], we consider a threat model where the auctioneer can shill bid (i.e., impersonate
false buyers that submit false bids). To argue the credibility of our auction, we must show
that under certain conditions, sufficiently large collateral incentivizes the auctioneer not
to impersonate false buyers. Central to our argument is observing that the security of our
cryptographic commitment scheme (see Definition 5) together with a broadcast channel
ensures the auctioneer cannot commit to a bid that depends on the bids of other buyers. This
is not the case for the centralized deferred revelation auction. To see, consider modifying the
auction above so that whenever a buyer broadcasts a message, the buyer sends that message
to the auctioneer, who “promises” to forward it to all other buyers. The following is a safe
deviation to centralized DRA where shill bids depends on bids from genuine buyers.

▶ Example 1. Suppose there are genuine buyers A and B as well as a false buyer C. Any
message the auctioneer receives from B, the auctioneer forwards to A. The auctioneer does
not forward any message from A to B which makes buyer B unaware that A exists. The
auctioneer asks buyer A to open their bid and after learning the bid bA of A, the auctioneer
impersonates a false buyer C that commits to bid bA + ∆ to buyer B. This deviation is
undetectable because buyer A believes only A and B participate in the auction. Moreover,
A cannot detect their messages were censored. On the other hand, B believes only B and C

participate in the auction. Moreover, B cannot detect that A’s messages were censored (in
fact, B is unaware of A). Finally, observe that B receives a bid from a false buyer correlated
with the bid of A.

This might seem like an innocent deviation, but Section 5 shows centralized DRA is not
credible for α-strongly regular valuations for any α ∈ [0, 1) if we adapt this strategy and
allow the auctioneer to submit shill bids that depend on genuine bids. Clearly this deviation
is not possible if a broadcast channel is available since the auctioneer cannot choose who gets
to observe A’s messages and the auctioneer cannot commit to shill bids after starting the
revelation phase. Our main technical contribution shows that safe deviations that leverage
shill bids correlated to genuine bids were the only strategies that prevented centralized DRA

from being a credible auction when buyer valuations are α-strongly regular for α > 0.
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1.3 Paper organization
We provide the necessary background in optimal auction theory in §2. We define the
implementation of the deferred revelation auction with public broadcasts in §3. We prove
our main result, Theorem 21, in §4 and our negative result, Theorem 25, in §6. §5 shows
that a broadcast channel is necessary for Theorem 21. We conclude in §7 and include future
directions.

2 Preliminaries

We consider a single item, n buyer auction. Buyer i ∈ [n] = {1, . . . , n} has private value
vi ∈ R+ and has quasilinear utility: if they receive the item and pay pi, then their utility
is vi − pi; if they do not receive the item, then their utility is 0. We assume vi is drawn
independently from a distribution D with CDF F and PDF f . The auctioneer knows the
distribution D, but not the values {vi}n

i=1. We refer to v⃗ = (v1, . . . , vn) as a value profile.
We write the value profile of all buyers except buyer i as v⃗−i = (v1, . . . , vi−1, vi+1, . . . , vn).

Communication model. Agents can communicate on a private channel or a broadcast
channel. If agent i sends a message m in a broadcast channel, then the message is immediately
received buy all other agents. If agent i sends a message m to agent j ̸= i in a private
channel, only agent j observes m.

Extensive-form game. An extensive-form game G consists of a tree (H, E) where the nodes
H are the set of histories and edges E ⊆ H × H are state transitions. The game starts at the
root of (H, E), has a set of players {0, 1, . . . , n}, and a collection of actions A(h) available at
each history h ∈ H. We refer to player 0 as the auctioneer and player i ∈ [n] as buyer i. Each
history h ∈ H has one owner P (h) ∈ {0, . . . , n} responsible for taking the next action when
the game is at state h. After taking action a ∈ A(h), the game moves to another history
h′ where (h, h′) ∈ E. We consider games of incomplete information where only agent P (h)
observes the action A(h) taken at h.

A strategy si for buyer i ∈ [n] on game G is a function that takes buyer i’s private type
vi and any history h ∈ H where i ∈ P (h) and outputs the agent’s action si(vi, h) ∈ A(h) at
h. Consider a strategy profile s⃗ = (s1, . . . , sn). An auction game (G, s⃗) is a communication
game on G when buyers follow strategy s⃗ that allocates the item and charges payments.

The outcome of auction game (G, s⃗) is a tuple (x⃗(G,s⃗)(v⃗), p⃗(G,s⃗)(v⃗)) where x
(G,s⃗)
i (v) and

p
(G,s⃗)
i (v⃗) denotes the probability that agent i receives the item and their payment respectively.

A strategy si is a best response to s⃗−i if for any strategy s′i for buyer i, for any v⃗,

vi · x
(G,s⃗)
i (v⃗) − p

(G,s⃗)
i (v⃗) ≥ vi · x

(G,s′
i,s⃗−i)

i (v⃗) − p
(G,s′

i,s⃗−i)
i (v⃗).

▶ Definition 2 (Ex-post Nash/Strategyproof/Individually Rational). Consider an auction (G, s⃗).
A strategy profile s⃗ forms an ex-post Nash equilibrium, if for any buyer i, strategy si is the
best response to s⃗−i. An auction is strategyproof if some strategy profile s⃗ forms an ex-post
Nash equilibrium. An auction is individually rational (IR) if there is a strategy for any buyer
that ensures such buyer receives non-negative utility.

The auctioneer’s expected revenue on auction game (G, s⃗) is Rev(G, s⃗) :=
Ev⃗

[∑n
i=1 p

(G,s⃗)
i (v⃗)

]
.
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We assume the auctioneer can deviate from implementing (G, s⃗) as long as any buyer
cannot detect a deviation. These are a safe deviation from the promised auction (G, s⃗).
Formally, (G′, s) is a safe deviation from (G, s⃗) if for any buyer i ∈ [n], there is a strategy
profile si

−i = (si
1, . . . , si

i−1, si
i+1, . . . , si

ni
) for ni buyers where buyer i observes the same

messages in communication games (G′, s⃗) and (G, si, si
−i).

▶ Definition 3 (Credible Auction). An auction game (G, s⃗) is credible if for any safe deviation
(G′, s⃗) of (G, s⃗), Rev(G, s⃗) ≥ Rev(G′, s⃗).

Virtual values
Virtual values functions allow us to formalize optimal auctions. The virtual value function
associated with continuous CDF F and PDF f is φF (x) = x − 1−F (x)

f(x) . We write φ(·),
omitting the superscript F , when the distribution is clear from the context. We write
φ+(x) = max{0, φ(x)}. A distribution F is α-strongly regular for α ≥ 0 if for all x′ ≥ x,

φ(x′) − φ(x) ≥ α(x′ − x).

A distribution F has Monotone Hazard Rate (MHR), if F is 1-strongly regular. A distribution
is regular if F is 0-strongly regular. Note that MHR distributions have exponentially decaying
tails, whereas distributions with α ∈ (0, 1) have polynomially decaying tails.

▶ Theorem 4 (Myerson’s Theorem [13]). Consider a strategyproof auction that awards the
item to buyer i with probability xi(v⃗) and charges pi(v⃗) on bids v⃗. Then, the expected revenue
is

Ev⃗←D

[
n∑

i=1
pi(v⃗)

]
= Ev⃗←D

[
n∑

i=1
φ(vi) · xi(v⃗)

]
.

We refer to the right-hand side as the expected virtual welfare. For cases where D is regular,
φ is non-decreasing, and the optimal auction maximizes expected virtual welfare.

We define the inverse of a monotone function g(·) to be g−1(y) = infx{x| g(x) ≥ y}. We
define to r(D) := (φD)−1(0) as Myerson’s reserve price. From Myerson’s theorem, the
optimal auction only sells the item to buyers with the value vi ≥ r(D). We define Rev(Dn)
as the expected revenue of the optimal auction with n buyers with valuations drawn i.i.d.
from D. We provide facts about α-strongly regular distributions in Appendix A.

3 Deferred Revelation Auction (DRA) with Public Broadcast

This section defines the deferred revelation auction with public broadcast. The central
assumption is the existence of a perfectly hiding, computationally binding, and non-malleable
cryptographic commitment scheme as follows.

▶ Definition 5 (Commitment Scheme). A commitment scheme is a function Commit(·, ·)
that takes a message m ∈ {0, 1}∗, a random string r ∈ {0, 1}λ where λ ∈ N is the security
parameter and outputs a commitment c ∈ {0, 1}Poly(λ) where Poly(λ) is a polynomial with
variable λ.
Perfectly hiding. A commitment scheme is perfectly hiding if, for all m ≠ m′, Commit(m, r)

is identically distributed to Commit(m′, r′) provided that r and r′ are uniformly random.
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Computationally binding. A commitment scheme is computationally binding if for any
probabilistic polynomial time algorithm that takes the security parameter λ and terminates
in expected time Poly(λ), then the probability the algorithm outputs (m, r) ̸= (m′, r′)
such that Commit(m, r) = Commit(m′, r′) is at most 2−λ.

Non-malleable. Consider any communication game where a probabilistic polynomial time
adversary receives c = Commit(m, r) where m is drawn from a known distribution and r

is uniformly random. In the first round, the adversary must output some commitment
c′ ̸= c. In the second round, the attacker learns (m, r) and outputs (m′, r′) such that
Commit(m′, r′) = c. We say the commitment scheme is non-malleable if, for any such
game, the random variable (m′, r′) is independent of (m, r).

Some commitment schemes are malleable; for example, they allow a receiver that observes
Commit(b, r) to compute Commit(b − 1, r). This does not violate secrecy since the receiver
does not learn b or can open Commit(b − 1, r) before the sender opens (b, r)). Yet, this
malleability would pose serious security vulnerabilities in an auction. If a bidder commits
to bid b with Commit(b, r), the auctioneer can shill bid and commit to bidding b − 1 by
computing Commit(b − 1, r). Constructions of non-malleable commitment schemes are
involved and outside the scope of this work (see [10, 7] for a more general definition and
practical constructions).

▶ Definition 6 (Deferred Revelation Auction with Public Broadcast). Let Commit(·, ·) be a
perfectly hiding, perfectly binding, and non-malleable commitment scheme satisfying Defini-
tion 5. A collateral function f(·, ·) takes the number of buyers n and a distribution D and
outputs a collateral required from each buyer to bid in the auction. For a collateral function
f , DRA(f) with public broadcast is the following auction:
Commitment phase (1st round):

Each buyer i ∈ [n] picks a bid bi = vi, draws ri uniformly at random, and broadcast
(i, Commit(bi, ri)). Moreover, buyer i sends collateral f(n, D) to the auctioneer.
The auctioneer broadcasts “End of Commitment Phase”.

Revelation phase (2nd round):
Each buyer i broadcasts (i, b′i, r′i) where b′i = bi and r′i = ri.
The auctioneer broadcasts “End of Revelation Phase”.

Resolution phase:
Let S denote the set of buyers for which Commit(bi, ri) = Commit(b′i, r′i). Let
b′i := bi · 1(i ∈ S). Let i∗ := arg maxi∈S bi.
If bi∗ > r(D), award buyer i∗ the item. Charge them

max{r(D), max
i∈S\{i∗}

bi}.

The auctioneer refunds the collateral of buyer i ∈ S.
The auctioneer transfers the collateral of each buyer i ̸∈ S to buyer i∗.

Tie-breaking:
All ties are broken lexicographically, with the auctioneer treated as “buyer zero”.

Before discussing how our auction differs from centralized DRA(f), we quickly observe
that DRA(f) with public broadcast is indeed strategyproof and revenue optimal.

▶ Theorem 7. For all f , DRA(f) with public broadcast is a strategyproof optimal auction.
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Proof. The definition for DRA(f) instructs each buyer i ∈ [n] to follow the strategy where
buyer i sets bi = vi; in the commitment phase, buyer i picks a uniformly random ri and
broadcasts a commitment Commit(vi, ri); and in the revelation phase, buyer i reveals (vi, ri).
Since DRA(f) implements the same outcome as a second-price auction, it follows this
strategy profile and is an ex-post Nash equilibrium, which proves the auction is strategyproof.
Moreover, because the auction maximizes expected virtual welfare, Theorem 4 (Myerson’s
Theorem) implies the auction is revenue optimal. ◀

Definition 8 provides a definition for centralized DRA(f) [6]. Lemma 9 shows that
centralized DRA(f) has strategy space for the auctioneer at least as ample as DRA(f) with
public broadcast. To be concrete, the lemma shows that any safe deviation to DRA(f) with
public broadcast maps to a safe deviation to centralized DRA(f).

▶ Definition 8 (Centralized Deferred Revelation Auction). The centralized DRA(f) is identical
to DRA(f) with public broadcast except under the following cases:

In DRA(f) with public broadcast, consider a history h where buyer i broadcasts a message
m. In centralized DRA(f), instead of broadcasting m, buyer i sends m to the auctioneer
in a private channel. Then, the auctioneer sends m to each buyer j ̸= i in a private
channel.
In DRA(f) with public broadcast, consider a history h where the auctioneer broadcasts a
message m. In centralized DRA(f), instead of broadcasting m, the auctioneer sends m

to each buyer i ∈ [n] in a private channel.

▶ Lemma 9. Let (G, s⃗) be a safe deviation to DRA(f) with public broadcast, then there is a
safe deviation (G′, s⃗′) to centralized DRA(f) where Rev(G′, s⃗′) = Rev(G, s)

Proof. Let (G′, s⃗′) be a communication game identical to (G, s⃗) except on the following
scenario:

Whenever buyer i ∈ [n] broadcasts message m in (G, s⃗), in (G′, s⃗′), buyer i sends m to
the auctioneer. After receiving m, the auctioneer sends m to each buyer j ̸= i.
Whenever the auctioneer broadcasts message m in (G, s⃗), in (G′, s⃗′), the auctioneer sends
m to each buyer i ∈ [n].

The deviation (G′, s⃗′) is safe assuming (G, s⃗) is safe. Moreover, it induces the same
allocation/payment rules, meaning it obtains the same revenue as (G, s⃗). This concludes the
proof. ◀

Unfortunately, the converse of Lemma 9 is untrue. There are safe deviations to centralized
DRA(f) that do not map to any safe deviation in DRA(f) with public broadcast. We give
the following examples to illustrate this fact.

▶ Example 10. In DRA(f) with public broadcast, buyer i sends (i, ci) to all buyers. On
the other hand, in centralized DRA(f), buyer i must send (i, ci) to the auctioneer, and the
auctioneer “promises” to forward (i, ci) to all buyers j ≠ i. Unfortunately, buyer i cannot
verify whether the auctioneer forwards their message to any buyer j ̸= i. This allows the
auctioneer to share (i, ci) with a strict subset of buyers.

▶ Example 11. In DRA(f) with public broadcast, the auctioneer broadcasts the end of the
commitment phase to all buyers. On the other hand, on centralized DRA(f), the auctioneer
“promises” to simultaneously announce the end of the commitment for each buyer. Suppose
the auctioneer announces the end of the commitment phase to buyer i at 10:00 p.m. but
only sends this announcement to buyer j at 11:00 p.m. This deviation is safe because buyer
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i does not know which messages buyer j received and vice-versa. Thus, at 10:10 p.m., the
auctioneer requests buyer i to reveal (bi, ri). Then, the auctioneer impersonates a false buyer
z that bids bz(bi) that might depend on bi. Buyer z sends Commit(bz(bi), rz) only to buyer
j at 10:20 p.m.

These examples do not prove there are safe deviations to centralized DRA(f) that are
more profitable than any safe deviation to DRA(f) with public broadcast. They aim to
showcase additional manipulations the auctioneer can perform that they cannot perform when
a broadcast channel is present. Our main result will formally prove that these manipulations
strictly improve the auctioneer’s revenue relative to deviations that do not manipulate the
order and time of messages.

Note some deviations are still possible even when buyers communicate in a broadcast
channel, which makes arguing about the credibility of DRA(f) with public broadcast non-
trivial – namely, the addition of false bids and the refusal to reveal false bids.

Broadcasting false bids. In the commitment phase, the auctioneer can impersonate a false
buyer – agents that submit bids not coming from any real buyer i ∈ [n] – which broadcast
a false bid Commit(b̂, r̂) where r̂ is uniformly random. We refer to b̃(n, D) as the highest
bid among all false buyers. Set b̃(n, D) = 0 if the auctioneer does not impersonate any false
buyer.

▶ Lemma 12. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast. If, during the commitment phase, a false buyer broadcasts Commit(b, r), and, in
the revelation phase, the false buyer reveals (b, r), then b is a random variable independent
of v⃗.

Proof. Suppose for contradiction the false buyer broadcasts Commit(b, r) and later reveals
(b, r) where b is not independent of v⃗. Use this auction to construct an adversary that
outputs Commit(b, r) whenever the false buyer does. Once the false buyer reveals (b, r), the
adversary reveals (b, r). Because b is correlated to v⃗, this implies the commitment scheme is
malleable, a contradiction. ◀

Withhold false bids. In the revelation phase, the auctioneer can refuse to reveal any bid b̂

submitted from a false buyer. The decision to reveal or withhold a bid from a false buyer
might depend on the real bids b⃗.

Next, we highlight a few relevant facts about our protocol. In the commitment phase,
buyer i observes commitments {Commit(di

j , ri
j)}j from both real buyers and false buyers

(excluding their bid bi). That is, di
j is the j-th bid buyer i observes excluding their own bid.

Let βi(⃗b) = max{r(D), maxj{di
j}} be the highest bid buyer i observed in the commitment

phase (including the reserve price r(D) and excluding their bid bi) when real buyers bid b⃗. It
is possible maxi∈[n] βi(⃗b) > max{r(D), maxi∈[n]{bi}} if the highest bid is from a false buyer.

▶ Observation 13. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast. Then for all value profiles b⃗, bi > βi(⃗b) for at most one buyer i ∈ [n].

Proof. Suppose for contradiction there are distinct buyers i and j such that bi > βi(⃗b) and
bj > βj (⃗b). Observe that buyer i receives the bid of buyer j and buyer j receives the bid of
buyer i which implies βi(⃗b) ≥ bj and βj (⃗b) ≥ bi. The inequalities implies bi > bj and bj > bi,
a contradiction. This proves there is at most one buyer i such that bi > βi(⃗b). ◀

AFT 2024



19:10 Credible, Optimal Auctions via Public Broadcast

▶ Observation 14. Suppose the auctioneer follows a safe deviation to DRA(f) with public
broadcast. If bi > βi(⃗b), then buyer i receives the item and pays βi(⃗b).

Proof. Buyer i can observe that their bid is above the reserve price and they are the highest
bidder in the auction. If the auctioneer’s deviation is safe, it must allocate the item to bi

and charge βi(⃗b). ◀

The following Lemma 15 shows that under certain conditions, it is optimal for the
auctioneer to reveal any bids from false buyers.

▶ Lemma 15. Consider any safe deviation (G, s⃗) of DRA(f) where, in the commitment
phase, the auctioneer impersonates a false buyer that bids 0 < b ≤ f(n, D), and, in the
revelation phase, the auctioneer withholds b. Let h be the history where the auctioneer reveals
or withholds b. Let (G′, s⃗) be a new deviation identical to (G, s⃗) except at history h the
auctioneer reveals b. Then G′ is a safe deviation and Rev(G′, s⃗) ≥ Rev(G, s⃗).

Proof. The fact (G′, s⃗) is a safe deviation follows directly from the fact (G, s⃗) is a safe
deviation. Next, we argue Rev(G′, s⃗) ≥ Rev(G, s⃗).

First, consider the case where no real buyer receives the item at (G, s⃗). Then, no real
buyer will receive the item at (G′, s⃗). Moreover, (G′, s⃗) improves the auctioneer’s revenue
relative to (G, s⃗) because the auctioneer receives no payments but pays fewer penalties for
revealing b.

Next, consider the case where some buyer i ∈ [n] receives the item and pays p at (G, s⃗).
For the case where b ≤ p, buyer i remains the highest bidder and pays p while the auctioneer
pays fewer penalties for revealing b at (G′, s⃗). For the case where b > p, by assumption
f(n, D) ≥ b. Then, the auctioneer receives negative profits at (G, s⃗) since the penalty for
withholding b is higher than the payment they receive from buyer i. On the other hand, at
(G′, s⃗), the revenue loss for revealing b is lower than the penalties for withholding b. ◀

4 DRA with Public Broadcast is Credible for α-Strongly Regular
Distributions

In this section, we show that for any α-strongly regular distributions for α > 0, there is a
f(·, ·) that makes DRA(f) with public broadcast credible. Recall that b̃(n, D) is the most
significant bid from a false buyer. From Lemma 12 b̃(n, D) is independent of v⃗.

For the case where α ≥ 1, [6] proved Theorem 16 stating centralized DRA(f) is a credible
auction if we set the collateral to be at least the optimal reserve price. Extending their
result for our auction is a simple observation that any safe deviation for DRA(f) with public
broadcast is also a safe deviation for centralized DRA(f).

▶ Theorem 16 (Theorem 4.1 in [6]). Assume buyer valuations are α-strongly regular for any
α ≥ 1. If f(n, D) ≥ r(D), then centralized DRA(f) is a credible auction.

▶ Theorem 17. Assume buyer valuations are α-strongly regular for any α ≥ 1. If f(n, D) ≥
r(D), then DRA(f) with public broadcast is a credible auction.

Proof. Suppose for contradiction DRA(f) with public broadcast is not a credible auction
when f(n, D) ≥ r(D). There is a safe deviation (G, s⃗) to DRA(f) with public broadcast
where Rev(G, s⃗) > Rev(Dn). From Lemma 9, there is a safe deviation (G′, s⃗′) to centralized
DRA(f) where Rev(G′, s⃗′) = Rev(G, s) > Rev(Dn). Thus, centralized DRA(f) is not a
credible auction, a contradiction to Theorem 16. ◀
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The challenging case is to argue DRA(f) with public broadcast is credible for some
f(n, D) for the case where α ∈ (0, 1). We first show that any safe deviation where false buyers
only broadcast bids smaller than the collateral cannot improve the auctioneer’s revenue.

▶ Lemma 18. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast. Let b̃(n, D) be the highest bid from a false buyer (or zero if there are no false
buyers). If f(n, D) ≥ b̃(n, D), the auctioneer’s revenue is at most Rev(Dn).

Proof. From Lemma 15 and the fact the highest false buyer bids k, it is without loss of
generality to assume the auctioneer always will reveal b̃(n, D).

Suppose the reserve price is r and let r̂ = max{r(D), b̃(n, D)}. Note that r̂ is independent
of v⃗ because r(D) depends only on D and b(n, D) depends only on n and D. Thus, the
allocation/payment rule is equivalent to a second-price auction with reserve r̂. Since the
second-price auction with reserve r̂ is a strategyproof auction, Myerson’s theorem implies
the revenue is at most:

Ev←D

[
n∑

i=1
pi(v⃗)

]
= Ev←D

[
n∑

i=1
φ(vi) · xi(v⃗)

]
≤ E

[
max

i
φ+(vi)

]
.

The first equality is Theorem 4. The second inequality observes
∑n

i=1 xi(v⃗) ≤ 1. From
Myerson’s theorem, the optimal auction maximizes virtual surplus or equivalently, Rev(Dn) =
E [maxi φ(vi)]. This concludes the proof. ◀

Next, we consider the case where false buyers might broadcast bids higher than the
collateral. Our first Lemma will bound the revenue for events where vj > βj(v⃗) for some
buyer j. The second Lemma bounds the revenue for events where vj < βj(v⃗) for all buyers.

▶ Lemma 19. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast. Let R(v⃗) be the auctioneer’s revenue when buyers have value profile v⃗. Then

Ev⃗←D [R(v⃗) · 1(∃j, vj > βj(v⃗))] ≤ Ev⃗←D

[
n∑

i=1
φ(vi) · 1(vi > βi(v⃗))

]
Proof. From Observation 13, there is at most one buyer i such that vi > βi(v⃗) for any v⃗.
Moreover, when vi > βi(v⃗), buyer i wins the item and pay βi(v⃗). Since βi(v⃗) is independent
of vi, this payment/allocation rule is strategyproof. From Myerson’s theorem, the revenue is
the expected virtual surplus Ev⃗←D [φ(vi) · 1(vi > βi(v⃗))]. We obtain

Ev⃗←D [R(v⃗) · 1(∃j, vj > βj(v⃗))] = Ev⃗←D

[
n∑

i=1
βi(v⃗) · 1(vi > βi(v⃗))

]

= Ev⃗←D

[
n∑

i=1
φ(vi) · 1(vi > βi(v⃗))

]
{By Theorem 4}

as desired. ◀

▶ Lemma 20. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast. Assume D is α-strongly regular for α ∈ (0, 1). Let b̃(n, D) be the highest bid from

a false buyer (or zero if there are no false buyers). Assume f(n, D) ≥ r(D)
(

n
α

) 1−α
α

(
1

1−α

) 1
α

and b̃(n, D) > f(n, D). Let R(v⃗) be the auctioneer’s revenue when buyers have value profile
v⃗. Then, the auctioneer’s expected revenue is at most

Ev⃗←D [R(v⃗) · 1(∀j, vj < βj)] ≤ Rev(Dn) − Ev⃗←D

[
n∑

i=1
φ(vi) · 1(vi > βi(v⃗))

]
.
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Proof. When vj < βj(v⃗) for all buyers, a false buyer is the highest bidder. Therefore,
maxj βj(v⃗) = b̃(n, D) > f(n, D) where the inequality is a statement assumption. In this
case, any buyer j can receive the item as long as the auctioneer withholds at least one bid.
Because buyer j pays at most vj , the auctioneer receives negative revenue if vj < f(n, D).
Recall xi(v⃗) is an indicator variable taking value 1 if and only if buyer i receives the item.
This gives

Ev⃗←D [R(v⃗) · 1(∀j, vj < βj(v⃗))]

≤ Ev←D

[
n∑

i=1

(vi − f(n, D)) · xi(v⃗) · 1(∀j, vj < βj(v⃗)) · 1(vi ≥ f(n, D))

]

≤ Ev⃗←D

[
n∑

i=1

( 1
α

φ(vi) + r(D) − f(n, D)
)

· xi(v⃗) · 1(∀j, vj < βj(v⃗)) · 1(vi ≥ f(n, D))

]

≤ Ev⃗←D

[
n∑

i=1

1
α

φ(vi) · xi(v⃗) · 1(∀j, vj < βj(v⃗)) · 1(vi ≥ f(n, D))

]

= Ev⃗←D

[
n∑

i=1

1
α

φ(vi) · xi(v⃗) · 1(∀j ̸= i, vj < βj(v⃗)) · 1(f(n, D) ≤ vi < βi(v⃗))

]

= Ev⃗←D

[
n∑

i=1

φ(vi)
α

· xi(v⃗) · 1(∀j ̸= i, vj < βj(v⃗)) · (1(vi ≥ f(n, D)) − 1(vi > βi(v⃗)))

]

< Ev⃗←D

[
n∑

i=1

φ(vi)
α

· 1(vi ≥ f(n, D))

]
− Ev⃗←D

[
n∑

i=1

φ(vi) · 1(vi > βi(v⃗))

]
The second line observes that if buyer i receives the item, they pay at most vi, and the
auctioneer loses a collateral of f(n, D) by withholding at least one bid. The third line invokes
Lemma 26. To see that the assumptions for the Lemma are satisfied, let E be the event
where vi ≥ f(n, D) and observe that f(n, D) ≥ r(D) for all n ≥ 1 and α ∈ (0, 1). The
fourth line observes f(n, D) ≥ r(D). The fifth line observes the event {∀j, vj < βj(v⃗)}
implies {vi < βi(v⃗)} and uses the fact βi(v⃗) > f(n, D). The sixth line uses the fact
1(a ≤ X < b) = 1(X ≥ a) − 1(X ≥ b) for any random variable X and constants a > b. The
seventh line uses the fact α > 1 and Observation 13 which states the event {vi > βi} implies
xi(v⃗) and vj < βj(v⃗) for all j ̸= i since vi expects to win the item. Moreover, we use the fact

xi(v⃗) · 1(∀j ̸= i, vj < βj(v⃗)) · 1(vi ≥ f(n, D)) ≤ 1(vi ≥ f(n, D)).

To conclude, we must show that

Ev⃗←D

[
n∑

i=1

φ(vi)
α

· 1(vi ≥ f(n, D))
]

≤ Rev(Dn).

From Lemma 28,

Ev⃗←D

[
n∑

i=1

φ(vi)
α

· 1(vi ≥ f(n, D))
]

= 1
α

(
1

1 − α

) 1
1−α

(
r(D)

f(n, D)

) α
1−α

Ev⃗←D

[
n∑

i=1
φ(vi) · 1(vi ≥ r(D))

]

≤ α

αn
Ev⃗←D

[
n∑

i=1
φ(vi) · 1(vi ≥ r(D))

]
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= αn

αn
Ev1←D [φ(v1) · 1(v1 ≥ r(D))]

= Rev(D)
≤ Rev(Dn)

The second line observes f(n, D) ≥ r(D) and applies Lemma 28. The third line

uses the assumption f(n, D) ≥ r(D)
(

n
α

) 1−α
α

(
1

1−α

) 1
α . The fourth line observes

φ(v1), . . . , φ(vn) are i.i.d.. The fifth line observes r(D) is the optimal reserve price, and so
Ev1←D [φ(v1) · 1(v1 ≥ r(D))] is the optimal revenue for the single buyer auction (Theorem 4).
The last line observes the revenue is non-decreasing in the number of buyers. ◀

Next, we prove our main result.

▶ Theorem 21. Assume the auctioneer follows a safe deviation to DRA(f) with public
broadcast and assume all buyer valuations are α-strongly regular for α > 0. Then, there is
an f such that DRA(f) with public broadcast is a credible auction.

Proof. Set f(n, D) = r(D)
(

n
α

) 1−α
α

(
1

1−α

) 1
α . Observe for all n ≥ 1 and α > 0, f(n, D) ≥

r(D). For the case where α ≥ 1, the proof follows directly from Theorem 17 because
f(n, D) ≥ r(D). Next, consider the case where α ∈ (0, 1). Recall b̃(n, D) refers to the highest
bid among false buyers (or zero if no false buyer exists). R(v⃗) refers to the auctioneer’s
revenue when buyers have value v⃗. For the case where f(n, D) ≥ b̃(n, D), Lemma 18 states the
auctioneer’s revenue is at most Rev(Dn). Next, consider the case where f(n, D) < b̃(n, D).
We can write the revenue as

Ev⃗←D [R(v⃗)] = Ev⃗←D [R(v⃗) · 1(∃j, vj > βj(v⃗))] + Ev⃗←D [R(v⃗) · 1(∀j, vj < βj(v⃗))]

≤ Ev⃗←D

[
n∑

i=1

φ(vi) · 1(vi > βi(v⃗))

]
+ Rev(Dn) − Ev⃗←D

[
n∑

i=1

φ(vi) · 1(vi > βi(v⃗))

]
= Rev(Dn)

The second line is due to Lemma 20 and Lemma 19. This shows the auctioneer’s revenue is
at most Rev(Dn) and proves there is a f such that DRA(f) is a credible auction. ◀

5 Public Broadcast is Necessary

This section revisits the fact centralized DRA(f) is not a credible auction for certain
α-strongly regular valuations when α ∈ (0, 1).

▶ Theorem 22 (Theorem 4.4 in [6]). For all f , α ∈ (0, 1), there exists a Dn that is α-strongly
regular such that centralized DRA(f) is not credible for instance Dn.

The following is a special case for the instance given in the proof of Theorem 22. By
inspection, this strategy is a safe deviation for centralized DRA(f) since, in the view of
each buyer, the strategy is indistinguishable from the promised auction. In this strategy the
auctioneer only sends a shill bids to buyer B that depend on the bid of buyer A. This would
not be possible if, rather than relying on the auctioneer to forward messages, messages were
sent in a broadcast channel because any message one buyer receives is also received by other
buyers.

▶ Definition 23 (Adaptive Reserve Price). Consider an auctioneer who promises to implement
centralized DRA(f) on an instance with two buyers A and B. The adaptive reserve price
deviation is the following deviation:
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A sends (A, cA) to the auctioneer.
B sends (B, cB) to the auctioneer.
The auctioneer sends (B, cB) to A and (A, cA) to B

The auctioneer sends “End of the Commitment Phase” to buyer A, then requests A to
reveal their bid. A complies and reveals (bA, rA) such that cA = Commit(bA, rA).
The auctioneer picks a large threshold T :

If bA < T , the auctioneer sends “End of Commitment Phase” to buyer B, then
requests B to reveal their bid (who complies by revealing (bB , rB) such that cB =
Commit(bB , rB)). The auctioneer implements the allocation/payment rule for the
second-price auction with reserve r(D) on bids {bA, bB}.
If bA ≥ T , the auctioneer impersonates a false buyer C. Let rC be uniformly random
and bC = bA + f(2, D). Then, the auctioneer sends (C, Commit(bC , rC)) to B. The
auctioneer sends “End of Commitment Phase” to buyer B, then request B to reveal
their bid. B complies and reveal (bB , rB) such that cB = Commit(bB , rB). Next, the
auctioneer proceeds as follows:
∗ If r(D) ≥ max{bA, bB}, the auctioneer reveals all bids. No one receives the item.
∗ If bB < bA and bA > r(D), the auctioneer reveals all bids and allocates the item to

A and charges max{r(D), bB}.
∗ If bB ∈ [bA, bC ] and bB > r(D), the auctioneer reveals bA and hides bC from B.

Then, the auctioneer allocates the item to B and charges max{bA, r(D)}.
∗ If bB > bC , the auctioneer reveals all bids and allocates the item to B who pays bC .

6 DRA over Public Broadcast for Regular Distributions

Although DRA with public broadcast extends the class of distributions where it is credible,
it is not a magic bullet. Indeed, Theorem 25 states there is an instance with a single buyer
drawn from a regular distribution that witnesses DRA(f) with public broadcast is not
credible. The proof relies on a similar negative result in [6].

▶ Theorem 24 (Theorem 4.4 in [6]). There is a regular distribution D such that for all f(·, ·),
centralized DRA(f) is not credible even when there is a single buyer with valuation drawn
from D.

▶ Theorem 25. There is a regular distribution D such that for all f(·, ·), DRA(f) over
public broadcast is not credible even when there is a single buyer with a valuation drawn
from D.

Proof. We will argue for any instance with a single buyer, any safe deviation to centralized
DRA(f) maps to a safe deviation to DRA(f) over public broadcast. To see, let (G, s⃗) be a
safe deviation to centralized DRA(f). Let (G′, s⃗′) be a deviation to DRA(f) with public
broadcast identical to (G, s⃗) except on the following cases:

Whenever the buyer sends m to the auctioneer in (G, s⃗), the buyer broadcast m in (G′, s⃗′).
Whenever the auctioneer sends m to the buyer in (G, s⃗), the auctioneer broadcast m in
(G′, s⃗′).

(G′, s⃗′) is a safe deviation because (G, s⃗) is a safe deviation. Moreover, (G′, s⃗′) induces the
same allocation/payment rule as (G, s⃗); therefore, Rev(G′, s⃗′) = Rev(G, s⃗).

From Theorem 24, there is a D such that for all f(·, ·), there is a safe deviation (G, s⃗)
to centralized DRA(f) where Rev(G, s⃗) > Rev(D). The mapping above proves there is a
safe deviation (G′, s⃗′) to DRA(f) with public broadcast where Rev(G′, s⃗′) = Rev(G, s⃗) >

Rev(D). This proves DRA(f) with public broadcast is not a credible auction on instance D

as desired. ◀
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7 Conclusion

Improving the transparency and fairness in Internet platforms is becoming an essential concern
for regulators, as observed by the US Department of Justice lawsuit against Google [17].
It is unlikely that customers could unilaterally detect and, more importantly, prove the
sophisticated market manipulations alleged in the complaint. Credible auctions formalize
the notion that an auction is “auditable” by its participants: the auctioneer has no incentive
to deviate from running the promised mechanism in earnest. However, existing credible
auctions suffer from restrictive assumptions on valuation distributions and exclude valuations
with tails thicker than the exponential distribution.

This work shows that censorship-resistant broadcast channels like blockchains are helpful
to circumvent this problem. We propose the deferred revelation auction with public broadcast,
a natural modification of the centralized deferred revelation auction of [6]. Although our
auction represents a simple modification of a known auction, the resulting auction is credible
in instances where no known communication-efficient auctions were known to be credible.
This work builds on the emerging line of research that attempts to improve the performance
of economic mechanisms by appending cryptographic primitives to them. The need for large
collateral is a limitation of our work. Minimizing collateral is an important objective to make
these auctions practical which we leave as future direction.
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A Mathematical Background

▶ Lemma 26 (Lemma 7.1 in [6]). Let D be α-strongly regular for α > 0. Let E be an event
such that v ≥ r(D) with probability 1 conditioned on E. Then

E [v|E] ≤ 1
α
E

[
φD(v)|E

]
+ r(D).

Proof. Because D is α-strongly regular, for all x′ > x,

φD(x′) − φD(x) ≥ α(x′ − x)

Then for any x′ ≥ r(D), x′ ≤ 1
α (φD(v) − φD(r(D))) + r(D). By definition φD(r(D)) = 0.

Conditioned on event E, we have that v ≥ r(D) for all v. We conclude Ev⃗←D [v|E] ≤
1
αE

[
φD(v)|E

]
+ r(D) as desired. ◀

▶ Lemma 27 (Lemma 7.2 in [6]). Let D be a α-strongly regular distribution. Then for all
p ≥ r(D),

p · Prv⃗←D [v ≥ p] ≤ r(D) · Prv⃗←D0 [v ≥ r(D)]
(

1
1 − α

) 1
1−α

(
r

p

) α
1−α

.

▶ Lemma 28. Let D be a α-strongly regular for α > 0. Then for all p ≥ r(D),

Ev⃗←D [φ(v) · 1(v ≥ p)] ≤ Ev⃗←D [φ(v) · 1(v ≥ r(D))]
(

1
1 − α

) 1
1−α

(
r

p

) α
1−α

.

Proof. Consider a single item, single bidder posted-price mechanism that offers the item at
a price p. The bidder value is drawn from D. The revenue is pPrv⃗←D [v ≥ p] because the
buyer purchases whenever their value exceeds p. From Myerson’s theorem, pPrv⃗←D [v ≥ p] =
Ev⃗←D [φ(v) · 1(v ≥ p)]. The result follows directly by applying Lemma 27 to the left-hand
side of the inequality. ◀
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Abstract
Byzantine fault-tolerant consensus protocols have provable safety and liveness properties for static
validator sets. In practice, however, the validator set changes over time, potentially eroding the
protocol’s security guarantees. For example, systems with accountable safety may lose some of that
accountability over time as adversarial validators exit. As a result, protocols must rate limit entry
and exit so that the set changes slowly enough to ensure security. Here, the system designer faces
a fundamental trade-off. The harder it is to exit the system, the less attractive staking becomes;
alternatively, the easier it is to exit the system, the less secure the protocol will be.

This paper provides the first systematic study of exit queues for Proof-of-Stake blockchains. Given
a collection of validator-set consistency constraints imposed by the protocol, the social planner’s
goal is to provide a constrained-optimal mechanism that minimizes disutility for the participants.
We introduce the MINSLACK mechanism, a dynamic capacity first-come-first-served queue in which
the amount of stake that can exit in a period depends on the number of previous exits and the
consistency constraints. We show that MINSLACK is optimal when stakers equally value the processing
of their withdrawal. When stakers values are heterogeneous, the optimal mechanism resembles a
priority queue with dynamic capacity. However, this mechanism must reserve exit capacity for the
future in case a staker with a much higher need for liquidity arrives. We conclude with a survey of
known consistency constraints and highlight the diversity of existing exit mechanisms.
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1 Introduction

In Proof-of-Stake networks, validators use tokens to participate in the consensus protocol.
These staked tokens serve two purposes. First, they solve the problem of Sybil resistance:
agents who operate two validators must procure twice as much stake as those who only
manage one. Second, they allow the protocol to hold validators accountable for violating
the predefined rules. A validator’s stake can be slashed if adversarial behavior is detected,
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providing crypto-economic security to the system.1 Most modern blockchains (e.g., Ethereum
and Solana) implement a version of Proof-of-Stake and the principles of staking have been
extended beyond base-layer chains and into the smart contract layer (e.g., re-staking as
popularized by EigenLayer).

The literature typically treats the set of stakers as static to establish positive results;
however, in practice, staking protocols have a validator set that changes over time. New
agents may arrive and wish to stake, while existing stakers may want to withdraw their
tokens for use elsewhere (see, e.g., [18]). How should a stake-based protocol design this egress
procedure?2 There are two competing desiderata. The first is the security of the underlying
protocol. For example, if a malicious validator can corrupt the service for personal gain
but then withdraw their stake before the corruption is detected, the validator is immune to
punishment, and the protocol is not secure. We describe these concerns in more detail in
Section 6. The second desideratum is ensuring that validators can quickly enter and exit
the system since delays decrease the utility of participation. Offering fast withdrawals also
indirectly benefits the protocol since, ceteris paribus, a more rigid protocol must offer higher
rewards in the form of emissions to compensate users for the decrease in their optionality.
While these general principles are well understood, the design of the exit procedures in
the context of blockchains has yet to attract much formal attention.3 As a consequence,
the optimal queue designs we suggest in Sections 4 and 5 perform much better than those
currently used in practice, which we survey in Section 6.

The first contribution of this paper is to formally define the designer’s dilemma as a
constrained optimization problem: minimizing the adverse effects of withdrawal delays while
satisfying the protocol’s safety constraints. In the setting where all validators have the same
time sensitivity, we show that a stateful, first-come-first-served queue where the amount of
stake withdrawn in each period depends on the history of previous periods is constrained
optimal.

However, even among honest validators, the desire to exit can be heterogeneous – for
example, a capital-constrained validator might need to withdraw urgently to meet a margin
call elsewhere. In this setting, a first-come-first-served queue may no longer be optimal, as
the time-sensitive validator may have a sizeable negative utility if their withdrawal is not
processed promptly. Instead, the mechanism must allow more time-sensitive stakers to cut
the line to achieve efficiency. Further, in some cases, the optimal mechanism reserves capacity
for the future in case more time-sensitive agents arrive. We formally define this mechanism
as the solution to a Markov Decision Process (MDP) and show that an appropriately defined
dynamic Vickrey-Clark-Groves (VCG) mechanism can implement the efficient outcome.

We complement these results with a survey to connect our theoretical model to practice.
First, we discuss the exit mechanisms in use today by popular blockchains. Our results
suggest that some of these mechanisms are either (highly) sub-optimal or the designers
believed the mechanism should satisfy additional constraints external to our model. Further,
we should note that no protocol that we are aware of uses a payment-for-priority mechanism.4
Combined with our theoretical results, this collection may be helpful for blockchains and
staking protocols more generally to design or improve their exit procedures.

1 See [20] for an extended definition of crypto-economic security.
2 Similar considerations apply to the design of deposit (ingress) procedures; we focus on withdrawals

(egress) in the present paper.
3 We defer a discussion of the related literature to Section 2.
4 Priority payment is standard in other congested parts of blockchains, notably in the context of transaction

fees, and a substantial literature explores the design of such fees, see, e.g., [37, 24].
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Organization. Section 2 presents the related literature. Section 3 defines the model and
outlines the form of the security constraints of a staking system. Section 4 studies the
common-value setting by defining MINSLACK and proving its optimality. Section 5 introduces
heterogeneous values, formalizes the extended problem as an MDP, and presents numerical
results quantifying the performance of various algorithms. Section 6 justifies the form of
the constraints, presents the intricacies of the Ethereum design, and surveys other staking
withdrawal procedures. Section 7 concludes.

2 Literature Review

Early in the development of Ethereum, Vitalik outlined concerns about a long-range attack
on a Proof-of-Stake blockchain [9]. In particular, he described how a malicious staker could
withdraw his ETH while building a competing fork starting from a historical epoch before
he withdrew. This way, the staker cannot be punished for creating the fork because he has
exited from the consensus mechanism. The solution, he argued, was weak subjectivity, where
nodes locally store a subjectivity “checkpoint” block and ignore any messages from before
that epoch [1]. Weak-subjectivity checkpoints prevent long-range attacks but require the
validator set to change slowly enough to reach a subjectivity checkpoint without a long-range
attack. The naïve approach simply delays all withdrawals for the weak-subjectivity period,
guaranteeing the chain’s safety. Buterin argued in [10] that this imposed too strict a penalty
on validators who wanted to withdraw under normal circumstances when there was no
evidence of an attack, arguing for an exit queue model instead. [12] gave a formal case for
why the consistency imposed by the exit queue was enough to safely last until the next weak-
subjectivity checkpoint through an inductive argument. As detailed in Section 6, the FCFS
exit queue has been used in Ethereum since April 2023, when the Shanghai/Capella hard
fork enabled beacon chain validators to withdraw. More generally, Buterin was concerned
with preserving the formal property known as accountable safety [14]. Accountable safety
guarantees that in the case of a safety violation, the fault is attributable to a subset of
validators (because they must have signed conflicting attestations).

[28, 8] formalized the economic limits of consensus mechanisms and showed that no
partially synchronous protocol can fully implement slashing rules without bounding the
resolution time of communication between honest nodes. Given some bound on this overhead,
protocols could implement slashing against an attacker with < 2/3 of the total stake, a positive
result that justifies using the weak-subjectivity period as a heuristic for preventing long-range
attacks. [30] formalized the relationship between accountable safety and finality, while [2]
introduced a new confirmation rule for potentially improving the pre-finality guarantees for
transactions in Ethereum. [25] proposed allowing some withdrawals to be processed ahead of
others by the nature of originating from a different source that required payment.

Systematic attention to the design of exit procedures in blockchains has been sparse;
however, mechanism design has proved useful for blockchain designers in other contexts,
particularly in designing transaction-fee mechanisms. The question here is similar: if there is
a finite supply of block space and demand may exceed supply, how should the block space
be allocated? Bitcoin used a simple “pay-as-bid” mechanism, which was fruitfully studied
using tools from queueing theory in [24]. Pay-as-bid mechanisms result in strategic bidding,
contributing to poor user experience. In 2021, Ethereum adopted a dynamic reserve price
mechanism, EIP-1559, which was comprehensively studied in the seminal [37] (see also [38]).
There has been recent interest in studying dynamic mechanism design in this setting – see
e.g., [31, 32]. In a different context, a few market design papers have studied the design of
queues, mainly in organ transplantation–see, e.g., [27] and [40].
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3 Model

Time is discrete, and each period corresponds to a point during which a validator may
request a withdrawal and be removed from the active set – for example, Ethereum processes
withdrawals at epoch boundaries. Denote the set of possible validators, V , and at each time
t, let S(v, t) ∈ {0, 1} denote whether validator v is currently staked or not.5 Thus the total
amount staked at period t is S(t) =

∑
v S(v, t).

At the end of each period, any validator may signal their desire to withdraw their stake
by joining a waiting list W (t). For now, we model every element of the waiting list as a
tuple (v, t′), where v is the validator identity and t′ is the period at which they initiated
their withdraw. Note that we must have that t′ ≤ t, as any element in the waiting list must
have joined in the past. Let R(t) be the set of exit requests arriving in period t.6

An exit mechanism M in each period t, given a waiting list W (t), selects a subset
P (t) ⊆ W (t) of withdrawal requests to process. We allow the exit mechanism’s choices to
depend on past choices. Formally, let us define a history of previous withdrawal requests as:

H(t) = (P (1), P (2) . . . , P (t− 1)),

and the set of all possible histories as H. A mechanism then formally is:

M : H×W (t) 7→ {0, 1}|W (t)|,

where the binary string is an indicator function for the withdrawals processed during each
period. The system follows the rules of motion:

W (t) = W (t− 1) \ P (t− 1) ∪R(t),
P (t) =M(H(t), W (t)),
H(t + 1) = H(t) ∪ P (t).

The stake distribution S(·, t) is then updated based on the exits and fresh entries. In words,
W (t) is the waiting list of withdraw requests at the beginning of period t, P (t) is the subset of
waiting to withdraw requests that are processed in period t. H(t) is the history of processed
requests up to and including period t.

The number of withdrawals allowed over various time horizons constrains the protocol
designer. We model this as a finite set of constraints, each described by a tuple (δ, T ) ∈
[0, 1]× N. A constraint of (δ, T ) means that if, in any period t, the total stake is S(t), then
the maximum number of withdrawals processed over the following T periods (from t + 1
thru t + T ) is bounded above by δ × S(t). We take the constraints as given, motivating
this construction in Section 6.1. Formally, the designer faces some k constraints given by
C = {(δ1, T1), . . . , (δk, Tk)} and aims to maximize the utility of the validators withdrawing
from the staking system. Calculating this utility depends on validators having differing
values for exiting the system; we begin by examining the simplest case, where each validator
has a common value.

5 For simplicity, we assume that each validator has the same quantity of tokens staked, normalized to 1.
This can easily be relaxed.

6 Most blockchains also limit entry to have a stable validator set for consensus. In this paper, we focus
on the design of exit queues and consider entry unrestricted.
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4 Homogeneous Values

To begin our analysis, we consider the case where all agents have the same value for
withdrawing or equivalently face the same economic penalty for each period between when
they make a withdrawal request and when that request is fulfilled. In this case, the social
planner cannot increase efficiency by reordering withdrawal requests, so efficiency demands
that exit requests be processed as quickly as possible without violating the established
constraints.

Given the constraint set C, the following algorithm, which we call MINSLACK, greedily
processes the maximum amount of withdrawals allowed within the bounds of the constraints.
In other words, for every constraint (δi, Ti), calculate the difference between δiS(t− Ti) and
the amount withdrawn in periods t− Ti thru t− 1.7 This difference is the maximum number
of withdrawals constraint i allows in period t given the previous history. It follows that the
lowest of these slacks is the maximum amount that can withdrawn in this period without
violating constraints. Since the protocol is indifferent about the withdrawal order, if there is
more demand for withdrawing than the allowed quantity, a natural solution is to use the
FCFS rule to tie-break. We present this algorithm as Algorithm 1.

Algorithm 1 MINSLACK.

1: Input: Constraints C = {(δ1, T1), . . . , (δk, Tk)}.
2: Input: Initial staking S(·, 0).
3: S(0)←

∑
v S(v, 0).

4: Initialize: H(0), W (0), P (0)← NULL.
5: Initialize: P (0) = 0.
6: for each period t ≥ 1 do
7: W (t)←W (t− 1) \ P (t− 1) ∪R(t).
8: for each constraint i ≤ k do
9: SLACKi ← δiS(t− Ti)−

∑t−1
τ=t−Ti+1 P (τ).

10: end for
11: MINSLACK ← min{SLACKi : 1 ≤ i ≤ k}.
12: P (t)← Largest prefix of W(t) such that total withdrawn ≤ MINSLACK
13: P (t) ← Total withdrawn in P (t)
14: H(t + 1)← H(t) ∪ P (t)
15: Update: S(v, t) based on P (t).
16: end for

Proving that this algorithm is feasible and optimal is straightforward: as designed, it
processes the maximum amount allowed by the protocol constraints, but never more. Before
presenting this result, we explain why such a queue design may be helpful. As we describe in
Section 6.2, the relevant constraints are that a given fraction of stake cannot withdraw over an
extended period (e.g., O(weeks)). Nevertheless, the actual queue implemented on Ethereum
allows the withdrawal of at most eight validators per epoch (a value set in EIP-7514, [29]). In
practice, validators must wait longer than required during periods with higher-than-expected
withdrawals. For example, in January 2024, the withdrawal queue on Ethereum rose to

7 For expositional simplicity, we elide over the difficulties caused by the fact that δiS(·) may not be a
whole number. In what follows we implicitly assume that this is a whole number, alternately, we could
allow for fractional withdrawals at the cost of significantly messier notation.
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Figure 1 A visual example of the calculation of SLACKi used in Algorithm 1 (MINSLACK). The
example constraints C =⇒ {(3, 4), (5, 10), (15, 20)} are read as, e.g., (3, 4) =⇒ “at most three
withdrawals over the next four consecutive time steps.” In the diagrammed example, the blue
vertical lines represent the timestamps of processed withdrawals. With SLACK2 = 1, the MINSLACK
algorithm can process at most one withdrawal during the current period while still conforming to
the constraints.

about 16,000 validators or about 5.5 days at peak due to Celsius bankruptcy proceedings.8
However, there were about 900k total validators during this period, so processing these
withdrawal requests immediately would not have violated the consistency constraints defined
by the “weak-subjectivity period” [1]. With this motivation, we present a formal treatment
of MINSLACK.

▶ Theorem 1. Given any sequence of withdrawal requests R(·), let P (·) be the processed
withdrawal requests and P (·) be the resulting total amount withdrawn in each period by
Algorithm 1. Then:
1. Feasibility: P (·) is feasible with respect to the protocol constraints.
2. Optimality: For any other feasible withdrawal decisions with total withdrawn in each

period given by P
′(·), it must be the case that:

∀t ≥ 1 :
t∑

τ=1
P

′(τ) ≤
t∑

τ=1
P (τ). (1)

Proof. To show that the withdrawal resulting from MINSLACK is feasible, observe that in
each period, the withdrawal amount is less than min{SLACKi : 1 ≤ i ≤ k} so it necessarily
satisfies all of the constraints. Since each withdrawal satisfies the constraints given the
history, applying the algorithm always results in a history that is feasible by construction.

For optimality, consider for the sake of contradiction that there exists a feasible P
′(·)

that violates (1). Let t be the earliest time such that:

t∑
τ=1

P
′(τ) >

t∑
τ=1

P (τ).

8 See https://www.validatorqueue.com/ for historical data about the withdrawal queue.

https://www.validatorqueue.com/
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Since t is the earliest time to violate condition (1), we must have that for all t′ < t,

∀t′ < t :
t′∑

τ=1
P

′(τ) ≤
t′∑

τ=1
P (τ). (2)

Analogous to the algorithm, let us term SLACK′
i(·) as the maximum withdrawable amount

in a given period given process P ′(·), with MINSLACK′(·) defined as the smallest constraint
i ∈ 1, . . . k. Note that by feasibility, we must have the following:

P
′(t) ≤ MINSLACK′(·).

Conversely, we know that by construction (see Algorithm 1),

P (t) = MINSLACK(t).

For the contradiction, it is sufficient to show that

MINSLACK′(t)− MINSLACK(t) ≤
t−1∑
τ=1

P (τ)−
t−1∑
τ=1

P
′(τ). (3)

In other words, we must show that the additional slack available at time t under P ′

relative to P is, at most, the difference between the amount withdrawn up to time t − 1
under P than P ′. Feasibility of the withdrawals under P ′ then contradicts the claim that∑t′

τ=1 P
′(τ) ≤

∑t′

τ=1 P (τ). To see (3) it is sufficient to show that for each 1 ≤ k :

SLACK′
i(t)− SLACK(t) ≤

t−1∑
τ=1

P (τ)−
t−1∑
τ=1

P
′(τ). (4)

The left-hand side of (4) can be rewritten as:

SLACK′
i(t)− SLACK(t) = δiS

′(t− Ti)−
t−1∑

τ=t−Ti+1
P

′(τ)−
(

δiS(t− Ti)−
t−1∑

τ=t−Ti+1
P (τ)

)

≤

(
t−Ti∑
τ=1

P (τ) +
t−1∑

τ=t−Ti+1
P (τ)

)
−

(
t−Ti∑
τ=1

P
′(τ)−

t−1∑
τ=t−Ti+1

P
′(τ)

)

=
t−1∑
τ=1

P (τ)−
t−1∑
τ=1

P
′(τ).

where the penultimate inequality follows since δi ∈ [0, 1], and we have (2). ◀

Thus, MINSLACK is optimal for the common value setting. Still, in reality, stakers may have
disparate values for accessing their stake, motivating the need to explore how a withdrawal
mechanism could account for heterogeneous values.

5 Heterogeneous Values and Paying for Priority

While Theorem 1 shows that Algorithm 1 provides an optimal solution for the case when all
stakers have a homogeneous value for withdrawing, in reality, they may have different values
for getting access to their staked assets. A staking pool, for example, might be withdrawing
some validators gradually to rotate the cryptographic keys used for participating in consensus.

AFT 2024
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In this case, the pool has a relatively low value for their withdrawal because the underlying
reason to withdraw is not highly time-sensitive. On the other hand, a hedge fund trying to
withdraw staked capital in time to meet a margin call to avoid a forced liquidation may have
an extremely high value for the liquidity from the withdrawal processing.

Each validator looking to exit has a delay cost per unit time c. The net payoff of a
validator of type c whose withdrawal occurs after a delay ∆ for a price (bid) of b is:9

U(∆, b, c) = −c∆− b.

In other words, their utility is linear in time according to their per-period disutility of waiting,
less the amount they pay. We consider this canonical linear form for simplicity. More
generally, one can consider other forms for the utility, including the time-varying disutility of
waiting, see, e.g., [5].

As described below, the efficient mechanism will be more complicated: efficiency requires
agents to express their disutility of waiting in the mechanism and managing agents’ incentives
involve payments. As in the previous section, we will consider the planner’s objective to be
efficiency, which is defined formally below.

▶ Observation 2. When values are heterogeneous, Algorithm 1, MINSLACK, may not be
efficient.

Recall that in every period, MINSLACK greedily processes as many withdrawal requests as
possible, given the constraints. However, there are unknown future withdrawal requests at
the time of processing. With heterogeneous values, it is possible that highly time-sensitive
stakers with a high disutility of waiting may arrive in future periods. Suppose the current
withdrawal requests have very low time sensitivity (i.e., very low c). In that case, the
optimal behavior could be to withhold processing withdrawals in this period and reserve this
capacity for the future. Intuitively, an efficient withdrawal mechanism must balance between
processing withdrawals now while reserving some slack for hypothetical future withdrawals.

5.1 Efficient withdrawals under heterogeneity
This section describes a withdrawal algorithm based on the Vickrey-Clarke-Groves (VCG)
mechanism. VCG in such dynamic settings is not novel – see [33] or [26]; it generalizes the
second-price sealed-bid auction in static settings and has two desirable properties, namely,
(i) it is incentive compatible for each agent to report their cost, c, and (ii) the mechanism is
constrained-efficient.

As is standard in mechanism design, we first describe the efficient allocation rule, i.e., the
optimal rule for a planner, in a setting where the planner observes the delay costs of stakers
as they arrive. Then, we describe payment rules that make it incentive compatible for stakers
to report their values truthfully.

Since this is a dynamic setting, as alluded to above, the mechanism must have a forecast
of future arrivals to decide whether to process withdrawals or to reserve withdrawal slots for
future arrivals. In this section, therefore, we assume that there is a known stochastic process
behind the withdrawals. The number of withdrawal requests in each period is randomly
distributed (for example, this may be the Poisson distribution with known parameter λ).
Each withdrawal request has a type that is an i.i.d. draw according to a known probability
distribution on ℜ+.

9 This is a standard model in the context of transaction fees, where users face a similar trade-off between
paying for inclusion and suffering a delay – see, e.g., [24].
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5.1.1 The Efficient Allocation Rule
For now, suppose each agent truthfully states, at the time of joining the waiting list, their
private cost, c. Each element of the waiting list is now a 4-tuple (v, s, t′, c). Modulo this
change, however, the system can be described just as in Section 3.

Given that some set of withdrawal requests P (t) is processed in period t from a waiting
list of W (t), the system collects a penalty (net disutility) of:

Penalty =
∑

(v,s,t′,c)∈W (t)\P (t)

sc.

In other words, the planner in period t collects a penalty equal to the disutility cost of every
staker in the waiting list whose withdrawal is not processed. As before, the planner faces
some constraints C on exits. The system aims to minimize expected discounted penalties
over feasible exit plans, where ρ ∈ [0, 1] is the planner’s discount rate.

This is a dynamic program where the state of the problem at the beginning of period t is
(S(t), W (t), H(t− 1)). We can recursively define the value function of the planner as follows:

V (S(t), W (t), H(t− 1)) ≡ (5)

min
P (t)

( ∑
(v,s,t′,c)∈W (t)\P (t)

sc + δE[V (S(t + 1), W (t) \ P (t)

∪R(t + 1), H(t) ∪ P (t)]
)

,

s.t. P (t) ⊆W (t),
P (t) feasible wrt C.

Here, expectations are taken over the next period withdrawal requests R(t + 1): both the
number of withdrawal requests and the corresponding waiting disutility is unknown at
period t.

This framing is an infinite horizon Markov Decision Problem (MDP). Given the previous
history, there is a maximum number of feasible withdrawals in every period. For any
withdrawal processed from the waiting list, it is intuitive that the planner will remove the
ones with the highest disutility of waiting first. However, as described above, the marginal
value of holding onto a withdrawal slot can exceed the penalty of making a current staker on
the list wait an extra period. Of course, the precise details depend on the arrival process
and the system’s current state. The algorithm is described in Program 5.

Algorithm 2 OPTIMAL.

1: . . . {same as MINSLACK}
2: for each period t ≥ 1 do
3: W (t)←W (t− 1) \ P (t− 1) ∪R(t).
4: P(t) ← Solution of Program 5
5: P (t) ← Total withdrawn in P(t)
6: H(t+1) ← H(t) ∪ P(t)
7: Update: S(v,t) based on P(t), E(t).
8: end for
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OPTIMAL is nearly identical to MINSLACK; it only replaces the process for calculating the
set of withdrawals to process in a current period, P (t) (shown in brown text in Algorithm 2).
The optimization problem in Program 5 must be solved to determine the policy of how many
withdrawals to process at each period.

Algorithm 3 PRIO-MINSLACK.

1: . . . {same as MINSLACK}
2: Sort W(t) in decreasing order of waiting disutility.
3: for each constraint i ≤ k do
4: SLACKi ← δiS(t− Ti)−

∑t−1
τ=t−Ti+1 P (τ).

5: end for
6: MINSLACK ← min{SLACKi : 1 ≤ i ≤ k}.
7: . . . {same as MINSLACK}

Another candidate withdrawal algorithm, which we refer to as PRIO-MINSLACK, modifies
MINSLACK to process withdrawals in order of priority fees. Algorithm 3 represents this one-line
change in blue text.

5.1.2 Pricing Rule
So far, we have described the problem as an optimization problem where the planner knows
the disutility from waiting suffered by the stakers in the queue. These are private, and there
must be an incentive for stakers to report truthfully. Achieving this is straightforward (albeit
computationally inefficient): every staker withdrawn in a period t should pay the expected
delay costs imposed on the system by their presence. Existing theorems (see [33], [5]) show
that such a pricing rule results in a Bayes-Nash equilibrium, where each buyer reports their
values truthfully.

5.1.3 Optimal policy
If new withdrawal arrival and value distributions are known, we can calculate the optimal
withdrawal policy by solving the resulting MDP associated with Program 5.

A tractable instantiation. Consider the withdrawal problem with a single constraint of
(t0, S̄δ0) = (5, 5) (no more than five withdrawals are allowed over five time periods).10 Let
the number of new withdrawals per period be distributed as Y ∼ {0, 1, 5} w.p. {0.5, 0.4, 0.1}
and the value of these distributions be distributed as X ∼ {1, 10}
w.p. {0.9, 0.1}. We need only two values to represent the state of pending withdrawals,

W (t). Let wℓ and wh denote the number of pending “low” (c = 1) and “high” (c = 10)
withdrawals, respectively. Further, let h−1, h−2, h−3, h−4 denote the history of withdrawals
processed (called H(t− 1) above) in each of the last four periods (with a (5, 5) constraint,
this is the extent of the history that we must consider when deciding what withdrawals to
process in this period). This leads the definition of each state

s = [wℓ, wh, h−1, h−2, h−3, h−4] ∈ S.

10 For our numerical exercises, for simplicity, we model the constraints as corresponding to an absolute
number of validators that can withdraw over some window of periods.
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Table 1 Performance over 10,000 simulations for OPTIMAL and PRIO-MINSLACK under different
configurations of arrival distributions (Y ), value distributions (X), and discount factors. The
performance metric is the discounted value of the rewards starting in the initial state [0, 0, 0, 0, 0, 0];
higher values (smaller disutility) are better. Top three pairs: varying discount factors. We use
n = 225, 350, 700 for simulation steps for the discount factors of γ = 0.85, 0.90, 0.95 respectively
(each selected so that the end of the trial has a weighting of ≈ 10−16). Middle three pairs: varying
the value distribution. Bottom three pairs: varying the arrival distribution.

Algorithm Arrival dist. Value dist. Discount Performance

OPTIMAL
0.85

−2.374
PRIO-MINSLACK −2.413

OPTIMAL Y ∼ [0, 1, 5] X ∼ [1, 10]
0.9

−2.933
PRIO-MINSLACK w.p. [0.5, 0.4, 0.1] w.p. [0.9, 0.1] −2.982

OPTIMAL
0.95

−3.964
PRIO-MINSLACK −3.999

OPTIMAL X ∼ [1, 5] −2.428
PRIO-MINSLACK w.p. [0.9, 0.1] −2.422

OPTIMAL Y ∼ [0, 1, 5] X ∼ [1, 10]
0.9

−2.959
PRIO-MINSLACK w.p. [0.5, 0.4, 0.1] w.p. [0.9, 0.1] −3.005

OPTIMAL X ∼ [1, 20] −3.902
PRIO-MINSLACK w.p. [0.9, 0.1] −4.151

OPTIMAL Y ∼ [0, 1, 2] −1.637
PRIO-MINSLACK w.p. [0.4, 0.4, 0.2] −1.638

OPTIMAL Y ∼ [0, 1, 5] X ∼ [1, 10]
0.9

−2.925
PRIO-MINSLACK w.p. [0.5, 0.4, 0.1] w.p. [0.9, 0.1] −2.969

OPTIMAL Y ∼ [0, 1, 10] −3.610
PRIO-MINSLACK w.p. [0.6, 0.35, 0.05] −3.620

The action space in this MDP is A = {0, 1, 2, 3, 4, 5}, where the action ai is legal if
∑

hj +ai ≤
5. To limit the size of the action space, we only consider states where wℓ, wh < 10. Even
with this extremely reduced setup, there are still |A| × |S| × |S| = 6 · 152462 = 1394643096
probabilities and rewards to encode. Nevertheless, this is feasible since the transition and
reward matrices are sparse.

Using value iteration, we numerically solve for the optimal policy, which determines,
“given a state, how many withdrawals should we process during this period.” We now compare
the performance of OPTIMAL (Algorithm 2 (under an assumed discount factor of 0.9)) and
PRIO-MINSLACK (Algorithm 3).11 Recall that PRIO-MINSLACK is a much simpler heuristic,
where it looks at the history and takes action ai = 5−

∑
hj . While this works well generally,

there are situations where it is “overly aggressive” and can result in large disutitlities. For
example, consider the state.

[10, 0, 0, 0, 0, 0] =⇒ 10 pending lows, 0 pending highs, empty history.

11 Table 1 considers other discount factors, arrival processes, and distributions of value.
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Figure 2 Performance comparison of PRIO-MINSLACK and OPTIMAL over 10,000 samples calculating
the discounted reward following each policy from the initial state s0 = [0, 0, 0, 0, 0, 0] for 350 steps
with a discount factor of 0.9. The density of each histogram shows the probability a given trial ends
in that range of values. When examining the raw density, the performance seems comparable, but
the Log-Density plot demonstrates that the long tail performance of PRIO-MINSLACK is significantly
worse than OPTIMAL. Intuitively, PRIO-MINSLACK is more of a “gambler” – the algorithm takes big
risks by greedily processing as fast as possible. These risks are rewarded in the median case but
occasionally have large disutilities by burning the capacity on low-value withdrawals. See Table 1
for more numerical comparisons between the two algorithms under different parameterizations.

In this situation, PRIO-MINSLACK observes that it can process five low withdrawals imme-
diately and does so (ai = 5). The optimal policy, however, chooses ai = 3 instead. By
processing five withdrawals in a single period, PRIO-MINSLACK forces a state where no more
withdrawals are possible for the following four periods. Using the available capacity, the
mechanism runs the risk of a high withdrawal arriving and needing to wait, resulting in a large
disutility. The optimal algorithm is “more cautious” by reserving two withdrawal slots for
the future, protecting for the possibility that a high-value withdrawal comes in the following
few periods. Figure 2 shows a performance comparison of PRIO-MINSLACK and OPTIMAL.
There are ten states (i.e., configurations of the current queue and history of withdrawals) in
which the action dictated by the optimal policy differs from PRIO-MINSLACK by two (e.g.,
optimal processes two fewer withdrawals than PRIO-MINSLACK) and 338 states in which the
optimal action differs from PRIO-MINSLACK by one. Table 1 compares the performance of
OPTIMAL and PRIO-MINSLACK under a few variations of (i) arrival distributions, (ii) value
distributions, and (iii) discount factors from simulating the two policies.

5.2 Practical considerations for the heterogeneous value setting
The previous section outlines dynamic VCG, the optimal withdrawal mechanism given known
stationary arrival and value distributions. In practice, the social planner may not know
these distributions, and further, the expected number of withdrawals or urgency of the
demand for liquidity could change over time. Beyond this, implementing dynamic VCG
would require solving the dynamic program outlined in Program 5 and holding funds in
escrow to execute the VCG payment rule – both of which seem possible on paper but present
significant engineering challenges.
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Algorithm 4 α-MINSLACK.

1: . . . {same as MINSLACK}
2: Sort W(t) in decreasing order of waiting disutility.
3: for each constraint i ≤ k do
4: SLACKi ← δiS(t− Ti)−

∑t−1
τ=t−Ti+1 P (τ).

5: end for
6: MINSLACK ← min{SLACKi : 1 ≤ i ≤ k}.
7: P(t) ← Largest prefix of W(t) such that total withdrawn ≤ α· MINSLACK
8: . . . {same as MINSLACK}

PRIO-MINSLACK is much simpler to implement, but may suffer under value heterogeneity
because it is too eager to process withdrawals. The problem arises when PRIO-MINSLACK
receives a burst of low-value withdrawals, in which case it consumes all the available capacity
on the low-priority withdrawals and leaves potentially higher-value incoming withdrawals
pending longer. These bursts induce a natural question: can we modify PRIO-MINSLACK to
be slightly more conservative with its remaining capacity while preserving its simplicity?
One solution is to modify PRIO-MINSLACK to consume only an α ∈ (0, 1] proportion12 of the
SLACK available at each period.

Algorithm 4, which we call α-MINSLACK, makes the one-line modification (shown in red)
to PRIO-MINSLACK by scaling the amount of processed withdrawals by α. By tuning α, we
can make α-MINSLACK more or less aggressive in how much withdrawal capacity it uses now
versus saving. At α = 1, we reduce to the “maximally aggressive” version (PRIO-MINSLACK).
In contrast, as α→ 0, α-MINSLACK becomes increasingly conservative. The outcome here is
that the slack continues to build up across the constraints, and you end up processing at
the rate α · δi/Ti per-unit time, where (δi, Ti) ∈ C s.t., δi/Ti = minj δj/Tj . In other words,
process at a constant rate proportional to the “most restrictive” constraint in C. More
moderate values, e.g., α = 0.5, present a more balanced version of α-MINSLACK where the
algorithm functions on the heuristic of “using half of the remaining slack at each period.”

While α-MINSLACK is not necessarily optimal, it does eliminate the need for arrival
distribution knowledge, which the optimal mechanisms rely on. Further, its simplicity
makes it much more feasible for an actual production system. We justify this statement by
numerically comparing the performance of various mechanisms under different withdrawal
distributions. Note that we can expand the set of value distributions compared to the optimal
analysis because we are no longer constructing the entire state space of the MDP.

Table 2 compares the performance of four different algorithms across a constant arrival
distribution and under three different value distributions. These results demonstrate that
the PRIO- and α- versions of MINSLACK far outperform either the CONSTANT mechanism
or regular MINSLACK (which serves as an FCFS-queue rather than a priority queue based
on the value of the withdrawal). These results motivate that, under some distributions,
α-MINSLACK may be preferable to PRIO-MINSLACK. Further work could be done to study
adaptive algorithms that aim to learn the optimal value of α in an on-line fashion. Again,
these heuristic rules for determining the withdrawal policy of the staking system are far
more straightforward to construct and implement than the optimal versions described in
Section 5.1.3.

12 The interval is left-open because α = 0 implies no withdrawals are ever processed.
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Table 2 Numerical results for algorithm performance under a fixed withdrawal arrival distribution
and three different value distributions. The performance metric measures the average disutility
over the withdrawals and thus should be minimized (to maximize the utility). We calculate the
mean disutility over ten independent samples of 10,000 steps each, with the first 1,000 steps of each
sample discarded to allow the system to settle into a steady state. The single constraint was set
as (δ, T ) = (5, 5): “a maximum of five withdrawals may be processed over five periods.” CONSTANT
processes one withdrawal per time step. MINSLACK and PRIO-MINSLACK follow the descriptions
in Algorithms 1 and 3 respectively. For α-MINSLACK (Algorithm 4), we use α = 0.9, which
produces the following mapping for calculating how much slack to consume in a given time slot
[0, 1, 2, 3, 4, 5] 7→ [0, 1, 2, 3, 4, 4]. We can describe this simply as: “If the slack is exactly 5, use only
four (reserving one for a potentially high-value arrival). If the slack is less than 5, use it entirely.”
The arrival distribution mimics occasional bursts of withdrawal requests while maintaining an
expected value E[Y ] = 0.9, less than the average capacity of one derived by the (5, 5) constraint. The
withdrawal values were sampled from Uniform, Exponential, and Pareto distributions to demonstrate
that under some conditions, α-MINSLACK can outperform PRIO-MINSLACK. In all cases, CONSTANT and
MINSLACK perform far worse than the PRIO- and α- variants.

Algorithm Arrival dist. Value dist. Performance

CONSTANT (1)

X ∼ Uniform(0, 1)

−5.768
MINSLACK −5.464

PRIO-MINSLACK −2.019
α-MINSLACK (α = 0.9) −2.002

CONSTANT (1)
Y ∼ [0, 1, 5]

X ∼ Exp(0.1)

−12.249
MINSLACK

w.p. [0.5, 0.4, 0.1]
−11.648

PRIO-MINSLACK −2.951
α-MINSLACK (α = 0.9) −2.986

CONSTANT (1)

X ∼ Pareto(2, 5)

−114.913
MINSLACK −109.354

PRIO-MINSLACK −67.687
α-MINSLACK (α = 0.9) −63.070

6 Theory and Practice

Why limit withdrawals in the first place? A thought experiment. Assume that withdrawals
are not limited. An attacker, Eve, accumulates 1/3 of the total stake in the PoS mechanism
and invests heavily in networking infrastructure. Eve contacts Alice to inquire about buying
a Tesla Cybertruck©. Alice, who is feeling both cyber- and cypherpunk enough to accept ETH
for the transaction, sees txn 0xcb on Etherscan as finalized, giving her confidence to hand
the (car) keys to Eve. From Alice’s perspective, the settlement assurance of 1/3 of all staked
ETH (> 33 billion USD as of May 2024) is more than sufficient economic security for her
transaction. However, using her networking prowess, Eve had tricked the honest validators
into finalizing two conflicting blocks, one which included txn 0xcb and another that didn’t
by partitioning the honest validators into two separate p2p groups and sharing conflicting
attestations with each group. If withdrawals are not limited, she can fully withdraw her
stake from both chains by the time honest validators reconnect (once Eve’s network-level
attack ends) and try to slash her. Alice has no Telsa Cybertruck© nor the ETH originally
sent in txn 0xcb.



M. Neuder, M. Pai, and M. Resnick 20:15

In light of this, blockchains place limits on withdrawals. However, as described below,
there is substantial variation in the limits placed and the withdrawal procedure, with little
systematic study.

6.1 Accountable Safety and Limiting Withdrawals
We begin with the following simple observation.

▶ Observation 3. The accountable safety of a finalized block decreases as time passes
because the stake participating in the finalization of the block can withdraw from the system.

This (rather counter-intuitive) fact means protocol designers must decide: “How quickly
should validators be able to withdraw their stake from the system?” Let D denote the
“maximum-tolerable decay” in the accountable safety of a finalized block. For example, if
D = 1/6, then a finalized block may have accountable safety (in terms of proportion of the
total stake that is slashable in case the transaction history changes) of 1/3−D = 1/6. The
security decay modifies the statement to, “any transaction in a finalized block will have
accountable safety of at least 1/6 of all stake.” This remains incomplete because over a
sufficiently long time horizon, with withdrawals enabled, more than D stake may be removed
from the system. Thus, we define an amount of time, denoted δ, over which the stake
withdrawn must not exceed D. This period can serve multiple purposes. One such usage is
the weak-subjectivity period [9], where the delay is an upper bound on the communication
delay between all honest parties in the partially-synchronous protocol; this value is O(weeks)
to account for the natural overhead incurred when social coordination is required to come to
consensus.13 Other constraints might be over much shorter time horizons, e.g., O(minutes),
to ensure a bound on the rate at which the economic security of a block changes in short
windows. Thus, the accountable safety of a Proof-of-Stake mechanism parameterized by D
and δ is “any block finalized more than δ time ago is immutable (only social consensus could
reverse it), and any block finalized within the past δ time has accountable safety of at least
1/3−D.”

6.2 Ethereum
Withdrawals in Ethereum Proof-of-Stake were fully activated in the Shanghai/Capella
Hardfork14 on April 12, 2023. While the full withdrawal process is quite involved, we dig
into the details to demonstrate how much engineering can shape the withdrawal mechanisms
in use today. Figure 3 demonstrates the full flow of an Ethereum withdrawal, which is split
into three distinct phases.

Phase 1: Exit queue. When an Ethereum validator wants to withdraw their 32 ETH
from the consensus mechanism, they trigger a “Voluntary Exit” [4]. This process sets
the validator’s exit_epoch based on the rate-limited first-come-first-served exit queue;
during each epoch, at most min(4, ⌊# validators/216⌋) are processed [4] (though this was
changed in EIP-7514 to cap the churn limit at 8 validators per-epoch [29], making the
new function max(8, min(4, ⌊# validators/216⌋))). The CHURN_LIMIT_QUOTIENT = 216 was

13 By ignoring any blocks published prior to the weak-subjectivity checkpoint, validators can also eliminate
the risk of long-range attacks (in practice, validators treat their latest finalized block as a ‘genesis‘ or
irreversible block by simply rejecting any block that conflicts with it).

14 https://ethereum.org/en/history/#shapella
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Figure 3 The withdrawal flow for Ethereum validators. Each phase has differing lengths and
validator properties. The top row of tan labels demonstrate what determines the length of each
phase. The middle row of tan labels annotate the timeline of events as described in the [15]. The
bottom row of colored labels indicate the activity and slashability of the validator over time.

selected15 according to the rough heuristic that it should take approximately one month for
10% of the stake to exit (or equivalently, about 100 days for 33% of the stake to exit) [13].
For the entire time a validator is in the exit queue (this phase), they are both “active”
(meaning they must continue performing their consensus duties) and “slashable” (meaning
their stake is still accountable for their behavior). Keeping the validator active while in the
exit queue minimizes the economic cost of a very long exit queue because they continue
earning rewards [11].

Phase 2: Withdrawalability delay. Once the validator’s exit_epoch has passed, they incur
a constant delay of 256 epochs (27 hours) before their withdrawable_epoch [4]. This fixed
delay is a significant safety buffer to provide ample time for the protocol to include any
slashing proof on chain. During this time, the validator is no longer active (and thus not
earning any rewards), but they remain slashable (to avoid committing a slashing violation
immediately before the withdrawal). The enforcement of this delay ensures that, even if the
exit queue is empty, there is a period where the validator’s stake is still accountable for their
actions.

Phase 3: Validator sweep. Once past the validator’s withdrawable_epoch, the function
is_fully_withdrawable_validator returns true indicating that the withdrawal delay has
passed and the validator is no longer slashable [15]. The last delay comes from the amount
of time it takes for the actual withdrawal requests to send the ETH to the corresponding
withdrawal address. All withdrawals are processed by looping through the validator set in
order of validator index. This validator “sweep” can only process 16 withdrawals per block,

15 Powers of two common for specification constants due to their compact binary representation.
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corresponding to 8.8 days to iterate through the entire validator set (thus a 4.4-day additional
delay on average).16 This 8.8-day delay is present regardless of the length of the exit queues
because “full” withdrawals (where a validator wants to leave the consensus layer altogether)
are inter-mixed with “partial” withdrawals (where a small amount of validator rewards are
involuntarily swept from each validator). While the original specification implemented the
queues directly into the protocol, [36] changes this only to store the validator index and
perform the sweep by mixing partial and full withdrawals.

This withdrawal mechanism is quite complex; the minimum time to exit the system is
27 hours. Due to the validator sweep, if the validator doesn’t strategically time their exit
request, the withdrawal will take over 5.5 days on average to fully clear, even if the exit queue
is empty. This complexity highlights how engineering decisions can inform the exit queue
mechanism design. Beyond Ethereum, there are many additional staking systems, though
their withdrawal mechanisms are much simpler and thus presented in Table 3 & Table 4.

6.3 Other Proof-of-Stake Blockchains

Table 3 compares several other blockchain protocols and how they handle withdrawals.
Ethereum is the only protocol that implements a dynamic queue, and in this regard, Ethereum
takes on additional complexity to improve the efficiency of the withdrawal mechanism.
Cosmos, Polygon, and Polkadot each implement the simple, fixed-duration withdrawal
mechanism with delays of 21, 2, and 28 days, respectively. This mechanism is simple and easy
to reason about. Still, it is much less efficient because each withdrawal takes the maximal
amount of time regardless of the history of the mechanism [6, 35, 34]. Solana, Cardano, and
Avalanche do not have in-protocol slashing, so staking serves only as an anti-Sybil mechanism
in their systems; the stake can exit the system without a rate-limiting step and not change
their security model [39, 16, 3].

6.4 Other applications of staking

Beyond other blockchains, some applications have implemented staking and slashing mecha-
nisms at the application layer of Ethereum. Table 4 performs the same high-level analysis of
two such mechanisms.

EigenLayer and Chainlink use stake for slightly different purposes than the chains outlined
in Table 3. EigenLayer creates a platform for buying and selling “economic security”; services
built on EigenLayer (called “Actively Validated Services” or “AVSs”) purchase this security
by incentivizing capital to delegate to an operator running their service. Because EigenLayer
encumbers capital with additional slashing conditions, it also enforces a protocol-wide escrow
period for stake removal. It is worth noting that the Ethereum withdrawal period can occur
concurrently with the EigenLayer escrow period [22]. Further, services buying security from
EigenLayer can impose further constraints on the capital allocated to their system. Chainlink,
on the other hand, uses stake to provide security for the data feeds supplied by their oracle
network [7]. This stake may be slashed for “less objective” faults (e.g., slashing for being
offline and not providing a price feed), which was recently dubbed “inter-subjective slashing”
in [21] and may grow to play a significant role in the future designs of slashing protocols.

16 https://www.validatorqueue.com/
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Table 3 Comparing staking and withdrawal mechanisms across L1 protocols and sidechains.

Protocol Staking purpose Withdrawal
mechanism

One-line analysis

Ethereum [4] Consensus safety Rate-limited FCFS
queue with minimum
duration.

Aims to be fast in the
average case, but
partial withdrawals
induce high-variance
delay.

Cosmos [19] Consensus safety Fixed 21-day
unbonding period.

Simple but inefficient.

Solana [39] Sybil resistance All deactivations
happen at epoch
boundaries. A
maximum of 25% of
stake can deactivate at
any given epoch
boundary.

With no slashing,
stake does not provide
accountable safety to
the protocol. Limiting
withdrawals ensures
the entire stake cannot
exit in a single epoch.

Cardano [16] Sybil resistance Immediate
withdrawals.

With no slashing,
stake does not provide
accountable safety to
the protocol.
Withdrawals are
immediately processed.

Polygon [35] Consensus safety Fixed ≈ 40 hour
unbonding period.

Simple but inefficient.
It benefits from the
fact that, as a
sidechain, state
updates are posted to
Ethereum and are thus
immutable – allowing
for a relatively shorter
fixed duration.

Polkadot [34] Consensus safety Fixed 28-day
unbonding period.

Simple but inefficient.

Avalanche [3] Sybil resistance Validators dictate the
duration of their
staking before
becoming active. The
minimum duration is
two weeks. After time
has elapsed, the stake
is immediately
withdrawn.

With no slashing,
stake does not provide
accountable safety to
the protocol.
Withdrawals are
immediately processed.
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Table 4 Comparing staking and withdrawal mechanisms between EigenLayer and Chainlink, two
app-layer protocols with slashing.

Protocol Staking purpose Withdrawal
mechanism

One-line analysis

EigenLayer [22] Economic security
guarantees

Fixed 7-day escrow
period for all
ETH-denominated
withdrawals. Staked
EIGEN has a fixed
24-day escrow
period.

Withdrawals need to
be limited because
EigenLayer
introduces new
slashing conditions.
Native restaked ETH
may be withdrawn
from the beacon
chain during the
EigenLayer escrow
period. Each AVS
could add its rate
limiting in addition
to the system-wide
minimums.

Chainlink [17] Oracle safety Fixed 28-day
cool-down period
before LINK is
claimable.

Staking provides
safety and
availability
conditions for data
feeds. Withdrawals
are rate-limited to
ensure slashing has
time to take place.

6.5 Liquid staking & restaking tokens
Liquid staking tokens (LSTs) make a design trade-off when choosing how much of the capital
in their system to deploy into consensus mechanisms. If they deploy too much of it, the
withdrawals will be rate-limited by the underlying protocol, leading to a more capital-efficient
protocol at the cost of a worse UX (slower withdrawals). Keeping some liquidity available
for immediate redemption improves the UX, but any capital in that state is not cash-flowing.
LSTs are fully collateralized and thus do not face insolvency risk, but holders face the
duration risk of holding the LST for however long the withdrawal takes. Liquid restaking
tokens (LRTs) have a more complex design space, where they must balance withdrawals
against various underlying protocols and services. Their withdrawal mechanisms are plagued
by the nature of various protocol rewards denominated in different tokens and emissions
rates. [23] explores some design trade-offs, including a market for withdrawals. Overall, this
design space is extensive and out-of-scope for the modeling of this paper, but it presents an
exciting avenue for future research.

7 Conclusion

System designers of staking and restaking protocols face a fundamental trade-off between
the security and utility. Based on the mechanisms we surveyed in Section 6, the mechanisms
currently in production maximally flexible given the rigidity they claim to require. In other
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words, nobody seems to be on the production-possibilities frontier of egress mechanisms in
practice; we acknowledge that the practical engineering constraints, e.g., as described in the
design of Ethereum’s withdrawal mechanism in Section 6.2, may play a significant role in the
decision making of existing protocols.

By formalizing this trade-off as a constrained optimization problem over mechanisms, we
aim to improve the state of withdrawal systems more broadly. For blockchain designers, we
distill our results into three pieces of advice. First, suppose your consistency constraints
are over a longer time horizon than a single epoch. In that case, a queue with dynamic
capacity can significantly reduce average wait times without sacrificing security – MINSLACK
(Algorithm 1) is a simple example of maximally processing the rate of withdrawals given a set
of constraints. Second, if you believe that participants in the system may have heterogeneous
disutility from waiting in the exit queue, their welfare would be improved by implementing
a priority queue – PRIO-MINSLACK (Algorithm 3) can quickly decrease the overall disutility.
Third, if you think that the time-sensitivity or arrival process of future withdrawal requests is
particularly fat-tailed, be sure to reserve some capacity in the system to allow the processing
of highly time-sensitive withdrawals during periods of congestion – α-MINSLACK (Algorithm 4)
is an example of this reservation.

We point to a few intriguing directions in terms of future work. Firstly, several empirical
questions have been raised by this study. Assessing the actual staker surplus lost from
sub-optimal queue designs would be helpful. The protocol may care about this staker surplus
because reducing the staker disutility may lessen the emissions needed to incentivize token
holders to stake in the first place. Further study on the heterogeneity in time preferences
among stakers would help determine whether pay-for-priority systems are worth considering.
Lastly, validator utility functions that are non-linear (e.g., a validator who needs their
withdrawal within the next week but doesn’t care when) may lead to different design
considerations and optimal withdrawal mechanisms.

On the theoretical side, note that some of the pay-for-priority systems we have proposed
serve as benchmarks and are unlikely to be implementable in practice (e.g., the dynamic
programming-based efficient allocation in Algorithm 2, which is both computationally difficult
and requires knowledge of the distribution of withdrawal requests). Other mechanisms (e.g.,
PRIO-MINSLACK, Algorithm 3) are feasible as a pay-your-bid mechanism – reminiscent of
the Bitcoin (and Ethereum before EIP-1559) transaction-fee mechanisms. Similar concerns
faced in those contexts, users having to choose an appropriate bid, may apply in withdrawal
mechansims too. The natural question is whether designs with better user experience,
analogous to EIP-1559, exist in this setting.
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Abstract
We study the amount of maximal extractable value (MEV) captured by validators, as a function of
searcher (or order flow provider) competition in blockchains with competitive block building markets
such as Ethereum. We argue that the core is a suitable solution concept in this context that makes
robust predictions that are independent of implementation details or specific mechanisms chosen.
We characterize how much value validators extract in the core and quantify the surplus share of
validators as a function of searcher competition. Searchers can obtain at most the marginal value
increase of the winning block relative to the best block that can be built without their bundles.
Dually this gives a lower bound on the value extracted by the validator. If arbitrages are easy
to find and many searchers find similar bundles, the validator gets paid all value almost surely,
while searchers can capture most value if there is little searcher competition per arbitrage. For the
case of passive block-proposers we study, moreover, mechanisms that implement core allocations
in dominant strategies and find that for submodular value, there is a unique dominant-strategy
incentive compatible core-selecting mechanism that gives each searcher exactly their marginal value
contribution to the winning block.
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1 Introduction

Blockchains that support smart contracts frequently run decentralized finance (DeFi) applic-
ations. This in turn gives rise to the phenomenon of miner/maximal extractable value, [5]:
Blockchain protocols give validators, sometimes called proposers, the right to order transac-
tions for a particular block. This effectively means that validators have a local monopoly
to include or exclude transactions or to order transactions in a particular way, in order to
generate value for themselves from this privileged position. However, since extracting value
from transaction ordering in an optimal way is a difficult task, more specialized actors such
as block builders and (arbitrage) searchers participate in the value extraction process in
smart contract blockchains such as Ethereum. Block builders aggregate different arbitrage
opportunities, liquidations or “sandwiches” in one block, using transactions from the pub-
lic mempool, different private mempools, order flow auctions or other transaction sources
together with their own transactions. Then, they bid against other builders, to get their
block published in a canonical chain of blocks. The bid is paid to the current block proposer.
Arbitrage opportunities are typically found by more specialized players, searchers and passed
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to the builders. The resulting strategic interaction between searchers, builders and the
validator lead to a value distribution of the arbitrage gains between these players. Empirical
evidence shows that the majority of the total observable MEV is captured by validators. 2

In this paper, we analyze the competition between searchers (more generally order-flow
providers) in order to explain the value distribution between the proposer (or block builder)
and the searchers. Different searchers may capture different value from different opportunities
and may or may not find unique opportunities that are not found by competing searchers.
This competition and specialization should in turn explain the value capture by different
searchers in the MEV supply chain. Our model abstracts away from the intermediate layer
of block building where block builders aggregate searcher bundles to blocks and compete in
a bidding procedure. However, the ability for different combination of searchers or order flow
providers to jointly generate different blocks is captured implicitly by the solution concept we
focus on: We consider core allocation where different combinations of players can construct
blocks of different values and distribute the value among themselves. The core constraints
require that no coalition of players should be able to generate more value for themselves
(produce a more valuable block) than they get paid in the realized allocation. Thus, while we
generically talk about searchers, our model can for example also capture the case where some
searchers act as block builders. The core is a natural solution concept in the context of block
building and MEV capture as it captures the competition and possibility of collaboration
of different players while abstracting away from any particular mechanisms that would
intermediate between searchers, builders and proposers. Thus, it provides robust predictions
on the set of plausible value distributions that can arise in any sufficiently competitive block
building market. As a next step, one can then look into mechanism that implement particular
core allocations through elicitating privately held information of searchers about the value
they can generate from different blocks.

Our first result, shows that searchers can at most obtain their marginal contribution to
the winning block (the difference in value between the best block that can be built with their
transactions and without their transactions) and if value is submodular, then giving each
searcher their marginal contribution is in the core.3 A straightforward calculation shows that
in a world with passive block producers, this particular core allocation coincides with the
Vickrey-Clark-Growes (VCG) outcome ([11]) and hence can be implemented in dominant
strategies (Corollary 5). On the other hand (Proposition 6), no other core-selecting mechanism
is dominant-strategy incentive compatible. These result gives additional justification to
further study the searcher-optimal point in the core: the value obtained by the validator in
this point can be interpreted as the maximal extractable value he can obtain taking into
account information rents captured by the searchers.

As a next step, we consider a stochastic model of searcher competition to study the
value distribution between the searchers and the validator. Different (arbitrage or MEV)
opportunities have a fixed probability of being found by a searcher. The more searchers find
an opportunity, the more value can be extracted by the validator and the less value can
be extracted by the searchers. We show that if the probability of finding an opportunity is
bounded from below by p > log(n)/n, where n is the number of searchers actively searching
in the strategy, with high probability the validator captures all value in all core allocations.

2 See https://www.galaxy.com/insights/perspectives/distribution-of-mev-surplus/.
3 While transactions submitted to a builder might exhibit significant complementarities, submodularity

can be argued to be a reasonable assumption in a sufficiently consolidated market. Order flow providers
with complementary flow have an incentive to integrate to capture more value together. Thus, the
realizable value might be submodular in the contributions of the different (consolidated) players.

https://www.galaxy.com/insights/perspectives/distribution-of-mev-surplus/
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On the other hand, if the probability of sucessfully searching is very low, p ∈ Θ(1/n),
then with positive constant probability, searchers will be able to capture all value in the
searcher-optimal core allocation.

Related Literature
The phenomenon of miner extractable value has first been documented in [5]. Another early
contribution on front-running in decentralized finance is [6]. MEV has been documented
by a variety of public dashboards and data sets, see for example https://mevboost.pics/,
https://libmev.com/. Recently, also the magnitude of non-atomic arbitrage has been
empirically investigated, where searchers realize one lag of a trade on chain and one on a
different domain, see e.g.[8] and https://dune.com/flashbots/lol.

The block building market structure that has evolved in Ethereum since the change to
proof of stake, has been the topic of several recent contributions: The dashboard https://
orderflow.art/ documents empirically the supply chain through which transaction requests
land on chain. [1] studies whether MEV and Proof-of-Stake rewards capture leads to
centralization, discussing both validator and builder roles in the market formation. [12] argue
that in the current market structure searchers and builders have an incentive to vertically
integrate. [4] argue that the builder is prone to centralization. [15] provide descriptive
statistics on the level of decentralization on the builder landscape. [3] proposes a dynamic
MEV sharing mechanism that the authors argue results into better decentralization and fair
allocation.

[2] studies questions of implementation with active block producers. Our model is similar
to theirs, but we focus on the question of implied value distribution. Our positive results for
dominant-strategy incentive compatible core-selecting mechanisms for passive block builders
complement their negative result for active block builders. [2] also study the role of searchers
as intermediaries.

The notion of the core was first formally defined in [7]. For an overview of results around
the core and submodularity see e.g. [9].

2 Model

There is a finite set S of searchers that submit transactions for inclusion in the block.
Similarly as in [2] we will usually identify searchers with (bundles of) transactions they
have sent for inclusion. However, our model also allows for the interpretation that the same
searcher (address) sends multiple bundles for inclusion. There is one validator (proposer),
denoted by V . For each set of searchers A ⊆ S there is a finite set of feasible blocks B(A)
that can be built from bundles of transactions submitted by searchers in A. A searcher i

generates value vi(B) from a block B and the validator generates value vV (B) from block
B. Our model can capture externalities (searcher i’s realized value may not only depend
on her included transactions but also other transactions in the realized block) and active
validators/block producers (we may have vV (B) ̸= 0). We assume that utility is transferable
and the final utility realized by searcher i if block B is realized and she makes a payment of
pi (e.g. to the validator) is vi(B) − pi.

Since utility is transferable, we can define a coalitional value function v : 2S∪{V } → R+
by

v(S ∪ V ) := max
B∈B(S)

(∑
i∈S

vi(B) + vV (B)
)

,
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and

v(S) = 0 if V /∈ S,

i.e. in case the validator is part of the coalition, the coalitional value is the value of the total
welfare maximizing block consisting of transactions from searchers in the coalition, and in
case the validator is not part of the coalition, no value can be generated, as the validator
is necessary to realize a block. It will be useful subsequently to introduce the short hand
notation

v̄(S) := v(S ∪ V )

for S ⊆ S to denote the value that searchers S can generate together with the validator.
Observe that by construction, the (collective) value function is monotonic,

v̄(A) ≤ v̄(B) for all A ⊆ B ⊆ S;

if we receive more bundles to build a block that will increase welfare weakly, since we can
always discard submitted bundles when building a block. Moreover, we make the following
assumption on the (collective) value function:

Submodularity. Let A, B ⊆ S. Then

v̄(A) + v̄(B) ≥ v̄(A ∪ B) + v̄(A ∩ B),

Submodularity states that the value of a block we can build from transactions from
searchers in A and B, is bounded by subtracting the value of a block we can build from
transactions in both A and B from the sum of values we can achieve from building a block
with transactions in A and a block with transactions in B.

Submodularity requires that there are not-too-strong complementarities between different
submitted bundles. We can justify this assumption in two ways: first, it may be that
complementarities are not strong and different MEV opportunities provide value that is
mostly independent from other opportunities. Second, it may be that the complementarities
are already absorbed by searchers, e.g. in the sense that searchers who provide complementary
flow have an incentive to integrate their operations and send their flow together to extract
more value. It is worth noting that our upper bound on searcher values holds also for
non-submodular value functions, but may be loose in that case.

It is easy to show that for monotone value functions, submodularity is equivalent to
requiring decreasing marginal value:

Decreasing Marginal Value. Let A ⊆ B ⊆ S and a ∈ A. Then

v̄(B) − v̄(B \ {a}) ≤ v̄(A) − v̄(A \ {a}).

A direct consequence of submodularity is the following lemma which will be useful
subsequently:

▶ Lemma 1. Let A ⊆ B ⊆ S. Then

v̄(B) − v̄(A) ≥
∑

i∈B\A

(v̄(B) − v̄(B \ {i})).
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Proof. We prove the result by induction on N := |B \A|. For N = 0 the result holds trivially.
Now suppose the result hold for N ≥ 0 and consider the case N + 1. Let j ∈ B \ A. By
induction assumption

v̄(B \ {j}) − v̄(A) ≥
∑

i∈B\(A∪{j})

(v̄(B \ {j}) − v̄(B \ {i, j})).

Adding v̄(B) − v̄(B \ {j}) on both sides and using submodularity (which implies decreasing
marginal value), we obtain

v̄(B) − v̄(A) ≥
∑

i∈B\(A∪{j})

(v̄(B \ {j}) − v̄(B \ {i, j})) + v̄(B) − v̄(B \ {j})

≥
∑

i∈B\(A∪{j})

(v̄(B) − v̄(B \ {i})). ◀

An allocation is a value distribution x : S ∪ V → R+ such that∑
j∈S∪V

xj ≤ v(S ∪ V ).

An allocation is in the core if the following inequality∑
j∈C

xj ≥ v(C) (1)

holds for any subset C ⊆ S ∪ V and all value is distributed:∑
j∈V ∪S

xj = v(S ∪ V ).

▶ Remark 2. As usual in the formulation of the core, the solution proposes a value al-
location without specifying an explicit implementation through a block and payments
between the searchers and the validator. Let B∗ ∈ B(S) be a welfare maximizing block,
i.e.

∑
i∈S∪V vi(B∗) = v(S ∪ V ). Then a core value allocation x can be implemented by

realizing the block B∗ and requiring that each individual searcher i makes a payment of
pi = vi(B∗) − xi to the validator.

Immediately from the requirement that without the validator no value can be realized, it
follows that the validator getting all gains is in the core.

▶ Observation 3. The core is always non-empty. The allocation where xV = v(S ∪ V ) and
xi = 0 for each i ∈ S is in the core.

3 Analysis

Our first main result states each searcher can at most capture their marginal contribution
to the realized block, and any allocation that gives each searcher at most their marginal
contribution is in the core. In particular, this implies that there is a searcher optimal core
allocation (giving each searcher exactly their marginal contribution to the realized block)
and a validator optimal allocation (giving the validator all realized value).

▶ Proposition 4. An allocation is in the core if and only

0 ≤ xi ≤ v̄(S) − v̄(S \ {i})

for each i ∈ S and xV = v̄(S) −
∑

i∈S xi.

AFT 2024
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Proof. First we show that xi ≤ v̄(S) − v̄(S \ {i}) for each i. Suppose not. In that case

xV +
∑

j∈S\{i}

xj = v̄(S) − xi < v̄(S \ {i}).

The previous inequality contradicts the core-stability of x which requires inequality (1) to
hold for C = S \ {i} ∪ V . The lower bound on xi is trivial. It remains to show that all
allocations with 0 ≤ xi ≤ v̄(S) − v̄(S \ {i}) are in the core. Let x be a vector satisfying these
inequalities. Let A ⊆ S and observe that

xV +
∑
j∈A

xj = v̄(S) −
∑

i∈S\A

xi ≥ v̄(A),

where the last inequality follows from Lemma 1. Thus, the core inequalities (1) are satisfied
for all coalitions A ∪ V with A ⊆ S. For coalitions without the validator the core inequalities
are trivially satisfied, as all agents get non-negative value in x. ◀

Implementation
In reality, the values that searchers obtain from different blocks is private information to
them. However, in a world with passive block producers4, we can implement the extreme
point in the core that gives maximal value to searchers in dominant strategies: Consider
the case where the block producer is passive i.e. vV (B) = 0 for each block B. Observe that
VCG-payments in this problem are defined by

pi := max
B∈B(S\{i})

∑
j ̸=i

vj(B) −
∑
j ̸=i

vj(B∗) = v̄(S \ {i}) −
∑
j ̸=i

vj(B∗),

for each i ∈ S where B∗ is the welfare-optimal block that can be produced. A straightforward
calculation shows that,

vi(B∗) − pi =
∑
j∈S

vj(B∗) − v̄(B \ {i}) = v̄(S) − v̄(S \ {i}),

i.e. the searcher-optimal core outcome coincides with the VCG outcome. We obtain the
following corollary of Proposition 4:

▶ Corollary 5. Under submodular value and with passive block-producers, the searcher-optimal
core-outcome can be implemented in dominant strategies.

On the other hand, it is straightforward to see that other selections from the core that not
always select the VCG outcome are not dominant-strategy incentive compatible.

▶ Proposition 6. Under submodular value and with passive block-producers, any core-
selecting mechanism that is not always choosing the searcher-optimal outcome in the core is
not dominant-strategy incentive compatible.

4 We know from [2] that with active block producers implementation of non-trivial solutions is not
possible. This in turn resembles previous results from other context where negative results prevail if
incomplete information in a two-sided markets is on both sides of the market [10, ]. In particular, for
assignment games [14], which can be re-interpreted as the special case of our model where the validator
has additively separable value, there is no mechanism that implements a core-allocation in dominant
strategies, for any domain of valuations when there is at least one profile of valuations for which a
core allocation that gives positive value to some searcher exists. For a proof of this “folk theorem” see
e.g. [13].
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Proof. Suppose for reported value functions (vi)i∈S , a block B∗ and payments (pi)i∈S are
chosen by the mechanism. By core-stability and Proposition 4, we have 0 ≤ vi(B∗) − pi ≤
v(S) − v(S \ {i}) for searcher i, or equivalently

vi(B∗) ≥ pi ≥ v̄(S \ {i}) −
∑
j ̸=i

vj(B∗)

Suppose for the sake of contradiction that the last inequality is strict and i reports different
values ṽi with ṽi(B) = vi(B) for B blocks not including transactions by i, and ṽi(B) ≤ ṽi(B∗)
for blocks including transactions by i (so that B∗ is still optimal) and

pi > ṽi(B∗) > v̄(S \ i) −
∑
j ̸=i

vj(B∗).

Note that this change in value preserves the submodularity of the coalitional value function
that the same block B∗ is optimal and that the payment p̃i for searcher i now satisfies

pi > ṽi(B∗) ≥ p̃i ≥ v̄(S \ i) −
∑
j ̸=i

vj(B∗),

which is stricly less. Therefore i gains from misreporting. ◀

The corollary and previous proposition motivate to further study the searcher-optimal
point in the core. The value that a (passive) builder/validator obtains in this point is the
maximal extractable value taken into account information rents that searchers can capture.
In the next sections, we study the particular case where the value of a block is derived from
independent (MEV) opportunities for which different searchers compete. For that case, we
derive results on when competition lets the core collapses to one point (in which the validator
captures all value) and when lack of competition allows searchers to generate positive value
in the searcher-optimal core allocation.

4 Independent Bundles and Competing Searchers

In this section, we consider the special case of additively separable value where the value of a
block is the sum of values derived from the individual (bundles) of transactions. Moreover, we
look at a scenario where multiple searchers may compete for the same (arbitrage) opportunities
so that their submitted bundles possibly “clash” with bundles submitted by other searchers.5

We denote opportunities by A and now can identify a block by a matrix B = (Bij)i∈A,j∈S
where Bij = 1 if searcher j’s bundle competing for opportunity i is included, Bij = 0 if it is
not included. We require that

∑
j∈S Bij ≤ 1 so that multiple clashing bundles cannot be

included in the same block. We can then write searcher j’s value from block B as

vj(B) =
∑
i∈A

vijBij ,

where vij is the value extracted by searcher j from opportunity i. We can add additional
constraints such as a capacity constraint on the total number of bundles. In the unconstrained
case, where all blocks are feasible, we have

v(S ∪ V ) = max
B∈B(S)

∑
i∈A

∑
j∈S

vijBij =
∑
i∈A

max
j∈S

vij . (2)

5 This matches the reality of searching where often different searchers compete in the same strategy and
find conflicting bundles among which the block builder chooses the most profitable one and includes it
in the block while discarding the less profitable competing bundles. Around one third of submitted
bundles to Ethereum block builders “clash”.

AFT 2024
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To get an intuition how the core looks like in this case, we start this section with few
examples and observations. Previously, in Observation 3 we had observed that giving all
value to the validator is always in the core. In the opposite direction, if there is no searcher
competition, i.e. no two searchers find the same opportunity, the validator can receive no
value in the core.

▶ Observation 7. There are examples of core allocations where the validator receives 0.

Proof. Suppose that for each opportunity i ∈ A there is at most one searcher submitting
a bundle of positive value, vij > 0 for at most one j. Then, the value allocation with
xj =

∑
i:vij>0 vij for each searcher j and xV = 0 is in the core. ◀

Next, we give an example where the maximum payment to the validator is enforced in
the core.

▶ Observation 8. There are examples where the validator gets the full value of the winning
block in any core allocation.

Proof. Suppose for each opportunity i ∈ A at least two searchers submit the same highest
value bundle (or no searcher finds the opportunity). Then for each searcher j we have
xj = v(S) − v(S \ {j}) = 0. The claim follows from Proposition 4. ◀

For a vector of non-negative numbers X, let SH(X) denote the second highest coordinate
of it. Then, let M denote the following sum:

M :=
∑
i∈A

Mi :=
∑
i∈A

SH((vij)j∈S). (3)

Additive value function as defined in (2) are submodular. Thus, we obtain the following
special case of Proposition 4.

▶ Corollary 9. The allocation in which the validator receives xV = M and searcher j receives
xj =

∑
i:j∈argmaxj∈S vij

(vij − Mi) is in the core.

This particular core allocation is the worst for the validator and the best for searchers
and can be implemented, see Corollary 5, in dominant strategies by a generalized second
price auction for bundles.

Stochastic Model
In this section, we analyze the core when searchers find bundles with some probability and
success is independent across searchers and opportunities. Let vij be a binary random
variable, which is 1 with probability p and 0 with probability 1 − p.6 Thus, p measures how
easy it is to find an arbitrage (bundle).

▶ Proposition 10. Let n := |S|. If p > 2 log n
n and m := |A| < n, then the validator receives

the entire block value with high probability in any core allocation.

6 Generalizations of the subsequent results to non unit value that can be different for different opportunities
are straightforward. The only assumption needed is that searchers conditional on finding the same
opportunity generate the same value from it. We could also accommodate heterogeneous value from the
same opportunity as long as the noise is sufficiently bounded.
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Proof. We show that there are at least 2 searchers who have positive value each arbitrage.
This can be done using direct computation of probabilities and an application of the union
bound inequality. Consider the following sum Yi :=

∑
j∈S vij . Thus, Yi is the number of

searchers that find opportunity i. Note that Yi is a Binomial random variable with parameters
n and p, that is Yi ∼ Bin(n, p).

P [Yi < 2] = P [Yi = 0] + P [Yi = 1] = (1 − p)n +
(

n

1

)
(1 − p)n−1p

≤ e−pn + npe−p(n−1) ≤ 1
n2 + 2 log n

1
n2 ≤ 2 log n

n2 , (4)

where the first inequality is obtained from the well known inequality: 1 − x ≤ e−x for any
x > 0. By the union bound, we have:

P [at least one Yi < 2] ≤ mP [Y1 < 2] ≤ n · log n

n2 = log n

n
.

The last inequality is by (4). For any ε > 0 there is a n large enough so that log n
n < ε and

therefore

P [Yi ≥ 2 for any i] ≥ 1 − ε.

Applying Proposition 4 shows the claim of the proposition. ◀

On the other hand, if the probability of discovering opportunities shrinks sufficiently fast
in the number of searchers, then searchers can capture value with positive non-vanishing
probability:

▶ Proposition 11. If p ∈ Θ( 1
n ) then with positive probability that is constant in n the

validator receives 0 in the searcher-optimal core allocation.

Proof. For each opportunity i ∈ A, with constant probability, there is exactly one searcher
that has a positive value, i.e., Yi = 1. Namely,

P [Yi = 1] =
(

n

1

)
(1 − p)n−1p → 1

e
Θ(1),

as n → ∞. Then, P [Yi = 1 for any i] → Θ
( 1

em

)
as n → ∞. That is, searchers complement

each other in finding different arbitrages. From Proposition 4, with probability Θ
( 1

em

)
, we

have M = 0. ◀

▶ Remark 12. The previous results discuss the value distribution for scenarios where the
block value is expected to be positive. If probability shrinks faster than 1/n as n grows,
then with high probability the produced block has value 0. However, conditional on the
block having positive value, all value is captured by searchers in the searcher-optimal core
allocation.
As remarked in footnote 5, block builders observe around ∼ 1/3 of submitted bundles clashing.
We can use this number to get approximate values of the parameters in our model: we use as
n = 125 which is the number of addresses that have placed at least 2 bundles in Ethereum
blocks within the last 30 days prior to writing this paper (excluding addresses that have
landed only one bundle gives us a crude way to identify addresses that have a high chance of
being the main address used by a searcher) according to the website https://libmev.com/.
Then

2/3 ≈ P [Yi < 2] = (1 − p)125 + 125(1 − p)124p ⇒ p ≈ 1%.
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Capacity Constraints
The previous model can be easily adapted to the case of capacity constraints on blocks
where a block can only contain up to a fixed number of transactions, denoted by K. Note
that submodularity is maintained when adding a capacity constraint. Thus, Proposition 4
naturally extends to the case of capacity constraints. For the model with independent
bundles, we now can consider the value function

v̄K(S) = max
B∈B(S)

∑
i∈A

∑
j∈S

vijBij = max
A′⊆A,|A′|≤K

∑
i∈A′

max
j∈S

vij .

It follows immediately that Corollary 9 holds with

MK := max
A′⊆A,|A′|≤K

∑
i∈A′

Mi

and xK
j :=

∑
i:j∈A′∩argmaxjvij

(vij − Mi).
Next, we consider how the bounds on searcher and validator value capture for the

stochastic model change with capacity constraints on the block. We assume that only a
constant fraction of possible opportunities can be accommodated. With a bound on the
block size, the probability threshold above which the validator captures all value in all core
allocation becomes lower, and now matches the corresponding threshold from Proposition 11
where the probability is positive (Proposition 11 still holds with a bound on the block size).

▶ Proposition 13. Let n := |S|. assume the block has capacity to include (1−α)m transactions
where m := |A| and 1/m < α < 1 is a constant. Then, there is a decreasing function ϕ such
that if p ∈ ω( ϕ(α)

n ), the validator gets the entire block value with high probability in any core
allocation.

Proof. We show that there are at least 2 searchers who have positive value each arbitrage.
As in the proof of Proposition 10 defining Yi :=

∑
j∈S vij , we obtain

P [Yi < 2] ≤ e−pn + npe−p(n−1). (5)

Now consider the probability that for more than αm indices we have Yi < 2. This is bounded
by

P [Yi < 2 for at least αm indices i] ≤
(

m

αm

)
P [Y1 < 2]αm ≤

( 1
α

(
e1−pn + pne1−p(n−1)))αm

,

where the last inequality uses the well-known inequality
(

a
b

)
≤
(

ae
b

)b and the previously
obtained inequality (5). Choosing ϕ(α) to satisfy

(1 + ϕ(α))e−ϕ(α) = α

e
,

we have for p ∈ ω(ϕ(α)/n) that for any ϵ > 0 there is a n such that

e1−pn + pne1−p(n−1)

α
< ϵ

and therefore

P [Yi ≥ 2 for at least (1 − α)m indices i] ≥ 1 − εαm > 1 − ε.

Applying Proposition 4 shows the claim of the proposition. ◀

▶ Remark 14. The previous result is tight in the sense that the matching result Proposition 11
which holds for p ∈ Θ(1/n), still holds for the case of capacity constraints on the block.
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5 Conclusion

We have studied MEV extraction in block building as a function of searcher competition
and have argued that the core, and in particular the rule that selects the searcher-optimal
point within the core are suitable solution concepts that allow us to make robust prediction
about value distribution in MEV extraction. We have further identified a dominant-strategy
incentive compatible mechanism, giving searchers their marginal value contribution to the
realized block, which would be a theoretically appealing payment mechanism for searchers in
the case of passive proposers/builders.

The model and solution concept allowed us to make sense of stylized facts about the
Ethereum block building market: validators capture most of the value most of the time,
and searchers with unique edge that are less exposed to competition are able to capture
significant value. A natural extension of our model for further research would add correlation
between different MEV opportunities to our stochastic model. Such an enhanced model
would be particularly suitable to study the competition between different block builders and
would possibly make theoretical predictions about concentration and value capture in the
builder market.
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The MEV-Boost block auction contributes approximately 90 % of all Ethereum blocks. Between Octo-
ber 2023 and March 2024, only three builders produced 80 % of them, highlighting the concentration
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edges is essential.
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and earn profits by conducting a comprehensive empirical analysis of MEV-Boost auctions over a
six-month period. We reveal that block market share positively correlates with order flow diversity,
while profitability correlates with access to order flow from Exclusive Providers, such as integrated
searchers and external providers with exclusivity deals. Additionally, we show a positive correlation
between market share and profit margin among the top ten builders, with features such as exclusive
signal, non-atomic arbitrages, and Telegram bot flow strongly correlating with both metrics. This
highlights a “chicken-and-egg” problem where builders need differentiated order flow to profit, but
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acts as an auctioneer, selling their block building rights, while a set of out-of-protocol
entities, referred to as builders, compete by sending bids to intermediaries known as relays.
The proposed MEV-Boost block is signed by the respective proposer, while the payload
is constructed by the winning builder. By separating block proposing and building tasks,
MEV-Boost aims to avoid validator centralization caused by the sophistication of running
complex strategies to extract Maximal Extractable Value (MEV) [15].

As an out-of-protocol instantiation of PBS, MEV-Boost preserves decentralization on
the consensus layer as validators have uniform access to MEV rewards [5]. However, it
concentrates power within the builder market due to economies of scale. Between October
2023 and March 2024, only three builders, beaverbuild, rsync, and Titan, produced
approximately 80 % of all MEV-Boost blocks. With a small set of builders creating Ethereum
blocks, the network becomes vulnerable to censorship [30,69,71].

To preserve Ethereum’s decentralized ethos and censorship resistance properties, fostering
competition in the MEV-Boost block building auction is essential. As a first step, we must
understand the competitive edges of the dominant players. MEV-Boost block builders cur-
rently have varying profitability levels, which do not strictly increase with the block market
share they own, as shown in Figure 1. Thus, we need to study the critical factors for both
obtaining market share and earning profits. Recent work [76] highlighted the pivotal role
certain order flow providers play in winning blocks. We extend their insights by analyzing
all active builders, order flow over time, and specific strategies to provide a comprehensive
understanding of what drives builders’ success in the MEV-Boost auction.

Our contributions can be summarized as follows:
We develop a novel methodology to identify key features in MEV-Boost builders’ success
in winning blocks and earning profits, and provide metrics to monitor the builder market.
We reveal that builders’ block market share positively correlates with order flow diversity,
while profitability correlates with access to order flow from Exclusive Providers (EPs),
such as integrated searchers and external providers with exclusivity deals.
We show a positive correlation between market share and profit margin among the top
ten builders, with features such as exclusive signal, non-atomic arbitrages, and Telegram
bot flow strongly correlating with both metrics.
We highlight a “chicken-and-egg” problem where builders need differentiated order flow
to profit, but only receive such flow if they have a significant market share.
We discuss the implications of our findings for Ethereum block auctions and explore
existing solutions for addressing the censorship threat posed by the currently centralized
block builder market.

2 Background and Related Work

In this section, we present the necessary background and discuss the related work.

2.1 Proposer-Builder Separation and the MEV-Boost Block Auction
The PBS framework [9] introduces the decoupling of block building and proposal tasks
for staked Ethereum validators. While the validator remains responsible for signing and
proposing the block, the new builder role handles the block content (i.e., execution payload)
preparation. By delegating the MEV extraction task to builders, PBS aims to lower the
barrier for entry for validators, who no longer need to become proficient in block building.
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Figure 1 Bubble plot illustrating MEV-Boost builders’ profit margin (average block value kept
by the builder) on the x-axis and total profit in ETH on the y-axis. Bubble size represents the
builder’s market share, measured by the total number of blocks built. Color indicates profitability,
with a 15 % profit margin threshold distinguishing high-profit margin builders. Builders with less
than 0.01 % market share or a profit margin below −50 % are omitted for brevity.

Achieving the PBS goal is essential for Ethereum’s consensus security [5]. However,
it is challenging due to the difficulty of establishing a fair exchange of value between the
validator and the builder [63]. Validators need assurance of payment and execution payload
delivery by the builder, while builders must ensure their block content is protected against
unbundling and is included on-chain. Although solutions to fair exchange problem have been
discussed [47,48], there is no enshrined PBS implementation in the Ethereum protocol.

Flashbots proposed an out-of-protocol PBS implementation, MEV-Boost [23], which
introduces relay intermediaries to address the fair exchange issue. This implementation
became active with the Merge [20] in September 2022. In MEV-Boost, relays receive blocks
from builders and validate1 them to ensure that the promised bid to the validator is paid and
that the block is valid to become canonical. To protect builders against unbundling attacks,
relays follow a commit-and-reveal scheme, disclosing only the block header when retrieving
the proposer’s signature. Although MEV-Boost requires trust in third parties, relays are
presumed to act honestly due to their reputations. However, there have been instances where
proposers exploited relay vulnerabilities to unpack and steal valuable MEV bundles from
searchers [16,44], indicating that the fair exchange problem remains unresolved.

An MEV-Boost block auction round [27] follows the 12 −second slot structure of the
Ethereum consensus protocol [22]. To win the right to produce the block proposed at slot
n, builders start competing at slot n − 1 by sending bids to the relays. Over time, builders

1 Optimistic relays [46] such as Ultra Sound [68] can make builder bids available to the proposer without
validation since they have additional security mechanisms in place (e.g., collateralized builder funds).
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increase the value of their bids, derived from the fees offered by users sending transactions
to the public mempool and Exclusive Order Flow (EOF) providers (e.g., MEV searchers,
Telegram bots [31, 43]) submitting valuable bundles and transactions to the builders’ private
Remote Procedure Call (RPC) endpoints. Relays validate the builder bids and make them
available to the proposer, who can continuously poll the getHeader endpoint on the mev-boost
middleware to receive the highest bid from every registered relay. Eventually, the validator
blindly signs the accepted bid’s block header and submits it to the winner relay, who publishes
the full block to the network. The described MEV-Boost process is summarized in Figure 2.

2.2 Maximal Extractable Value
MEV refers to the sum of value extractable from a blockchain in any given state, through
transaction ordering, insertion, and exclusion [15]. Using these techniques and analyzing
the blockchain and network state, MEV searchers, running bots and sophisticated smart
contracts,2 execute strategies such as Decentralized Exchange (DEX)-DEX or Centralized
Exchange (CEX)-DEX arbitrages, sandwiches, and liquidations to earn profits [35,54].

Due to the competitive, time-sensitive,3 and state-dependent nature of MEV extraction,
searchers must pay fees like bribes to builders for prioritized inclusion and execution in blocks.
As a result, builders earn a proportion of the MEV that the searchers extract. However, they
must also share their earnings with the proposers to win the MEV-Boost block auction, as
described previously (see Section 2.1). Thus, MEV, originating from benign user transactions
altering the blockchain state, flows through various entities in the block production pipeline
and provides economic incentives for participants throughout the supply chain.

2.3 Order Flow Auctions
Order Flow Auctions (OFAs) are auctions where users share trade orders as unsigned
transactions with searchers who compete in a sealed-bid format to backrun them. Users
are incentivized by refunds up to 90 % of the value bidders extract from backrunning
opportunities [45], along with frontrun protection. OFAs, such as MEVBlocker [45] and
MEV-Share [29], provide an RPC endpoint for users to privately submit transactions instead
of sending them to the public mempool. These transactions are braodcasted, either in full
detail or selectively, to bidders who compete to submit the highest value bundle to block
builders. Builders then refund OFA users using the fee from the winning searcher’s bundle.

2.4 Related Work
Previous work has focused on Ethereum block building auctions from theoretical, game-
theoretic, and empirical standpoints. [67] reveals that searchers prefer submitting bundles to
builders with high-market share, and new entrants need to subsidize to obtain market share
unless they operate their own searchers. [65] conducts an empirical study examining the
strategic behavior of MEV-Boost block builders, focusing on their bidding behavior and order
flow strategies, and establishes core metrics for analyzing builder profiles and identifying
their competitive edges. [75] provides a game-theoretic model of the MEV-Boost auction
and adopts an agent-based model to simulate builder strategies, showing the importance

2 Example MEV bot contract: 0x6980a47bee930a4584b09ee79ebe46484fbdbdd0
3 Arbitrages between an off-chain CEX and an on-chain DEX or two DEXes on different blockchains can

be considered time sensitive as execution is non-atomic.



B. Öz, D. Sui, T. Thiery, and F. Matthes 22:5

Figure 2 MEV-Boost block production process. Users (blue) submit transactions to the public
mempool, accessible to every builder. EOF providers (orange), including MEV searchers and valuable
order flow bots, monitor user transactions and bundle them with their own transactions or directly
submit individual transactions to builders. Builders (purple) submit blocks with bids to the relays
(yellow), which make them available to the proposer (green) through the mev-boost middleware.

of latency and access to order flow. [76] identifies pivotal order flow providers for block
builders and measures the competition and efficiency of the MEV-Boost auctions. [32] shows
that integrated High-Frequency Trading (HFT) builders who extract top block position
opportunities, such as CEX-DEX arbitrages, are favored to win the block auction when
price volatility increases. [35] introduces heuristics tailored to detect CEX-DEX arbitrages,
confirming that price volatility and the arbitrage volume are correlated. The work provides
empirical evidence that certain builders, such as beaverbuild and rsync, run their own
searchers to extract this value. [5] proves the necessity of a competitive PBS auction to enable
homogeneous proposer rewards and avoid concentration of stake among validators proficient
in extracting MEV rewards. Block proposal timing games have been studied in [53, 56],
showing the marginal value of time for validators to earn more rewards from the builder
bids. [72] measures the MEV-Boost market concerning the entities involved in the block
production pipeline, and [34] analyzes the Ethereum landscape with a comparison between
PBS and non-PBS blocks.

3 Methodology

This section outlines the methodology for identifying transaction labels, collecting empirical
data, and calculating MEV-Boost block metrics.

3.1 Transaction Labels Taxonomy
We classify Ethereum transactions to understand the competitive edge different types provide
to block builders based on the payments they offer. To this end, we determine a transparency
and an order flow label for every transaction, following the taxonomy presented in Figure 3.

3.1.1 Transparency Labels
Ethereum transactions submitted to public RPC endpoints propagate through a peer-to-
peer network and enter nodes’ public mempool. These transactions are available to every
builder running a node in the Ethereum network. However, some transactions are submitted
exclusively to a builder’s private RPC endpoint, bypassing the public mempool. Additionally,
certain transactions submitted to private endpoints are revealed to a selected group of
entities, as occurs in OFAs. As part of our methodology, we apply the following conditions
to determine the transparency label of a transaction:

AFT 2024
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Figure 3 Taxonomy of transaction transparency and order flow labels. Every transaction has
a transparency label (orange) based on its visibility on the network level and an order flow label
(purple) determined by its objective. The gray labels stemming from the order flow labels represent
the detailed categories we consider or popular providers of such order flow.

Public Signal: Recorded in the mempool of at least one monitored node.
Exclusive Signal: Not recorded in the mempool of any monitored nodes, indicating
exclusive submission to the block builder.
OFA Bundle: Part of an OFA bundle, either as the original user transaction or the
searcher backrun. The heuristics for identifying OFA bundles are detailed in Appendix
A.1 in [77].

3.1.2 Order Flow Labels
Ethereum transactions have various objectives, ranging from simple ETH transfers to complex
MEV strategies. Consequently, they have different valuations for their originators, reflected
through the payments offered to block builders. To understand the impact of builders’ access
to order flow on their success in the MEV-Boost auction, it is critical to measure the value
of different order flow types. Therefore, we assign an order flow label for every transaction
included in our examined MEV-Boost blocks. While we consider detailed categories, the
taxonomy is not exhaustive and omits certain known MEV strategies, such as Just-In-Time
(JIT) liquidity [11] and cross-chain arbitrages [1, 51], and misses unknown long-tail strategies
employed by the searchers.

We first determine if the transaction can be identified as a known MEV type, such as an
atomic DEX-DEX or a non-atomic CEX-DEX arbitrage, a sandwich frontrun or backrun,4
or a liquidation. If no MEV labels are matched, we check if the transaction was submitted
by a Telegram bot such as Banana Gun [31] or Maestro [43]. These bots create wallets,
store private keys for users, and execute highly time-sensitive strategies on their behalf, such
as token mint sniping or long-tail token trading, in exchange for fees. Next, we consider
solver model transactions submitted by solvers, fillers, and resolvers of protocols such as
Cowswap [14], UniswapX [40], and 1inch Fusion [2], fulfilling user limit orders. Additionally,
as blockchain users require CEXes like Binance [6] or Coinbase [12] to deposit and withdraw
cryptocurrencies, we also detect and label such transactions individually. Further, if a

4 Sandwiched user transactions are labeled according to their original objective.
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transaction includes an ERC-20 token transfer or a swap but does not belong to prior
categories, we label it as retail swap or bot swap depending on its initially interacted smart
contract. If this contract is a known, non-MEV contract such as the Uniswap Universal
Router,5 we label the transaction as retail swap, likely originated through the frontend of
the respective protocol. Otherwise, we consider the transaction a bot swap, interacting
with an unlabeled contract, potentially executing long-tail MEV strategies or known MEV
strategies undetected by our datasets and heuristics. We treat OFA bundle backrun as a
distinct category, although user transactions within OFA bundles are not labeled individually.
Finally, any remaining transaction is labeled as other public flow or other exclusive flow
depending on its transparency type. The former category includes transactions like simple
ETH transfers or batch submissions by rollup sequencers, while the latter covers transactions
such as MEV bot contract deployments by searchers. The detailed identification methodology
for each label is presented in Appendix A.1 in [77].

3.2 Data Collection
We curate an empirical dataset covering a six-month period of MEV-Boost blocks produced
between October 1, 2023, and March 31, 2024, totaling 1,190,617 blocks. We primarily
develop our data collection methods using external platforms such as Dune Analytics [18] and
open source them for reproduceability by the community. We first build a compound query on
Dune [59], utilizing various datasets available on the platform [33,36–39,61,73]. Through this
query, we identify transaction properties beyond the standard payload data. These properties
include transactions’ direct payments to builders’ coinbase address, ERC-20 transfers, certain
MEV activities, trade volumes and fees in USD, MEV searcher and solver labels, Telegram
bot labels, router contract labels, and mempool visibility. We export the resulting dataset,
involving 174,240,225 labeled transactions. Additionally, we identify builder-controlled public
keys using the extra data field of the Ethereum blocks [60]. Finally, we obtain the remaining
necessary data for our methodology, such as all MEV-Boost payloads, bids on the UltraSound
relay [68],6 further builder public keys and searcher addresses, and other smart contract and
transaction labels from external resources summarized in Table 3 in Appendix A.2 in [77].

3.3 MEV-Boost Block Metrics
The value of an MEV-Boost block is derived from the transactions in it. Each transaction
offers a payment to the block builder, depending on its valuation for the originator. There are
two ways a transaction can make an on-chain payment: through transaction fees and direct
value transfers to the builder. Based on the total value builders receive from these transaction
payments and their private valuation for the block, they offer a bid to the validator and
make a payment if they win the auction. In this section, we present the methodology for
calculating the true value, validator payment, and builder profit of MEV-Boost blocks.

3.3.1 True Block Value
We define the set of MEV-Boost blocks we analyze in our study as B. For each transaction
t ∈ Tb, where b ∈ B and Tb represents all transactions included in b, we denote its gas priority
fee (i.e., tip) and direct transfer to builder’s coinbase address as ttip and tcoinbase, respectively.

5 Uniswap Universal Router contract address: 0x3fc91a3afd70395cd496c647d5a6cc9d4b2b7fad
6 UltraSound relay was one of the most dominant relays during the course of this study [70].
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We refer to the refund amount of builder transactions in OFA bundles as trefund. For failed
transactions included in b, we set their coinbase payment to 0 and only consider their tip
payment to the builder. We define the true value (TV ) of a block as:

bT V =
∑
t∈Tb

(ttip + tcoinbase − trefund).

We note that TV is only a best-effort estimate based on available on-chain data. For a more
robust measure, TV calculation must account for private valuations of the searchers and
builders and off-chain payment deals.

3.3.2 Validator Payment
For a given MEV-Boost block b, we denote the validator payment (V P ) as bV P , referring to
the amount tipped to the designated validator’s proposer fee recipient address by b. Although
most MEV-Boost blocks involve a builder transaction at the block’s last index to make this
payment, there are edge cases where the payment is made by an address related to the
builder, or there is no payment from the builder, and the validator’s proposer address is set as
the block’s fee recipient [52] . We assume the first case makes no difference when calculating
bV P , but we omit the blocks from our analysis where the proposer is set as the fee recipient.
While builders can still profits from such blocks if they have own searcher transactions or
through off-chain deals, since there is no on-chain value transfer to the builder, we ignore
them. This strategy might be used when the builder aims to gain market share while avoiding
the basefee for the validator payment transaction, especially when the expected profit from
the block is low. In Table 7 in Appendix B.6 in [77], we summarize builders’ excluded blocks.

In this paper, we calculate bV P by identifying the validator payment transaction. We
avoid using the payload value reported by relays as bV P since this value can be manipulated
if the relay calculates a builder’s bid value by the balance difference of the proposer [64],
leading to a miscalculation of validator earnings. One reason for such discrepancies is stake
withdrawals [21]. When a builder includes a withdrawal transaction to the validator of the
block, such relays over-report the bid by considering the withdrawal amount as part of the
validator payment done by the builder, potentially causing profit loss for the validator [3].
We share empirical results of builders’ validator payment patterns in Table 7 in Appendix
B.6 in [77].

3.3.3 Builder Profit
We denote the builder profit (BP ) of an MEV-Boost block b as bBP . When calculating bBP ,
we handle the following edge cases:

Besides the validator payment and OFA refund transactions, we do not deduct other
builder value transfers from bT V when calculating bBP . Since such transfers can be issued
to builder-controlled Externally Owned Accounts (EOAs) or smart contracts, deducting
their value or using builder coinbase address balance change may underestimate bBP [52],
When the builder does not issue a validator payment transaction, we check if the last
transaction of the block still pays the validator. If that is the case and the validator’s
proposer address is not the fee recipient of the block, we assume this payment is made on
behalf of the builder, either by an address associated with the builder or one controlled
by the UltraSound relay. The latter occurs when the builder opts to use UltraSound’s
recently deployed bid-adjustment feature [7], which alters the builder’s winning bid to be
1 wei above the second-best bid available on any relay and refunds a proportion of the
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bid surplus. Before March 5, 2024, the entire difference was refunded, but since then,
UltraSound has been taking half of it, which is eventually transferred by the builder. We
refer to this relay payment (RP ) value of block b as bRP . In Table 7 in Appendix B.6
in [77], we present the total amount paid by each builder to UltraSound.

In this paper, we define the on-chain builder profits as bBP = bT V − bV P − bRP , and
calculate the profit margin (PM) of a builder from b, referring to the share of true block
value kept by the builder, with bP M = bBP

bT V
.

3.4 Limitations
Our methodology has the following limitations:
1. Transparency Labels: Accuracy is limited by the mempool dataset’s coverage across

node providers [33]. Determining transaction exclusivity across builders requires access to
losing MEV-Boost bids’ execution payload data, which the relays do not publicly disclose.

2. Order Flow Labels: Potentially includes false labels due to our strict heuristics (see
Appendix A.1 in [77]) and use of external data (see Table 3 in Appendix A.2 in [77]).

3. Builder Profits:
Overestimated if the builder has off-chain deals with providers such as MEV searchers
or Telegram bots, and pays them for accessing their order flow.
Underestimated if the builder is vertically integrated with any MEV searcher, as we
only consider on-chain profits made through priority fees and coinbase transfers.

4. MEV Searcher Labels: Not exhaustive as we cannot detect all the bots one searcher
operates, obscuring the significance of a single searcher across multiple addresses.

5. Bidding Data: Can be biased as we only consider bids on the UltraSound relay.

4 MEV-Boost Decomposition

We present our measurements, decomposing the MEV-Boost auction to identify potential
features driving builder success. First, we examine the builder market to observe the dominant
players in market share and profits. Next, we analyze the order flow in MEV-Boost blocks
to determine the most valuable flows and which builders receive them. Finally, we explore
various strategies builders adopt to gain a competitive advantage in the auction.

4.1 Builder Market Structure
Between October 2023 and March 2024, 39 different block builder entities won the MEV-Boost
auction, producing 1,190,617 blocks. beaverbuild, rysnc, and Titan (BRT) contributed
the most blocks, accounting for 34.86 %, 22.98 %, 22.74 % of the total, respectively. In
approximately 8 % of MEV-Boost blocks, the builder set the fee recipient address as the
proposer, with Titan responsible for 92.86 % of these cases (see Table 7 in Appendix B.6
in [77]). We suspect Titan adopts this strategy when the block’s profits are insufficient to
cover the basefee of the validator payment transaction. In the following analyses, we exclude
these blocks for reasons discussed in Section 3.3.2.

In Figure 4, we show the market share (Figure 4a), cumulative profit (Figure 4b), and
daily profit margin (Figure 4c) of BRT over time. On average, these three builders construct
80 % of all blocks. We observe a surge in Titan’s market share and profits since February
2024, surpassing rsync in cumulative profits, approaching beaverbuild. Interestingly, when
measured in USD, Titan has the highest total profit, reaching roughly 19.7 M USD, despite
building fewer blocks than beaverbuild and rsync, who earned 19.4 M USD and 4.27 M
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Figure 4 Trends in the market share, profits, and profit margin of the top three builders with
highest market share, BRT, over time. Figure 4a is an area plot highlighting the changes in market
share owned by BRT and the aggregated, remaining builders, denoted as “Others” in the legend.
Figure 4b is a line plot showing the cumulative ETH profits of the same entities. Figure 4c displays
the daily profit margin changes of BRT. The area below 0 on the y-axis is filled with red to indicate
days when the builder was, on average, unprofitable.

USD, respectively. Although the profits we calculate gives an insight about builders’ earnings,
the exact values can be different since we only consider the value provided through transaction
priority fees and coinbase payments. Currently, we miss the upstream value builders make
through their integrated searchers [32,35]. Furthermore, we cannot track profits accurately if
builders have any off-chain settlement with order flow providers.

Examining the builders besides BRT, we discover that only seven others have a market
share nearly 1 % or more (see Table 1). Together, these top ten builders produced 97.67 % of
the blocks but only earned 83.85 % of the 52 M USD total builder profit. This discrepancy
highlights the diverse builder profiles, with different specializations in gaining market share
and profits.

Table 1 summarizes the measurements for the top ten builders with the largest market
share.7 The various profiles of the builders are reflected in their profitability metrics.
flashbots and builder0x69 behave neutrally, not winning blocks by paying more than they
earn from the included transactions. In contrast, jetbldr, penguin, and tbuilder heavily
subsidize and maintain a negative profit margin on average. However, except for tbuilder,
remaining builders are overall profiting.8 beaverbuild has the highest profit margin at 5.4 %
within the top ten, whereas across all builders, I can haz block? and Ty For The Block
have approximately 40 % profit margins (see Table 5 in Appendix B.2 in [77]).

We note that Titan has a lower profit margin than rsync, despite earning significantly
higher profits. While our profit calculation may not reflect precise values due to discussed
issues, the discrepancy between profits and profit margin could be because Titan has more
days with a negative profit margin compared to the other two top builders, who maintain a
more consistent profit margin over time (see Figure 4c). As beaverbuild and rsync run
their own searchers [32, 35], they receive a more consistent order flow stream. Conversely,
Titan relies on external order flow providers who may not be as consistent, resulting in some
blocks with significant profits and others that are entirely unprofitable. This pattern also
supports our observation about the high percentage of Titan blocks where the proposer is
set as the fee recipient (see Table 7 in Appendix B.6 in [77]).

7 We only consider the MEV-Boost blocks where the builder is the fee recipient address.
8 This can be due that subsidizing builders seldom earn significant profits, keeping them profitable.
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Table 1 Market Share and Profitability Metrics of Top Ten Builders.

Total Market Total Total Total Profit
Builder Blocks Share Validator Payment Subsidy Profit Margin

[#] [%] [ETH] [ETH] [ETH] [%]
beaverbuild 413,868 37.91 49,871.82 −70.46 7,341.62 5.4
rsync 273,126 25.02 33,691.74 −80.71 1,679.73 3.25
Titan 177,915 16.3 22,025.19 −61.49 6,083.95 1.02
flashbots 74,636 6.84 6,918.79 0.0 48.22 1.38
builder0x69 35,083 3.21 3,878.92 0.0 434.64 2.3
jetbldr 32,670 2.99 1,192.15 −73.21 11.41 −12.45
f1b 16,716 1.53 1,251.63 −12.39 53.59 −1.94
Gambit Labs 15,281 1.4 889.45 −19.75 78.42 −4.03
penguin 14,622 1.34 1,028.28 −41.77 17.7 −9.73
tbuilder 10,584 0.97 338.38 −79.1 −77.01 −41.23

4.2 Order Flow Breakdown
In this section, we analyze the order flow in the MEV-Boost blocks, focusing on their
transparency and significance. We use the labels defined in Section 3.1.

4.2.1 Transparency
We first examine the transparency of the Ethereum order flow. Recent work [76] showed
an increasing share of value coming from EOF. We confirm their findings and examine the
transparency of individual order flow labels and builders’ blocks.

In Figure 5a, we show the share of true block value of each transparency label over time.
Exclusive transactions and bundles, referred to as exclusive signal, provide 66.69 % of all
value while consuming only 19.6 % of blockspace in terms of gas (see Figure 5b). Similar to
the results in [76], we find that this flow constitutes 71 % of all block value in more than
50 % of the blocks, with nearly five times more value per unit of gas consumed than public
signal. While almost all blocks have at least one exclusive and one public transaction, OFA
bundles occur in only 4 % of them, highlighting the scarce adoption of such protocols.9 We
summarize our measurements of transparency labels in Table 4 in Appendix B.1 in [77].

Next, we investigate the transparency of individual order flow labels, expecting certain
types to avoid the public mempool to protect their valuable strategies. As shown in Figure 5c,
every order flow label has a dominant way its involved in Ethereum blocks, corresponding to
more than half of its total volume. Telegram bot flow and MEV strategies, including atomic
and non-atomic arbitrages, sandwiches,10 and liquidations, mostly bypass the public mempool.
On average, 99 % of all MEV order flow is exclusively submitted to the builders. Conversely,
retail and bot swap flows are primarily submitted to the public mempool, exceeding 80 %
of their total volume. Interestingly, a relatively significant share of solver model flow is
involved in OFA bundles (1.28 %), receiving refunds while fulfilling user trade orders. Notably,
Cowswap solver model is known to be forwarding its flow to the MEVBlocker OFA protocol.

Finally, we assess the transparency of builders’ blocks. In Figure 5d, we present the share
of total value the top ten builders with the largest market share receive from public and
exclusive signal and OFA bundles. BRT, with the largest market share and most profits,

9 MEVBlocker and MEV-Share (through Flashbots Protect [28]) have a larger volume if we consider the
exclusive user transactions submitted to them which were not part of an OFA bundle.

10 Sandwiches are mostly exclusive as we do not account the sandwiched user transactions in this label.
Such transactions are labeled according to their original category, such as retail swap.
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Figure 5 Figure 5a and Figure 5b are area plots highlighting the share of value provided and
blockspace consumed (in gas) by each transparency label over time. Figure 5c is a horizontal bar plot
showing the transparency of each order flow label, measured in total transaction volume. Figure 5d
is a horizontal bar plot indicating the share of value that the top ten builders with the highest
market share receive from each transparency label. Builders on the y-axis are ordered in ascending
order based on their market share, with the builder with the highest share listed at the bottom. The
legend in Figure 5a applies to all figures.

receive the highest relative value from EOF, exceeding 65 % of their total. The builders with
the lowest profit margins among the top ten, jetbldr and tbuilder, receive the least value
from EOF, with shares below 40 %. Among builders outside the top ten who have greater
than 0.01 % market share, more extreme concentrations are observed, with exclusive value
shares ranging between 1 % and 91 % (see Figure 11 in Appendix B.3 in [77]).

4.2.2 Significance

The order flow included in a block is a good estimator of its true value. To understand
valuable flows, we analyze MEV-Boost blocks for the significance of the order flow labels.
We find that Telegram bot and MEV order flows (see Section 3.1.2) cumulatively contribute
around 51 % of all block value while consuming merely 10 % of all gas spent in MEV-Boost
blocks (see Figure 6a). These flows provide around 53 % of all block value in more than
half of the blocks. Notably, they are primarily exclusively submitted to block builders, as
shown in Figure 5c. In contrast, order flow labels such as retail swap and other public flow,
most frequently observed in the public mempool, cumulatively provide a little over a quarter
of the total block value while consuming more than 67 % of the total blockspace. These
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measurements of order flow labels, also summarized in Table 4 in Appendix B.1 in [77],
indicate that valuable order flow is predominantly exclusively submitted, and blocks are
mostly filled with less valuable, public transactions.

One of the drivers of competition in the MEV-Boost auction is the order flow builders
receive [75]. As order flow labels have varying levels of public and exclusive volume (see
Figure 5c) and value (see Table 4 in Appendix B.1 in [77]), we must analyze builders’ order
flow compositions concerning these labels to understand who possesses the valuable flow.

In Figure 6b, we show the order flow composition of the top ten builders with the highest
market shares. Builders have varying compositions, with certain builders receiving a more
significant share from specific order flows than others. Some of the most valuable flows, such
as Telegram bot flow and non-atomic arbitrages, are more significant in the compositions
of the top three builders, BRT, while almost all builders receive a considerable share of
sandwich flow, which is a common strategy among MEV searchers. Furthermore, we examine
the order flow composition of builders outside the top ten and discover more remarkable
concentrations, with a single order flow providing more than 80 % of the total value a builder
receives, such as the sandwich flow of s0e2t, as shown in Figure 12 in Appendix B.3 in [77].

20
23

-10

20
23

-11

20
23

-12

20
24

-01

20
24

-02

20
24

-03

20
24

-04
0

20

40

60

80

100

Pe
rc

en
ta

ge

Order Flow Label by Value Share

20
23

-10

20
23

-11

20
23

-12

20
24

-01

20
24

-02

20
24

-03

20
24

-04
0

20

40

60

80

100

Pe
rc

en
ta

ge

Order Flow Label by Gas Share

Telegram Bot 
Sandwich 
Bot Swap 

Non-Atomic Arb. 
Retail Swap 
Other Public 

Atomic Arb. 
Other Exclusive 
CEX Deposits 

Solver Model 
Liquidation 
OFA Backrun 

(a)

0 20 40 60 80 100
Percentage

beaverbuild
rsync
Titan

flashbots
builder0x69

jetbldr
f1b

Gambit Labs
penguin
tbuilder

Builder Order Flow by Value Share

(b)

Figure 6 Figure 6a shows the significance of order flow labels over time. The left and right
panels depict the share of total block value provided and blockspace consumed (in gas) by each order
flow label. Figure 6b displays horizontal bars representing the share of value the top ten builders
with highest market share receive from each order flow label. Builders on the y-axis are ordered in
ascending order based on their market share, with the builder with the highest share listed at the
bottom. Order flow labels in Figure 6b use the same coloring as indicated in the legend in Figure 6a.

4.3 Builder Strategies
MEV-Boost block builders adopt various strategies to gain a competitive edge. While order
flow makes up their value, bidding and latency strategies also play an important role during
the auction process [75]. In this section, we measure the significance of four builder strategies.

4.3.1 Block Packing
Authors in [32] discuss the importance of accessing value from top block positions to win the
block auction. They show through a theoretical model that builders who earn more from
Top-of-Block (ToB) are likely to dominate the PBS auction. We analyze the block packing
strategies of builders to support this outcome with empirical data. To this extent, we measure
the share of the value builders earn from ToB, Body-of-Block (BoB), and End-of-Block (EoB)
positions. We define ToB as the first 10 % of transactions based on their normalized index in
the block, following [4]. Similarly, EoB, denotes the bottom 10 %. Lastly, BoB represents
the middle 80 % of the block. Builder transactions are excluded to prevent skewing the data.
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In Figure 7a, we show the share of value the top ten builders by market share earn from
transactions in each position group. ToB contributes the most significant value to all top
builders except penguin, and BRT receive more than 74 % of their block value from order
flow in ToB. The significance of ToB can be attributed to the fact that more than half of the
total EOF volume resides in this position, providing, on average, 88.5 % of the total EOF
value. Conversely, BoB and EoB only contribute approximately 10.5 % and 1 % of the total
EOF value. Interestingly, Titan, Gambit Labs, and penguin receive a relatively considerable
value from EoB. These builders could be allowing MEV searching at the end of their blocks,
on the state transitioned to by the included transactions, and receiving significant payment
from the granted searchers. The valuable block positions of the remaining builders are
summarized in Table 5 in Appendix B.2 in [77].

4.3.2 Subsidization
Builders who have just entered the market, not receiving significant volumes of valuable order
flow, are expected to subsidize their blocks unless they run their own MEV searchers [67].
Since we previously found that certain builders have negative profits margins (see Table 1),
we are interested in how significantly they subsidize to the win the auction. Figure 7b shows
the shares of blocks the top ten builders with highest market shares profited, subsidized, or
were neutral, making dust amount or zero profit.11 Notably, these measurements are solely
based on on-chain profits and may not reflect the complete picture, as builders can profit
from their integrated searchers or return a percentage of the value to order flow providers.

The top three builders in market share, BRT, also have the highest shares of profitable
blocks, with beaverbuild exceeding 40 %. While Titan is neutral in approximately 50 % of
their blocks, this share goes up to 68 % when considering the blocks where they set the proposer
as the fee recipient as zero profit as well (see Table 7 in Appendix B.6 in [77]).12 flashbots
and builder0x69 predominantly break even, supporting the measurements summarized in
Table 1. Conversely, jetbldr, penguin, and tbuilder win more than 75 % of their blocks
by subsidizing, paying extra value on top of the on-chain value they receive from their order
flow. Among builders outside the top ten, some adopt a profit-only strategy. Examples
include Anon:0x83bee, Anon:0xb3a6d, I can haz block?, and Ty For The Block, who
were also labeled as profitable, high-profit margin builders in Figure 1. The subsidization
and profitability metrics of the rest of the builders are available in Table 5 in Appendix B.2
in [77].

4.3.3 Exclusive Order Flow Access
EOF contributes the majority of value to MEV-Boost blocks, as shown by our study (see
Section 4.2.1) and previous works [65,76]. We also discovered that builders have varying level
of EOF in their blocks (see Figure 5d), indicating a non-uniform access. Extending studies
on integrated builders and prominent order flow providers [32, 35, 67, 74, 76], we examine
the significance of EOF providers for each builder. We consider providers including, public
entities such as Flashbots Protect13 and MEVBlocker, MEV searchers, and solvers.14

11 We set 0.001 ETH as the dust amount threshold.
12 We assume zero on-chain builder profit from such blocks although the builder can still earn profits from

their integrated searchers or off-chain deals, as discussed in Section 3.3.2.
13 Flashbots Protect is considered as the provider of the flow received by Flashbots’s private RPC endpoints,

including MEV-Share OFA bundles.
14 Solvers refer to the liquidity routing entity in the solver model introduced in Section 3.1.



B. Öz, D. Sui, T. Thiery, and F. Matthes 22:15

Figure 7c presents the shares of EOF value that the top ten builders with the highest
market share receive from the seven most significant providers based on total value. These
providers contribute roughly 70 % of all EOF value in more than half of the MEV-Boost
blocks, and supply over 48 % of EOF value to each builder in the top ten, except jetbldr, who
primarly sources EOF from other providers. We find that Flashbots Protect and MEVBlocker
appear consistently, likely due to their public EOF access requirements, without needing
private deals [76]. Maestro Telegram bot provides considerable flow to each top builder,
unlike Banana Gun, which sends almost no flow to jetbldr, penguin, and tbuilder but
provides significant value to Titan, especially starting from February 2024 (see Figure 13b in
Appendix B.4 in [77]). Additionally, jetbldr and tbuilder receive negligible EOF from the
well-known sandwich searcher bot, jaredfromsubway.eth, while penguin gets more than 50 %
of its EOF value from this provider, potentially explaining the prominence of sandwich flow
in their order flow composition (see Figure 6b). Finally, SCP and Wintermute are highly
significant only for beaverbuild and rsync, respectively, as these providers are operated
by them [32,35].15 Further integrations and private deals could exist among the remaining
builders and EOF providers, as shown in Figure 14 in Appendix B.4 in [77].
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Figure 7 Figure 7a is a horizontal bar plot showing the share of value the top ten builders by
market share earn from ToB, BoB, and EoB. Figure 7b is a horizontal bar plot presenting the share
of blocks the top ten builders profited, subsidized, or made dust amount or zero profit. Figure 7c is
a horizontal bar plot displaying the share of EOF value the top ten builders receive from the seven
most significant EOF providers based on total value. In the plot legend, “jaredsubway” and “FB
Protect” stand for “jaredfromsubway.eth” and “Flashbots Protect” providers, respectively. The total
EOF value of the remaining providers is aggregated and denoted as “Others”. In all figures, builders
on the y-axis are ordered from top to bottom in ascending order of market share.

4.3.4 Latency and Bidding
MEV-Boost block builders compete in latency when placing bids on the relays. Although
the proposer is expected to release the block at slot start [22], the exact time is unknown.
Due to the stochastic nature of this process, low latency is beneficial for builders to update
bids [65], reflecting changing valuations for the block over time and reacting to other bids.

Using data from the UltraSound relay, we examine MEV-Boost builders’ latency and
bidding behavior. We measure their bidding frequency by the average number of bids they
place in each slot. Furthermore, we calculate the lag between their bid updates to understand

15 PLM and Rizzolver solvers, identified to be belonging to beaverbuild and rsync [61], are aggregated
with SCP and Wintermute providers, respectively.
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how quickly they can reflect their new valuation and react to other bids. Lastly, we identify
cases where builders strategically lowered their bid values through cancellations [50], a
strategy discussed to be especially useful for builders running CEX-DEX arbitrage bots [65].

In Table 2, we summarize the bidding behavior of the top ten builders in market share for
the blocks they won on UltraSound. We observe that the market share gap between rsync
and Titan became more significant compared to their market shares when considering blocks
from all relays (see Table 1), with a jump from approximately 8.7 % to 12.2 %. This could
be because the UltraSound relay allows optimistic submissions [46], potentially favoring
integrated builders such as beaverbuild and rysnc [32, 35], as they can more frequently
update their bids based on the value they derive from their searchers.

We measure that the top ten builders have diverse bidding strategies, with the average
number of placed bids ranging from 6.1 by tbuilder to 49.64 by penguin, who also has the
lowest average update lag between all of their bids in a slot (see Table 2). Builders can
update bids quickly and frequently by having low latency relative to the relay’s geographical
position or by submitting new bids simultaneously from multiple public keys they control.

BRT, who won the most auctions on the UltraSound relay, issue the highest number
of cancellations, with, on average, more than one cancellation per block.16 We note that,
two of these builders, beaverbuild and rysnc, have relatively high non-atomic arbitrage
shares (see Figure 6b) and were identified to be running their own CEX-DEX arbitrage
searchers [32,35]. Therefore, we confirm findings in [65] regarding the use of cancellations
by integrated builders. We also observe that some builders outside the top ten, such as
antbuilder, who also has a relatively large non-atomic arbitrage flow (see Figure 12 in
Appendix B.3 in [77]), issued around ten cancellations per block they built (see Table 6 in
Appendix B.5 in [77]).

We note the distribution of average winning times for builders, referring to the average
slot time a builder’s winning blocks were selected by the proposer. While the winning time
for each builder is beyond the slot start (0ms), possibly due to timing games [53,56], there is
approximately a 580 ms difference between the earliest and the latest winner times. This
difference can be related to the slot times builders start and stop bidding in the auction [65].

Table 2 Bidding and Latency Metrics of Top Ten Builders (UltraSound Relay).

Total Avg. Avg. Avg. Total Avg.
Builder Blocks Bids Update Lag Winner Time Cancels Cancels

[#] [#] [ms] [ms] [#] [#]
beaverbuild 137,721 31.54 130.41 586.59 248,195 1.74
rsync 95,310 25.27 166.21 531.38 212,504 2.29
Titan 47,539 31.11 186.25 605.83 91,337 1.78
flashbots 32,612 16.25 411.36 348.45 3,014 0.1
builder0x69 23,294 20.64 183.08 575.09 17,445 0.65
jetbldr 12,960 35.2 103.08 605.75 904 0.09
Gambit Labs 9,530 15.85 349.05 496.3 492 0.1
f1b 9,242 25.42 214.18 680.45 10,494 0.98
penguin 7,783 49.64 69.92 652.91 966 0.13
tbuilder 4,786 6.1 476.68 104.71 81 0.01

16 The average number of cancellations BRT issue per block increases from 1.85 to 2.09 after the introduction
of UltraSound’s bid adjustment feature [7].
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5 Results

In this section, we identify the features associated with gaining market share and earning
profits in the MEV-Boost auction. We apply a Spearman correlation with a p-value set
to 0.05 to assess the strength and direction of the associations based on rank orders. We
exclude builders with less than 0.01 % market share (see Table 5 in Appendix B.2 in [77]).

5.1 Order Flow Diversity

The diversity of order flow a builder receives can indicate access to multiple sources, making
the builder more competitive in auctions compared to those who depend on a specific order
flow type, which may not always be available. To capture this, we measure the Shannon
entropy [41] of builders’ order flow. With twelve unique order flow labels (see Section 3.1.2),
the Shannon entropy is defined as H(X) = −

∑12
i=1 pi log2(pi), where pi represents the value

share of each label in a builder’s order flow composition. Higher entropy values indicate a
more diverse order flow, while smaller values signify a concentrated composition.

In the left panel of Figure 8, we show the entropy value of each builder’s order flow
composition. The top ten builders with the most market share have entropy values closer to
the maximum (Hmax = log2(12) ≈ 3.585). However, among builders with smaller market
shares, lower values are observed, suggesting a concentration around a few order flow labels.
To better understand the order flow concentration, we measure builders’ highest value share
label, denoted as Most Significant Order Flow (MSOF). The outcome in the right panel of
Figure 8 shows that the top ten builders have various MSOFs labels, although all have less
than 32 % value share. In contrast, across the remaining builders, MSOF value share can
exceed 70 %, indicating a highly concentrated order flow composition.

To examine the link between builders’ success in winning the auction and the diversity of
their order flow, we measure the correlation between builders’ market share and order flow
entropy. We find a significant positive correlation, with a coefficient of 0.66 and a p-value of
2.22e − 05. This suggests that builders receiving different order flow types have an advantage
in the auction and can win more frequently, as they are not dependent on a single type of
flow. Conversely, builders with a concentrated order flow composition, where MSOF is more
prominent, can only be competitive when that specific order flow type is available.

5.2 Exclusive Providers

MEV-Boost block builders receive EOF from various providers, as discussed in Section 4.3.3.
Builders with own providers, such as beaverbuild and rsync [32,35], can produce profitable
blocks as they access order flow not shared with others. To identify such exclusive relationships,
we employ Linear Discriminant Analysis (LDA), classifying providers that can successfully
separate a builder’s blocks from others. We consider the model’s Decoding Accuracy (DA) to
be significant if it exceeds a threshold calculated using a binomial cumulative distribution [13].

In Figure 9, we present a heatmap showing the DA of EOF providers for each builder
with at least one statistically significant provider. Unidentified providers are enumerated
according to the mapping in [62]. A high DA indicates that the builder is distinguished by
the significance of EOF they receive from the provider. If an EOF provider is prominent for
many builders, it can be considered a neutral provider, accessible by all. Conversely, an EOF
provider will be significant for only a single builder if they are vertically integrated or have
an exclusivity deal. We define these providers as EPs, identifiable by columns with a single
colored cell in the heatmap.
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Figure 8 The left panel is a horizontal bar plot presenting each builder’s order flow diversity
through a Shannon entropy value. Builders are ordered from top to bottom in ascending order of
market share. The right panel is a horizontal bar plot depicting each builder’s MSOF, referring to
their highest value order flow label (in percentage). Bars are colored based on the order flow label.

We find that approximately 55 % of the builders have at least one EP. These builders
have a higher rate of profitable blocks (46 %) compared to those without any EP (20 %).
This result is supported by a Chi-square test on the number of profitable blocks built by
the two sets of builders (Chi-square = 33,077.29, p < 0.05). Additionally, we find a positive
correlation between the rate of profitable blocks and whether builders have an EP, with a
coefficient of 0.4 and a p-value of 0.02.

Our results suggests that to produce profitable blocks, builders need exclusive relationships
with providers who only supply significant EOF to them. We note that the correlation we
measured could have been stronger if EP profits were accounted towards builders, as certain
EPs, such as integrated searchers, do not necessarily reflect all the value they extract in their
builder payments (see Section 3.4). Interestingly, around 46 % of the builders with a negative
profit margin (see Table 5 in Appendix B.2 in [77]) have an EP, indicating that the value
they subsidize on-chain could already be covered by the profits of their provider.

5.3 Key Features for Market Share and Profitability

The MEV-Boost decomposition revealed various features potentially associated with builders’
success in winning blocks and earning profits (see Section 4). We find that, for the top ten
builders who produced the most blocks, there is a significant positive correlation between
their market share and profit margin (coef = 0.87, p < 0.05). Additionally, we identify
overlapping features correlated with both metrics (see Figure 10), suggesting that the skills
needed to succeed in both areas of the auction are similar.

Exclusive signal, non-atomic arbitrages, and Telegram bot flow strongly positively correlate
with both market share (see Figure 10a) and profit margin (see Figure 10b), whereas public
signal, including retail swaps, negatively correlates with them. This suggests that high-
market share builders receive the more valuable exclusive flows, enabling them to keep
significant profits, while those with smaller shares must fill their blocks with less valuable
public transactions. For similar reasons, we observe a positive correlation of top ten builders’
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Figure 9 Heatmap displaying the DA of EOF providers (x-axis) for each builder (y-axis). Colored
cells indicate a statistically significant DA, whereas gray cells show negligible values. Columns with
a single colored cell indicate EPs.

market share with their profitable block rate,17 and a negative correlation with their subsidy
rate. Thus, we encounter the “chicken-and-egg” problem described in [67]: builders cannot
profit from their blocks if they do not have order flow differentiating them from others, and
they do not receive such flow unless they have a significant market share.

Furthermore, top ten builders’ success in gaining market share is strongly positively
correlated with the value they derive from order flow in ToB, supporting the findings in [32]
(see Figure 10a). Conversely, BoB has the strongest negative correlation. Similar correlations
are observed with builders’ profit margin (see Figure 10b). We expect that valuable EOF
received by successful builders is prioritized for execution at ToB, allowing them to operate
on the latest transitioned state and avoid unexpected changes caused by prior transactions.

Finally, we find that builders’ market share and profit margin are positively correlated
with the number of bid cancellations they place per block they win on the UltraSound relay,
as shown in Figure 10. This highlights the importance of such bidding strategies during the
auction process, allowing builders to lower their active bid, either to avoid making a loss
due changing private valuation for the block or to keep higher profits if there is a significant
gap with the second highest bid. This is also facilitated by the bid adjustment feature of
UltraSound [7]. Interestingly, we do not find a significant correlation with bid update lag,
suggesting that latency is not necessarily linked with succeeding in the auction. However,
this result may be biased as our latency analysis only considers the blocks relayed through
UltraSound. For definitive results, bidding data on other relays must be examined as well.

17 Correlation between profit margin and profitable block rate is omitted as they are related by definition.
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Figure 10 Spearman rank correlations of order flow and builder strategy features for the top ten
builders with the highest market share. Figure 10a is a horizontal bar plot showing the significant
correlations between features and builders’ market share. Figure 10b is a horizontal bar plot
presenting the significant correlations between features and builders’ profit margin.

6 Discussion

The current PBS implementation, MEV-Boost, has successfully enabled uniform access to
MEV rewards for Ethereum validators, thereby avoiding centralization of the consensus
participants. However, the current design of the block building auction promotes competition
in EOF access and latency, raising the barrier to entry for new builders and leading to a
centralized market (see Section 5). While this centralization is not as detrimental to the
protocol’s security as a centralized validator set, it still undermines Ethereum’s censorship
resistance [30,71] and neutrality [42] properties.

MEV-Boost block builders are incentivized to access valuable order flow from diverse
sources and, notably, from distinguished EPs (see Section 5). The top two builders with
the highest market shares, beaverbuild and rsync, are operated by HFT firms running
integrated searchers specializing in non-atomic arbitrages [32, 35]. The third best builder,
Titan, appears to have an exclusive deal with the Banana Gun Telegram bot starting from
February 2024 (see Section 4.3.3). The current market dominance by three players, who
build approximately 80 % of MEV-Boost blocks (see Section 4.1), raises the barrier of entry
for builders, requiring them to secure order flow deals and operate their own searchers to
become competitive [67]. Builders unable to do so are forced to adopt subsidy strategies,
which are unsustainable in the long run.

Furthermore, builders with a latency advantage due to advanced infrastructure, such
as HFT firms, can scale up by running multiple instances and adjusting bid values until
the last milliseconds of the block auction (see Section 4.3.4) . This gives them an edge in
reacting to others’ bids and placing cancellations, at the cost of further raising barriers to
entry, misaligning validators’ incentives, and increasing the auction’s gameability [50].

To uphold Ethereum’s censorship resistance and neutrality, it is essential to foster
competition and maintain a sufficiently decentralized builder market. There are multiple
solution directions for achieving this:

Changing Auction Format: To diminish the impact of latency and bidding strategies,
the block auction format can be changed to a sealed-bid auction, eliminating adaptive
bidding strategies [75]. However, such an opaque design requires further consideration to
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reduce dependency on relay intermediaries for not disclosing bid values while maintaining
an efficient auction, secure against collusion between the builders and the relays via
side-channels.
Decentralized Builders: Solutions to decentralize the block builder role, such as
SUAVE [26],18 aim to remove social trust in builder by running block building logic in
privacy-preserving execution environments like Trusted Execution Environments (TEEs).
They can contribute to a less monopolized builder market if they become competitive by
attracting a diverse set of order flow providers. Features like gas fee refunds [25], making
searchers pay the second-best price of the bundles competing for access to the same state,
can also help achieve this.
Redistributing and Reducing MEV: Capturing the MEV extracted by searchers and
redistributing it could decrease the value leaked to builders and, eventually, to validators.
Solutions for this include MEV-aware decentralized applications (e.g., DEXes [2,14,40,58]),
intermediary protocols like OFAs [29,45], and further mechanisms such as MEV taxes [55].
Additionally, encrypted mempools (e.g., Shutter Network [57], SUAVE [26]) where users
send encrypted transactions that are decyrpted before execution, can prevent censoring
and potentially reduce the MEV exposed.
In-Protocol Mechanisms: In-protocol mechanisms such as inclusion lists [10,66] and
concurrent proposers [30,49] enforce the involvement of a set of transactions/bundles in a
produced block. This could strengthen Ethereum’s censorship resistance properties by
reducing the monopoly of a single builder over the block payload, making block production
a cooperative activity. Moreover, further unbundling consensus from execution by clearly
separating block proposal and attesting duties, referred to as Attestor-Proposer Separation
(APS), would allow shielding attesters from centralizing forces. Both execution tickets [17]
and execution auctions [8] are proposals in that direction, and are discussed along with
inclusion lists to prevent timing games [53,56] without introducing new MEV vectors [19].

Overall, the discussed solutions propose various ways to address the censorship threat
posed by the currently centralized block builder market. We hope our study provides valuable
insights and considerations for designing further iterations of such mechanisms and Ethereum
block auctions, preserving Ethereum’s censorship resistance properties.

7 Conclusion

In this paper, we examined the MEV-Boost auction to identify features significant for winning
blocks and earning profits. We found that builders’ order flow diversity and access to order
flow by EPs are correlated with their block market share and profitability, respectively.
Additionally, we showed a positive correlation between market share and profit margin among
the top ten builders, suggesting a “chicken-and-egg” problem where builders need order
flow distinguishing them from others to profit but only receive such flow if they have a
significant market share. Finally, we discussed how the key features we identified for success
in MEV-Boost raise the barrier of entry for new builders, driving the builder market towards
centralization, and explored existing solutions for preserving Ethereum’s censorship resistance
properties, hoping the insights we provide help move the solution space forward.

18 SUAVE is currently under development [24].
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Abstract
Leveraged tokens (LVTs) are emerging crypto-assets primarily issued by centralized exchanges. The
concept is borrowed from leveraged ETFs (LETFs) in traditional financial markets, which offer
higher gains (and higher losses) relative to price movements in the underlying asset. Leverage is
commonly used by short-term traders to amplify returns from daily market shifts. However, LVTs
have been implemented differently from LETFs by exchanges in the crypto market, with variations
across platforms. We examine the mechanics and constituent components of LVTs, demonstrating
that the lack of a standard has resulted in deficiencies and unexpected technical and economic
outcomes. To identify existing problems, we analyze more than 1,600 leveraged tokens from 10
issuers. Our analysis reveals that 99.9% of LVTs are centralized, with 80% lacking blockchain
interaction, leading to transparency issues. Total supply information is difficult to access for 53% of
them, and 41% appear inadequately backed at launch. Additionally, 97% of LVTs are vulnerable to
front-running during well-known events, and they deviate from their stated leverage ratios more
than LETFs, partly due to inconsistent re-leveraging processes and higher management fees. This
work provides a framework for crypto investors, blockchain developers, and data analysts to gain a
deep understanding of leveraged tokens and their impact on market dynamics, liquidity, and price
movements. It also offers insights for crypto exchanges and auditors into the internal functionalities
and financial performance of LVTs under varying market conditions.
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1 Introduction

A typical Exchange-Traded Fund (ETF) is a weighted basket of stocks from firms with
a common characteristic (e.g., they all operate in a specific sector or have a high market
capitalization). The issuer splits the basket into shares, which are bought and sold on
exchanges just like individual stocks [32].

▶ Example 1. One of the most widely traded ETFs is the SPDR S&P500 ETF, with the
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ticker symbol SPY. It is issued by SSGA1 and holds a basket of stocks from nearly 500
publicly traded companies that are included in the S&P5002 index. The S&P500 index has
globally served as a gauge for the performance of the U.S. stock market as a whole, due to its
depth and diversity. Since SPY tracks the S&P500 index, investors can gain broad exposure
and diversify their investment risk across the stock performance of 500 companies in 11
sectors without the logistics or starting capital required to buy shares in all these companies.

Leveraged ETFs (LETFs) were introduced in 2006 and are ETFs designed to amplify
the daily performance of the underlying basket (more on leverage in Section 3.1).3 Inverse
LETFs aim to achieve a return that is a multiple of the inverse of the underlying asset’s daily
performance [25, 11, 42]. Many investors alternatively refer to LETFs and inverse LETFs as
“Bullish” and “Bearish” LETFs, respectively, reflecting their short-term sentiment on future
price movements.

▶ Example 2. Direxion Daily S&P500 Bull 3x ETF (SPXL) is a 3x (three times) LETF that
seeks to deliver triple the daily performance of the S&P500. It magnifies each 1% gain in the
S&P500 index into a 3% gain and loses 3% for every 1% drop in the index. Direxion Daily
S&P500 Bear 3x ETF (SPXS) delivers triple the opposite daily performance of the S&P500
index. If the S&P500 index depreciates by 1%, SPXS gains 3%, and vice versa [52, 30].

A Leveraged Token (LVT) in the cryptocurrency and crypto-asset (“crypto”) market
can be compared to a Leveraged ETF (LETF) in the traditional financial market. Similar
to LETFs, LVTs use leveraged products available in the crypto market to outperform the
underlying asset’s return on a daily basis. While the majority of LETFs are actively managed
funds4, LVTs employ one of three management models: (i) centralized, (ii) decentralized,
and (iii) hybrid. Centralized LVTs are primarily managed by crypto exchanges and can be
purchased on the spot market or directly from the exchange (cf. Appendix A.5 of the full
version [40] on investing in LVTs). Decentralized LVTs operate on-chain and can be traded
by interacting directly with the smart contract. Hybrid LVTs are essentially decentralized
LVTs that are traded on centralized crypto exchanges. Users trade on centralized exchanges
for their user-friendly interfaces, continuous-time order books (rather than automated market
makers, which are the only trading mechanism efficient enough to run on-chain), and increased
liquidity due to aggregated buy and sell orders.5 However, this model introduces certain
disadvantages resulting from the combination of centralized and decentralized systems (e.g.
functional complexities, security concerns, custodial risks, etc.).

▶ Example 3. An issuer may offer BTC3L/BTC3S as a pair of LVTs tracking Bitcoin (BTC)
as the underlying asset. A Bitcoin futures contract (BTC-Perp6) can be used as the leveraged
product to outperform Bitcoin in the short term. The number three in the LVT name

1 State Street Bank and Trust Company (SSGA) is one of the three dominant companies in the ETF
market, with a 14.01% market share, following BlackRock and Vanguard, which have 33.64% and
29.16%, respectively [46].

2 The S&P 500 index comprises 500 of the top publicly traded companies in the U.S. It was launched in
1957 by the credit rating agency Standard and Poor’s [26].

3 The underlying asset can be stocks, market indexes (e.g., S&P 500, NASDAQ-100, etc.), commodities
(e.g., gold, oil, corn, etc.), or any asset with a price.

4 In actively managed funds, investment managers actively buy and sell assets with the goal of outper-
forming a specified benchmark index, resulting in higher management fees.

5 The more liquid an asset is, the easier and more efficient it is to convert back into cash. Less liquid
assets take more time and may incur higher costs [24].

6 A type of Bitcoin futures contract without a defined expiration date (known as a “perpetual” contract).
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Table 1 Left table: Number of issued leveraged tokens per year, average per year, and number of
unique underlying assets, which we collected manually from different sources. An underlying asset
might be used to create multiple tokens with different leverage levels. Right table: Characteristics
of issued LVTs by different issuers. Only 20% of tokens have been created on the blockchain. 99.9%
of LVTs use derivatives as the leveraged product, which is offered by the same issuer (Internal for
Pionex as of Jan 2023). Except for Index Coop, the rest of the issuers use off-chain fund management
systems. Rebalancing triggers for Index Coop are still off-chain.

Number of LVTs per year Characteristics of LVTs

Issuer 2019 2020 2021 2022 2023 Total Average Underlying
Assets

Fund
Source

Blockchain
Rep.

Fund Management
Algorithm

Leveraged
Product

MEXC 162 116 102 76 456 114 217
Internal No

Off-Chain Futures

AscendEX 228 112 340 170 94
Gate.io 116 96 54 8 274 69 123
Pionex 60 102 36 2 200 50 76 Internal / External
FTX 102 27 129 65 43

Internal

Yes
KuCoin 50 6 38 94 31 45

NoBinance 38 2 40 20 20
ByDFi 16 24 40 20 20
ByBit 34 34 34 17
Index Coop 2 2 2 2 External Yes On-Chain / Off-Chain Debt
Total 102 403 368 476 260 1609 322 654

represents the multiplier (triple-leveraged), while L/S stands for going long/short on the
market.7 BTC3L gains 3% when the price of Bitcoin rises by 1%, and loses 3% for every 1%
price drop. Conversely, when Bitcoin drops by 1%, BTC3S gains 3%, and loses 3% for every
1% price rise.

Since 2019, more than 1,600 LVTs have been issued by various crypto exchanges. The
FTX exchange introduced the original concept by issuing 102 tokens on the blockchain.8

Trading volumes exceeded $1 million per day [15]. This upward trend has continued, with
other exchanges issuing approximately 32 new LVTs per month on average from January
2020 to November 2023 (see Table 1).

Motivation for studying LVTs

LVT attractiveness for investors: Investment in LETFs nearly doubled in 2022 compared
to 2021 [48], demonstrating an appetite for low-risk leverage, which is satisfied in the
crypto market by LVTs. LVTs reduce liquidation risks compared to derivatives and
margin trading. However, other characteristics (e.g., volatility drag) must be understood
to avoid unexpected value destruction. These risks are not unique to LVTs; they also
exist in LETFs.9 (See the full version [40], Appendix A.5, and comparative Table 6 for
more details on why investors are attracted to this type of token.)
LVT distinctive dynamics: Section 2 offers a cohesive framework for understanding key
aspects of LVTs, such as their underlying dynamics, peculiarities in product design,
effects on crypto markets, and investor suitability. Leveraged products can impact market
dynamics, especially in highly volatile markets [44]. More technical details are provided
in Section 3, which can be useful for those involved in the design and implementation of
LVTs to understand how these tokens affect liquidity and price movements, potentially
influencing the robustness and reliability of trading algorithms.

7 Going long refers to buying an asset with the expectation that its value will increase, allowing it to be
sold for a profit later. Conversely, going short refers to profiting from a decline in the asset’s value [27].

8 The ERC-20 standard is the most prominent standard for fungible tokens on the Ethereum blockchain.
These tokens can represent financial assets such as LVTs and can be exchanged between users.

9 In 2018, Credit Suisse had to close an LETF ETN after its price plunged 90% in one day. In another
example, WisdomTree had to close its 3x oil products in March 2020 after their value was wiped out [48].
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Regulatory implications: LVTs introduce new risks for market regulation, investor pro-
tection, and financial stability. Our work contributes to broader discussions on how to
effectively regulate emerging financial technologies like LVTs. Additionally, since LVTs
are often held by commercial firms requiring audited financial statements [17], auditors
should understand how LVTs function, their risks, and how they perform under different
market conditions.

Contributions of this paper

In this work, we study more than 1,600 leveraged tokens from 10 issuers, examining various
aspects such as underlying assets, interaction with the blockchain, types of leveraged products,
and fund management algorithms. We dedicate part of the paper to carefully explaining LVT
mechanics and constituent components to help the reader understand the functionality of
leveraged funds, rebalancing mechanisms, and smart contracts. We then address six research
questions about LVTs:

RQ 1: What information is visible to traders of an LVT?
RQ 2: To what extent are LVTs locked to the offering exchange?
RQ 3: Are the LVTs offered today adequately backed?
RQ 4: What are the possibilities of front-running in LVTs?
RQ 5: How well do LVTs track their asserted leverage ratios?
RQ 6: Are LVT fees in-line with traditional LETFs?

Methodology of measurements and dataset

To extract the list of issuers, we identified the top 100 crypto exchanges based on 24-
hour trading volume, as reported by crypto comparison websites.10 Then, by visiting each
provider’s website, we manually checked whether LVTs were offered. We supplemented this
with searches on Google11, online forums and blogs12, and crypto news sites13. The combined
list should be comprehensive as of 2023 and includes LVTs from various types of exchanges
(both large and small, centralized and decentralized), covering different asset classes.

The majority of LVTs exhibited common elements that allowed for formal representation
in Section 2. We reviewed each LVT’s documentation to understand its functionality [22, 3,
16, 38, 39, 29, 5, 7, 6, 14], enabling us to identify their components as discussed in Section 3.
Outliers that did not fit into the typical LVT model due to unique structural features were
not excluded (e.g., Hybrid LVTs by FTX). Instead, the model was generalized to include
these 6% of outliers. We have described the parts of the model that were extended for this
category (e.g., the smart contract component for decentralized LVTs).

In Section 4, the functionality of tokens is evaluated by answering six research questions.
To address these, we collected data from both the token issuers and historical data available
through various exchanges and financial databases. Issuer documentation provided crucial
details on the structure, mechanics, and intended use of LVTs. Historical data were gathered
from reputable financial data providers14, including price histories, trading volumes, issuance
dates, and other relevant metrics. Additionally, we cross-referenced data from multiple sources

10 Websites: coinecko.com, coinmarketcap.com, cryptocompare.com, and coinranking.com.
11 Search terms: leveraged tokens, leveraged ETFs cryptocurrency, leveraged crypto assets, crypto leverage

trading platforms, crypto leverage trading token issuers, etc.
12 Crypto blogs and forums such as reddit.com (e.g., /cryptocurrency or /binance subreddits).
13 News sources: coindesk.com and cointelegraph.com.
14 Data sources: tradingview.com, cryptodatadownload.com, etherscan.io, and finance.yahoo.com.

coinecko.com
coinmarketcap.com
cryptocompare.com
coinranking.com
reddit.com
coindesk.com
cointelegraph.com
tradingview.com
cryptodatadownload.com
etherscan.io
finance.yahoo.com
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to validate the accuracy and consistency of our dataset. It is worth mentioning that the
analyzed data from sources (e.g., tradingview.com) are aggregated directly from the source
exchanges, ensuring the information is accurate and up-to-date. The direct connection to
exchanges means that the data reflect real-time market conditions and historical performance
accurately. Moreover, these data sources are widely used and trusted within the financial
and cryptocurrency communities, providing tools and data to a large number of traders,
analysts, and researchers, underscoring their credibility.

Related work

To our knowledge, this is the first academic paper on LVTs; however, our work overlaps with
studies on LETFs, which have established the following research findings:

The effect of compounded returns intensifies with longer holding periods, causing LETFs
to struggle to maintain their stated leverage over time. As a result, long-term performance
is not linearly related to the return of the underlying asset [50, 34, 23, 12, 9].
LETFs can underperform over longer periods without efficient rebalancing. Researchers
state that frequent rebalancing during periods of high volatility is necessary to maintain
leveraged exposure to the tracking index. They conclude that reducing rebalancing
frequency can significantly decrease tracking errors [9, 8, 18].
The impact of LETFs on market volatility and liquidity shows that their daily rebalancing
can increase volatility and trading volume near the market close, potentially distorting
the market price of LETFs and creating additional inefficiencies [12, 23, 9, 49, 41, 44].
Investors often do not fully understand the mechanisms, risks, and proper uses of
LETFs, which require tolerating increased risk. Consequently, LETFs are suitable only
for experienced and skilled investors who comprehend the complexities and hazards of
trading with them [9, 18, 31].

2 Price and Return Dynamics

As daily returns is embedded in the design of LVTs, a k-leveraged LVT should generally earn
k times of the daily return of the underlying. The amplification ratio, known as leverage
(k), can be fixed or dynamic. A proportional change in the underlying price is k-times
the proportional change in LVT price. In the short-term, LVT return is consistent with k,
but beyond a single day, the return is highly path dependent, making LVTs unsuitable for
buy-and-hold strategies. This is an issue that is ignored by most retail investors, leading to
unexpected loss of capital. In the following, the price and return dynamics of LVTs have
been discussed, aiding analysis and simulation of such issues.

2.1 LVT Price Dynamics
LVTs are intentionally designed with leverage as a core component of their architecture.
They are aimed at outperforming the return of the underlying benchmark on a daily basis.15

Let Ptn represent the LVT price at calendar time tn, expressed as:

Ptn
=Ptn−1

(
1 + k

∆Stn

Stn−1

)
n ∈ [1, 365), t ≥ 0, k ∈ [−5, −0.5] ∪ [0.5, 5] (1)

15 Returns will be slightly lower after deducting fund management fees, accounting for market volatility,
interest paid on borrowing, and other associated expenses.
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Stn is the underlying price at time tn, indexed by n, where n denotes the days of the year.
The frequency of n does not have to be daily; it can be redefined in hours or minutes without
any loss of generality. However, since daily returns are embedded in the LVT product design,
n is effectively daily. Ptn represents the price of the LVT at the close of trading day n. Stn−1

and Ptn−1 are the initial prices of the underlying asset and LVT, respectively, at the beginning
of trading day n (or at the end of trading day n − 1). ∆Stn is the amount of change in the
underlying price relative to the initial price. The constant variable k is the LVT multiplier
(leverage), which can be defined as either a fixed or dynamic value, depending on the issuer.
LVTs with fixed leverage can take values from the set {−5, −3, −2, −1, −0.5, 0.5, 2, 3, 5},
while dynamic leverage fluctuates within the range [−4.0, −1.25] ∪ [1.25, 4.0].

The multiplier k further divides LVTs into three main functional groups: (i) Long LVTs,
where k ∈ {2, 3, 5}∪[1.25, 4.0]. The value of a long LVT rises k times faster than the underlying
asset and is profitable in rising markets; (ii) Short LVTs, where k ∈ {−5, −3, −2, −1} ∪
[−4.0, −1.25]. The value of a short LVT rises |k| times faster than the underlying asset and
is profitable in falling markets. This type of LVT is also used to hedge16 positions or as a
substitute for short-selling the underlying asset; (iii) Low-risk LVTs, where k ∈ {−0.5, 0.5}.
Low-risk LVTs can be used to reduce the impact of adverse market movements without the
full risks associated with higher leverage factors. Every 1% change in the underlying leads to
a 0.5% change in the price of a low-risk LVT (i.e. less profit with less risk). Equation (1)
indicates a linear relationship between the LVT price and the underlying price from time
tn−1 to tn. It can be shown algebraically that:

Ptn
=Ptn−1 + kPtn−1

(
∆Stn

Stn−1

)
⇒ ∆Ptn

Ptn−1

= k

(
∆Stn

Stn−1

)
(2)

When n and n − 1 are close enough to each other in equation (2), the proportional change in
the LVT price relative to its initial price equates to the proportional change in the underlying
price relative to its initial value. Equation (2) then becomes:

dPt

Pt
= k

dSt

St
(3)

If there is not enough initial capital for the fund, the issuer may borrow (k − 1)Pt from
external financial sources at an interest rate of r ≥ 0. Considering f as the expense ratio of
the fund, equation (3) can be completed as:

dPt

Pt
= k

dSt

St
−

(
(k − 1)r + f

)
dt (4)

As will become clear later in Section 2.2, equation (4) does not represent the return of an
LVT; rather, it only shows the LVT price change relative to the underlying for discrete time
intervals. Discrete time is commonly used in financial modeling, where prices are calculated
at specific intervals, such as daily, hourly, or minutely. Therefore, equation (1) can be used,
for example, to calculate the LVT price change on trading day 2 compared to day 1. The
price of an LVT at any arbitrary interval can also be modeled in continuous time, as detailed
in Appendix A.12 of the full version [40]. However, for the modeling of LVTs in this work,
discrete time is more appropriate, reducing unnecessary complications.

16 Hedging is a common practice to reduce the risk of adverse price movements in another position. For
example, opening a $100K long Bitcoin position and hedging it by buying a $20K 2x short Bitcoin LVT.
If the long position experiences a 5% price drop, the net loss is partially offset by gains from the hedge
position, resulting in a net loss of (2 × 5% × $20K) − (5% × $100K) = $2K − $5K = −$3K, which is
less than the −$5K loss without hedging.
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2.2 LVT Return Dynamics
The return of LVTs cannot simply be considered as k times the return of the underlying
asset. Let Rt(n−1)→n

represent the return of the underlying asset (in percentage) at price S

from time tn−1 to tn:

Rt(n−1)→n
= ∆Stn

Stn−1

n ≥ 1, t ≥ 0, t0 = 0 (5)

Considering the relationship between the price of LVT and the underlying in (3), the return
of the LVT from time tn−1 to tn can be expressed as Gt(n−1)→n

= 1 + kRt(n−1)→n
. Since

daily return is embedded in the design of LVTs, the frequency of n here is daily. In the short
run (a trading day), where the underlying volatility is almost constant, the change in the
LVT price relative to the underlying can be assumed to be equivalent to k-times the return.
However, in the long run (several trading days or weeks), LVT return may be significantly
lower or higher than the underlying due to the compounding effect, as given by:

Gt0→n
= (1 + kRt0→1)(1 + kRt1→2) · · · (1 + kRt(n−1)→n

) =
N∏

n=1
(1 + kRt(n−1)→n

) (6)

The longer-term return of LVTs is impacted by the carried-over k multiplier on each trading
day, which magnifies both profit and loss due to the compounding effect. Even though the
intention behind long and short LVTs is to move in opposing directions on a daily basis, it is
common for both types to generate negative cumulative returns when held over an extended
period (see example 30 in Appendix A.5 of the full version [40] on the compounding effect).

Takeaways: Daily returns are embedded in the design of LVTs. Generally, a k-leveraged
LVT should earn k times the daily return of the underlying asset. The amplification
ratio, known as leverage (k), can be fixed or dynamic. Leverage divides LVTs into three
functional groups: Long, Short, and Low-risk. A proportional change in the underlying
price results in a k-times proportional change in the LVT price. In the short term, LVT
returns align with k, but beyond a single day, the return becomes highly path-dependent,
making LVTs unsuitable for buy-and-hold strategies. This is an issue ignored by most
retail investors, leading to unexpected capital losses.

3 Leveraged Token Mechanics

LVTs are tokenized representations of a leveraged fund whose value is derived from the value
of a leveraged product. Leveraged products are essential components of LVTs, allowing
issuers to form a leveraged fund and offer it as centralized or decentralized tokens. 99.9% of
LVT issuers use crypto futures as the leveraged product. To properly reflect the value of
the fund through circulating LVTs, the notional value of all tokens must match the fund’s
notional value. As the price of the leveraged product changes over the trading day, the
leverage of the fund gradually diverges from the promised ratio. The fund management
algorithm resets this deviation by buying or selling the leveraged product on a daily basis. It
also implements the logic of the LVT and defines how it should function in different market
conditions. If an LVT is designed to be fully on-chain and decentralized, the smart contract
provides the functionality of the fund management algorithm as well, by extending common
features of the ERC-20 standard. The constituent components of LVTs vary depending on
the issuer. According to issuer documentation, the general components of a typical LVT are
illustrated in Figure 1, followed by a brief explanation of the functionality of each component.
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Figure 1 The constituent components of LVTs, according to the issuer’s documentation, have
been implemented internally by some issuers, resulting in missing blockchain components.

3.1 Leveraged product
LETFs use leverage to open positions worth more than the required capital. In LVTs,
leveraged cannot appear out of nowhere. In the absence of Total Return Swaps (TRS) in the
crypto market (more on TRS and financial leverage in Appendix A.1 of the full version [40]),
other mechanisms for achieving leverage are (i) opening positions in the crypto derivatives
market, which provides up to 200x leverage, and (ii) borrowing capital from external sources,
generating up to 10x leverage. LVT issuers typically do not use high factors, offering tokens
with up to 5x leverage. This allows to choose either derivatives or debt as the leveraged
product. 99.9% of issued LVTs use futures (a type of derivative), and only Index Coop uses
the debt market to finance investments.17 The desired outcome for them is to generate
future returns that outweigh the cost of borrowing. Other issuers that use derivatives aim to
minimize dependency on other exchanges for buying and selling futures. They often offer
the corresponding futures trading in their own portfolio to facilitate LVT management and
reduce the cost of transactions between exchanges (compare the Leveraged Product and
Fund Source columns in Table 1). For example, every issuer that launched BTC Long/Short
tokens offers BTC-Perp futures as the underlying. Internal leveraged products facilitate LVT
operations, such as adjusting fund positions, monitoring underlying price fluctuations, and
triggering fund rebalancing.

3.2 Leveraged fund
It is a fund that derives its notional value from a basket of leveraged products.18 The
leveraged products provide leveraged exposure, upon which the value of the issued tokens
is based. Let Vtn

represent the price of the k-times leveraged product V on trading day n,
tracking the underlying asset S. The price of Vtn

differs from S as it carries k-times exposure.
A leveraged fund L with a notional value of Ltn

can be formed by purchasing a basket of V ,
given by:

Ltn
= kVtn

Btn

(
1 + (ρtn

+ ϕtn
)
)

t ≥ 0, 0% ≤ ρtn
+ ϕtn

≤ 0.5%, ρt0 = 0, ϕt0 = 0 (7)

17 Index Coop uses money market protocols on Ethereum (e.g., Compound protocol) that offer permission-
less borrowing and lending capabilities [13].

18 The notional value represents the total value of a financial instrument or contract at its full face value
(i.e., controlled money by the financial instrument). The notional value is not typically exchanged
between counterparties; instead, it serves as a reference point for calculating payments or obligations [21].
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Where Btn is the number of V units forming the fund at the rebalancing time tn. ρtn and
ϕtn

represent management and futures funding fees, respectively. ρtn
is always negative, as

the issuer deducts associated expenses from the fund’s value. ϕtn
can be positive or negative,

depending on the futures funding fee payments (more in Section 4.4.3). The sum of ρtn

and ϕtn
(i.e., the total daily fee) varies per LVT issuer and ranges from 0.01 to 0.5 percent

daily. Note that the change in the price of the leveraged product (Vtn) is proportional to
the underlying price (Stn

), but does not vary based on the k multiplier. More precisely,
Vtn = Vtn−1(1 + Rt(n−1)→n

). In equation (7), Ltn represents the financial value controlled by
the leveraged fund L, which originates from the leveraged product V . The change in the
price of V is proportional to S, but the value of L changes with respect to the k factor. In
simple terms, V represents the price of the leveraged product, while L represents the amount
of money that can be controlled using V .

▶ Example 4. An issuer may arrange an Ether long double-leveraged fund by purchasing 4
Ether-Perp long 2x futures at $1.5K (Vt0). The 2x leverage of Ether-Perp allows the issuer
to pay half of the Ether price, which is assumed to be $3K (St0). With zero fees in (7) at t0
(ρt0 + ϕt0 = 0), a leveraged fund L worth 2 × $1.5K × 4 = $12K can initially be formed (Lt0).
A 10% change in the price of Ether affects the price of futures by the same 10%, bringing it
to $1.65K (Vtn). However, the notional value of the fund (Ltn) changes according to k = 2,
reaching 2 × $1.65K × 4 = $13.2K. This demonstrates the effect of k on L compared to V .

LVTs are issued with a certain initial supply that can be adjusted through the Subscription
and Redemption process (more on this process in Appendix A.5 of the full version [40]). For
added or removed tokens, the issuer offsets the notional value of the fund with the notional
value of the tokens by buying or selling the corresponding amount of the leveraged product.
Let Ntn represent the total supply of a k-leveraged LVT at time tn. The notional value of
the issued LVTs (Atn

) can be expressed as:

Atn
= kNtn

Ptn
(8)

Equating (7) and (8) gives the total number of tokens (Ntn
) that should exist at the price

of Ptn
at time tn. Mathematically, this can be expressed as: kNtn

Ptn
= kVtn

Btn
⇒ Ntn

=
Vtn Btn

Ptn
, t ≥ 0, Pt0 ≥ 1.

▶ Example 5. Assume Pt0 = $10 as the initial offering price of ETH2L in the previous
example 4. Pt0 is typically set by the issuer at either $1 or $10 per token.19 The initial
supply of ETH2L at $10 per token is:

Nt0 = Vtn
Btn

Ptn

= $1.5K × 4
$10 = 600

The notional value of all 600 tokens (At0 = 2 × 600 × $10 = $12K) is consistent with the
notional value of the leveraged fund (Lt0 = 2 × $1.5K × 4 = $12K). Investors purchase a
portion of this fund in the form of LVT, allowing them to generate twice the profit compared
to the underlying Ether-Perp. Essentially, the value of the ETH2L token is derived from the
Ether long 2x leveraged fund, which in turn is derived from the 4 positions in the Ether-Perp
long 2x futures.

19 Taken from the initial public offering (IPO) price of a SPAC (Special Purpose Acquisition Company),
which is typically set at a nominal $10 per unit. Unlike a traditional IPO, the SPAC IPO price is not
based on the valuation of an existing business but rather on future income expectations.
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3.3 Fund management algorithm
As the price of the leveraged product (Vtn

) fluctuates over time, the notional value of the
leveraged fund (Ltn

) changes, causing the leverage ratio of the LVT to deviate from the
stated leverage. Let k̃tn

represent the realized leverage ratio that the notional value of the
tokens (Atn

) represents at time tn, expressed as k̃tn
= Ltn

Ntn Ptn
.

▶ Example 6. Referring to the first trading day of ETH2L in examples 4 and 5, in which
the price of Ether (St0) increases by 10%, the notional value of the fund (Ltn) changes to
2 × $1.65K × 4 = $13.2K. The 2x leverage of the LVT increases its price by 20%, rising to
$12 (Ptn) from the initial $10 (Pt0). Since the LVT supply remains constant at 600 tokens,
the leverage ratio of the fund drops from 2x to 1.8x. (k̃tn

= Ltn

Ntn Ptn
= $13.2K

600×$12 = 1.83).

The analysis above suggests that with the change in the price of the underlying (Stn
) and

subsequently the price of the leveraged product (Vtn), the notional value of the leveraged
fund (Ltn

) changes, and the realized leverage ratio of LVTs (k̃tn
) becomes higher or lower

than the stated leverage k. Mathematically, if E[k̃tn
] represents the expected change in k̃tn

in relation to the underlying price change (Stn
), applying equations (1) gives us:

E[k̃tn
] =

kVtn
Btn

(1 + Rt(n−1)→n
)

kNtn
Ptn

=
Vtn

Btn
(1 + Rt(n−1)→n

)
Ntn

Ptn−1(1 + kRt(n−1)→n
) (9)

As the number of tokens (Ntn
) remains constant while the price of the underlying changes at

a rate of (1 + Rt(n−1)→n
), the denominator of (9) changes k-times faster (or slower) than the

numerator, resulting in positive or negative leverage skewness. This highlights the need to
re-leverage the fund on a daily basis, a process managed by the fund management.20

Fund management is an off-chain algorithm (or on-chain for decentralized tokens) that
dynamically adjusts the fund to maintain the leverage at the expected ratio. When the
token’s leverage increases, it sells some of the fund’s positions to reduce the leverage and
return it to the expected level (cf. Full version [40] appendix A.7 for rebalancing details).
The majority of algorithms are off-chain with no interaction with the blockchain. The only
on-chain instance is implemented by Index Coop [13]. In addition to correcting the leverage,
the algorithm interacts with other components to adjust supply, update balances, monitor
the price of the underlying, and deduct daily fees.

3.4 On-chain contracts
For decentralized LVTs, a smart contract represents the leveraged fund on the blockchain. It
is typically implemented as an ERC-20 token [20, 2, 43], allowing users to exchange LVTs on
the blockchain without issuer intervention. As indicated in the Blockchain Representation
column of Table 1, 80% of issuers have not created LVTs on the blockchain. As a result,
this component is missing from Figure 1. The absence of a smart contract leads to several
deficiencies, which are discussed in the next section.

Takeaways: An LVT is a tokenized representation of a leveraged fund, whose value is
derived from the value of a leveraged product. 99.9% of LVT issuers use crypto futures as
the leveraged product. As the price of the leveraged product fluctuates over a trading day,
the leverage of the fund gradually diverges from the promised ratio. The fund management
algorithm resets this deviation by buying or selling the leveraged product on a daily basis.

20 Also referred to as fund management agent, fund management party, or certified fund manager.
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4 Research Questions

Due to the lack of a common standard in LVTs for defining the rebalancing process, data
transparency, implementation standards, etc., these tokens are issued with varying features
at the discretion of the issuer. We examine the characteristics of issued tokens per issuer
and discuss the respective deficiencies as research questions RQ1 to RQ6.

4.1 RQ1: What information is visible to traders of an LVT?
Among the 10 LVT issuers, only FTX and Index Coop have created tokens on the Ethereum
blockchain. FTX’s management model was hybrid (i.e. tradable decentralized tokens on a
centralized exchange), while only Index Coop’s tokens are fully decentralized. The remaining
8 exchanges prefer to implement LVTs centrally and entirely internal.

▶ Example 7. Binance leveraged tokens (BLVTs) are one of the centralized LVTs that are
entirely accessible within Binance’s ecosystem. They can be exclusively traded on Binance’s
spot market with no possibility of withdrawal. BLVTs are not even published on Binance’s
own blockchain (BNB Smart Chain) and are created more like a pseudo-crypto.21

4.1.1 Transparency in total supply
Total supply is used to calculate the Net Asset Value (NAV) of LVTs as a representation of
the market’s fair value. Due to imbalances in supply and demand, the market price of LVTs
may deviate from the NAV, trading at a premium or discount. In the long run, LVT prices
converge to the NAV due to a mechanism similar to arbitrage in traditional markets. Orders
placed far from the NAV price lose or gain value over time (cf. Full version [40] appendix
A.13 on the general arbitrage mechanism). In the short run, however, investors use the NAV
as a reference price when buying or selling, especially in bulk. The NAV of LVTs can be
calculated by equating (7) and (8), with the current token supply Ntn :

kNtn
Ptn

= kVtn
Btn

⇒ Ptn
= Vtn

Btn

Ntn

t ≥ 0, Nt0 ≥ 1 (10)

▶ Example 8. In the previous examples (4) to (6), when the Ether price increases by 10%
on day 2, the market price of ETH2L trades at $12 (after a 2 × 10% = 20% increase), while
its NAV price is ($1.65K × 4)/600 = $11. ETH2L is, in fact, overvalued, and traders should
wait for either (i) the arbitrage mechanism to play out and bring the LVT price down, or (ii)
the next rebalancing schedule, which will match the fund’s value with the notional value of
the tokens.

For LVTs hosted on the blockchain, total supply is public and can be retrieved for NAV
calculations. However, for centralized LVTs, investors must refer to the exchange’s website.
The total supply of tokens on some exchanges, such as AscendEX, Pionex, Gate.io, and
ByDFi, does not appear to be public, making it difficult to verify the real value of LVTs
(i.e. 53% of all tokens). LVTs are open-end funds with a theoretically unlimited token
supply.22 Issuers can increase the supply based on market liquidity and demand for the

21 A cryptocurrency that is not sufficiently decentralized [1].
22 Open-end funds can issue an unlimited number of shares. The fund sponsor sells shares directly to

investors and redeems them as well. The NAV per share of an open-end fund is calculated daily by
dividing the total value of the fund (minus liabilities) by the total number of shares outstanding [10].
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token. Transparency in the number of issued tokens builds trust and reduces the risk of
investment. Moreover, it addresses audit questions such as, Has the fund’s value changed
proportionately after increasing or decreasing the supply of LVTs? How much were the fund’s
value deviations in the previous audit period, and were they within the acceptable range?

4.1.2 Transparency in transactions
Transactions on the blockchain show the flow of tokens and the movement of the fund. This
enables investors to analyze transactions and ensure the expected functionality of LVTs.

▶ Example 9. We reviewed all Mint and Burn transactions of ETCBULL (FTX 3x Long
Ethereum Classic) on the blockchain.23 The analysis suggests that a total of 51,640,895
tokens were issued, and 24,207 were destroyed (i.e. 51,616,688 circulating tokens). The trend
of issuing tokens has taken on exponential velocity since April 2022. A total of 783,022 tokens
were issued during the 960-day period between October 2019 and May 2022, while 50,857,873
tokens were issued over just 184 days from April to October 2022. In other words, 98.5%
of all tokens were issued in just 6 months. Checking the recipient address indicates FTX’s
possible sub-wallet as the receiver. This sudden change in token supply warrants further
investigation, especially given FTX’s collapse shortly afterward. A possible explanation for
this anomaly is presented in Appendix A.11 of the full version [40].

This is just an example indicating the importance of transparency in LVT transactions.
Transactions of centralized tokens are not public and only available to the issuer. Statistically,
transactions of 80% of LVTs cannot be analyzed as we did in the above case.

4.1.3 Transparency in token holders
Holders of tokens created on the blockchain are public, allowing investors to check them
as a measure of the token’s liquidity. A small number of market participants reduces the
token’s liquidity and can make it more challenging to execute large orders. It may also lead
to a wider bid-ask spread, increasing the cost of executing trades. Investors generally prefer
assets with higher liquidity, narrower bid-ask spreads, and more market participants.

▶ Example 10. 90% of XRPBULL (FTX 3x Long Ripple) tokens are distributed among four
holders.24 In another example, three accounts own 94% of all issued FTX 3x Long Cardano
(ADABULL) tokens.25

Holding a large number of tokens by a limited number of accounts can noticeably elevate
investment risk. One holder may decide to sell a significant number of tokens at any moment,
potentially resulting in a notable price drop within a short period of time, leading to significant
losses for smaller holders. Since most issuers do not publish the list and respective ownership
percentages of centralized LVTs, the participants of 80% of LVTs remain uncertain.

4.1.4 Inability to audit
Conducting audits ensures the security, functionality, and compliance of LVTs as claimed by
the issuer. Unlike centralized LVTs, the code of tokens created on the blockchain is public,

23 ETCBULL transactions on the Ethereum blockchain filtered for issued and deposited tokens to FTX’s
own address: https://bit.ly/3MwHVqv.

24 List of XRPBULL holders: https://bit.ly/3MQurrc.
25 List of ADABULL holders: https://bit.ly/3MUxPRZ.

https://bit.ly/3MwHVqv
https://bit.ly/3MQurrc
https://bit.ly/3MUxPRZ
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allowing auditors to identify vulnerabilities and associated risks. The security of these 20%
decentralized LVTs can be evaluated by reviewing the code against industry best practices
such as SWC [45]. Moreover, external audits are essential for LVTs to ensure they function
as intended, such as verifying the output of methods when transferring tokens or updating
balances. Auditors may also provide recommendations to improve the security, functionality,
and compliance of LVTs. For centralized LVTs, the code is not public, requiring cooperation
and willingness of the issuer to conduct a thorough review and quality assessment. Sharing
the code and the results of an independent audit would improve transparency and help build
trust between token holders and issuers.

Takeaways: In some centralized LVTs, investors do not have access to crucial information
such as total supply, transactions, and holders. Total supply is a necessary parameter for
calculating the fair value of tokens and is also used by auditors to evaluate the consistency
and efficiency of LVTs. Transparency in transactions enables investors, auditors, and
anyone involved in the LVT ecosystem to analyze token flow, detect suspicious activities,
enhance security, ensure compliance, and verify token functionality. The number of holders
for centrally issued tokens is unknown, leading to a much higher investment risk compared
to decentralized counterparts.

4.2 RQ2: To what extent are LVTs locked to the offering exchange?
4.2.1 Interoperability with dapps and DeFi
In 2019, the total value locked in Decentralized Finance (DeFi) was approximately 700
million USD. As of April 2022, it stands at around 150 billion USD, representing more than
200% growth in less than three years [51]. Hosted LVTs on the blockchain (which usually
comply with one of the fungible26 token standards) facilitate interaction with DeFi systems,
unlocking potential interoperability opportunities.

▶ Example 11. FTX was able to employ blockchain interoperability to share its ETHBULL
(3x Long Ethereum) with other exchanges such as Poloniex, Indodax, Bittrex, and Gate.io.27

These exchanges owned 20%, 4%, 3%, and 2% of ETHBULL, respectively, and offered it on
their platforms due to the possibility of interaction with DeFi.

In contrast, centrally issued LVTs cannot interact with other platforms and operate in
isolation, preventing LVTs from moving across different platforms and systems. Decentralized
LVTs, on the other hand, foster connectivity and enable users to access a wide range of
services and functionalities without being confined to a single exchange.

4.2.2 Inability to custody
At first glance, the custody issue seems common to all assets on centralized exchanges.
However, BTC buyers can transfer it to their personal wallets, while centralized LVTs
remain locked within the exchange. Holders do not own the actual tokens but are simply
betting on price movements. Some explain this custodial issue by viewing LVTs as “token
contracts”, though this term is not widely recognized nor aligns with the functionality of
crypto derivatives. LVTs are essentially tokenized forms of derivative exposures.

26 Fungible (interchangeable) token standards are widely used by decentralized applications (dApps) to
interact with other applications. ERC-20 is the dominant standard, followed by ERC-777 and ERC-1155.

27 List of ETHBULL holders: https://bit.ly/3MSZX7P.
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▶ Example 12. BTCUP and BTCDOWN are issued by Binance and track Bitcoin as the
underlying asset. Unlike Bitcoin holders, owners of these tokens cannot withdraw or transfer
them to their own digital wallets. In contrast, similar Bitcoin leveraged tokens were created
by FTX on the Ethereum blockchain (known as BULL and BEAR tokens). Holders of
these tokens still had the opportunity to exchange them on decentralized exchanges, such as
Uniswap28, shortly after FTX’s bankruptcy. Holders could recover 80% of the token value
on the first day of the bankruptcy, 50% on the second day, and up to 20% on the third day.

Takeaways: The inability to self-custody centralized LVTs raises greater concerns com-
pared to decentralized counterparts, potentially increasing the investment risk in these
crypto-assets. Another important advantage of tokens created on the blockchain is their
interoperability with other dApps, crypto exchanges, and the DeFi ecosystem in general.
LVTs that interact with DeFi offer the opportunity to participate in a more open and
transparent financial system that operates without the need for intermediaries.

4.3 RQ3: Are the LVTs offered today adequately backed?
The simplest definition of an LVT is a tokenized leveraged fund. According to the doc-
umentation of LVT issuers, 99.9% of leveraged funds derive their value from a basket of
positions in the futures market [3, 22, 5, 6, 7, 39, 16, 29, 38]. The issuer must either (i) offer
futures trading in their portfolio, or (ii) open futures positions on other crypto exchanges
and manage them systematically through APIs as the underlying asset fluctuates.29 The
question we raise, due to the lack of external audits, is to what extent LVT issuers have
properly prepared futures contracts before launching LVTs. Have users invested in tokens
that are properly backed, or are they simply trusting the issuer and potentially investing in
tokens with no real value?

4.3.1 Missing futures product
Some issuers have launched LVTs without offering the corresponding futures products. While
we cannot rule out the possibility that they hold the necessary futures positions on other
exchanges, this raises concerns that these LVTs might not be adequately backed.

▶ Example 13. AscendEX uses its own futures products and does not rely on futures
products from other exchanges. However, they issued 3x/5x Long/Short Monero (XMR3L/S
and XMR5L/S) without offering XMR perpetual contracts initially. To our knowledge,
no XMR futures products were available on the market from any exchange to be used as
leveraged products at the time of the launch of these XMR tokens.

The above example is one of 390 issued tokens lacking a corresponding futures product
(see column B of Table 2). Based on available historical data and information from the
issuer’s website, 24% of LVTs did not have the necessary futures product offered by the same
issuer and instead relied on futures from other exchanges.

28 DEX transactions of FTX 3X Long Bitcoin Token (BULL) and FTX 3X Short Bitcoin Token (BEAR)
on the Ethereum blockchain: https://bit.ly/3pOh3uz, https://bit.ly/41Dal81.

29 Among 10 LVT issuers, Pionex used the Binance Broker API for its Futures Arbitrage Bot, but it has
been terminated since June 2021 [37]. After reviewing Pionex’s documentation [38], it remains unclear
whether Binance Futures is still used as the leveraged product for LVTs. However, Pionex launched its
own futures product in January 2023. If they no longer use Binance Futures and rely solely on their
own futures product, it appears that 148 LVTs did not have corresponding futures contracts at the time
of launch (e.g., ETC3L/S, ZRX2L/S, XLM3L/S).

https://bit.ly/3pOh3uz
https://bit.ly/41Dal81
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Table 2 Left table: Number of issued LVTs with delayed or missing futures products, analyzed
using historical data and undisclosed information. To our knowledge, 41% of the issued LVTs did not
have sufficient financial backing at the time of launch. Right table: Rebalancing and fee deduction
schedules, which we collected manually from the issuers’ websites. Regardless of leverage type,
rebalancing is performed daily at different times. Additionally, Threshold-Based (TBR) or Out of
Range (OOR) rebalancing methods are used to trigger interim rebalancing. Fund expenses are also
deducted at various times with variable percentages.

Issuer
Delayed
Futures
Launch

Missing
Futures
Product

Total
Delayed or

Missing

Total
Launched

LVTs

% of
unbacked

LVTs

Leverage Rebalancing Schedule Fee deduction
Regular

Daily Interim Daily
Schedule

Expense
Ration

(A) (B) (C) (D) (E) (a) (b) (c) (d) (e)
AscendEX 36 214 250 340 74% Fixed 02:30 UTC 10% TBR / OOR 00:00 UTC 0.500%
Pionex 0 148 148 200 74% Fixed / Variable 00:00 UTC+8 10% TBR

00:00 UTC+8
0.030%

MEXC 176 12 188 456 71%

Fixed

00:00 UTC 15% TBR 0.100%
ByDFi 16 0 16 40 40% 08:00 UTC+8 0.030%
FTX 18 0 18 129 14% 02:00 UTC 10% TBR 00:00 UTC 0.030%
Gate.io 18 16 34 274 12% 00:00 UTC-4

10% TBR / OOR
00:00 UTC+8 0.300%

Binance 0 0 0 40 0% Variable N/A 00:00 UTC 0.010%
ByBit 0 0 0 34 0% 00:00 UTC 0.005%
KuCoin 0 0 0 94 0% Fixed / Variable 08:00 UTC+8 14% TBR 23:45 UTC+8 0.045%
Index Coop 0 0 0 2 0% Fixed 00:00 UTC 20% TBR 00:00 UTC 0.023%
Total 264 390 654 1609 41%

4.3.2 Delayed futures product
Missing futures products are not the only issue with centralized LVTs. For 264 tokens, the
corresponding futures product was only offered after the issuance of the tokens (see column
A of Table 2). In other words, at the time of the launch of 17% of LVTs, the required futures
may not have existed. According to the LVT documentation on issuers’ websites, these
issuers did not disclose using futures from other crypto exchanges. Internal futures trading
was introduced later, after the token was launched.

▶ Example 14. MEXC issued 3x Long/Short Cardano (ADA3L/S) in February 2020, while
ADA-Perp was only launched in July 2020, resulting in a 154-day delay. They did not disclose
using futures from other exchanges, indicating the fund might have been operating without
financial backing during this period.

According to available information, on average, 41% of LVTs have missing or delayed
futures products (see column E of Table 2). The main financial issue with LVTs is the lack of
transparency in the fund management system. Centralized LVTs function like a black box to
investors and are fully managed by the issuer. Even for tokens with proper futures backing
(e.g., Binance, ByBit, and KuCoin), investors can rely solely on numeric assertions made on
the issuer’s website.

Takeaways: The value of LVTs is derived from a leveraged fund, which itself is based on
the value of futures. In the absence of futures at the time of offering, investors may have
purchased LVTs that lacked proper financial backing. An analysis of available historical
data on the issuer’s website shows that, on average, 2 out of every 5 issued LVTs did not
appear to have proper financial backing at the time of launch. Although the exchange
may have addressed this issue over time, the required futures contracts were missing at
the time of issuance. Without external audits, investors can rely solely on the exchange’s
claims and assume that LVTs are financially backed as promised.

4.4 RQ4: What are the possibilities of front-running in LVTs?
Front-running is an illegal practice in the equity market where non-public information is
used to purchase shares of a company before the price moves [19, 53, 4]. For instance,
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FINRA30 announced a $700K fine against Citadel Securities31 in 2020 for front-running
activities between 2012 and 2014 [35]. In the design of LVTs, certain well-known events can
be exploited by traders to benefit from anticipated price movements. They can engage in
similar front-running practices that may impact the price of the underlying asset and the
token itself. We review these events and explore possible front-running scenarios as follows.

4.4.1 Event I: Impending fund rebalancing
Rebalancing is the process of maintaining the desired leverage ratio of funds over time. To
keep the leverage at the stated ratio, issuers perform periodic rebalancing. This can be
triggered at predefined intervals (e.g., every day, every 8 hours, or every n blocks), or upon
meeting certain conditions (e.g., after exceeding a specific threshold). All LVT issuers perform
regular daily rebalancing and trigger interim rebalancing in volatile markets (see columns B
and C of Table 2). They may trigger rebalancing when the underlying asset’s price fluctuates
by more than X%, or when the leverage passes a threshold. The fund management algorithm
governs the rebalancing process, adjusting futures positions and restoring the leverage ratio
to the target level (cf. Full version [40] appendix A.7 for details on the rebalancing process).

The number of contracts that must be bought or sold to restore the leverage is predictable,
making front-running possible. Let ∆Btn represent the number of required futures contracts
to rebalance the fund at time tn. ∆Btn

can be easily calculated by considering the return
of the underlying asset from time tn−1 to tn (Rt(n−1)→n

). The number of required futures
contracts to restore the fund leverage can be calculated by subtracting the notional value of
the tokens (equation 8) from the notional value of the fund (equation 7):

∆Btn
= (1 + kRt(n−1)→n

)kNtn−1Ptn−1 − (1 + Rt(n−1)→n
)kVtn−1Btn−1 − (ρtn

+ ϕtn
)Ltn

+ ϵtn

This equation is quadratic and can be simplified as ax2 − bx − c for long tokens, and
−ax2 + bx − c for short tokens. When the underlying return is positive (Rt(n−1)→n

> 0),
∆Btn

is always positive (a > 0), and when the return of the underlying is negative, ∆Btn
is

negative as well (a < 0). In simpler terms, for long LVTs, futures exposure must be increased
when the underlying price is rising, and decreased when the underlying price is falling (see
Fund Basket Delta in Tables 12 and 13 of appendix A.7 in the full version [40]).

There is also a fund expenses term (ρtn
+ ϕtn

)Ltn
, which is usually deducted from the

fund’s value to cover operating expenses. However, this term can turn positive when the
received funding fees (ϕtn

) exceed the fund expenses (ρtn
). ϵtn

represents a disturbance
term that captures the effects of news or shocks in the underlying. Since rebalancing is a
predictable event, by buying or selling ∆Btn

of the leveraged product, other traders can
front-run the trade, potentially impacting the price of the token or even the underlying asset.

▶ Example 15. Consider the following sequence in which Alice calculates ∆Btn
to potentially

front-run the rebalancing trade:

1. Alice checks the issuer’s website for the upcoming rebalancing of BTC5L (5x Long Bitcoin).
She notices the next daily rebalancing is scheduled for 00:00 UTC.

2. Alice calculates the number of contracts that will be bought or sold by the issuer to
maintain the 5x target leverage of BTC5L.

30 The Financial Industry Regulatory Authority (FINRA) is a government-authorized organization that
oversees U.S. equity markets by regulating member brokerage firms and exchange markets.

31 Citadel Securities is the largest designated market maker on the New York Stock Exchange (NYSE).
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3. Alice front-runs the rebalancing trade by placing an order just before 00:00 UTC (ahead
of the rebalancing trade). If she anticipates that the algorithm will buy Bitcoin futures,
she may buy Bitcoin futures expecting increased demand, driving up the price, and giving
her the opportunity to sell futures at higher prices. Conversely, if BTC5L will be selling
the fund’s positions, leading to increased supply, she may sell Bitcoin futures.

Front-running in the above example may not only manipulate the price of Bitcoin futures
but also inflate the price of BTC5L. Consider the following scenarios (A) and (B), with
corresponding calculations in Table 8 of appendix A.5 in the full version [40].

Alice calculates the Basket Delta of BTC5L prior to the rebalancing schedule and realizes
that the algorithm will purchase 594.21 new contracts at $33,000 (Scenario A in Table 8
of appendix A.5 in the full version [40]). Assuming this purchase increases the price of
Bitcoin futures by 1%, she can buy contracts just before the rebalancing trade at $33,000
and sell them afterward at $33,330. A 1% increase in the underlying price inflates the
token price to $15.05. This provides Alice an additional opportunity to buy the token for
$15 before the rebalancing and sell it at a higher price afterward.
The effect of Alice’s strategy in the previous scenario may be amplified if many traders
engage in front-running. The increased demand may raise the price of Bitcoin futures
even before the rebalancing trade. If the influx of other traders pushes Bitcoin futures
up by 1%, and the rebalancing trade further increases the price by another 1%, this
secondary effect could also inflate the token price further and create more price distortion
(Scenario B in Table 8 of appendix A.5 in the full version [40]).

4.4.2 Event II: Management fee deduction
Similar to LETFs, daily fees and expenses are deducted from the leveraged fund to cover
associated costs (cf. Full version [40] appendix A.8 on incurred costs). The fee rate and daily
schedule vary by issuer (see columns D and E of Table 2). Management fees are deducted at
specific times, allowing adversaries to exploit this known event, potentially coinciding with
rebalancing. The simultaneous occurrence of events I and II can intensify the front-running
effect during the rebalancing process.

▶ Example 16. Consider the same sequence as the previous example, where Alice calculates
the Basket Delta of BTC5L at the same time as the management fee deduction. The issuer’s
withdrawal of $99,000 (Management fee row in Table 8 of appendix A.5 in the full version [40])
reduces the fund’s value. To compensate, $99,000/$33,000 = 3 additional contracts need
to be purchased. The coincidence of these two events causes the rebalancing algorithm to
slightly increase demand by purchasing 597.21 contracts instead of 594.21.

4.4.3 Event III: Futures funding fee exchanges
Funding fee is a mechanism in Perps to converge the price of contracts with the price of the
underlying crypto. It is calculated based on the notional value of the futures position and is
exchanged between short and long traders who keep their positions open. Shorts pay longs
when the funding rate is negative, and longs pay shorts when the rate is positive (cf. Full
version [40] appendix A.9 for details on funding fee dynamics). The intervals for Funding fee
exchange are public and displayed on the issuer’s website, typically occurring every 8 hours
at 00:00 UTC, 08:00 UTC, and 16:00 UTC. Since the fund is composed of futures, it either
pays or receives funding fees at these times. This predictably increases or decreases the value
of the leveraged fund, which can be exploited to amplify the effects of front-running.
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The impact of front-running can be exacerbated when events I, II, and III occur simul-
taneously. Such concurrency may force the algorithm to buy or sell more contracts than
would be required for fund rebalancing alone (i.e. ∆B̃tn

=
∑3

n=1 ∆Btn
).

▶ Example 17. As calculated in the Basket Delta row of Table 8 in appendix A.5 of the full
version [40], in the first rebalancing cycle, an additional 2.70 futures contracts are required
to cover the 0.3% daily management fee deduction and 0.03% daily funding fee exchange.
This means that 2.7 more contracts will be added if events II and III coincide with event I.
The impact on basket delta can be even more significant as the value of the fund increases in
a volatile market (see Fee Basket Size row in Table 12 of appendix A.5 in the full version [40]
on rebalancing in volatile markets).

To mitigate front-running in LVTs, issuers should avoid rebalancing the fund on prede-
termined schedules. Techniques such as intraday or randomized rebalancing, or algorithmic
trading, can help reduce the visibility of rebalancing trades.32 Only Binance avoids regular
daily rebalancing, instead triggering it when the underlying price fluctuates more than 10%
or when leverage falls outside the range of [−4.0, −1.25] ∪ [1.25, 4.0]. This means 97% of
current LVTs perform fund rebalancing at specific intervals, increasing the likelihood of daily
front-running (see column B of Table 2).

Takeaways: The possibility of front-running in LVTs arises from the predictability
of impending fund rebalancing, management fee deductions, and futures funding fee
exchanges. Adversaries can exploit the temporary changes in supply and demand initiated
by the fund. This effect may be intensified if all three events occur simultaneously or
if there is large-scale participation by multiple traders. Front-running has also been a
concern in LETFs, though it is mitigated by the continuous oversight of regulatory bodies
such as the SEC and FINRA.

4.5 RQ5: How well do LVTs track their asserted leverage ratios?
The leverage ratio of LVTs is determined by the issuer and can be either variable (dynamic)
or fixed. If an LVT uses the Underlying+Leverage+Long/Short naming convention, the
leverage is most likely fixed. The Underlying+Up/Down format is used for LVTs with
variable leverage.

▶ Example 18. KuCoin has issued ETH3L as a 3x long token tracking Ether as the underlying.
Binance similarly offers ETHUP and ETHDOWN tokens with a target leverage in the range
of [1.25, 4] and [-4, -1.25], respectively.

Very high leverage factors such as ±10x or ±15x are not common in currently issued
LVTs, as the majority of them provide ±3x leverage (see Figure 3a in Appendix A.4 of the full
version [40]). Low leverage is aimed at minimizing losses and extending the liquidation point
during periods of high volatility. Highly leveraged LVTs lose value in the same proportion
as the underlying asset and may not be attractive to investors. Crypto exchanges advertise
LVTs as an investment vehicle providing leveraged exposure to crypto-assets with minimal
liquidation risk. However, LVTs with high leverage factors defeat this promise.

32 Iceberg orders, which are large orders broken into smaller lots, are a sophisticated trading algorithm
used to execute rebalancing trades in smaller, more discrete chunks over time.
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4.5.1 Inconsistency of fixed leverage
Approximately 16% of LVTs are issued with variable leverage, fluctuating in the range of
[−4.0, −1.25] ∪ [1.25, 4.0]. Additionally, 9%, 59%, and 11% of LVTs have fixed 2x, 3x, and 5x
leverage ratios, respectively. As shown in Table 10 of Appendix A.6 in the full version [40],
LVTs with fixed leverage may not always provide exactly the promoted leverage. One aspect
of risk involves leverage deviation (also called tracking error). Furthermore, some issuers do
not rebalance the fund in the same way.

▶ Example 19. MEXC and KuCoin adjust the leverage of only the tokens that have lost
value. Consider a volatile market where Bitcoin loses 10% in a day. These issuers adjust
only the leverage of BTC3S, while the leverage of BTC3L remains unchanged, as it gained
value [22, 28]. For example, if the price of Bitcoin is $30K and the fund holds 600 contracts,
the fund’s initial value is $18M. Assuming 600K issued tokens at an initial offering price of
$10, the target leverage is 3x (i.e. k = (600 × $30K)/(600K × $10) = 3). A 10% increase in
Bitcoin’s price changes the leverage of BTC3L and BTC3S to 2.53x and 4.71x, respectively.
However, these exchanges correct the leverage of BTC3S to prevent further capital loss in
case of more price decline. As a result, this rebalancing process undervalues the BTC3L fund
(i.e. inflates the value of BTC3L). Instead of only rebalancing the losing side, both BTC3L
and BTC3S positions should be adjusted simultaneously to bring the leverage back to 3x as
advertised by the issuer.

We compared the leverage deviation of Bitcoin LVTs with LETFs over the course of a
year. Analysis details are provided in Appendix A.6 and Table 10 of the full version [40].
As can be seen, LVTs exhibit higher leverage deviations than similar products in the equity
market. This issue becomes more apparent when comparing the standard deviation of
returns in the equity and crypto markets. Leverage deviation leads to underperformance
or overperformance of tokens, causing investors to experience returns that deviate from the
intended amplification effect of LVTs. This is particularly important in light of previous
research on LETF returns, which shows that LETFs, on average, do not negatively impact
investor short-term returns [33]. Results indicate that the daily return distribution using
real-world historical data is significantly more leptokurtic than the normal distribution.
However, in LVTs, returns tend to have a wider or flatter shape (platykurtic) due to higher
leverage deviation.

4.5.2 Disadvantages of variable leverage
LVTs with variable leverage aim to: (i) minimize the impact of volatility drag (cf. Full
version [40] Appendix A.10), and (ii) reduce the possibility of front-running (as discussed in
Section 4.4). LVTs are advertised as an investment vehicle that amplifies returns relative to
a certain multiplier, although this factor changes constantly in tokens with variable leverage.
This introduces an additional risk dimension, requiring regular monitoring and adjustment
of positions as the leverage fluctuates. Additionally, these types of tokens rebalance on an
as-needed basis with no predetermined schedules. Rebalancing can therefore be triggered by
(i) a sudden fluctuation in the underlying price (such as more than 15%), (ii) exceeding the
expected leverage range (such as above 4x or below 1.25x for long LVTs), and (iii) handling
subscription or redemption requests, which change the total supply. One disadvantage of this
type of rebalancing is that funds can remain undervalued or overvalued for extended periods.

▶ Example 20. The rebalancing events of BTCUP (a Long Bitcoin LVT by Binance) over
the past 3 years are listed in Table 14 of Appendix A.6 in the full version [40]. A rebalancing
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event occurred on 03-Jan-2023, 204 days after the previous one on 13-Jun-2022. During
those 204 days, no rebalancing event was triggered because the changes in Bitcoin’s price did
not exceed the 10% threshold limit, and the fund’s leverage fluctuated within the expected
range of 1.25x to 4x. During this period, the fund’s value was much lower (or higher) than
the amount required to support the value of issued tokens, but no rebalancing occurred.
Undervalued funds may benefit the issuer, while investors hold inflated tokens.

Another disadvantage of dynamic leverage is the imbalance in rebalancing triggers. Some
issuers initiate the rebalancing process at different ranges for long and short tokens.

▶ Example 21. Pionex triggers rebalancing when the leverage of long tokens exceeds the range
of [2.2, 4.0], while this range is [1.8, 4.8] for short tokens [36]. This inconsistency increases
the complexity of position management, leading to unfavorable outcomes for investors.

LVTs with variable leverage may reduce the probability of front-running but also reduce
token transparency and increase the complexity of managing positions. In the absence of a
specific standard for the rebalancing of dynamic leverage, each issuer implements its own
algorithm, which is not necessarily consistent with others. This causes confusion for investors
when switching from one exchange to another, as they may expect similar performance.

Takeaways: As the price of the underlying asset fluctuates, the value of the fund and the
presented leverage change at different rates. The price of the token might be at a premium
or discount, not reflecting the actual value of the fund. All LVT issuers reconcile the total
value of the tokens and the fund through a daily rebalancing schedule. However, the way
this process is implemented differs by issuer, leading to deviations from the target leverage.
Rebalancing in both types of tokens—those with fixed and dynamic leverage—has its
shortcomings. Referring to LETFs, where almost 100% of traditional LETFs adhere to
a fixed leverage strategy [47], suggests that fixed leverage may be more appropriate for
LVTs as well. However, there is still a need to reduce the current high leverage deviation
compared to LETFs, which can be achieved by modifying the relevant algorithms.

4.6 RQ6: Are LVT fees in-line with traditional LETFs?
Issuers of LETFs/LVTs charge daily fees to cover the associated costs of operating the fund (cf.
Full version [40] Appendix A.8 on associated expenses). In recent years, fees have generally
come down, with the average annual Management Expense Ratio (MER) for traditional
ETFs and LETFs being 0.45% and 0.95%, respectively. We reviewed the daily fees of all
LVTs and summarized the results in Table 3. Depending on the issuer, the annual MER for
LVTs varies from 1.83% to 36.5%. Comparatively, the standard deviation of MER in LETFs
and LVTs is 0.38% and 34.21%, respectively. This signifies that fees are less predictable and
more volatile in LVTs than in LETFs (up to 90 times), impacting the overall expense ratio
and net returns. Additionally, high fees often indicate a developing market with a lack of a
broad base of issuers. This could be a risk indicator for investors, who typically expect lower
fees due to increased competition and improved market maturity.

Takeaways: High daily fees in LVTs act as a continuous drag on performance, eroding
returns, leading to underperformance, and making them less attractive. Daily costs in
LVTs should be lower than in LETFs, given that futures transactions are internal and
there is much less regulatory overhead. Furthermore, higher fees serve as a risk indicator
for developing markets with limited competition and inefficient cost management.
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Table 3 Comparison of the daily expense ratio in the equity and crypto markets. Each day,
the daily fee is deducted from the price of ETFs/LETFs/LVTs, which negatively impacts the ROI.
Therefore, investing in assets with lower daily rates (green rows) is less risky with higher return.

Market Symbol Issuer Underlying
Index/Asset Leverage

Annual
Expense

Ratio

Daily
Expense

Ratio
Market Symbol Issuer Underlying

Index/Asset Leverage
Annual
Expense

Ratio

Daily
Expense

Ratio
IVV BlackRock S&P500 +1x 0.0300% 0.000119% BTC3L ByBit Bitcoin +2x to +4x 1.8250% 0.005000%
VOO Vanguard S&P500 +1x 0.0300% 0.000119% BTC3S ByBit Bitcoin -2x to -4x 1.8250% 0.005000%
SPY SSGA S&P500 +1x 0.0945% 0.000375% BTCUP Binance Bitcoin +1.25 to +4x 3.6500% 0.010000%
QQQ Invesco NASDAQ-100 +1x 0.2000% 0.000794% BTCDOWN Binance Bitcoin -1.25 to -4x 3.6500% 0.010000%
TQQQ ProShares NASDAQ-100 +3x 0.8600% 0.003413% BTC3L Pionex Bitcoin +2.2x to +4x 10.9500% 0.030000%
SH ProShares S&P500 -1x 0.8800% 0.003492% BTC3S Pionex Bitcoin -2.2x to -4x 10.9500% 0.030000%
SSO ProShares S&P500 +2x 0.8900% 0.003532% BTC3L ByDFi Bitcoin +3x 10.9500% 0.030000%
SDS ProShares S&P500 -2x 0.9000% 0.003571% BTC3S ByDFi Bitcoin -3x 10.9500% 0.030000%
SPXU ProShares S&P500 -3x 0.9000% 0.003571% BTC3L KuCoin Bitcoin +3x 16.4250% 0.045000%
UPRO ProShares S&P500 +3x 0.9100% 0.003611% BTC3S KuCoin Bitcoin -3x 16.4250% 0.045000%
PSQ ProShares NASDAQ-100 -1x 0.9500% 0.003770% BTC3L MEXC Bitcoin +3x 36.5000% 0.100000%
QLD ProShares NASDAQ-100 +2x 0.9500% 0.003770% BTC3S MEXC Bitcoin -3x 36.5000% 0.100000%
QID ProShares NASDAQ-100 -2x 0.9500% 0.003770% BTC3L Gate.io Bitcoin +3x 36.5000% 0.100000%
SQQQ ProShares NASDAQ-100 -3x 0.9500% 0.003770% BTC3S Gate.io Bitcoin -3x 36.5000% 0.100000%
SPXL Direxion S&P500 +2x 1.0000% 0.003968% BTC3L AscendEX Bitcoin +3x 109.5000% 0.300000%

Equity

SPXS Direxion S&P500 -2x 1.0800% 0.004286%

Crypto

BTC3S AscendEX Bitcoin -3x 109.5000% 0.300000%

5 Concluding remarks

Like leveraged ETFs, the primary goal of LVTs is to simplify investing in leveraged positions
by reducing the complexities of managing such positions and limiting the risk of liquidation.
During our study period, we identified numerous issues with LVTs, including a lack of
transparency, custody by the issuing exchange, and possible inadequate backing. 99.9%
of LVTs are implemented as centralized products, accessible only within the exchange’s
ecosystem. 80% of them have no interaction with the blockchain, leading to a lack of
transparency in total supply, transactions, and holders.

We examined these issues along with several financial and security concerns. The total
supply of 53% of LVTs is not published by the issuers, making it difficult for investors to
calculate the NAV and trade LVTs at a fair market price. Additionally, 41% of LVTs may be
issued with inadequate financial backing at launch, as the required futures contracts were
either issued late or may not have existed at the time of the initial offering. 97% of LVTs
carry the risk of front-running during well-known events, where adversaries can potentially
exploit rebalancing trades. LVTs exhibit greater leverage deviation from the stated ratio
compared to LETFs, due to inconsistent fund management in tokens with fixed leverage or
inefficiencies in the rebalancing algorithm in LVTs with dynamic leverage.

LVTs generally have higher management fees compared to LETFs, which impacts the
fund’s ability to achieve its expected return. LVTs tend to underperform over extended
periods (monthly or weekly) due to the compounding effect, making them unsuitable as a
long-term investment vehicle.

All our findings point to the same conclusion: investors expecting simple leveraged posi-
tions that “just work” are likely to be disappointed by leveraged tokens. LVTs require careful
consideration of their unique characteristics, making them more suitable for experienced
traders.

Future works

Increased scrutiny from regulators and mandatory audits are potential avenues to ensure that
LVTs are adequately backed. Moving LVTs on-chain could improve transparency regarding
supply, transactions, and holders, while enabling self-custody. Front-running mitigation
should be explored through randomized rebalancing or stealth trading (e.g., iceberg orders).
LVT algorithms should be adjusted to reduce deviations from stated leverage. These measures
aim to better align LVTs with investor expectations.

AFT 2024
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Abstract
Cryptocurrency wrench attacks are physical attacks targeting cryptocurrency users in the real world
to illegally obtain cryptocurrencies. These attacks significantly undermine the efficacy of existing
digital security norms when confronted with real-world threats. We present the first comprehensive
study on wrench attacks. We propose a theoretical approach to defining wrench attacks per criminal
law norms, and an interdisciplinary empirical approach to measure their incidence. Leveraging three
data sources, we perform crime script analysis, detecting incidents globally across 10 interviews with
victims and experts, 146 news articles, and 37 online forums. Our findings reveal diverse groups
of attackers ranging from organized crime groups to friends and family, various modi operandi,
and different forms of attacks varying from blackmail to murder. Despite existing since Bitcoin’s
early days, these attacks are underreported due to revictimization fears. Additionally, unlike other
cryptocurrency crimes, users with advanced security experience were not immune to them. We
identify potential vulnerabilities in users’ behavior and encourage cryptocurrency holders to lean
into digital as well as physical safety measures to protect themselves and their cryptocurrency.
We offer actionable recommendations for the security community and regulators, highlighting the
double-edged sword of Know Your Customer policies.
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1 Introduction

Since the launch of Bitcoin in 2009, cryptocurrency owners have faced a constant threat of
cyberattacks, financial crimes, and emerging risks threatening the safety and security of their
funds [26, 10, 44, 4]. In 2022 alone, $3.8B was reportedly stolen from cryptocurrency users
and service providers [14].
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While cryptocurrencies may open users up to cyberattacks, the threat of physical attacks
has not diminished. Hal Finney, a highly influential cypherpunk and computer scientist, and
the first user to download and receive Bitcoin in 2009, was a victim of such attack [41]. Unlike
other forms of cryptocurrency-specific/facilitated crime [10, 52], this threat targets users
physically outside the cyber world. These attacks, also known as “wrench attacks,” target
users in the real world to illicitly acquire their cryptocurrencies or the means of access.12

The term $5 wrench attack first appears in the webcomic, XKCD [59]. The comic
describes two characters discussing a physical attack using a $5 wrench to force the victim
to provide information rather than orchestrating a cyberattack. This term has been adopted
in the cryptocurrency space [35], hence the terminology we use throughout this paper.

Five aspects distinguish cryptocurrency wrench attacks from their digital counterparts
and make them a serious threat requiring attention. First, the crime scene is in the physical
world rather than the digital, thereby endangering the physical security and safety of users.
Second, the conventional modi operandi distinguish these, as attackers forgo the technical
skills required to bypass cybersecurity measures and revert to primitive tools and methods
reminiscent of conventional crimes, such as violence, robberies, extortion, etc. Third, wrench
attacks are crimes against persons and property; targets are not just property and ownership,
but also people (users). Fourth, wrench attacks challenge existing cybersecurity measures,
as no existing security measure can ensure that the funds of a victim with a gun pointed
at them are secure. Fifth, everyone is a potential victim, as attackers do not distinguish
between old and new users, professional traders and amateurs, or levels of security awareness.

To deeply understand this emerging threat, we investigate the following research questions:
RQ1: What are wrench attacks? What distinguishes them from other crimes?
RQ2: How do wrench attacks work? Considering the different types, stages, modi operandi,

attackers, and repercussions.
RQ3: How do users perceive this threat? How can they and the cryptocurrency industry

best defend against wrench attacks?

We take an interdisciplinary approach to answer these research questions. We collect three
separate datasets and implement data triangulation to overcome biases that may be present
in a single dataset. First, we collect forum posts from 37 online forums and programmatically
parse out wrench attack-related content. We also conduct in-depth semi-structured interviews
with 10 victims and experts. Finally, we analyze 147 incidents reported in 146 news articles.

Contributions. To our knowledge, this is the first investigation of cryptocurrency wrench
attacks. Our contributions are the following:

We collect three novel datasets: interviews, news articles, and forum posts. We combine
common analysis methods from computer science along with legal and crime science
methods in a way new to the computer science audience.
In the absence of legal and scholarly definitions, we craft the first definition of a wrench
attack. Each form of a wrench attack involves at least one form of traditionally recognized
crime, e.g. robbery; we systematically contextualize these crimes within a wrench attack.
Our definition allows wrench attacks to be separately measured and studied.

1 Acquiring cryptocurrencies often happens when a victim is forced to transfer their cryptocurrencies to
the attacker; whereas acquiring the means of access is where an attacker gains direct access to a user’s
wallet. We discuss this distinction further in §3.

2 “Means of Access” incorporates digital means (e.g. private key, wallet password) and physical means
(e.g. hardware devices like cold wallets or computers) allowing access and/or control of cryptocurrencies.
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We perform a crime script analysis and identify seven forms of wrench attacks dating
back to 2014, including violent crimes, aggravated thefts, and a new form of domestic
abuse we pin as cryptocurrency-facilitated domestic economic abuse.
We identify new physical and cyber security vulnerabilities in cryptocurrency users’
behaviors. Accordingly, we devise recommendations for users, policymakers, software
designers, and other stakeholders.

2 Background

In Section 2.1 we overview prior work which touches upon cryptocurrency physical attacks.
Then in Section 2.2 we explain our methodology, crime script analysis.

2.1 Cryptocurrencies and Physical Attacks

Cryptocurrency users encounter a diverse range of threats, with prior work categorizing these
threats based on varied levels of risk [26, 1]. These user-centered threats span cybersecurity
and technical risks, financial and economic risks, and social and legal risks [26, 1, 10, 48].

Physical attacks have been briefly acknowledged in prior work as a source of threat to
users, however, none comprehensively and specifically investigate wrench attacks or physical
attacks targeting cryptocurrency users. Froehlich et al. identify physical attacks as one
of six threats faced by cryptocurrency users; they focus on the devices or physical objects,
without considering the harms or attacks directed towards users [26]. Voskobojnikov et al.
explore the concerns of cryptocurrency users, including physical safety and the fear of a
gun being held to their heads [57]. Other works explore the reasons for the non-adoption
of cryptocurrencies, highlighting the fear of physical safety as a factor for avoidance [56].
Empirical work examining mobile wallets identifies physical safety concerns as well like the
fear of phones being snatched whilst making mobile payments [58]. There has been some work
into making Bitcoin wallets more secure, including against physical attacks [29, 6], though
the threat models for these improved techniques are often not robust against a coercive
physical attacker.

2.2 Crime Script Analysis

Crime script analysis is a methodology from the crime science field used to systematically
identify the stages carried out when committing a specific crime. These stages include actions
preceding, during, and following the commission of a crime [17, 18] where a criminal event
encompasses specific actors, tools, actions, locations, and motivations. By unraveling the
necessary processes to commit a crime, this approach provides a deeper understanding of
how crimes are committed, situational factors, and other influences. Crime scripting is an
emerging method for identifying intervention approaches derived from different fields. Crime
scripts can be developed with a diverse range of data, including police reports and interviews,
and are developed by explicitly recording the steps and stages involved in the process.

Researchers can use crime scripts to understand various types and classes of crimes [20].
These include complex crimes like organized crimes or financial crimes which incorporate a
longer process, more actors, more preparation, and often a mixture of a few different classes
of crimes [34, 28, 16].
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3 Definition and Crime Steps of Wrench Attacks

There is currently no definition of a wrench attack in legislation or academic work, making
it difficult to measure the scope of such attacks. Other work investigates threats with
measurable, technical definitions (e.g. malware is determined by analyzing network traffic,
files changed, etc., or some signature found in the code itself [5]), however, physical crime
does not yield itself to technical definitions. Instead, we use legal methods derived from
criminal law to formally define these attacks committed in the physical world. This assists
in the subsequent measurement of the incidents.

Criminal courts and law enforcement agencies utilize national criminal codes or laws to
break down an act into steps; this process determines whether an act is punishable by law,
and if so, what type of punishment it entails. According to criminal law principles, an act
is considered “criminal” only if it is defined in the law and its steps are outlined [60]. This
is the universal concept of “no punishment without law”.3 These defined steps are referred
to as crime elements; they constitute a checklist used to determine whether an act follows
predetermined steps and requires penalizing the perpetrator.

Crime elements consist of two main components: the Mens Rea element, also known as the
“guilty mind”, represents the criminal intent of a perpetrator; and the Actus Reus element,
or the “guilty act”, refers to the physical element of a crime, i.e. physical conduct(s) that
constitutes a crime [31]. The Actus Reus requires a 1) act, 2) result, and 3) causation [31].

We propose a definition outlining the steps (crime elements). To craft this definition, a
criminal law expert on our team examined the English common law and French civil law,
both key references for legal systems worldwide. Analyzing the French “code pénal” and
English criminal law, provides insights into crime elements and how they can be adapted and
distilled into steps; hence a checklist [36, 50]. Using this method, we propose our definition
of a wrench attack, create its specific crime elements and aid in understanding how it unfolds
from planning to execution.

Definition. We define wrench attacks as the physical targeting of cryptocurrency owners
with the intention to gain unlawful possession and ownership of their cryptocurrencies by
means of physical force or threat of force or harm. The act combines offences against property,
and offences against natural persons.

Elements. Our proposed elements for wrench attacks are detailed in Table 1; we define
these elements per legal norms and provide a loose understanding for a general audience.

Wrench attacks are intentional crimes and cannot occur accidentally. Furthermore,
similar to many crimes, they have additional unique requirements, such as “property” and
the property “belonging to another” (here the victim’s cryptocurrency or means of access).
The targeted “property” is owned or possessed by someone other than the attacker, as the
attack itself will shift that possession from the victim to the attacker. Finally, wrench attacks
can take seven different forms (Table 3), yet not all can result in success; some are failed
attempts i.e. for reasons not intended by the perpetrator, the desired outcome does not
occur. Though, as demonstrated in Table 5, most of the attacks were successful.

3 This is also known as the Principle of Legality in criminal law. It was developed in the 18th century by
Cesare Beccaria [7].
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Attacker Target Physical Attack
Identifies Leads to

P2P buyer/seller
Cryptocurrency
professional/celebrity
Assumed owner
Miner
Attacker knows target

Intent:
Illegally obtain crypto

Burglary
Robbery
Kidnapping/Forcible confinement
Murder
Blackmail/verbal abuse
Cryptocurrency facilitated
domestic economic abuse

Figure 1 Anatomy of a Wrench Attack: Preparation.

Attacker Target

Demands
from

Payment in
cryptocurrencies
Transfer digital means
of access
Transfer physical
means of access

Crypto or mean of
access transferred?

Successful Attack

Failed Attack
Oblige to demands
Transfer bogues means
of access
Refuse to oblige
Does not own
cryptocurrency
Exchange stops
transaction
Police interferes 

Takes an
action

Figure 2 Anatomy of a Wrench Attack: During and After.

Anatomy of a Wrench Attack. We translate this definition and elements into a step-by-
step systematic guide on how wrench attacks are committed. This anatomy is presented
in Figures 1 and 2, which break up the attack into events precursing the physical attack
(Fig. 1) and events occurring during the attack resulting in the outcome (Fig. 2).

Exclusion Criteria. Our proposed definition acts as an inclusion criterion as it outlines what
qualifies as a wrench attack. By following this definition, we exclude scenarios like insider
threats (not targeting an individual’s cryptocurrency) and attacks on physical infrastructure
(not targeting a person). This is detailed further in the extended paper.

4 Methodology

Informed by the definition outlined in §3, we use data triangulation, a research method that
uses multiple datasets, methods, and approaches to answer a research question [13, 53, 21].
The goal of data triangulation is to enhance validity and credibility. Therefore, we implement
three different research designs and data sources to present a comprehensive understanding of
wrench attacks; these three datasets are later used to perform the crime script analysis in §5.
We present a mixture of qualitative and quantitative research designs, collecting data via
interviews §4.1, forum posts §4.2, and news articles §4.3. Table 2 summarizes our datasets.
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Table 1 Crime elements of wrench attacks per our proposed definition and scope.

Element Definition Loose Understanding

Property
Funds in possession (i.e. cryptocurrencies) or the means
of access that provide the right to access and transfer
funds, such as keys, passwords, and seed phrases.

What the attackers desire to
get through the attack (crypto-
currency).

Belonging
to Another

The perpetrators are aware that the property subject
of the attack, at the time of the attack, is under the
possession or control of another “person” (natural or
legal person).

Perpetrators are aware that
the funds belong to someone
else.

Act Willed and controlled bodily movements [42]. Acts are
detailed in Table 3. What the attacker did.

Result

Appropriation; in this case, transfer of possession (of
the funds) i.e. the victim is permanently or for a pro-
longed period deprived of their ownership, as offenders
assume the legal rights over the victim’s property (i.e.
cryptocurrencies or the means of access).

Attacker must take (or forcibly
lend from) the victim’s crypto-
currency.

Causation
The conduct of using force or threat of force or harm
caused the acquisition of the means of access and/or
the transfer of funds.

The attacker’s conduct itself
caused the harm or damage to
the victim and led to their loss
of funds.

Mens Rea

Wrench attacks are intentional acts. We consider: 1)
general intention where the offender is aware of the
nature of the conduct and has a desire to perform it,
2) specific intention where the offender intends to per-
manently deprive the victim of their funds or means of
access.

Attacker must intend to steal
cryptocurrency.

Attempt

1) Acquiring the means of access, but failing to transfer
the coins, 2) acquiring means of access, but the wallet
contains no funds, 3) failure to acquire genuine means
of access from the victim; i.e., faulty means of access, 4)
the victim does not give in to the threats or assault, 5)
the victim does not or no longer has a wallet(s)/funds/or
access to the means of access.

The attacker’s conduct failed
to deliver the desired outcome
i.e. acquiring the cryptocur-
rencies.

4.1 Interviews

We conducted semi-structured interviews to gain a deeper understanding of wrench attacks,
victimization process, user susceptibility and security behaviors that either ignite or prevent
wrench attacks. We interviewed three groups of users: 1) victims, 2) people who person-
ally know a victim, and/or 3) academics or industry personnel actively involved in the
cryptocurrency ecosystem.

4.1.1 Recruitment

Cryptocurrency owners in general are difficult to survey [3, 2]. Identifying participants for
wrench attacks is even more challenging due to the sensitive nature of these incidents. We
took measures to ensure potential victims felt safe coming forward and speaking with us
while maintaining their privacy during initial contact. When advertising the interviews,
we initially advertised to people who knew a victim and cryptocurrency experts. This was
crucial. All victims we interviewed initially signed up to participate as experts, but during
the interviews, they disclosed that they were victims.
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Table 2 Summary of wrench attack data sources and incidents. Reported incidents are filtered
via our criteria to yield our wrench attack dataset.

Source Dataset Size Reported Incidents Wrench Attacks

Interviews 10 11 11
News articles 146 147 105
Forum posts 672 54 3

Table 3 The main acts involved in the wrench attacks from our dataset of news articles. The
majority involved more than one act, but incidents are sorted here based on the dominating act.
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Burglary 0 9 20 7 1 1 0 38
Kidnapping 1 12 8 1 0 2 0 24
Robbery 0 9 4 9 0 1 0 23
Forcible Confinement 1 2 2 2 0 0 0 7
Murder 1 3 2 0 0 0 0 6
Blackmail 0 2 0 1 0 0 0 3
Cryptocurrency Facilitated 0 1 0 1 0 0 1 3
Domestic Economic Abuse
Fraud 0 0 1 0 0 0 0 1

We followed a multi-step recruitment process. We reached out to academics and cryptocur-
rency experts, securing five interviews. We contacted 98 attendees of an academic information
security conference, obtaining a further 5 interviews. Despite efforts to engage public figures,
we received no responses here. Finally, we posted interview invitations on Bitcointalk [8];
this yielded eight comments but no participants.

We outlined our rigorous security measures and spent weeks building trust with parti-
cipants to gain their consent to participate. Our recruitment focused on gathering personal
experiences, excluding participants informed of wrench attacks solely by news reports. In
total, we conducted 10 interviews both online and in person.

4.1.2 Interview Schedule
We employ a semi-structured interview schedule. The interview schedule comprises 7 sections
and 2 main categories: establishing and identifying the occurrence and characteristics of a
wrench attack, and a series of questions about the security behavior and risk assessment of
participants, general and cryptocurrency-specific demographics, and recommendations for
mitigating wrench attacks. Overall, the final schedule includes 59 questions with a duration
ranging from 35 to 60 minutes. The interview schedule is included in the extended paper.

4.1.3 Profile of Participants
Our sample of 10 interviews includes industry/academic experts, out of which 6 were
victims or directly associated with victims, reporting 11 wrench attacks. We report general
demographics in the extended paper. As for cryptocurrency-specific demographics,
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most participants have over four years of experience with cryptocurrencies, with about half
being early adopters. Three report using peer-to-peer (P2P) in-person transactions, which
we outline as a major risk factor in §5.1.1, while a minority (two) use ATMs. Notably, all use
centralized exchanges such as Binance, hence all underwent Know Your Customer (KYC)
verification. Half the participants knew of specific breaches on exchanges they used; the rest
either assumed their exchange had been breached or were entirely unaware.

Half the sample, especially those residing in financially unstable countries, rely on
cryptocurrencies as an alternative payment method. Three use cryptocurrencies for research
or as a store of value. Nearly all participants own multiple cryptocurrencies, with Bitcoin
being the most common.

4.2 Forum Posts

In order to ensure comprehensiveness, we search for additional reports on social media.
Our first data source is the CrimeBB dataset [46], created in 2018, which amalgamates

underground forum data. This dataset is available for academic research use under a data-
sharing agreement with the Cambridge Cybercrime Centre. We search through ∼110 million
posts made by 6 million members from 36 underground forums (some of which have been
active since 2007) including HackForums and Dread. This yielded no wrench attack reports.

We additionally use the online forum Bitcointalk. Satoshi created this in February 2009
and it is the largest cryptocurrency-focused forum with more than 3.5M members as of
January 2024. We crawl through over 45M posts from July 2010 until August 2023. We use
machine learning to classify our data, as we detail in the extended paper. Our classification
yielded 672 posts about wrench attacks including 3 victim narratives. We also parsed out
links to news articles yielding two additional news articles not already included in Section 4.3.
One of these articles referred to two different wrench attacks, therefore three incidents were
added to our news article dataset (§4.3).

4.3 News Articles

We use an up-to-date list of news articles curated by cryptocurrency expert Jameson Lopp [37].
The list includes publicly reported physical attack cases involving cryptocurrencies. We
collect 144 news articles available from December 2014 through October 2023, reporting 144
unique incidents. As outlined in §4.2, our analysis of Bitcointalk yields 2 additional news
articles reporting 3 incidents. This yields a total of 146 news articles reporting 147 incidents.

We apply our definition (§3) as a selection criterion. This excludes 42 articles, leaving
104 news articles reporting 105 wrench attacks, which we use in our analysis.

4.4 Coding and Analysis

We analyze the three datasets qualitatively. Qualitative analysis provides deep insights into
a subject matter beyond mere quantification. The coding of the data was inductive and
data-driven, with codes and themes derived directly from the data [27]. Coding of wrench
attack-related sections of data followed Cornish’s universal crime script scenes [17]. There
is no single universal script, as it can be adapted and used diversely, depending on the
complexity of the crime and its composition. In conducting this crime script, we borrow
from Hutchings et al. [33], where the script is adapted and divided into three acts tacitly
reflecting the original nine tracks as proposed by Cornish [18, 17].
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4.5 Ethics

This work uses data obtained through interviews, online forums, and news articles. The
ethics committee at the Department of Computer Science & Technology, University of
Cambridge, approved this research. Our recruitment process was covered by this remit.
Interview participants were provided with an overview of the research before providing
informed consent. All interview data was stored locally until transcription. Transcripts
exclude any information identifying the participant or third parties, and the recordings were
deleted along with emails and any other records that contained participants’ personal data.
Participants were advised that they were free to withdraw from the study at any time and
could opt to not answer any of the questions asked.

Our forum data and news articles were extracted from publicly accessible sources. In
our analysis, we paraphrased any quoted text to limit searchability. Furthermore, this work
focuses on analyzing aggregate information and collective behavior of online communities
using publicly available data and under the British Society of Criminology’s Statement of
Ethics, it falls outside the requirement of informed consent [12].

4.6 Limitations

Crime research tends to have limitations due to the hidden nature of offenses, with victims
often being unwilling to report, and incidents that are reported are not necessarily similar to
those that are not. We aim to reduce these limitations by triangulating three data sources,
using data relating to public disclosures of attacks (media reports), anonymous disclosures
(forum posts), and victim accounts (interviews).

Additional limitations include privacy and personal safety concerns led some potential
participants (victims) to opt against participating, this limited the variety of perspectives
included in the study. Furthermore, while the captured experiences of the victims vastly
enriched the dataset, and the recruitment process proved to be immensely challenging, the
generalizability of the sample is constrained.

There are additional limitations related to the forum analysis. Our Bitcointalk dataset
represents approximately 75% of the forum (as of August 2023). We crawl historic forums, so
removed posts are excluded. Our use of specific keywords to create our training sample may
add an inherent bias. Thus, we might not include all posts that are wrench attack-related.

5 Crime Script Analysis

Wrench attacks involve a combination of crimes, with the main aim being financial gain.
The key element that facilitates this goal is targeting individuals. Thus, wrench attacks are
possible by a combination of actions targeting both individuals and their personal property.
We analyze these attacks using three datasets, dividing each incident into 3 parts: Preparation
(Act 1), attack (Act 2), and the aftermath (Act 3). This allows us to encompass all crimes
documented in our datasets.

5.1 Act 1: Preparation

When preparing a physical attack against a victim, the physical location and the primitive
tools and methods utilized in perpetrating the offense play a pivotal role.
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5.1.1 Actors
There are two main actors identified in wrench attacks, the victim(s) and the offender(s).
Actor roles differ depending on circumstances. We find no notable distinction or a pivot on a
specific type of users. Our three datasets reveal a variety of offending actors, indicating the
absence of a singular or specific type of dominant perpetrators for wrench attacks. However,
we do note the prevalence of co-offending compared to solo offending (Table 4b).

Over the Counter (OTC) brokers or peer-to-peer (P2P) transactors. In-person P2P
operations are a prevalent method of exchanging cryptocurrencies with fiat or other crypto-
currencies. P2P transactions usually take place in person and do not require service providers
or KYC verification, nor does it necessarily engage the banking system. It is also a prevalent
approach embraced by those who are unbanked or underbanked, allowing them an alternative
to transfer funds locally and globally.

Based on our interview sample, in three instances the offender(s) were either OTC brokers
or P2P transactors. Of the 104 inspected news articles, 25 reported incidents involving P2P
transactions, while we found two victims with similar encounters on Bitcointalk.

However, OTC brokers can also be targeted by attackers. One of the authors informally
spoke to an OTC broker whose shop was targeted on multiple occasions. The victim preferred
not to be interviewed for security reasons.

Accepting payments in cryptocurrencies. The offender here is a person accepting crypto-
currencies in exchange for goods. In our interview sample, the victim was in a bar, reimbursed
a person in Bitcoin for buying them a round of beer, only for this person to attack the victim
and snatch their phone after learning about their Bitcoin ownership.

Family, friends, and business partners. Offenders may also be acquaintances, business
partners, family members, and romantic partners; i.e. persons who know the victims and
are aware of their involvement with cryptocurrencies. The involvement of these individuals
might either be as a principal perpetrator, or by being a secondary party (accessory) that
aids, abets, procures or counsels the principal(s) offenders. This applies to five incidents in
our interview dataset but only eleven in the news articles study (Table 4b).

Organized crime groups. There are indications that crime groups are involved in wrench
attacks. We note that the role of organized crime groups in technology-related crime can often
be overstated [32, 38], so we refrain from quantifying this to avoid inaccurate assumptions
about group offenders.

Victims as offenders. We record one incident in our interviews and three in the news
articles where the offenders were former victims seeking revenge through their attack.

Corrupt law enforcement agents as offenders. Corrupt law enforcement agents could
either abuse their badges or misuse confidential information gained through police records.
Our news articles dataset includes five such incidents.

5.1.2 Crime Location
Real physical world. A factor setting wrench attacks apart from other cryptocurrency-
related crimes is their occurrence in the physical realm. This entails direct physical contact
between the offender and the victim, involving face-to-face or direct contact like calling the
victim on their private number.
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Table 4 Factors in different wrench attacks (news articles).
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Physical Violence 19 15 7 6 2 0 0 0
Firearm 13 5 6 0 1 0 0 0
Offensive Weapon 2 0 5 0 1 0 0 0
Spiking 1 0 0 0 0 0 3 0
Legal Extortion 0 0 0 1 0 1 0 0
Swatting 0 0 0 0 0 1 0 0
Unspecified 3 4 5 0 2 1 0 1

(b) Type of offender carrying out wrench attack
and their relationship. Each victim outlined
independently so numbers add to more than
105.

Solo Group Total

Strangers 13 91 104
Non strangers 2 9 11
Total 15 100

No favorable environment. Wrench attacks manifest across a diverse spectrum of locations
and environments. Crime scenes span populated public streets, commercial establishments
like shops, private residences, and secluded locales. This was unexpected, particularly the
number of instances of violent crimes on busy streets in broad daylight.

Geographically. The attacks in our interview series span South America, Europe, Asia, and
the Middle East. In the news article dataset, we find attacks occurring in all continents,
with the predominant ones being Europe and Asia (Table 3).

5.1.3 Target Selection

We differentiate between random and non-random selection, whether victims are chosen
specifically because of an identified association with cryptocurrencies or entirely at random.
In our interview dataset, all targets were selected non-randomly. Offenders had varying
degrees of knowledge or familiarity with victims, choosing them based on a presumed holding
of cryptocurrencies. This prior knowledge could stem from acquaintanceship, transactional
meetups, investigation of assumed ownership, and publicly available information e.g. the
victim is a known cryptocurrency professional/figure.

In the news articles dataset, detailed information on the victim selection process or prior
relationship was inconsistent. Hence, we omit implied information on the randomness of the
selection, and only record cases where either a prior relationship existed between the victim
and the offender (11) or the victim is a professional/public figure in the space (27).

5.1.4 Attacks over Time

Interviewees refrained from disclosing precise dates of attacks to avoid identification, but
indicated timeframe; spanning from the early days (2011-2012) to the 2017/18 ICO boom
and beyond. Despite a broad distribution of attacks over the years, the rate of attacks
increased notably at the end of 2017; this coincides with Bitcoin reaching (at the time) an
all-time high. This trend is evident in both the interview and articles datasets, with the
second-highest recorded articles (20) reported in 2018. The highest number of attacks (25) is
noted in 2021, following the return from Covid-19 lockdowns and the all-time high price of
Bitcoin nearing $65,000.
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5.1.5 Tools or Attack Methods
Wrench attacks rely on conventional methods of committing crime. Many wrench attack
offenders resort to physical assault (crimes against persons). The majority of incidents
involved weapons, tools, or objects that could inflict harm. Other methods involved imposing
physical restrictions, spiking, etc. Table 4a outlines tools used per each crime type. Physical
violence and firearms are mostly used in burglaries and kidnapping; robberies use both as
well as offensive weapons (usually knives). Spiking is only used in domestic violence cases.

5.1.6 Motivation
The overarching aim of wrench attacks is to secure substantial funds. The resort to physical
attacks originates from two primary motivations. First, some find it easier to illegally acquire
cryptocurrencies through physical means rather than resorting to sophisticated cyberattacks.

Second, targeting affluent individuals outside the cryptocurrency space is challenging as
forcing victims to make large bank payments is difficult. Unlike bank payments, there is no
threshold for transferred funds in a single transaction. Additionally, offenders benefit from
the absence of comprehensive and global regulatory requirements, simplifying the unrestricted
transfer and cash-out process of cryptocurrencies.

5.2 Act 2: Methods
Wrench attacks are mostly perpetrated in line with other crimes. The current act explores
the various methods (tracks) by which wrench attacks are committed. As a reminder, the
primary goal of the attackers is financial gain, particularly to illicitly gain cryptocurrencies.
Section 5.2.2 details the demands made by attackers to achieve their goal.

5.2.1 Tracks
These tracks outline variations in the wrench attack crime script found in our three datasets.
We summarize the findings from the news articles in Table 3.

Track: Attacks on personal liberty. Kidnapping and forcible confinement violate the
personal liberty of the victim. Kidnapping requires abducting and relocating someone by
force or deception [54]; in forcible confinement, the victim’s freedom of movement is confined,
i.e. they are not relocated nor abducted [39]. In both cases, the aim is financial gain, either
directly through the victim or by demanding a ransom from family members. Offenders
primarily use physical violence, among other methods to commit this (Table 4a).

One of our interview participants was kidnapped and cuffed by acquaintances, and was
forced to hand over a hardware wallet under verbal threats. Notably, five incidents in the
news data involved corrupt law enforcement agents, with victims being forcibly taken to police
stations and extorted by fake police reports and accusations in return for cryptocurrencies.4

Another notable method involved offenders impersonating law enforcement agents or posing
as fake investors and kidnapping victims during a business meeting in a foreign country.

Bitcointalk users express fears of kidnapping, especially fears of loved ones being kidnapped
for a Bitcoin ransom or corrupt government officials leaking information to criminals.

4 We examine the Corruption Perceptions Index (CPI) rank for the countries involving these corrupt law
enforcement agents [51]. These incidents occurred in India (rank 85), Ukraine (rank 116), and Nigeria
(rank 150).
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Track: Violent crimes. Some wrench attacks have resulted in murder. In our interviews,
an interviewee describes a wrench attack involving a murder, where the victim was kidnapped
into a jungle by a contract killer hired by the victim’s business partner. The news articles
dataset includes six murder cases, all occurring after the 2017 ICO boom. Notably, two
cases involved victims of investment scams turning into wrench attack offenders, murdering
scammers who had deceived them into investing in cryptocurrencies.

Track: Crimes against property. Burglary, which entails trespassing a private premise to
commit theft [30], is the most common form of a wrench attack reported in the media. As
seen in Table 4a, burglaries can be hostile as they are the crime type mostly associated with
physical violence and possessing firearms. In three distinct cases, the wrench attack took the
form of a heist, where offenders broke into cryptocurrency firms or service providers (e.g.
exchange), and assaulted employees. In the remaining incidents, the victims in most cases
were either cryptocurrency experts, consultants, miners, or bloggers who publicly discussed
cryptocurrencies.

In our interview dataset, a burglary incident involves breaking into a cryptocurrency user’s
home to take over their funds. Bitcointalk users have also been concerned about burglary
as early as 2014, even though a user refers to the idea as “absurd”, stating: “How would a
potential attacker with a gun even identify which house to break in? This scenario seems
more like fiction and spreads unnecessary fear.” Robberies are also committed with the use
of firearms or physical force (Table 4a), but unlike burglaries, they can occur anywhere. We
see a direct relation between these incidents and P2P transactions. Our interviews reveal
two cases of armed robberies, in Europe and the Middle East. Both were involved in public
P2P transactions between buyers/sellers during which the victims were held at gunpoint. In
one case, the armed robbery escalated further into a car chase. Our interviews also include a
victim who was mugged in a pub while making a Bitcoin payment with their phone. The
offender upon seeing the displayed amounts of Bitcoin on the screen, stabbed the victim and
fled with the phone. The news media includes 23 incidents of robberies, 17 occurring during
P2P transactions in North America and Europe. One Bitcointalk post recounts an armed
robbery by a gang during a P2P transaction in Europe. Another Bitcointalk user reports
an attempted mugging during a P2P transaction, where the offender failed to successfully
snatch their phone whilst transferring Bitcoin.

Track: Blackmail or verbal abuse. Many of the tracks also involve the use of blackmail/ex-
tortion and verbal abuse. Here, we only report instances occurring independently of any
other crimes. Blackmail here ranges from threatening to reveal private, damaging, or
embarrassing information about the victim, or threatening to harm them or a relative or a
friend, unless they comply with their demands [25]. There also exists “legal” tools used in
extortion, such as threatening to report someone to the police or sue them in court.

Our interview participants reported several instances of blackmail and threats. Victims
report being extorted with old and/or intimate pictures of them that could damage their
reputation. The offenders were previous friends, previous romantic partners, and random
strangers claiming to possess such images. In one incident, the offender used the victim’s
family to exercise pressure. In another case, the offender extorted and threatened the
interviewee with legal actions promising to get them into legal trouble.

Verbal abuse takes many forms, ranging from harassment, threats, hate speech, to
insulting or abusive language. The intent is to cause the victim distress and intimidation,
harass them, and/or create an unpleasant and unsafe environment. In wrench attacks, the
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Table 5 The distinct demands made by wrench attackers in our news articles dataset, and the
outcome of the attack divided between failed attempts and successful ones.

Attacker Demand(s) Count Crime Outcome Count

Cryptocurrencies (no specification) 40 Successful 70
Means of access (private keys, storing device, etc.) 30 Failed 29
Specifically requested only Bitcoin 26 Unspecified 6
Unspecified 9

offender has ulterior motives, i.e. obtaining the victim’s cryptocurrencies. The victims we
interviewed disclosed instances of verbal abuse, mostly by friends, distant family members, or
acquaintances who knew the victim owned cryptocurrencies. One victim was stalked by their
harasser; another incident involved the harassment of a woman during P2P transactions.

Both blackmail and verbal abuse were reported more frequently in our interview dataset
(six incidents) compared to the news articles dataset (three incidents). One reason for
this difference may be that news articles recount crimes that have been reported to law
enforcement, and blackmail and verbal abuse might be under-reported or not taken seriously.

Track: Cryptocurrency-facilitated domestic economic abuse. When an intimate partner
or family member exercises economic abuse to take over their victim’s cryptocurrencies, we are
faced with a combination of acts: a wrench attack and a new term we pin as cryptocurrency-
facilitated domestic economic abuse. In our interview dataset, an intimate partner coerces
and/or harms their partner to take unlawful possession of their cryptocurrencies. This form
of economic abuse cases also occurs outside long-term intimate partner relations, such as in
family settings or new romances. The news articles dataset records three cases of such abuse.
In two cases, the offender and victim had a short romantic relationship after meeting on an
online dating app. The other case involves a son stealing his father’s funds. Notably, this
track primarily occurs through spiking (Table 4a).

5.2.2 Offender Demands
The primary goal of wrench attackers is to illegally acquire cryptocurrencies through physical
means. However, not all attackers coerce their victims to transfer cryptocurrencies, instead,
we find in our datasets a variety of requests made by offenders, as shown in Table 5.

Demanding the transfer of cryptocurrencies. In person, the offender(s) coerces the victim
to personally transfer cryptocurrencies. In a successful attempt, the victim under duress,
transfers cryptocurrencies to a designated address. Many offenders specifically ask for Bitcoin,
however, other cryptocurrencies are demanded as well.

Demanding means of access: Storage device. The victim is coerced in person to transfer
the storage device, e.g. a hardware wallet, a mobile phone, or a computer. Often the
offender(s) has prior knowledge that a device exists. Consequently, the device holding
cryptocurrencies is transferred.

Demanding means of access: Access information. The victim is coerced in person to
reveal the private key and/or any other digital security layer that grants full access and
control of the funds. Access demands are not limited to a specific type of wallet, e.g. if
the victim uses a mobile wallet, the offender(s) ask for the phone PIN and the wallet app
credentials. Here, there is a reveal of access/control information.
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Fraud during P2P transactions. Unlike the previous scenarios, the perpetrator resorts to
deception here. The perpetrator and victim meet in person to exchange cryptocurrencies/fiat.
Once the victim makes a transfer, the perpetrator refuses to transfer the equivalent funds
they had initially agreed on. The offender often verbally abuses or threatens the victim if
they refuse to oblige.

5.3 Act 3: Attempt or Completion
The third Act includes the actions that take place following the commission of the crime, as
detailed in Act 2.

5.3.1 Crime Outcome
Successful appropriation – successful wrench attack. A successful wrench attack involves
the successful transfer of funds to offenders, or their acquisition of either a storage device(s)
or means of access.

Failed attempt – failed wrench attack. Failed attempts occur when for any reason, the
offenders do not end up with the victim’s cryptocurrencies or the means of access. While
not all media articles provide information on the outcome of the crime, of those that did,
28 incidents resulted in failed attempts. Attempts are typically thwarted through no funds
being available in the targeted wallet, fictitious means of access, or the victim not submitting
to the offender’s demands.

5.3.2 Role of Law Enforcement
Under reporting. The media reports include just 105 incidents reported between 2014
and October 2023. Of the 11 incidents discussed in the interviews, only two incidents were
reported to the police. Our interview participants had decided not to report due to a number
of concerns. These included privacy and security considerations, as they were concerned that
exposing themselves as cryptocurrency owners could create further risks. Others wanted
to avoid future complications with the same offenders, as they lacked confidence in law
enforcement agencies. Some victims highlighted that they thought their case might not be
taken seriously, or they were hesitant about the outcome. This under-reporting is consistent
with other research on online property crime [49].

Shortcoming in involvement. Law enforcement involvement varies, which can be ascribed
to several factors. During the early days of Bitcoin, cryptocurrencies were often trivialized
as “magic Internet money” which led to minimal law enforcement interest. One interviewee
held at gunpoint in public, reported the incident to authorities. As they state: “From the
start, it was ignored.” Another early-day victim, posting their experience with attempted
street robbery on Bitcointalk, questioned the usefulness of law enforcement: “I’ll report the
incident to the police, but I’m doubtful anything good will come out of it.”

In recent years, the involvement of law enforcement seems to increase due to crypto-
currencies gaining more popularity and value. We can conclude this from the reporting in
media (§5.1.4). Yet, not all law enforcement agencies have the capabilities or access to tools
that assist in dealing with cryptocurrency crime. This can be extended to wrench attacks.

The limited role of law enforcement in usefully addressing wrench attacks helps motivate
our effort in thoroughly defining wrench attacks. While all of the attacks we study were
crimes and therefore under the purview of law enforcement, few were reported and even fewer
still were investigated. One role of definitions is to highlight attention in understudied areas.
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5.3.3 Post Attack Alert
Among the victims we interviewed, a minority chose to alert the community, the rest were
hesitant. This hesitancy is observed in our online forum posts dataset, as a minority chose
to share their experience. The methods of alerting others varied. Some opted to post on
online cryptocurrency communities such as Bitcointalk, or other public platforms such as
podcasts. Others notified local groups through Telegram or WhatsApp. Nevertheless, most
were inclined to preserve their status as cryptocurrency users and decided to remain silent.

6 Security Behaviors and Risk Perception

The cryptocurrency userbase has become more diverse over time [9, 47, 3]. Abramova et
al. [3] suggest a new typology that groups users into three clusters (cypherpunks, hodlers, and
rookies) based on their risk perceptions and security behavior. Contrary to this, we find no
relationship between user experience or security awareness and wrench attack victimization.

During the interviews, we were interested in understanding participants’ security behaviors,
threat assessment, and perceptions of past/future wrench attacks. This could assist in
recognizing behaviors or knowledge gaps among users that increase risk or make them more
favorable targets for attack. Our objective is not to engage in victim blaming, but rather
discern proactive measures to counteract potential attackers.

6.1 Threat Assessment
We explore users’ threat assessment relating to their cryptocurrency ownership. Participants
communicated concerns about the potential exploitation of personal data as a precursor to
a wrench attack. Here, they expressed distrust towards cryptocurrency service providers
(e.g. exchanges) collecting excessive personal data including government IDs, biometrics,
etc., necessary for KYC verification. Ordekian et al. highlight that existing AML/CFT
policies applied within the cryptocurrency space have inadequacies that could cause more
harm than good, especially relating to the security of personal information gathered for KYC
verification [45]. An interviewee expressed these concerns, stating: “... I have to provide
a driver’s license to buy a $10 NFT... But if my identity gets compromised as a result of
making a transaction, it’s a much higher risk, and that’s purely created by the government.”

6.2 Wrench Attack Risk Perception
Existing literature identifies vulnerable groups and behaviors that predispose users to
vulnerabilities in the cryptocurrency ecosystem: security breaches, poor security behavior, and
self-inflicting errors. Understanding one’s vulnerability to potential security threats, coupled
with precautionary security behavior, influences informed security decision-making [55].
Hence, we investigate two key aspects: 1) the risk perceptions of both users and victims, and
2) their confidence in their existing security measures in thwarting future wrench attacks.

Risk perception. We asked participants about the likelihood they would experience a
wrench attack in the future. For victims, we inquired if they anticipate experiencing a
wrench attack again. Half anticipate the possibility, with the remaining feeling secure for
diverse reasons. One participant felt secure as they resided in a jurisdiction with a low
crime rate. Others believe they are unlikely targets as they own insignificant amounts of
cryptocurrencies, primarily for research and curiosity purposes. However, we note many
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wrench attack victims are targeted because of their affiliation with the cryptocurrency sector,
as attackers presume ownership. Hence, we challenge the assumption that limited funds
ownership reduces susceptibility when affiliation exists.

Confidence level in security practices. Participants varied in their confidence that their
security practices were effective against wrench attacks. Three expressed confidence, while
others emphasized situational nuances, like the type of attack or the attacker’s knowledge
and skill level. A security expert was also concerned that attackers might target family
members as an easier route to reach them.

Geographical location was identified by two participants as a key factor affecting their
confidence level; one avoided certain countries due to security concerns. Moreover, confidence
levels varied based on the wallet type. Online or mobile wallets were considered less secure
and easier to steal.

Perpetrators possessing key information. In a scenario where attackers possessed informa-
tion enabling fund access, 7 out of 10 participants doubted their security measures. Concerns
were voiced again about the security of user information held by service providers, with
participants noting that if an exchange is breached, a successful wrench attack would be
possible. These concerns of exchange data breaches [3] align with prior work investigating
the adverse consequences, like social engineering attacks users face due to leaked data [2].

6.3 Repeat and Multiple Victimization

Victims with a history of victimization may be at a higher risk of future victimization [19].
Understanding this and identifying patterns in victimization, such as crime types, specific
environments, and the dynamics of victimization, assists in informing preventative measures.

Repeat victimization. We find being a wrench attack victim does not grant immunity
against future incidents. Though a sensitive topic, two participants reported multiple wrench
attack incidents, suggesting their public figure status and being early adopters as contributing
factors to this.

Multiple victimization. Our interviewees report being the victims of non-cryptocurrency
cybercrime. Three wrench attack victims recounted constant phishing attacks via email or
SMS attempts to gain unauthorized access. Another victim reports a smart contract exploit
having their NFT wallet drained. One victim thwarted a romance scam attempt. Two of the
wrench attack victims attributed their multiple targeting to their fame, with one reporting
online stalking and the other being impersonated with fake cryptocurrency projects and
scams being promoted in their name.

6.4 Post Wrench Attack Changes

Following an attack, two participants spoke openly about behavioral changes. The first
emphasized the significance of alertness, awareness, and openly discussing incidents to alert the
community. The second participant mentioned avoiding carrying significant cryptocurrency
amounts, especially during P2P transactions.
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7 Recommendations and Intervention Areas

In this section, we outline several recommendations for interventions to help prevent wrench
attacks. These recommendations are informed by suggestions made by security experts we
interviewed as well as our expertise. Cryptocurrency holders may have different risk appetites
and exposure, so they may choose to implement what makes sense to their individual situation.
We also address intermediaries who can help prevent or mitigate wrench attacks.

7.1 Precautionary Measures for Users

In this section, we outline recommendations for users that could aid them in protecting
against wrench attacks.

7.1.1 Keeping a Low Profile

Eight out of ten interviewees emphasize keeping a low profile to avoid targeting. This
includes refraining from bragging, flashing wealth, and disclosing financial details. Some
advise not disclosing holding funds entirely, others suggest not specifying the held amount.
An interviewee explained: “We disclose we hold, we disclose we deal, but we never disclose
the amount so that we don’t become more of a target.”

Besides maintaining secrecy, users should be careful when discussing cryptocurrencies,
since eavesdroppers and discussants have turned into adversaries. Users are recommended to
discuss cryptocurrencies only with trusted persons and refrain from public advertisement of
their ownership, even on online forums with pseudonyms which can still be identifiable.

7.1.2 Fund Management

To prudently manage funds, strategic approaches encompass wealth distribution and storage.
Geographical distribution of funds or means of access was recommended. This practice
involves spreading wealth across regions to mitigate localized threats and reduce losses.
Storage diversification adds an extra layer of protection, minimizing exposure to a single
point of failure and enhancing overall resilience. Using multifaceted approaches by mixing
hot and cold wallets helps users avoid losing everything at once. Three interviewees describe
this as “not keeping your eggs in one basket.”

7.1.3 Digital and Physical Safety

Considering the nature of wrench attacks, a combination of digital and physical security
measures can best protect against them.

Digital safety. Multisignature wallets are recommended for securely storing cryptocurrency.
This method mandates m signatures out of a possible n to access funds. Regarding wrench
attacks, these wallets could give victims plausible deniability that the victim would be unable
to transfer the funds. The tradeoff here is that while requiring more signatures could make
it harder for attackers to steal funds, it can be harder for users to set up and potentially
easier for a user to lose their funds. Other digital safety measures include using 2FA on
cryptocurrency online platforms or creating read-only wallets. Both of these measures would
allow victims to be unable to transfer funds or otherwise add time/friction.
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Physical safety. Physical security is crucial in addressing wrench attacks. Situational
awareness is key, considering that different geographical locations pose varying risk levels. By
staying attuned to these risks, users can adjust their behaviors to reduce potential exposure to
threats. Some interviewees feel safer discussing cryptocurrencies in a country with generally
low crime rates; emphasizing that the risks associated with wrench attacks are similar to
other crimes, as it all depends on location. Others consider being in countries with wider
and massive cryptocurrency adoption increases risk exposure, requiring extra caution.

Safety measures are necessary. In addition to keeping a low profile more generally (§7.1.1),
users are recommended to avoid revealing their location in advance of travel and limit sharing
personal information. Additionally, it is important to ensure personal safety during in-person
cryptocurrency gatherings, particularly around due diligence on the identities and intentions
of individuals attending these gatherings to minimize the risk of malicious encounters.

7.1.4 Peer-2-Peer Specific Measures
In-person cryptocurrency transactions are quite common, especially in countries with limited
access to banking, financial crises, or under international sanctions [15]. Yet, this method
carries risks due to direct physical contact between transactors. In the incidents reported in
the news articles, 25% of cases occurred during P2P transactions.

There are two primary precautions for P2P transactions. First, exercise diligence with
the seller/buyer by assessing trustworthiness before the meet-up. Users should avoid meeting
random or potentially risky individuals, especially alone, have an escape plan, and choose
crowded public areas with access to police. Second, exercise diligence with transactions,
starting with smaller transactions to build mutual trust. Users are advised to avoid carrying
large sums of funds, and only bring what is necessary. An additional recommended layer of
diligence is validating large transactions and considering time-delaying transfers.

7.2 Collaborative Initiatives and Interventions
Stakeholders including governments, the cryptocurrency industry, and the community, can
help protect users against wrench attacks. This section details intervention strategies.

7.2.1 Know Your Customer Policies
KYC processes are increasingly imposed by governments on cryptocurrency service providers
(e.g. exchanges) to combat money laundering and terrorist financing. KYC verification
involves collecting/storing/sharing personal information including physical addresses, govern-
ment IDs, financial data, etc. [23, 24]. Yet, the porous security of these businesses made them
highly susceptible to data breaches [43, 44, 40]. This increases the risk for users, making
them potential targets for both cybercrime and wrench attacks [2].

One participant expresses how KYC verification could ignite wrench attacks: “[...]
government requirements for KYC, AML [with centralized exchanges], I would say your
criminal organization that’s operating in some country that has essentially ability to act in
an area, they would get a list of customers of exchanges that are in that area and then they
have to know which of these people [exchange customers] are approachable and everything
else [...] So the government requirements that you provide identity [KYC process] actually
creates like a shopping list for criminals for those kinds of stuff [wrench attacks].”

Cryptocurrency users have voiced privacy fears over KYC verification and the substantial
collection of personal information, as a minority have already been targets for physical
threats following data leaks [58, 2]. Legal academics also argue that the extensive information

AFT 2024



24:20 Investigating Wrench Attacks: Physical Attacks Targeting Cryptocurrency Users

collected by cryptocurrency service providers for KYC compliance poses a security risk to
users, highlighting the unsuitability of already existing anti-money laundering regulations for
the cryptocurrency industry [45]. Hence, governments should either reconsider some of these
policies that are criticized in the banking system for not ideally achieving required aims [11],
or impose higher security standards on these service providers.

7.2.2 Cryptocurrency Exchanges
Cryptocurrency exchanges play the role of an intermediary. They can delay or stop certain
transactions going through their services. In two incidents from the news articles dataset, the
wrench attackers, who successfully coerced the victims to initiate a transfer, failed to fully
receive the cryptocurrencies as the transactions went through exchanges. The latter exchanges
had a 24-hour delay/verification feature which enabled victims to flag the transactions and
stop them. While some exchanges implement this process for large transactions in compliance
with AML/CFT policies, these processes are not standard.

7.2.3 Educational Efforts
Educational resources and awareness could help non-tech-savvy users understand basic con-
cepts like fund/key management, safe storage, and protective security measures. Participants
stressed the importance for the public to be aware of emerging risks, such as wrench attacks.

7.3 System Design Change
This section proposes areas for system design changes.

7.3.1 Cryptocurrency Protocols
Cryptocurrencies themselves can be designed to keep their users safe against wrench attacks.
Better protocol properties like zero knowledge protocols can assist in hiding how much a
user holds. If implemented and used broadly, these can also increase privacy on a protocol
level where it is impossible to tell which users are a part of which transactions. This limits
information attackers can glean on potential victims.

7.3.2 Wallet Software Underpinnings
Wallet software could, for instance, allow the user to create wallets with false proofs of no
funds. This could thwart potential attacks where a victim could show the false proof which
could be validated by the attacker. Mechanisms for easy recovery of wallets could allow users
to take back their money before the transaction is on the network. Making the software of
hardware wallets seamless and changing how seed phrases are handled would make the use
of backup wallets more straightforward. While this might not fully thwart known attackers,
it could help mitigate the impact, particularly with users who currently rely on online or
mobile wallets to store all their funds.

7.3.3 Wallet Interface Design
The user interface of cryptocurrency wallets could be changed to allow more security for the
users against physical attacks. For instance, not showing transaction history/details would
allow users to hide their behavior. Similarly, displaying on the main screen of the app/service
the amount that a user has in their wallet is a known threat (we have a victim in our interviews
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who got stabbed because the offender saw their Bitcoin holdings on their phone screen).
Early research demonstrates that users are rightly concerned here [58]. Not all victims are
necessarily tech-savvy – a user-friendly interface while broadly useful, could help thwart
attacks, since many users struggle with cryptocurrency wallet user interfaces [58, 57, 22].

8 Conclusion

There have been substantial recent efforts towards securing cryptocurrency infrastructure
against digital threats. This has caused some offenders to pivot towards more antiquated
methods of stealing, namely by physical force or threat.

Wrench attacks are a novel, yet unsophisticated, type of crime that is increasing in
frequency. While compared to other forms of cryptocurrency crimes, wrench attacks are less
prevalent, yet, their outcome is more hazardous. This not only imperils users but also impacts
the trust in the space. This is particularly worrying for users residing in countries experiencing
financial unrest, who have sought refuge in cryptocurrencies as an alternative [15].

The media primarily reports cryptomillionaires or dramatic incidents, but we find many
attacks go unreported. There is no adequate regulatory landscape here, and existing
technical defenses seem obsolete. Hence, this paper is an urgent plea to tackle this issue.
Our contributions extend beyond identifying this issue; they serve as the foundation for
regulators, researchers, and stakeholders to collaborate in developing strategies to mitigate
the adverse risks posed by these attacks.

Wrench attacks are an example of criminals eschewing sophisticated methods of commit-
ting crime, and reverting to old-school tactics to exploit new technologies. By acknowledging
these methods, we can better protect users and alleviate the spread of these attacks. Future
work should investigate how regular users are being identified and whether there is a relation
with data breaches.
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1 Introduction

Market making plays a crucial role in enhancing liquidity in financial systems. In traditional
finance, effective market making strategies involve setting buy and sell prices (bid and ask
quotes) as narrowly separated as possible, ensuring these quotes closely mirror the asset’s
true price on a limit order book. This strategy enables market makers to earn a marginal
profit. Such efficacy in market making is driven by sophisticated models that analyze trader
behavior [25, 34, 27]. These models have become fundamental in understanding the principles
of microeconomics and the microstructure of markets.

Market Makers in DeFi. In the field of Decentralized Finance (DeFi), the concept of
automated market making has gained prominence. DeFi employs Automated Market Makers
(AMMs), particularly Constant Function Market Makers (CFMMs) [45][2], offering an
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alternative to traditional limit order books. This approach reduces the computational effort
needed to facilitate trades and ensures liquidity is available for tokens that are less frequently
traded. Unlike conventional markets that primarily utilize limit order books for Peer-to-Peer
transactions, decentralized markets implement a Peer-to-Pool-to-Peer structure. In this
model, Liquidity Providers (LPs) aggregate their resources in a contract, which traders then
utilize to meet their liquidity needs. Thus, any DeFi market needs to incentivize both the
LPs and the traders to ensure a fair and efficient market is created.

Market depth and volatility. DeFi markets exhibit a range of distinct characteristics,
primarily differentiated by market depth (or liquidity) and price volatility. Notably, the
trading volume of stablecoins (approximately $11.1 trillion) has recently exceeded the
transaction volumes of centralized entities like MasterCard and PayPal [31]. Markets with
significant liquidity, especially those trading stablecoins, are highlighted in this context [35].
Such markets typically experience minimal volatility, and their substantial depth minimizes
the price impact of retail trades. Conversely, DeFi features hundreds of infrequently traded
tokens, which suffer from a lack of liquidity, leading to high volatility and price sensitivity to
even small-scale retail trades. These markets are also susceptible to swings in price caused
by flash loan transactions [59]. This paper addresses the optimization of market making
strategies for the latter (less liquid) kind of markets.

Incentives of LPs. A key challenge for Constant Function Market Makers (CFMMs) is
motivating Liquidity Providers (LPs) to contribute their tokens to the pool. For this incentive
to work, it is crucial for CFMMs to minimize the average losses on pooled assets. Yet, it is
widely acknowledged that LPs often incur losses due to fluctuations in reserves [36] and a
lack of market insights [43]. This paper concentrates on reducing the losses that stem from
such informational deficiencies. Specifically, static curves in CFMMs frequently lead to LP
losses as a result of arbitrage activities. These losses are intended to be offset by transaction
fees, contrasting with centralized exchanges which benefit from higher liquidity and trading
volumes but impose lower fees. For example, Binance, a centralized exchange, records a
daily trading volume of approximately $15 billion, significantly higher than Uniswap’s $1.1
billion [9], the largest decentralized exchange. The lower liquidity on platforms like Uniswap
results in less current prices, making them more susceptible to arbitrage losses.

Arbitrage Loss. The specific type of arbitrage loss known as loss-versus-rebalancing (LVR)
can be quantified in certain scenarios [43], and these losses continue to occur despite the
implementation of trading fees [41]. In the case of a generic market maker who sets bid and
ask prices for a volatile asset, arbitrage losses are defined relative to the asset’s true market
price. An arbitrageur engages in a buy transaction when the market price surpasses the ask
price, and in a sell transaction when it drops below the bid price. The resultant loss for the
market maker is calculated as the product of the price difference and the volume of the asset
traded.

Trader behavior. In traditional financial systems, arbitrage-related losses are conceptualized
as adverse selection costs, which arise from interactions with informed traders – those who
are privy to the external market price, akin to arbitrageurs. A market maker achieves
optimal operation by balancing these costs against the profits gained from uninformed
traders, also known as noise traders. This balancing principle was first delineated by Glosten
and Milgrom [25]. Within the Decentralized Finance (DeFi) ecosystem, trading parties
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are differentiated into toxic and non-toxic order flows, which correspond to informed and
uninformed traders, respectively [48, 15]. We extend this model to a more nuanced framework
where traders are categorized along a continuous spectrum of information awareness, ranging
from highly informed to completely uninformed, rather than being strictly classified as either
toxic or non-toxic (Section 3).

CFMMs as prediction markets. For CFMMs, a significant portion of their losses also
arises from the need to encourage traders to disclose their genuine price perceptions during
transactions. In essence, CFMMs provide compensation to informed traders in exchange for
their crucial market insights, which mirrors the principles of market scoring rules utilized in
prediction markets to extract valuable information [24].

Conditions for optimality. A straightforward approach to reduce losses to arbitrage would be
aligning the marginal price exactly with the external market price, which would require real-
time data from a price oracle [16]. Yet, integrating oracles with market making strategies can
lead to potential frontrunning risks [37] and necessitates reliance on centralized, potentially
manipulable external entities [21, 67]. To circumvent these issues, our framework explicitly
excludes the use of oracles. The objective is to deduce the hidden market price by analyzing
trade history data, aiming for maximum efficiency in terms of data utilization. Further, the
market maker uses this to adaptively set its bonding curve so that the loss to arbitrageurs is
as close to zero as possible, ensuring an optimally efficient market. The market maker turning
a profit would be undesirable since this would allow a competitor to undercut its prices and
take away their order flow. In other words, it should quote an efficient and competitive
market price, given only the information it has in form of the trading history. Keeping this
objective in mind, we outline the key contributions of this work.

Our contributions
Optimal algorithms for adapting curves. (Section 4) We provide the differential equation
that the demand curve of an optimally efficient market should follow (Theorem 1). When
the statistics governing trader and price behavior are known and Gaussian/Lognormal, we
show that this differential equation can be solved exactly using a dynamic bonding curve
that changes its operating point using the Kalman Filter (Theorem 2 and Theorem 3).

Adapting to unknown market conditions. When the statistics governing trader and price
behavior are unknown, we extend the previous approach by using an Adaptive Kalman Filter.
We empirically show that both these approaches suffer significantly lower arbitrage losses
compared to a static CFMM. (Section 5.2)

Robustness to adversarial manipulation. In presence of irrational traders that seek to
make the price of the market maker deviate from the external market, we present a robust
version of the adaptive curve algorithm that tolerates upto 50% of trader population being
adversarial. (Section 5.3)

Comparisons with static curves. (Section 6) We provide theoretical comparisons of static
and the proposed adaptive curve models by showing that the error in the adaptive AMM
price, when viewed as an oracle, decays with more trades, while that of a static curve remains
unchanged (Theorem 4).

AFT 2024
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Implied dynamics of static curves. (Section 6)We derive a differential equation (30) that
governs the implied dynamical model given the static CFMM curves that are used in practice.
We show that these CFMMs can only be optimally efficient in a model where inter-block time
for the underlying blockhchain vanishes, the CFMM has more liquidity than the external
market, and that the trader and price behaviour is severely constrained. (Theorem 5)

On-chain Implementation. We specify the end-to-end system design for our proposed
market maker. Furthermore, we provide an implementation of our algorithm using the
recently released Uniswap v4 [57] platform and an off-chain machine learning co-processor
Axiom [51]. This co-processor provides guarantees that the algorithms derived in this work
are executed, and the result is put securely on-chain. (Section 8)

2 Related work

In this section, we reprise relevant literature surrounding the problem formulated in this
paper. Although the motivation of the problem stems from literature studying AMMs in
DeFi, our formulation derives heavily from classical works in market microstructure. The
algorithms that we present in our work derive heavily from literature on control and robust
filtering.

Automated Market Makers. Automated Market Makers (AMMs), particularly in the form
of Constant Function Market Makers (CFMMs) [66, 45], are designed to incentivize trades
that align prices with a more liquid external market [3]. However, this mechanism imposes
costs on CFMM liquidity providers while generating profits for arbitrageurs [23, 29, 61].
This arbitrage profit, often quantified as “loss-versus-rebalancing” in scenarios where only
arbitrageurs (informed traders) interact with the market maker, is proportional to external
price volatility [43]. Various methods have been proposed to capture this loss, including
on-chain auctions [39] and the application of auction theory to dynamically recommend ask
and bid prices for an AMM [42]. Another recent study [26] suggests an optimal curve for a
CFMM based on liquidity providers’ price beliefs. However, this study does not consider a
dynamic model where traders react to market maker price settings. In [42], a dynamic trading
model is examined, deriving optimal ask and bid prices. Yet, this approach necessitates
the market maker’s knowledge of underlying model parameters, limiting adaptability to
market conditions. Additionally, while [42] focuses on a monopolistic market maker, our
work examines a competitive market maker. Our research aligns closely with [46], which
addresses competitive market conditions but only within a liquid, non-volatile market with
restricted trade sizes. Reinforcement learning algorithms to adapt CFMM bonding curves
have been explored in [14], though the primary objectives there are fee revenue control and
minimization of failed trades.

Optimal market making. The trader behavior model we employ is derived from the Glosten-
Milgrom model [25], which is widely used in market microstructure literature. However, we
modify it to incorporate a continuously changing external price. Several subsequent studies
[17, 18] develop optimal market-making rules within a modified Glosten-Milgrom framework,
but they assume that the underlying model parameters are known and that external price
changes are communicated to the market maker. A more data-driven reinforcement learning
approach is taken in [12], but their reward function presupposes direct information about
the external hidden price, whereas we assume no access to a price oracle. Another aspect of
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optimal market making in traditional market microstructure literature focuses on inventory
management [30, 7], rather than the information asymmetry between traders and market
makers. Our goal is to design a market maker that mitigates losses due to information
asymmetry, similar to the Glosten-Milgrom model, without imposing inventory constraints.
The Glosten-Milgrom model has been considered for AMMs in DeFi, though only for
individual trades [5, 4].

Optimal filtering and control. The classical filtering and control literature underpins many
contemporary automated systems, offering theoretical foundations and practical applications
for dynamic system regulation. Kalman filtering, a robust statistical method, is widely used for
estimating the state of a linear dynamic system from incomplete and noisy measurements [32].
This technique combines real-time measurements with prior estimates to produce updated
predictions, proving crucial for systems requiring high accuracy and responsiveness, such
as navigation systems, aerospace engineering, and automated trading. In control theory,
concepts like optimal control and feedback mechanisms are fundamental for designing systems
that maintain desired output levels despite external condition changes. These principles
have been extensively explored in works such as [65], and further developed through modern
control theories addressing non-linearities and uncertainties in system dynamics [68]. The
integration of filtering and control methodologies has led to the development of Adaptive
Kalman Filtering [40], which adjusts its parameters based on observed errors, enhancing
performance in varying conditions. Adaptive Kalman Filtering has seen applications in
diverse areas, including robotics [63], automotive systems [28], and finance [20], illustrating
its versatility and robustness in handling dynamic, uncertain environments.

3 Preliminaries and model

We now describe the framework used for modeling trader behavior in response to the evolution
of an external price process, that is hidden from the market maker, and the prices set by the
market maker. We also state the objective that the market maker seeks to optimize, and
provide the motivation behind it. The model and the objective are based on the canonical
Glosten-Milgrom model [25] studied extensively in market microstructure literature. We
assume that the market maker has access to an inventory of the asset and numeraire. The
price of the asset is expressed in terms of the numeraire. We assume that time is discrete
and indexed by t.

External price process. The external price process pt
ext of a risky asset is assumed to follow

a discrete time random walk, where the distribution of a price jump at any t is parametrized
by σ. That is, we have

pt+1
ext = pt

ext + ∆pt
ext (1)

where ∆pt
ext is i.i.d. ∼ Dσ,pt

ext
. Intuitively, the parameter σ can be thought of as a measure

of volatility of the external price. Further, the random process pt
ext can either represent the

price of the asset in a larger and much more liquid exchange, or some underlying “true” value
of the asset. In both cases, we assume that it is hidden from the market maker. To put it in
DeFi terms, the market maker does not have an access to any “price oracle” that can tell it
information about this external price.
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Market Maker. The market maker consists of a pool containing an asset and a numeraire.
It then publishes a demand curve gt(p) [42] before each trade. All traders have full access to
the demand curve at any time. The demand curve specifies how the price of the asset changes
based on the inventory available. In particular, g(pt

0) specifies the amount of asset when
the initial operating point of the demand curve is pt

0. That is, the price of an infinitesimal
amount dx of asset is pt

0dx. The amount of numeraire in the inventory at the same operating
point is −

∫ pt
0

0 pdg(p). For an incentive compatible market maker, we constrain g(.) to be
non-increasing (Proposition 2.1 in [42]). Equivalently, the market maker may be represented
by the canonical bonding curve ϕt(x, y) [66] which is a function (of reserves x, y of the asset,
numeraire respectively) that stays constant over any single trade.

Trader behavior. We assume that a trader appears at every time step t, and sees a noisy
version of the external price in each time step, denoted by pt

trad, with the noise distribution
being parametrized by η.

pt
trad = pt

ext + ∆pt
trad (2)

where ∆pt
trad is i.i.d. noise ∼ Dη,pt

ext
sampled at each time step. Intuitively, the parameter η

can be construed as measuring the level of “toxicity” or informed nature of the traders.

Trade actions. As mentioned before, the market maker publishes a demand curve gt(p) at
each time step. The trader performs a trade that brings the operating point of the demand
curve from pt

0 to pt
trad. Thus, the trader behaves as if it is performing arbitrage between a

market with price pt
trad and the demand curve published. For instance, if the operating point

pt
0 of the market maker is less than the trader price pt

trad, then a trader would buy asset from
the market maker to sell on the external market until the operating point shifts to pt

trad.

Objective. Our objective is to design an algorithm to set ask and bid prices for the market
maker, such that the expected loss with respect to the external market is minimized and the
market maker stays competitive. Taking inspiration from [25], but extending to the modified
trader behaviour, we get the following condition

pt = E[pt
ext|Ht−1, pt

trad] ∀pt
trad (3)

where Ht−1 = ⟨(pτ
trad, gτ (.))⟩t−1

τ=0 is the history of trades and demand curves until time t− 1,
and pt is the net price of the trade (the ratio of change in the reserves of the numeraire with
the change in the reserves of the asset).

Interpreting the objective. Setting the prices as per the above objective makes the expected
loss of the market makers to traders vanish, since

E[(pt
ext − pt)|Ht−1] = 0 (4)

Note that the expression above quantifies the expected loss for per unit trade of the asset.
The market maker can obtain a strictly positive profit by choosing a curve with slightly

higher prices (than the ones obtained in (3)) on the ask side or slightly lower prices on the
bid side (in other words, by choosing a CFMM with a higher curvature [4]). However, doing
this would make it less competitive, since any other market maker with slightly greater bid
or a slightly lesser ask would offer a better price and take away the trade volume. Although
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we do not explicitly model other market makers, their presence is implicit in setting prices
according to (3). This equation represents the ideal conditions for capital efficiency, where
both the trader gets the best price possible while the market maker avoids a loss.

Also, note that the market maker incurs a loss in every trade made by an perfectly
informed trader. Thus, to make the expected loss vanish, it should learn to set prices so
that the loss to more informed traders is balanced by the profit obtained from less informed
traders. The equation (3) can also be interpreted as striking this balance.

4 Differential Equation for the optimal curve

As mentioned in Section 3, we make use of the general demand curve formulation for market
makers. Assume that the amount of asset in reserves at any price pt

0 is gt(pt
0), while the

amount of numeraire is −
∫ pt

0
0 pdgt(p), where the function gt needs to be non-increasing for

the AMM to be incentive compatible [42]. Here, pt
0 is the initial operating point of the AMM

at the beginning of the time slot t. Let ft(p) be the belief (probability distribution function)
of the AMM over the price p of the asset at time t. Let fη(p) be the distribution of noise
through which the price is observed by the traders. Let pt

trad be the price that the trader
observes. Then, the trader would make a trade with the AMM such that the marginal price
of the asset just after the trade is pt

trad. We now solve the optimal market conditions given
by (3).

In this case, the effective price of a trade at time t is given by

pt =
−

∫ pt
trad

pt
0

pdgt(p)
gt(pt

0)− gt(pt
trad) , (5)

where pt
0 is the operating point of the AMM just before the trade. Further, by definition of

conditional expectation of the external market price, we also have

E[pt
ext|Ht−1, pt

trad] =
∫ ∞

0 pfη(pt
trad − p)ft(p)dp∫ ∞

0 fη(pt
trad − p)ft(p)dp

. (6)

since the noise at time t is independent of the external price at time t. Substituting (6) and
(5) in (3) gives us

−
∫ pt

trad

pt
0

pdgt(p)
gt(pt

0)− gt(pt
trad) =

∫ ∞
0 pfη(pt

trad − p)ft(p)dp∫ ∞
0 fη(pt

trad − p)ft(p)dp
∀pt

trad (7)

Rearranging gives us

gt(pt
trad) = gt(pt

0) +

∫ pt
trad

pt
0

pg′
t(p)dp

β(pt
trad) ∀pt

trad (8)

where βt(pt
trad) =

∫ ∞

0
pfη(pt

trad−p)ft(p)dp∫ ∞

0
fη(pt

trad
−p)ft(p)dp

. On the other hand, if we let pt
trad → pt

0 in (7), we
get

pt
0 = βt(pt

0) (9)

Thus, using (8) and (9), the demand curve of the optimal market maker can be given by the
following theorem.
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▶ Theorem 1. Let the amounts of asset and numeraire in the reserves of a market maker
be xt

0, yt
0. Then, the optimal demand curve gt(p) for a market maker obeys the following

differential equation

(βt(p)− p)g′
t(p) + β′

t(p)gt(p)− β′
t(p)xt

0 = 0 (10)

with the constraints limδ→0− g(pt
0 + δ) ≥ xt

0 and limδ→0− −
∫ pt

0+δ

0 pdg(p) ≥ yt
0. This equation

can be solved separately for p > pt
0 and p < pt

0. Furthermore, the initial operating point pt
0 is

a solution to the fixed point equation

p = βt(p). (11)

The differential equation (10) is obtained by simply applying the Leibniz rule of the
derivative of a definite integral on (8). Note that we can rewrite (8) as∫ pt

trad

pt
0

(
1− p

βt(pt
trad)

)
dgt(p) = 0 (12)

We see that a discontinuity at pt
0 implies that dgt(p) is not a differential but is a negative

real number. Since p = βt(p) at pt
0, we have the term inside the integral → 0 as pt

trad → pt
0.

This implies that a discontinuity in gt(p) is allowed at pt
0. Further, since the (12) holds for

pt
trad > pt

0 and for pt
trad < pt

0, the differential equation can be solved separately for p > pt
0

and p < pt
0.

Finally, assuming that the AMM finds solutions to (10) and (11), the trader is free to
move the market to pt

trad. The market maker then simply uses Bayes’ rule to update its
beliefs over the external prices as

ft+1(p) = fη(pt
trad − p)ft(p)∫ ∞

0 fη(pt
trad − p)ft(p)dp

(13)

The updated belief ft+1(p) is now used to compute βt+1(p), thus completing the market
making algorithm. Equations (10), (11) and (13) describe the complete dynamics of an
optimally efficient market maker.

5 Optimal Solutions for special cases

In this section, we present solutions to the differential equation derived in Theorem 1 for
some special cases: Gaussian and Lognormal price jumps and trader noises. That is, we
assume that both ∆pt

ext and ∆pt
trad follow a Gaussian or Lognormal distribution. Under

these assumptions, we get the following key results.

5.1 Kalman Filter algorithm for known market parameters
▶ Theorem 2. If ∆pt

ext ∼ N (0, σ2) and ∆pt
trad ∼ N (0, η2) where σ, η are known to the

market maker, then the fixed point equation pt
0 = βt(pt

0) (11) has a unique solution given by
the Kalman filter [32] estimate of pt

ext, that is, we have

pt
0 = E[pt

ext|Ht−1]. (14)

Further, the differential equation (10) has a family of solutions, given by

gt(p) =

xt
0 + yt

0
pt

0
if p ≤ pt

0

max(0, x̃t
0 − Ct(p− pt

0)
Kt

1−Kt ) if p > pt
0

(15)

where Kt is the Kalman gain, and Ct, x̃t
0 are non-negative constants, such that x̃t

0 ≤ xt
0.
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Algorithm 1 A Kalman filter based algorithm to adapt the AMM curve.

Require: Known η, σ, Reserves x0, y0
1: t← 0
2: T ← Number of total time slots
3: Initial price estimate p

0|0
ext ← p0

ext

4: P0|0 = 0
5: while t ≤ T do
6: θt ←

p
t−1|t−1
ext xt−1

p
t−1|t−1
ext xt−1+yt−1

7: Publish bonding curve xθty1−θt = xθt
t−1y1−θt

t−1
8: Observe trader action pt

trad

9: Kt ←
Pt−1|t−1+σ2

Pt−1|t−1+σ2+η2 ▷ Update Kalman gain

10: p
t|t
ext ← (1−Kt)pt−1|t−1

ext + Ktp
t
trad ▷ Update Kalman estimate of the external price

11: Pt|t = (1−Kt)(Pt−1|t−1 + σ2) ▷ Update Kalman uncertainty
12: end while

The above solution corresponds to a CFMM with the initial slope of the bonding curve
given by the Kalman estimate of pt

ext by treating pt
trad as noisy observations. Thus, we only

need to calculate a single quantity E[pt
ext|Ht] (see Algorithm 1), and set the other parameters

of the demand curve according to (15). We get a similar solution if we assume that the
external price follows geometric Brownian motion.

▶ Theorem 3. If log pt
ext

pt−1
ext

∼ N (0, σ2) and log pt
trad

pt
ext
∼ N (0, η2) where σ, η are known to the

market maker, then the fixed point equation pt
0 = βt(pt

0) (11) has a unique solution which is
a function of the Kalman filter [32] estimate of log pt

ext, that is, we have

pt
0 = exp

(
E[log pt

ext|Ht−1] +
Pt|t

2(1−Kt)

)
, (16)

where Kt is the Kalman gain, and Pt|t is the variance of the Kalman estimate of log pt
ext.

Further, the differential equation (10) has a solution given by

gt(p) =

xt
0 + yt

0
pt

0
if p ≤ pt

0

max(0, x̃t
0 − Ct(p1−Kt − κt)

Kt
1−Kt pKt) if p > pt

0

(17)

where Ct, κt, x̃t
0 are non-negative constants such that x̃t

0 ≤ xt
0.

Family of optimal demand curves. We note that both Theorem 2 and Theorem 3 recommend
a family of demand curves that satisfy the Glosten-Milgrom condition (3). The simplest
curve in this family is the one where x̃t

0 = Ct = 0. This gives the simple demand curve which
is constant except for a discontinuity at pt

0. This corresponds to a constant sum market
maker with bonding curve y + pt

0x = k with an adaptive slope given by the Kalman estimate
of the external price conditioned on trader behavior.

An apparent contradiction, and a resolution. A feature of the optimal demand curves
derived is the fact that they do not make it possible for a trader to express any price
pt

trad between 0 and ∞. For instance, if we take the constant sum instance of the family
of curves, it only allows the trader to express if the price of the trade is greater than or

AFT 2024
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less than pt
0, but not the exact value of pt

trad, which contradicts our assumption that the
market maker can observe all of the history of trader prices ⟨pτ

trad⟩tτ=1. We can resolve this
contradiction by approximating the optimal demand curve as a sum of two demand curves
gt(p) = gopt

t (p) + gexp
t (p), where the former curve is the optimal solution with most of the

liquidity, and the latter curve with low liquidity to improve its price expressiveness. For
instance, we can have gt(p) = (1− ϵ)gCSMM

t (p) + ϵgCP MM
t (p) where we have

gCSMM
t (p) =

{
xt

0 + yt
0

pt
0

if p ≤ pt
0

0 if p > pt
0

(18)

gCP MM
t (p) = 1/

√
p (19)

with ϵ << 1. This combines the demand curves of the constant sum market maker (the
optimal solution) and a constant product market maker (the expressive solution) as an
approximation.

Other practical approximations. Another way we can parametrize the curve of the market
maker is to choose it from a family of curves such that the initial marginal price matches pt

0
as prescribed by Theorem 2 and Theorem 3, and processing a trade on any curve in that
family is computationally simple. To that end, we can use the Constant Mean Market Makers
[22, 38] with its weighting factor as our variable parameter. Note that the CMMMs performs
trades along the curve xθy1−θ = k where k is a constant, and x, y are the quantities of the
asset and the numeraire in the market maker [22]. This ensures that no trade can exhaust
either the asset or the numeraire from the AMM reserves. We know that the marginal price
of the asset at any state of the reserves is given by p = θy

(1−θ)x . Therefore, in our case, we set

the value of parameter as θt = pt
0x

pt
0x+y

. This ensures that the starting price of any trade is pt
0,

and the market maker can only get a better price than that for a large trade.

5.2 Adaptive Kalman Filter algorithm for unknown market parameters
Need for more adaptivity. A major assumption while solving for the optimal demand curve
in the Gaussian/Lognormal model was that the market parameters σ, η that control the
variances of the price jump and noise were known to the AMM. These can indeed be obtained
by analysing historical trading data in any market, and can be assumed to change slowly
on the timescale that prices undergo changes. However, this assumption might not always
hold for assets or tokens that are less well known or have no historical data. To deal with
this case, we propose a modification to Algorithm 1. This ensures that we simultaneously
estimate the parameters η, σ and hence help estimate the hidden external market price. To
that end, we observe that we can write the likelihood function of all random variables and
parameters of our model at time t as follows

Lt = L(⟨pτ
trad, pτ

ext⟩tτ=1, η, σ) =
t∏

τ=1

1
2π
√

ησ
exp

(
− (pτ

ext − pτ−1
ext )2

2σ2 − (pτ
trad − pτ

ext)2

2η2

)
,

(20)

which gives us the conditional log-likelihood given the trader actions as

E[log Lt|⟨pτ
trad⟩tτ=1] = − t log σ

2 − t log η

2 −
∑t

τ=1 Aτ

2σ2 −
∑t

τ=1 Bτ

2η2 , (21)
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Algorithm 2 Adaptive Kalman filter : EM algorithm estimating unknown parameters at time
step t.

Require: Trader data ⟨pτ
trad⟩tτ=1, Error Tolerance ϵ

1: σ ← Initial guess σ0
2: η ← Initial guess η0
3: i← 0
4: LogLikelihood = −∞
5: while LogLikelihood < −ϵ do
6: E step: Set Aτ , Bτ as per Equations (22) and (23), assuming guesses σ, η

7: M step: Set σ =
√

2
∑t

τ=1 Aτ /t, η =
√

2
∑t

τ=1 Bτ /t

8: LogLikelihood ← Equation (21)
9: i← i + 1

10: end while

where Aτ , Bτ are given by

Aτ = E[(pτ
ext)2|⟨pτ

trad⟩tτ=1] + E[(pτ−1
ext )2|⟨pτ

trad⟩tτ=1] + 2E[pτ
extp

τ−1
ext |⟨pτ

trad⟩tτ=1], (22)
Bτ = (pτ

trad)2 + E[(pτ
ext)2|⟨pτ

trad⟩tτ=1] + 2pτ
tradE[pτ

ext|⟨pτ
trad⟩tτ=1]. (23)

Estimating the unknowns. We now estimate the market parameters σ, η using the EM
algorithm [19]. This can be done by first setting the terms Aτ , Bτ using (22) and (23) with
the expectations on the RHS calculated via forward and backward runs of the Kalman
filter assuming an initial guess estimate of σ, η. The forward runs of the algorithm involve
computing E[pτ

ext|⟨pτ
trad⟩τi=1] for all τ = 1, · · · , t. These are estimates of the external price

given only the data in the past. This can be done using the Kalman filter updates given in
Algorithm 1. Next, we use the Rauch-Tung-Striebel smoother [60], an essentially backward
run of the Kalman filter algorithm given all the statistics obtained from the forward run.
This computes statistics such as E[pτ

ext|⟨pτ
trad⟩ti=1], that is, the estimate of the external price

in the past given all of the observations till the present time slot. This evaluates all of the
terms in Aτ and Bτ , and completes the E-step of the EM algorithm.

After that, we use (21) to find values of σ, η that maximize the conditional log-likelihood
function. This involves setting the gradient of the expected log likelihood function to zero

∇σE[log Lt|⟨pτ
trad⟩tτ=1] = 0, ∇ηE[log Lt|⟨pτ

trad⟩tτ=1] = 0. (24)

While doing this, we ignore the dependence of Aτ , Bτ on η, σ to obtain

σ∗ =

√
2

∑t
τ=1 Aτ

t
, η∗ =

√
2

∑t
τ=1 Bτ

t
(25)

which completely specifies the M-step of the EM algorithm. This has been summarized in
Algorithm 2.

Managing computation, and adapting to a non-stationary market. While Algorithm 2
added on top of our AMM helps us estimate the unknown market parameters, its com-
putational complexity keeps growing linearly with each additional trade. This is because
every trade adds another term in the series that computes the log-likelihood function, hence
increasing the number of iterations in both the forward and backward runs of the Kalman
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filter. Additionally, this algorithm also assumes there is no change in the market parameters
η, σ with time, that is, the market conditions are stationary. We can make the algorithm
less computationally heavy and adapt to non-stationarities by truncating the trading data to
a recent history of pτ

trad. This approach keeps track of all price estimates of the past, since
they get refined with every backward run of the Adaptive Kalman algorithm, but only runs
the algorithm on the recent history of price estimates and trading data.

5.3 Adversarial robustness
A prominent danger to the proper functioning of market making protocols is the presence of
adversarial trader behavior. The model described so far and the optimal solutions presented
remain valid only when traders interacting with the market are rational with respect to the
external market. However, there is always the possibility that an AMM is being manipulated
for profits extracted from other protocols (e.g. lenders[6], derivative markets, etc.) relying
on the AMM as a price oracle [2]. Although any protocol using an AMM as a price oracle
usually takes necessary precautions, such as ensuring a diverse portfolio of price signals, using
outlier-robust statistics such as medians rather than means, etc. we show that our market
making algorithms can be made robust to such market adversaries, when the proportion of
such adversarial is less than half of all trading interactions.

Adversary model. The adversarial behavior we seek to guard against is the manipulation of
pt

trad that the AMM observes and not the external price pt
ext. We assume that the external

price is inferred from a deep market that is not easily manipulated. We further assume
that a proportion α of the trader population is adversarial and the rest behave as per the
rational model in Section 3. However, since the AMM does not know which trades are being
manipulated by the adversary, we assign a sequence of learnable weights wτ for all trade
observations in the past ⟨pτ

trad⟩tτ=1. To successfully manipulate the price, the adversary needs
to push pt

trad in a specific direction so as to induce a large discrepancy in the marginal prices
of the AMM curve and pt

ext.

Robust adaptive curve algorithm. A simple modification of the EM algorithm enables us to
distinguish adversarial trades from honest trades [13, 64]. We first rewrite the log-likelihood
function of the AMM as

E[log Lt|⟨pτ
trad⟩tτ=1] = − t log σ

2 − t log η

2 +
t∑

τ=1

(
log wτ

4 − Aτ

2σ2 −
wτ Bτ

2η2

)
, (26)

which basically assumes that each datapoint has a different variance in noise η2/wτ . This
implies that data with low weights have a higher variance, and are hence the adversarial
outliers. We start our algorithm with an equal weight given to all datapoints, and then
estimate Aτ , Bτ assuming those weights and running the forward and backward runs of the
Kalman Filtering algorithm. After that, we set new weights by getting the critical points for
the log-likelihood maximization using

∇wτ
E[log Lt|⟨pτ

trad⟩tτ=1] = 0 =⇒ w∗
τ = η2

2Bτ
. (27)

This completes the adversarially robust version of the Kalman filtering algorithm. We
empirically demonstrate the effectiveness of the approach for α < 0.5 compared to static
curves, and a naive Kalman filtering approach (Section 7).
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6 Implications for AMMs with static curves

If we view the market maker as a price oracle, then one can compare the performance
of different algorithms based on how the mean squared error of the AMM changes with
the incoming trades. In particular, one can compare how quickly the error goes down in
the adaptive protocol proposed in Section 5.2 and a static curve such as Uniswap. This
comparison has already been done for liquid markets [46], where we observe an exponential
decay of the error for an adaptive protocol compared to a linear decay for a static one.

Error performance with trades. For our case, let us assume that we are comparing how
Algorithm 1 performs in contrast to a static curve, if we assume that it is deployed on a
blockchain with T trades in a block. Then, we can prove that the error decreases with
number of trades for Algorithm 1 and stays constant for a static curve.

▶ Theorem 4. Let there be T trades in a single block of transactions, with the external price
at the creation of the block being pext. We denote by pT

KF and pT
SC the marginal prices of the

Algorithm 1 and a static curve at the end of the block. Then, we have

E[(pext − pT
KF )2] = η2σ2

Tσ2 + η2 (28)

E[(pext − pT
SC)2] = η2 (29)

Implied dynamics of static curves. We see that static curves are worse oracles because
they do not use the realistic dynamical model to get the best estimate of the external price.
The question then arises if there is any dynamical model that a particular static curve is
optimal for. Note that the differential equation (10) can be viewed as an equation in βt(p) if
the curve gt(p) is given. We now use this observation to work out the implied dynamical
model underlying commonly used static curves. More formally, given the demand curve of
a static AMM g(p), we can find the corresponding βt(p) function by solving the following
differential equation

β′
t(p)(gt(p)− xt

0) + βt(p)g′
t(p)− pg′

t(p) = 0 (30)

with the initial operating point pt
0 satisfying the constraint p = βt(p). We now solve

this equation for some common CFMM curves to get the underlying implied price/trader
dynamics.

Constant Sum Market Makers. The demand curve for a constant sum market maker is
given by

gt(p) =
{

xt
0 + yt

0/pt
0 if p ≤ pt

0

0 if p > pt
0

(31)

where pt
0 = p0 stays constant with time. Note that substituting the demand curve in (30)

gives a trivial equation β′
t(p) = 0. This, coupled with the condition on the initial operating

point implies that βt(p) = p0 for all t. Clearly, this implies a dynamical model where
∆pt

ext = ∆pt
trad = 0. In other words, a CSMM assumes that the external price stays constant

with time and that the traders have a noiseless view of the price at all times.
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Constant Mean Market Makers. The demand curve for Constant Mean Market Makers is
given by

gt(p) = c

p1−θ

(
θ

1− θ

)1−θ

(32)

where the bonding curve for the constant mean market maker is of the form xθy1−θ =
constant, where x, y denote the reserves for the asset and numeraire respectively.

Substituting this in (30) and solving for βt(p) gives us the following function

βt(p) = 1− θ

θ
pθ(pt

0)1−θ 1− (pt
0/p)θ

1− (pt
0/p)1−θ

(33)

which also satisfies βt(pt
0) = pt

0. In particular, if we look at constant product market makers,
we have θ = 1/2, giving us βt(p) =

√
pt

0p. For this βt(.) function, we have the following
result.

▶ Theorem 5. The following price and trader behavior dynamics yields βt(p) which obeys
(33). Equivalently, the following model has a constant mean market maker with weight
parameter θ as its optimally efficient solution,

log pt
ext = log pt−1

trad + ϵt
σ (34)

log pt
trad = log pt

ext + ϵt
η, (35)

where ϵσ, ϵη are independent Gaussian random variables with zero mean and variances σ, η

respectively, where the variances satisfy the following conditions.

σ ≪ 1 (36)

η = σ
(√

1/θ − 1
)

(37)

The above theorem sheds light on why static curves fail to prevent arbitrage loss as
effectively – the implied dynamic model that they assume is mismatched with more realistic
trader behavior. This mismatch manifests itself in the following ways, as indicated by (36)
and (37).

Low latency blockchain. Firstly, static curves assume that the price jumps between
consecutive trades have a very small variance. This is equivalent to assuming that the inter-
block times on the underlying blockchain go to 0. This is because the standard deviation of
price jumps σ between blocks depends on the price volatility σ′ as σ = σ′

√
∆t, where ∆t is

the inter-block arrival time. This observation confirms the conclusion reached in [41] and the
broader DeFi community [62], where the arbitrage loss (or LVR) is calculated for the special
case of all of the trader population being arbitrageurs and concludes that this loss indeed
approaches 0 as the inter-block time goes to 0.

Constraints on noise traders. Secondly, the noise in the price that the traders see obeys a
specific structure – η2 = σ2(1/θ − 1). For a constant product market maker, this specifically
assumes that the variance of price jumps is exactly the same as the variance of the noise
in trader beliefs about the price. This implies additional restrictions on price and trader
behaviour that might not always be true in real markets. However, these constraints can
potentially help decide how toxic and non-toxic trade flow is guided in “DEX-aggregator”
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such as UniswapX [58], 1inch [1], CoWSwap [52], etc. to ensure that passive LPs (that invest
in pools) get a fair price as defined by (3). The main threat that such aggregators pose
to passive LPs is that much of the non-toxic (or uninformed, or noise) trades get satisfied
internally without any trades flowing through the pools, while the surplus (usually toxic or
informed) gets routed though the passive pools [8]. The equation (36) prescribes how much
non-toxic flow should be “added in the mix” to ensure fairness to the passive pool LPs.

Dominance of DEXes. Thirdly, (34) highlights another key assumption – the external
market also reacts to the price on the AMM. This is only true when the AMM has an amount
of liquidity that is more than the external market, which is not true for most AMM pools or
decentralized exchanges today [11]. This means that static curves are guaranteed to make a
loss to arbitrageurs unless decentralized exchanges become the main sources of liquidity, and
the inter-block arrival time on the underlying blockchain become negligible.

7 Empirical Results

In this section, we present the empirical performance of the algorithms discussed so far in
this work1.
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Figure 1 Percentage monetary loss per trade of our market making algorithms (Kalman Filtering
and Adaptive Kalman Filtering) is much less than a static Uniswap curve for a Gaussian price jump
and trader noise models.

Comparison with static curves. We simulate the model described in Section 3 and compare
the performance of the algorithms we proposed (Figure [1]). We see that adapting the AMM
curve according to algorithms 1 and 2 give a much lower monetary loss per trade than a
static constant product curve that is used in Uniswap. Furthermore, the Adaptive Kalman
Filter algorithm estimates the unknown market parameters correctly, leading to it achieving
close performance with the optimal Kalman Filtering algorithm.

The same observation holds for prices that follow a geometric Brownian motion, as seen
in Figure [2].

1 Code for running all experiments has been shared here
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Figure 2 Percentage monetary loss per trade of our making algorithms (Kalman Filtering and
Adaptive Kalman Filtering) is much less than a static Uniswap curve for a Lognormal price jump
and trader noise models.
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Figure 3 If the AMM is treated as an oracle, then we can use the Robust Kalman Filtering to
get a more accurate reading of the hidden external price.

Robustness to adversarial traders. In presence of adversarial traders, the Robust Kalman
Filtering algorithm is used to change the curve of the AMM gives us a more accurate reading
of the hidden external price in the presence of less than 50% of the population of traders
being adversarial (Figure [3]). The adversarial traders, in this case, are assumed to perform
large buy trades (with price belief pt

trad about 5-7 standard deviations beyond normal trading
size) to keep the AMM price above the external market. We also note that the monetary loss
of the AMMs against the adversary stays in the profitable region for the adaptive curves,
while the static curve suffers a loss to arbitrageurs even if the adversary is making trades
that are irrational.

Robustness to non-stationary markets. Figure [4] tests the truncated version of the
adaptive Kalman algorithm for changing market conditions. This algorithm is compared
with the Kalman Filter algorithm, that knows the underlying market parameters exactly at
every time step, and the static Uniswap curve. The monetary loss incurred by the AMMs is
measured against changing variability of market conditions, measured by the volatility of
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Figure 4 Percentage monetary loss per trade of our market making algorithms (Kalman Filtering
and Adaptive Kalman Filtering) is much less than a static Uniswap curve for continously changing
market conditions.

price jump variance and trader noise (termed as volatility of volatility ση,σ). This metric
measures the standard deviation of changing η, σ after every trade, with a sample path of
these changing variables shown in Figure [4b] for ση,σ = 0.04. Recall that η, σ themselves
govern how the external price is percieved by the traders and how it changes after every
trade respectively. We see that the Adaptive Kalman Filter is able to perform almost as well
as the Kalman Filter when the market changes are slow enough. However, the performance
advantage over static curves vanishes as the changing market conditions become more erratic.
This happens because the timescale over which market parameters suffer large changes
becomes comparable to the timescale of the recent history considered by the truncated
adaptive Kalman filter. This observation offers guidance to AMM designers on choosing the
timescale over which adaptivity can offer an advantage over static markets.

8 On-chain System Implementation

Many prior works [14, 46] seek to implement adaptive market makers on a blockchain, where
the adapting is done using machine learning algorithms that must be necessarily performed
off-chain because of their computational load [53]. To that end, a group of protocol validators
(separate from the validators of the underlying blockchain) are assumed, who run the bulk
of the computation off-chain and post their results (such as satisfied orders, their prices,
etc.) on-chain. However, recent developments in Layer 2 or rollup [33, 49] infrastructure,
machine learning co-processors with zero-knowledge guarantees [51, 10], has given rise to
several platforms that can be utilized directly to implement the adaptive market makers (or
machine learning algorithms in general) we derived in the previous sections, without any need
of additional validators. We draw upon these innovations for the blockchain implementation,
and divide the approach into two parts. The overall design has been shown in Figure [5].

Hook Contract. The first part of such an implementation is the liquidity pool contract,
which allows the canonical interactions with LPs and traders given a specific demand/bonding
curve. In the Ethereum DeFi ecosystem, a recent proposal [57] by the Uniswap protocol
(called Uniswap-v4) presents a highly customizable platform for adaptive market making.
The main innovation is the introduction of a “hook” smart contract [54]. While prior versions
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[55, 56] of the protocol presented market making in a canonical manner where the exact
bonding curve followed during trade execution was static and only gave freedoms to LPs
in terms of the distribution of liquidity along that fixed curve, the new platform allows the
LP to specify changes to the bonding curve just before/after every single trade via the hook
contract. We use this functionality to execute trades and add/remove liquidity according to
the curve xθty1−θt = constant. When traders/LPs put in canonical swap/liquidity addition
transactions, they are first routed through the PoolManager contract. This maps a pool
to a specific Hook contract that specifies all modifications to the curve before/after trade
execution. All interactions with this contract are collected as input data by the second part
of the system.

Traders

1. Swap request using pool key

PoolManager . sol

xθty1−θt = k

Hook . sol

AKF Algorithm

ZKcircuit . ts

(Uniswap − v4)

(Uniswap − v4)

2. Swap request

3. Collect all swaps through the pool

4. Append new data, execute iteration of AKF

(Axiom)

θt, ̂σt, ̂ηt

Prover . sol
(Axiom)

θt+1, ̂σt+1, ̂ηt+1

Prover . sol
(Axiom)

xθt+1y1−θt+1 = k

Hook . sol
(Uniswap − v4)

PoolManager . sol
(Uniswap − v4)

Block t Block t + 1

5. Post new params and ZK proof

6. Callback to atomically change curve parameters

Key → Hook map Key → Hook map

LPs

7. Similar procedure to add/remove liquidity

Figure 5 System design for an on-chain implementation of our algorithms.

Off-Chain Co-processor. The second part runs the algorithm used to change the demand/-
bonding curve given the history of trader interactions. This is done off-chain due to the high
computational load of running the EM algorithm as part of Adaptive Kalman Filtering. For
our implementation, we chose Axiom [51] as a platform to run this off-chain computation.
The main part of this implementation is a typescript file ZKcircuit containing the details
of Algorithm 2 implemented as a algebraic circuit, so that a zero-knowledge proof can be
generated corresponding to the computation [50]. This file also verifiably collects data from
the previous block, and runs the algorithm to come up with new estimates for the market
parameters σ, η and hence the curve parameter θ. The off-chain Axiom client [50] posts this
in the next block and is verified by the on-chain Prover contract of Axiom. This also invokes
a callback to the Hook where the changes to the curve parameters are finally implemented.
We provide open access to all files used in our implementation 2.

2 Code for the proof-of-concept implementation has been shared here

https://anonymous.4open.science/r/AdaptiveCurves-AFT24/
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9 Conclusion and Future Work

Generalising to non-Gaussian and non-stationary behavior. Traders usually do not per-
fectly conform to the distributional assumptions we use to derive optimal solutions in Section
5.1. Our approach can be potentially be extended to such situations by the use of Neural
Kalman Filters [44], which claim to work for non-Gaussian/non-stationary state space models.

Balancing toxic and non-toxic orderflow. The blockchain-level conditions for the optimality
of static curves, as outlined in Section 6, provide guidance on how toxic/non-toxic orderflow,
if discriminated correctly [62], should be allowed to use passive liquidity and still give LPs a
fair price. Developing DEX aggregators that aware of these conditions would help limit the
dangers to passive LPs in DeFi.

Extensions to other adaptive protocols. In this work, we have derived a correspondence
between a dynamical model for prices and its optimal market making curve. This principle
can be extended for stable control of other DeFi protocols, such as lending, that currently
use static curves.
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Abstract
Layer-two blockchain protocols emerged to address scalability issues related to fees, storage cost,
and confirmation delay of on-chain transactions. They aggregate off-chain transactions into fewer
on-chain ones, thus offering immediate settlement and reduced transaction fees. To preserve security
of the underlying ledger, layer-two protocols often work in a collateralized model; resources are
committed on-chain to backup off-chain activities. A fundamental challenge that arises in this setup
is determining a policy for establishing, committing, and replenishing the collateral in a way that
maximizes the value of settled transactions.

In this paper, we study this problem under two settings that model collateralized layer-two
protocols. The first is a general model in which a party has an on-chain collateral C with a policy
to decide on whether to settle or discard each incoming transaction. The policy also specifies when
to replenish C based on the remaining collateral value. The second model considers a discrete setup
in which C is divided among k wallets, each of which is of size C/k, such that when a wallet is full,
and so cannot settle any incoming transactions, it will be replenished. We devise several online
policies for these models, and show how competitive they are compared to optimal (offline) policies
that have full knowledge of the incoming transaction stream. To the best of our knowledge, we are
the first to study and formulate online competitive policies for collateral and wallet management in
the blockchain setting.
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1 Introduction

Distributed ledger technology has provided a financial and computational platform realizing an
unprecedented combination of trust assumptions, transparency, and flexibility. Operationally,
these platforms introduce two natural sources of “friction”: settlement delays and settlement
costs. The Bitcoin protocol, for example, provides rather lackluster performance in both
dimensions, with nominal settlement delays of approximately one hour and average fees of
approximately 1 USD per transaction. Layer-two protocols have been the ready response to
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these complaints as they can provide instant settlement and, furthermore, can significantly
reduce transaction costs by aggregating related off-chain transactions so that they ultimately
correspond to fewer underlying ledger, or on-chain, transactions. Examples of such protocols
include payment channels and networks [9, 16], probabilistic micropayments [5, 7, 14], state
channels and networks [6, 10,13], and rollups [12,15].

However, in order for layer-two protocols to provide these remarkable advantages without
sacrificing the security guarantees of the underlying ledger, they must collateralize their
activities. In particular, there must be resources committed on-chain that provide explicit
recourse to layer-two clients in the event of a malicious or faulty layer-two peer or server.
Moreover, the total value of the on-chain collateral must scale with the value of “in flight”
transactions supported by the layer-two protocol.

These considerations point to a fundamental challenge faced by layer-two protocols:
determining a policy for establishing, committing, and replenishing the collateral. Such a
policy must ensure sufficient available collateral to settle anticipated transaction patterns while
minimizing the total collateral and controlling the resulting number of on-chain transactions.
Of course, any fixed collateralization policy can be frustrated by the appearance of an
individual transaction – or a sudden burst of transactions – that exceeds the total current
collateral. More generally, it would appear that designing a satisfactory policy must rely on
detailed information about future transaction size and frequency, i.e., transaction distribution.
From a practical perspective, this poses a serious obstacle because real-world transaction
patterns are noteworthy for their unpredictability and mercurial failure to adhere to a steady
state. Analytically, this immediately calls in to question the value of distribution-specific
solutions. These considerations motivate us to elevate distribution independence as a principal
design consideration for collateral policies.

We formulate a distribution-independent approach by adapting to our setting the classical
framework of competitive analysis. In particular, we study two natural models: the k-wallet
model in which the total collateral C is divided among k wallets of fixed size, and a general
model in which C is viewed as one wallet that allows replenishment of any portion of C.
After fixing only two parameters of the underlying system – the total collateral C and the
size T of the largest transaction that we wish to support – we measure the performance of
a given collateral policy against the performance of an optimal, omniscient policy. This
optimal policy utilizes the same total collateral, but has full knowledge of the future sequence
of transactions as it commits and replenishes collateral. Naively, this would appear to be an
overly ambitious benchmark against which to measure an algorithm that must make choices
on the fly based only on the past sequence of transactions. Our principal contribution is
to show that the natural policies for these two models perform well, even when compared
against this high bar.

1.1 Contributions
Our formal modeling is intended to reflect the challenges faced by standard layer-two
protocols. The most immediate of the models we consider arises as follows: Consider a
layer-two protocol with a total of C collateral that must serve an unknown transaction
sequence Tx = (tx1, tx2, . . .). As each transaction arrives, the policy may either commit a
corresponding portion of its available collateral to settle this transaction or simply discard
it; in particular, in any circumstances where there isn’t sufficient uncommitted collateral to
cover a given transaction, the transaction must be discarded. The policy may also – whenever
it chooses – replenish its currently committed collateral. This “flush” procedure returns the
committed collateral to the available pool of collateral after a fixed time delay F and involves
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a fixed cost τ (so transactions arriving during F will be discarded if no other sufficient
collateral is available). Thus, the challenge is to schedule the flush events so as to minimize
the total cost while simultaneously maximizing the total value of settled transactions.

We remark that transactions “discarded” in the model above would typically be handled
by some other fallback measure in a practical setting. The flush operation, in practice,
corresponds to on-chain settlement of a family of transactions that releases the associated
collateral so that it can be reused as surety for additional transactions. While we assume
that the flush procedure is associated with a fixed, constant cost for simplicity, in practice
this cost may scale with the complexity of the aggregated transactions. We remark that a
fixed cost directly models Lightning-like payment channels and networks, or escrow-based
probabilistic micropayments, where the total number of participants is bounded.1

In this general setting, we study the natural family of policies determined by a parameter
η ∈ (0, 1) that settle transactions as they arrive until an η-fraction of all collateral is
consumed; at this point the committed collateral is flushed and the process is continued
with the remaining collateral. Our analytic development first focuses on a simpler variation –
of interest in its own right – that we call the k-wallet problem. As above, the policy is
challenged to serve a sequence Tx of transactions with a total of C collateral; however, the
collateral is now organized into k wallets, each holding C/k collateral, with the understanding
that an entire wallet must be flushed at once. When a wallet is flushed it becomes entirely
unavailable for settlement – regardless of how much of the wallet was actually committed to
settled transactions – until the end of the flush period F , when the collateral in the wallet
is again fully available for future settlement. As above, the policy may settle a transaction
by committing a portion of collateral in one of the wallets corresponding to the size of the
transaction. This version of the problem has the advantage that performance is captured by
a single quantity: the total value of settled transactions.

1.2 A Survey of the Results
Continuing to discuss the k-wallet model, we consider a sequence Tx of transactions, each of
value no more than T . We focus on the natural FlushWhenFull policy, which maintains
a single active wallet (unless all wallets are currently unavailable) that is used to settle
all arriving transactions; if settling a transaction would leave negative residual committed
collateral in the active wallet, the wallet is flushed and a new wallet is activated as soon as
one becomes available. We prove that this simple, attractive policy settles at least a fraction

1 − kT/C

1 + 1/k

of the total value settled by an optimal, offline strategy with C collateral, even one that
is not restricted to a k-wallet policy but can flush any portion of its collateral at will. We
remark that this tends to optimality for large k and small T < C/k. This result also answers
a related question: that of how many wallets one should choose for a given total collateral C

and maximum transaction size T . We find that optimal k in this case is ≈
√

1 + C/T − 1.
As for the more flexible setting – under the general C collateral model – where the policy

may flush any portion of its collateral at will by paying a transaction fee τ , recall that this
poses a bicriteria challenge: maximizing settled transactions while reducing settlement fees.

1 On-chain transaction cost also varies based on network conditions; during periods of high activity
or congestion, transaction issuers may resort to increasing transaction fees to incentivize miners to
prioritize their transactions. As such, τ above is viewed as the average transaction cost.
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We study this by establishing the natural figure of merit that arises by assuming that each
settled transaction yields positive utility to the policy that scales with its value (e.g., a “profit
margin”). Thus, the policy seeks to maximize pV − τf , where V is the total value of settled
transactions, f is the total number of flushes, and p is the profit margin. Here we study the
family of policies that flush when currently committed (but unflushed) collateral climbs to
an η-fraction of C (η is a policy parameter). We find that this policy achieves total utility of
at least 1/α fraction of that achieved by the optimal omniscient policy, where

α = 1
1 − η − T/C

· p/τ − 1/C

p/τ − 1/(ηC) .

In this case, we are also able to determine the optimal constant η∗ (as a function of C, p,
and τ) that maximizes the policy utility:

η∗ =
√

(1 − T/C) · τ/(pC) .

We remark that our results in the k-wallet setting can also be applied to directly yield results
with this accounting that assigns a flush cost and a profit margin.

We study some additional questions that arise naturally. For example, we show that no
deterministic, single wallet policy can be competitive if the maximum transaction size can be
as large as the wallet size and show that, on the other hand, a natural randomized algorithm
is O(1)-competitive.

1.3 Applications
Online collateral management arises in various layer-two protocols, as well as in Web 3.0 and
decentralized finance (DeFi) applications. For layer-two protocols, payment networks are an
emblematic example: A relay party creates payment channels with several parties, allowing
her to relay payments over multi-hop routes. Each payment channel is tied to a collateral
C such that the relay cannot accept a transaction to be relayed if the remaining collateral
cannot cover it. This applies as well to state channels, where transactions created off-chain –
while the channel is active – are accepted only if their accumulated value does not exceed
the initial fund committed when the channel was created. These configurations adhere to
the general collateral model discussed above.

Probabilistic micropayments follow a slightly different setting. Micropayments are usually
used to permit service-payment exchange without a trusted party to reduce financial risks
in case of misbehaving entities. A client creates an escrow fund containing the collateral
backing all anticipated payments to a set of servers. A server provides a service to the
client (e.g., file storage or content distribution) in small chunks, so that the client pays a
micropayment for each chunk. For any incoming service exchange, the client cannot take it
unless her collateral can pay for it. The client can decide to replenish the escrow fund to
avoid service interruption, thus this also follows the general collateral model. The client may
also choose to divide her collateral among several escrows, each of which has a different or
similar setting with respect to, e.g., the set of servers who can be paid using an escrow and
the total service payment amount. This configuration follows the k-wallet model.

Apart from layer-two scalability solutions, online collateral management captures scenarios
related to Web 3.0 and DeFi applications. The framework of decentralized resource markets
build systems that provide digital services, e.g., file storage, content distribution, computation
outsourcing or video transcoding, in a fully decentralized way [1–3]. Due to their open-access
nature, where anyone can join the system and serve others, these systems usually involve
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some form of collateral. In this case, a collateral represents the amount of service a party
wants to pledge in the system. For example, in Filecoin [1] – a distributed file storage
network – a storage server commits collateral proportional to the amount of storage she
claims to own. This server cannot accept more file storage contracts, and subsequently
more storage payments, than what can be covered by the pledged storage (or alternatively
collateral).

In the DeFi setting, online collateral management is encountered in a variety of applica-
tions. Loan management is a potential example [11,17]; incoming loan requests cannot be
accepted unless the loan funding pool can support them. The loan DeFi application then
has to decide a policy for loan request accept criteria (to favor some requests over others
under the limited funding constraint) and when to replenish the loan pool balance.

Another potential application, of perhaps an extended version of our models and policies,
that we believe to be of interest is the case of automated market makers (AMMs) [19]. Here,
a liquidity pool trades a pair of tokens against each other, say token A and token B, such
that a trade buying an amount of token A pays for that using an amount of token B, and
vice versa. Incoming trades are accepted only if the liquidity pool can satisfy them, so in a
sense having tokens that can serve the requested trades is the collateral. Replenishing the
pool fund, or liquidity, can be done organically based on the trades. That is, a particular
trade, say to buy A tokens, reduces the backing fund of token A while increasing it for token
B. Another approach for pool replenishment is via liquidity providers; particular parties
provide their tokens to the pool to serve incoming trades (or token swaps) in return for some
commission fees. These providers can configure when their offered liquidity can be used, i.e.,
at what trading price range, under what is called concentrated liquidity as in Uniswap [4]. An
interesting open question is to develop competitive collateral policies that capture this setting
where settling a transaction does not only depend on whether the remaining collateral C

(i.e., pool liquidity) can cover it, but also on transaction-specific parameters to meet certain
collateral-related conditions. Even the replenishment itself, i.e., providing liquidity, could be
subject by other factors such as the resulting price slippage, so an incoming mint transaction
(in the language of AMMs) that provides liquidity may not be accepted immediately. We
leave these questions as part of our future work directions.

In general, our work lays down foundations for wallet management to address issues
related to robustness, availability, and profitability of the wallet(s) holding the collateral.
Maintaining one wallet may lead to periods of interruption; a party must wait for a while
before a new wallet is created to replace an older expired one. Maintaining several wallets
may help, but given the cost of locking currency in a wallet or renewing it, the number of
active wallets and their individual balances must be carefully selected. Moreover, under this
multi-wallet setting, it is important to consider how incoming transactions are matched to
the wallets, and whether factors such as payment amount or frequency may impact this
decision. A potential extension to our model is considering adaptive policy management,
where the size of the collateral and the number of wallets can be adjusted after each flush
decision to account for these varying factors.

2 The Model; Measuring Policy Quality

As discussed above, we consider the problem of designing an online collateral management
policy in which a collateral fund of initial value C is used to settle transactions – each with a
positive real value no more than T – chosen from a sequence Tx = (tx1, tx2, . . .). Operationally,
the policy is presented with the transactions one-by-one and, as each transaction arrives, it
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must immediately choose whether to settle the transaction or discard it. Settling a transaction
requires committing a portion of the collateral equal to the value of the transaction; such
committed collateral cannot be used to settle future transactions. Of course, if there isn’t
sufficient uncommitted collateral remaining to settle a given transaction when it arrives,
the transaction must be discarded. Committed collateral may be returned to service by
an operation we call a flush; we focus on two different conventions for the flush operation,
described below, but in either case the collateral only becomes available for use after a fixed
time delay F . We assess the performance of a particular online policy A against that of an
optimal offline policy OPT that knows the full sequence Tx and can make decisions based on
this knowledge.

Below, we describe two models for the collateral: the discrete k-wallet model and the
general collateral model.

2.1 The Discrete k-Wallet Model
The k-wallet model calls for the collateral to be divided into k wallets, each with C/k

collateral value. Wallets support two operations: (i) a wallet with uncommitted collateral
R may immediately settle any transaction tx of value v ≤ R; this reduces the available
collateral of the wallet to R − v, and (ii) a wallet may be flushed, which takes the wallet
entirely offline for a flush period F after which the available collateral R is reset to C/k.
As a matter of bookkeeping, we mentally organize time into short discrete slots indexed
with natural numbers: we then treat the transaction txt as arriving at time(slot) t, and set
txt = 0 for times t when no transactions arrive. We treat the flush period as a half-open and
half-closed interval: if a wallet flushes at time t, then it is offline during the time interval
(t, t + F ]. In this model, the figure of merit is the total value of settled transactions. We let
DiscC,k

T denote this discrete k-wallet model with maximum transaction size T .

Settlement algorithms, settled value, and the competitive ratio. A k-wallet settlement
algorithm A is an algorithm that determines, for any transaction sequence Tx, whether to
settle each transaction, which wallet to use, and when to flush each wallet. For such an
algorithm A and a sequence Tx = tx1, tx2, . . . , txn we let A[DiscC,k

T ; Tx] denote the total value
of all transactions settled by the algorithm. In general, we use the notation A[M; Tx] to
denote the value achieved by algorithm A in model M with input sequence Tx. When the
model is clear from context, we simply write A[Tx].

We say that an algorithm A is online if, for every N , any decisions made by the algorithm
at time N depend only on tx1, tx2, . . . , txN , i.e., transactions seen so far. We let OPT denote
the optimal (offline) policy; thus OPT[DiscC,k

T ; Tx] denotes the maximum possible value that
can be achieved by any policy, even one with a full view of all (past and future) transactions.

▶ Definition 2.1. We say that an algorithm A is α-competitive in the k-wallet model if, for
any sequence Tx = tx1, . . . , txn with maximum value no more than T ,

OPT[DiscC,k
T ; Tx] ≤ α · A[DiscC,k

T ; Tx] + O(1) ,

where the constant in the asymptotic notation may depend on the model parameters (C, k,
and T ), but not the sequence Tx or its length n.

▶ Remark 2.2 (Relation to the bin packing problem). We remark on the relationship between
our problem and the well-studied online bin packing problem [8, 18], where an algorithm
must pack arriving objects into bins of constant size, while opening a new bin any time a
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newly arriving object does not fit into any of the current bins. In this context, the k-wallet
model calls for a bounded number of bins (a.k.a., wallets) that can only be reset with the
flush operation. Also, we measure the total settled value rather than the number of utilized
bins. In any case, we adopt the standard classical paradigm of competitive analysis to study
our algorithms, as described previously.

2.2 The General Collateral Model
In contrast to the discrete k-wallet model, where each wallet must be flushed as a whole, the
general setting permits any portion of the collateral to be flushed at any time. The basic
framework is identical: the policy is presented with a sequence of transactions tx1, tx2, · · ·
and must decide whether each transaction will be settled or discarded; the total collateral C

and the maximum transaction size T are parameters of the problem. Settling a transaction
requires committing collateral of value equal to the transaction; however, any portion of the
committed collateral can be flushed at any time. As before, each flush period is F and is
defined to be a half-open and half-closed time interval. We denote this model as GenC

T .
Since there is no penalty for flushing collateral in this model, it is clear that any algorithm

may as well immediately flush any committed collateral. Despite the simple appearance
of the model, it is still useful to consider this setting as a comparison reference point for
k-wallet policies, and we define A[GenC

T ; Tx] to be the total value of transactions settled by
algorithm A in this general model for a transaction sequence Tx (with total collateral C and
maximum transaction size T ).

▶ Definition 2.3. We say that an algorithm A is α-competitive in the general collateral
model if, for any sequence Tx = tx1, . . . , txn with maximum value T ,

OPT[GenC
T ; Tx] ≤ αA[GenC

T ; Tx] + O(1) .

where the O(1) term may depend on model parameters but not on Tx or n.

Note that for any algorithm A defined in the k-wallet model the following is always true:

A[DiscC,k
T ; Tx] ≤ OPT[DiscC,k

T ; Tx] ≤ OPT[GenC
T ; Tx] .

A more natural model arises by introducing a cost for flushes. In order to reflect the
relative cost of flushes in the context of settled transactions, we introduce two additional
parameters:
1. Profit margin p: a profit p · v is gained when a transaction with value v is settled.
2. Flush cost τ : each flush operation costs τ .

We assume throughout that pC > τ ; otherwise there is no value to settling transactions
because the cost of even single flush exceeds the total profit that can be accrued from
the flushed collateral. We let GenC;τ

T ;p denote this model, observing that GenC
T and GenC;0

T ;1
coincide. In keeping with the notation above, we let A[GenC;τ

T ;p ; Tx] denote the total profit
minus flush cost by applying algorithm A in the general model with total collateral C,
maximum transaction size T , profit margin p, flush cost τ , and transaction sequence Tx.
Then, we have the following.

▶ Definition 2.4. We say that an algorithm A is α-competitive in the general collateral
model with flush costs if, for any sequence Tx = tx1, . . . , txn with maximum value T ,

OPT[GenC;τ
T ;p ; Tx] ≤ α · A[GenC;τ

T ;p ; Tx] + O(1) ,

where the O(1) term may depend on the model parameters but not Tx or n.
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Table 1 Summary of our results. Here r = kT/C, τ is the flush cost, p is the profit margin, and
f is the number of flushes.

Discrete k-wallet model

r < 1 Theorem 3.1: FlushAll is (2 − r)/(1 − r)-competitive
Theorem 3.2: FlushWhenFull is (k + 1)/(k(1 − r))-competitive

r = 1
k = 1 Theorem 3.3: No competitive deterministic settlement algorithm

k > 1 Theorem 3.5: FlushAll is 3-competitive
Theorem 3.6: FlushTwoWhenFull is 2(k + 1)/k-competitive

General collateral model
maximize V Corollary 4.1: FlushWhenFull is (k + 1)/(k(1 − r))-competitive
maximize
pV − τf

Theorem 4.4: Aη is (1 − β)/(
√

1 − T/C −
√

β)2-competitive,
where η =

√
β(1 − T/C) and β = τ/pC

Transaction size. Our analysis identifies two regimes of interest regarding transaction costs
(for both of the previous models): the “micro-transaction” setting, where T ≪ C (arising in
micropayment applications) and “arbitrary” transaction size when T ≈ C (arising in more
general settings).

In the next two sections, we analyze policy competitiveness under each model; the discrete
k-wallet model can be found in Section 3 and the general collateral model can be found in
Section 4. Table 1 summarizes our results.

3 The Discrete k-Wallet Setting

We now formally consider the k-wallet setting. Our focal points are two natural policies
described next: FlushAll and FlushWhenFull.

3.1 The FlushAll Algorithm
We begin with the simple FlushAll algorithm, which uses k wallets placed in (arbitrary,
but fixed) order W1, . . . , Wk. The algorithm packs transactions into its wallets using the first
fit algorithm: each transaction is settled by the first wallet (in the established order) that
can fit the transaction until a transaction arrives that cannot fit into any wallet. At that
time, all k wallets are simultaneously flushed (and so during the flush period F all incoming
transactions will be discarded).

In the following theorems, we use r to denote kT/C, which is the ratio between the
maximum transaction size and the wallet size. Note that r ≤ 1.

▶ Theorem 3.1. FlushAll is (2 − r)/(1 − r)-competitive in the DiscC,k
T model, where

r = kT/C.

Proof. For a sequence Tx of transactions, subdivide time into epochs according to the
behavior of the FlushAll algorithm. The first epoch begins at time 0 and continues through
the first flush of the k wallets; the epoch ends in the last timeslot of this flush period. Each
subsequent epoch begins in the timeslot when the wallets come back online (that is, in the
timeslot just after the previous epoch ends) and continues through the next flush to the end
of the flush period. In general, there may be a final partial epoch at the end of the transaction
sequence; other epochs are referred to as full. Any full epoch can be further broken into two
phases: the accumulation phase when all transactions are settled by FlushAll, and the
flush phase, during which no transactions can be settled (as all wallets are offline).
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For any particular full epoch, let V be the total value packed by FlushAll into its
wallets in the accumulation phase. We note that V ≥ k(C/k − T ) = C − kT , since every
wallet will clearly be filled to at least C/k − T . As for OPT, during the accumulation phase
it can settle at most V (as this is the value of all transactions appearing in that phase) and
during the flush phase it can settle at most C (as a unit of collateral can settle at most one
transaction unit in any F period). Therefore, the ratio between the value settled by OPT
and FlushAll in a full epoch is no more than

max
C−kT ≤V ≤C

V + C

V
≤ C − kT + C

C − kT
= (2 − kT/C)

(1 − kT/C) = 2 − r

1 − r
.

Moreover, the same formula above can be said for any partial epoch, since the accumulation
phase comes first.

Thus, the competitive ratio is α = (2 − r)/(1 − r). Observe that when r decreases, the
competitive ratio approaches 2. ◀

Aside from the simplicity of the analysis, FlushAll may have an advantage for certain
sequences of transactions in practice: keeping all k wallets open during the epoch (rather
than optimistically flushing some earlier so as to bring new collateral online earlier) may
permit higher density packing of transactions into the wallets. Indeed, one could consider
leveraging an approximation algorithm for bin packing for the purposes of optimizing this.
On the other hand, in situations where some of the wallets may become nearly full early
in an epoch it seems wasteful to wait to flush these wallets until all others are full. This
motivates the FlushWhenFull algorithm, which attempts to more eagerly flush wallets so
as to bring them online sooner.

3.2 The FlushWhenFull Algorithm
We now consider the FlushWhenFull algorithm, which fills wallets in a round-robin order.
Specifically, transactions are settled by a particular wallet until a new transaction arrives that
cannot fit; at that point the wallet is immediately flushed, and the algorithm moves on to
the next wallet in cyclic order. (In cases where the next wallet is offline, the algorithm waits
for the wallet to finish its flush before processing further transactions, so all transactions
arriving during this wait period will be discarded.)

▶ Theorem 3.2. For k > 1, FlushWhenFull is (k + 1)/(k(1 − r))-competitive in the
DiscC,k

T model, where r = kT/C.

Proof. Assume, for the purpose of contradiction, that there is a time t for which the interval
I = (0, t] satisfies

VOPT(I) > (k + 1)/(k(1 − r)) · VFWF(I) ,

where VOPT(I) and VFWF(I) are the total values of transactions OPT and FlushWhenFull
settle during I, respectively; let te be the earliest such t.

Since te is the earliest such time, there must be a transaction tx at te that is not settled by
FlushWhenFull. As FlushWhenFull does not take tx, it must be the case that either
all wallets are offline at te or k − 1 wallets are already offline at te and the remaining wallet
goes offline at te after failing to fit tx. Therefore, every wallet flushes during If = (te − F, te].
Suppose, without loss of generality, that they do so in order W1, W2, · · · , Wk.
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If te ≤ F , then OPT settles transaction value at most C in the interval (0, te] since
each wallet settles at most C/k. In the same interval, FlushWhenFull settles at least
k(C/k − T ) since each wallet settles at least C/k − T . Therefore,

VOPT(I)
VFWF(I) ≤ C

k(C/k − T ) = C

C − kT
<

kC

kC − k2T
+ C

kC − k2T
= k + 1

k(1 − r) ,

which would contradict our assumption.
Otherwise te − F > t0. Observe that of the k wallets, at least W2, W3, · · · Wk began

taking transactions during If since, if a wallet Wi’s transaction activity before its last flush
starts at a time before If for any i = 2, · · · , n, then Wi−1’s last flush time must also be
before If which contradicts the earlier conclusion that all the k wallets’ last flush times are
during If . Therefore, those k − 1 wallets together contribute (k − 1)(C/k − T ) to VFWF(If ).
The only wallet that may have started taking transactions before If is W1. Let ts denote the
last time before te that W1 came back online and ts′ denote the time W1 flushes. Note that
ts′ ∈ If , while ts may or may not be in the interval. Let Is = (ts, ts′ ] and Is′ = (ts′ , te]; then
we have VFWF(Is ∪ Is′) ≥ k(C/k − T ) since each wallet starts to take transactions and then
flushes within the interval Is ∪ Is′ . We also have VOPT(Is) ≤ VFWF(Is) < C/k since wallet
W1 is active during Is.

Additionally, we have VOPT(Is′) ≤ C since the length of Is′ is no more than F , leading
to VOPT(Is ∪ Is′) ≤ C/k + C. Therefore,

VOPT(Is ∪ Is′)
VFWF(Is ∪ Is′) ≤ C/k + C

k(C/k − T ) = k + 1
k

· C

C − kT
= k + 1

k(1 − r) .

But this contradicts our initial assumption; we conclude that there is no such t. ◀

3.3 Optimal Wallet Number
When k is large and r is small, FlushWhenFull approaches optimality. For a given total
collateral C and maximum transaction size T , it is natural to ask how many wallets one
should choose so as to optimize the competitive ratio of FlushWhenFull. This amounts
to determining a k that minimizes (k + 1)/(k(1 − kT/C)). By computing

∂

∂k

(
k + 1

k(1 − kT/C)

)
= 0 ,

we find that the optimal value k∗ for k is
√

1 + C/T − 1. Of course, the actual number of
wallets must be an integer. We remark that if k ≈

√
C/T , then each wallet has size ≈

√
CT

and the competitive ratio is approximately
√

C +
√

T√
C −

√
T

.

3.4 Remarks on the profit margin–transaction cost setting
We remark that the competitive analyses above focusing on total settled value immediately
give rise to a bound for the setting that introduces a profit margin p and a flush cost τ .
Observe that, for any algorithm constrained to the k-wallet framework that settles total value
V , the maximum profit is V (p − τk/C), as only C/k value can be settled in any single flush.
Thus the profit of OPT is no more than VOPT(p − τk/C). On the other hand, the profit of
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FlushWhenFull is at least VFWF(p − τk/(C − kT )) − O(1), as each wallet is flushed with
at least C/k − T value (except for the last wallet, which may introduce a O(1) additional
penalty). It follows that the competitive ratio in the profit model is inflated by a factor

p/τ − k/C

p/τ − k/(C − kT )

over that of the “value-only” k-wallet setting.
Note that the same argument can be applied to FlushAll because each wallet is likewise

flushed with at least C/k − T value (except perhaps for the last flush event).

3.5 Remarks on the Case r = 1
If the maximum transaction size can be as large as the wallet size, we make a few additional
observations:
1. No deterministic algorithm can be competitive if there is only one wallet.
2. FlushAll is 3-competitive.
3. FlushWhenFull is not competitive, but a variation on the scheme that groups wallets

into pairs can solve the problem.

We prove these in the following.

▶ Theorem 3.3. There is no competitive, deterministic 1-wallet settlement algorithm if
r = 1.

Proof. For the sake of simplicity, we assume the wallet size and maximum transaction size
are both 1. Fixing an online algorithm A, consider the following schedule of transactions:

Begin with a rapid succession of one or more microtransactions each having size ϵ,
terminating with the first microtransaction that the algorithm chooses to settle.

1. If the algorithm does not choose to settle any of the microtransactions, end the
succession after 1/ϵ transactions.

2. If the algorithm does choose to settle one, follow it immediately with a transaction of
size 1.

Allow an interval of length F to pass without any transactions.
Repeat indefinitely.

In any iteration of the above, either case 1 or case 2 applies. In case 1, the online
algorithm settles no transactions, while the optimal offline algorithm settles a total value
of 1. In case 2, the online algorithm settles a single transaction worth ϵ while the optimal
offline algorithm settles a single transaction of size 1. Therefore, the competitive ratio is no
better than 1/ϵ. As ϵ can be chosen arbitrarily, it follows that the algorithm cannot achieve
any fixed ratio. ◀

▶ Remark 3.4. A simple randomized algorithm can achieve constant competitive ratio when
both k and r are 1. We first show that FlushAll with 2 wallets is 2-competitive against
OPT with one wallet. During each epoch, which extends from the time the two wallets
come back online after the previous flush until the end of the next flush period, FlushAll
settles total value V ≥ 1. On the other hand, OPT can settle at most V + 1, that is, during
the time FlushAll settles transactions, OPT settles V , and during the flush time period
of FlushAll, OPT packs 1. Therefore, the competitive ratio is (V + 1)/V ≤ 2. Now we
will let our randomized algorithm that uses one wallet to simulate one of the wallets in the
FlushAll algorithm with 2 wallets. At each time when the wallet comes back online, we flip
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a coin, if it is heads, it simulates the first wallet in FlushAll, and if it is tails, it simulates
the second wallet in FlushAll. That is, the wallet in the randomized algorithm only settles
the transactions that are taken by the chosen wallet and ignores the other transactions. The
expected value the randomized algorithm can pack in each epoch is half of what FlushAll
can pack. Hence the competitive ratio against one-wallet OPT is 4.

▶ Theorem 3.5. For any number k > 1 of wallets FlushAll is 3-competitive if r = 1.

Proof. We use a similar analysis as the proof in Theorem 3.1. Time is divided into epochs,
each of which contains the accumulation phase and the flush phase. For any particular full
epoch, let V be the total value packed by FlushAll into its wallets in the accumulation
phase. We note that V ≥ C/2. To see this, observe that for any pair of wallets Wi and Wj

with i < j the final transaction values vi and vj of the wallets must satisfy vi + vj > C/k –
otherwise the transactions in the later wallet j would have been placed in the earlier wallet i

by first fit. Summing these constraints∑
i<j

(vi + vj) ≥
∑
i<j

C

k
⇒ (k − 1)

∑
i

vi ≥ k(k − 1)
2

C

k
⇒

∑
i

vi ≥ C

2 .

OPT can settle at most V + C in this epoch. Considering that V ≥ C/2, the quantity
V + C ≤ 3V , as desired. It follows that the competitive ratio is α ≤ 3 as desired. ◀

Unfortunately, when r = 1, the competitive ratio for FlushWhenFull is unbounded.
To see that, again, assume the maximum transaction size and wallet size are both 1. The
adversary can produce a series of suitably spaced transactions alternating in value between
ϵ and 1. FlushWhenFull will be forced to take all the ϵ-valued transactions and forgo
the high-value transactions, while OPT can decline to process the low-value transactions
in order to process all the high-value ones. Therefore, the competitive ratio would be
1/ϵ. This problem can be solved if we pair consecutive wallets and flush each pair when a
transaction can not be settled by either of the two wallets. Within each pair, the second
wallet takes a transaction when it is too large for the first wallet. We denote this algorithm
as FlushTwoWhenFull, for which we have the following result.

▶ Theorem 3.6. When k > 1, FlushTwoWhenFull is 2(k + 1)/k-competitive if r = 1.

Proof. The proof is similar to the proof of Theorem 3.2. We use the same notations as
before. Between time interval (t0, t], FlushTwoWhenFull can settle transaction value at
least C/2 since each pair settles at least C/k before they flush, while OPT settles at most
C + C/k. Therefore, the competitive ratio is 2(k + 1)/k. ◀

4 The General Collateral Setting

In this section, we study the general model where the entire collateral C is held in a single
pool. A collateral maintenance policy can replenish any portion of committed collateral
(used to settle a transaction) at any time. Even with this additional flexibility, a unit of
collateral can only be used for settlement once in a time period of length F ; it follows that
the total settled value of transactions in any time period of length F is no more than C.
Thus, using the same proof as in Theorem 3.2, we conclude the following, which shows that
FlushWhenFull is competitive even when compared against an adversary who may use
the full power of the general model (while FlushWhenFull continues to be constrained
operate in the k-wallet discrete model).
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▶ Corollary 4.1. Setting r = kT/C,

OPT[GenC
T ; Tx] ≤ k + 1

k(1 − r) · FlushWhenFull[DiscC,k
T ; Tx] .

The above result concerns the total transaction value V settled by an algorithm. As
mentioned in the introduction, without further constraints on the adversary it’s clear that
the optimal approach (in the general model) is to immediately flush any collateral used to
settle a transaction. In practice, this is unattractive as there is, in fact, a cost associated with
the (typically on-chain) transaction used to refresh collateral. To study this, we introduce
two new parameters: (i.) p, the profit margin: the algorithm is provided a reward of p · v for
settling a transaction of value v, (ii.) τ , the cost of any flush (regardless of the amount of
collateral involved in the flush operation).

We seek to maximize the total profit with flush cost deducted. Formally, we would like to
find an algorithm that selects transactions to settle so that p · V − τf is maximized, where V

is the total value of settled transactions and f is the total number of flushes. (Note that by
scaling the figure of merit by 1/τ , this is equivalent to maximizing (p/τ)V − f and it follows
that the single parameter p/τ suffices; we separate these merely for the purpose of intuition.)
Recall that we use A[GenC;τ

T ;p ; Tx] to denote pV − τf for an algorithm A.
Inspired by the algorithm FlushWhenFull, we consider a family of policies that flush

when the currently committed collateral has reached a specified fraction of C.

4.1 The Threshold Algorithm Aη

This algorithm is parameterized by a threshold η for which T/C ≤ η ≤ 1. The behavior
of the algorithm is determined by the running quantity R, the current total collateral that
has been committed to settle transactions, but not (yet) flushed. The algorithm proceeds
as follows: When a new transaction tx arrives, it is settled if and only if there is sufficient
remaining collateral. Immediately after settling a transaction, if R ≥ ηC (so that there is at
least ηC committed but unflushed collateral), then it flushes exactly ηC collateral.

The following analysis derives the competitive ratio of Aη and then computes the optimal
value of η, denoted by η∗, that minimizes this competitive ratio.

▶ Lemma 4.2. OPT[GenC
T ; Tx] ≤ C

C − ηC − T
Aη[GenC

T ; Tx].

Proof. The proof is similar to the proof of Theorem 3.2, so we are somewhat more brief. For
contradiction, assume there is a (first) time te for which the interval I = (0, te] satisfies

VOPT(I) > C/(C − ηC − T ) · VAη
(I) ,

where VOPT(I) and VAη
(I) are the total values of transactions OPT and Aη settle during I,

respectively.
Since te is the earliest such time, there must be a transaction tx at te that is not settled

by Aη. As Aη does not take tx, there are two possibilities: 1) all collateral is offline at te;
2) the remaining uncommitted collateral is insufficient to settle tx. Let If = (te − F, te].
Recall that collateral is flushed sequentially in portions of size ηC, and that any such portion
will only start to take transactions after (or at the same time that) the previous portion
has been flushed. Let Wk, refer to the remaining portion of unflushed collateral at time te,
if any, and to the last-flushed portion of collateral otherwise. Let W1, W2, · · · , Wk−1 refer
to the portions of collateral flushed during all prior flush events throughout If . We have∑k

i=1 Wi = C.
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If te ≤ F , then OPT settles transaction value at most C in the interval (0, te]. In the
same interval, Aη settles at least C − T since the uncommitted collateral is no more than T .
Therefore,

VOPT(I)
VAη

(I) ≤ C

C − T
<

C

C − ηC − T
,

which would contradict our assumption.
Otherwise te − F > t0. Observe that of the k portions, W2, W3, · · · , and Wk began

settling transactions during If since if a portion Wi’s transaction activity before its last flush
starts at a time before If for any i = 2, · · · , n, then Wi−1’s last flush time must also be before
If . The only portion that may have started settling transactions before If is W1. Since W1
has size equal ηC and the uncommitted collateral in Wk is at most T , VAη

(If ) ≥ C − ηC − T .
Again, we have VOPT(If ) ≤ C since the length of If is F . Therefore,

VOPT(If )
VAη (If ) ≤ C

C − ηC − T
.

This contradicts our initial assumption so we conclude that there is no such te. ◀

▶ Theorem 4.3. Let p ∈ (0, 1) and τ > 0 be a profit margin and flush cost. For a threshold
η ∈ (0, 1] the algorithm Aη is α-competitive in the GenC;τ

T ;p model for

α = 1
1 − η − T/C

· p/τ − 1/C

p/τ − 1/(ηC) .

Proof. For simplicity, assume that at the end of the sequence Tx any committed but
unflushed collateral is flushed in both algorithms. Note then that the algorithm Aη flushed
total collateral equal to the total settled value and, furthermore, that each flush processes
exactly ηC collateral with the exception of the last which may be smaller. It follows that
the total number of flushes is exactly ⌈Aη[GenC

T ; Tx]/(ηC)⌉. We conclude that

Aη[GenC;τ
T ;p ; Tx] = p · Aη[GenC

T ; Tx] − τ ·

⌈
Aη[GenC

T ; Tx]
ηC

⌉

≥ p · Aη[GenC
T ; Tx] − τ ·

(
Aη[GenC

T ; Tx]
ηC

+ 1
)

= Aη[GenC
T ; Tx]

(
p − τ

ηC

)
− O(1) . (1)

OPT flushes at least once when it commits C collateral, therefore

OPT[GenC;τ
T ;p ; Tx] ≤ p ·OPT[GenC

T ; Tx]−τ · OPT[GenC
T ; Tx]

C
= OPT[GenC

T ; Tx](p−τ/C) . (2)

We combine these to conclude that

OPT[GenC;τ
T ;p ; Tx] ≤ OPT[GenC

T ; Tx](p − τ/C) ≤ Aη[GenC
T ; Tx] C

C − ηC − T
(p − τ/C)

≤ Aη[GenC;τ
T ;p ; Tx] C

C − ηC − T
· p − τ/C

p − τ/(ηC) + O(1) ,

as desired. The second inequality holds because of the inequality in Lemma 4.2. ◀
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Optimal value of η. The optimal value of η (which we denote η∗) satisfies:

∂

∂η

(
1

1 − η − T/C
· p/τ − 1/C

p/τ − 1/(ηC)

)
= 0 ,

which leads to the optimal value η∗, where β = τ/(pC):

η∗ =
√

(1 − T/C) · β .

Intuitively, as β approaches 0, the flush fee becomes negligible, and the algorithm should
flush as often as possible. Using this optimal η∗, the competitive ratio is (1−β)/(

√
1 − T/C−√

β)2, which approaches 1 as β approaches 0. As a final result, we have the following theorem.

▶ Theorem 4.4. Choosing η =
√

β(1 − T/C), the competitive ratio for Aη is

1 − β

(
√

1 − T/C −
√

β)2
.

5 Conclusion

We constructed a modeling framework for collateral management policies of layer-two
protocols in the blockchain setting. This framework targets two natural models encountered
in practice: the k-wallet model in which the collateral C is divided among k wallets, and the
general model in which C is viewed as one wallet (or collateral pool). We adopt the standard
classical paradigm of competitive analysis in which an online algorithm A, that only knows
the transactions encountered so far, is compared against an optimal algorithm OPT that
has full knowledge of the transaction stream including future transactions. Our analysis is
agnostic to transaction distribution and only requires knowing the maximum transaction
size (i.e., value). Given the dynamic nature of blockchain applications and the unpredictable
behavior of their transactions and workload, developing transaction distribution-independent
techniques is highly desirable.

Using our framework, we study natural collateral management policies for the k-wallet
and the general models, and we show how competitive they are compared to OPT. This is
measured in terms of the total transaction value that can be settled and when to replenish
the collateral to allow settling future transactions. The general model also studies the
replenishment cost and how this affects the utility of the policy. We also derive the optimal
configuration for the policy parameters, in terms of the number of wallets and the fraction of
the committed collateral to be replenished.

To the best of our knowledge, this work is the first to study the collateral management
problem for layer-two protocols. Our future work include extending this model to account
for more factors, e.g., transaction specific conditions rather than just a transaction value,
and develop dynamic policies in which the number of wallets, and even the collateral value
itself, can change over time based on the experienced transaction stream.
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1 Introduction

Decentralized Finance (DeFi) has revolutionized lending and borrowing by eliminating
centralized intermediaries. The main paradigm shift has been around moving away from
opaque financial entities such as banks, that use proprietary models and data to match
deposits with borrowers [31], to transparent pools with published algorithms to change
interest rates, and borrowing conditions. Major DeFi lending platforms like Aave [2] and
Compound [14] function through these liquidity pools, where lenders provide capital that
borrowers can access. These protocols ensure that borrowers pledge enough collateral to
cover their debt, along with an additional safety buffer.

The simplest variable of interest that any lending protocol seeks to control is the supply-
demand ratio of the pool, referred to as “utilization.” The objective is to maintain a stable
utilization around a designated “optimal utilization” threshold. A coarse rule of thumb
is that when the utilization is low, interest rates remain low to encourage borrowing [5].
As utilization increases, interest rates rise to balance demand with supply and to prevent
excessively high utilization, which could restrict lenders’ ability to withdraw their funds, thus
rendering the market less attractive.

Besides the interest rate, other parameters like the over-collateralization ratio, also known
as the “collateral factor,” govern the long-term risks and profits of the market [30]. In
particular, the cash flow that any lender gets from the protocol is at risk of liquidation, and
in the more severe cases, default. This risk can be minimized by demanding a large amount
of collateral from borrowers, which makes the risk vanishingly small while making the lending
market incredibly inefficient and unattractive for borrowers, especially if the asset used as
the collateral does not suffer frequent price fluctuations. Thus, the collateral factor needs to
be determined based on a careful analysis of recent historic behavior of the collateral asset
price, and the risk appetite of the lender.

Present DeFi platforms fix the interest rate as a static function of the utilization [3, 15].
Choosing utilization as the primary indicator of both supply/demand dynamics and market
risk/attractiveness and employing a fixed interest rate curve to manage these aspects is very
arbitrary and manually determined. Furthermore, traditional DeFi borrowing and lending
markets set the collateral factor through a comprehensive process involving community
proposals and review phases [1, 13]. However, this method is notably slow and struggles to
adapt quickly to rapid market changes, potentially leading to losses and excessive risks due
to the delayed adjustment of parameters in response to market fluctuations and experiencing
long periods of extreme low liquidity or market inefficiencies. For instance, the authors of [21]
have found that the markets for DAI and USDC frequently exhibit periods of extreme low
liquidity with utilization exceeding 80% and 90%, respectively, which further highlights the
inadequacy of current interest rate models.

In this study, we propose an adaptive, automated, and data-driven approach for designing
a borrowing/lending protocol. We begin by modeling the behaviors of borrowers and lenders
based on their incentives in a principled manner and examine how external factors alter these
behaviors over time. We then define market equilibrium (Definition 2), where the market
remains stable within a broader external market, and rates offered by our protocol do not allow
borrowers or lenders to gain an advantage over external market rates. Achieving equilibrium
is crucial in a market with conflicting interests, as instability tends to disproportionately
benefit one group over another, reducing overall fairness and attractiveness of the market [23].
If a protocol cannot dynamically adjust to achieve equilibrium, it risks losing liquidity and
users. Market stability must be promptly restored after disruptions, which may be caused by
changes in external market conditions or shifts in price distributions that affect the market’s
risk and profit structure.
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Traditional stationary-curve borrowing/lending markets depend on user interactions to
push towards equilibrium – for instance, high interest rates prompt borrowers to repay loans,
reducing utilization and interest rates. However, this process is slow and often results in
impermanent loss [36], especially for users with less flexibility in managing their assets. In
order to address this problem, our protocol includes an “interest rate controller” submodule
that learns the equilibrium interest rate from user behaviors, providing a faster convergence
rate, even in the presence of uninformed users who lack precise information on competitive
rates. Unlike traditional methods, our approach does not solely rely on user actions but
actively learns from them to accurately assess and adapt to market conditions. Moreover, we
provide an adversarial robust version of our interest rate controller as well which learns the
equilibrium interest rate as long as the adversary controls less than 50% of the borrowing
demand.

In addition to promptly restoring stability following market disruptions, it is essential for
a protocol to adaptively optimize hyperparameters that enhance long-term system efficiency
and manage risk. Our protocol features a long-term planner that uses the collateralization
ratio as a control variable to adapt to market changes and stabilize the market at a desired
level (Section 3.2). The collateralization ratio is critical for managing long-term risks and
rewards in the system. This ratio has a complex relationship with user behavior and the
overall risk and profitability of the market, which we explore in detail in our paper (Section 4).
The objectives of the protocol within this long-term planner can be defined in many different
ways; In this paper our focus is on maintaining long-term utilization at a target level and
controlling default, however more complex objective functions could be implemented to
address specific market needs or objectives. Our approach provides a general framework for
designing adaptive markets with heterogeneous users who may have varying incentives.

Additionally, we implemented our protocol and tested it with simulated borrowers and
lenders, empirically comparing its performance against fixed-curve baselines. We evaluated
the correctness of our theoretical guarantees in practice and demonstrated that our interest
rate controller can quickly learn the equilibrium interest rate after each market disruption,
regardless of borrowers’ and lenders’ elasticity. In contrast, the baseline protocol fails to find
the equilibrium interest rate when user elasticity is low due to its reliance on user reactions
to push the market toward equilibrium. Moreover, we showed that in the presence of major
market changes, our protocol’s collateral factor planner adaptively activates. By learning
new price and market parameters, it sets the collateral factor to maintain utilization near a
predefined optimal level in the long term.

Related work

Various models on lender and borrower behavior and their equilibria have been explored.
[12] assume parametrized supply and demand curves based on interest rates, approximating
the curve around equilibrium to recommend rates, but they ignore external markets and
default risk minimization. [33] consider external markets, measuring protocol efficiency by
interest rate differences, but their models lack long-term decision-making and liquidation
considerations. [10] examines Nash equilibrium in a model with independent quality shocks,
showing that exogenous asset prices yield one equilibrium, while protocol-influenced prices
cause oscillation and propose ad-hoc contract adjustments. Empirical studies on lender/bor-
rower behavior [19, 20, 34] inform our parameter values. [35] discusses borrower trading
strategies with market makers. Adversarial attacks on lending protocols have also been
highlighted [9, 11, 8].
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Several recent works in the mechanism design of financial systems have been advocating
for the use of automated adaptivity [40]. The presence of impermanent loss and arbitrage loss
in the design of market makers has also spawned multiple works in adaptive market making
[18, 27, 29]. We seek to bring similar automated methods to lending in DeFi. Platforms such
as Morpho [28] and Ajna [4] provide lenders and borrowers more flexibility when it comes to
equilibrium interest rate discovery via an order-book like structure. However, such protocols
require constant monitoring on the part of the participants for fairness and optimality. Our
objective is to bring these notions of fairness/optimality to more passive pool-based lending
protocols.

The methods used in this work are based on optimal control and filtering literature using
the least squares method [22]. This method has been used in the estimation of underlying
dynamics, given a noisy access to measurements [25, 39]. Several recent works have provided
extensions of this algorithm to ensure adversarial robustness [7, 37, 26], which use hard
thresholding and concentration inequalities to weed out adversarial data.

2 Problem formulation

2.1 Market actors
The DeFi borrowing and lending market includes four key participants: lenders, borrowers,
liquidators, and the protocol, here called P. These actors interact within a shared pool.
This subsection briefly clarifies each participant’s role and the mechanisms protocols use to
regulate their interactions.

To prevent defaults during price declines, the protocol employs liquidation. This occurs
when a borrower’s loan-to-value ratio (debt-to-collateral value) exceeds a threshold liquidation
threshold (LT ), set between 0 and 1 and higher than the initial loan-to-value ratio c. When
this threshold is surpassed, liquidators can claim a portion of the borrower’s collateral to
repay the debt, reducing the loan-to-value ratio. Liquidators receive a fee LI from the
borrower’s collateral. Liquidations enhance system safety but are unfavorable for borrowers
due to the incentive fee. This prompts borrowers to increase their collateral preemptively.
Despite liquidation mechanisms, defaults can occur if collateral prices drop abruptly or if
liquidators lack sufficient incentives to act.

The protocol must adjust parameters {rt, ct, LTt, LIt} over time to stabilize the pool.
Objectives include stabilizing loan supply and demand by setting an interest rate rt and
optimizing parameters to minimize defaults and liquidations while maintaining an ideal
utilization rate. Our paper focuses on creating a competitive DeFi protocol with efficient
rates, not on revenue maximization. The openness of DeFi protocols and minimal fees should
ensure that the most competitive protocol eventually dominates the market.

The lending pool consists of two assets: a stable asset, Al, provided by lenders for interest,
and a volatile asset, Ac, used by borrowers as collateral. Borrowers can only borrow a
fraction collateral factor (c) of their collateral, set by the protocol. At timeslot t, the overall
pool’s assets of type Al, considering both lent-out funds and available liquidity, are denoted
by Lt. Note that Lt increases over time as lenders accrue interest on the lent-out portion.
The asset of a particular lender i is represented by Lt(i).

The interest rate rt is set by the protocol at each block. Borrowers pay this rate, but
lenders earn interest only on the utilized fraction Ut of their deposit, defined as Ut = Bt

Lt
,

where Bt represents the overall debt across all borrowers, and Bt(i) represents the debt of
borrower i. The debt amount also increases over time due to accrued interest. The quantity
of the overall collateral posted by all borrowers is denoted by Ct, and Ct(i) denotes the
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collateral of borrower i. Hence, pt · Ct determines the value of the collateral in terms of
the lent-out asset, Al (for a thorough list of the notations and their description refer to
Appendix D of the full paper [6]). When borrowers repay, they return the loan plus interest
and retrieve their collateral. Lenders receive interest based on the protocol rate and fund
utilization. Defaults can affect the final interest rate for lenders. If collateral value drops
below the debt, the protocol cannot compel repayment of the insolvent debt, resulting in a
loss that impacts the lenders’ interest rate.

2.2 Environment model
Asset price model. We operate within discrete time intervals, denoted as ∆, each corres-
ponding to one blocktime. We use a discrete price model to monitor the collateral asset’s
price from one block to the next. For simplicity, we assume the lent-out asset is a stablecoin
with a relatively stable price, while the collateral asset’s price follows an exogenous geometric
Brownian motion with volatility σ. We assume constant volatility over short periods of
time, with occasional sporadic jumps, but no fluctuations from one timeslot to the next.
In particular, we assume that the price volatility is constant within timescales denoted by
Tm > 1 (m for market, denoting the timeframe within which the market is stable) which
consists of multiple timeslots and can change arbitrarily every Tm timeslots.

The price at time t, denoted as pt, follows a Geometric Brownian motion with drift µprice
and volatility σ. The initial price p0 is the starting point, for notation simplicity we normalize
and consider ∆ = 1 and hence formally, the model is:

pt = pt−1 exp (µ + σεt) , εt ∼ N (0, 1) (1)

where εt is the innovation term for the volatility.

External market competition. We assume the existence of an external competitor market
which offers risk-free borrow rate rb

o and risk-free lend rate rl
o. These rates are constant

during each market period Tm and can change arbitrarily between periods. This assumption
accounts for the competition and the broader market within which our protocol operates.
rl

o and rb
o might represent the existence of complex alternatives rather than simple risk-free

rates. In Appendix B of the full paper [6], we discuss interpreting these parameters based
on real-world strategies and competitors in the Defi ecosystem. Throughout the paper, we
abstract these concepts into rl

o and rb
o.

2.3 Protocol behaviour and pool logic
In this section, we establish the structure of a decentralized borrowing-lending protocol,
denoted by P. The protocol fulfills two primary roles: 1) P sets the pool’s parameters for
each block, denoted as {rt, ct, LTt, LIt}, by transmitting a transaction to the underlying
blockchain. These parameters govern the pool’s logic. 2) P updates the state variables Lt,
Bt, and Ct every block to apply interest rate accumulation and liquidation or default due to
price fluctuations.

Handling default. At the beginning of each timeslot t, P receives the latest price of Ac, pt,
from an oracle. The protocol calculates potential defaults accrued in the last timeslot for
each user. The default for borrower i at timeslot [t− 1, t] is:

πi
t−1(pt) := max {0, Bt−1(i)− Ct−1(i) · pt} (2)
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The overall default, normalized by Lt−1, is:

πt−1(pt) := 1
Lt−1

∑
i∈borrowers

max {0, Bt−1(i)− Ct−1(i) · pt} (3)

The protocol seizes the remaining collateral of defaulted positions, exchanges it for Al, and
sets the debt of defaulted borrowers to zero. The gained Al assets are added back to the
pool. Moreover the underwater debt is deduced from the lender’s deposit accordingly:

Lt(i) = Lt−1(i)− πt−1(pt) · Lt−1(i), ∀ i ∈ Lenders (4)

For a more thorough explanation of why we handle defaults in this way rather than using a
safety reserve similar to most of the current working Defi borrow-lending platforms refer to
Appendix A of the full paper [6].

Interest update. The debt of non-defaulted borrowers is updated by:

Bt(i) = Bt−1(i) · (1 + rt−1) , ∀ i ∈ Borrowers

The interest rate on the utilized portion of the pool applies to the lenders as well:

Lt(i) = Lt(i) ·
(

1 + rt−1
Bt−1

Lt−1

)
, ∀ i ∈ Lenders

Liquidation. P tracks borrow positions exceeding the liquidation threshold. A position
i is eligible for liquidation if LTt−1 < Bt(i)

Ct(i)·pt
< 1. Liquidators reduce the user’s debt by

purchasing collateral, restoring the loan-to-value ratio below LTt−1. The debt and collateral
after liquidation are updated accordingly. The minimum liquidation amount that reduces
the user’s loan-to-value below LTt−1 is

λi
t−1(pt) := max

{
0,

Bt(i)− LTt−1 · Ct(i) · pt

1− LTt−1(1 + LIt−1)

}

Setting new parameters. P sets new parameters for the next timeslot: {rt, ct, LTt, LIt}.
These parameters determine the interest rate, maximum loan-to-value, and liquidation
parameters for the next timeslot.

Admitting new users. The protocol accepts all new lend and repay requests. Borrow
requests are accepted only if they adhere to the maximum collateralization factor ct and
there is sufficient Al in the pool to satisfy the request. Additionally, it processes withdrawal
requests from lenders as long as the withdrawal amount does not exceed the available Al in
the pool.

2.4 User behavior model
In this section, we establish the model that a rational user would use to interact with the
protocol. We consider a continuum of lenders and borrowers, each controlling a single unit
of demand or supply. In each timeslot, lenders can deposit or withdraw their unit, and
borrowers can borrow, repay, or adjust their loan-to-value ratio by sending a transaction to
the smart contract.
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2.4.1 Lender
We assume that a continuum lender with one unit of supply, planning for the next timeslot,
will calculate the following utility function at time t to decide whether to deposit into the
pool or, if already deposited, to withdraw and invest in another external alternative offering
rl

o.

Utilityl
t := rtUt − E [πt(pt+1)]− rl

o (5)

where the expectation is over the price at timeslot t + 1 price. The first term in 5 represents
the interest earned by the lender on the utilized portion of their deposit. Although the interest
rate is compounded, we approximate it linearly for simplicity. The second term denotes
the normalized defaulted debt deducted from the lender’s deposit. Finally, we subtract the
external interest rate rl

o to account for the lender’s opportunity cost.
We now describe the dynamics by which lenders add or withdraw their deposits based

on utility. We introduce a new parameter ηl, which reflects the average elasticity of lenders
at time t. This value can change over time (not faster than Tm) and is unknown to the
protocol. We assume that the relative rate at which lenders deposit or withdraw from the
pool is governed by the following model:

Lt+1 − Lt

Lt
= ηl ·Utilityl

t + εt

= ηl ·
(
rtUt − E[πt(pt+1)]− rl

o

)
+ εt, εt

i.i.d∼ N (0, ζ2) (6)

The noise term accounts for the behavior of uninformed or less informed users.

2.4.2 Borrower
From observing the real lending markets, we identify two types of DeFi borrowers, financing
and leveraged trading borrowers (see Appendix B.2 of the full paper [6] for more details).

The first type borrows an asset to use elsewhere, gaining value by leveraging it, e.g.,
for yield farming or real-world purposes. This group’s value from the borrowed asset is
represented as rb

o, measured as an interest rate. The utility function of a borrower of this
type controlling one unit of demand, considering the opportunity cost of locked collateral, is

Utilityb,1
t := rb

o − rt + E
[
πi

t(pt+1)
]
− E

[
λi

t(pt+1)
]
· LIt

+ Ct(i) · E
[
1pt+1−pt<0(pt+1 − pt)

]
(7)

This includes inherent value (rb
o), interest rate (−rt), default value (E

[
πi

t(pt+1)
]
), liquidation

cost (−E
[
λi

t(pt+1)
]
·LIt), and opportunity cost of locked collateral E

[
1pt+1−pt<0(pt+1 − pt)

]
.

The second type aims to take a long position on Ac. They borrow 1
pt

units of Ac from
an external provider Z, add more collateral to meet the over-collateralization requirement
ct, and borrow one unit of Al from P, then exchange it for Ac to repay Z. This borrowing
strategy is studies in details in [35]. Their utility function is:

Utilityb,2
t = −rt + E

[
πi

t(pt+1)
]
− E

[
λi

t(pt+1)
]
· LIt + E

[
pt+1 − pt

pt

]
(8)

This includes interest rate (−rt), default value (E
[
πi

t(pt+1)
]
), liquidation cost (−E

[
λi

t(pt+1)
]
·

LIt), and gain from a price change of the 1
pt

investment in Ac which was possible through

interacting with P i.e.,(E
[

pt+1−pt

pt

]
. Refer to Appendix B.2 of the full paper [6] for more

details.
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Assuming α fraction of borrowers are type 1 and the rest type 2, the rate of borrowing or
repaying is a linear function of borrower’s elasticity ηb and their average utility plus noise:

Bt+1 −Bt

Bt
= ηb ·

(
α ·Utilityb,1

t + (1− α) ·Utilityb,2
t

)
+ εt

= ηb ·
(

α · rb
o − rt + E

[
πi

t(pt+1)
]
− E

[
λi

t(pt+1)
]
· LIt

+ α · Ct(i)E
[
1pt+1−pt<0(pt+1 − pt)

]
+ (1− α) · E

[
pt+1 − pt

pt

])
+ εt, (9)

where εt
i.i.d∼ N (0, ζ2).

Throughout this paper, we assume that P efficiently sets the buffer between the collateral
factor and the liquidation threshold to ensure that the expected liquidation, E[λi

t(pt+1)], for
a borrower i who maintains the posted collateral factor, is negligible. This assumption differs
from the current borrowing and lending platforms, which experience significant liquidations
even among borrowers who adhere to the posted collateral factor. However, we believe that
a competent borrowing and lending protocol should set risk parameters to minimize this
risk. In Section 3.2, we explain how we determine the liquidation threshold and collateral
factor to ensure that the expected liquidations remain negligible. Moreover, throughout this
paper, we assume that the liquidation incentive, LIt, is set sufficiently high by the protocol
to encourage the borrowers to maintain the collateral factor, ct, and avoid liquidations.

▶ Lemma 1 (Maximum loan-to-value adoption). Consider the following conditions:
The collateral factor, ct, and the liquidation threshold, LTt, are chosen such that for a
given LTt, ct is the maximum collateral factor that ensures the expected liquidation, E[λi

t],
is approximately zero for a user i who maintains ct.
The liquidation incentive, LIt, is set high enough to incentivize rational borrowers to
avoid liquidation by ensuring that Bt(i)

Ct(i)pt
≤ ct.

Then rational borrowers will adopt the maximum loan to value allowed by the protocol i.e., ct.

Hence from now on, we assume that E[λi
t] for a rational continuum borrower is negligible

and for ease of notation, we denote it by λ(ct, LTt). The proof of all the lemmas and theorems
can be found in Appendix C of the full paper [6].

2.4.3 Liquidator
We assume that the liquidation incentive LI is set at a level that consistently incentivizes
liquidators, ensuring their prompt engagement and immediate liquidation up to the limit
allowed by P . Additionally, since we use an exogenous price model for collateral, phenomena
like liquidation spirals studied in previous works [24] are not considered in our analysis.

2.5 Equilibrium analysis
In this section, we will formally define the concept of equilibrium in the borrow-lending
framework we established. And we will analytically identify the set of equilibria of this
market when users follow the behaviour outlined in 2.4.

▶ Definition 2 (Market equilibrium). A lending pool governed by protocol P parameterized by
{rt, ct, LTt, LIt}, and lender’s and borrower’s behavior respectively governed by 6, and 9 is
in equilibrium if and only if:

E
[

Bt+1 −Bt

Bt

]
= 0 and E

[
Lt+1 − Lt

Lt

]
= 0

where the expectation is over the noise term in the user behavior model.
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▶ Lemma 3 (Simplified default and price change terms ). In the presence of rational continuum
lenders and rational continuum borrowers who follow collateral factor ct (due to Lemma 1)
we have:

π(ct) := E
[
πi

t(pt+1)
]

= Φ
(

log(ct)− µ

σ

)
−

exp ( σ2

2 + µ)
ct

· Φ
(
−µ + log(ct)− σ2

σ

)
(10)

E [πt(pt+1)] = Utπ(ct) (11)

Ct(i)E
[
1pt+Tu −pt<0(pt+Tu

− pt)
]

= 1
ct

eµ+ σ2
2

Φ
(

−µ−σ2

σ

)
Φ
(−µ

σ

) − 1

 (12)

E
[

pt+1 − pt

pt

]
= eµ+ σ2

2 − 1

Where ϕ(.) and Φ(.) denote the PDF and CDF, respectively, of the standard normal distribu-
tion.

Throughout the rest of the paper, we denote the expected default for one unit of debt by
π(ct). Conceptually, Lemma 3 implies that if the pool’s loan-to-value ratio is maintained
close to ct in each timeslot, the probability of default remains memoryless. This is due to
the Brownian motion of price, where the price ratio between consecutive timeslots follows a
stationary distribution. Therefore, the probability that the next timeslot’s price falls below
the default threshold is stationary and memoryless, changing only when the price distribution
itself changes.

▶ Theorem 4. Let the lender behavior be described by Equation 6, the borrower behavior by
Equation 9 (for ηb > 0), and the assumptions of Lemma 1 hold. A protocol with parameters
{rt, ct, LIt, LTt}, achieves a non-trivial equilibrium if and only if rt = r∗:

r∗ = α rb
o + π(ct) + α

ct

eµ+ σ2
2

Φ
(

−µ−σ2

σ

)
Φ
(−µ

σ

) − 1

+ (1− α)
(

eµ+ σ2
2 − 1

)
(13)

Furthermore, if ηl > 0, then the unique equilibrium utilization is:

U∗ =
{

rl
o

r∗−π(ct) if r∗ > π(ct)
1 otherwise

(14)

Equilibrium dynamics. In order to achieve the equilibrium point, The protocol first should
find the equilibrium interest rate, r∗, and set rt = r∗ to prevent borrowers from leaving
or joining the system. Once r∗ is set, if the utilization Ut is above U∗, lenders’ utility is
positive, so they keep lending until Ut reaches U∗, stabilizing the system. Conversely, if Ut is
below U∗, lenders’ utility is negative, causing them to withdraw until Ut = U∗. At this point,
lenders are indifferent between the pool and external competitors and remain fixed. The
equilibrium utilization is U∗ = 1 if, regardless of utilization, lenders’ utility under rt = r∗

remains non-positive. Consequently, they withdraw fully, yielding U∗ = 1, and they remain
trapped in an unfavorable equilibrium where they prefer external rates but since their fund
is being borrowed, they cannot leave the system.
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2.6 Protocol objectives and evaluation metrics
In this section, we define three key metrics to evaluate a borrow-lending protocol. The
protocols considered follow the behavior outlined in 2.3. Each protocol selects a deterministic
or randomized interest rate function rt : Ht

1 → R+, a collateral factor function ct : Ht
1 → [0, 1]

and a liquidation threshold function LIt : Ht
1 → [0, 1] mapping the pool’s history to an

interest rate, a collateral factor and a liquidation threshold.

2.6.1 Rate of equilibrium convergence
Achieving market equilibrium is crucial for any DeFi application, as equilibrium points
represent the market’s most competitive state. At equilibrium, no participant is overpaid or
underpaid, ensuring all users are equally satisfied with P as with any external alternative. In
two-sided markets like borrow-lending, the time to achieve stability can disproportionately
benefit one side. Setting interest rates below what borrowers are willing to pay results in
lenders receiving less than in a competitive market. Conversely, if interest rates exceed the
equilibrium rate, borrowers pay more than in a stable market. The more elastic user benefits
at the expense of the less elastic user, who incurs an impermanent loss.

Adapting to market changes allows the protocol to stabilize the pool when user behavior
or price volatility changes. As these parameters change over time, the protocol must respond
dynamically to maintain system stability within a reasonable timeframe. In the borrow-
lending market framework, each time user behavior parameters (e.g., rb

o, rl
o, α) or price

volatility (σ) change, the market stabilizes at a new r∗ (refer to Theorem 4). One objective
of P is to rapidly identify and set this new equilibrium rate. We formalize this concept as
the rate of convergence, using it as a metric to evaluate our protocol against non-learning
baselines.

▶ Definition 5 (Rate of equilibrium convergence). Consider a stable borrow-lending pool with
the interest rate rt = r∗, where r∗ is the equilibrium interest rate determined by Equation 13.
At time t + 1, user behavior models adapt to new parameters {η̄l, r̄l

o, η̄b, r̄b
o, α}, and price

volatility changes to σ̄. Let rτ represent the interest rate set by P at time τ > t, and let
r̄∗ denote the new equilibrium interest rate for the updated market parameters. We define
the rate of equilibrium convergence of P, denoted by RP(δ, τ), as the infimum of functions
f(δ, τ), such that there exists some T(δ) for which, with probability 1− δ,

|rτ − r̄∗| < f(δ, τ), ∀ τ > T(δ),

for any initial and secondary set of parameters in the user model and price model. Probabilities
are calculated on the randomness of the protocol and the noise in the user behavior model.

2.6.2 Equilibrium Optimality Index
Any Defi borrow-lending market aims to meet specific long-term objectives. For instance, the
pool should maintain utilization at an optimal level; Because low utilization reduces capital
efficiency, requiring the protocol to pay higher interest rates to lenders, and high utilization
can make it difficult for lenders to withdraw and borrowers to secure loans. Moreover,
expected defaults and liquidations are risk metrics that the protocol aims to control. These
objectives operate on a different timescale than the interest rate adjustments discussed in
the convergence rate. For instance, we care about the average utilization or expected default
over a long period rather than their local values in each timeslot. To address this, we define
a metric called optimality index, which evaluates the desirability of the system’s equilibriums
during the timeslots when the pool has reached its equilibrium, denoting the set of these
timeslots by Te.
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▶ Definition 6 (Optimality Index). The Optimality Index of a protocol, denoted by OIP , is
defined as follows:

OIP := 1
|Te|

∑
t∈Te

E
[
−(Ut − Uopt)2 − γ

(
Ut π(ct) + λ(ct, LTt)

)]
, (15)

The expectation is taken over the protocol’s randomness and user behavior. Uopt and λ

are constant parameters.

While the first term in the OIP ensures that utilization is kept near a desired point, the
second term acts as a regularization term, controlling the expected default and liquidation.
Our definition of Optimality Index evaluates a specific notion of optimality, but it is just
one of many possible definitions. Our protocol design methodology can be applied to other
objective functions beyond Function 15. In this paper, we showcase our ideas for this specific
objective function and discuss how to extend the methodology to other objectives.

2.6.3 Adversarial robustness

Protocols in DeFi are always susceptible to adversarial behavior that can be used to manip-
ulate an adaptive algorithm to respond in a suboptimal manner. This behavior is usually
observed when some borrower/lender agents interact with protocols outside of P in con-
junction with P to achieve a profit. This can involve oracle manipulations attacks used to
run away with valuable assets while providing worthless collateral, or attacks that move
interest rates in the opposite direction of the equilibrium rates. We focus on the latter type
of adversarial behavior in this work. Moving interest rates away from equilibrium leads to
market inefficiencies. Further, undue hikes in these rates can be used to trigger unexpected
liquidations for profit.

We thus propose that the susceptibility of P to adversarial manipulation should also be
measured. To do that, we first assume that a fraction β of the population of lenders/borrowers
are adversarial. Thus, P will face an adversarial lender/borrower for an approximately β

fraction of time slots. In those time slots, the adversary can manipulate the borrow/lend
reserves arbitrarily. Let Tβ denote the set of time slots that the protocol faces an adversary.

We measure how susceptible a protocol is to adversarial manipulation using the following
metric.

▶ Definition 7 (Adversarial Susceptibility). The adversarial susceptibility of a protocol, denoted
by ASP , is defined as follows:

ASP := E

[∑
t∈Te

rt
P − rt

P|Tβ

]
.

The expectation is taken over the protocol’s randomness, user/adversarial behavior, where
rt

P denotes the interest rate recommended by the protocol and rt
P|Tβ

is the same, when the
indices of adversarial actions are known.

Since an adversary can manipulate the protocol arbitrarily, the above measure signifies how
adept the protocol is in weeding out historical data that has been manipulated, thus ensuring
a cleaner convergence to the true interest rate equilibrium.
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2.7 Baseline
For the baseline, we consider protocols akin to Compound, which utilize a piecewise linear
interest rate curve to ensure stability. These protocols dynamically adjust interest rates at
each block according to the model:

Rt =

R0 + Ut

Uopt
Rslope1, if Ut ≤ Uopt

R0 + Rslope1 +
(

Ut−Uopt
1−Uopt

)
Rslope2, if Ut > Uopt

In contrast to our proposed approach, these platforms generally set collateral factors and
other market parameters through offline simulations that attempt to forecast near-future
market conditions. Parameters are selected based on simulation outcomes and are subject to
decentralized governance voting. Since this phase happens in an offline and opaque manner
by centralized companies, we cannot compare this aspect of their protocol with ours.

Due to the piecewise linear nature of the interest rate as a function of utilization, these
protocols achieve market stability only when either borrowers or lenders, but not both,
exhibit elasticity [17]. To see why this is the case, note that according to Theorem 4, if
borrowers are elastic (ηb > 0), the equilibrium interest rate can be uniquely determined. And
if lenders are elastic too, the equilibrium utilization is determined by Equation 14 which is
not a linear function of r∗, hence a piecewise linear interest rate curve cannot satisfy the
equilibrium conditions if both sides are elastic. Traditional DeFi platforms typically monitor
the pool to identify the more elastic side of the market (usually borrowers) and design the
curve accordingly.

3 Fast-slow thinker protocol

In this section, we outline a design for the interest rate and collateral factor function of P
that aims to achieve both the best possible convergence rate and the optimal optimality
index. The protocol has the following two components.

A least squares estimator detects market disruptions that lead to instability and learns
the equilibrium interest rate from borrowers’ reactions, setting it agilely.

The long-term parameter planner consists of three parts: 1) A user behavior parameter
estimator, which estimates the user behaviour model parameters that are required to optimize
the optimality index. 2) An optimization module, which selects the optimal collateral factor
to maximize optimality index, assuming negligible expected liquidation. 3) A liquidation
threshold determination module, which sets the liquidation threshold as a function of the
collateral factor to ensure zero expected liquidation.

The canonical scenario we use to evaluate our protocol is the following: at the beginning
of the timeslot t, one or some of the market parameters (e.g., σ, rl

o, rb
o, α) change to a new

level and remain constant for a period Tm. The protocol must adapt to these new parameters
by setting the equilibrium interest rate and the optimal collateral factor that maximizes
the optimality index when the pool reaches equilibrium. Refer to Figure 1 for a visual
representation of the protocol and its interaction with the pool.

3.1 Online interest rate controller
We model the problem of finding r∗ using the linear regression method, where the borrow/re-
pay rate depends on the difference rt− r∗ (motivating factor for borrowers) and ηb (borrower
elasticity), with an added noise component; And use this model to estimate r∗ adaptively.
Here is the linear regression problem formulation:
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Bt+1 −Bt

Bt
= ηb ·

(
α rb

o − rt + π(ct) + α

ct
E
[
1pt+1−pt<0(pt+1 − pt

pt
)
]

+

(1− α) · E
[

pt+1 − pt

pt

])
13= ηb(r∗ − rt)

∆B = Pt
b ·Θb + ε (16)

where:
∆B =

[
B1−B0

B0
, B2−B1

B1
, . . . , Bt+1−Bt

Bt

]T

is the vector of normalized changes.
Pt

b is the matrix of pool variables that affect borrower’s behaviour:

(Pt
b)⊤ =

[
1 1 · · · 1
r0 r1 · · · rt

]
Θb = [ηb r∗ ,−ηb]T is the parameter vector
ε = [ε0, ε1, . . . , εt]T is the noise vector.

The interest rate controller algorithm, outlined in 1, activates when ∆Bt exceeds a threshold
δ, indicating rt ≠ r∗. The algorithm collects ∆B and Pt

b to estimate Θ̂b, setting rt as the
estimated r̂∗ according to r̂∗ = − Θ̂b(0)

Θ̂b(1) .

We cannot use vanilla LSE in this setting and simply output rt = r̂∗ = − Θ̂b(0)
Θ̂b(1) because

feeding back the estimated r̂∗ to the protocol may cause the rows of the Pb matrix to become
very close to each other. This happens when the estimator outputs an rt that has been
seen before, leading to redundant data points. Consequently, the theoretical guarantee of
LSE to converge to the correct Θ∗

b as the number of data points increases is impaired. To
mitigate this problem, with a small probability, we sample a random interest rate. Finally,
after running for a few iterations and accumulating a sufficiently large number of samples,
the estimator stops and outputs the estimated r∗.

Theoretical analysis
▶ Theorem 8 (LSE convergence rate). Assuming ηb > 0, the interest rate controller described
in Algorithm 1 with stopping time τ (taking τ samples), satisfies the following:

RP(δ, τ) ∼ O
( log 1

δ√
τ

)
.

Moreover, if ηb is known: E [rτ ] = r∗, ∀τ

▶ Theorem 9 (Baseline convergence rate). Under a piece-wise linear interest rate function
In the presence of elastic borrowers and inelastic lenders, we have:

E [rτ ] = r∗ + D(1−K ηb)τ , 0 < 1−K ηb < 1

RP(δ, τ) ∼ o

(
1√
δ

)
.

where K, D are constants determined from the specifications of the interest rate curve.
If lenders are elastic as well, the protocol never stabilizes with rate r∗.
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Our interest rate controller provides an unbiased estimation of the equilibrium interest
rate, with the estimation variance decreasing over time. In contrast, the baseline algorithm
is a biased estimator of the equilibrium rate, becoming unbiased only as τ →∞; And the
rate of convergence of the average error to zero is proportional to ηb, as the baseline protocol
relies heavily on user actions to adjust the rate toward equilibrium rather than actively
learning from user behavior. Additionally, the baseline algorithm maintains a constant error
relative to the equilibrium rate due to the noise in user behavior and its inability to filter
out this noise.

Algorithm 1 Interest rate controller, utilizing a least squares optimization approach.

1: Initialize: t← 0, δ ← stability threshold, tsleep ← sleep time, ν exploration probability
2: while True do
3: if Bt−Bt−1

Bt−1
< δ then

4: Sleep for tsleep
5: Reset matrices ∆B and Pb

6: else
7: Add the new row [1, rt−1] to Pt−2

b to construct Pt−1
b and

8: Add the new column [ Bt−Bt−1
Bt−1

] to ∆B
9: Perform least squares estimation to find Θ̂b ← ((Pt−1

b )T Pt−1
b )−1 (Pt−1

b )T ∆B
10: Parse Θ̂b as [η̂br̂∗,−η̂b] and extract r̂∗ and set rt = r̂∗

11: With probability ν, choose a random rt ∈ [rmin, rmax]
12: end if
13: t← t + 1
14: end while
15: end algorithm

3.2 Risk parameters planner

First, we examine the conditions that ensure zero expected liquidation. These conditions
provide the planner with the necessary bounds for setting the liquidation threshold.

▶ Lemma 10. The expected liquidation incurred at time t + 1, given that the loan-to-value
ratio at time t is ct, can be expressed as

λ(ct, LTt) := E[λi
t(pt+1)]

= 1
1− LTt

Φ

 ln
(

ct

LTt

)
− µ + σ2

σ

− LTt

ct
eµ+σ2

Φ

 ln
(

ct

LTt

)
− µ− σ2

σ


where Φ denotes the cumulative distribution function of the standard normal distribution.

To maintain the expected liquidation below a small threshold (nearly zero), this lemma
provides bounds on LTt and ct

LTt
. These bounds are used by the planner to set LTt and

constrain ct. With negligible expected liquidation, the optimality index is simplified to
include only the utilization error and the default term.
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▶ Corollary 11. Given a fixed set of parameters rl
o, rb

o, σ, µ and assuming that λ(LTt, ct) ≈ 0,
the maximization problem of OIP with respect to ct can be formulated as follows:

max
ct

OIP = min
ct

(
rl

o

b + a
ct

− Uopt

)2

+ γ
rl

o

b + a
ct

Φ
(

log(ct)− µ

σ

)
(17)

− γ
rl

o

b + a
ct

exp
(

σ2

2 + µ
)

ct
· Φ
(
−µ + log(ct)− σ2

σ

)
(18)

where a := α

eµ+ σ2
2

Φ
(

−µ−σ2
σ

)
Φ( −µ

σ ) − 1

 and b := αrb
o + (1− α)

(
eµ+ σ2

2 − 1
)

.

We can derive this corollary by substituting the default, expected price fall, and price change
terms from Lemma 3 into the definition of optimality index stated in Definition 6.

Borrower

Interest rate
controller

Lender

Borrow/lending Pool

Parameter
Estimator

collateral
factor

optimizer

Protocol

price

Figure 1 Protocol Overview. The interest rate controller observes borrower actions to estimate
r∗ and set rt = r̂∗. The collateral factor planner includes a parameter estimator and an optimizer:
the estimator finds rl

o, rb
o, and σ, while the optimizer uses these estimates to determine the optimal

collateral factor for the market.

The estimator module, described in Algorithm 2, uses a least squares estimator to analyze
user behavior. It integrates outputs from the interest rate controller to determine the
parameters rl

o and rb
o. Additionally, it learns the empirical price volatility σ and drift µ

from the recent price history. The optimizer component, detailed in Algorithm 3, utilizes
these parameters to tackle the optimization problem presented in Corollary 11 and output
the optimal collateral factor. To construct the estimator submodule, we model the lender’s
behavior using a linear regression approach, analogous to that of the borrower’s behavior.This
relationship is formulated as follows:

Lt+1 − Lt

Lt
= ηl ·

(
rtUt − Ut π(ct)− rl

o

)
+ εt (19)
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Algorithm 2 r̂l
o, r̂b

o - Estimator, auxiliary to the optimizer procedure.

1: Initialize: t← 1, Θ̂0
l ← 0, and read L0, U0, r0, c from the pool, δl ← stability threshold

2: Initialize: tsleep ← sleep time, δθ ← least square convergence threshold, Toptimizer ← the
minimum time interval between successive executions of the optimizer. α← fraction of
first type borrowers

3: while True do
4: if Lt−Lt−1

Lt−1
< δl then

5: Reset ∆L, Pl

6: Sleep for tsleep
7: else
8: Calculate σ, µ empirically from the recent price history and use them to calculate

π(ct)
9: Add the new row [1,−Ut−1 π(ct) + rt−1Ut−1] to Pl and [ Lt−Lt−1

Lt−1
] to ∆L

10: Perform least squares estimation to find Θ̂t
l ← (Pl

T Pl)−1 PT
l ∆L

11: Parse Θ̂t
l as [−η̂l r̂l

o , η̂l]T and extract r̂l
o

12: Read the latest r̂∗ from Algorithm 1, and extract r̂b
o as follows:

13: α r̂b
o ← r̂∗ − π(ct)− α

ct

eµ+ σ2
2

Φ
(

−µ−σ2
σ

)
Φ( −µ

σ ) − 1

− (1− α)
(

eµ+ σ2
2 − 1

)
14: if |Θ̂t

l − Θ̂t−1
l | < δθ then

15: c← Optimizer(r̂l
o, r̂b

o, σ)
16: Reset ∆L, Pl

17: sleep for Toptimizer
18: end if
19: end if
20: t← t + 1
21: end while
22: end algorithm

where π(ct) is defined as per the simplifications in Lemma 3. The linear regression model for
this behavior is represented by:

∆L = Pl ·Θl + ε, (20)

with:

∆L =
[

L1−L0
L0

, L2−L1
L1

, . . . , Lt+1−Lt

Lt

]T

capturing the normalized changes in lenders’ supply.

Pl =


1 −U0 π(c0) + r0U0
1 −U1 π(c1) + r1U1
...

...
1 −Ut π(ct) + rtUt

 as the matrix of pool variables at each time step.

Θl = [−ηl rl
o, ηl]T representing the parameter vector.

ε = [ε0, ε1, . . . , εt]T as the vector of noise terms.

Refer to Algorithm 2 and 3 to find a detailed description of the planner.
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Algorithm 3 Optimizer module.

1: procedure Optimizer(r̂l
o, r̂b

o, σ)
2: Initialize: α← fraction of first type borrowers, Uopt ← desired utilization level, initial

guess for collateral factor c(0) U∼ [0, 1], γ ← default regularization factor, κ← learning
rate, i← 0 the gradient descent iterator, δ ← gradient descent stop theshold.

3: Set a = α
(

exp
(

µ− σ2

2

)
− 1
)

and b = α r̂b
o + (1− α)

(
exp

(
µ + σ2

2

)
− 1
)

4: Ψ(c) :=
((

r̂l
o

b+ a
c
− Uopt

)2
+ γ

r̂l
o

b+ a
c

Φ
(

log(c)−µ
σ

)
− λ

rl
o

b+ a
c

exp ( σ2
2 +µ)
c · Φ

(
−µ+log(c)−σ2

σ

))
5: while |Ψ (c(i))−Ψ (c(i− 1)) | > δ do
6: i← i + 1
7: c(i)← c(i− 1)− κ d Ψ(c)

d c |c=c(i−1)
8: end while
9: return c(i)

10: end procedure

3.3 Adversarial Robustness
In this section, we employ a gradient descent-based approach to perform robust linear
regression, adapting the Torrent-GD method from the robust regression literature [7]. This
method leverages the resilience of gradient descent to sparse corruptions and is highly
efficient for large datasets, and helps us get an improved short-term algorithm for optimizing
Adversarial Susceptibility.

The Torrent-GD modification to Algorithm 1 proceeds by updating the regression coeffi-
cients iteratively, reducing the influence of corrupt data points effectively. The update rule
for the regression coefficients Θ̂b at each iteration t is given by:

Θ̂b(t + 1) = Θ̂b(t)− κ∇LS(Θ̂b(t)), (21)

where κ is the learning rate and ∇LS(Θ̂b(t)) represents the gradient of the loss function
computed only over the subset of data points S believed to be uncorrupted. This subset is
dynamically determined in each iteration based on the residual errors.

The gradient of the loss function with respect to the regression coefficients is computed
as:

∇LS(w) = (Pb
S)T (Pb)SΘ̂b −∆BS , (22)

where Pb
S and ∆BS are the features and responses of the uncorrupted subset, respectively.

The active set S, which includes indices of the data points assumed to be uncorrupted, is
updated using a hard thresholding operator that selects the points with the smallest residuals:

S(t+1) = HT
(

r(t), k
)

, (23)

where r(t) = ∆B − PbΘ̂b(t) represents the residuals at iteration t, and k is a threshold
parameter controlling the number of points included in S, and the hard thresholding operator
HT for a vector v ∈ Rn and a threshold τ is defined as follows:

HT(vi, τ) =
{

vi if |vi| ≥ τ,

0 otherwise.
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This operation retains only the components of v that are greater than or equal to the
threshold τ in absolute value, effectively zeroing out smaller coefficients.

The convergence of Torrent-GD is guaranteed under conditions that the noise and
corruptions are sparse [7]. The algorithm can tolerate arbitrary adversarial corruptions as
long as β < 50%.

3.4 Blockchain implementation
To implement this protocol on a blockchain, we can utilize an optimistic Rollup solution
like Arbitrum or Optimism. The core idea behind these Rollups is that the computation
is performed off-chain by a Rollup validator. Only the state update data is posted on the
blockchain, allowing challengers to validate the state update with the list of user transactions
and challenge the validators in case of discrepancies. Therefore, in an optimistic scenario, no
computation is performed on-chain.

Our online algorithm and the parameter estimator modules each have a computational
complexity of O(W ), where W is the sliding window used to collect and retain data for
estimation. In practice, using W ≈ 50 was sufficient in our implementation when the
user’s elasticity is not awfully low (An elasticity of approximately 10 is sufficient when the
noise standard deviation does not exceed 1). The optimizer module, in general, can be
computationally infeasible since its objective function is not necessarily convex. However,
since the range of possible collateral factors is limited, we can discretize the possible values
into approximately 100 levels and find the optimal collateral factor through brute force. The
calculation of the objective function itself is not computationally intensive.

Gas fee estimation

Even the Roll-up solution might necessitate running the computation on-chain in case of a
dispute, therefore we need to estimate the on-chain computation cost. To estimate the gas
cost for updating the protocol’s slow and fast parts, we consider the least squares estimator
(LSE) update of Algorithm 1 and 2. This update requires approximately 12W multiplications
and 10W additions, where W is the length of the history window. Given the gas costs (5 gas
per multiplication and 3 gas per addition based on [16]), for W = 50, we require 4500 gas for
multiplications and additions. Additionally, storing new rows of Pb and ∆B costs 20, 000 gas
per 32-byte storage, totaling 40, 000 gas. Thus, the overall gas needed for the LSE update and
storing new rows is 44, 500 gas. The slow planner additionally needs to store a table of the
optimality index values for different collateral factors and volatilities. Discretizing each into
100 and 10 values respectively, the storage cost for this table is 20, 000× 1000 = 20, 000, 000
gas. Additionally, storing a table of the CDF of Gaussian variables to calculate expected
defaults and liquidations requires 20, 000×100 = 2, 000, 000 gas for a reasonable discretization
with 100 points. While more opcodes are involved in each interest rate and collateral factor
update, they mainly consist of single arithmetic operations or multiple data storage, making
the cost manageable.

3.5 Limitations
User behaviour model. We build upon a specific model of lender and borrower behavior,
assuming that no single user controls a significant portion of the supply or demand. However,
prior research has shown that this assumption might be unrealistic for many current platforms
[32, 38]. In these scenarios, rational user strategies would differ from those assumed in our
model. While our model manages to capture the main factors driving both sides of the
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market in borrow-lending platforms, it fails to adapt to markets where a few entities control
the majority of the funds. Furthermore, we assume that liquidators are always available
to liquidate positions when protocols permit. However, real data indicates that this is not
always the case, especially when the collateral asset lacks liquidity, resulting in considerable
slippage when reselling the collateral [32].

Price distribution. Our choice of price model does not necessarily accurately describe
the actual price distribution. However, as long as the price distribution belongs to a
parameterized family of distributions with parameters that change slowly over time, the
protocol can learn risk terms from user behavior, similar to our designed protocol. However,
it may be challenging to analytically infer the price distribution parameters from user actions
or to analytically relate the price distribution to key risk metrics, such as expected default
or price fall.

Risk neutralily. In defining our utility functions, we assume users are risk-neutral and
perceive their utility as the sum of profit minus expected risk, accurately calculating expecta-
tions over the price distribution. However, this may not be realistic. Our protocol learns the
projection of user behavior onto our specific linear utility function and identifies parameters
that best describe this behavior. For more complex user behavior, neural networks can be
used to learn a vector representation of user behavior end-to-end. These user representation
vectors are then fed to the interest rate controller and collateral factor planner, which are
replaced by Deep Reinforcement Learning agents. These agents learn the optimal strategy
based on feedback from their reward function. A key challenge is designing reward functions
that best meet the protocol’s needs.

Adversarial robustness. The adversarial resistance model we use for the LSE algorithm may
be inadequate for permissionless blockchains. In such blockchains, any participant, including
miners who organize and submit transactions, can act as adversaries. These adversaries can
run the regression algorithm off-chain with different sets of transactions and find the set
and the order that benefits them the most. Our current notion of adversarial robustness
only protects against adversaries who control less than 50% of the funds and occasionally
send transactions that deviate from the system’s assumed supply and demand dynamics i.e.,
producing outlier data points.

Single equilibrium point. Our borrower behavior model assumes that there is always a
single, unique interest rate that all borrowers are willing to pay, and that this equilibrium
interest rate is known to all borrowers with some noise. However, in reality, this assumption
may not hold true. Different groups of borrowers may have varying perceptions of the interest
rate they are willing to pay. As a result, the system could have multiple equilibrium points,
each attracting a different subgroup of borrowers.

4 Evaluation

In this section, we test the interest rate controller and collateral factor planner described in
section 3 and demonstrate their robustness to the change of market and user behaviours,
moreover, we compare our interest rate controller with that of the baseline.
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4.1 Interest rate controller
Experiment set-up. In this experiment, we start a borrow-lending pool with an initial
borrow supply of 7× 1011 and an initial lend supply of 1012. Both the elasticity of borrowing
and lending are set to 50, and the standard deviation of the borrowed and supply dynamic
noise is 0.1. We assume very low price volatility, as it does not affect the determination of
the equilibrium interest rate in this experiment. Every 100 time slots, we change rb

o and
allow the interest rate controller to adjust to the new equilibrium interest rate based on
borrowers’ behavior. During the exploration phases, the interest rate is randomly selected
between rmin = 1 and rmax = 20 (outliers in figure 2a).

As shown in Figure 2a, the LSE-based controller adapts to the equilibrium interest rate
consistently across different user elasticities with a nearly identical convergence rate, aligning
with our theoretical guarantees. In contrast, the baseline controller, which sets the interest
rate as a piecewise linear function of utilization, heavily relies on elasticity. It struggles to
adapt to the new equilibrium interest rate in low elasticity scenarios and performs slightly
better as elasticity increases.

While the performance of the baseline controller improves as borrower’s elasticity increases,
the consequences of misadjustment are more severe, causing significant borrower capital
to leave the system when the interest rate is too high and to flood the system when it
is too low. Figure 2b illustrates how the borrowed value changes with market conditions.
The LSE-based controller consistently finds the stable interest rate, resulting in minimal
market disruption whenever changes occur. In contrast, the baseline controller’s inability to
quickly find the correct rate causes substantial borrower exit from the system. This issue
worsens with increased borrower elasticity due to higher repayment rates. Thus, even in high
elasticity markets, the baseline controller is ineffective in preventing excessive capital inflows
or outflows due to interest rate misadjustments.
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(a) The LSE-based controller adapts to the new
equilibrium interest rate quickly. In contrast, the
piecewise linear interest rate curve fails to track
the equilibrium interest rate when the borrower’s
elasticity is low.
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(b) The LSE controller prevents the exit of borrower
capital by setting a competitive interest rate, unlike
the baseline controller.

Figure 2 Comparing the LSE-based interest rate controller and the piecewise linear curve.

4.2 Collateral factor planner
We conducted an experiment to evaluate the performance of our collateral factor planner.
The optimality index is defined as in Definition 6 with λ = 0 and Uopt = 0.5. Initially, the
system starts with an unoptimized collateral factor of c = 0.95. At timeslot t = 200, the
optimizer activates and sets a new collateral factor of c = 0.84, which adjusts the utilization
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to the desired level of 0.5 soon after that (the pace of reaching the equilibrium is a function
of lenders’ elasticity). At timeslot t = 3000, a change in price volatility disrupts the system.
By timeslot t = 3200, the estimator accurately detects the new volatility and triggers the
optimizer. The optimizer then sets a new collateral factor of c = 0.64, which stabilizes the
utilization around 0.5 once again. This entire process is automated. The resulting utilization
curve is shown in Figure 3.
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Figure 3 The collateral factor planner adapts to volatility changes and optimizes the collateral
factor for achieving optimal utilization.

5 Conclusion and discussion

In this paper, we present a first-principles model of the behavior and incentives of borrowers
and lenders in a DeFi market. We consider their alternative strategies and analyze how to
achieve market equilibrium in the presence of price volatility. We mention empirical evidence
on the validity of our model.

We propose a data-driven, borrow-lending protocol that sets the interest rate and over-
collateralization ratio adaptively. By monitoring user reactions and learning from their
behavior, our protocol determines a competitive interest rates and optimal collateral factors.
The protocol consists of two components, 1) Fast interest rate controller: This component
reacts online to user behavior, ensuring competitive interest rates and preventing over- or
underpaying users. It has theoretical guarantees for fast convergence to the equilibrium
interest rate. 2) Slow collateral factor planner: This component uses accurate market
condition estimates to adjust the collateral factor, maintaining utilization at a desired
level while controlling default risk. Overall, our protocol ensures rapid convergence to the
equilibrium interest rate and optimal tuning of the collateral factor to achieve a desired
equilibrium.

We implement our protocol and test its performance using simulated users, including
uninformed ones. We compare our protocol with a baseline that uses piecewise linear functions
to set interest rates based on utilization. Our protocol demonstrates superior performance
compared to the baseline in practice.
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Abstract
Decentralized Autonomous Organizations (DAOs) are blockchain-based organizations that facilitate
decentralized governance. Today, DAOs not only hold billions of dollars in their treasury but also
govern many of the most popular Decentralized Finance (DeFi) protocols. This paper systematically
analyses security threats to DAOs, focusing on the types of attacks they face. We study attacks on
DAOs that took place in the past, attacks that have been theorized to be possible, and potential
attacks that were uncovered and prevented in audits. For each of these (potential) attacks, we
describe and categorize the attack vectors utilized into four categories. This reveals that while many
attacks on DAOs take advantage of the less tangible and more complex human nature involved in
governance, audits tend to focus on code and protocol vulnerabilities. Thus, additionally, the paper
examines empirical data on DAO vulnerabilities, outlines risk factors contributing to these attacks,
and suggests mitigation strategies to safeguard against such vulnerabilities.
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1 Introduction

Decentralized Autonomous Organizations (DAO) are organizational structures that facilitate
the trustless management of projects that run on a blockchain [11]. In DAOs, governance is
typically controlled by the holders of a designated governance token. Those who own these
tokens can thus determine the course of the DAO. Today, DAOs govern various blockchain
projects, such as ecosystem governance of Layer 2s (e.g., Arbitrum and Optimism) and many
of the most-used decentralized applications (e.g., Aave, Compound, ENS, Lido, MakerDAO,
and Uniswap). Moreover, DAOs are estimated to hold and control in excess of $30B in
their treasuries [41]. Consequently, they hold significant power and a central position in the
blockchain ecosystem.
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DAOs have been threatened by attacks and hacks ever since their inception. “The
DAO” on Ethereum was the first attempt at creating a DAO on a blockchain. However,
in 2016 an infamous hack stole $50M worth of ETH from the DAO before it even became
operational [106]. The event was so severe that it led to a controversial hard fork of the
Ethereum blockchain. The original (unforked) blockchain still operates today and is known
as Ethereum Classic. Notably, even before the fatal hack, other possible attacks on The
DAO had been discussed [86]. The DAO hack highlights the significant threat attacks on
DAOs can present not only to the DAOs themselves but also to the broader ecosystem.
Additionally, given that DAOs are still in their early days and the ongoing evolution of their
design frameworks, DAOs are particularly vulnerable to various novel attack vectors.

In this work, we study real-world incidents and attacks on DAOs, attacks that have
been theorized to be possible, and new potential attack vectors. We summarize our main
contributions in the following.

We present and categorize attack vectors on DAOs. To be precise, we categorize attacks
on DAOs into four categories: (i) bribing (BR) attacks, (ii) token control (TC) attacks,
(iii) human-computer interaction (HCI) attacks, and (iv) code and protocol vulnerability
(CP) attacks.
We examine 28 real-world incidents and attacks across four blockchains and indicate the
attack vectors utilized. Our work finds that these attacks exploited vectors from all four
introduced categories fairly evenly. Similarly, we categorize attacks described in academic
papers or reports as well as those uncovered and prevented through audits. Notably, less
tangible attack vectors that take advantage of human and economic aspects involved in
governance represent a majority of real-world incidents but are generally not analyzed in
audits, which heavily skew toward code and protocol vulnerability attacks.
Guided by our categorization of real-world incidents, we introduce seven risk factors for
DAOs and empirically analyze the susceptibility of 26 DAOs of all shapes and sizes to
them.
Finally, we collect and discuss various mitigations and safeguards for DAOs.

With our work, we aim to enhance the understanding of DAO security challenges and
guide the development of more robust governance frameworks.

2 Background

An early definition of DAOs was provided by Vitalik Buterin, who argued that DAOs are
entities with internal capital (i.e., treasuries), that have automated processing at their core,
and human processing at their edges [117].

This definition still holds true today, though DAOs have been continually evolving and
are still undergoing substantial efforts to improve. Therefore, countless implementations
exist. Nonetheless, some specific designs have reached greater popularity, as new DAOs
borrow ideas, pieces of code from the smart contracts implementing the DAOs logic, or entire
structures from pre-existing DAOs. Examples thereof are the OpenZeppelin implementations
based on the Compound Governor contracts (also used e.g., by Uniswap, ENS, and Gitcoin)
and Aragon DAOs (used by e.g., Lido and Curve). Other DAOs might follow a more unique
design (e.g., Maker and Optimism) or reuse code only partially. In the following, we aim to
distill the main attributes that current DAOs share.

Token Voting. Reaching an agreement between individuals in the decentralized setting
of a blockchain is not as simple as in the physical world, where identities are known.
On blockchains, only pseudonymous addresses are publicly available. In particular, these
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addresses could include sybils, i.e., multiple addresses created and controlled by a single
individual. To address this issue, DAOs typically issue governance tokens. These tokens
come with voting rights.2 Initially, these tokens can be distributed among stakeholders
through various methods. The most popular methods include giveaways (airdrop) to early
users of a protocol, as well as allocating a portion of the tokens to the development team or
early investors. After launching, the governance tokens become freely tradable on the open
market, enabling individuals to acquire them and thus acquire voting power. In this regard,
governance tokens exhibit parallels with shares in companies that grant holders voting rights
at shareholder meetings.

Voting Rights and Delegation. While token holders directly vote on each proposal them-
selves in some DAOs (e.g., Lido), other DAOs introduce an intermediary in the voting
process: delegates. In these DAOs, token holders can delegate the voting power associated
with their tokens to a delegate they believe represents their views well. Inspiration for this
delegative approach is taken from liquid democracy [54, 10]. Proponents of this approach
for DAO voting argue that delegation allows token holders to participate in the governance
process passively (i.e., they must not actively keep track of each proposal) and can further
help reduce the blockchain transaction fees incurred by DAO members. While delegation
is optional in some DAOs (e.g., Aave), many DAOs require delegation (e.g., Compound,
ENS, and Uniswap). In DAOs requiring delegation, before tokens can be used for voting,
the address holding the tokens must delegate them to a delegate address (which may be the
same address). Finally, some DAOs require the tokens to be locked in a specified contract to
gain the associated voting rights (e.g., Curve and Maker).

Deliberation Phase. Generally, DAO governance processes involve multiple steps, which
could include discussions on public governance forums or off-chain temperature check votes
before a final vote [87] ahead of a proposal being put forward on-chain and voted on.
However, these steps are often mere social conventions. The final on-chain vote is often the
only obligatory part of the process.

Proposals. Generally, any token holder with a sufficient number of tokens (exceeding a
pre-defined proposal threshold) can put forward a proposal. There are some DAOs though
that force proposals to be vetted by a committee before being accepted on-chain.

Voting Phase. Once a proposal is submitted on-chain, there is generally a proposal delay,
i.e., a pre-specified number of blocks before a snapshot is taken of the balances of all token
holders (or delegates). The snapshot determines their voting power, and cannot be changed
a posteriori. Thereafter, voting starts and generally lasts for a pre-determined number of
blocks. During voting, any address with voting rights (token holder or delegate) may submit
a vote.

Execution Phase. If a majority votes in favor of a proposal and a pre-determined Quorum
is reached, the proposal is accepted. In some DAOs, on-chain proposal execution is automatic,
potentially only after a pre-defined timelock delay. The execution is scheduled manually by a
trusted party in other DAOs.

2 Generally, each token counts as one vote. Curve is an exception, where the voting power depends not
only on the number of tokens held but also the duration the tokens are locked for.
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3 Categorization of Attack Vectors

In the following, we provide a categorization and description of attack vectors.

3.1 Bribing

▶ Definition. In a bribing (BR) attack, an attacker pays to change votes or to acquire voting
power without acquiring the underlying governance tokens. The controlled votes and voting
power are then utilized to pass a malicious proposal in a governance vote.

Bribing attacks can take the form of paying to obtain voting rights of governance tokens
to vote for a certain proposal without acquiring the underlying token, which is often referred
to as vote buying. Another possibility is directly bribing token holders or delegates.

Given that vote buying has been documented in shareholder governance of traditional
companies [76], it is a plausible future concern for DAO governance and was already been a
topic of discussion since the early days of DAOs [37, 20].

Bribing Token Holders or Delegates (BR1). Bribing governance participants, i.e. token
holders or delegates, can take many forms: it can be done on-chain or off-chain, program-
matically using smart contracts or by personal contact. Furthermore, bribes could be fixed
sums or a proportion of the proceeds from a successful attack. Note that using proceeds of
the attack to bribe leads to a situation similar to an attack by a majority coalition, where
the proceeds are split among participants (see TC5).

When voting power is highly centralized, as is the case for many DAOs at the time of
writing [52], bribing only a few of them can suffice to change a vote. On the other hand,
voting rights being highly distributed can also make it cheaper for an attacker to bribe:
holders of small amounts of voting power, besides having little to lose from a successful
attack, also have little influence on the outcome of a vote. Hence, it can be economically
rational for them to cheaply sell their vote, as described by Buterin [19].

Bribing delegates to vote a certain way could potentially be particularly attractive for an
attacker. For governance systems using delegated token voting, a small number of delegates
often controls large amounts of voting rights. On the other hand, these delegates do not
actually hold the corresponding amount of governance tokens, meaning they are not exposed
to the price risk from a successful governance attack. Hence, bribing them could potentially
be significantly cheaper for an attacker than bribing governance token holders.

One deterrent against a delegate bribing attack, that is present in most current DAOs, is
the fact that most delegates are often publicly (or at least pseudonymously) known. This
means that delegates stand to lose their reputation and future earnings based on it, and may
even face a risk of criminal charges for accepting bribes.

Vote Buying Protocols (BR2). The act of vote buying or bribing can be facilitated by
a smart contract protocol. Such protocols allow token holders to deposit their governance
tokens into pools, and earn fees from users paying to use the voting rights of the pooled
tokens. In particular, this means that vote buyers do not need to deposit collateral, contrary
to using traditional lending platforms such as Compound (see Section 3.2). Paladin Lending,
as one example of a vote buying protocol, is described in the following.
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Case Study Paladin Lending

Paladin Lending [98] lets holders deposit their tokens into pools and in return receive a
proportional share of the fees collected in the pool. Users can then borrow the voting power of
deposited tokens. A loan contract is automatically created if a user wants to borrow voting
power. The borrowed token amount is transferred from the pool to the loan contract, and the
votes are delegated to the user. Hence, the user has no direct access to the tokens but can use
their voting power. The user pays a fee for borrowing the voting power. At the latest when
this fee has been consumed, the tokens in the loan contract will be returned to the pool.

Importantly, with a vote buying protocol such as Paladin Lending, one does not borrow
the actual token, but only the voting rights. We also perform an empirical analysis of Paladin
Lending (see Appendix of the full version of this paper [51]) to show that low liquidity
currently does not allow attacks exclusively using this attack vector.

Daian et al. [37] introduce a particular type of vote buying protocol: Dark DAOs. In
addition to facilitating vote buying using smart contracts, Dark DAOs are implemented in
a privacy-preserving manner. Note that activity on vote buying protocols such as Paladin
Lending is publicly recorded on the blockchain. Vote buying activities through Dark DAOs,
on the other hand, cannot be detected, meaning that other governance participants cannot
react to such an attack. While there are no known cases of active Dark DAOs at the time
of writing, they have been theoretically studied by Austgen et al. [5], and proof-of-concept
prototypes have been published [4].

3.2 Token Control
▶ Definition. With token control (TC) attacks, an attacker takes possession or is already in
possession of a significant amount of governance tokens. The attacker then uses the voting
power associated with these tokens to get their malicious proposal accepted in a governance
vote.

This family of attack vectors is of the simplest nature. The attacker merely gains control
of a sufficient number of governance tokens to take over the DAO by passing a malicious
proposal according to DAO’s intended voting process.

Depending on the governance model implemented by the DAO, the required proportion
of governance tokens for a successful attack varies. For instance, many DAOs require tokens
to be delegated to an address for them to be used in voting and take a snapshot of the
current state of delegations at the start of the voting period. For such governance systems,
an attacker must only hold a token amount exceeding the amount of previously delegated
tokens, and delegate these governance tokens to themselves, thereby securing a majority
of the delegated votes. By timing the creation of a proposal accordingly, an attacker can
leave very little time (depending on the governance system’s parameter choices, see RF4 in
Section 5 for more details) for others to react and delegate their tokens. This can almost
guarantee the attacker the required voting power to pass their desired proposals. For DAOs
that do not require the tokens to be delegated, the attacker would need to hold more than
50% of the circulating token supply for a guaranteed victory of their proposal or hope that not
sufficiently many votes are cast, i.e., voter turnout does not increase dramatically in face of
a malicious proposal. Short voting windows as well as the absence of reliable communication
channels further increase the risk of such attacks for these DAOs.

In the following, we discuss the main possibilities for an attacker to gain possession of the
required voting power. Note that in Section 5, we provide an additional empirical analysis of
the susceptibility of a set of 26 DAOs to this kind of attack.
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Token Purchase (TC1). The attacker buys governance tokens on the open market. This
can be done on-chain through decentralized exchanges, or on off-chain centralized exchanges.
After using the tokens for voting, the attacker can sell back the tokens to the open market.
Importantly, when buying governance tokens, the attacker takes on price risk while holding
the tokens. If the attack leads to a decrease in the governance token’s market price, the
attacker incurs a financial loss. Additionally, the attacker pays trading fees when buying
and selling the tokens. Note that the attacker can potentially hedge the price risk using
derivatives. However, the availability of such derivatives may be limited depending on the
governance token in question.

Attacks through token acquisition have been attempted and have occurred in several
DAOs. They are especially attractive and profitable if the value of the treasury (excluding
the governance token itself, which is likely to decrease in value in the event of an attack)
exceeds the capital required to buy the necessary voting power. In Section 5, we compare the
treasury values of DAOs to the value of delegated tokens for a set of 26 DAOs. It is relatively
common for the total value of the DAO’s treasury to exceed the value of delegated tokens,
though this is only rarely the case when excluding the governance tokens from the treasury.

In the following, we present a case study of two consecutive recent governance attacks
through token acquisition on the Indexed Finance DAO, a protocol for portfolio management.
While interest in the project declined after it was hacked in October 2021 [1], various tokens
remained in the project’s timelock contract controlled by the DAO.

Case Study Indexed Finance

On 16 November 2023, over ten hours, the attacker bought NDX tokens (i.e., the protocol’s
governance token) via decentralized exchanges, self-delegated these tokens, initiated a proposal,
voted in favor of this proposal, and sold the tokens again [1]. The proposal would allow the
attacker to take control of the timelock, mint new NDX tokens, and steal tokens from the
timelock (including both NDX and other tokens). A call for action by one of the protocol
founders asked users to vote against the proposal. In the end, user votes against the proposal
were sufficient to narrowly prevent the attack. Interestingly, the attacker sold his NDX tokens
before the end of the proposal and thereby lost his voting power. As a result, the proposer
would have been below the proposal threshold and the proposal could have been canceled by
anyone. However, this was not done.
Fearing a potential second attack, the community attempted to implement defensive measures.
They created a proposal to transfer control of the timelock to a smart contract not be under
anyone’s control, i.e., the tokens in the timelock would forever be inaccessible if the proposal
were executed. Then, on 22 November 2023, another attacker (i.e., a different account than
the previous attacker) created a similar proposal that would transfer the admin rights of the
timelock to the attacker. This time, the attacker acquired more NDX tokens than the 16
November attacker, and there were not enough votes against this proposal. Thus, the only
way to stop the attacker from getting access to the tokens was through passing the proposal
that would make the tokens forever inaccessible. Importantly, as this proposal was created a
day earlier, it would not only execute first but the attacker also only acquired the tokens after
voting had started on the community’s proposal and therefore did not have the majority in
that vote. What followed, as no one wanted the community’s proposal to be executed, was a
message exchange between the attacker and the Indexed Finance team using input data of
Ethereum transactions. In the end, an agreement was reached, and the attacker received ≈
$10K via an escrow contract after withdrawing his proposal. In conclusion, the two attacks
were only mitigated by luck (i.e., the first attacker bought too few tokens) and by unorthodox
proposals (i.e., making the tokens forever inaccessible).
In the aftermath of the attacks, the Indexed Finance DAO accepted a proposal that transferred
control of the timelock to a multi-signature wallet controlled by former protocol contributors.
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Indexed Finance demonstrates the complexities of protecting against this attack vector in
the absence of adequate countermeasures. Nevertheless, there exist potential protections that
DAOs can put in place. For example, DAOs may opt to restrict proposals from spending the
entire treasury or grant veto power to a multi-signature. We provide more detail in Section 6.

Token Loan (TC2). The attacker borrows governance tokens against collateral using lending
protocols. Apart from needing to post collateral, the attacker also pays borrowing fees for the
period of borrowing the tokens. Importantly, the attacker does not take on price risk when
borrowing tokens. After voting for an attacking proposal, the full amount of governance
tokens can be returned and the attacker receives back their collateral.

There have been several alleged attempts of DAO attacks through token loans. In early
2022, Justin Sun presumably borrowed large amounts of MKR, the governance token of
MakerDAO, to sway a vote. However, he returned the tokens after his actions were detected
and did not end up voting [2]. A couple of days later, a similar failed attempt by Justin Sun
took place in Compound’s governance with borrowed COMP tokens [114].

Flash Loan (TC3). With a flash loan, the attacker only borrows the governance tokens for
the duration of a transaction. While the attacker pays a fee to borrow the governance token,
the attacker does not need to post any collateral, i.e., does not require access to significant
funds. Many protocols protect themselves against flash loan attacks by implementing a delay
between the proposal creation and the start of the voting period. Nonetheless, flash loan
attacks on DAOs have occurred in the past, the most prominent example is a flash loan
attack on the Beanstalk governance described in the following case study.

Case Study Beanstalk

Beanstalk is a stablecoin protocol. On 17 April 2022, Beanstalk suffered an attack that resulted
in damages of approximately $182M, netting the attacker a profit of around $76M [44, 50, 13].
The attacker exploited a vulnerability in Beanstalk’s governance system, which was not secure
against flash loan attacks. The attacker took a flash loan worth approximately $1B. This loan
allowed them to achieve a two-thirds majority in Beanstalk’s governance. With this majority,
they could execute a malicious proposal immediately using an emergency commit function.

Whale Activation (TC4). Inactive token holders with a large number of tokens (often
referred to as whales) can suddenly become active in the governance. In DAOs requiring
tokens to be delegated, this can be especially problematic. An attacking whale can delegate
their tokens and promptly initiate a proposal. Importantly, large entities holding sufficiently
many tokens to take over the DAO exist for many DAOs using delegated token voting
(see Section 5). Notably, there was one instance in the past where a centralized exchange
unexpectedly delegated the UNI governance tokens it held, i.e., the tokens custodied on
behalf of its users. They, however, claimed to have accidentally delegated these tokens [85].

Majority Coalition (TC5). In governance systems using majority token voting, it is generally
possible for a simple majority of voting tokens to accept any proposal, and effectively, take
control of the DAO. In particular, the majority could distribute the entire DAO treasury
among themselves. Settings of this type have been modeled in game theory as coalition games
with transferable utility or majority games with stable sets describing possible attacking
coalitions [17, 70]. Such coalition attacks are specifically attractive when the treasury value of
a DAO is high compared to the value of (delegated) governance tokens. We have empirically
studied this relation in Section 5 (see RF3) for 26 DAOs.
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Of course, a majority of voting tokens can also vote to split the treasury among all token
holders, or more generally, dissolve the DAO. In this particular case, i.e., if all token holders
get a share of the treasury proportional to their voting power, a majority coalition would not
pose an attack. An example of this happening in practice is DigixDAO’s token holders voting
to dissolve the DAO and return all ETH held in the treasury to the token holders (which
was worth more than the value of all governance tokens) [120]. However, in all other cases,
where a strict subset of token holders come together to take control of a DAO, a majority
coalition presents an attack.

3.3 Human-Computer Interaction
▶ Definition. Human-computer interaction (HCI) attacks aim to manipulate the voting
process by exploiting user-facing interfaces and applications or human behaviors involved in
the DAO’s voting process.

This family of attacks lies at the boundary between the blockchains (computers) and
humans. The attack vectors in this family do not exploit vulnerabilities in the underlying
governance protocol itself, but rather in the interfaces, applications, or human behaviors
surrounding DAO governance.

User Interface Issues (HCI1). Many users participate in the voting process through
aggregator websites that provide a convenient user interface (UI). Thus, bugs or malicious
code in these UIs can lead to users not voting as they intended or not being able to vote at
all. For example, users voting through a UI typically sign a vote transaction prepared by
the UI. If this transaction is incorrectly prepared, users will potentially vote differently than
they intended by signing the transaction. An incident of this type occurred with Tally, a
closed-source and widely-used UI for on-chain governance.

Case Study Tally

On 19 August 2021, a bug, which had persisted from 30 April to 19 August 2021, was discovered
on Tally [110]. The bug inadvertently altered the voting process: transactions of users wishing
to vote against a proposal were erroneously constructed by Tally. This led to these votes being
recorded as votes in favor on the blockchain. The issue went unnoticed since the transaction
arguments were not presented in an easily understandable format, making it challenging for
users to notice the discrepancy between their intended vote and the registered vote.

While there is no evidence to suggest that this bug in Tally significantly influenced
the outcomes of any votes, it nonetheless highlights a critical vulnerability in centralized,
closed-source front-ends for governance systems. Once a vote is cast on-chain for a proposal,
it cannot be retracted or altered. This means that if a user realizes their vote has been
incorrectly cast due to a platform error, they are powerless to correct it. Thus, bugs in UIs
can heavily influence the voting process in DAOs, and the possibility of inserting malicious
code into these UIs poses a serious risk for DAOs.

On a similar note, the unavailability of the aforementioned UIs can pose a threat to a
functioning DAO governance vote. The unavailability could be caused by technical issues
with the UI as well as by deliberate Denial of Service (DoS) attacks. If widely-used UIs
became unreachable ahead of a vote, users relying on these platforms to cast their votes
might be deterred or prevented from voting. To the best of our knowledge, no such attack
has taken place or been attempted. Nonetheless, it presents a risk worth considering for
DAOs when designing their governance systems.
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Proposal Obfuscation (HCI2). Obfuscation of the real intent of a proposal is a further
possible attack vector, which presents a risk to DAOs, especially in combination with a
weak validation of the proposal – making sure that the proposal description matches its
contents. Take as an example a proposal that appears to be a legitimate proposal but, in
reality, inserts malicious code that allows the attacker to steal the DAO’s funds. Such an
attack was successfully performed on the Tornado Cash governance.

Case Study Tornado Cash

On 20 May 2023, an attacker gained control of the governance system of Tornado Cash [44,
9]. The attacker purchased TORN tokens through decentralized exchanges and imitated a
previously accepted proposal. Due to the striking resemblance to this earlier proposal, the
new, malicious one was also approved by the community. However, there was a critical and
deliberate difference in the attacker’s proposal: it included a self-destruction feature. After
the proposal was approved, the attacker activated this self-destruction functionality, destroyed
the existing proposal contract, and replaced it with malicious code. The newly inserted code
allowed the attacker to withdraw TORN tokens, i.e., the DAO’s governance tokens.

The Tornado Cash incident highlights a general vulnerability in governance mechanisms
of decentralized platforms: the lack of a guaranteed match between a proposal’s description
and its actual code. Proposals might have unintentional errors or, as in the Tornado Cash
case, be subject to deliberate manipulation. Notably, the Tornado Cash attack is not the
only example of a malicious mismatch between a proposal’s description and implementation.
The proposal of the flash loan attack on Beanstalk (see Section 3.2) claimed to be donating
funds to Ukraine but in reality, stole the DAO’s assets [13].

Proposal Spam (HCI3). A further attack vector that can be utilized to hide a malicious
proposal is to spam the protocol’s governance with many proposals, such that the malicious
proposal is hidden in a flood of proposals. One notable example was a governance attack
on Synthetify – a protocol on the Solana blockchain whose DAO had been inactive since
December 2022. The following case study details the attack, which also involved aspects of
token control attacks (see Section 3.2).

Case Study Synthetify

On 17 October 2023, an attacker gained access to the assets controlled by Synthetify’s
DAO [92, 75, 29]. The attacker first bought sufficient amounts of the protocol’s governance
token SNY to make a proposal and to hold more tokens than the three biggest holders. Then
the attacker used spam to distract from the attack. In particular, the attacker created more
than 20 spam proposals over two months and tested whether they would go unnoticed over the
seven-day voting period. No one but the attacker voted on any of these proposals, i.e., the
attacker was able to pass them without a problem. Knowing that no one was paying attention,
the attacker then hid malicious code that allowed them to withdraw the funds controlled by
the governance. The proposal passed without any opposition.

Many protocols attempt to protect against such attacks by only allowing one active
proposal per account, which must sufficient tokens to exceed the proposal threshold. Never-
theless, workarounds might still pose a threat to DAOs. Consider the following workaround
for DAOs utilizing the delegation model. The attacker creates a proposal with one account to
which they delegate their tokens. The attacker waits for the votes to come in and cancels the
proposal after a significant proportion of votes have been cast. Then, the attacker delegates
the tokens to another account. The attacker then creates a new proposal and continues in
this fashion in hopes of tiring the DAO’s voters who pay fees for every vote.
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Social Infiltration (HCI4). Individuals and institutions can take up positions of power in
DAOs. For instance, delegates often vote with significantly more tokens than they hold.
Moreover, some DAOs grant certain powers in the governance process to multisignature
addresses (multisig) which are jointly controlled by multiple key holders. The members of
the multisig are chosen and voted upon by the DAO. One can imagine that malicious parties
can maneuver themselves into these positions of power and then use their position to attack
the protocol. The scandal surrounding Wonderland DAO [113] highlights the potential risk
that can stem from social infiltration. The treasury manager was found out to be Michael
Patryn, a convicted criminal who had hidden his identity.

Behavioral Manipulations (HCI5). Contrary to many voting systems, preliminary results
of DAO votes are known to everyone. In a system where voting is associated with high
costs, access to interim results could be seen as beneficial, as voters can be mobilized only
if needed. However, access to preliminary results also opens up attack vectors. Yaish et
al. [119] highlight these attack vectors, which are attested by a large body of work on voting
systems and online polls [21, 124, 90, 88, 3].

First, voters might be manipulated not to vote because they observe that their preferred
outcome appears to have garnered enough support to win. An attacker can then vote at
the last moment, not offering others time to react. This behavioral pattern called vote
sniping has been reported anecdotally before [93]. Rosello [101] draws parallels to corporate
governance and empirically shows the negative effects vote sniping has on token value.

Conversely, attackers voting early might sway uninformed voters to follow their direction.
This is commonly referred to as bandwagon voting, an effect supported by a large amount of
empirical evidence [124, 90, 3]. Yaish et al. [119] analyze this setting theoretically, and show
that interim results piled with high voting costs can entice informed voters to follow a mixed
strategy of voting either early or late.

3.4 Code & Protocol Vulnerability
▶ Definition. Code and protocol vulnerability (CP) attacks exploit code or logic vulnerabilities,
either in the governance smart contracts or the protocols they are connected to.

Code Vulnerability (CP1). To attack a DAO, an attacker can take advantage of any
existing bugs in the governance smart contracts. The arguably most prominent attack on a
DAO did exactly that.

Case Study The DAO

The DAO was a crowd-funded investment fund and one of the first DAOs. On 17 June 2016, an
attack on The DAO occurred [106]. The attack exploited a loophole in the code, that allowed
the attacker to perform a reentrancy attack to repeatedly withdraw ETH from The DAO [99].
Notably, the hack was so severe that it led to a highly controversial hard fork of the Ethereum
blockchain. The majority of the Ethereum community decided to fork the chain to undo the
hack’s damages. The unaltered version of the chain continues to operate as Ethereum Classic.

The DAO hack highlights the complexities of writing secure governance smart contracts.
Given these complexities and the ongoing development of DAOs, code vulnerabilities appear
infrequently. However, in some cases, these bugs are identified in audits and fixed before
they can be exploited. For instance, in two DAOs (MakerDAO and Keep3R Network) vote
tallying could be exploited [107, 95]. In the case of Keep3r Network, the contracts permitted
users to re-vote on a proposal but failed to properly subtract the user’s previous vote.
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Based on audits, the most well-known smart contract vulnerabilities apart from reentrancy
and re-vote vulnerabilities include insufficient proposal validation and absence of transfer
validation [103]. To prevent code vulnerabilities, re-using audited and time-tested code is
typically seen as a good practice. However, mixing and matching code from different sources
has caused at least two hacks too [63].

Protocol Vulnerability (CP2). Vulnerabilities in the protocols associated with a DAO can
extend to the DAO itself given the often intertwined nature of the two. One example of how
vulnerabilities in a protocol can affect the DAO is the attack on Mango Markets.

Case Study Mango Markets

In October 2022, Avi Heisenberg performed an attack on Mango Markets and its governance [68].
Heisenberg manipulated the price oracle for MNGO, the protocol’s governance token, that
allowed him to take out massive loans against the protocol’s treasury which the DAO controls.
In doing so, Heisenberg effectively drained the treasury. He went on to create a proposal in the
DAO promising to return the majority of the funds if the DAO agreed to repay the protocol’s
bad debt. Further, the attacker’s proposal sought to ensure that the token holders could not
pursue any legal action against the attacker. The attacker’s proposal did not pass, but the
DAO later passed an alternative proposal, leading to part of the funds being returned. The
attacker, who publicly identified himself [47] and infamously described the hack as a “highly
profitable trading strategy”, was later charged by the US government for his attack [102].

The previously outlined incident exemplifies how the interconnectedness of a protocol
and its DAO can pose a risk to the DAO. When such an intertwined nature is wished for
or required, it is especially challenging to fully protect against such attacks, as complexity
increases and attack vectors are likely unique to each protocol.

4 Real-World Incidents & Attacks

In the following, we analyze past attacks and incidents, as well as potential attacks described
in audits and papers relating to DAOs. The data set in the paper includes all incidents known
to us at the time of writing.3 We further provide an up-to-date data set under the webpage
daoattacks.ethz.ch and welcome readers to report any additional or new incidents.

Table 1 lists all (theorized) incidents we analyzed. For each incident, we indicate the date
and blockchain on which it occurred. Additionally, for real-world incidents, we indicate the
purpose of the attack, whether it was successful, and if it was, the financial damage. Finally,
we highlight which of the attack vectors introduced in the previous sections are utilized. We
provide a summary for all (theorized) attacks in the full version of our paper [51].

Turning to Table 1, we observe a relatively balanced distribution of attack vectors used in
real-world incidents across the four previously introduced categories. Specifically, among the
28 attacks analyzed, 4 utilized at least one attack vector from the BR category, 14 employed
TC attack vectors, 9 involved HCI attack vectors, and 9 exploit CP attack vectors.

Table 1 further summarizes critical vulnerabilities of DAOs that were uncovered in
academic works, reported to the protocols, or discovered as part of audits. While attacks
documented in academic papers and reports span multiple categories, those identified through
audits almost exclusively belong to the CP category.

3 We collected the incidents by searching the web for papers, audits, news articles, blog posts, and tweets
that discuss them as well as talking to experts in the field.
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Table 1 Categorization of past attacks and incidents, as well as possible attacks uncovered
in academic papers, reports, or audits. For each attack, we indicate its purpose: � signifies that
the purpose of an attack was to extract funds from the DAO, � indicates that the goal was a
long-term (financial) gain, M denotes an ongoing attack (possibility), and ? indicates a (potentially)
unintentional incident that exemplified vulnerabilities of DAOs. We further indicate whether the
attack was successful where appropriate and if so indicate the financial damage of the attack. Finally,
we also highlight which attack vector(s) were used. We proceed similarly for (potential) attacks
uncovered in academic papers, reports, or audits. Moreover, we provide a brief summary of each
(theorized) attack in the full version of this paper [51].
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incidents & attacks
Audius [112, 30] Jul 2022 ETH � ✓ $6.1M

Beanstalk [13] Apr 2022 ETH � ✓ $182M
BigCap DAO [12] Sep 2023 ETH � ✗

Binance [85] Oct 2022 ETH ?

Build Finance [77, 18, 38, 34, 46] Feb 2022 ETH � ✓ $470K
Compound [114] Feb 2022 ETH � ✗

Curio [64] Mar 2024 ETH � ✓ $16M
Curve A [69] ongoing ETH M

Curve B [8, 122] Nov 2021 ETH � ✓

ForceDAO [63] Apr 2021 ETH � ✓ $367K
Genesis Alpha [79] Feb 2019 ETH � ✓ $90K

Indexed Finance [1] Nov 2023 ETH � ✗

Kleros [73] Dec 2023 ETH � ✗

Maker DAO B [83] Oct 2020 ETH � ✓

Maker DAO C [2] Jan 2022 ETH � ✗

Mango Markets [68, 102, 47] Oct 2022 SOL � ✓ $47M
Paladin Lending [98] ongoing ETH M

Steemit [33] Feb 2020 STEEM � ✓

Synthetify [92, 75, 29] Oct 2023 SOL � ✓ $230K
Tally [110] Apr 2021 ETH ?

Temple DAO [74, 14, 105] Oct 2022 ETH � ✓ $2.4M
The DAO [35, 45, 106] Jun 2016 ETH � ✓ $50M

Tornado Cash [9] May 2023 ETH � ✓ $2M
True Seigniorage Dollar [22, 43] Mar 2021 BSC � ✓ $16K

Wonderland DAO [113] Jan 2022 ETH � ✓

Venus [100] Sep 2021 BSC � ✗

Yam Finance [108] Jul 2022 ETH � ✗

Yuan Finance [121, 48] Sep 2021 ETH � ✓ $282K

academic papers & reports
Bandwagon Voting [119] Feb 2024

Dark DAOs [5, 4, 37] Jul 2018
Maker DAO A [60] Feb 2020 ETH

Nexus Mutal [39] Feb 2020 ETH
Vote Sniping [101] Jan 2024

audits
Agora [94] May 2023 OP

Constitution DAO [62] Jan 2022 ETH
Curve C [115] Jul 2020 ETH

DAO Maker [61] Mar 2021 ETH
GameDAO [23] Aug 2021 BSC

Hoprnet [27] Jun 2021 ETH
Keep3r Network [107] Sep 2022 ETH

Maker DAO D [95] May 2019 ETH
POA Network [26] Sep 2018 ETH

Snapshot X [28] Jul 2023 EVM
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We only found a relatively small set of critical vulnerabilities identified by audits, limiting
its representativeness. On the other hand, a closer examination of audits that did not uncover
critical vulnerabilities reveals a similar skew towards CP attack vectors [103, 91]. Although
most DeFi protocols are primarily susceptible to CP attack vectors [123], the governance
aspect introduces an array of exceedingly complex attack vectors. These additional attack
vectors are often less tangible to analyze and are typically not accounted for in audit processes.

Additionally, it is worth mentioning that a notable portion of attacks (specifically, 8 out
of 28) combine multiple attack vectors. This heterogeneous nature of attacks targeting DAOs
can make it challenging for DAOs to anticipate and protect against all potential attacks
while, at the same time, striving to innovate and develop.

5 Risk Factors

Guided by our description and analysis of historical precedence cases, we identify seven risk
factors that either directly or indirectly correlate with attacks on DAOs. Further, for a set
of 26 DAOs on Ethereum and its Layer 2s, we empirically analyze how vulnerable these
DAOs are for each of our identified risk factors in Table 2. These DAOs represent both the
biggest DAOs in the Ethereum ecosystem in terms of the size of the treasuries or protocols
they govern, along with smaller DAOs. This combination allows us to accurately portray the
state of DAOs of all shapes and sizes. Note that we provide a brief description of our data
collection in the full version of our paper [51] and open-source the data collection code [81].

Voter Apathy (RF1). If token holders do not delegate or vote themselves, it becomes
much easier for an attacker to pass malicious proposals. In all but four of the DAOs we
empirically analyzed in Table 2, tokens must be delegated before voting. Importantly, when
voting takes place, no more delegation is possible. We show the percentage of both delegated
tokens voting and the percentage of the total token supply voting on average in the last
five votes – a measure of voter apathy. Note that any tokens that are not delegated ahead
of the voting period are completely excluded from voting. When regarding the first two
columns in Table 2, notice the relatively low participation from the delegated tokens at 34%
across the 20 DAOs that require delegation in our data set. While some DAOs have a high
participation of more than 81.13% (i.e., Ampleforth), in other DAOs the participation of
delegated tokens sits around 1% (i.e., Pooh). Additionally, even more startlingly, of the
entire token supply, on average only 5% of tokens participate in the governance across the
DAOs we analyzed. We highlight that these low participation rates of (delegated) tokens
can be seen as a considerable risk factor, as an attacker can attempt a majority attack, even
when holding just a fraction of the tokens.

High Governance Token Liquidity (RF2). High governance token liquidity entails the
possibility and comparatively low cost of buying or lending the governance token – making
the attack vectors in the token control category we presented in Section 3.2 feasible. Table 2
shows that available liquidity on Uniswap V2 and V3 (the two biggest decentralized exchanges
on Ethereum in terms of total value locked (TVL) [42]). We show the available liquidity as
a percentage of (1) the proposal threshold, i.e., the minimum number of tokens required
to create a proposal in the governance, (2) the delegated votes, i.e., the number of tokens
required to almost guarantee success in the analyzed DAOs, and (3) the average number of
tokens voting in the last five governance votes. We observe that for 17 DAOs the available
liquidity exceeds the proposal threshold, whereas only for zero and two DAOs the available
liquidity exceeds the delegated votes and the average number of votes respectively. While
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this appears promising, we underline that the figures presented are a strict lower bound as
they for example do not include centralized exchanges where the available liquidity is not
easily quantifiable. Even though for the analyzed DAOs liquidity currently appears low, we
presented 14 attacks that still attempt to exploit DAOs through token control (see Section 4).
Thus, we reiterate that for a DAO’s safety, lower liquidity is advantageous.

Large Treasury (RF3). The impact and attractiveness of an attack increase, the more
value is stored in the treasury. Since in the aftermath of an attack, token prices are expected
to plummet, we wager that the treasury value excluding the governance token itself is the
most important driving factor. Our empirical analysis in Table 2 presents the treasury value
with respect to the value of all delegated tokens, both with and without the governance
token. A considerable chunk of DAOs (i.e., 6) hold less than 10% of their treasury value in
tokens other than their governance token and are thus likely less at risk for a governance
attack that aims to empty the treasury. Startlingly, for the Ampleforth DAO, the value
of the treasury without the governance tokens exceeds the value of all delegated tokens –
making it an attractive target for attacks. Additionally, we highlight that if the value of the
treasury (without the governance token) exceeds 50% of the delegated votes, 51% attacks of
token holders that have delegated their tokens could be rational. A few DAOs are close to
reaching this threshold (e.g., Gitcoin) or have been in the past. Note that we are not aware
of any precedence for such an attack, but protocols have forked before [65]. In addition
to the empirical snapshot of 31 January 2024 presented in Table 2, for a smaller subset of
DAOs we also visualize the historical value of the treasury in comparison to the delegated
token values (see Figure 1). We observe significant fluctuations over time in the relative
value of the delegate tokens in comparison to the treasury for the three DAOs: Ampleforth,
ENS, Gitcoin, and Uniswap. While initially for three of the DAOs (i.e., ENS, Gitcoin, and
Uniswap) the value of the delegate votes (blue line) exceeded the value of the treasury (yellow
line) this is no longer the case for all of them. For these DAOs, except for Uniswap (which
does not hold tokens other than its governance token), the difference between the value of
the delegate votes and the value of the treasure without the governance token is shrinking
over time. Finally, for Ampleforth the value of the delegate votes never exceeded the value
of the treasury and also currently does not exceed the value of the treasury without the
governance token. We conclude that DAOs need to constantly monitor the value of the
treasury to ensure that they are not an attractive target for token control attacks.

Inadequate Configuration (RF4). Inadequate configuration of voting contracts can leave
a wide scope of vulnerabilities open. We discuss the most important parameters in the
following. First, proposal delay, i.e., the delay between proposal creation and the start of the
voting period, must be larger than 0 to avoid flash loan attacks. A proposal delay of 1 block,
as used by DAOs (see Table 2) is also not without issues though, especially for DAOs that
require delegation. Such a small delay does not leave time for non-delegated tokens to be
delegated in case of a malicious proposal. For similar reasons, a short voting window, might
also be dangerous, as delegates might not be reached in time to vote against a malicious
proposal. However, all DAOs we analyzed have a voting window that runs for a couple of
days (e.g., there are around 7,000 blocks a day on Ethereum). Finally, adjusting the duration
a proposal must remain in the timelock can also be beneficial, i.e., timelock delay. Extending
this period forces an attacker to maintain a number of votes, at least equal to the proposal
threshold, for a longer duration. This approach increases the risk for the attacker and makes
the potential profits less predictable.
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Figure 1 Comparison of treasury values and the total value of all delegated governance tokens.

If the value of the treasury (yellow line) or even the value of the treasury without the governance
token (red line) exceeds the value of delegate votes (blue line) this represents an economic risk.

Centralization (RF5). If a large (delegated) token supply is held only by a few addresses or
entities, many attack vectors become more likely to succeed (e.g., majority coalition, whale
activation). In Table 2, we show the Nakamoto coefficient of the delegate votes and the
token supply, i.e., the minimum number of addresses collectively holding more than 50% of
the delegate votes and the token supply. The lower the Nakamoto coefficient, the higher
the centralization. We find that, startlingly, for three DAOs the Nakamoto coefficient of
the delegate tokens is one – one delegate has the majority of delegate votes. Finally, we
also consider the number of externally owned addresses (EOAs) that hold more governance
tokens than are currently delegated. Importantly, more than one holder can hold more votes
than delegated governance votes, as not all tokens are delegated. These EOAs could delegate
their tokens and would have a majority of the delegate tokens. In combination with a small
proposal delay (RF4), they could easily acquire the majority of votes. For six DAOs there
was at least one EOA that could perform such a 51% attack on 31 March 2024. Additionally,
we also analyze how this figure evolves over time for the five DAOs of these DAOs on the
Ethereum blockchain in Figure 2. We observe that for these five DAOs, there was generally
at least one EOA that held sufficient tokens for a 51% attack and thereby posed a threat.

Table 2 also shows that some DAOs have a guardian in their governance contract or in
their timelock contract. This involves special rights that, for example, enable an EOA or a
multi-signature wallet to cancel proposals. On the one hand, this functionality can be abused
and lead to a situation where only decisions that aren’t canceled by the guardian can be
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Figure 2 Number of holders, i.e. EAOs, who hold more tokens than delegated governance votes
on a monthly basis. These holders would have the majority of the delegated votes after they delegate
their tokens.

made, or if not implemented carefully, give the guardian privileged access to the treasury or
other critical infrastructure. On the other hand, a trustworthy guardian can mitigate the
effect of malicious proposals.

Code Uncertainties (RF6). When smart contracts are created, the contract bytecode that
is uploaded on-chain can contain arbitrary logic. As smart contracts may contain various
unknown mechanisms, any uncertainty can be viewed as risky. Firstly, the smart contract
creators should thus publish the source code, allowing anyone to verify its logic. Additionally,
some code functionalities are associated with a higher risk. For instance, the presence of a
mint functionality might allow an attacker to create more tokens. The mint function can be
a particular risk as it allows attackers to empty the liquidity pools with the governance token
(see Build Finance and Curio in the Appendix of the full version [51]). We observe in Table 2
that five of the analyzed DAOs implement such functionality in their smart contract. Risks
are also associated when external calls are allowed, and when a proxy contract is used (as the
proxy contract may be changed to point to a different contract, bypassing the DAO) [31, 16].
Table 2 shows that only for one DAO the ownership of the contract was renounced. This
is considered a good practice, as the contract then cannot be called with elevated owner
privilege anymore [24].

Lack of Reliable Communication Channels (RF7). DAO community members mainly
communicate through X (formerly Twitter), Telegram, and Discord. These platforms are
crucial parts in defending an attack, as seen in the Indexed Finance case study presented
in Section 3.2. Still, it is difficult to reach all delegates and token holders, especially if the
projects are no longer active, as was the case for Indexed Finance. Thus, better infrastructure
to reliably reach holders and inform them about ongoing governance votes would be beneficial.
To the best of our knowledge, none of the DAOs we have analyzed have implemented any
more reliable communication channels than those mentioned in the beginning.

The described risk factors are diverse and thus preventing against them all simultaneously
is a difficult task. Our empirical evaluation of 26 DAOs and their susceptibility to these
risk factors also revealed that smaller DAOs tend to be more at risk. For these DAOs, in
the absence of the same resources as their larger counterparts, it is likely especially hard to
protect against all possible attack vectors. Thus, especially smaller projects should weigh
the benefits and disadvantages of a DAO carefully. For those, that choose a DAO as their
governance form we continue by describing and discussing safeguards.
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6 Mitigation and Safeguards

We present and discuss mitigation strategies to reduce risks. Throughout, we distinguish
between mitigations that lower the impact (Ç) of an attack and those that lower the likelihood
(®) of success for an attack. In parentheses, we specify which attack vector categories are
targeted.

Conservative Implementation Ç ® (BR, TC, HCI, CP). Through conservative imple-
mentation, DAOs make sure that exogenous factors cannot be exploited to attack a DAO.
Examples include limiting the number of proposals that can be made by a single proposer at
any given time [116] to prevent spamming attacks and having long enough proposal delays
(see Section 5). This involves trade-offs, as extending the on-chain proposal process can make
an attack less appealing, but it also slows down governance in general. Thus, a balance must
be struck between a DAO’s agility and safeguarding against potential attacks. We further
note that a lack of agility for a DAO can pose additional risks depending on the protocols
they govern [66, 67].

Limiting the Governance Scope Ç (BR, TC, HCI, CP). Another approach to lessening
the impact of attacks is for a DAO to add restrictions on its action space that can reduce the
attack surface. For instance, if the DAO is only granted control over a few parameters, the
extent of potential attacks is much narrower. Additionally, one can imagine only allowing a
proposal to spend a fixed maximum amount of the treasury.

Emergency Shutdown Ç (BR, TC, HCI, CP). Implementing an emergency shutdown is a
very invasive mitigation strategy. Here, a set of holders can halt all transactions. In the case
of MakerDAO [84], the emergency shutdown allows token holders to receive a share of the
treasury, mitigating potential attacks that were underway.

Governance Forks Ç ® (BR, TC, HCI, CP). A similar, but less drastic, safeguard could
be achieved through forking, a design primitive where a fraction of token holders can vote
to create a fork of the DAO. For instance, The DAO allowed token holders to create child
DAOs and later withdraw their portion of the DAO deposits from there. Another example of
the occurrence of a DAO fork is NounsDAO: A large fraction of holders decided to leave the
original DAO for a forked DAO taking with them their proportional share of the treasury [53].
The forked DAO then allowed each token holder to rage-quit and retrieve their individual
share of the treasury. This process is usually not very fast, and thus can typically only
prevent foreseeable attacks. Nonetheless, allowing DAOs to fork is a possibility to prevent
a majority (coalition) from taking over a DAO (and its treasury). With a fork, a minority
would still have the possibility to take their part of the DAO’s assets. However, if a DAO
governs more than a fungible treasury, e.g., the parameters of a lending protocol, forking
may of course not be a viable option.

User Authentication ® (BR, TC). Through user authentication, voting power is to be
constrained on a per-person basis. This can enable different voting mechanisms, that might be
less vulnerable to token control attacks, such as quadratic voting (voting power is proportional
to the square root of tokens owned) and democratic voting (one person one vote). Examples
of user authentication include know-your-customer (KYC) or decentralized identifiers, like
Proof-of-Personhood [15]. The Optimism Governance recently implemented a form of user
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authentication. In particular, they implement a bicameral governance design, with a token
house [97] (one token one vote) and a citizen house [96] (one person one vote), only those
with citizenship can vote in the citizen house.

Ballot Privacy ® (HCI) Ensuring ballot/tally privacy during the voting period can help
in mitigating behavioral manipulations (HCI5). Cicada [57] is an existing framework for the
EVM which achieves this. While it is costly to implement on Ethereum, the costs are more
reasonable on L2s.

Governance Tools ® (HCI). The development of novel governance tools reduces the hurdles
of participation in governance and can help prevent HCI attacks. For instance, through
better communication and notifications on current proposals, voter apathy can be combated.
Moreover, they may provide the necessary education for voters to be able to make informed
decisions more easily, also mitigating behavioral manipulations (HCI5). We believe it is
important that these tools are open-source (i.e., such that bugs as in the Tally [110] case are
less likely to happen) and that they cannot easily be spammed or taken down. While these
tools can do a great part in reducing the load in governance participation, they can become
potential attack victims themselves (see Section 3.3).

Veto Power ® (HCI). DAOs may also introduce a veto functionality. Through a veto, a
small group of holders can prolong a vote, giving the holders more time to counter malicious
proposals. Excessive use of veto power itself leads to issues, but we hypothesize that incentives
could deter its misuse (e.g., vetoing could be made expensive).

Objection Phase and Vote Extension ® (HCI). A more targeted safeguard consists of the
addition of a second round of voting (also called objection phase), where voters can only vote
against the proposal, or change their vote from in favor to against. This has been introduced
by Lido [80], with the goal to protect the DAO from vote sniping (see HCI5). Other proposed
remedies to vote sniping include the extension of the voting period after high activity (or
sway votes) are observed, as well as randomized voting durations. Both have recently been
suggested by Decentraland DAO [40].

Scheduled Voting Windows Ç (HCI). Some protocols are experimenting with votes being
scheduled on a regular basis (e.g., once a month). This can prevent proposal spam (HCI3)
to reduce voter apathy and dampen the effect of behavioral manipulations (HCI5).

Escape Hatches Ç (CP). Escape hatches can be added to DAOs to limit the severity of
an attack. The Decentralized Escape Hatch proposed by Eyal and Sirer [49] for example
suggests that outgoing transactions can be buffered (e.g., for 24 hours). Buffered transactions
can then be reversed automatically, by specifying programmatic invariants. Such invariants
could for example limit the outflow over time, or check whether outflow is consistent with
respective inflows. Note that invariants themselves are hard to get right. The authors, thus,
also suggest community involvement by crowdsourcing the reversal, for example through a
majority involvement.

Bug Bounties Ç ® (CP). A widespread and important tool to prevent technical attacks
is bug bounties. Their extent has been researched in a broader context of cybersecurity
and was shown to be a cost-effective instrument [118]. Bug bounties are widespread in the
blockchain ecosystem and advertised by several DAOs.

AFT 2024



28:20 SoK: Attacks on DAOs

Audits ® (CP). Last but not least, audits by external companies can help verify that the
DAOs underlying smart contracts are implemented to the state-of-the-art. Audits will make
sure that code best practices are respected [32], according to the platform and language used.
We observe that audits typically focus on technical vulnerabilities. While we find that they
could also consider the more governance-specific attack vectors we present, technical audits
also hold immense importance for the security of DAOs.

7 Related Work

Possible attacks on DAOs have been discussed in blog posts almost as long as DAOs have
existed [86, 37] including by Ethereum’s founder Vitalik Buterin [19, 20]. Among other
things, they discuss the risks of low voter participation, centralization, game-theoretic
attacks, and vote buying, as well as possible mitigation strategies such as limited governance,
non-coin-driven governance, and skin in the game.

An early instance of a DAO governance attack documented in academic literature is
a potential attack on the governance of the MakerDAO protocol, the centerpiece of DeFi
at the time, by Gudgeon et al. [60]. More recently, Augsten et al. [5] have discussed the
potential of hidden vote buying in DAO governance facilitated by smart contracts, i.e.,
what is referred to as Dark DAOs. Related to the attack on DAO governance, the term
Governance Extractable Value (GEV) has been coined to describe the potential value that
can be gained from influencing DAO governance votes [78]. Note that the term is an homage
to the widely-studied concept of Miner/Maximal Extractable Value (MEV) [36].

Two recent systematizations of knowledge (SoKs) cover topics related to DAO attacks:
Zhou et al. [123] survey hacks and incidents in DeFi protocols in general. However, most
described attacks are not attacks on the protocol’s governance system, which we focus on
in this paper. A general overview and systematization of the concept of governance for
blockchains and blockchain-based protocols can be found in the SoK by Kiayias and Lazos [71].
It discusses the governance processes of blockchains such as Bitcoin and Ethereum, along with
examples of protocols running on blockchains – which are the focus of our SoK. Additionally,
Ethereum’s governance process, including which actors have how much influence on it, has
also been studied in detail by Fracassi et al. [55]. To the best of our knowledge, this paper
represents the first SoK to study attack vectors, risks, and possible mitigation of attacks on
the governance of DAOs.

Recently, the literature surrounding DAOs has rapidly expanded, including two reports
of the WEF on DAOs [58, 59]. This encompasses a flurry of empirical studies on a variety of
DAOs covering aspects such as token distributions, voting turnout and voting behavior [56,
7, 52, 6, 109, 44, 104, 72, 89]. In particular, many of the studies (see e.g., Feichtinger et
al. [52]) make a number of observations relevant to attacks covered in this paper: They reveal
that a majority of voting power is often concentrated in the hands of a very small number of
holders and delegates. Additionally, they highlight that participation rates in governance
votes are frequently low across many DAOs.

The vast majority of DAOs today, including those covered in the aforementioned studies,
use simple token voting (one-token-one-vote). An alternative governance model using vote
escrowed tokens (governance tokens locked for a fixed time period), which is for instance
used by Curve and Balancer, is discussed by Lloyd et al. [82].

Finally, Tan et al. [111] describe open research problems surrounding DAOs in fields
ranging from computer science and economics to ethics, law, and politics.
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8 Conclusion

In this paper, we systematically analyzed potential attacks on DAOs along with 28 real-world
incidents to illustrate the scope of security vulnerabilities. By describing and categorizing
the multitude of attack vectors, we provided a comprehensive overview of the threats faced
by DAOs. Additionally, we identified and empirically measured risk factors across a set of 26
DAOs, offering insights into the prevalent risks and their impact.

We believe that it is highly advisable for a DAO to engage early with the possibility
of such an attack, to monitor parameters closely, and to ensure that an attack does not
become economically attractive. Understanding these challenges is critical when designing
and operating a DAO, and poses a significant challenge to DAOs. Ultimately, with our
systematization of attacks on DAOs, the vulnerabilities of DAOs, and possible safeguards,
we seek to arm future DAO designs with the necessary knowledge to anticipate and mitigate
these threats.
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29:2 Transaction Fee Mechanism Design in a Post-MEV World

1 Introduction

1.1 Transaction Fee Mechanisms for Allocating Blockspace
Blockchain protocols such as Bitcoin and Ethereum process transactions submitted by users,
with each transaction advancing the “state” of the protocol (e.g., the set of Bitcoin UTXOs,
or the state of the Ethereum Virtual Machine). Such protocols have finite processing power,
so when demand for transaction processing exceeds the available supply, a strict subset of
the submitted transactions must be chosen for processing. To encourage the selection of the
“most valuable” transactions, the transactions chosen for processing are typically charged
a transaction fee. The component of a blockchain protocol responsible for choosing the
transactions to process and what to charge for them is called its transaction fee mechanism
(TFM).

Previous academic work on TFM design (surveyed in Section 1.5) has focused on the
game-theoretic properties of different designs, such as incentive-compatibility from the
perspective of users (ideally, with a user motivated to bid its true value for the execution
of its transaction), of block producers (ideally, with a block producer motivated to select
transactions to process as suggested by the TFM), and of cartels of users and/or block
producers. Discussing incentive-compatibility requires defining utility functions for the
relevant participants. In most previous works on TFM design (and in this paper), users are
modeled as having a private value for transaction inclusion and a quasi-linear utility function
(i.e., value enjoyed minus price paid). In previous work – and, crucially, unlike in this work –
a block producer was modeled as passive, meaning its utility function was the net reward
earned (canonically, the unburned portion of the transaction fees paid by users, possibly plus
a block reward).

While this model is a natural one for the initial investigation of the basic properties of
TFMs, it effectively assumes that block producers are unaware of or unconcerned with the
semantics of the transactions that they process – that there is a clean separation between
users (who have value only for activity at the application layer) and block producers (who, if
passive, care only about payments received at the consensus layer).

1.2 MEV and Active Block Producers
It is now commonly accepted that, at least for blockchain protocols that support a decentral-
ized finance (“DeFi”) ecosystem, there are unavoidable interactions between the consensus
layer (block producers) and the application layer (users), and specifically with block producers
deriving value from the application layer that depends on which transactions they choose to
process (and in which order). For a canonical example, consider a transaction that executes a
trade on an automated market maker (AMM), exchanging one type of token for another (e.g.,
USDC for ETH). The spot price of a typical AMM moves with every trade, so by executing
such a transaction, a block producer may move the AMM’s spot price out of line with the
external market (e.g., on centralized exchanges (CEXs) like Coinbase), thereby opening up
an arbitrage opportunity (e.g., buying ETH on a CEX at the going market price and then
selling it on an AMM with a larger spot price). The block producer is uniquely positioned to
capture this arbitrage opportunity, by executing its own “backrunning” transaction (i.e., a
trade in the opposite direction) immediately after the submitted trade transaction.

The first goal of this paper is to generalize the existing models of TFM design in the
minimal way that accommodates active block producers, meaning block producers with a
utility function that depends on both the transactions in a block and the net fees earned.
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Specifically, in addition to the standard private valuations for transaction inclusion possessed
by users, the block producer will have its own private valuation, which is an abstract function
of the block that it publishes. We then assume that a block producer acts to maximize its
block producer surplus (BPS), meaning its private value for the published block plus any
additional profits (or losses) from fees (or burns). In the interests of a simple but general
model, we deliberately avoid microfounding the private valuation function of a block producer
or committing to any specifics of the application layer. Our model captures, in particular,
canonical on-chain DeFi opportunities such as arbitrage and liquidation opportunities, but
a block producer’s valuation can reflect arbitrary preferences, perhaps derived also from
off-chain activities (e.g., a bet with a friend that settles on-chain) or subjective considerations.

The extraction of application-layer value by block producers, in DeFi and more generally,
was first studied by Daian et al. [17] under the name “MEV” (for “maximal extractable
value”). At this point, the term has transcended any specific definition – in both the literature
and popular discourse, it is used, often informally, to refer to a number of related but different
concepts. For a brief survey see Section 1.5.4. We argue that our definition of BPS captures,
in a precise way and in a concrete economic model, one of the more common colloquial
meanings of the term “MEV.”

1.3 The Block Production Supply-Chain
In the first part of this paper, we treat a block producer as a single entity that publishes
a block based on the transactions that it is aware of. This would be an accurate model
of block production, as carried out by miners in proof-of-work protocols and validators in
proof-of-stake protocols, up until a few years ago. More recently, especially in the Ethereum
ecosystem, block production has evolved into a more complex process, typically involving
“searchers” (who identify opportunities for extraction from the application layer), “builders”
(who assemble such opportunities into a valid block), “relays” (who gather blocks from builders
and select the most profitable one for the proposer), and “proposers” (who participate directly
in the blockchain protocol and make the final choice of the published block), and several
others. One interpretation of a block producer in our model is as a vertically integrated
party performing the job of all these entities.

In the second part of the paper, we consider a more fine-grained model of the block
production process, in which the role of finding MEV extraction opportunities is decoupled
from the proposer’s role of participating in consensus and is instead performed by specialized
searchers. An interpretation of this model is that the proposer runs an open-source consensus
client to collect block rewards, while outsourcing the complicated task of finding MEV
opportunies to searchers. This is in the same spirit as mev-geth, which was a widely-used
Ethereum client written by Flashbots that proposers could run to allow for the submission
of both regular transactions by users and wrapped bundles of transactions by searchers.1

Prior to mev-geth, searchers and users were treated equally by proposers and competed with
each other for inclusion; among other issues, multiple searchers pursuing the same MEV
extraction opportunity would often have their extraction transactions included in a block,
with the first such transaction capturing the opportunity and the rest failing (but still paying
transaction fees for inclusion and wasting valuable blockspace). Mev-geth introduced an
explicit auction, upstream from the blockchain’s fee mechanism, in which searchers could
compete directly with each other to capture MEV extraction opportunities. Our model can
be viewed as formalizing this idea by allowing a TFM to treat searchers and users differently,
subject to different rules for inclusion and payment.

1 See https://github.com/flashbots/mev-geth/blob/master/README.md.
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1.4 Overview of Results
Our starting point is the model for transaction fee mechanism design defined in [45]. In
this model, each user has a private valuation for the inclusion of a transaction in a block,
and submits a bid along with its transaction. As in [45], we consider TFMs that choose the
included transactions and payments based solely on the bids of the pending transactions (as
opposed to, say, based also on something derived from the semantics of those transactions).
A block producer publishes any block that it wants, subject to feasibility (e.g., with the
total size of the included transactions respecting some maximum block size). A TFM is
said to be dominant-strategy incentive-compatible (DSIC) if every user has a dominant (i.e.,
always-optimal) bidding strategy. The DSIC property is often associated with a good “user
experience (UX),” in the sense that each user has an obvious optimal bid. In [45], a TFM
was said to be incentive-compatible for myopic miners (MMIC) if it expects a block producer
to publish a block that maximizes the net fees earned (at the consensus layer). Here, we
introduce an analogous definition that accommodates active block producers: We call a TFM
incentive-compatible for block producers (BPIC) if it expects a block producer to publish a
block that maximizes its private valuation plus the net fees earned. An ideal TFM would
satisfy, among other properties, both DSIC and BPIC.

1.4.1 Vertically Integrated Active Block Producers
We begin with a model in which there are only users and a single (vertically integrated) active
block producer, and show that there are fundamental barriers to designing ideal transaction
fee mechanisms in this case.

Our first result (Theorem 11) is a proof that with active block producers no non-trivial
TFM satisfies both DSIC and BPIC, where “non-trivial” means that users must at least
in some cases pay a nonzero amount for transaction inclusion2. (In contrast, with passive
block producers and no MEV, the “tipless mechanism” suggested in [45] is non-trivial and
satisfies both DSIC and BPIC; the same is true of the EIP-1559 mechanism of Buterin et
al. [12], provided the mechanism’s base fee is not excessively low [45].) In particular, the
EIP-1559 and tipless mechanisms fail to satisfy DSIC and BPIC when block producers can be
active. Intuitively, for these mechanisms, a user might be motivated to underbid in the hopes
of receiving an effective subsidy by the block producer (who may include the transaction
anyways, if it derives outside value from it).

Our second result (Theorem 13) formalizes the intuition that TFMs that do not charge
non-zero transaction fees – and in particular (by Theorem 11), TFMs that are both DSIC
and BPIC – cannot guarantee any approximation of the maximum-possible social welfare.
Intuitively, the issue is the lack of alignment between the preferences of users and of the
block producer: If a block producer earns no transaction fees from any block, it might choose
a block with non-zero private value but only very low-value transactions over one with no
private value but very high-value transactions.

1.4.2 TFMs with Competitive Searchers
We then consider a more fine-grained model of block production that more accurately
reflects current practice, where we distinguish the roles of “searchers” (who actively identify
opportunities for value extraction from the application layer and compete for the right to

2 We distinguish this result from surface level connections to previous impossibility theorems in mechanism
design in Section 1.5.5
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take advantage of them) and “proposers” (who participate directly in the blockchain protocol
and make the final choice of the published block). Searchers can effectively act as an “MEV
oracle” for a transaction fee mechanism, thereby enlarging the mechanism design space.

In this model, we first consider a TFM that is inspired by how searchers have traditionally
been incorporated into the block production process, and specifically by mev-geth (see
Section 2.5). Intuitively, this mechanism runs a first-price auction for each transaction among
the interested searchers; the winning bid then acts as estimate of the transaction’s MEV,
which the TFM can then use to charge prices to users in a way that recovers the DSIC
property for users (Theorem 16).

We then explore the TFM design space with searchers more generally, with a focus on
good approximate welfare guarantees. Our main contribution here is a mechanism, which we
call the SAKA mechanism, which is DSIC for users, DSIC for searchers, BPIC, sybil-proof,
and guarantees roughly 50% of the maximum-possible welfare when transaction sizes are small
relative to block sizes (as they are in practice); see Theorems 19 and 20. In particular, this
combination of guarantees shows that TFMs with searchers can evade impossibility results
that apply to TFMs without searchers (such as Theorem 13). We further show in Theorem 21
that, even when transaction sizes are small, no DSIC and sybil-proof deterministic TFM can
guarantee more than 50% of the maximum-possible welfare. (By “sybil-proof,” we mean that
no user or searcher can ever profit from creating additional user or searcher identities and
submitting fake transactions or bundles under those identities.)

1.5 Related Work
1.5.1 General TFM literature
The model in this paper is closest to the one used by Roughgarden [45] to analyze (with
passive block producers) the economic properties of the EIP-1559 mechanism [12], the TFM
used currently in the Ethereum blockchain. Precursors to that work (also with passive
block producers) include studies of a “monopolistic price” transaction fee mechanism [32, 51]
(also considered recently by Nisan [38]), and work of Basu et al. [10] that proposed a more
sophisticated variant of that mechanism. There have also been several follow-up works
to [45] that use similar models (again, with passive block producers). Chung and Shi [16]
proved impossibility results showing that the incentive-compatible guarantees of the EIP-
1559 mechanism are in some respects the best possible. There have also been attempts to
circumvent this impossibility result by relaxing the notion of incentive compatibility [16, 24],
using cryptography [47], considering a Bayesian setting [53], or mixtures of these ideas [49].
Other recent works [20, 33] study the dynamics of the base fee in the EIP-1559 mechanism.

1.5.2 MEV-aware mechanism design
There has been much interest among both researchers and practitioners in restructuring the
block production supply chain to address MEV [50, 26]. On the academic side, the bulk of
these approaches involve cryptographic techniques [29, 34, 52, 11] or changes at the consensus
layer [28, 27, 13, 31]. Relatively recently, there have been some initial studies on the impact of
economic mechanisms for mitigating MEV such as order-flow auctions [25] and mev-boost [2];
see [40, 43, 6]. In practice, to this point, economic approaches to addressing MEV have
been more popular than cryptographic ones; examples include, among others, mev-share [36],
UniswapX [3], and MEV Blocker [1]. The model in this paper aims to integrate some of
the ideas behind these deployed applications into the existing mathematical frameworks for
transaction fee mechanism design.

AFT 2024



29:6 Transaction Fee Mechanism Design in a Post-MEV World

1.5.3 Credible mechanisms

Akbarpour and Li [4] introduce the notion of credible mechanisms, where any profitable
deviations by the auctioneer can be detected by at least one user. While similar in spirit to
the concept of BPIC introduced here (and the special case of MMIC introduced in [45]), there
are several important differences. For example, the theory of credible mechanisms assumes
fully private communication between bidders and the auctioneer and no communication
among bidders, whereas TFM bids are commonly collected from a public mempool. Another
difference is that a block producer in our model can manipulate only the allocation rule
of a mechanism (as the payment rule is enforced by the blockchain protocol), while in the
credible mechanisms framework the auctioneer can also manipulate the payment rule. In a
different direction, there is also a line of follow-up work that takes advantage of cryptographic
primitives to build credible auctions on the blockchain [22, 19, 15, 21].

1.5.4 Defining MEV

Daian et al. [17] introduced the notion of miner/maximal extractable value. They defined
MEV as the value that miners or validators could obtain by manipulating the transactions
in a block. Since this work, there have been many follow-up works attempting to formalize
MEV and analyze its effects in both theory and practice. Attempts to give exact theoretical
characterizations of MEV appear in [46, 39, 9, 5]. Broadly, these works define MEV by
defining sets of valid transaction sequences and allowing the block producer to maximize
their value over these sequences. These definitions are very general, but in exchange have to
this point proved analytically intractable. Several empirical papers study the impact and
magnitude of MEV using heuristics applied to on-chain data [41, 42, 48]. Another line of
work [30, 26, 8] studies MEV in specific contexts, such as for arbitrage in AMMs, in which
it is possible to characterize how much MEV can be realized from certain transactions. In
particular, Kulkarni et al. [30] give formal statements on how, under different AMM designs,
MEV affects the social welfare of the overall system.

1.5.5 Impossibility results in mechanism design

The impossibility results in Section 3 may appear superficially related to other such results
in mechanism design. For example, the classic Myerson-Satterwhaite Theorem [37] states
that there is no efficient, individually rational, Bayesian incentive compatible, and budget-
balanced mechanism for bilateral trade. Fundamentally, this result is driven by the tension
between welfare and budget-balance in the presence of incentive-compatibility constraints
on the participants. Our main impossibility result (Theorem 11), meanwhile, is driven by
the combination of incentive-compatibility constraints for users (analogous to the usual
participants of a mechanism design problem) and also such a constraint for a self-interested
party that is tasked with carrying out the allocation rule of the mechanism (the block
producer). As such, our setup more closely resembles that of credible mechanisms than more
traditional mechanism design settings. In particular, Theorem 11 holds even in the absence
of any welfare-maximization or exact budget-balance requirements (a non-zero burning rule
in the sense of Section 2.3 is tantamount to relaxing budget-balance).
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2 Model

This section defines transaction fee mechanisms, the relevant players and their objectives,
and the relevant incentive-compatibility notions. Sections 2.1–2.4 describe the basic model
(with vertically integrated, active block producers) that is considered in Section 3, while
Section 2.5 augments this model with searchers, which play a central role in Sections 4 and 5.

2.1 The Players and Their Objectives

2.1.1 Users
Users submit transactions to the blockchain protocol. The execution of a transaction
updates the state of the protocol (e.g., users’ account balances). The rules of the protocol
specify whether a given transaction is valid (e.g., whether it is accompanied by the required
cryptographic signatures). From now on, we assume that all transactions under consideration
are valid. Every transaction t has a publicly known size st (e.g., the gas limit of an Ethereum
transaction).

We assume that each user submits a single transaction t and has a nonnegative valuation vt,
denominated in a base currency like USD or ETH, for its execution in the next block. This
valuation is private, in the sense that it is initially unknown to all other parties. We assume
that the utility function of each user – the function that the user acts to maximize – is
quasi-linear, meaning that its utility is either 0 (if its transaction is not included in the next
block) or vt − p (if its transaction is included and it must pay a fee of p). We denote the set
of transactions submitted to the TFM by T .

2.1.2 Blocks
A block is a finite set of transactions. A feasible block is a block that respects any additional
constraints imposed by the protocol. For example, if the protocol specifies a maximum block
size, then feasible blocks might be defined as those that comprise only valid transactions and
also respect the block size limit.

2.1.3 Block producers (BPs)
We consider blockchain protocols for which the contents of each block are selected by a
single entity, which we call the block producer (BP). We focus on the decision-making of the
BP that has been chosen at a particular moment in time (perhaps using a proof-of-work or
proof-of-stake-based lottery) to produce the next block. We assume that whatever block the
BP chooses is in fact published, with all the included transactions finalized and executed.

A BP chooses a block B from some abstract non-empty set B of feasible blocks, called its
blockset. For example, the set B might consist of all the feasible blocks that comprise only
transactions that the BP knows about (perhaps from a public mempool, or perhaps from
private communications) along with transactions that the BP is in a position to create itself
(e.g., a backrunning transaction). As with users, we model the preferences of a BP with a
quasi-linear utility function, meaning the difference between its private value for a block
(again, denominated in a base currency like USD or ETH) minus the (possibly negative)
payment that it must make. Unlike with users, to avoid modeling any details of why a BP
might value a block (e.g., due to the extraction of value from the application layer), we allow
a BP to have essentially arbitrary preferences over blocks. More formally, we assume that a
BP has a private valuation that is an arbitrary (real-valued) function vBP over blocks, and
the BP acts to maximize its block producer surplus (BPS):
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vBP (B) + net fees earned︸ ︷︷ ︸
block producer surplus (BPS)

.

2.1.4 Holders
The final category of participants, which are non-strategic in our model but relevant for
our definition of welfare in Section 2.2, are the holders of the blockchain protocol’s native
currency. As we’ll see in Section 2.3, TFMs are in a position to mint or burn this currency,
which corresponds to inflation or deflation, respectively. We treat TFM mints and burns as
transfers from and to, respectively, the existing holders of this currency. Formally, we define
the collective utility function of currency holders to be the net amount of currency burned
by a TFM.

2.2 Welfare
According to the principle of welfare-maximization, a scarce resource like blockspace should
be allocated to maximize the total utility of all the “relevant participants,” which in our case
includes the users, the BP, and the currency holders. Because all parties have quasi-linear
utility functions and all TFM transfers will be between members of this group (from users to
the BP, from the BP to holders, etc.), the welfare of a block is simply the sum of the user
and BP valuations for it:

W (B) := vBP (B) +
∑
t∈B

vt︸ ︷︷ ︸
welfare of B

. (1)

Holders are assumed to be passive and thus have no valuations to contribute to the sum.3

2.3 Transaction Fee Mechanisms
The outcome of a transaction fee mechanism is a block to publish and a set of transfers (user
payments, burns, etc.) that will be made upon the block’s publication. In line with the
preceding literature on TFMs and the currently deployed TFM designs, we assume that each
user that creates a transaction t submits along with it a nonnegative bid bt (i.e., willingness
to pay), and that a TFM bases its transfers on the set of available transactions and the
corresponding bids. (The BP submits nothing to the TFM.) A TFM is defined primarily by
its payment and burning rules, which specify the fees paid by users and the burned funds
implicitly received by holders (with the BP pocketing the difference).

2.3.1 Payment and burning rules
The payment rule specifies the payments made by users in exchange for transaction inclusion.

▶ Definition 1 (Payment Rule). A payment rule is a function p that specifies a nonnegative
payment pt(B, b) for each transaction t ∈ B in a block B, given the bids b of all known
transactions.

3 We stress that the welfare of a block (1) measures the “size of the pie” and says nothing about how
this welfare might be split between users, the BP, and holders (i.e., about the size of each slice).
Distributional considerations are important, of course, but they are outside the scope of this paper.
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The value of pt(B, b) indicates the payment from the creator of an included transaction t ∈ B

to the BP that published that block. (Or, if the rule is randomized, the expected payment.4)
We consider only individually rational payment rules, meaning that pt(B, b) ≤ bt for every
included transaction t ∈ B. We can interpret pt(B, b) as 0 whenever t /∈ B. Finally, we
assume that every creator of an included transaction has the funds available to pay its full
bid, if necessary (otherwise, the block B should be considered infeasible).

The burning rule specifies how much money must be burned by a BP along with the
publication of a given block.5

▶ Definition 2 (Burning Rule). A burning rule is a function q that specifies a nonnegative
burn q(B, b) for a block B, given the bids b of all known transactions.

The value of qt(B, b) indicates the amount of money burned (i.e., paid to currency holders)
by the BP upon publication of the block B. (Or, if the rule is randomized, the expected
amount.)6 We assume that, after receiving users’ payments for the block, the BP has sufficient
funds to pay the burn required of the block that it publishes (otherwise, the block B should
be considered infeasible).

We stress that the payment and burning rules of a TFM are hard-wired into a blockchain
protocol as part of its code. This is why their arguments – the transactions chosen for
execution and their bids, and perhaps (as in [16]) the bids of some additional, not-to-be-
executed transactions – must be publicly recorded as part of the blockchain’s history. (E.g.,
late arrivals should be able to reconstruct users’ balances, including any payments dictated
by a TFM, from this history.) A BP cannot manipulate the payment and burning rules of a
TFM, except inasmuch as it can choose which block B ∈ B to publish.

2.3.2 Allocation rules
In our model, a BP has unilateral control over the block that it chooses to publish. Thus,
a TFM’s allocation rule – which specifies the block that should be published, given all of
the relevant information – can only be viewed as a recommendation to a BP. Because the
(suggested) allocation rule would be carried out by the BP and not by the TFM directly, it
can sensibly depend on arguments not known to the TFM (but known to the BP), specifically
the BP’s valuation vBP and blockset B.

▶ Definition 3 (Allocation Rule). An allocation rule is a function x that specifies a block
x(b, vBP , B) ∈ B, given the bids b of all known transactions, the BP valuation vBP , and the
BP blockset B.

An allocation rule x induces per-transaction allocation rules with, for a transaction t,
xt(b, vBP , B) = 1 if t ∈ x(b, vBP , B) and 0 otherwise.

▶ Definition 4 (Transaction Fee Mechanism (TFM)). A transaction fee mechanism (TFM) is
a triple (x, p, q) in which x is a (suggested) allocation rule, p is a payment rule, and q is a
burning rule.

4 We assume that users and BPs are risk-neutral when interacting with a randomized TFM.
5 This differs superficially from the formalism in [45], in which a burning rule specifies per-transaction

(rather than per-block) transfers from users (rather than the BP) to currency holders. The payment
rule here can be interpreted as the sum of the payment and burning rules in [45], and the per-block
burning rule here can be interpreted as the sum of the burns of a block’s transactions in [45].

6 An alternative to money-burning that has similar game-theoretic and welfare properties is to trans-
fer q(B, b) to entities other than the BP, such as a foundation or the producers of future blocks.
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A TFM is defined relative to a specific block publishing opportunity. A blockchain protocol
is free to use different TFMs for different blocks (e.g., with different base fees), perhaps
informed by the blockchain’s past history.

2.3.3 Utility functions and BPS revisited
With Definitions 1–4 in place, we can express more precisely the strategy spaces and utility
functions introduced in Section 2.1. We begin with an expression for the utility of a user
(as a function of its bid) for a TFM’s outcome, under the assumption that the BP always
chooses the block suggested by the TFM’s allocation rule.

▶ Definition 5 (User Utility Function). For a TFM (x, p, q), BP valuation vBP , BP blockset B,
and bids b−t of other transactions, the utility of the originator of a transaction t with
valuation vt and bid bt is

ut(bt) := vt · xt((bt, b−t), vBP , B) − pt(B, (bt, b−t)), (2)

where B := xt((bt, b−t), vBP , B).

In (2), we highlight the dependence of the utility function on the argument that is directly
under a user’s control, the bid bt submitted with its transaction.

The BP’s utility function, the block producer surplus, is then:

▶ Definition 6 (Block Producer Surplus (BPS)). For a TFM (x, p, q), BP valuation vBP , BP
blockset B, and transaction bids b, the block producer surplus of a BP that chooses the block
B ∈ B is

uBP (B) := vBP (B) +
∑
t∈B

pt(B, b) − q(B, b). (3)

In (3), we highlight the dependence of the BP’s utility function on the argument that is
under its direct control, its choice of a block. The BP’s utility depends on the payment and
burning rules of the TFM, but not on its allocation rule (which the BP is free to ignore, if
desired).

Finally, the collective utility function of (passive) currency holders for a block B with
transaction bids b is q(B, b), the amount of currency burned by the BP. (As promised, for a
block B, no matter what the bids and the TFM, the sum of the utilities of users, the BP,
and holders is exactly the welfare defined in (1).)

2.4 Incentive-Compatible TFMs
In this paper, we focus on two incentive-compatibility notions for TFMs – which, as we’ll
see, are already largely incompatible – one for users and one for block producers. We begin
with the latter.

2.4.1 BPIC TFMs
We assume that a BP will choose a block to maximize its utility function, the BPS (Defin-
ition 6). The defining equation (3) shows that, once the payment and burning rules of
a TFM are fixed, a BP’s valuation and blockset dictate the unique (up to tie-breaking)
BPS-maximizing block for each bid vector. We call an allocation rule consonant if, given the
payment and burning rules, it instructs a BP to always choose such a block (breaking ties in
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an arbitrary but consistent fashion). Because a BP can see all bids after they are submitted,
they can also insert their own “fake” transactions along with “shill” bids for them (e.g., to
manipulate the payment and/or burning rules of the TFM), we require that a BP is never
incentivized to include such shill bids.

▶ Definition 7 (Consonant Allocation Rule). An allocation rule x is consonant with the
payment and burning rules p and q if:
(a) for every BP valuation vBP and blockset B, and for every choice of transaction bids b,

x(b, vBP , B)︸ ︷︷ ︸
recommended block

∈ argmax
B∈B

{
vBP (B) +

∑
t∈B

pt(B, b) − q(B, b)
}

︸ ︷︷ ︸
BPS-maximizing block

;

(b) for some fixed total ordering on the blocks of B, the rule breaks ties between BPS-
maximizing blocks according to this ordering.

▶ Definition 8 (Shill-Proof). Payment and burning rules p and q are shill-proof if for every
BP valuation vBP and blockset B, and for every choice of transaction bids b, there is no set
F of fake transactions with shill bids b′ such that:

max
B∈B

vBP (B) +
∑

t∈B\F

pt(B, (b, b′)) − q(B, (b, b′))

︸ ︷︷ ︸
optimal BPS with shill bids

> max
B∈B

{
vBP (B) +

∑
t∈B

pt(B, b) − q(B, b)
}

︸ ︷︷ ︸
optimal BPS without shill bids

. (4)

BPIC TFMs are then precisely those that always instruct a BP to choose a BPS-
maximizing block (breaking ties consistently) while also being shill-proof.

▶ Definition 9 (Incentive-Compatibility for Block Producers (BPIC)). A TFM (x, p, q) is
incentive-compatible for block producers (BPIC) if:
(a) x is consonant with p and q;
(b) p and q are shill-proof.

2.4.1.1 DSIC TFMs

Dominant-strategy incentive-compatibility (DSIC) is one way to formalize the idea of a “good
user experience (UX)” for TFMs. The condition asserts that every user has an “obviously
optimal” bid, meaning a bid that, provided the BP follows the TFM’s allocation rule, is
guaranteed to maximize the user’s utility (no matter what other users might be bidding). In
the next definition, by a bidding strategy, we mean a function σ that maps a valuation to a
recommended bid for a user with that valuation.

▶ Definition 10 (Dominant-Strategy Incentive-Compatibility (DSIC)). A TFM (x, p, q) is
dominant-strategy incentive-compatible (DSIC) if there is a bidding strategy σ such that, for
every BP valuation vBP and blockset B, every user i with transaction t, every valuation vt

for i, and every choice of other users’ bids b−t,

σ(vt)︸ ︷︷ ︸
recommended bid

∈ argmax
bt

{ut(bt)}︸ ︷︷ ︸
utility-maximizing bid

, (5)

where ut is defined as in (2).
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That is, bidding according to the recommendation of the bidding strategy σ is guaranteed to
maximize a user’s utility.7 This is a strong property: a bidding strategy can depend only
on what a user knows (i.e., its private valuation), while the right-hand side of (5) implicitly
depends (through (2)) also on the bids of the other users and the BP’s preferences.

Note that the classic EIP-1559 mechanism [12] is no longer BPIC for an active BP, even
when the base fee is not excessively low (all the transactions with bid at least the base fee fit
into the block). The concern is that an active BP is incentivized to include transactions that
bid below the base fee (effectively subsidizing them) if the BP has sufficiently high value
for those transactions. The main result of Section 3 (Theorem 11) shows that the difficulty
of achieving DSIC and BPIC simultaneously is not particular to the EIP-1559 mechanism:
When BPs are active, no TFM that charges non-zero user fees can be both DSIC and BPIC.
In contrast, for a passive BP the DSIC and BPIC properties can be achieved simultaneously
via the tipless mechanism [45].

In this work we do not focus on offchain agreement proofness, a third incentive-
compatibility notion commonly studied in the context of transaction fee mechanisms. We
note that our impossibility results (Theorems 11 and 13) apply already to mechanisms that
are merely DSIC and BPIC (and not necessarily OCA-proof).

2.5 Adding Competitive Searchers

Next we describe the changes to the basic model that are needed in Sections 4 and 5, in which
we suppose that block proposers outsource the problem of value extraction to searchers.

2.5.1 Searchers and bundles

Searchers submit bundles to the blockchain protocol, where a bundle consists of a single
user-submitted transaction t and any additional transactions needed to extract value from the
transaction. We interchange between referring to bundles by either w or ti, with ti explicitly
referencing a bundle that includes transaction t. We assume that there is a canonical way
to extend a transaction with size st into a bundle, and denote by s′

t the size of the latter
(with s′

t ≥ st). For example, if t represents an AMM trade, the corresponding canonical
bundle might include a subsequent backrunning trade. Just as users submit bids with their
transactions, searchers submit bids with their bundles. A TFM now takes as input both
transactions (with their user bids) and bundles (with their searcher bids), and its allocation,
payment, and burning rules can depend on the bids of all users and all searchers. We assume
that a TFM can distinguish between transactions and bundles, and can therefore treat them
differently (e.g., the payment rule can differ for users and for searchers). Like users, searchers
have private nonnegative valuations for bundle inclusion and quasi-linear utility functions.
The DSIC condition is defined for searchers exactly as it is for users (Definition 10).

7 The term “DSIC” is often used to refer specifically to mechanisms that satisfy the condition in
Definition 10 with the truthful bidding strategy, σ(vt) = vt. Any mechanism that is DSIC in the sense
of Definition 10 can be transformed into one in which truthful bidding is a dominant strategy, simply by
enclosing the mechanism in an outer wrapper that accepts truthful bids, applies the assumed bidding
strategy σ to each, and passes on the results to the given DSIC mechanism. (This trick is known as the
“Revelation Principle”; see e.g. [44].)
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2.5.2 Blocks

Blocks can now include both transactions and bundles. Multiple searchers may submit
bundles corresponding to the same transaction, but in a feasible block, a given transaction
can be included (directly or as part of a bundle) at most once. The inclusion of a bundle
that contains a transaction t necessarily implies the inclusion of t itself – in this sense, the
space of feasible allocations is no longer downward-closed. Equivalently, a block now specifies
a set of user-submitted transactions and, for each such transaction t, the searcher (if any)
responsible for the included bundle that contains t. Users continue to have a private value vt

for inclusion (whether as part of a bundle or not).

2.5.3 Revised incentive-compatibility goals

Thus far, the addition of searchers strictly generalizes the model in Sections 1–4, and so our
impossibility results (Theorems 11 and 13) for the basic model apply immediately to it as
well.

But the whole point of accommodating a competitive ecosystem of searchers is for
proposers (the entities that participate directly in the blockchain protocol) to outsource the
specialized task of assembling high-value blocks to searchers. That is, searchers are meant
to allow proposers to on the one hand act passively (by simply using the most valuable
bundles submitted by searchers) and on the other hand earn almost all of the extractable
value (with searchers competing the value of their bundles away to the proposer through
the bidding process).8 Mathematically, with searchers, the idea is that what had been the
private valuation vBP of the (vertically integrated) BP in Section 2.1 is now distributed
specifically across the searchers. This interpretation is particularly clear in the additive case
– meaning the vertically integrated BP valuation vBP (B) would have been

∑
t∈B µt, with µt

the value extractable from a transaction t and no interactions between different transactions –
with every searcher that submits a bundle involving transaction t having a value of µt for
that bundle.9

With this interpretation in mind, in the model with searchers, there will be three incentive-
compatibility goals: (i) DSIC for users; (ii) DSIC for searchers; and (iii) BPIC for the proposer,
assuming that the proposer is passive (i.e., with the all-zero valuation for blocks and with
utility equal to the net revenue at the consensus layer, including any payments to it from
searchers). In effect, this revised model shatters what had been a vertically integrated BP
into a single proposer and a number of searchers, and what had been BPIC (with an active
BP) now translates to DSIC for (active) searchers and BPIC for a passive proposer.10

8 See [6] for a rigorous analysis of this idea.
9 For example, transactions could represent trades on different AMMs, or once-per-block MEV oppor-

tunities such as top-of-block CEX-DEX arbitrage or liquidation opportunities (the latter two types
modeled via a dummy transaction that has a user bid of zero but non-zero value for searchers).

10 The combination of (i)–(iii) can technically be achieved by using the tipless mechanism and always
ignoring any searchers that might be present. Our interest in Section 4 will be the incentive-compatibility
properties of a more interesting TFM that incorporates searchers in a way that resembles current practice;
the goal in Section 5 is to design novel TFMs that, in addition to satisfying (i) – (iii) and unlike the
searcher-excluding tipless mechanism, guarantee a constant fraction of the maximum-possible welfare.
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2.5.4 Welfare
With searchers, we redefine the welfare (1) of a block B to reflect the private valuations of
searchers and the fact that the proposer is assumed to have an all-zero valuation:

W (B) :=
∑

t∈BT

vt +
∑

w∈BS

vw, (6)

where BT and BS denote the transactions and bundles, respectively, in the block B.

3 An Impossibility Result for DSIC and BPIC Mechanisms

3.1 Can DSIC and BPIC Be Achieved Simultaneously?
The DSIC property (Definition 10) encodes the idea of a transaction fee mechanism with
“good UX,” meaning that bidding is straightforward for users. Given the unilateral power of
BPs in typical blockchain protocols, the BPIC property (Definition 9) would seem necessary,
absent any additional assumptions, to have any faith that a TFM will be carried out by BPs
as intended. One can imagine a long wish list of properties that we’d like a TFM to satisfy;
can we at least achieve these two?

The tipless mechanism [45] is an example of a TFM that is DSIC and BPIC in the special
case of passive BPs. This TFM is also “non-trivial,” in the sense that users generally pay
for the privilege of transaction inclusion. With active BPs, meanwhile, the DSIC and BPIC
properties can technically be achieved simultaneously by the following “trivial” TFM: the
payment rule p and burning rule q are identically zero, and the allocation rule x instructs
the BP to choose the feasible block that maximizes its private value (breaking ties in a
bid-independent way). This TFM is BPIC by construction, and it is DSIC because a user
has no control over whether it is included in the chosen block (it’s either in the BP’s favorite
block or it’s not) or its payment (which is always 0).

Thus, the refined version of the key question is:

Does there exist a non-trivial TFM that is DSIC and BPIC with active BPs?

3.2 Only Trivial Mechanisms Can Be DSIC and BPIC
The main result of this section is a negative answer to the preceding question. By the range
of a bidding strategy σ, we mean the set of bid vectors realized by nonnegative valuations:
{σ(v) : v ≥ 0}, where σ(v) denotes the componentwise application of σ.

▶ Theorem 11 (Impossibility of DSIC, BPIC, Non-Triviality). If the TFM (x, p, q) is DSIC
with bidding strategy σ and BPIC with active block producers, then the payment rule p is
identically zero on the range of σ.

The proof of Theorem 11 is quite general and holds even if BPs are restricted to have
nonnegative additive valuations and all known transactions have the same size and can be
included simultaneously into a single feasible block. We sketch the proof here with details in
the full version. Towards a contradiction, let (x, p, q) define a BPIC and DSIC TFM with a
non-zero payment rule. Thus assume there is a transaction t∗ and a set of bids b = (bt∗ , b−t∗)
where pt∗(B, b) > 0 where B is the BP’s BPS maximizing block for some vBP . Now define
an alternative bid vector b′ = (0, b−t∗) that is identical to b except for t∗ dropping their bid
to 0. Since 0 < pt∗(B, b), for the mechanism to be DSIC, we must have xt(vBP , b′, B) = 0
regardless of vBP . However, we show that we can define a BP valuation v̂BP where v̂BP ({t∗})
is sufficiently high such that for the mechanism to be BPIC, xt∗(v̂BP , b′, B) = 1 even with
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b′
t∗ = 0. This in turn leads to a contradiction. The technical part of the proof lies in choosing

v̂BP properly to show there is no choice of payment and burning rule such that there is a
consonant allocation rule where the BP doesn’t include t∗ under b′.

3.2.1 Discussion
The role of an impossibility result like Theorem 11 is to illuminate the most promising paths
forward. From it, we learn that our options are (i) constrained; and (ii) already being actively
explored by the blockchain research community. Specifically, with active BPs, to design a
non-trivial TFM, we must choose from among three options:
1. Give up on “good UX,” at least as it is expressed by the DSIC property.
2. Give up on the BPIC property, presumably compensating with restrictions on block

producer behavior (perhaps enforced using, e.g., trusted hardware [23] or cryptographic
techniques [14]).

3. Expand the TFM design space, for example by incorporating order flow auctions (e.g.,
[36]) or block producer competition (e.g., [18]) to expose information about a BP’s private
valuation to a TFM. We explore this idea further in Sections 4 and 5.

▶ Remark 12 (Variations of Theorem 11). Variations on the proof of Theorem 11 show that
the same conclusion holds for:
(a) BPs that have a non-zero private value for only one block (a very special case of

single-minded valuations). This version of the argument does not require the consistent
tie-breaking assumption in Definition 7(b).

(b) Burning rules that need not be nonnegative (i.e., rules that can print money), provided
that, for every bid vector b, there is a finite lower bound on the minimum-possible burn
minB∈B q(B, b). (This would be the case if, for example, the blockset B is finite.)

(c) Bid spaces and payment rules that need not be nonnegative (i.e., with negative bids
and user rebates allowed, subject to individual rationality), provided there is a finite
minimum bid bmin ∈ (−∞, 0] and that pt(B, b) = bmin whenever t ∈ B with bt = bmin.
In this case, the argument shows that the payment rule p must be identically equal to
bmin on the range of σ.

3.3 The Welfare Achieved by DSIC and BPIC Mechanisms
Theorem 11 shows that TFMs that are DSIC and BPIC must be “trivial,” in the sense
that users are never charged for the privilege of transaction inclusion. The next result
formalizes the intuitive consequence that such TFMs may, if both users and the BP follow
their recommended actions, produce blocks with welfare arbitrarily worse than the maximum
possible. (Recall that the welfare W (B) of a block B is defined in expression (1) in Section 2.2.)
That is, no approximately welfare-maximizing TFM can be both DSIC and BPIC with active
BPs. This result is not entirely trivial because the conclusion of Theorem 11 imposes no
restrictions on the burning rule of a TFM.

▶ Theorem 13 (Impossibility of DSIC, BPIC, and Non-Trivial Welfare Guarantees). Let (x, p, q)
denote a TFM that is BPIC and DSIC with bidding strategy σ. For every approximation
factor ρ > 0, there exists a BP valuation vBP , BP blockset B, block B∗ ∈ B, and transactions
with corresponding user valuations v such that

W (B) ≤ ρ · W (B∗),

where B = x(σ(v), vBP , B).
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In the absence of a burning rule, Theorem 13 follows directly from Theorem 11, since
any mechanism with p = 0 effectively ignores user bids when choosing a block. However,
it’s not immediately obvious that there is no burning rule that can entice the BP to pick a
welfare maximizing block even while ignoring users’ payments. We show that DSIC rules
such mechanisms out since a user being able to affect the burning rule and hence allocation
rule while having their payment fixed to 0 would give them an incentive to misreport their
value.

▶ Remark 14 (Generalizations of Theorem 13). The proof of Theorem 13 shows that the
result holds already with BPs that have additive or single-minded valuations. (As discussed
in Remark 12, Theorem 11 holds in both these cases, and the BP valuation vBP used in
the proof of Theorem 13 is both additive and single-minded). A slight variation of the
proof shows that the result holds more generally for DSIC and BPIC TFMs that use a
not-always-nonnegative burning rule, under the same condition as in Remark 12(b).

4 Transaction Fee Mechanisms with Searchers

4.1 Incorporating Searchers
The impossibility results in Section 3 are consistent with practice, in the sense that modern
attempts to mitigate the negative consequence of MEV through economic mechanisms
generally lie outside the basic design space of TFMs introduced in Sections 1–4. The
dominant such mechanisms distribute the task of block production across multiple parties;
in this section and the next, we adopt the model described in Section 2.5, which captures
some of this complexity through the addition of searchers that can submit bundles (of a
user-submitted transaction together with the searcher’s value-extracting transactions) to a
TFM. Recall from Section 2.5 that, in this model, what had been the private valuation vBP

of a vertically integrated BP is effectively distributed across a set of searchers, with the block
proposer, having outsourced the task of value extraction, then acting passively to maximize
its revenue (including the payments from searchers for included bundles). The winning bid
of a searcher can be interpreted as an “MEV oracle” that provides a TFM with an estimate
of the value that can be extracted from the bundled transaction. In this sense, the TFM
design space with searchers is richer than the basic model with users only, and there is hope
that a TFM can take advantage of such estimates to define payments for user-submitted
transactions in a DSIC-respecting way (e.g., with searchers’ bids leading in some cases to
user refunds). Indeed, we’ll see that this expanded design space allows for positive results
that would be impossible in the basic model.

In this section, we propose an abstraction of how searchers have traditionally been incor-
porated into the block production process, inspired specifically by mev-geth (see Section 2.5),
and study the incentive-compatibility properties of the resulting mechanism. Section 5
explores the TFM design space with searchers more generally, with a focus on welfare
guarantees.

4.2 The s-Tipless Mechanism
We next introduce the Searcher Augmented Tipless Mechanism (s-tipless mechanism). Like
the EIP-1559 and tipless mechanisms, it has a fixed base fee r that is charged per unit size.
Intuitively, for each user-submitted transaction t, the mechanism runs a first-price auction
among the interested searchers; such an auction is often referred to as an “order-flow auction.”
(Thus, the mechanism does not attempt to be DSIC for searchers.) If the winning bid bw
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in this auction is high enough to pay the base fee charges (i.e., bw ≥ r · s′
t, where s′

t is the
size of a bundle that contains t), then w’s bundle is included in the block and w pays its bid
(while the user that submitted t pays nothing). If the winning searcher bid is less than r · s′

t

then, if the user that submitted t bids at least the relevant base fee charges (i.e., bt ≥ r · st),
the transaction t is included in the block and the submitting user pays r · st. In either case,
all base fee revenues (r · st or r · s′

t) are burned. (The block proposer may still collect revenue
from the first-price auction among searchers if the winning bid exceeds r · s′

t.) In effect,
searchers can cover base fee charges for a user if their transaction is sufficiently valuable for
them.

▶ Definition 15 (Searcher-Augmented Tipless Mechanism (s-tipless mechanism)). Fix a base
fee r ≥ 0:

(a) Allocation rule: A transaction should be included if either it clears its base fee, or it has
a bundle that clears the bundle’s base fee. If multiple bundles for a transaction clear the
base fee, the bundle with the highest bid should be included. For each t ∈ T , let St denote
the submitted bundles that contain t, w a generic such bundle, and t∗ = argmaxw∈St

{bw}.
Define

S∗ = {t∗ : t ∈ T, bt∗ ≥ r · s′
t} and T ∗ = {t ∈ T : bt ≥ r · st ∨ St ∩ S∗ ̸= ∅},

and the allocation rule by

x(b, B) = T ∗ ∪ S∗.

(b) Payment rule:
For all transactions t in a block B:

pt(B, b) =
{

0 if St ∩ B ̸= ∅
r · st otherwise.

For all bundles w in a block B:

pw(B, b) = bw.

(c) Burning rule: For a block B with transactions BT and bundles BS,11

q(B, b) =
∑

t∈BT

r · st +
∑

w∈BS

r · (s′
t − st).

In Definition 15 and Theorem 16 below, we assume for simplicity that the base fee r is
large enough that there is sufficient room in the block for all of the transactions that the
mechanism would like to include (i.e., all transactions for which either the user or some
searcher is willing to cover the relevant base fee charges). In practice, a la the EIP-1559
mechanism, the base fee r would generally be adjusted by local search so that this property
typically holds. Definition 15 and Theorem 16 can be extended to the general case (with
contention between sufficiently high-bidding transactions and bundles) by redefining the
allocation rule to maximize the total revenue (i.e.,

∑
ti∈BS

(bti − r · s′
t)), breaking ties in a

consistent fashion.

11We subtract st for every bundle w ∈ Bs as to not double count st both as part of a bundle and as a
standalone transaction
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▶ Theorem 16. The s-tipless mechanism is DSIC for users and BPIC.

We give a sketch of the proof here with the details in the full version. To see that the
mechanism is DSIC for users, note that if a transaction has a bundle included for it, then
it always pays 0 regardless of what it bids, trivially giving the user a dominant bidding
strategy. Otherwise, the user faces a fixed price for inclusion and hence has a dominant
strategy to only bid above that price if their value is above it. To see that the mechanism
is BPIC, note that the only revenue the BP gets is from searcher bids above the basefee.
Standalone transactions have no net effect on the BP’s BPS. Thus any allocation rule that
picks the highest bid searchers above the base fee and picks transactions clearing the base
fee is consonant. Furthermore, since the amount searchers pay is only a function of their
own bids, the BP has no way to increase their BPS via inserting shill bids.

5 Welfare Guarantees

This section continues to investigate transaction fee mechanism design in the presence of
searchers, as in the model in Section 2.5. While the previous section proposed abstractions
for some of the economic mechanisms that are currently used in practice, this section zooms
out and explores the expanded design space more generally.

5.1 What Do We Want from a TFM?
Starting from a blank page, we naturally want to design a mechanism that scores well with
respect to all the criteria we have considered thus far:
(P1) DSIC for users;
(P2) DSIC for (active) searchers;
(P3) BPIC (with a passive block proposer);
(P4) good welfare guarantees.
Without searchers, Theorem 13 shows that the combination of (P1), (P3), and (P4) is
unachiavable. We also noted in passing (footnote 10) that the tipless mechanism, modified
to always ignore searchers, satisfies (P1)–(P3). (Such a mechanism can obviously lead to a
highly welfare-suboptimal outcome when the valuations of searchers are significantly bigger
than those of the users.)

Given the welfare-maximization goal (P4), one obvious starting point is the Vickrey-
Clarke-Groves (VCG) mechanism, which in this context would accept bids from all users
and searchers, output a feasible block that maximizes the social welfare (6) (taking users’
and searchers’ bids at face value), and charge each user or searcher its externality (i.e.,
what the maximum social welfare would have been had that user or searcher been absent).
As always, the VCG mechanism is DSIC (in this case, for both users and searchers) and
maximizes the social welfare at its dominant-strategy equilibrium. It does not, however,
satisfy property (P3). For example, even with only one user-submitted transaction and
a number of corresponding searchers (i.e., a second-price auction), the block proposer is
generally incentivized to masquerade as a searcher and insert a shill bid (just below the
highest searcher bid) to increase its revenue.12

12 A similar problem would arise if the s-tipless mechanism in Section 4 were defined with second-price
rather than first-price searcher auctions.



M. Bahrani, P. Garimidi, and T. Roughgarden 29:19

One easy way to turn the VCG mechanism – or really, any TFM with a passive block
proposer – into a BPIC mechanism is to always burn all the payments made by users and
searchers. The block proposer would then be indifferent over blocks and willing to carry out
an arbitrary allocation rule. An extension of this idea that attempts to trade welfare for a
non-zero amount of BP revenue would be to use bidder-specific reserve prices (like r · st and
r · s′

t in the s-tipless mechanism) that don’t get burned.13

Summarizing, the VCG mechanism with all payments burned satisfies all of (P1)–(P4),
and in particular shows that the addition of searchers allows TFMs to circumvent the
impossibility result in Theorem 13. Should we declare victory?

5.2 Sybil-Proof Mechanisms
In a permissionless blockchain protocol like Bitcoin or Ethereum, it is easy to generate
multiple identities in an undetectable way. For example, a user can easily participate as a
“fake searcher” in a TFM if it so chooses. This challenge of “sybils,” especially in tandem
with the non-downward-closed nature of the set of feasible blocks (with inclusion of a bundle
implying inclusion of the corresponding transaction), renders the VCG mechanism extremely
easy to manipulate (despite being DSIC for users and searchers separately).

For example, consider a sample instance with a block size of k where all the transactions
and bundles are unit sized and there is one searcher per transaction, i.e. ∀t ∈ T , st = s′

t = 1
and St = {t∗}. In this case, the VCG mechanism will include the transactions and bundles
corresponding to the k highest values of bt + bt∗ . Let the (k + 1)th-highest of these values
be r. The included user and searcher for transaction t would then pay max{r − bt∗ , 0} and
max{r − bt, 0} respectively. In the case that both bt ≥ r and bt∗ ≥ r it follows that neither
the user nor searcher has to pay anything at all. Hence there is a clear incentive for a user
to deviate by making their bid arbitrarily high and including an arbitrarily high searcher bid
for their transaction to get included without paying anything. Even a user with only ϵ value
for inclusion has an incentive to do this. It follows that users engaging in such manipulations
can cause the mechanism to produce outcomes with arbitrarily bad welfare. Furthermore, in
permissionless blockchains, such manipulations are easy to carry out. This motivates seeking
out TFMs that are, among other properties, “sybil-proof” in some sense.

Our definition of sybil-proofness (for users and searchers) mirrors our definition of BPIC, in
that it asserts that the party in question cannot increase their utility through the submission
of fake transactions and shill bids.

▶ Definition 17 (Sybil-Proofness). A mechanism is sybil-proof if for every agent t and every
vector of bids b′, there exists some bid bt such that ut(bt) ≥ ūt(b′) where ūt(·) is the agent’s
net utility across the multiple transactions and/or bundles they submitted.

Intuitively, this definition asserts that a user or searcher should never earn more utility from
submitting multiple bids than they could have through a single bid for their transaction or
bundle.

We now augment our previous desiderata with:
(P5) sybil-proof.
Next we provide a TFM that satisfies the full set (P1)–(P5) of desired properties.

13 A mechanism with any non-zero reserve prices cannot offer any worst-case approximate welfare guarantees:
for all the mechanism knows, only one participant has a non-zero valuation, which is just below the
mechanism’s non-zero reserve price for that participant. We leave a Bayesian analysis (e.g., with the
choice of reserve prices informed by historical bidding data) of the revenue-welfare trade-offs of such
mechanisms to future work.
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5.3 The Searcher-Augmented Knapsack Auction
We will consider a mechanism that chooses which transactions and bundles to include based on
their bid-to-size ratios. For ease of exposition, we assume that these ratios are distinct. (This
assumption can be removed through standard lexicographic tie-breaking.) The mechanism
finds a threshold ratio such that all transactions and bundles that have bid-to-size ratios
above this threshold can fit into the block. This ratio is then used as a per-size price charged
to included transactions and bundles. Similarly to the s-tipless mechanism, an included
bundle pays all the costs for its corresponding transaction. For included bundles, in the case
that the second highest bundle bid for a transaction is greater than the threshold payment,
the winning searcher pays the second-highest bid instead. Finally, the burning rule is set to
be the sum of users’ and searchers’ payments so that the block proposer always receives zero
BPS.

▶ Definition 18 (Searcher-Augmented Knapsack Auction (SAKA)).

(a) Allocation rule: Recall that t∗ denotes the bundle with the highest bid for transaction t.
For a given µ, let

Sµ = {t∗ : t ∈ T, bt∗/s′
t ≥ µ} and T µ = {t ∈ T : bt/st ≥ µ ∨ St ∩ Sµ ̸= ∅}.

Then let Bµ = T µ ∪ Sµ be the block consisting of all transactions and bundles that have
a bid-to-size ratio of at least µ.14

Define µ∗ := inf{µ :
∑

t∈Bµ
T

st +
∑

ti∈Bµ
S
(s′

t − st) ≤ k}, where Bµ
T and Bµ

S denote the
transactions and bundles, respectively, in the block Bµ. Then,

x(b, B) = Bµ∗
.

(b) Payment rule: Define bt′ := maxti∈St,ti ̸=t∗{bti} as the second-highest bundle bid for
transaction t. (If there is no such bid, interpret bt′ as 0.) For t ∈ BT :

pt(B, b) =
{

0 if St ∩ B ̸= ∅
µ∗ · st otherwise.

For ti ∈ BS:

pti(B, b) = max{µ∗ · s′
t, bt′}.

(c) Burning rule:

q(B, b) =
∑

t∈BT

pt(B, b) +
∑

w∈BS

pw(B, b).

5.4 Analysis
We consider the incentive-compatibility properties of the SAKA mechanism in Theorem 19
and its welfare guarantee in Theorem 20. We conclude with Theorem 21, which shows that the
welfare guarantee in Theorem 20 is near-optimal among TFMs that satisfy properties (P1)–
(P5).

14 Subject to the usual constraint that each transaction is included (by itself or as part of a bundle) at
most once.
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▶ Theorem 19. The Searcher-Augmented Knapsack Auction (SAKA) mechanism is DSIC
for both users and searchers, BPIC, and sybil-proof.

We give the main ideas of the proof here with details in the full version. SAKA being
BPIC follows immediately from the burning rule. To see that the mechanism is DSIC, we
can focus on the case where a transaction doesn’t have a bundle included for it (otherwise
the transaction always pays 0). The allocation rule is monotone since once a user’s bid clears
µ∗ · st they will always be included. Furthermore, µ∗ · st is the minimal amount t can bid to
be included since otherwise bidding below µ∗ · st and being included would contradict the
definition of µ∗. The case for searcher DSIC follows identically with the addition of needing
to pay at least the second highest searcher bid to still be included. Sybil-proofness follows
from the fact that µ∗ is weakly increasing in the number of bids. So users and searchers have
no way to decrease their payment by bidding on fake transactions.15

We parameterize the mechanism’s welfare guarantee by the maximum fraction γ of a
block’s capacity that is consumed by a single transaction or bundle. (In many blockchain
protocols, γ is typically 2% or less.)

▶ Theorem 20. Assuming truthful bids by users and searchers, the outcome of the SAKA
mechanism has social welfare at least (1 − γ)/2 times the maximum possible welfare.

Note that SAKA implements a greedy knapsack algorithm, except it scores bundles
using a scoring rule of vt∗

s′
t

instead of vt+vt∗
s′

t
as it would optimally. However, we either have

vt∗
s′

t
≥ vt+vt∗

2s′
t

or vt∗
s′

t
< vt+vt∗

2s′
t

=⇒ vt

st
> vt+vt∗

2s′
t

. It follows that the density SAKA assigns
to a bundle is either at least half of what it should be or that the bundle’s corresponding
transaction carries half the bundle’s true density by itself. Since the mechanism includes
transactions and bundles with the highest densities, it follows that a bundle being left out
because its density was misjudged would be replaced with transactions and/or bundles with
at least half its density. Since the greedy algorithm will fill up at least 1−γ of the block limit,
this implies an approximation factor of 1−γ

2 . The details can be found in the full version.
Our final result shows that, modulo the factor of 1 − γ – which, as discussed above, is

typically close to 1 in our context – the welfare approximation guarantee in Theorem 20
is optimal among deterministic mechanisms that are both DSIC (for users and searchers)
and sybil-proof in the sense of Definition 17. The key insight is that it’s difficult to split the
payment between user and searcher when a bundle is included due to the bundle requiring its
corresponding transaction’s inclusion. In particular we show DSIC + sybil-proofness implies
user/searcher pairs can only be included based on the max of their values rather than the
sum of their values (as would be optimal). We leave the details to the full version.

▶ Theorem 21. No deterministic mechanism that is DSIC for users and searchers and
sybil-proof can achieve better than a 1/2-approximation to the optimal social welfare, even
when transaction sizes are a negligible fraction of the block size.
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1 Introduction

Since Nakamoto introduced Bitcoin in 2008, blockchain technology has made a significant
impact on digital transactions by establishing a decentralized system in which transactions are
validated through consensus among peers, rather than by a central authority. This innovation,
while popularizing decentralized currencies, has also brought to light substantial challenges,
particularly the extensive computational and energy demands of its proof-of-work (PoW)
consensus mechanism. Notably, the energy consumption associated with Bitcoin mining
exceeds that of many countries, raising significant environmental concerns. Furthermore,
the necessity for large-scale mining hardware introduces considerable centralization risks to
cryptocurrencies [2], many of which are inherently designed to be decentralized.

In response to these challenges, the blockchain community has been exploring Proof
of Stake (PoS), which has been implemented in many prominent crypto-currencies (e.g.
Ethereum, Algorand, Cardano). In each round, PoS selects block leaders (who get to propose
a block to be included) based on the stake, reducing energy usage and aiming to prevent
Sybil attacks by randomly assigning leadership chances proportionally to coin holdings.
However, the leader selection process in PoS presents additional challenges. For example, the
pseudorandomness resulting from PoW is in some sense “external” to the blockchain (the next
miner is selected proportionally to their computational power, independently, and nothing
in the blockchain itself can influence this). Replicating this property in PoS blockchains
has proved challenging without trusting an external randomness beacon (which is often a
non-starter in blockchain applications, whose entire purpose is to remove the need for such
trust).1 On the other hand, pseudorandom numbers generated using the blockchain itself
can often be predicted by the miners, opening up the possibility of profitable deviations [4].

One promising idea in addressing the leader selection challenge is cryptographic self-
selection, initially proposed by Algorand [7]. Cryptographic self-selection is a protocol to
select a block-proposer for round r + 1 as a function of communication during round r.
We overview Algorand’s canonical proposal shortly, and briefly note here that it is known
to admit profitable deviations for arbitrarily small participants [11].2 We subsequently
discuss cryptographic self-selection in further detail, but at this point merely wish to
note that: (a) nonmanipulable randomness sources are a major open problem within the
blockchain community, due to applications for PoS, (b) these problems are important to both
researchers [4, 7, 12, 11] and practitioners [1] 3, and (c) the particular approach initially
proposed in [7] is a canonical testbed due to its elegance and simplicity (which we overview
shortly).

Separately, recent work of [3, 23] propose a novel concern for profitable manipulations:
detectability. Specifically, while it may be challenging to trace a strategic manipulation to a
particular actor in a permissionless system,4 profitable manipulations would likely be detect-

1 To slightly elaborate on this point: trusting a centralized external randomness beacon (such as NIST) is
certainly a non-starter, because NIST then has control over the block producers. One could instead
have an external distributed process to generate random numbers independent of this blockchain.
But if this blockchain has monetary value, then securely implementing that distributed process is its
own challenge. The story is getting more subtle with Verifiable Delay Functions that might act as a
cryptographic external randomness beacon, although their security assumptions are hardware-based
and not as battle-tested as standard cryptography, so there will always be a desire for solutions based
on standard cryptography.

2 This is in contrast to block-witholding manipulations in PoW longest-chain protocols [21, 16, 9],
although alternate strategic manipulations of some PoW protocols are profitable for arbitrarily small
miners [13, 15, 23].

3 For example, this blog post by the Ethereum foundation on manipulating its RanDAO: link.
4 This is not to say that tracing strategic manipulations is impossible – indeed, law enforcement regularly

https://ethresear.ch/t/selfish-mixing-and-randao-manipulation/16081
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able. This observation serves as a basis to mitigate concerns with profitable manipulations
in practice – perhaps the manipulator will earn moderate additional cryptocurrency via
manipulation, but its detection may cause the value of these tokens to tank when measured
in USD. Their work highlights that detectability of strategic manipulations plays a significant
role in their usability in practice – undetectable deviations avoid the risk of devaluing the
underlying cryptocurrency, while detectable ones can be disincentivized through outside-the-
model means.

Our paper lies at the intersection of these two agendas: we investigate the detectability
of profitable manipulations in cryptographic self-selection. Surprisingly, our main result finds
that for any participant with less than 3−

√
5

2 ≈ 0.38 fraction of the total stake, all profitable
manipulations of Algorand’s canonical cryptographic self-selection protocol are statistically
detectable.

We now provide additional context and details for our result.

Leader Selection in PoS Blockchains. PoS consensus protocols typically take one of two
forms: they may be a longest-chain protocol, or a Byzantine Fault Tolerant (BFT)-based
protocol. Both formats are well-represented in practice, and Ethereum is in some sense a
hybrid of the two. In a longest-chain protocol, strategic manipulations are more straight-
forward – they typically come by inducing forks, and causing the attacker to have their
own blocks represent a greater fraction of blocks in the longest chain [9, 21, 16, 4, 12].
Manipulations of BFT-based protocols are more subtle. BFT-based protocols proceed one
block at a time, reaching a strong consensus on block r and finalizing it forever before getting
to work on block r + 1. As such, these protocols are nonmanipulable at the per-block level
(unless the attacker has sufficient stake to cause significantly more damage by violating
consensus entirely). Instead, these protocols typically have a randomly-selected “leader”
dictate the contents of the block and the per-round BFT protocol aims to reach consensus
on the leader’s block. But, these protocols still need an effective method to select a leader
for each round independently and proportional to their stake.

Fortunately for mechanism designers, leader selection protocols are often modular compon-
ents of the broader blockchain protocol, and can be studied in isolation from the (significantly
more complex) BFT protocols that handle per-round consensus.

Algorand’s Canonical Leader Cryptographic Self-Selection. [7] propose an elegant leader
selection protocol, which we describe for simplicity in the case where each account holds the
same number of coins (we rigorously overview their protocol in the general case in Section 2,
but omit the generalization now in the interest of clarity). First, pick a uniformly random
seed, Q1, for round one. Then in round r, ask each account holder i to first digitally sign Qr

and then hash5 their digital signature to get a credential Credr
i . Whoever broadcasts the

smallest credential is the leader for round r.
Their protocol has several desirable properties. First, assuming that every player honestly

digitally signs and hashes in each round (and that the hash function behaves like a random
oracle), the leader in each round is indeed a uniformly random coin, independent of all
previous rounds. Second, it is not predictable too far into the future: because player i cannot

traces attacks in permissionless systems: link.
5 The formal concept is a Verifiable Random Function, which we define in Section 2.1. Intuitively, the

hash is a uniformly random number drawn specifically for player i in a manner that no other player can
precompute (because they can’t digitally sign on behalf of player i).
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digitally sign on behalf of player j, player i has absolutely no idea what seed might result
next round (if another player is the leader). Finally, the manner in which it can possibly
be manipulated is extremely structured: the only strategies available to a player are to
broadcast or not broadcast their credentials.

Still, their protocol is not perfect – [7] already acknowledge that it might be manipulable,
and [11] establish a strictly profitable strategy for arbitrarily small players. [11]’s strategy is
fairly simple, and we overview it in Section 4.

Detecting Strategic Behavior in Cryptographic Self-Selection. How would one detect that
a participant is strategically manipulating a protocol? In PoW longest-chain protocols, [3]
propose to look at the pattern of forks – strategic behavior often results in long runs of
consecutive forks whereas routine latency instead would result in independently distributed
forks. This particular detection method is not applicable to a BFT-based protocol, as
BFT-based protocols have no forks once a block is finalized.

In the spirit of [3], we aim to detect strategies using the minimal amount of information
possible, and in particular we only use information that is available to anyone following the
blockchain. Specifically, anyone following the blockchain must know who is the leader of
round r and must know their credential Credr

i that proves they are the leader.
If every participant in the network were honest, and there were n coins in the network,

we would expect in a given round that the winning credential is distributed according to the
minimum of n independent draws of the Hash function. So across a large number of rounds,
an observer could check the sequence of winning credentials and see if they empirically match
i.i.d. draws of the minimum of n independent draws of the Hash function.

This is perhaps too strong of an assumption on honest parties, however. In particular, it
assumes either that every single coin is online and participating in the protocol or that the
observer otherwise knows that exactly (say) k coins are online. An observer instead might
know that there exists some number k of online coins participating in the protocol, but not
know k. Then, they would expect to see sequences of credentials that empirically match
i.i.d. draws from the minimum of k independent draws of the Hash function, for some k.

So consider an attacker who controls multiple accounts. They can selectively refrain from
broadcasting in round r (and might benefit from doing so, if another account will win round
r anyway and their chosen credential gives them a better shot of winning round r + 1), but
doing so will skew the distribution of round r’s credential larger and the distribution of
round r + 1’s credential smaller. This is profitable, but when done naively detectable (we
analyze [11]’s particularly simple strategy, which follows from this intuition, in Section 3).
The challenge for the attacker is whether it is possible to profit (by biasing their winning
credential to be lower in some rounds), without being detectable (by biasing the winning
credential in other rounds to be higher). Our main result shows that this is impossible:
for any α < 3−

√
5

2 ≈ 0.38,6 and any participant with an α fraction of the total stake, any
strategy that leads a > α fraction of the rounds produces a distribution over sequences of
winning credentials that is not consistent with any number of online honest coins.7

Finally, one might even consider having a fixed k of online coins to be too stringent of a
null hypothesis – perhaps the number of active coins fluctuates from round to round. We also
establish that our main result degrades smoothly in the deviation an observer is comfortable

6 Note, for example, that an adversary with α > 3−
√

5
2 > 1/3 of the stake could alternatively directly

violate the underlying consensus protocol, which would do significantly more damage than a strategic
manipulation.

7 Like most prior work (e.g. [16, 4, 12, 3]), we consider an attacker who does not have excessively strong
network connectivity – see Section 3 for the formal setup.
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attributing to honest-but-occasionally-offline behavior. If the observer believes the online
coins to fluctuate within 1 ± δ of an unknown baseline, and the true online coins indeed
fluctuate within 1 ± δ of some ground truth baseline, undetectable manipulations lead at
most an additional 2δ fraction of rounds.

Roadmap and Discussion. We study the detectability of strategic manipulations in crypto-
graphic self-selection, Algorand’s canonical leader selection protocol [7]. We establish that
any profitable deviation is detectable, and also quantitatively extend our results to even
further relaxed null hypotheses of what might result from honest-but-offline behavior.

Detectability of profitable manipulations is a desirable property of consensus protocols, as
it provides an outside-the-model avenue to deter deviant behavior. While [3] derive profitable,
undetectable deviations from longest-chain PoW consensus protocols, we instead show that
cryptographic self-selection admits no profitable manipulations. Our work now establishes
that some canonical protocols admit undetectable profitable deviations while others do not,
and further motivates detectability of profitable manipulations as a standard question to be
asked of novel consensus protocols.

In Section 1.1, we overview related work in further detail. In Section 2 and Section 3
we overview our model and our statistical detection methods in significantly more detail.
Section 4 overviews the profitable strategy of [11] through the lens of detectability in order
to familiarize the reader with the techniques. Section 5 formally states and proves our main
result and its robust extension.

1.1 Related Work
Detection of Strategic Attacks in Proof-of-Work Protocols. Several methods of detecting
selfish mining in proof-of-work protocol have been proposed. [8] presents a heuristic to detect
selfish mining based on changes in the height of forks in a blockchain network and their
simulation result implies a connection between the presence of selfish mining attack and
higher rate of forks, with a mean height of higher than 2.

[18] proposes a statistical test for each miner based on the null hypothesis that under
honest mining, the probability of observing two successive blocks mined by the same miner is
given by type II binomial distribution of order 2, and the presence of selfish mining will cause
deviation from such distribution, causing a higher probability of observing successive blocks
mined by the same miner. The authors conduct empirical tests on five cryptocurrencies based
on Proof-of-Work – Bitcoin, Litecoin, Ethereum, Monacoin and Bitcoin Cash and claim to
be the first research work that reveals the presence of selfish mining in real cryptocurrency
systems, although they acknowledge that other reasons can also lead to abnormal successive
block discovery rates. We further note that their detection method relies on knowing which
addresses or wallets are controlled by the same user, while our detection scheme does not
rely on such knowledge.

Other works such as [22] use neural networks that achieve good accuracy of detecting
selfish mining on simulated datasets.

In contrast to these detection methods, [3] proves the existence of a statistically un-
detectable and strictly profitable selfish mining strategy for miners with 38.2% of the total
hash rate. Under this strategy, the attacker hides their block with carefully constructed
probabilities such that the eventual structure of the blockchain under this selfish mining
attack has the same distribution as the structure of the blockchain constructed by only
honest miners with a different latency parameter. Thus statistical tests that only look at the
pattern of the blockchain itself such as fork heights cannot detect their attack.

AFT 2024
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Strategic Manipulation of Consensus Protocols. Following seminal work of [9], there is
now a long body of work studying strategic manipulations in consensus protocols [9, 21, 16,
6, 15, 13, 12, 11, 24, 23, 3]. These works are all thematically related to ours in that we also
study strategic manipulation of consensus protocols. Of these, only [11] bears any technical
similarities, as the others all study longest-chain variants.

In terms of motivating cryptographic self-selection, [4] establish that longest-chain variants
with fully-internal pseudorandomness are all vulnerable to a selfish-mining-style attack based
on predicting future randomness.

Research works on the detection of strategic attacks mostly focus on the longest-chain
Proof-of-Stake protocols such as [20]. To the best of our knowledge, our work is the first
to propose a detection method for manipulating leader selection protocols in BFT-based
blockchains.

Relevant Proof-of-Stake Protocols in Practice. Several large blockchains employ Proof-
of-Stake over Proof-of-Work, and there is not yet convergence on a dominant consensus
paradigm. For example, Cardano [17] uses a longest-chain variant considered in [4], Algorand
uses cryptographic self-selection [14, 7] considered in [11] (although Algorand seems to have
since updated their leader selection to induce a round robin aspect – every k rounds, the
winner’s credential sets the seeds for the subsequent k rounds. See [14].), and Ethereum uses
a hybrid of the two (although manipulations of Ethereum are much closer to manipulations of
cryptographic self-selection than of longest-chain protocols – see here). In terms of relevance
for practice, our results (a) highlight a desirable property of [7]’s original cryptographic
self-selection that is desirable in practice, and (b) serve as a canonical example to highlight
manners in which a protocol might avoid undetectable profitable deviations.

2 Model and Preliminaries

2.1 Proof-of-Stake Consensus Protocols with Finality
Proof-of-stake protocols with finality look more like classical Consensus algorithms from Dis-
tributed Systems than Bitcoin’s Longest-Chain protocol. That is, these protocols repeatedly
run a secure consensus algorithm to agree on a block of authorized transactions, add this
block of transactions to the ledger, and proceed. Unlike the Longest-Chain protocol, these
blocks are added to the ledger and remain in the ledger forever. In order to maintain security
guarantees, the consensus algorithm for each block is often complex.

To mitigate this complexity (both computational, communication, and conceptual), many
protocols select a leader ℓt who plays a special role in the consensus protocol. Intuitively, all
participants try to copy the leader’s proposed block. Similarly to a Longest-Chain protocol,
the leader ℓt dictates the contents of the block. That is, the contents of Block t are fully
dictated by the leader ℓt, just like in a Longest-Chain protocol (and the only difference is
how consensus is reached so that the rest of the network agrees on what block was indeed
dictated). As a result, we model the payoff of players to be the fraction of rounds in which
they are the block leader, since creating a block is the only way they can gain profit (e.g.,
through block rewards and MEV).

In order to mitigate grinding attacks, the leader-selection protocol typically needs to
ensure that when participants are behaving honestly, the probability that each participant (or
pool of participants) gets to be the leader in each round is proportional to each participant’s
stake (hence the name “proof-of-stake”). Moreover, there should be limited room for a
participant to gain extra profit by deviating from the protocol.

https://ethresear.ch/t/selfish-mixing-and-randao-manipulation/16081
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Cryptographic self-selection (used by Algorand [7, 14]) is an elegant solution for the
leader-selection protocol, which does not rely on the existence of frequent and high quality
randomness beacon to generate a random seed for each round. Instead, it uses information
about the previous rounds to generate a seed for the current round. We now briefly describe
the protocol and the parts that are relevant for constructing a statistical detection method
of strategic deviation from the protocol. The reader could refer to [11, 7] for a more detailed
description of the protocol and encryption schemes.

There are two key components to the cryptographic self-selection protocol: Verifiable
Random Functions (VRFs) and balanced scoring functions.

▶ Definition 1 (Verifiable Random Function (VRF) [19]). A Verifiable Random Function is
a public-key cryptographic function that generates public key and secret key pairs, denoted
(sk, pk), and efficiently evaluates an input x using a function fsk that is dependent on the
secret key. The function produces an output y and a proof of correctness, which can be verified
efficiently by anyone who has the public key. The following security properties are guaranteed:

Pseudorandomness: Given the public key pk and a sequence of input-output pairs
(x1, y1), . . . , (xn, yn) with their corresponding proofs, it is computationally infeasible
to predict y = fsk(x) for any x ̸= x1, · · · , xn without the secret key sk. In fact, the
distribution of y looks indistinguishable from the uniform distribution on [0, 1].
Unique Provability: For any input x, there is exactly one output y that can be verified as
the correct computation of fsk(x).

A balanced scoring function takes in the pseudorandom output generated from the VRF
associated with an account (i.e. parametrized by the account’s secret key) and the amount of
stake in that account, and yields a score. The account with the minimum score is selected as
the leader. A balanced scoring function always selects a leader proportional to the account’s
stake assuming the outputs of the VRFs are truly random. In particular, this implies that
splitting one’s stake between multiple accounts and/or merging stake with another entity
does not impact the probability of being selected as the minimum. This forms the basis
for selecting a leader-selection protocol that selects leaders independently in each round
proportional to their stake.

▶ Definition 2 (Balanced Scoring Function [11]). A scoring function S(·, ·) takes as input a
credential Xi and a quantity of stake αi and outputs a score S(Xi, αi). A scoring function is
balanced if for all n and all player stakes α1, · · · , αn,

Pr
X1,··· ,Xn←U([0,1])

[
argmin

i∈[n]
S(Xi, αi) = j

]
= αj∑n

i=1 αi
.

▶ Proposition 3 ([10]). Let S(·, ·) be any balanced scoring function. Then, for all n ∈ N
and (αi)1≤i≤n, the random variables S(X,

∑n
i=1 αi) and min1≤i≤n{S(Xi, αi)} are identically

distributed for X, X1, . . . Xn ∼ U([0, 1]).

▶ Definition 4 (Cryptographic Self-Selection Protocol (CSSP), [11]). The Cryptographic
Self-Selection Protocol (CSSP) operates as follows:
1. Each account i, with stake αi, sets up a VRF fski

(·) with a pair of secret key and public
key (ski, pki). Participants agree on some Balanced Scoring Function S(·, ·).

2. Qr denotes the seed used during round r. Q1 is a uniformly random draw from [0, 1], and
Qr will be determined during round r − 1 (see below).
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3. In round r, each account i computes their credential Credr
i = fski(Qr) using their VRF

fski
. Each account-holder should broadcast their credential (this is not enforced – an

account-holder may choose not to broadcast, if desired).
4. The leader ℓr is the account-holder i who broadcasts the credential with the lowest score

S(Credr
i , αi).

5. The seed for the next round, Qr+1, is set as the credential of the leader of round r, namely
Credr

ℓr
.

The actions of a player (who may control multiple accounts) in round r of a CSSP are
simply to decide which (if any) of their credentials to broadcast. The payoff to player i is the
fraction of rounds in which they are the leader. Formally, if Lp(r) is the indicator variable
for whether an account controlled by player p is the leader in round r, then the payoff to

player p is lim infr→∞

∑
r′≤r

Lp(r′)
r .

CSSP is a formalization of the leader-selection protocol initiated by Algorand [7]. Note
that leader-selection is but one aspect of a Proof-of-Stake protocol (the core of the protocol
is reaching consensus on the block proposed by the leader). Fortunately, the leader-selection
protocols are modular, and can be studied in isolation from the (significantly more complex)
consensus algorithms that use them.

2.2 Strategic Play in CSSP
Studies of strategic manipulation in consensus protocols first and foremost aim to understand
whether one should expect strategic players to choose to be honest. As such, the overwhelming
majority of prior work considers a single strategic player against a profile of honest players.
[11] establish that this single strategic player is not incentivized to be honest, and we
ask whether a strategy that realizes these gains is always detectable. In concurrent and
independent work, [10] establish tight bounds on the profitability of manipulations. They
do not consider detectability, and therefore the work is orthogonal to ours.

In a CSSP, honest behavior corresponds to broadcasting all credentials in every round.
A strategic player may selectively choose which credentials to broadcast in each round. It
should initially seem counterintuitive that strategic behavior is profitable – hiding a credential
in round r certainly cannot help a player win round r. However, hiding a credential in round
r might help a player win round r′ > r by influencing the seed Qr′ .

Strategy Space in CSSP ([11]). Consider a CSSP parameterized by α, the fraction of stake
controlled by the strategic player, and β ∈ [0, 1], the network connectivity strength of the
strategic player. The strategic player is called β-strong if it learns β fraction of the credentials
broadcast by the honest players before they must broadcast themselves. Specifically, β = 1
represents a player that learns all credentials of the honest players before they broadcast
(because they are extremely well-connected in the network) and β = 0 represents a player
that learns none of the credentials of the honest players.

[11] make refinement of the strategy space of the CSSP game by showing that any strategy
of the strategic player is equivalent to a strategy that only broadcasts at most one credential
per round, splits their stake into as many accounts as possible, and considers only two
honest players B and C, the former with β(1 − α) fraction of the stake, and the latter with
(1 − β)(1 − α) fraction of the stake. Their proof shows that for any strategy s in CSSP, you
can find another strategy s′ in the refined strategy space with the same payoff. Since our
focus is on both the profitability and detectability of a strategy, we need to show that such
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refinement also preserves the detectability of a strategy. Our detection methods (will be
introduced in Section 5) only assume an access to the broadcast credential with the minimum
score (i.e. the leader’s credential) in each round. Thus two strategies that induce the same
minimum broadcast credential in each round are either both detectable or both undetectable.
Since for any undetectable strategy s in CSSP, there is also an undetectable strategy s′

in the refined strategy space, by having s′ broadcast the same credential in each round as
the minimum credential that s broadcasts (and broadcasts none if s broadcasts none), it
is without loss of generality to consider only refined strategies from now on. The refined
strategy space is described below:

▶ Definition 5 (Refined CSSP, [11]). The strategic player first splits their stake in as many
account as possible. This set of accounts, denoted as A, is then fixed for all rounds. In each
round r of CSSP, the strategic player:
1. Is aware of the seed Qr and the honesty of player B and C.
2. Has access to the credential Credr

B of honest player B, but not to the credential Credr
C

of honest player C. The player only knows the fact that Credr
C is distributed uniformly

on [0, 1].
3. Can compute credentials Credr

i and scores S(Credr
i , αi) for accounts i ∈ A, and can

compute the score S(Credr
B , β(1 − α)).

4. For each ℓ ∈ A ∪ {B}, can imagine that perhaps Qr+1 = Credr
ℓ , and then pre-computes

hypothetical credentials Credr+1
i for each i ∈ A in case we were to have ℓr = ℓ.

5. Can extend this pre-computation to any round k and sequence of accounts i0, . . . , ik (with
i0 ∈ A ∪ {B} and iℓ ∈ A for 0 < ℓ ≤ k), and compute Credr+k

ik
based on the hypothetical

possibility that ℓr+ℓ = iℓ for each l ∈ {0, . . . , k − 1}.
6. Selects an account i∗ ∈ A and broadcasts its credential Credr

i∗ , or chooses not to broadcast
any credential.

The Refined CSSP is the precise mathematical game we study, for a particular balanced
scoring function S. In addition, Proposition 6 implies that the game induced by CSSP is
the same for any balanced scoring function used in the protocol. They further imply that
if we have a statistical detection method for strategic behavior under one CSSP protocol
using a particular balanced scoring function S, we can apply the same detection method to a
variant of the protocol using another balanced scoring function S′. Therefore, undetectable
profitable strategies exist for any leader-selection protocol based on Algorand’s cryptographic
self-selection if and only if they exist in the Refined CSSP for any particular S of our choosing.

▶ Proposition 6 ([11, 10]). The game induced by CSSP with a balanced scoring function
is independent of the particular balanced scoring function used. Formally, for two distinct
balanced scoring functions S, S′, the games induced by CSSP are identical. Specifically, for
all players i, there is a bijective mapping f from strategies of player i in the CSSP with S

to strategies of player i in the CSSP with S′, where all players broadcast the same set of
credentials in each round. For all i, the payoff to player i in the CSSP with S under strategy
profile s is exactly the same as the payoff to i in the CSSP with S′ under strategy profile
⟨fi(si)⟩i.

To simplify our analysis, we choose S(X, α) := − ln(X)/α, which induces an exponential
distribution with rate α, i.e. when X is drawn from U([0, 1]), S(X, α) is drawn from
Exp(α). The exponential distribution has the nice property that for a set of random variables
X1, . . . , Xn drawn from Exp(α1), . . . , Exp(αn) respectively, the minimum score mini∈[n] Xn

is distributed according to Exp(
∑n

i=1 αi). This implies that if the total sum of active stakes
is 1 and all players are honest, then the minimum score broadcast is distributed according

AFT 2024



30:10 Detecting Profitable Manipulations in Cryptographic Self-Selection

to Exp(1). Additionally, Lemma 29 and Lemma 30 imply that the scoring function is a
balanced scoring function, and therefore by Proposition 6 there is a bijective mapping from
strategies of player i in the CSSP game with balanced scoring function S′ and strategies of
player i in the CSSP game with balanced scoring function S = − ln(X)/α, which achieves
the same outcome (i.e., the same leader is selected each round) and the same profit for
player i. Thus if we can detect any profitable strategy under scoring function S, we can
use the same method to detect a profitable strategy under scoring function S′ since the
same strategy is also profitable under S. It is therefore without loss of generality to assume
S(X, α) = − ln(X)/α for all the analysis that follows. Appendix A contains all the relevant
properties of an exponential distribution that we will employ to detect strategic deviation.

3 Statistical Detection Methods for Strategic Deviations

Our paper concerns detection of strategic manipulations in CSSP, so we must first clarify
what information is available to the onlooker who wishes to distinguish between the case
when all participants are honest (but perhaps suffer latency issues), or a strategic player is
manipulating the protocol.

We consider the minimal amount of information necessary for an onlooker just to follow
the state of the blockchain: the credentials of the leader from each round.8 We will show
that this information alone suffices to detect any profitable manipulation in case the strategic
player has β = 0.

Before continuing, we briefly note that the β = 0 case corresponds to a “poorly connected”
attacker who cannot learn the broadcasts of other players before deciding their own. This
matches the γ = 0 case when analyzing Proof-of-Work protocols, which is considered
standard/canonical. We also note that, if desired, a leader selection protocol could take steps
to induce β = 0 (for example, participants could cryptographically commit to their credential
with a large deposit, and then only receive their deposit back upon revealing). Our main
result does leverage β = 0 (and we will highlight where), and it is an interesting technical
question to understand the case of β = 1.9 But, we hope this brief note reminds the reader
that β = 0 is considered the canonical setting. We now proceed with a formal description of
the information observed.

▶ Definition 7 (Observed distribution). Let an observer pick a uniformly random round
r from the set of all rounds {1, . . . , R − 1}. Let Z, Z+1 be the random variables denoting
the score of the winning credential in consecutive rounds r and r + 1 respectively. i.e.,
Z = S(Credr

ℓr
, αℓr

) and Z+1 = S(Credr+1
ℓr+1

, αℓr+1). Then DZ and DZ+1 represent the
distributions of the winning credentials in round r and r + 1 when R → ∞, and we define
FZ , FZ+1 to be the cumulative density function (c.d.f.) of DZ , DZ+1 respectively.

Let us now briefly discuss a null hypothesis for the observed distribution. One null
hypothesis might be that in every round r, every player is online and suffers no latency issues
(that is, every account-holder i learns of the seed Qr, computes Credr

i and broadcasts it
within the allotted time-window), and behaves honestly. If this were the case, we would expect
the distribution of winning scores to be i.i.d. from the distribution S(U([0, 1]), 1) = Exp(1)
(by Lemma 27 and Lemma 28), and in particular we would expect (Z, Z+1) to be distributed
according to Exp(1) × Exp(1).

8 Note that the detection method of [3] is tailored to Longest-Chain protocols and in particular looks at
the distribution of orphans. As there are no orphans in consensus protocols with finality, we need a
fundamentally different detection method.

9 We further explore [11]’s 1-Lookahead strategy in Section 4, which leverages β = 1 and is detectable.
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This is perhaps too strong a null hypothesis, though – some participants may go offline
for extended periods of time, and there is no reason the rest of the network should a priori
be aware of this. Additionally, some participants may be online but suffer latency issues that
prevent them from broadcasting their credential in time. We therefore consider a weaker
null hypothesis which instead posits that there exists some stake γ which is online and
honest each round, except the precise value of γ is unknown. Under this null hypothesis, we
would expect there to exist some γ for which the distribution of winning scores is i.i.d from
S(U([0, 1]), γ) = Exp(γ), and therefore we would expect there to exist some γ for which
(Z, Z+1) is distributed according to Exp(γ)×Exp(γ). For simplicity of notation, we w.l.o.g. let
1 denote the “true” online stake, which might be less than the total stake. Therefore, we
consider the null hypothesis to also be satisfied when γ > 1.10

Our main result establishes that no profitable strategy for a β = 0 strategic player induces
an observed distribution that passes the null hypothesis. We also consider an even more
robust null hypothesis in Section 5 where there exists some unknown γ for which the fraction
of active stake in each round lies in [(1 − δ) · γ, (1 + δ) · γ], but stick to the simpler null
hypothesis first for cleanliness of our main result.

We now elaborate below on two types of statistical tests. Note that in each round, we
only have access to the realization, rather than the underlying distribution of the minimum
score, so we only have an empirical estimate of (FZ , FZ+1). Still, the number of rounds of
history for a Proof-of-Stake-with-Finality blockchain protocol is extremely large. For example,
Ethereum produces new blocks every twelve seconds, or 7200 blocks/day. We also remind
the reader that all prior analysis on profitability, and the unique prior work on detectability,
consider profitability and detectability in steady-state. This is sensible given the intended
lifespan of a blockchain and the rate at which blocks are produced.

Detection Method 1: Distribution of Minimum Score. We first focus simply on the
distribution of the winning credential across rounds, without looking at correlation of
credentials between rounds. Proposition 8 explicitly confirms that under the null hypothesis,
DZ should be Exp(γ) for some γ.

▶ Proposition 8. When the total online stake is constant across rounds and all players
honestly broadcast their credentials, there exists a number γ such that DZ is distributed
identically to Exp(γ).

Proof. Let λ be the actual amount of total online stakes. By Proposition 3, mini{S(Xi, αi)}
is distributed identically to S(X,

∑
i αi) when X, Xi are i.i.d. from U([0, 1]). Since when

all players are honest, Credr
i is distributed identically to U([0, 1]). Therefore, at each

round r, the score of the leader S(Credr
ℓr

, αℓr
) is distributed identically to S(X, λ), where

X ∼ U([0, 1]). By our choice of the scoring function, S(Credr
ℓr

, αℓr
) is distributed identically

to Exp(λ). Thus, the c.d.f. of DZ is

FZ(z) = lim
R→∞

R∑
r=1

1
R

FS(Credr
ℓr

,αℓr )(z) = lim
R→∞

R∑
r=1

1
R

(1 − e−λz) = 1 − e−λz

which implies that DZ is distributed identically to Exp(λ). Taking γ = λ concludes our
proof. ◀

10 That is, if the strategic player causes it to appear as though a γ > 1 fraction of the total stake is online
and honest, then clearly something is wrong and an onlooker should detect this. But if the true online
stake is only 1/3 of the total stake and the strategic player causes it to appear as though 2 · 1/3 of the
total stake is online and honest, this is plausible to an onlooker who doesn’t know the true fraction of
online stake.
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A more robust null hypothesis allows for the possibility that the fraction of online players
varies across rounds, but not by much. In this setting, the total amount of online stake lies
in some range [(1 − δ)λ, (1 + δ)λ] for some small δ > 0 and λ > 0. The exact distribution
DZ is impossible to compute without knowing the actual online stake λ1, · · · , λR in each
round. Nevertheless, the observer expects that the c.d.f. of DZ is within a certain range
parameterized by γ that represents her estimation of λ.

▶ Proposition 9. When the fraction of online stake lies within a multiplicative 1 ± δ factor
across all rounds, and all players honestly broadcast their credentials, there exists a number
γ such that Exp((1 + δ)γ) ⪯ DZ ⪯ Exp((1 − δ)γ).11

Proof. Let λ be such that the online stake in each round is within [(1 − δ) · λ, (1 + δ) · λ].
Such λ is guaranteed to exist by hypothesis. At each round r, since the fraction of online
stake in round r is λr, we know that S(Credr

ℓr
, αℓr

) is distributed according to to Exp(λr).
Thus, the c.d.f. of DZ is

FZ(z) = lim
R→∞

R∑
r=1

1
R

FS(Credr
ℓr

,αℓr )(z) = lim
R→∞

R∑
r=1

1
R

(1 − e−λrz)

Because λr ∈ [(1 − δ)λ, (1 + δ)λ], for all r,

Exp((1 − δ)λ) ⪯ Exp(λr) ⪯ Exp((1 + δ)λ)

Plugging this in FZ(z) and substituting λ with γ, we are able to conclude that

Exp((1 + δ)γ) ⪯ DZ ⪯ Exp((1 − δ)γ) ◀

We conclude this detection method by reminding the reader that because the observer
does not know the actual amount of online stake, γ, a strategic player could make it appear
as though the total online stake is some λ ̸= γ (and we specifically remind the reader that
γ > λ would and should still satisfy our null hypothesis). Our main contribution in this paper
is to show that it is impossible to be profitable and preserve the distribution of broadcast
scores to be consistent with any fraction of online stake.

Detection Method 2: Correlation of Consecutive Minimum Scores. Our second detection
method leverages the fact that the credentials of the leader are independent from round to
round when all players follow the protocol. In particular, we examine the correlation between
the minimum scores in consecutive rounds. Under honest mining behavior, all credentials are
drawn i.i.d. from U([0, 1]), thus the probability of seeing the score of the leader’s credential
to be z+1 in round r + 1 should not be changed given the score of the leader’s credential zr

in round r. Formally,

FZ,Z+1(z, z+1) = FZ(z) × FZ+1(z+1)

3.1 Necessary Conditions for Undetectable Strategic Attacks
In this section, we analyze the effect of the adversary’s strategy on DZ and define the concept
of a statistically undetectable strategy. The honest players would always broadcast their
credentials with the minimum scores (equivalently, broadcast all credentials they have), while
the adversary commits to a strategy π that does not necessarily broadcast the credential
with minimum score.

11 Here, D1 ⪯ D2 denotes that D2 first-order stochastically dominates D1.
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▶ Definition 10. Let the scoring function S(Cred, α) = − ln(Cred)/α, where α is the
stake of the adversary. Pick a round r uniformly at random from the set of all rounds
[R], where the total active stake in round r is λr. Let Xr(λr), Xr+1(λr+1) be the random
variables that denote the minimum score of the honest players’ broadcast credentials in
round r and r + 1 respectively; let Yr(π), Yr+1(π) be the random variables that denote the
score of the adversary’s broadcast credential in round r and r + 1 respectively when they
commit to strategy π. Thus, the score of the leader in round r and r + 1, could be written as
Zr(π, λr) = min{Xr(λr), Yr(π)} and Zr+1(π, λr+1) = min{Xr+1(λr+1), Yr+1(π)}.

We also define the distribution of these random variables with respect to a uniformly
random round r.

▶ Definition 11. Let X be a random variable over a uniformly random round. DX is defined
to be the distribution of X , where the corresponding cumulative density function

FX (x) = lim
R→∞

Pr
r←U{1,...,R}

[X ≤ x].

An observer may choose to examine the distribution of all possible random variables,
and even joint distribution of random variables over a random round. For instance, she
might examine the score in the previous round, or the joint distribution of the scores in the
next 10 rounds. Formally, let Z denote the set of scores of broadcast credentials that the
observer chooses to examine. A strategy π is robust to any statistical detection if for any set
Z, the joint distributions of seeing all scores in Z over a random round are identical when
the adversary uses strategy π with online stake 1 and when the adversary honestly follows
the protocol with online stake γ. That is, no matter which set of scores the observer chooses
to examine, she could not distinguish the distribution when the adversary honestly follows
the protocol and there is a γ fraction of online stake, or when they use strategy π and there
is a 1 fraction of online stake (recall that we w.l.o.g. let 1 denote the fraction of online stake
for simplicity of notation).

The two detection methods proposed in the previous section give us two necessary
conditions for a strategic attack to be undetectable, since we expect the distribution of the
minimum scores and the correlation between consecutive minimum scores to follow certain
patterns when all players are honest. The first detection method that uses the distribution
of minimum scores corresponds to the case when the observer chooses to examine the score
at each specific round, i.e., Z = {Zr}.

▶ Definition 12. Let λr be the real participating stake in round r. The observer knows that
the sequence of participating stakes falls into a certain class CR representing a sequence of
active stakes (e.g. fluctuation must be within 1 ± δ fraction). The strategy π is statistically
undetectable to the distribution test if for some {γr}r∈[R] ∈ CR and all zr,

lim
R→∞

Pr
r←U({1,...,R})

[Zr(π, λr) ≤ zr] = lim
R→∞

Pr
r←U({1,...,R})

[Zr(πhonest, γr) ≤ zr].

The second test on correlation between consecutive minimum scores corresponds to
the case when the observer chooses to examine the scores in two consecutive rounds, i.e.,
Z = {Zr, Zr+1}. In order to distinguish with the first test, we leave the constraint on DZ to
Definition 12 and only focus on the correlation between DZ and DZ+1 in Definition 13.
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▶ Definition 13. A strategy π is statistically undetectable to the correlation test if Z(π) and
Z+1(π) are independent. That is, for any zr and zr+1,

lim
R→∞

Pr
r←U({1,...,R})

[Zr(π) ≤ zr ∧ Zr+1(π) ≤ zr+1]

= lim
R→∞

Pr
r←U({1,...,R})

[Zr(π) ≤ zr] · Pr
r←U [1,R]

[Zr+1(π) ≤ zr+1]

4 A Canonical Example

In CSSP, the winning credential of the current round is used as the seed of the next round.
This leaves the possibility that an adversary would be strategic in their winning credentials
and effectively bias the distribution of seeds. For instance, [11] demonstrate that such
protocols are indeed vulnerable to such deviations. In order to acquaint the reader with
both the CSSP and statistical detectability, we will show that [11]’s canonical 1-Lookahead
manipulation is statistically detectable using either our distribution test or our correlation
test.

Here is some brief intuition for 1-Lookahead: because the winning credential is the
seed of the next round, the adversary is able to compute credentials for all wallets assuming
that a credential in this round is the winning credential. Thus, if the adversary has multiple
credentials with low scores to choose from, they could choose to broadcast only the one which
maximizes the expected number of rounds won among the current and one-after round. We
repeat the formal definition of 1-Lookahead below:

▶ Definition 14 (1-Lookahead strategy). Let the total stake be fixed and normalized to 1
with the adversary owning an α fraction of the total stake. The goal of the 1-Lookahead
strategy is to maximize the expected number of rounds won among the present and subsequent
rounds, and proceeds as follows:
1. Let r be the current round and A be the set of all accounts of the adversary, B be the lone

honest account that is broadcast when the adversary decides with total stake β(1 − α).
2. Let W (Qr) ⊆ A denote the accounts i satisfying S(Credr

i , αi) < S(Credr
B , β(1 − α)).

Observe that W (Qr) might be empty, and that when β = 0, W (Qr) = A.
3. If W (Qr) is empty, the adversary cannot win this round, so they move on to the next

round and go back to step 1.
4. If W (Qr) is non-empty, for all potential winning accounts i ∈ W (Qr) and all potential

next-round accounts j ∈ A, compute credential Credr+1
i,j = fskj

(Credr
i ), which is the

credential of account j in round r + 1 in the event that account i happens to win round r.
5. Let j(i) = arg minj∈A S(Credr+1

i,j , αj) – this is the account whose credential is most likely
to win in round r + 1 if account i wins round r.

6. For each i ∈ W , define P r+1
i to be the probability that the adversary wins with account

i in round r and wins with account j(i) in round r + 1.12 That is (below, think of
Xr := S(Credr

C , (1 − β)(1 − α))):

P r+1
i = Pr

Xr←Exp((1−β)(1−α))
[S(Credr

i , αi) < Xr] · Pr
Xr+1←Exp(1−α)

[S(Credr+1
i,j(i), αj(i)) < Xr+1].

12 For example, if β = 1, the probability that the adversary wins with account i in round r is 1. No matter
β, the probability that the adversary wins with account j(i) in round r + 1 is just the probability that
this credential beats a draw from Exp(1 − α).
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7. Let i∗ = arg maxi∈W

(
PrXr←Exp((1−β)(1−α))[S(Credr

i , αi) < Xr] + P r+1
i

)
. i∗ is the ac-

count that maximizes the expected number of consecutive rounds (among r, r + 1) that the
adversary wins.

8. Broadcast Credr
i∗ at round r. If Credr

i∗ is the credential with minimum score in round
r, broadcast Credr+1

j(i∗) at round r + 1. If Credr
i∗ does not win round r continue.

9. Return to Step 1.

While the honest strategy always broadcasts the credential with minimum score and
maximizes the probability of winning the current round r, 1-Lookahead instead optimizes
the expected number of consecutive rounds won (but only considering the next round – this
is why the strategy is termed 1-Lookahead). For example, when β = 1, and the adversary
has multiple accounts that can win this round, they may as well broadcast the credential
whose seed gives them the best chance of winning the subsequent round. For β < 1, the
math is trickier, but the strategy always strictly outperforms honesty.

Because the purpose of this section is to gain comfort with the concept of detectability,
we focus on the simplest version of 1-Lookahead, which is when β = 1 (which corresponds
to the most powerful adversary). The arguments in the subsequent subsections proceed
roughly as follows:

Section 4.1 shows how we might start reasoning about the distribution test (Definition 12).
In particular, Section 4.1 identifies that we can view the distribution of minimum score
DZr(π1−Lookahead) as a mixture of distributions associated with transitions in a two-state
Markov Chain, and reasons through what each of these three distributions are. Intuitively,
these three distributions are “what is the minimum broadcast score, conditioned on r

being a reset round (i.e. the adversary did not bias Qr in r − 1) and the adversary having
at least two winning accounts?”, “what is the minimum broadcast score, conditioned on
r being a round where the adversary biased Qr in r − 1?”, and “what is the minimum
broadcast score, conditioned on r being a reset round and the adversary has at most one
winning account?”.
Section 4.2 then establishes that no mixture of these distributions can result in an
exponential distribution, and therefore 1 − Lookahead fails the distribution test and
is detectable. Intuitively, this follows simply because exponential distributions have a
precise rate of tail decay, and the above distributions have no reason to match this precise
tail, nor to cancel the differences out.
Section 4.3 considers the correlation test, and establishes that 1-Lookahead also fails
the correlation test. Intuitively, this is because during reset rounds we expect to see a
larger than normal winning score (because the adversary may hide coins during a reset
round), but during biased rounds we expect to see a lower than normal winning score
(because the adversary has biased the seed to make their own score lower than normal).
So consecutive rounds are in fact negatively correlated.

Note that failing either of the two tests suffice for a strategy to be statistically detectable –
we include both to acquaint the reader with various detection methods (a priori, a strategy
might pass one test but fail another).

4.1 Broadcast Distribution on a Markov Chain
We observe that at each round r, the distribution of credentials only depend on the distribution
of the seed Qr. This allows us to characterize the CSSP as a stationary Markov chain. For
instance, when all players follow the protocol of CSSP and broadcast their credentials that
result in the lowest score, the distribution of Qr is uniformly random from [0, 1] for all r.
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Thus, the Markov chain describing the honest CSSP has only one state that transits to itself
with probability 1. In particular, the game effectively resets when the distribution of Qr is
unbiased. We call such a round to be a “reset round”.

▶ Definition 15 (Reset Round [11]). A round r is a reset round if for all possible strategies π,
the distribution of {Pr[Yr′(π) ≤ Xr′ ]}r′≥r conditioned on Qr−1 and all historical information
prior to round r − 1, is identical to the distribution of {Pr[Yr′(π) ≤ Xr′ ]}r′≥r after replacing
Qr with a uniformly random draw from [0, 1].

The 1-Lookahead strategy, on the other hand, effectively biases the distribution of the
seed in favor of the adversary by comparing the best credential for next round. Therefore,
the Markov chain of CSSP when the adversary plays 1-Lookahead is different from the
Markov chain of CSSP when every player follows the protocol.

▶ Lemma 16. A CSSP process, with the adversary owning α fraction of the stakes with
β = 1 and using 1-Lookahead, is equivalent to the stationary Markov chain with two states
Π = {C, H}, where the transition probability is

Pr[Πr+1 = C|Πr = C] =1 − α2

Pr[Πr+1 = H|Πr = C] =α2

Pr[Πr+1 = C|Πr = H] =1
Pr[Πr+1 = H|Πr = H] =0

Standard calculation shows that the stationary distribution of the above Markov chain
would be sC = 1

1+α2 and sH = α2

1+α2 . The following Lemma shows the overall distribution of
the leader’s credential’s score, which is computed by summing the distribution conditioned
on each type of transition respectively.

▶ Lemma 17. The overall distribution of DZr
for 1-Lookahead strategy is

DZr
= 1

1 + α2

 ∞∑
ℓ=1

Expℓ(1)

∑
ω≥ℓ

αω(1 − α)
ω

 + (1 − α)Exp(1)

 +

1
1 + α2

∞∑
ω=2

αω(1 − α)Exp(1 + (ω − 1)α),

(1)

where Expℓ(1) := Expℓ−1(1) + Exp(1) with Exp0(1) := 0.

Equation (1) shows that DZr
could be viewed as mixture of exponential and Erlang

distributions (sum of identical exponential distributions) with different rates. We briefly
sketch the argument in the proof of Lemma 17, which is quite technical. Since the score of
credential in each account i with stake αi is distributed identical to an exponential Exp(αi)
by the properties of exponential distributions (Lemma 28 and Lemma 29), by Lemma 30, the
ℓth minimum score of credentials that an adversary owns is distributed identical to a Erlang
distribution that is sum of ℓ identical exponential distributions, denoted as Expℓ. Since the
adversary’s action in each round is confined to choosing which credential to broadcast, the
adversary, and hence the overall score distribution must be a mixture of Exp and Expℓs with
different rates.

This key property about DZr
leads to our main results in this section. In section 4.2,

we show that that 1-Lookahead is statistically detectable under distribution test because
the mixture of distributions is not an exponential distribution; In section 4.3, we show
that 1-Lookahead is detectable under correlation test because of stochastical dominance
relationships between exponential distributions with different rates.
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4.2 Broadcast Distribution of 1-Lookahead Cannot be an Exponential
Distribution

It is known that the sum of ℓ independent exponential variables with mean 1 each is an
Erlang distribution of parameterized by ℓ, 1. That means, the probability density function
(p.d.f.) of Expℓ(z; 1) is zℓ−1e−z

(ℓ−1)! . Plugging in this and the p.d.f. of exponential distributions,
we obtain the p.d.f. of DZr

to be

fZr
= 1

1 + α2

 ∞∑
ℓ=1

zℓ−1e−z

(ℓ − 1)!

∑
ω≥l

αω(1 − α)
ω

 + (1 − α)e−x

 +

1
1 + α2

∞∑
ω=2

αω(1 − α)(1 + (ω − 1)α)e−(1+(ω−1)α)

(2)

If 1-Lookahead is a statistically undetectable strategy, there exists a parameter γ > 0
such that fZ equals to the p.d.f. of Exp(γ). However, the following Lemma shows that this
is impossible.

▶ Lemma 18. There is no γ > 0 such that DZ(π1−Lookahead) = Exp(γ).

Proof Sketch. Assume by contradiction that equation (2) is an exponential distribution.
i.e., fZ = γe−γz where γ > 0 is the amount of active stakes. Rewriting e(1−γ)z and e(1−ω)α

according to the Taylor expansion of ex =
∑∞

ℓ=1
1

(ℓ−1)! x
ℓ−1, the coefficient for the xℓ−1 must

agree on all ℓ ≥ 1. This means that for all ℓ ≥ 1,

γ2(1 − γ)ℓ−1 = αℓ(1 − α)
1 + α2

[
1
ℓ

+
∞∑

ω=2
αω−1(1 − ω)ℓ−1(1 + (ω − 1)α)2

]
We now take the absolute value on both sides, and show that the absolute value on the

left hand side and the right hand side does not grow at the same rate with l. Therefore, we
can conclude that fZr

cannot be an exponential distribution. ◀

4.3 Distribution of Consecutive Two Rounds are Negatively Correlated
in 1-Lookahead

In this section, we apply the correlation test to 1-Lookahead and show that the distribution
of consecutive two rounds are negatively correlated. In a high level, when the adversary
successfully hides some credentials in round r and bias Qr+1 in round r, they have to do
so by strategically hiding credentials with minimum scores. The distribution of scores in
such a round stochastically dominates the honest distribution. However, the adversary only
chooses to hide credentials because they can obtain credentials with lower scores in round
r + 1. Therefore, the distribution of scores in such a round is stochastically dominated by the
honest distribution. This establishes a negative correlation between the scores in subsequent
rounds. The Lemma states as follows:

▶ Lemma 19. When the adversary uses 1-Lookahead strategy, the distribution of consec-
utive two rounds, DZr(π1−Lookahead), DZr+1(π1−Lookahead) are negatively correlated. That is, for
any numbers a, b,

Pr
r←U [1,R]

[Zr+1 > b|Zr > a] < Pr
r←U [1,R]

[Zr+1 > b]

We defer the formal proof of Lemma 19 to the full version of the paper [5].
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5 Profitable Strategies are Detectable

In this section, we will show that when the online stake remains constant throughout the
protocol, every profitable strategy of an adversary with β = 0 is detectable (and this holds
for all α).

Let us first highlight a few complexities of detecting profitable manipulations. First, there
are certainly undetectable non-profitable manipulations (for example, the adversary could
simply never broadcast – this results in i.i.d. scores across rounds according to Exp(1 − α),
and is indistinguishable from if the adversary were ’non-strategically offline’). Second, note
that a strategic adversary can look as far into the (hypothetical) future (assuming they win
consecutive rounds) as they like when deciding which accounts to broadcast, and could try
to carefully curate them to match a particular distribution. In general, CSSP induces a
Markov Decision Process for the adversary, where each state is a countably long list of real
numbers. 1-Lookahead witnesses that the MDP always has a strategy that outperforms
honest, and we seek to understand whether any such strategy also satisfies a collection
of complex constraints (and more over, there is not a single collection of constraints to
satisfy – the adversary can pick any γ and satisfy the undetectability constraints to appear
as i.i.d. Exp(γ)).

Given the complexity of the strategy space in CSSP, our proof is surprisingly simple.
Firstly, we make use of the following observation: since the adversary does not know
the credentials owned by the honest miner before broadcasting their own,13 in order to
improve their probability of winning throughout the protocol, the adversary must on average
broadcast credentials with smaller scores compared to when they are honest. Simultaneously,
as discussed in Section 3, the observer expects the empirical score distribution to follow an
exponential distribution (of undetermined rate γ). Hence, in order to maintain undetectability,
the adversary’s credentials must be distributed as an exponential with rate greater than 1.

However, [11] shows that unless the adversary controls almost half of the network, the
adversary loses to honest participants in a non-trivial fraction of rounds. After such an event,
the adversary loses their advantage gained before from strategic manipulation, and must
participate as if the protocol has restarted. We call such rounds where adversary regains the
perspective of a uniformly random seed “reset rounds”. In a reset round, we show that the
adversary must broadcast credentials with scores at least as large as when honest. This leads
to a contradiction – the tail of the “reset round” credential score distribution is already too
fat for the credential score distribution of the adversary to be an exponential of rate greater
than 1.

Our result also extends to the setting where the active stake fluctuates within 1 ± δ

factor, where we show that any undetectable strategies can only achieve limited profitability
bounded by 2δ.

5.1 Detectability for Steady Online Stake
Throughout Section 5.1, we will assume that the online stake in each round remains constant,
and equal to 1 (by normalization). Among all the online stake, the adversary holds α stake,
while the honest participants hold 1 − α stake. The outside observer knows that the total
online state is steady across rounds, but does not know how much total stake is online.

We first prove that a profitable and undetectable adversary has a score distribution that
is strictly dominated by Exp(α). We will use notations related to the minimum score of
broadcast credentials that are formally defined in Definition 10.

13 This is the key simplifying aspect of our proof that leverages β = 0.
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▶ Theorem 20. When the online stake remains constant throughout the protocol, for any
adversary who holds α stake and employs a profitable and undetectable strategy π, the
adversary’s broadcast score Yr(π) from a random round r is distributed identically to Exp(α+ϵ)
for some ϵ > 0.

Proof. Let Xr(1) and Yr(π) be the minimum score of broadcast credential among honest
miners and the adversary respectively, at a uniformly random round r. Then the overall
minimum score at that round is min{Xr(1), Yr(π)}. Since the adversary must broadcast
before observing the honest miner’s credentials in round r, Xr(1) is independent of Yr(π).
By Definition 12 and Proposition 8, in order for the adversary’s strategic attack to remain
undetectable, min{Xr(1), Yr(π)} must distribute according to Exp(γ) for some γ > 0. Since
Xr(1) ∼ Exp(1 − α) and by independence between Xr(1) and Yr(π), we have that for any
z > 0,

Pr[min{Xr(1), Yr(π)} ≥ z] = e−γz

=⇒ Pr[Xr(1) ≥ z] Pr[Yr(π) ≥ z] = e−γz

=⇒ e−(1−α)z Pr[Yr(π) ≥ z] = e−γz

=⇒ Pr[Yr(π) ≥ z] = e−(γ−(1−α))z = e−(α+(γ−1))z.

Thus Yr(π) ∼ Exp(α + (γ − 1)). The expected fraction of rounds that the adversary wins if
they are honest is α. Thus to be strictly profitable, the adversary needs to win with fraction
> α, which requires Pr[Yr(π) < Xr(1)] > α. Since Xr(1) and Yr(π) are exponential random
variables with rate (1 − α) and α + (γ − 1), by Lemma 29,

α < Pr[Yr(π) < Xr(1)] = α + (γ − 1)
γ

.

The above equation implies that γ > 1. Thus we conclude Yr(π) ∼ Exp(α+(γ−1)) = Exp(α+ϵ)
for some ϵ > 0. ◀

Now, we show that for a non-trivial fraction of rounds, the adversary’s score is drawn
from a distribution that dominates Exp(α). We will need to reason about the adversary’s
score in reset rounds (defined in Section 4 at Definition 15), where the distribution of the
seed Qr is unbiased. For the reader’s convenience, the formal definition of the reset round is
restated here.

▶ Definition 15 (Reset Round [11]). A round r is a reset round if for all possible strategies π,
the distribution of {Pr[Yr′(π) ≤ Xr′ ]}r′≥r conditioned on Qr−1 and all historical information
prior to round r − 1, is identical to the distribution of {Pr[Yr′(π) ≤ Xr′ ]}r′≥r after replacing
Qr with a uniformly random draw from [0, 1].

[11] shows that the number of reset rounds are non-negligible.

▶ Lemma 21 ([11], Theorem 4.1). For α < 3−
√

5
2 ≈ 0.38, the fraction of rounds that is a

reset round is strictly greater than 0.

Meanwhile, we show that in a reset round, the adversary’s output score distribution
stochastically dominates Exp(α).

▷ Claim 22. Given that round r is a reset round, adversary’s output distribution in round r

must (weakly) stochastically dominate Exp(α).

AFT 2024



30:20 Detecting Profitable Manipulations in Cryptographic Self-Selection

Proof. Let Yr(π) be the broadcast minimum coin of the adversary using strategy π at a
random round r. Notice that if r is a reset round, then Yr(π) would be distributed according
to Exp(α) had π been an honest strategy. Let C1, . . . , Cj be the score of credentials of all
accounts that the adversary owns at round r, where C1 ≤ C2 · · · ≤ Cj . Then for any z > 0,

Pr[Yr(π) < z | r is a reset round] ≤ Pr[C1 < z | r is a reset round] = 1 − e−αz

since C1 ∼ Exp(α) after a reset round. Thus Yr(π)’s distribution given that r is a reset round
must (weakly) stochastically dominate Exp(α). ◁

Combining Theorem 20, Lemma 21 and Claim 22, we show a contradiction between above
two properties that we have derived about a profitable adversary’s score distribution. This
shows no profitable adversary strategy is undetectable.

▶ Theorem 23. When the online stake remains constant throughout the protocol and α <
3−
√

5
2 , there is no profitable and statistically undetectable strategy.

Proof. Given any adversary strategy π, let pπ be the fraction of rounds that is a reset round,
by Lemma 21, pπ > 0. Let Yr(π) be the broadcast minimum coin of the adversary at a
random round r. Let Yrs(π), Ynon−rs(π) be the broadcast minimum coin of the adversary
at a random reset round and at a random non reset round respectively, as defined in
Definition 15. Then Yr(π) is a mixture of random variable Yrs(π) and Ynon−rs(π) Specifically,
Y = pπ · Yrs(π) + (1 − pπ) · Ynon−rs(π). Then for any z > 0,

Pr[Yr(π) ≥ z] = p · Pr[Yrs(π) ≥ z] + (1 − p) · Pr[Ynon−rs(π) ≥ z].

By Theorem 20, for any undetectable strategy, it must be the case that Pr[Yr(π) ≥ z] ≤
e−(α+ϵ)z. However, by Claim 22 and Lemma 21, p > 0 and Pr[Yrs(π) ≥ z] ≥ e−αz, hence
Pr[Yr(π) ≥ z] ≥ p · e−αz. Since p is not dependent on z, it is impossible for Pr[Yr(π) ≥ z]
to be both at most e−(α+ϵ)z and at least p · e−αz for all z > 0. ◀

5.2 Extension to Fluctuation in Online Stakes
In practice, limited fluctuation in participating stake of the protocol may be expected. In
this subsection, we consider the case where the online stake in any round fluctuates within
a 1 ± δ multiplicative factor of the baseline online stake. By normalization, we assume the
ground truth baseline online stake is 1, while the observer anticipates the online stakes to
be in [(1 − δ)γ, (1 + δ)γ] for some γ > 0. We show that any adversary who profits beyond
2δ probability of winning is detectable. Our key observation is that Theorem 20 can be
generalized to adversaries who enjoy profits beyond the online stake fluctuation range (as
discussed below in Theorem 25).

▶ Definition 24. An adversary with stake α is ∆-profitable if their probability of being the
leader in a random round r is more than α + ∆.

▶ Theorem 25. When the online stake fluctuation is known to lie in all rounds within a
multiplicative 1 ± δ band of its baseline, for any adversary who holds α stake and employs
a 2δ-profitable and undetectable strategy π, the adversary’s broadcast score Yr(π) from a
random round r is stochastically dominated by Exp(α + ϵ) for some ϵ > 0.

The proof of Theorem 25 can be found in the full version of the paper [5].
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▶ Theorem 26. When the online stake fluctuation is known to lie in all rounds within
a multiplicative 1 ± δ band of its baseline, no undetectable strategy is 2δ-profitable when
α < 3−

√
5

2 .

Proof. The proof is identical to that of Theorem 23, where we establish that the adversary
cannot produce a strategy whose broadcasts are dominated by Exp(α+ϵ). The only difference
is that we use Theorem 25 instead of Theorem 20 to conclude that this is necessary in order
to be undetectable and strictly profitable. ◀
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▶ Lemma 28 ([11], Lemma A.1.). Let X1, · · · , Xn be independent random variables where
Xi is drawn from Exp(αi) for some αi > 0. Then mini∈[n]{Xn} is identically distributed to
Exp (

∑n
i=1 αi).

▶ Lemma 29 ([11], Lemma A.2.). Let X1, X2 be two independent random variables drawn
from Exp(α1), Exp(α2) respectively, where α1, α2 > 0 . Then Pr[X1 < X2] = α1

α1+α2
.

▶ Lemma 30 ([11], Lemma 4.3.). Let X1, X2, . . . be i.i.d. copies of an exponentially distributed
random variable such that minn∈N Xn is exponentially distributed with rate α. Then, for all
i ∈ N, the random variable Yi = min(i)

n∈N Xn is identically distributed to Zi = Zi−1 + Exp(α)
where Z0 := 0.

▶ Lemma 31 ([11], Lemma 4.4.). Let Y1, Y2, · · · be i.i.d. copies of an exponentially random
variable such that minn∈N Yn is exponentially distributed with rate α. Let X be exponentially
distributed with rate 1 − α. Let W = {i ∈ N : Yi < X}. Then Pr[|W | = ℓ] = αℓ(1 − α).
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