
A (3/2 + 1/e)-Approximation Algorithm for Ordered
TSP
Susanne Armbruster #

Research Institute for Discrete Mathematics and Hausdorff Center for Mathematics,
University of Bonn, Germany

Matthias Mnich #

Hamburg University of Technology, Institute for Algorithms and Complexity, Hamburg, Germany

Martin Nägele #

Department of Mathematics, ETH Zurich, Zurich, Switzerland1

Abstract
We present a new (3/2 + 1/e)-approximation algorithm for the Ordered Traveling Salesperson Problem
(Ordered TSP). Ordered TSP is a variant of the classic metric Traveling Salesperson Problem (TSP)
where a specified subset of vertices needs to appear on the output Hamiltonian cycle in a given order,
and the task is to compute a cheapest such cycle. Our approximation guarantee of approximately
1.868 holds with respect to the value of a natural new linear programming (LP) relaxation for
Ordered TSP. Our result significantly improves upon the previously best known guarantee of 5/2 for
this problem and thereby considerably reduces the gap between approximability of Ordered TSP
and metric TSP. Our algorithm is based on a decomposition of the LP solution into weighted trees
that serve as building blocks in our tour construction.

2012 ACM Subject Classification Theory of computation → Discrete optimization; Theory of com-
putation → Routing and network design problems; Theory of computation → Rounding techniques

Keywords and phrases Travelling Salesperson Problem, precedence constraints, linear programming,
approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.1

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2405.06244 [1]

Funding Matthias Mnich: Partially supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), project MN 59/4-1.
Martin Nägele: Partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXZ-2047/1 – 390685813, and the Swiss National
Science Foundation (grant no. P500PT_206742).

1 Introduction

The classic metric Traveling Salesperson Problem (TSP) is one of the most fundamental and
well-studied problems in Combinatorial Optimization and has a large number of applications.
A metric TSP instance is given by a complete undirected graph G = (V, E) with metric edge
cost c : E → R≥0. The task is to find a cycle of minimum cost that visits each vertex exactly
once, where the cost of a cycle equals the sum of the edge costs over all edges it contains.
Metric TSP is highly relevant in many practical applications and thus, a lot of different

1 Most of this work was done while M. Nägele was employed at University of Bonn.

© Susanne Armbruster, Matthias Mnich, and Martin Nägele;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 1; pp. 1:1–1:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:armbruster@or.uni-bonn.de
https://orcid.org/0009-0003-0597-033X
mailto:matthias.mnich@tuhh.de
https://orcid.org/0000-0002-4721-5354
mailto:martinn@ethz.ch
https://orcid.org/0000-0002-3059-6402
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.1
https://arxiv.org/abs/2405.06244
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

variants are studied (see, e.g., [34]). The problem is NP-hard and APX-hard [32]; concretely,
assuming P ̸= NP, it is known that no polynomial-time algorithm can guarantee to find a cycle
of cost at most 123/122 times the cost of a cheapest cycle [24]. For a long time, the best-known
approximation algorithm for metric TSP was the Christofides-Serdyukov 3/2-approximation
algorithm [10, 11, 35]. This was recently improved to a breakthrough (3/2 − ε)-approximation
algorithm, for some ε > 10−36, by Karlin, Klein, and Oveis Gharan [22,23].

In this work, we focus on a generalization of metric TSP known as Ordered TSP, in which
some of the vertices must be visited in a given order.

Ordered TSP (OTSP): Given a complete undirected graph G = (V, E) with metric
edge cost c : E → R≥0 and pairwise distinct vertices d1, . . . , dk ∈ V , the task is to
find a cheapest spanning cycle C in G that contains the vertices d1, . . . , dk in this
order.

We typically refer to an input of OTSP as an OTSP instance (G, c, (d1, . . . , dk)); solutions are
often called tours. Our goal in this paper is to further the understanding of the approximability
of OTSP, i.e., we aim to design α-approximation algorithms for OTSP with α as small as
possible.

Clearly, OTSP is at least as hard as metric TSP, and therefore APX-hard. Surprisingly,
not much more is known on the approximability of OTSP. Böckenhauer, Hromkovič, Kneis,
and Kupke [6] observed that a 5/2-approximate solution can be readily obtained by first
traversing d1, . . . , dk in this order and subsequently appending a tour on V \ {d1, . . . , dk}
constructed through the Christofides-Serdyukov algorithm. The black-box use of a metric TSP
approximation algorithm allows to reduce this guarantee by the same additive improvement
of ε > 10−36 as in the (3/2 − ε)-approximation by Karlin, Klein, and Oveis Gharan. Besides
that, Böckenhauer, Mömke, and Steinová [7] gave a (5/2 − 2/k)-approximation algorithm,
where k ≥ 2 is the number of ordered vertices in the OTSP input. Note that their result does
not directly inherit the improvement achieved for metric TSP, making its approximation ratio
asymptotically inferior to the earlier approach of Böckenhauer, Hromkovič, Kneis, and Kupke.
Finally, the intuition that OTSP should become easier once k approaches n is confirmed by
a dynamic programming approach of Dĕineko, Hoffmann, Okamoto, and Woeginger [14] that
runs in O(2rr2n) time and O(2rrn) space, i.e., in polynomial time and space if r := n − k,
the number of vertices that are not in the input order, is of magnitude O(log n).

OTSP is in fact a special case of a the following significantly more general TSP variation
termed TSP with Precedence Constraints.

TSP with Precedence Constraints (TSP-PC): Given a complete undirected
graph G = (V, E) with metric edge cost c : E → R≥0 and a partial order ≺ on V ,
the task is to find a cheapest spanning cycle C in G that respects ≺, i.e., C can be
traversed such that whenever u ≺ v for two vertices u, v ∈ V , then u appears earlier
on C than v.

Compared to the total order constraints in OTSP, general partial orders allow for modeling
a much wider range of problems. One among many applications of TSP-PC is, e.g., tour
planning for mixed pickup and delivery services, where one needs to make sure that a
pickup happens before a delivery (but apart from that, pickups and deliveries can be
intertwined arbitrarily). There is a considerable body of research on the structure of the

S. Armbruster, M. Mnich, and M. Nägele 1:3

TSP-PC polyhedron, different dynamic programming algorithms, enhanced branch-and-
bound methods, and various other exact and heuristic approaches, typically even for the
more general version of TSP-PC with asymmetric edge cost (see, e.g., [2, 18, 25, 33] and
references therein). Despite that, essentially no positive results on the approximability of
TSP-PC are known, which is possibly explained by an influential hardness result of Charikar,
Motwani, Raghavan, and Silverstein [9]: By relating the problem to the Shortest Common
Supersequence Problem, they are able to show that there is no (log n)δ-approximation for
the path version of TSP-PC for any constant δ, unless NP ⊆ DTIME(nO(log log n)), even if
the underlying metric space is a line. This motivates our study of the approximability of
TSP-PC on general metric spaces with special partial orders, i.e., OTSP.

1.1 Our results and techniques
Our main contribution is to significantly improve the state of the art for OTSP by giving an
LP-relative approximation guarantee of 3/2 + 1/e ≈ 1.868, as stated in the following theorem.

▶ Theorem 1. There is a polynomial-time (3/2 + 1/e)-approximation algorithm for OTSP.

This constitutes a significant improvement over the previous (5/2 − ε)-approximation
algorithm. We achieve this improvement by introducing a new linear programming (LP)
relaxation for OTSP and devising a suitable rounding procedure. The LP relaxation is
based on the Held-Karp relaxation that is typically leveraged in the context of TSP, but
allows for taking the prescribed order of the vertices d1, . . . , dk into account by using disjoint
sets of variables to represent the di-di+1 strolls2 that a solution is composed of. Our
rounding procedure crucially relies on a result on decomposing (fractional) s-t strolls into a
convex combination of trees. This decomposition resembles an existential result by Bang-
Jensen, Frank, and Jackson [3, Theorem 2.6] on packing branchings in a directed multigraph.
Variations thereof have recently been used for advances on another variant of TSP, namely
Prize-Collecting TSP [4, 5], and motivate the application here. (See Lemma 5 for the precise
statement of the decomposition result.) The trees obtained from stroll decompositions enable
the construction of a subgraph that spans a reasonably large part of V at cost no more than
the LP solution cost, and contains a walk with visits at d1, . . . , dk in this order. Our tour
construction is completed by connecting the remaining isolated vertices in a cheapest possible
way, and applying a parity correction step as typical for TSP-like problems.

Our approach crucially relies on being able to split a solution into di-di+1 strolls upfront,
hence it is not directly suitable for handling arbitrary precedence constraints other than total
orders. While one can always try to guess a suitable total order that is compatible with
the given partial order, and then apply Theorem 1, this is generally not efficient. We can,
though, obtain approximation algorithms for some special cases of precedence constraints, as
for example in the following result that is a direct generalization of Theorem 1.

▶ Theorem 2. Consider a TSP-PC instance (G, c, ≺) on a complete graph G = (V, E) with
a partial order ≺ that can be equivalently given as independent total orders on disjoint subsets
D1, . . . , Dℓ ⊆ V . There is a polynomial-time (ℓ + 1/2 + 1/eℓ)-approximation algorithm for this
class of TSP-PC problems.

2 We use the term s-t stroll instead of s-t path for a path from s to t in the underlying graph to emphasize
that we do not require all vertices to be covered. Also, for convenience of notation, we use dk+1 := d1
throughout the paper.

APPROX/RANDOM 2024

1:4 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

The total orders on the sets Di are also called chains. We remark that losing a factor of ℓ

in Theorem 2 is intrinsic to our approach: We never merge the given chains, but traverse
them one after another. Still, the result of Theorem 2 is superior to a black-box algorithm
that independently applies the algorithm from Theorem 1 to the ℓ chains and concatenates
the resulting tours (while shortcutting to avoid repeated visits).

1.2 Related Work
Variations of OTSP and TSP-PC are also studied in the context of scheduling with precedence
constraints. In a classic setup, denoted by Pm|prec|Cmax in the scheduling literature, one
needs to find a schedule for a set J of n jobs on m identical machines subject to precedence
constraints between the jobs. Formally, each job j ∈ J is characterized by a processing
time pj ∈ Z≥0, and a schedule σ : J → Z≥0 × {1, . . . , m} assigns each job j ∈ J to a pair
(σ1(j), σ2(j)) consisting of an integer start time σ1(j) and a machine σ2(j) such that no other
job scheduled on that machine has their start time in the time interval [σ1(j), σ1(j) + pj],
and for any two jobs j, j′ ∈ J related as j ≺ j′ it holds that σ1(j) < σ2(j′). The makespan
objective Cmax of a schedule σ is the maximum completion time Cj = σ1(j) + pj over all jobs
j ∈ J . Generally, precedence constraints of this type are studied extensively in a wide range
of scheduling problems, including different settings and objectives (see, e.g., [13,19,28,36]).
The three-machine problem P 3|prec, pj ≡ 1|Cmax is one of the few famous open problems by
Garey and Johnson [17] whose computational complexity has not yet been resolved.

The complexity of many scheduling problems with precedence constraints that are chains
has been well-investigated. An influential paper of Lenstra and Rinnooy Kan [27] shows
strong NP-hardness for minimizing the number of chain-constrained unit-size jobs that
miss their deadline on a single machine. Several other works with chain constraints have
appeared [15,21,26,37].

Towards analogues of TSP-PC, we may consider the problem Pm|prec|Cmax on a single
machine, but add sequence-dependent setup times sij ∈ Z≥0 between any two jobs i and j,
which add to the makespan of the schedule. This problem, which is denoted as 1|prec, sij |Cmax,
was discussed by Liaee and Emmons [29, Section 3.1.2]. In case of TSP-PC, the setup times
are metric (i.e., sij ≤ sik + skj for any triple (i, j, k) of distinct jobs), and all jobs have equal
processing time pj ≡ 0. To be precise, the objective function for TSP-PC takes into account
the cost for returning to the origin city whereas no such cost occurs in the objective function
for 1|prec, sij |Cmax, hence the latter in fact models a path version of TSP-PC.

We remark that shortly after the first dissemination of this work [1], Böhm, Friggstad,
Mömke, and Spoerhase [8] provided an independent paper on TSP variants, including a
result matching the guarantee in Theorem 1. Albeit different at first sight, their approach is
very similar at its core to the one presented here: They use a directed analogue of the LP
relaxation that we also build our work on here, and thereby facilitate a direct application of
the original result by Bang-Jensen, Frank, and Jackson on packing branchings in a directed
multigraph.

1.3 Organization of the paper
In Section 2, we introduce our new linear programming formulation for OTSP (Section 2.1)
and analyze a randomized algorithm giving the guarantee of Theorem 1 in expectation
(Section 2.2). We show how this algorithm can be derandomized in Section 2.3. Finally,
Section 3 extends our framework to yield Theorem 2, and Section 4 shows how our main
technical lemma is implied by a closely related known result.

S. Armbruster, M. Mnich, and M. Nägele 1:5

2 Our algorithm

2.1 The LP relaxation and polyhedral basics
The most commonly used LP relaxation in approximation algorithms for classic TSP is
the so-called Held-Karp relaxation. It was first introduced by Dantzig, Fulkerson, and
Johnson [12] and is given by

PHK(G) :=
{

x ∈ RE
≥0 : x(δ(v)) = 2 ∀v ∈ V

x(δ(S)) ≥ 2 ∀S ⊊ V, S ̸= ∅

}
,

where G = (V, E) is the underlying complete graph.3 While TSP simply asks for a spanning
cycle, OTSP requires that the vertices d1, . . . , dk appear on the cycle in this order. Thus, a
solution is naturally composed of k strolls, namely a di-di+1 stroll for every i ∈ {1, . . . , k}.
For a polyhedral description of s-t strolls in a complete graph G = (V, E), we modify the
Held-Karp relaxation for s-t path TSP4 to allow partial coverage of vertices. Concretely,
the variables y ∈ RV

≥0 in the following formulation indicate the extent at which vertices are
covered:5

Ps-t stroll(G) :=

(x, y) ∈ RE
≥0 × RV

≥0 :

x(δ(v)) = 2yv ∀v ∈ V

x(δ(S)) ≥ 1 ∀S ⊆ V \ {t}, s ∈ S

x(δ(S)) ≥ 2yv ∀S ⊆ V \ {s, t}, v ∈ S

ys = yt = 1/2

 . (1)

Note that setting ys = yt = 1/2 corresponds to s and t having degree 1 in an s-t stroll, while
all interior vertices of an integral stroll have degree 2, which corresponds to a y-value of 1.
Using the above polyhedral relaxation (1) for all di-di+1 strolls, it remains to link the strolls
by requiring full joint coverage of every v ∈ V . This results in the following LP relaxation
for OTSP:

min
∑
e∈E

ce

k∑
i=1

xi
e

k∑
i=1

yi
v = 1 ∀v ∈ V

(xi, yi) ∈ Pdi-di+1 stroll(G) ∀i ∈ {1, . . . , k} .

(OTSP LP relaxation)

Here and throughout the paper, note that we use superscripts to distinguish different
strolls. It is clear that any OTSP solution can be turned into a feasible solution to the above
LP of the same objective value, hence the above LP is indeed a relaxation of OTSP. We first
observe that this OTSP LP relaxation strengthens the Held-Karp relaxation in the following
sense.

▶ Observation 3. Let (xi, yi)i∈{1,...,k} be feasible for the OTSP LP relaxation. Then x :=∑k
i=1 xi ∈ PHK(G).

3 For S ⊆ V we denote by δ(S) the set of edges with exactly one endpoint in S. For v ∈ V , we
abbreviate δ(v) := δ({v}).

4 Given a complete graph G = (V, E) with metric edge costs and vertices s, t ∈ V , s-t path TSP is the
variant of TSP that seeks a path of smallest total cost from s to t while visiting every vertex exactly
once.

5 The constraints of Ps-t stroll imply that for v ∈ V \ {s, t}, we have 2yv ≤ x(δ(V \ {s, t})) ≤ x(δ(s)) +
x(δ(t)) ≤ 2, and thus yv ≤ 1, legitimating the proposed interpretation.

APPROX/RANDOM 2024

1:6 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

Proof. To see that x satisfies the degree constraints in PHK(G), note that for all v ∈ V , we
have

x(δ(v)) =
k∑

i=1
xi(δ(v)) = 2 ·

k∑
i=1

yi = 2 .

To verify the cut constraints, let S ⊊ V be a non-empty set of vertices. If both S ∩
{d1, . . . , dk} ̸= ∅ and (V \ S) ∩ {d1, . . . , dk} ̸= ∅, then there exist two distinct indices
i1, i2 ∈ {1, . . . , k} such that di1 ∈ S but di1+1 /∈ S, and di2 /∈ S but di2+1 ∈ S. This implies
that xi1(δ(S)) ≥ 1 and xi2(δ(V \ S)) ≥ 1, so we get

x(δ(S)) =
k∑

i=1
xi(δ(S)) ≥ xi1(δ(S)) + xi2(δ(S)) = xi1(δ(S)) + xi2(δ(V \ S)) ≥ 2 .

Otherwise, assume without loss of generality that S ∩ {d1, . . . , dk} is empty (if not, V \ S has
this property) and fix a vertex v ∈ S. We then know that xi(δ(S)) ≥ 2yv for all i ∈ {1, . . . , k},
hence

x(δ(S)) =
k∑

i=1
xi(δ(S)) ≥ 2 ·

k∑
i=1

yv = 2 . ◀

The point x ∈ PHK(G) constructed in Observation 3 has the property that its cost c⊤x

equals the objective value cLP of the feasible point of the OTSP LP relaxation that we
started with. Thus, following the arguments of Wolsey’s polyhedral analysis [38] of the
Christofides-Serdyukov algorithm, we immediately obtain the following.

▶ Corollary 4. Let cLP denote the optimal objective value of the OTSP LP relaxation. Then
in the underlying graph G with edge costs c, the following holds true.

(i) A shortest spanning tree T satisfies c(T) ≤ cLP.
(ii) For any even cardinality set Q ⊆ V , a shortest Q-join J satisfies c(J) ≤ 1

2 · cLP.

Proof. Let (xi, yi)i∈{1,...,k} be an optimal solution of the OTSP LP relaxation. By Obser-
vation 3, x :=

∑k
i=1 xi ∈ PHK(G). It is well-known due to Held and Karp [20] that then,

|V |−1
|V | · x is feasible for the spanning tree polytope, and due to Wolsey [38] that 1

2 x is feasible
for the dominant of the Q-join polytope, hence c(T) ≤ |V |−1

|V | · c⊤x < c⊤x and c(J) ≤ 1
2 c⊤x.

Using that c⊤x = cLP, the result follows. ◀

2.2 Rounding an LP solution
At its core, our algorithm for rounding a typically fractional solution (xi, yi)i∈{1,...,k} of the
OTSP LP relaxation is based on leveraging a decomposition result for each of the points
(xi, yi) ∈ Pdi-di+1 stroll. By scaling up (xi, yi) by a large enough factor M such that Mxi is
integral, this decomposition can be viewed as a result on packing trees into the multigraph
that has Mxi

e copies of every edge e ∈ E and such that every vertex v appears in Myi

many of the trees. While most results of this type deal with packing spanning trees (or,
in the directed case, arborescences), i.e., consider uniform packings, Bang-Jensen, Frank,
and Jackson [3] gave one of few results in a non-uniform setting as we are facing here.
Their splitting-off based construction was revised by Blauth and Nägele [5] to obtain more
fine-grained control over the output components of the decomposition when starting from a
solution of a Held-Karp-type relaxation that allows partial coverage of vertices (similar to
what we allow in Ps-t stroll). We observe that these findings can be immediately carried over
to solutions of Ps-t stroll, giving Lemma 5 below. We defer a formal proof to Section 4.

S. Armbruster, M. Mnich, and M. Nägele 1:7

▶ Lemma 5. Let G = (V, E) be an undirected graph, s, t ∈ V , and let (x, y) ∈ Ps-t stroll(G).
We can in polynomial time compute a family T of subtrees of G that each contain the vertices s

and t, and weights µ ∈ [0, 1]T with
∑

T ∈T µT = 1 such that 6

∑
T ∈T

µT χE[T] = x and
∑

T ∈T : v∈V [T]

µT = yv ∀v ∈ V \ {s, t} .

In other words, Lemma 5 allows to decompose a fractional s-t stroll into a convex
combination of trees in a family T that all connect s and t, and such that for every other
vertex v ∈ V \ {s, t}, the weighted number of trees that contain v equals the coverage yv of v

in the stroll. An example of a feasible solution (x, y) and a decomposition satisfying the
properties of Lemma 5 is given in Figure 1.

s t

3
4

1
2

1
4

1
4

3
4

1
2

1
4

1
2

1
4 3

4

1
4

1
4

1
4 1

4

1
4

(a) Solution (x, y) with xe = 1/4 for dotted edges, xe = 1/2 for dashed edges, and
xe = 3/4 for solid edges. Likewise, yv = 1/4 for blank vertices, yv = 1/2 for dashed
vertices, and yv = 3/4 for full vertices.

(b) A decomposition of the solution (x, y) given in (a) into four
trees with uniform weight µ ≡ 1/4 satisfying the properties of
Lemma 5.

Figure 1 A solution (x, y) ∈ Ps-t stroll along with a decomposition into trees, exemplifying
Lemma 5.

After applying Lemma 5 to all strolls (xi, yi) ∈ Pdi-di+1 stroll obtained from an optimal
solution of the OTSP LP relaxation, we choose one tree from each of the decompositions
and consider the (multi-)union of all edges obtained this way. This results in a graph that
already contains a closed walk with visits at d1, . . . , dk in this order, giving the basis for
our construction of an OTSP solution. Also, we can easily bound the expected cost of the
edge set obtained in this way by randomly choosing the trees with marginals given by the
weights µ from Lemma 5.

6 For a graph H we denote by V [H] the set of vertices and by E[H] the set of edges of H. Furthermore,
for an edge set F ⊆ E, we denote by χF ∈ {0, 1}E the characteristic vector of F , i.e., the {0, 1}-vector
with, for all e ∈ E, χF

e = 1 if and only if e ∈ F .

APPROX/RANDOM 2024

1:8 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

To obtain an actual OTSP solution, the missing steps are to
(i) connect vertices that are not covered by any of the trees Ti,
(ii) perform parity correction to guarantee that there exists an Eulerian tour, and
(iii) shortcut appropriately to obtain an actual OTSP solution.

Altogether, this leads to the randomized Algorithm 1 as laid out below; also see Figure 2 for
an example illustration of the different edge sets that are constructed in Algorithm 1.

Algorithm 1 A randomized approximation algorithm for OTSP.

Input: OTSP instance (G, c, {d1, . . . , dk}) on graph G = (V, E).

1 Compute an optimal solution (xi, yi)i∈{1,...,k} to the OTSP LP relaxation.
2 foreach i ∈ {1, . . . , k} do
3 Apply Lemma 5 to decompose (xi, yi) into trees Ti with weights µi.
4 Sample one tree Ti from Ti with marginals given by µi.
5 Compute a minimum-cost edge set F ⊆ E such that the multigraph

H :=
(

V, F ∪
⋃̇

i∈{1,...,k}
E[Ti]

)
is connected.

6 Let Q = odd(H) and compute a minimum cost Q-join J in G.
7 return Spanning cycle C in G obtained from H ∪̇ J through Lemma 10.

We first show that Algorithm 1 gives the guarantees claimed by Theorem 1 in expectation
and – even stronger – with respect to the value cLP of the OTSP LP relaxation, as stated in
the subsequent theorem. In Section 2.3, we show that Algorithm 1 admits an immediate
derandomization using the method of conditional expectation, thereby completing the proof
of Theorem 1.

T3

T4

T1

T2

d3

d4

d1

d2

Figure 2 Exemplifying the construction of Eulerian graph H ∪̇ J from Algorithm 1: Trees
T1, T2, T3, T4 drawn as solid blueish edges, the edge set F connecting all vertices to the trees drawn
as curly red edges, and the odd(H)-join J drawn as dashed green edges.

S. Armbruster, M. Mnich, and M. Nägele 1:9

▶ Theorem 6. Let cLP be the cost of an optimal solution of the OTSP LP relaxation.
Algorithm 1 returns in polynomial time an OTSP solution C satisfying

E[c(E[C])] ≤
(

3
2 + 1

e

)
· cLP .

To prove Theorem 6, we first study the random graph H0 := (V,
⋃̇

i∈{1,...,k}E[Ti]) obtained
from taking the union of trees Ti ∈ Ti for all i ∈ {1, . . . , k} as sampled in Algorithm 1. In
order for the following statements to also be applicable in a proof of Theorem 2, we refer to
the tree distributions of the type generated in Algorithm 1 as connecting tree distributions.

▶ Definition 7 (Connecting tree distribution). Let G = (V, E) be a graph and let d1, . . . , dk ∈ V .
A connecting tree distribution (Ti, µi)i∈{1,...,k} consists of a family Ti of subtrees of G and
marginals µi : Ti → (0, 1] for every i ∈ {1, . . . , k} with the following properties.

(i)
∑

T ∈Ti
µi

T = 1 for all i ∈ {1, . . . , k}.
(ii) V [T] ∩ {d1, . . . , dk} = {di, di+1} for all T ∈ Ti and i ∈ {1, . . . , k}.
(iii)

∑k
i=1

∑
T ∈Ti : v∈V [T] µi

T = 1 for all v ∈ V \ {d1, . . . , dk}.

The distributions (Ti, µi) obtained in Algorithm 1 by applying Lemma 5 indeed satisfy
the constraints of the above definition; in particular, Item iii is fulfilled because

k∑
i=1

∑
T ∈Ti : v∈V [T]

µi
T =

k∑
i=1

yi
v = 1 ∀v ∈ V \ {d1, . . . , dk} ,

where the first equality follows from Lemma 5, and the second one is implied by constraints
of Pdi-di+1 stroll.

▶ Lemma 8. Let G = (V, E) be a graph, d1, . . . , dk ∈ V , and let (Ti, µi) be a connecting tree
distribution.

(i) For any choice of trees Ti ∈ Ti for i ∈ {1, . . . , k}, the multigraph H0 :=
(V,

⋃̇
i∈{1,...,k}E[Ti]) consists of one large connected component and potentially sev-

eral isolated vertices. The large connected component contains a walk with visits at
d1, . . . , dk in this order that can be constructed efficiently from the trees Ti.

(ii) If, in the above construction, the trees Ti are sampled with marginals µi, we have that
for all v ∈ V \ {d1, . . . , dk},

P[v is isolated in H0] ≤ 1
e .

Proof. For Item i observe that each tree Ti is connected within itself by definition and, as it
contains di and di+1, the union of all trees form one large connected component, while all
other components must be isolated vertices. Also, because each tree Ti contains a di-di+1
path, we may concatenate these paths to obtain the desired walk with visits at d1, . . . , dk in
this order.

To prove Item ii, we calculate the probability that a vertex v ∈ V \ {d1, . . . , dk} is isolated
in H0. First, note that for any such vertex v and any i ∈ {1, . . . , k}, we have

P [v /∈ V [Ti]] = 1 −
∑

T ∈Ti : v∈V [T]

µi
T .

APPROX/RANDOM 2024

1:10 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

Thus, the probability that a vertex v ∈ V \ {d1, . . . , dk} is not contained in any tree Ti for
i ∈ {1, . . . , k}, and hence is isolated in H0, can be bounded as follows:

P

[
v /∈

k⋃
i=1

V [Ti]
]

=
k∏

i=1
P[v /∈ V [Ti]] =

k∏
i=1

1 −
∑

T ∈Ti : v∈V [T]

µi
T

≤ exp

−
k∑

i=1

∑
T ∈Ti : v∈V [T]

µi
T

 = 1
e ,

where we used that 1 − t ≤ exp(−t) for all t ∈ R, and
∑k

i=1
∑

T ∈Ti : v∈V [T] µi
T = 1 because

(Ti, µi) is a connecting tree distribution. ◀

Next, we bound the cost of the minimum-cost connector F computed in Line 1 of
Algorithm 1.

▶ Lemma 9. Let G = (V, E) be a graph with metric edge costs c, let d1, . . . , dk ∈ V , and
let T be a minimum-cost spanning tree of (G, c).

(i) For all v ∈ V \ {d1}, let ev denote the unique edge outgoing of v when orienting T

towards d1. For every graph H0 on the vertex set V with components that are – up to
possibly the component containing d1 – singleton vertices, the minimum-cost edge set F

that connects H0 satisfies

c(F) ≤
∑

v isolated in H0

c(ev) .

(ii) Let (Ti, µi) for i ∈ {1, . . . , k} be a connecting tree distribution. If the trees Ti ∈ Ti are
sampled with marginals µi and H0 := (V,

⋃̇
i∈{1,...,k}E[Ti]), we obtain

E[c(F)] ≤ 1
e c(T) .

Proof. In order to prove Item i, we construct a feasible connecting edge set F ′ as the set of
all edges ev for which v is an isolated vertex. Then H0 ∪ F ′ is indeed connected, because each
isolated vertex of H0 is connected to its predecessor in T by an edge of F ′, hence inductively,
the component of H0 containing d1 can be reached along edges of F ′. As the minimum-cost
connector F has cost at most c(F ′), we have

c(F) ≤ c(F ′) ≤
∑

v isolated in H0

c(ev) .

To prove Item ii, we note that in this case, H0 consists of one large connected component
and some isolated vertices by Item i of Lemma 8. Using Item ii of Lemma 8 on top of the
above, we get

E[c(F)] ≤ E[c(F ′)] =
∑

v∈V \{d1}

P[v isolated in H0] ·c(ev) ≤ 1
e

∑
v∈V \{d1}

c(ev) = 1
e c(E[T]) .◀

The cost of the odd(H)-join J constructed in Line 1 of Algorithm 1 can be bounded by
1
2 c⊤x by Item ii of Corollary 4. Hence, to complete the analysis of Algorithm 1, it is left
to show that from the Eulerian graph H ∪̇ J constructed in Line 1 of Algorithm 1, we can
obtain an OTSP solution of no larger cost. We remark that such a step has also been used
by Böckenhauer, Mömke, and Steinová [7]; we repeat it here explicitly and give a slightly

S. Armbruster, M. Mnich, and M. Nägele 1:11

different proof for completeness. In the proof, we repeatedly use the operation of shortcutting
a vertex v on a walk, which is the following: If the predecessor and successor of v on the walk
are u and w, respectively, we delete the edges {u, v} and {v, w} from the walk and add the
direct edge {u, w} instead. It is clear that this operation results in a walk again; furthermore,
by the triangle inequality, the costs of the walk do not increase under such operations.

▶ Lemma 10. Let G = (V, E) be a complete graph with metric edge costs c, and let
d1, . . . , dk ∈ V be distinct. Given an undirected connected Eulerian multigraph M = (V, EM)
together with a closed walk in M with visits at d1, . . . , dk in this order, we can in polynomial
time determine a spanning cycle C in G with visits at d1, . . . , dk in this order of cost at most
c(EM).

Proof. Let C be the given closed walk on which d1, . . . , dk appear in this order, delete C

from M and partition the remaining Eulerian graph into a set W of closed walks. Shortcut C

to a cycle while maintaining visits at d1, . . . , dk in this order. This can, for example, be done
by traversing C starting at d1, and shortcutting

(i) vertices that have already been visited, and
(ii) vertices di that are not yet to be visited due to the order constraint.

Afterwards, as long as W is non-empty, pick a closed walk W from W that intersects C, and
let v be a vertex in the intersection. Traversing W starting from v, shortcut W to a cycle by
skipping, except for v itself, all vertices that are already contained in C. Then, merge W

into C by first traversing C up to (and including) v, then completely traversing W until
(but not including) v before continuing on C, thereby including only one visit at v in the
updated C. It is immediate that C is still a cycle after any such operation, and the vertices
d1, . . . , dk still appear on C once and in this order. By connectivity of M , this procedure
only terminates once W is empty, and in that case, C is a spanning cycle of G. Also, all
steps can be implemented to run in polynomial time. Clearly, the final length of C with
respect to c is at most c (EM) because c is metric. ◀

From the above ingredients, we can readily prove Theorem 6.

Proof of Theorem 6. The solution returned by Algorithm 1 is a spanning cycle C in G

obtained from H ∪̇ J through Lemma 10, hence it is feasible and of cost at most c(E[H ∪̇ J]).
Note that the required closed walk in H ∪̇J with visits at d1, . . . , dk in this order is guaranteed
and can be constructed efficiently from the trees Ti by Item i of Lemma 8. Furthermore, by
Item ii of Lemma 9 and Corollary 4, we know that E[c(F)] ≤ 1/e · c(T) ≤ 1/e · cLP, where T is
a minimum-cost spanning tree. In addition, Corollary 4 also implies that c(E[J]) ≤ 1

2 · cLP.
Last but not least, we can express the expected cost of each Ti as

E[c(E[Ti])] =
∑

T ∈Ti

µi
T c(E[T]) =

∑
T ∈Ti

µi
T c⊤χE[T] = c⊤xi ∀i ∈ {1, . . . , k} .

Thus, by summing over all constructed trees, we obtain
∑k

i=1 E[c(E[Ti])] =
∑k

i=1 c⊤xi = cLP.
Together, this yields the proclaimed bound

E[c(C)] ≤ E [c(E[H ∪̇ J])] ≤
(

3
2 + 1

e

)
· cLP .

It remains to note that Algorithm 1 can be implemented to run in polynomial time. To
start with, an optimal solution of the OTSP LP relaxation can be found in polynomial
time because Ps-t stroll admits a polynomial-time separation oracle through polynomially
many calls to a minimum-cut algorithm. Next, the decomposition in Line 1 is obtained in

APPROX/RANDOM 2024

1:12 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

polynomial time, finding an optimal edge set F in Line 1 can be implemented by Prim’s
algorithm, and the odd(H)-join is well-known to be computable in polynomial time. Finally,
also the computation of the cycle C in Line 1 is polynomial due to Lemma 10, concluding
the proof. ◀

2.3 Derandomizing Algorithm 1
To complete a proof of our main result, Theorem 1, we now show how to derandomize
Algorithm 1 using the method of conditional expectations, which results in the following
proof.

Proof of Theorem 1. By the construction of the solution C in Algorithm 1, using Item i of
Lemma 9 to bound the cost of F , and Item ii of Corollary 4 to bound the cost of J , we know
that

c(C) ≤
k∑

i=1
c(E[Ti]) + c(F) + c(E[J])

≤
k∑

i=1
c(E[Ti]) +

∑
v /∈

⋃k

i=1
V [Ti]

c(ev) + 1
2 · cLP

︸ ︷︷ ︸
=:g(T1,...,Tk)

, (2)

where we recall that ev, for v ∈ V \ {d1}, is the unique outgoing edge at v when ori-
enting a minimum-cost spanning tree of G towards d1. For Theorem 6, we showed that
E[g(T1, . . . , Tk)] ≤ (3/2 + 1/e) · cLP. Following the method of conditional expectations, in
order to derandomize the choices of the trees Ti in Line 1 of Algorithm 1 while maintaining
the upper bound on the solution cost, we sequentially choose trees Si for i ∈ {1, . . . , k} such
that

Si = arg min
S∈Ti

E [g(T1, . . . , Tk) | T1 = S1, . . . , Ti−1 = Si−1, Ti = S] . (3)

Note that feasibility of the cycle C and the bound of (2) on its cost are unaffected by fixing
Ti = Si. By definition of conditional expectation, we know that

E [g(T1, . . . , Tk) | T1 = S1, . . . , Ti−1 = Si−1]

=
∑

S∈Ti

µi
S · E [g(T1, . . . , Tk) | T1 = S1, . . . , Ti−1 = Si−1, Ti = S] ,

hence the sequence of conditional expectations

(E[g(T1, . . . , Tk) | T1 = S1, . . . , Ti = Si])i∈{1,...,k}

is non-increasing by the choice in (3), because
∑

S∈Ti
µS = 1. Thus, it remains to observe

that the conditional expectations in (3) can be computed. To this end, observe that

E [g(T1, . . . , Tk) | T1 = S1, . . . , Tℓ = Sℓ]

=
ℓ∑

i=1
c(E[Si]) +

k∑
i=ℓ+1

E[c(E[Ti])] +
∑

v /∈
⋃ℓ

i=1
V [Si]

P

[
v /∈

k⋃
i=ℓ+1

V [Ti]
]

c(ev) + 1
2 · cLP ,

and we can readily compute

E[c(E[Ti])] =
∑

T ∈Ti

µi
T c(E[T]) and P

[
v /∈

k⋃
i=ℓ+1

V [Ti]
]

=
k∏

i=ℓ+1
(1 − yi

v) . ◀

S. Armbruster, M. Mnich, and M. Nägele 1:13

3 Extending to several independent total orders: Proving Theorem 2

In this section, we show how our approach can be extended to TSP-PC with a specific
structure of precedence constraints that corresponds to having total orders on disjoint subsets
D1, . . . , Dℓ ⊆ V of the input graph G = (V, E).

As mentioned in the introduction, our approach is inherently tied to handle total orders
– which is why, in the aforementioned setup, our solutions will not interleave vertices from
different chains Dj , but rather treat the chains Dj one after another. Still, our approach
allows to do better than simply constructing OTSP solutions for all subinstances (G, c, Dj)
in a black-box way and concatenating them with appropriate shortcutting. The latter
would lead to an immediate (3/2 + 1/e)ℓ-approximate solution by using Algorithm 1 on each
subinstance. Instead, we observe that after solving the OTSP LP relaxation and sampling
trees for each subinstance as in Algorithm 1, we may join all edges obtained this way and
only once need to connect remaining singletons and do parity correction. This leads to
Algorithm 2 as stated below.

Note that, deviating from the above outline, Algorithm 2 starts by guessing a root node d0
among the minimal nodes in all sets Dj with respect to ≺; this node is used as a common
anchor of the given partial orders and results in connectivity of the multigraph containing
all sampled trees. To be able to compare the obtained solution to an optimal solution, we
need d0 to be, among the minimal nodes in all sets Dj , the first one to appear on an optimal
solution. We remark that for one j ∈ {1, . . . , ℓ}, we already have d0 ∈ Dj . For the sake of
uniform notation, we still add a copy of d0 to Dj in Line 2 of Algorithm 2.

Algorithm 2 Approximating a special case of TSP-PC.

Input: TSP-PC instance (G, c, ≺) on graph G = (V, E), where ≺ precisely induces
total orders on disjoint subsets D1, . . . , Dℓ ⊆ V .

1 Guess a root node d0 among the minimal nodes in Di with respect to ≺.
2 foreach j ∈ {1, . . . , ℓ} do
3 Compute an optimal solution (xji, yji)i∈{0,1,...,|Dj |} to the OTSP LP relaxation

for the OTSP instance (G, c, {d0} ∪̇ Dj) with an order given by ≺ extended by
d0 ≺ Dj .

4 foreach i ∈ {0, 1, . . . , |Dj |} do
5 Apply Lemma 5 to decompose (xji, yji) into trees Tji with weights µji.
6 Sample one tree Tji from Tji with marginals given by µji.

7 Compute a minimum-cost edge set F ⊆ E such that the multigraph

H :=
(

V, F ∪
⋃̇ℓ

j=1

⋃̇
i∈{1,...,|Dj |}

E[Tji]
)

is connected.
8 Let Q = odd(H) and compute a minimum cost Q-join J in G.
9 return Shortest spanning cycle C in G (over all guesses of d0) that visits d0,

D1 \ {d0}, . . . , Dℓ \ {d0} in this order (while respecting ≺ in each Di) and is
obtained from H ∪̇ J through Lemma 10.

APPROX/RANDOM 2024

1:14 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

We show that this algorithm gives the guarantee claimed by Theorem 2 in expectation,
and that it can be derandomized using the method of conditional expectations in a way
analogous to the derandomization of Algorithm 1.

Proof of Theorem 2. Let cOPT denote the cost of an optimal solution of the given TSP-
PC instance. For every j ∈ {1, . . . , ℓ}, note that the value cj

LP of the optimal solution
(xji, yji)i∈{1,...,|Dj |} to the OTSP instance (G, c, {d0}∪̇Dj) generated in Line 2 of Algorithm 2
satisfies cj

LP ≤ cOPT. For every j ∈ {1, . . . , ℓ}, denote

Hj :=
(

V,
⋃̇|Dj |

i=0
E[Tji]

)
.

Every such graph is composed of trees from a connecting tree distribution. Hence, by Item i
of Lemma 8, Hj consists of a large connected component that contains a walk with visits
at d0 and all vertices of Dj in the desired order, and potentially isolated vertices. For all
v /∈ {d0} ∪ Dj , Item ii of Lemma 8 implies that

P[v is isolated in Hj] ≤ 1
e .

Also, observe that

E[c(E[Hj])] =
|Dj |∑
i=0

E[c(Tji)] =
|Dj |∑
i=0

∑
T ∈Tji

µji
T c(E[T]) =

|Dj |∑
i=0

c⊤xji = cj
LP ≤ cOPT .

Consequently, the multigraph H0 :=
⋃̇

j∈{1,...,ℓ}Hj has total edge cost at most ℓ · cOPT.
Furthermore, H0 has one large connected component that contains a walk with visits at d0,
D1 \ {d0}, . . . , Dj \ {d0} in this order (obtained by concatenating the walks obtained in
the graphs Hj above), i.e., a walk that respects ≺. Also, because the graphs H1, . . . , Hℓ are
independent,

P[v is isolated in H0] =
ℓ∏

j=1
P[v is isolated in Hj] ≤ 1

eℓ
.

Hence, by Item i of Lemma 9, the cost of the minimum-cost edge set F connecting H0, as
constructed in Line 2 of Algorithm 2, can be bounded as follows:

E[c(F)] ≤
∑

v isolated in H0

P[v is isolated in H0] · c(ev) ≤ 1
eℓ

· c(T) ≤ 1
eℓ

· cOPT .

Here, we used that for any j ∈ {1, . . . , ℓ}, we have c(T) ≤ cj
LP by Item i of Corollary 4,

and cj
LP ≤ cOPT as mentioned above. Similarly, by Item ii of Corollary 4, we know that

the cost of a cheapest odd(H)-join J in the multigraph H = H0 ∪ F can be bounded by
c(E[J]) ≤ 1

2 · cj
LP for any j ∈ {1, . . . , ℓ}, hence c(E[J]) ≤ 1

2 · cOPT.
Altogether, we obtain a connected Eulerian multigraph H ∪̇ J together with a walk that

has visits at d0, D1 \ {d0}, . . . , Dj \ {d0} in the order given by ≺, and

E[c(E[H ∪̇ J])] ≤
(

ℓ + 1
2 + 1

eℓ

)
· cOPT .

Thus, by Lemma 10, we can efficiently find a cycle with visits at d0, D1 \ {d0}, . . . , Dj \ {d0}
in the order given by ≺ of at most the above expected cost.

S. Armbruster, M. Mnich, and M. Nägele 1:15

Finally, to derandomize the random selection of trees Tji in Algorithm 2, we observe that
the present randomized analysis relies on a bound of the form

c(C) ≤
ℓ∑

j=1

|Dj |∑
i=0

c(Tji) +
∑

v /∈
⋃̇

j∈{1,...,ℓ}

⋃̇
i∈{1,...,|Dj |}

V [Tji]

c(ev) + 1
2 · cOPT .

The conditional expectations of this bound with respect to fixing any subset of the trees Tji

can be readily computed. Thus, the derandomization works analogously to Algorithm 1 by
the method of conditional expectations, in each iteration fixing one of the Tji. To complete
the proof of Theorem 6, we observe that all steps of Algorithm 2 can be implemented to run
in polynomial time. ◀

▶ Remark 11. We remark that the analysis of Algorithm 2 above is with respect to the actual
cost cOPT of an optimal TSP-PC solution. Alternatively, after guessing a root node d0,
one could also write an LP relaxation generalizing the OTSP LP relaxation by introducing
independent copies of the variables for each chain {d0} ∪ Dj and minimizing the cost of a
point x ∈ PHK(G) that dominates the edge usage within each of the copies. For the ease of
presentation, though, we decided to present the above analysis only.

4 Proof of Lemma 5

As mentioned earlier, we derive Lemma 5 from a closely related result used by Blauth and
Nägele [5, Lemma 4.2]. We restate their result here in a slightly simplified form that follows
immediately from the original formulation.

▶ Lemma 12 ([5, Lemma 4.2]). Let G = (V, E) be a graph with r ∈ V , let (x, y) ∈ RE
≥0 ×RV

≥0
be feasible for the system

x(δ(v)) = 2yv ∀v ∈ V

x(δ(S)) ≥ 2yv ∀S ⊆ V \ {r}, v ∈ S

yr = 1 ,

(4)

and assume that there is a vertex u ∈ V \ {r} such that yu = 1 and e0 = {u, r} satisfies
xe0 ≥ 1. We can in polynomial time construct a set T of trees that all contain the vertices r

and u, and weights µ ∈ [0, 1]T with
∑

T ∈T µT = 1 and the following properties.
(i) The point x ∈ RE

≥0 is a conic combination of the trees in T with weights µ and the edge
e0, i.e.,

x =
∑
T ∈T

µT χE[T] + χe0 .

(ii) For every v ∈ V \ U ,∑
T ∈T : v∈V [T]

µT = yv .

The proof of Lemma 12 relies on the well-known splitting-off technique (see, e.g., [16,30,31])
applied in the graph G with weights x. Indeed, the constraints in the system (4) can be
interpreted as r-v connectivity requirements for all v ∈ V \ {r}, hence splitting-off allows to
remove a vertex from the graph while preserving the connectivity properties of the remaining
graph. An inductive construction of the desired family of trees is then achieved by reverting
the splitting-off operations and extending trees appropriately. For a complete proof, we refer
to Blauth and Nägele [5].

APPROX/RANDOM 2024

1:16 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

To deduce Lemma 5 from Lemma 12, we note that a point (x, y) ∈ Ps-t stroll can be easily
transformed into a point (x′, y′) satisfying the assumptions of Lemma 12 by adding one
unit to x{s,t} and adjusting ys and yt accordingly. Note that intuitively, this corresponds to
closing an s-t stroll to obtain a tour by adding a copy of the edge {s, t}.

Proof of Lemma 5. Given (x, y) ∈ Ps-t stroll, we assume without loss of generality that
e0 := {s, t} ∈ E and define x′ := x + χ{s,t} and y′ = y + 1

2 (χs + χt). We claim that (x′, y′)
with r = s and u = t satisfy the assumptions of Lemma 12. Indeed, y′

s = y′
t = 1, and

x′
e0

= xe0 + 1 ≥ 1. Moreover, for v /∈ {s, t}, we have x′(δ(v)) = x(δ(v)) = 2yv; for v ∈ {s, t},
we have x′(δ(v)) = x(δ(v)) + 1 = 2 = 2y′

v, hence the degree constraints in (4) are satisfied.
Finally, to verify that the cut constraints of (4) are satisfied, too, let S ⊆ V \ {r} and v ∈ S.
If t /∈ S, then x′(δ(S)) = x(δ(S)) ≥ 2yv = 2y′

v follows from the corresponding constraint of
Ps-t stroll. If otherwise t ∈ S, we know that x(δ(S)) ≥ 1, hence

x′(δ(S)) = x(δ(S)) + 1 ≥ 2 ≥ 2y′
v ,

where we use that y′
v = yv ≤ 1 is implied by the constraints of Ps-t stroll for v ∈ V \ {s, t}

(see Footnote 5), and y′
s = y′

t = 1.
Consequently, by applying Lemma 12 to (x′, y′), we obtain in polynomial time a set T of

trees that all contain s and t, and weights µ ∈ [0, 1]T with
∑

T ∈T µT = 1 such that

x + χe0 = x′ =
∑
T ∈T

µT χE[T] + χe0 ,

i.e., x =
∑

T ∈T µT χE[T], and, for every v ∈ V \ {s, t},∑
T ∈T : v∈V [T]

µT = y′
v = yv . ◀

References
1 Susanne Armbruster, Matthias Mnich, and Martin Nägele. A (3/2 + 1/e)-approximation

algorithm for Ordered TSP, 2024. arXiv:2405.06244v1.
2 Egon Balas, Matteo Fischetti, and William R. Pulleyblank. The precedence-constrained

asymmetric traveling salesman polytope. Mathematical Programming, 68(1):241–265, 1995.
doi:10.1007/BF01585767.

3 Jørgen Bang-Jensen, András Frank, and Bill Jackson. Preserving and increasing local edge
connectivity in mixed graphs. SIAM Journal on Discrete Mathematics, 8(2):155–178, 1995.
doi:10.1137/S0036142993226983.

4 Jannis Blauth, Nathan Klein, and Martin Nägele. A better-than-1.6-approximation for
prize-collecting TSP. In Proceedings of the 23rd Conference on Integer Programming and Com-
binatorial Optimization (IPCO ’24), pages 28–42, 2024. doi:10.1007/978-3-031-59835-7_3.

5 Jannis Blauth and Martin Nägele. An improved approximation guarantee for prize-collecting
TSP. In Proceedings of the 55th Annual ACM SIGACT Symposium on Theory of Computing
(STOC ’23), pages 1848–1861, 2023. doi:10.1145/3564246.3585159.

6 Hans-Joachim Böckenhauer, Juraj Hromkovič, Joachim Kneis, and Joachim Kupke. On the
approximation hardness of some generalizations of TSP. In Proceedings of the 10th Scandinavian
Workshop on Algorithm Theory (SWAT ’06), pages 184–195, 2006. doi:10.1007/11785293_19.

7 Hans-Joachim Böckenhauer, Tobias Mömke, and Monika Steinová. Improved approximations
for TSP with simple precedence constraints. Journal of Discrete Algorithms, 21:32–40, 2013.
doi:10.1016/j.jda.2013.04.002.

8 Martin Böhm, Zachary Friggstad, Tobias Mömke, and Joachim Spoerhase. Approximating
TSP variants using a bridge lemma, 2024. arXiv:2405.12876.

https://arxiv.org/abs/2405.06244v1
https://doi.org/10.1007/BF01585767
https://doi.org/10.1137/S0036142993226983
https://doi.org/10.1007/978-3-031-59835-7_3
https://doi.org/10.1145/3564246.3585159
https://doi.org/10.1007/11785293_19
https://doi.org/10.1016/j.jda.2013.04.002
https://arxiv.org/abs/2405.12876

S. Armbruster, M. Mnich, and M. Nägele 1:17

9 Moses Charikar, Rajeev Motwani, Prabhakar Raghavan, and Craig Silverstein. Constrained
TSP and low-power computing. In Proceedings of the 5th International Workshop on Algorithms
and Data Structures (WADS ’97), pages 104–115, 1997. doi:10.1007/3-540-63307-3_51.

10 N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon
University, 1976.

11 N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Operations Research Forum, 3, 2022. doi:10.1007/s43069-021-00101-z.

12 G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman
problem. Journal of the Operations Research Society of America, 2(4):393–410, 1954. doi:
10.1287/opre.2.4.393.

13 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao Zhang.
Scheduling with communication delays via LP hierarchies and clustering. In Proceedings of
the 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS ’20), pages
822–833, 2020. doi:10.1109/FOCS46700.2020.00081.

14 Vladimir G. Dĕineko, Michael Hoffmann, Yoshio Okamoto, and Gerhard J. Woeginger. The
traveling salesman problem with few inner points. Operations Research Letters, 34(1):106–110,
2006. doi:10.1016/j.orl.2005.01.002.

15 Jianzhong Du, Joseph Y-T. Leung, and Gilbert H. Young. Scheduling chain-structured tasks
to minimize makespan and mean flow time. Information and Computation, 92(2):219–236,
1991. doi:10.1016/0890-5401(91)90009-Q.

16 András Frank. On a theorem of Mader. Discrete Mathematics, 101(1):49–57, 1992. doi:
10.1016/0012-365X(92)90589-8.

17 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, first edition edition, 1979.

18 L. Gouveia and P. Pesneau. On extended formulations for the precedence constrained asym-
metric traveling salesman problem. Networks, 48(2):77–89, 2006. doi:10.1002/net.20122.

19 R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, 1969. doi:10.1137/0117039.

20 Michael Held and Richard M. Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research, 18(6):1138–1162, 1970. doi:10.1287/opre.18.6.1138.

21 Klaus Jansen and Roberto Solis-Oba. Approximation schemes for scheduling jobs with
chain precedence constraints. International Journal of Foundations of Computer Science,
21(01):27–49, 2010. doi:10.1142/S0129054110007118.

22 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric TSP. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing (STOC ’21), pages 32–45, 2021. doi:10.1145/3406325.3451009.

23 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A deterministic better-than-
3/2 approximation algorithm for metric TSP. In Proceedings of the 22nd Conference on
Integer Programming and Combinatorial Optimization (IPCO ’23), pages 261–274, 2023.
doi:10.1007/978-3-031-32726-1_19.

24 Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds
for TSP. Journal of Computer and System Sciences, 81(8):1665–1677, 2015. doi:10.1016/j.
jcss.2015.06.003.

25 Daniil Khachai, Ruslan Sadykov, Olga Battaia, and Michael Khachay. Precedence constrained
generalized traveling salesman problem: Polyhedral study, formulations, and branch-and-cut
algorithm. European Journal of Operational Research, 309(2):488–505, 2023. doi:10.1016/j.
ejor.2023.01.039.

26 Manfred Kunde. Nonpreemptive LP-scheduling on homogeneous multiprocessor systems.
SIAM Journal on Computing, 10(1):151–173, 1981. doi:10.1137/0210012.

APPROX/RANDOM 2024

https://doi.org/10.1007/3-540-63307-3_51
https://doi.org/10.1007/s43069-021-00101-z
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1109/FOCS46700.2020.00081
https://doi.org/10.1016/j.orl.2005.01.002
https://doi.org/10.1016/0890-5401(91)90009-Q
https://doi.org/10.1016/0012-365X(92)90589-8
https://doi.org/10.1016/0012-365X(92)90589-8
https://doi.org/10.1002/net.20122
https://doi.org/10.1137/0117039
https://doi.org/10.1287/opre.18.6.1138
https://doi.org/10.1142/S0129054110007118
https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1007/978-3-031-32726-1_19
https://doi.org/10.1016/j.jcss.2015.06.003
https://doi.org/10.1016/j.jcss.2015.06.003
https://doi.org/10.1016/j.ejor.2023.01.039
https://doi.org/10.1016/j.ejor.2023.01.039
https://doi.org/10.1137/0210012

1:18 A (3/2 + 1/e)-Approximation Algorithm for Ordered TSP

27 J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity results for scheduling chains on a single
machine. European Journal of Operational Research, 4(4):270–275, 1980. doi:10.1016/
0377-2217(80)90111-3.

28 Elaine Levey and Thomas Rothvoss. A (1 + ε)-approximation for makespan scheduling
with precedence constraints using LP hierarchies. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing (STOC ’16), pages 168–177, 2016. doi:
10.1145/2897518.2897532.

29 Mohammad Mehdi Liaee and Hamilton Emmons. Scheduling families of jobs with setup
times. International Journal of Production Economics, 51(3):165–176, 1997. doi:10.1016/
S0925-5273(96)00105-3.

30 L. Lovász. On some connectivity properties of Eulerian graphs. Acta Mathematica Academiae
Scientiarum Hungarica, 28(1):129–138, 1976. doi:10.1007/BF01902503.

31 W. Mader. A reduction method for edge-connectivity in graphs. Annals of Discrete Mathe-
matics, 3:145–164, 1978. doi:10.1016/S0167-5060(08)70504-1.

32 Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with
distances one and two. Mathematics of Operations Research, 18(1):1–11, 1993. doi:10.1287/
moor.18.1.1.

33 Yaroslav Salii. Revisiting dynamic programming for precedence-constrained traveling salesman
problem and its time-dependent generalization. European Journal of Operational Research,
272(1):32–42, 2019. doi:10.1016/j.ejor.2018.06.003.

34 Sophia Saller, Jana Koehler, and Andreas Karrenbauer. A systematic review of approximability
results for traveling salesman problems leveraging the TSP-T3CO definition scheme, 2023.
arXiv:2311.00604.

35 A. I. Serdyukov. O nekotorykh ekstremal’nykh obkhodakh v grafakh. Upravlyaemye sistemy,
17:76–79, 1987. URL: http://nas1.math.nsc.ru/aim/journals/us/us17/us17_007.pdf.

36 Ola Svensson. Conditional hardness of precedence constrained scheduling on identical machines.
In Proceedings of the 42nd Annual ACM SIGACT Symposium on Theory of Computing
(STOC ’10), pages 745–754, 2010. doi:10.1145/1806689.1806791.

37 Gerhard J. Woeginger. A comment on scheduling on uniform machines under chain-type
precedence constraints. Operations Research Letters, 26(3):107–109, 2000. doi:10.1016/
S0167-6377(99)00076-0.

38 Laurence A. Wolsey. Heuristic analysis, linear programming and branch and bound, pages
121–134. Springer Berlin Heidelberg, 1980. doi:10.1007/BFb0120913.

https://doi.org/10.1016/0377-2217(80)90111-3
https://doi.org/10.1016/0377-2217(80)90111-3
https://doi.org/10.1145/2897518.2897532
https://doi.org/10.1145/2897518.2897532
https://doi.org/10.1016/S0925-5273(96)00105-3
https://doi.org/10.1016/S0925-5273(96)00105-3
https://doi.org/10.1007/BF01902503
https://doi.org/10.1016/S0167-5060(08)70504-1
https://doi.org/10.1287/moor.18.1.1
https://doi.org/10.1287/moor.18.1.1
https://doi.org/10.1016/j.ejor.2018.06.003
https://arxiv.org/abs/2311.00604
http://nas1.math.nsc.ru/aim/journals/us/us17/us17_007.pdf
https://doi.org/10.1145/1806689.1806791
https://doi.org/10.1016/S0167-6377(99)00076-0
https://doi.org/10.1016/S0167-6377(99)00076-0
https://doi.org/10.1007/BFb0120913

	1 Introduction
	1.1 Our results and techniques
	1.2 Related Work
	1.3 Organization of the paper

	2 Our algorithm
	2.1 The LP relaxation and polyhedral basics
	2.2 Rounding an LP solution
	2.3 Derandomizing Algorithm 1

	3 Extending to several independent total orders: Proving Theorem 2
	4 Proof of Lemma 5

