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Abstract
We break the barrier of 3/2 for the problem of online load balancing with known makespan, also
known as bin stretching. In this problem, m identical machines and the optimal makespan are
given. The load of a machine is the total size of all the jobs assigned to it and the makespan is
the maximum load of all the machines. Jobs arrive online and the goal is to assign each job to a
machine while staying within a small factor (the competitive ratio) of the optimal makespan.

We present an algorithm that maintains a competitive ratio of 139/93 < 1.495 for sufficiently
large values of m, improving the previous bound of 3/2. The value 3/2 represents a natural bound
for this problem: as long as the online bins are of size at least 3/2 of the offline bin, all items that
fit at least two times in an offline bin have two nice properties. They fit three times in an online
bin and a single such item can be packed together with an item of any size in an online bin. These
properties are now both lost, which means that putting even one job on a wrong machine can leave
some job unassigned at the end. It also makes it harder to determine good thresholds for the item
types. This was one of the main technical issues in getting below 3/2.

The analysis consists of an intricate mixture of size and weight arguments.
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1 Introduction

Online Load Balancing with Known Makespan is an online problem defined as follows.
At the start of the input, the number m of machines is revealed, followed by a sequence of
jobs with sizes in [0, 1], arriving one by one. Each job needs to be assigned to a machine,
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10:2 Improved Online Load Balancing with Known Makespan

and the load of a machine is the total size of the jobs assigned to it. The algorithm is
guaranteed a priori that the entire sequence of jobs can be scheduled on m machines so
that the makespan (the load of the most-loaded machine) is at most 1. The objective of the
algorithm is to schedule the jobs on the machines as they arrive, minimizing the makespan
R of the online schedule, which is allowed to be larger than 1. The value R is also known
under the name stretching factor.

The problem was first introduced in 1998 by Azar and Regev [3, 4] under the name
Online Bin Stretching, and studied intensively since [8, 9, 15, 17, 21]. Among its
given applications is container repacking [7] and reallocation during a server upgrade. This
scheduling problem shares its terminology and some algorithmic ideas with Online Bin
Packing. The overarching goal of the research of Online Bin Stretching and other
related problems over the last few decades is to learn how a small amount of additional
knowledge ahead of time (such as knowledge of the makespan) impacts the best possible
competitive ratio for the quintessential online problem Online Load Balancing [16].

To that end, another closely related problem is Online Load Balancing with Known
Sum of Processing Times, where we have a guarantee that the total volume of jobs is at
most m, but the optimum can be larger than 1. (e.g., if jobs larger than 1 appear in the
input sequence). For comparison in Online Bin Stretching we have a guarantee on the
makespan which is stronger, while in the classical Online Load Balancing problem we
have no guarantee. Having information on the total volume of jobs or the makespan could
be viewed as particular kinds of advice given to the online algorithm [10, 11, 24].

To answer the general question above quantitatively, the state of the art is the following.
For Online Load Balancing, Fleischer and Wahl [13] presented a deterministic algorithm
with competitive ratio approximately 1.92, and Rudin [25] showed that no deterministic
algorithm can be better than 1.88-competitive. Kellerer et al. [18] showed that having
a guarantee on the sum of processing times allows an approximately 1.585-competitive
algorithm as m goes to infinity, matching the lower bound of Albers and Hellwig [2]. Finally,
for Online Bin Stretching, Böhm et al. [8] presented an algorithm with stretching factor
3/2, and Azar and Regev [4] showed that no algorithm can have a stretching factor below 4/3.

Our contribution

We propose an online algorithm for Online Bin Stretching that is able to surpass the
3/2 threshold:

▶ Theorem 1.1. For m ≥ 60000 and for ε = 1/31, there exists an online algorithm for
Online Bin Stretching with stretching factor 3/2 − ε/6 = 139/93 < 1.495.

For ε = 1/62 the algorithm works already for m ≥ 3300. Our algorithm builds upon the
main concepts of its immediate predecessors [15, 8], by keeping a portion of the bins empty
until a later phase of the input, and by tracking combinatorial properties of the items using
a weight-based analysis. Any feasible algorithm must follow this general structure. However,
once the stretching factor is set below 3/2, new types of items appear which require great
care to pack efficiently. See Figure 1 and the full version. The level of complexity of our
algorithm as well as its analysis significantly surpasses the previously best-known results. For
instance, it now becomes necessary to use new item types when we start to fill up previously
used bins later in the algorithm, as most of the initial item types do not fit well in the
remaining space. Achieving a ratio below 3/2 for all values of m seems to be much harder
still, as we often have constantly many bins which are only half-full; only when m is large is
the number of such bins negligible.
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History and related work

The first results on Online Bin Stretching have appeared even before the introductory
paper of Azar and Regev in 1998; a year before, Kellerer et al. [19] already discovered the
matching lower and upper bound of 4/3 for the case m = 2. Since the beginning, some
research works focus on the stretching factor for general number of bins m, while others
focus on the special cases for m small and fixed. One interesting property of Online
Bin Stretching with fixed m is that both the best-known lower bounds [21] and some
algorithms [22] were designed using a computer-aided approach based on the Minimax
algorithm, as initially proposed by Gabay et al. [14].

For any value m ≥ 2 a general lower bound of 4/3 comes from Azar and Regev [4]. For
m = 3, the best-known algorithm is by Böhm et al. [7]. The remaining lower and upper
bounds for the range 3 ≤ m ≤ 8, listed in the table below, were designed by multiple variants
of computer-aided search; the results are by Böhm and Simon [9], Lhomme et al. [21] and
Lieskovský [23].

m 3 4 5 6 7 8 ≥ 9
Lower bound 1.365 [9] 1.357 [9] 1.357 [9] 1.363 [21] 1.363 [21] 1.363 [21] 1.3 [4]
Upper bound 1.375 [7] 1.393 [23] 1.410 [23] 1.429 [23] 1.455 [23] 1.462 [23] 1.5 [8]

For general m, Böhm et al. [8] presented the so far best algorithm in 2017 which achieves
stretching factor 3/2; this result was preceded by a long sequence of steady improvements
on the algorithmic front, among others by Kellerer and Kotov [17] and Gabay et al. [15].
Recently in [20], Lhomme et al. give first results for randomized algorithms. They show
that for m = 2 there exists a 5/4-competitive randomized algorithm that outperforms the
optimal deterministic algorithm. Furthermore, they provide lower bounds for 2 ≤ m ≤ 4 on
the competitive ratio of randomized algorithms.

For some small fixed values of m, especially m = 2, also specialized problems related
to Online Bin Stretching have been investigated previously; for example, Epstein [12]
considered online bin stretching with two machines (bins) of uniformly related speed and
Akaria and Epstein [1] considered online bin stretching on two bins with grade of service and
migration.

2 Structure of the algorithm

From now on, as is common in the literature on Online Bin Stretching and because
we are dealing with a packing problem, we refer to bins, levels of bins and items instead
of machines, loads of machines and jobs, respectively. Our initial setting is that the offline
optimum bins have size 1 and the bins usable by our algorithm have size R = 3/2 − ε/6.

We assume that the number of bins m is at least 60000. We scale the sizes of the bins
such that an offline bin has size 12 and an online bin has size 18 − 2ε. (We use 2ε here so
that half of the size of an online bin is a more convenient value.) Our goal is to construct an
algorithm which works for the largest possible value of ε. We will eventually set ε = 1/31, but
for an easier understanding of the relationships between the various values we will mostly use
symbolic calculations. Scaling the offline bin size to 12 allows us to work with near-integer
type thresholds, which is convenient. After scaling, the total size of the jobs on input is at
most 12m.

Our algorithm uses the algorithms Best Fit and First Fit as subroutines. These algorithms
work as follows. Both algorithms open a new bin if the item does not fit into any existing
bin. Otherwise, Best Fit places an item in a bin where the item can still fit and that, after

APPROX/RANDOM 2024
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placement, leaves the least amount of remaining empty space in the bin. This means it uses
the most-filled bin that can still accept the item. First Fit always places the item in the first
bin in which it will fit, using the order in which it opened the bins. In this paper, we will
sometimes fix the order in which the bins are to be used in advance, namely if these bins
already contain some items. This means that we are applying First Fit to variable-sized
“bins” (the empty spaces in the actual bins). We give a proof for the performance of First
Fit on variable-sized bins which may be of independent interest.

▶ Lemma 2.1. 1 Consider a set V of bins that is packed by First Fit of which at least the
last |V | − 2 bins contain at least k items. If |V | ≥ 3, the total level of the bins in V is more
than

k|V |
k + 1 .

▶ Lemma 2.2. For any set of v variable-sized bins that is packed using First Fit, the following
property holds. If at least k < v/2 items are packed into each bin, the total size of all the
items packed into these bins is at least

k

k + 1

v−k∑
j=k

s(j),

where the size of the j-th bin is denoted by s(j). This even holds if the number of bins
increases while First Fit is running (in this case v is the final number of bins).

Proof. Let the bins be sorted by the order of First-Fit.
We look at an (k + 1)-tuple (j, j + 1, . . . , j + k) with 1 ≤ j ≤ v − k. Let α be the largest

empty space of bins j, . . . , j + (k − 1). The items in bin j + k have size at least α. Bins
j, . . . , j+(k−1) on the other hand are filled to at least s(j)−α, . . . , s(j+(k−1))−α. We know
that at least k items of size at least α are packed in bin j +k, so in these k +1 bins we have an
overall load of at least

∑j+(k−1)
i=j s(i). Applying this bound for j = 1, 2, . . . we find guarantees

for First-Fit of at least
∑k

i=1 s(i) +
∑2k+1

i=k+2 s(i) + . . . ,
∑k+1

i=2 s(i) +
∑2k+2

i=k+3 s(i) + . . ., etc.
Adding all these bounds gives

(k + 1) · FF ≥
k−1∑
i=1

i · s(i) +
v−k∑
i=k

k · s(i) +
v−1∑

i=v−(k−1)

(v − i)s(i) > k

v−k∑
i=k

s(i). ◀

2.1 Item types

Our algorithm initially uses the following item types; once we start filling up the bins in the
fill-up phase, it will be necessary to use different types because of the amount of space that
will be left. We group some item types into supertypes. There are two intervals for small
items, as these items are packed the same way. The three weighting functions are related to
the three types of items that fit only once in an offline bin. Having three separate such types
is a consequence of the existence of quarter items (see Figure 1).

1 The simple proof of this lemma can be found, e.g., in [5].
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Supertype – middle dominant
Type small quarter small nice half large big top

Maximum size 3 − 3ε 4 − 4ε 5 + ε 6 − 2ε 6 + 2ε 9 − ε 10 + 6ε 12
Weight wtop 0 1 1 2 2 2 3 4
Weight wbig 0 0 0 2 2 2 4 4

Weight wlarge 0 0 0 0 2 4 4 4

We describe the ideas behind these type thresholds in detail in the full version of the
paper. Here we describe some fundamental properties of the various (super-)types. See also
Figure 1.

Dominant items fit only once in an online bin. Nice items fit twice in an offline bin and
can be placed in an online bin while still leaving room for another item of any size. (These
items are indeed in principle nice to pack, but we still need to be very careful with them.)
Half and large items fit twice in an online bin, but a large item cannot be packed together
with a half item in an offline bin (due to the thresholds 6 − 2ε and 6 + 2ε), whereas two half
items may fit together in an offline bin.

In our algorithm, we will pack small items only to a level of 6 − 6ε at the beginning to
leave room for one top item or two half items. As described above, using First Fit guarantees
that more than 4 − 4ε is packed in almost all bins that are packed like this. Of course we
get the same guarantee for small items of size more than 4 − 4ε, and this is what motivates
the upper bound 4 − 4ε for quarter items. It is also the same guarantee that we will achieve
on average for (a certain subset of) the bins with quarter items (some bins will contain two
quarter items). A big item fits in an online bin with two quarter items, and this is the reason
that the dominant items are divided into two types.

▶ Definition 2.3. For a partial input Ipartial, let the value TopThreat (resp., BigThreat,

LargeThreat) be the maximum number of top items (resp., big items, large items) in
Ifuture so that Ipartial ∪ Ifuture can be packed in m bins of size 12, and let TopBlock
(resp., BigBlock, LargeBlock) be the set of bins that contain more than 6 − 2ε (resp.,
18 − 2ε − (10 + 6ε) = 8 − 8ε, 9 − ε).

For any packing of a partial input, we have TopThreat ≤ BigThreat ≤
LargeThreat and LargeBlock ≤ BigBlock ≤ TopBlock.

▶ Lemma 2.4. For any feasible input I and weighting function w ∈ {wtop, wbig, wlarge}, we
have w(I) ≤ 4m. For any k ≥ 0 and any partial input Ipartial:

if wtop(Ipartial) ≥ 4k, then TopThreat ≤ m − k,
if wbig(Ipartial) ≥ 4k, then BigThreat ≤ m − k,
if wlarge(Ipartial) ≥ 4k, then LargeThreat ≤ m − k.

Proof. The bound wlarge(I) ≤ 4m follows from the type thresholds (a large and a half item
do not fit together in an offline bin). For the other two weighting functions, note that for
an item i of type j, the weight wtop(i) = ⌊ 5

12 sj⌋ and wbig(i) = 2(⌊ 3
12 sj⌋), where sj is the

infimum size of an item of type j (where the small items are split into two separate types for
this calculation, one for each range of small items). Intuitively, wtop counts the number of
items larger than 12

5 , that is, items that fit at most four times in an offline bin. Similarly,
wbig counts items larger than 12

3 , and multiplies the result by two. The bounds wtop(I) ≤ 4m

and wbig(I) ≤ 4m follow. ◀

The following invariant is a necessary property of any feasible algorithm and we will
maintain it and other invariants throughout the processing of the input.

APPROX/RANDOM 2024
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0 3 4 6 9

0

3− ε

3 6

6− 2ε 6 + 2ε 9− ε

9− ε6 + 2ε6− 2ε5 + ε4− 4ε3− 3ε

0

small quarter small nice half large

Figure 1 (Sketch, using ε = 1/6) A comparison of the important thresholds for an algorithm with
competitive ratio 3/2 (top) and an algorithm with competitive ratio strictly less than 3/2 (middle).
The thresholds our algorithm uses are displayed at the bottom. The offline bin size is scaled to
be 12, so all items in the input have size at most 12. The green box indicates (half) the difference
between the online and offline bin size. In the top figure, 6 is also a point where the amounts that
can be packed in a bin change, both online and offline.
We immediately see that in the middle figure items exist which did not exist before (red); for a
competitive ratio of 3/2, the online algorithm can pack more items per bin for all items smaller than
9. Moreover, items in the orange range can block some items of maximal size from being packed in
the same bin, if we pack two such items in one bin. Finally, the fact that the red range exists means
that items just larger than this (yellow) also need to be packed more carefully than before.

Starting phase Fill-up phase

Simple Fill-up Weight based packing Very Simple Fill-up Weight based packing
with Q2

Figure 2 An overview of the phases and states.

▶ Invariant 2.5. We have TopThreat ≤ m − TopBlock and BigThreat ≤ m −
BigBlock.

We will not be able to maintain LargeThreat ≤ m − LargeBlock throughout the
algorithm (not even in the starting phase). However, fortunately large items can be placed
twice in an online bin. Since these items can have size up to 9 − ε, a bin must be completely
empty in order to guarantee that two large items may be packed in it.

2.2 Phases and states

In the starting phase, we use bins one by one, while staying below a level of 6 − 2ε unless
there is a very good reason not to do so. If many relatively large items arrive, we may reach
a state where it is sufficient to use First Fit for all remaining items (Simple Fill-Up) or where
we know by weight that all items can be packed (Weight-based packing). Otherwise, we will
eventually go to the Fill-up phase, where we start filling up the bins that previously received
less than 6 − 2ε (or up to 8 − 8ε in the case of bins with two quarter items). In this phase
we will eventually also reach a state where we know that the remaining input can be packed,
either by size or by a weight argument.



M. Böhm, M. Lieskovský, S. Schmitt, J. Sgall, and R. van Stee 10:7

The starting phase

From the lens of a single bin, our algorithm typically either packs items until a bin is full –
which is typical for bins containing a single item type, such as the middle items – or it packs
them only up to a level of 6 − 6ε, particularly for items of size at most 6 − 6ε.

However, as we have already seen, quarter items do not fit in this framework. On the one
hand, we need to avoid packing many quarter items alone in bins (bad packing guarantee)
while on the other hand, we also cannot pack too many quarter items in pairs in bins that
do not yet contain anything else: that could block top items from being packed (Invariant
2.5 would be violated).

Ideally, we would like to pack items as follows:
top items or pairs of half items with small items
big items with quarter items
large items in pairs
nice items three per bin

In this way, all bins would have a weight of at least 4 in wtop and wbig and they would
also all be more than 12 full (except for bins that contain one big item and one quarter item
and bins that contain a top item/two half items smaller than 6 and not enough small items).
There are several problems in using these methods, however:

For bins that are planned to contain items of two different types, or two items of one
type, it is not known whether the second type or item will ever arrive.
Packing large items and smaller middle items into separate bins can easily lead to instances
that cannot be packed (if there are two bins with single middle items that fit together in
an offline bin, and then many top items arrive).

We can work around the first problem by changing our packing methods after a certain
number of bins have received items of only one type, in particular if many small or quarter
items arrive. Basically, our algorithm will first aim to reach the ideal packing described
above. When sufficient volume has been packed, we go back and start filling up the already
used bins. This is the fill-up phase of our algorithm.

The second problem requires us to be very careful with nice items in particular, since
some nice items fit with some large items in an offline bin. Packing nice items three per bin
in dedicated bins will be fine. However, we cannot afford to do this already starting from the
very first bin with nice items, as there could also be a bin with one half item and another
bin with one large item at the same time, blocking too many bins for top items so that the
algorithm fails. Fortunately, a bin with only a nice item can still receive an item of any other
type, so we will pack one nice item alone before starting to pack them three per bin from the
second bin onwards. We still need to be very careful if both half and nice items arrive.

Good situations and the fill-up phase

We may be fortunate and reach a situation where many bins are filled to (significantly) more
than 12. In this case it will be sufficient to pack the remaining items by essentially using
First Fit. This is one example of a good situation. This is our term for a configuration which
ensures that all remaining items can be packed, usually by using a very simple algorithm.
This one is called the First Fit case.

It may also happen that many relatively large items arrive early. In this case we may
reach a state where we know that a small or quarter item will never need to be packed into
an empty bin anymore, because they are packed in existing bins first and we would reach the

APPROX/RANDOM 2024



10:8 Improved Online Load Balancing with Known Makespan

First Fit case before using an empty bin. To ensure that the algorithm does succeed in all
cases, even if all bins receive items, we will always use Best Fit as last resort for any item
(after exhausting all other rules and all empty bins). We call this the Rule of last resort.

If many bins contain items but not enough of them contain a total size of more than 12
or sufficiently large items, it becomes important whether there exist bins that contain only
small items or only single quarter items. If that is the case, we will go to the fill-up phase, in
which we start filling up the nonempty bins using different item types. Otherwise, we will
remain in the starting phase and we will eventually reach a good situation or the input will
end.

The (9 − ε)-guarantee

We need to determine when exactly it is safe to start filling up bins in which we have already
packed some items, without failing for instance to the threat of top items. To be precise,
once we start filling up bins, we need a guarantee that this remains feasible no matter what
the remaining input is. This will certainly require us to pack a sufficient total size in each
bin that we fill up, as we always need to maintain Invariant 2.5.

Our cutoff for starting to fill up bins will be the point at which we know for certain that
the future number of big items is (and will remain!) strictly smaller than the number of bins
in which big items can still be packed (so, BigThreat < m − BigBlock). There are in
principle two ways by which we can know this: by considering weight and by considering
volume. The problem with using a weight-based guarantee is that for instance small items
can start arriving, which do not have weight. If we start filling up bins using small items, we
can soon reach a point where the weight-based bound for BigThreat has not changed, but
BigBlock has increased and we fail when many big items arrive.

We therefore use a volume-based bound. We need to be careful also here. Suppose
that already 2m/3 bins contain small items, and each such bin has a level in the range
(4 − 4ε, 6 − 6ε]. Now suppose that many big items start arriving one by one. These big
items do not bring us really closer to the point where we can safely start filling up the
nonempty bins, because every time that we pack a big item BigThreat decreases by 1 and
m − BigBlock decreases by 1. Similarly, top items bring us only slowly closer to this point
(since they are slightly larger than big items).

We will start the fill-up phase once we know the so-called (9 − ε)-guarantee holds:

Whenever new items of total size 9 − ε arrive, BigThreat decreases by at least 1.

Having the (9 − ε)-guarantee essentially ensures that packing 9 − ε per bin is sufficient to
maintain Invariant 2.5, although the problem of m large items arriving remains and needs to
be dealt with separately. Maintaining this average is not at all straightforward, since we also
have to make sure not to use too many empty bins too early, in order to pack as many pairs
of large items into them as possible.

We present a very careful method of filling the nonempty bins which takes care to use
the remaining space in those bins as efficiently as possible, using new item types which are
tailored to the remaining space. This method consists of several stages.

2.3 Bin types
During the execution of the algorithm, each bin in the instance will be assigned a specific
type. Sets of bins of a certain (sub)type are denoted typically by script letters (possibly with
an index). We define six main types of bins. We use the corresponding lower case letters to
refer to numbers of bins of a type: for instance, ℓ = |L| and δ = |∆|.
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E Empty bins.
L Large-complete bins. This is a set of bins that reduce LargeThreat; more generally,

they reduce the number of items with weight that can still arrive. Specifically, the number
of large items that can still arrive will always be at most m − ℓ, and the total weight
that can still arrive will be at most 4(m − ℓ). Since items without weight can still arrive
however, and bins in L do not necessarily contain at least 12, large-complete bins do still
accept items. A formal definition of these bins follows below.

S Bins with only small items. At most 6 − 6ε of small items is packed in each such bin.
∆ At most four bins that contain two nice items or a single middle item and maybe some

other items. See below for more details.
Q Bins that are not in ∆ in which the first item (or the second, if the bin was previously in

∆) is a quarter item and that are unmatched. (The algorithm sometimes matches some
bins in Q; these bins are then moved to a special subset Qmatch.)

N Bins in which the first two items are nice items and the third item is nice or half.

Bins started by nice items are filled to triples of nice items in the ideal packing and kept
separate to achieve this; these bins can become large-complete upon receiving a dominant
item. With this large-scale picture in mind, the large-complete bins are defined as follows.
These bins require a careful definition because nice items may exist.

▶ Definition 2.6. A bin is called large-complete if it satisfies all of the following conditions.
it has wbig ≥ 4,
it contains an item larger than 6 or two items larger than 6 − 2ε,
the bin was never in Q.

It can be seen that each bin with wbig ≥ 4 has a big item or wtop ≥ 4. A large-complete
bin does not necessarily contain a large item or a dominant item. The first condition ensures
that these bins contain as much weight as any offline bin. The second condition implies that
LargeThreat ≤ m − ℓ at all times. Note that this does not follow from the first condition
alone, as a bin could contain two nice items, and a nice and a large item may fit together in
an offline bin.

The set ∆ contains at most four exceptional bins used for careful handling of middle
items. Each of these bins will be created explicitly in our algorithm if they are needed. There
are the following four kinds of bins in ∆.
∆large one bin that contains a single large item, nothing else.
∆half one bin that contains a single half item and possibly small items of total size at most

6−6ε (notation ∆S
half) or a quarter item (notation ∆Q

half), nothing else. If the bin contains
only a half item we call it ∆half, else ∆+

half.
∆nice,1 at most two bins that contain one nice item and nothing else.
∆nice,2 one bin that contains two nice items and nothing else.
Our algorithm will use the so-called nice rule as long as possible: do not pack nice items
into ∆large ∪ ∆half and do not pack half or large items into ∆nice,1. This rule ensures that
nice items get packed into dedicated bins as much as possible (three per bin) so that we gain
on these items (both by weight and by packed size per bin) compared to the optimal packing.
This in turn ensures that nice items will hardly occur in inputs that are important for our
analysis; see the weighting function wlarge.

▶ Definition 2.7. A bin is in Q if it satisfies the following properties:
The first item is a quarter item,
The bin is not in ∆half,
The bin has not been matched (see algorithm).
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Additionally, a bin that was in ∆half and then received a quarter item and finally another
half or larger item is also in Q as long as it has not been matched.

We define the subset of Q of bins in which the first two items are quarter items by Q2,
and Q1 := Q \ Q2. A bin in Q1 may leave Q (and Q1) by receiving a half item (it enters
∆half); such a bin may later rejoin Q by receiving a half or larger item. Bins in Q may also
leave Q permanently by being matched (two bins in Q1 to one bin in Q2).

Instead of using the partition Q = Q1 ∪ Q2, we will also consider the useful partition of
Q in the table below. (Some of these subsets may be empty.)

Bin type Conditions on contents
Q1 A single quarter item, nothing else
Q2 Two quarter items, nothing else

Q1,big First item is a quarter item, second item is big
Q5 First item is a quarter item, wbig ≥ 4, bin is not in Q1,big

Or: The first three items are (in this order) half, quarter, half or larger

We let Q = Q1 ∪ Q2. Bins in Q5 can be in Q1 (for instance, bins with a top item) or in
Q2; we keep track of their membership via the sets Q1,5 := Q5 ∩ Q1 and Q2,5 := Q5 ∩ Q2.
All bins in Q5 will have wtop-weight 5 (or more), explaining the name Q5. For comparison,
bins in Q1 have wtop-weight at least 1 and bins in Q2 have wtop-weight at least 2.

Bins in Q1,big may get matched (pairwise) to bins in Q2,5; this is explained in the
algorithm (Step 3). The set of matched bins is denoted by Qmatch.

Since the first two items in each bin in Q2 are quarter items, we have Q2 ∩ Q1,big = ∅.
We use the membership of bins in Q1 and Q2 to keep track of the distribution of quarter
items in the non-large-complete bins. In our proofs, we will assign weight from the quarter
items in Q1 to bins in Q2 on the one hand (so we need sufficiently many bins in Q1) and
assign volume from bins in Q2 to bins in Q1 on the other hand (so we need sufficiently many
bins in Q2). The separation from large-complete bins and the separation of Q1,5 and Q2,5
will help us maintain an almost fixed ratio q1 : q2. Because of various half-full bins, we will
need some additional bins in Q1 (at most 15 in the fill-up phase) before starting to create
bins in Q2. A bin in Q1 that receives a half item leaves Q and enters ∆half (and ∆Q

half). If
it later receives another half item or a large, it returns to Q, namely Q1,5, or moves to L.
Summarizing, we have the following disjoint unions.

Q1 = Q1 ∪ Q1,big ∪ Q1,5 (1)
Q2 = Q2 ∪ Q2,5. (2)

We define the set of complete bins C as the set of bins that from the point of view of the
algorithm (and the analysis) do not need to receive any specific items, as follows:

C := L ∪ Q5 ∪ Qmatch ∪ N .

Into these bins, any item may be packed. Finally, the unmatched nonempty bins that are
not large-complete are called regular (set R). We have

R = S ∪ Q ∪ N ∪ ∆ = S ∪ Q1 ∪ Q2 ∪ Q1,big ∪ Q5 ∪ N ∪ ∆. (3)

At all times, each bin is in exactly one of the sets R, Qmatch, L, E .
We will show eventually that in the starting phase, some bins remain empty or we can

guarantee that all remaining items can be packed (possibly using different methods). However,
the partitioning of the sets shown here remains valid even after we run out of empty bins
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apart from the fact that some bins may contain some items that do not belong there; for
instance, there could be some small items packed into Q2. Also, after we run out of empty
bins the nice rule may be violated. We will maintain the following invariant.

▶ Invariant 2.8. There is never a bin in Q1 ∪ Q2 at the same time as a bin with a big item
as its only item with weight.

▶ Invariant 2.9. We have LargeThreat ≤ m − (c − n) as long as the nice rule is followed.

▶ Lemma 2.10. Invariant 2.9 holds for any packing of items.

Proof. As long as the nice rule is followed, all complete bins except for the ones in N contain
two half items or an item larger than 6 and have wbig ≥ 4. ◀

From this bound it can be seen that the possible existence of bins in N force us to keep bins
empty for pairs of large items, since we cannot ensure LargeThreat ≤ m − c.

2.4 Proof overview
The present version omits essentially all of the proofs. Here we merely give an overview.
The proof begins with some initial observations regarding how many bins there can be of
different types and how much they contain. We then focus on the set Q and prove that up
to an additive constant, 2q2 = q1 throughout the starting phase. The (almost) fixed ratio
q2 : q1 is used to help show Invariant 2.5 for top items and to show a packing guarantee for
Q. There will be constantly many bins that do not satisfy our packing guarantees, these
bins will be in a set X .

In the starting phase, either some bins remain empty, q2 > 0, or all items get packed. It
turns out that Invariant 2.5 is maintained as long as we do not use the rule of last resort
(essentially, as long as some bins are empty). There exist so-called good situations in which we
can guarantee that all remaining items can be packed (possibly using a different algorithm).
We show that Invariant 2.5 is maintained in the entire starting phase or we reach a good
situation. More generally, the algorithm does not fail in the starting phase. We find that
packing 9 − ε additionally in each non-complete bin in the fill-up phase is enough to maintain
Invariant 2.5 in the fill-up phase as well.

To analyze the fill-up phase, we first consider some simple cases (essentially, new good
situations). We then continue by showing that the algorithm does not fail in the first three
stages of the fill-up phase. Linear programs are used to show that the algorithm does not
fail in the fill-up phase.

3 Algorithm in the starting phase

Whenever the algorithm uses or attempts to use a set A to pack an item in the following
description, we use First Fit on the bins in A, unless otherwise stated. The notation A → B

means that a bin in the set A moves to B by receiving an item of the current type.

Step 1: Using and creating complete bins Try the following in this order.

for half and large items: ∆nice,2 → N ⊆ C,
for non-small items: Q1,big → Q1,5 ⊆ C
use a complete bin (a bin in C = L ∪ Q5 ∪ Qmatch ∪ N ).
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create a complete bin if this does not violate the nice rule (page 9).
First try the bins Q2, Q1, ∆Q

half in this order. Among other bins, use Best Fit to create a
bin in L, but do not pack a half item into ∆large (yet).2

Step 2: Packing rules for each item type If an item is not packed yet, we apply the fol-
lowing rules depending on the item type.
Small: First Fit on bins in S ∪ ∆S

half while packing at most 6 − 6ε of small items in each
bin, ∆half → ∆S

half, E → S.
Quarter: If |Q1| + δQ

half ≥ 2|Q2| + 15 then Q1 → Q2, else ∆half → ∆Q
half, E → Q1.

Nice: ∆nice,2 → N , if δnice,1 = 2 then ∆nice,1 → ∆nice,2, E → ∆nice,1.
Half: Best Fit on bins in S ∪ Q1 → ∆half, ∆large → L, E → ∆half.
Large: E → ∆large.
Dominant: Always packed in Step 1.

Rule of last resort If some item cannot be packed according to these rules, which can
only happen after we run out of empty bins, we use Best Fit for this item, except
that we still follow the nice rule as long as possible. If the nice rule has already been
violated, we simply use Best Fit. For future items we still use the packing rules above
first.

Step 3: Matching rule This step minimizes the number of bins in Q1,big.
If |Q1,big| ≥ 2 and there is a bin in Q2,5, two bins in Q1,big are matched to a bin in Q2,5
and all three bins are moved from Q to Qmatch.

Step 4: Swapping rule Each time that a new bin b̄ in Q1 is created, if there exists a large-
complete bin b with a big item but no other items with weight (such a bin must contain
also other items, or we would not have created b̄), we virtually swap some items. That is,
the bin b̄ is treated as a bin in S from now on, and the bin b supposedly contains a big
item and a quarter item. The quarter item is not considered to be the first item in b, so b

is not in Q. This ensures that Invariant 2.8 is maintained.

The swapping rule ensures that big items can be packed together with small items without
violating Invariant 2.8 even if quarter items arrive later. Whenever the swapping rule is
applied on two bins b̄ ∈ Q1 and b ∈ L, the total size packed into these bins is more than
18 − 2ε at this point (else b̄ would not have been opened). If the bin b̄ contains less than
4 − 4ε we reassign volume such that the bin b̄ ends up with exactly 4 − 4ε. We see that more
than 18 − 2ε − (4 − 4ε) = 14 + 2ε remains for the bin b. This just means that b̄ possibly has
slightly more space for additional items than the algorithm calculates with (because it views
b̄ as containing the small items that were in b).

The large-complete bins used by the swapping rule differ from the other bins in L only in
that they are not used to pack any future item. That is, we ignore such bins in Step 1 (this
is not written explicitly in the algorithm; it seemed cleaner to explain this here).

Transitioning to the fill-up phase

In general, the transition from the starting phase to the fill-up phase happens once the
(9 − ε)-guarantee starts to hold. This is roughly speaking after packing an average of 3 + ε

on the (non-complete) regular and empty bins and 12 on the complete bins. More precisely

2 If S ∪ Q1 ̸= ∅, we prefer packing half items there rather than in ∆large, because this improves certain
packing guarantees. (If S ∪Q1 ̸= ∅, ∆half exists and a large item arrives, we will have that ∆half = ∆S

half
which already improves the guarantee.)
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after packing T1 := (3 + ε)m + (9 − ε)(c + q1,big + 14). We can guarantee that the algorithm
keeps at least roughly E0 := 1−5ε

4−4ε (m − ℓ − qmatch) + 2+8ε
4−4ε n + 1−5ε

4−4ε qmatch + 4ε
4−4ε ℓ − 48 bins

empty when reaching the packing threshold. For more details see the full version.

Q2,5Q2Q1,5 Q1 S ∆ N3

ER Qmatch L

12

6− 6ε

18− 2ε

small

quarter

nice
half

large

big

top

Figure 3 (Sketch) Overview of bins in the starting phase. The three bins in Qmatch were moved
there by the matching rule. The second quarter item in the rightmost bin in Qmatch arrived there
when the bins were already in Qmatch. The swapping rule was applied to the rightmost bin in S and
the rightmost bin in L. The small items on top of the big item in the rightmost bin arrived before
the swapping rule was applied. For visual clarity we have left out a number of bins in Q1.

4 The fill-up phase

4.1 Preliminaries
Once the fill-up phase is reached we refer to the bins by their type they had when the fill-up
phase was started and no longer update these sets. E.g., a bin in Q2 at the start of the
fill-up phase that receives a big item in the fill-up phase does not become a bin in Q2,5 but is
referred to as a bin in Q2 even after receiving the big item. We assume all bins in S contain
more than 4 − 4ε, overestimating its total content by at most 2 · (4 − 4ε). The bin in ∆large
is assumed to contain a large+ item once we enter this phase, overestimating its content by
at most 3 + ε. The bin ∆+

half contains an easy item which matches the packing rules in the
fill-up phase.

There are three possible states when entering the fill-up phase:
s + q1 > 0
s + q1 + q2 = 0
s + q1 = 0 and q2 > 0

The first case is what we will call the standard case where e ≥ E0 = Ω(m) holds, for which we
can guarantee that when using our packing rules we will eventually end in a good situation
or the input ends. For the second and third case we can guarantee that we are already in
good situations that do not have requirements on e or r. For more details we refer to the full
version.

▶ Definition 4.1. Let e0 be the number of empty bins at the start of the fill-up phase.
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For the fill-up phase, we introduce the set U of unused bins. These are mostly bins that have
not received items in the fill-up phase but that we do plan to use for items. At the start of the
fill-up phase, these are the bins that are not in L ∪ Qmatch, so |U| = m − ℓ − qmatch = r + e0.

Bins in N are also not used for items anymore, but are initially counted as part of U so
that LargeThreat ≤ u (see Invariant 2.9). Bins in Q5 are initially in U to maintain the
proper ratio q1 : q2. At the start of the fill-up phase, the bins in U are sorted from left to
right. We use the ordering3

N , Q2,5, Q2, S, Q1, E , ∆half ∪ ∆large

where the subsets S and Q1 are ordered by non-increasing levels and ∆+
half is placed among

them if it exists. Indeed, the entire set U is essentially sorted by the levels of small and
quarter items at the start of the fill-up phase, so for instance bins in Q1 (including bins in
Q1,5 and Q1,big) have level at most 4 − 4ε for the sorting. Throughout the fill-up phase, by
the level of a bin in Q we will always mean the total size of the quarter items in this bin at
the end of the starting phase. Regarding N , it is often convenient to divide the contents of
these bins in a part of size at least 6 − 6ε and a part of size exactly 9 − ε (and this is why
these bins are first in the ordering).

During the fill-up phase, we will maintain a set D such that TopThreat ≤ u − d will
hold throughout the fill-up phase. We define a specific initial set D below and we will update
this set throughout, using the following rules.

Rule 1 Each bin that is used (in particular bins in D) will receive at least 9 − ε (including
parts assigned to a bin but not packed in it) to ensure BigThreat ≤ m − BigBlock
continues to hold. We already note that for bins that are empty at the start of the fill-up
phase the bound of 9 − ε can be reached simply by using Next Fit (it will hold for all but
at most one bin at any time).

Rule 2 Whenever some item cannot be packed into some bin in D that already received
items of the same type in the fill-up phase (types are defined below), that bin will leave
D and U . Each time we pack and/or assign 10 + 6ε to D in the fill-up phase, a new bin
is added to D. (Sometimes we will assign parts of items packed into other bins to bins in
D.)

Rule 3 Each bin that is not in D will receive at least 10 + 6ε on average to maintain
TopThreat ≤ u − d.

Reducing the unused bins

We begin the fill-up phase by removing the bins in N and Q5 from the unused bins. The
contents of these bins were and remain counted. For some later calculations it will still be
important that these bins may exist, which is why we include them initially and gave a
specific ordering for them.

Recall that the initial value of u is m − ℓ − qmatch. By the transition of the starting phase
to the fill-up phase, TopThreat ≤ 9−ε

10+6ε (m − c − 14). So at least

m − 9 − ε

10 + 6ε
(m − c − 14) = 1 + 7ε

10 + 6ε
m + 9 − ε

10 + 6ε
· (14 + c)

= 1 + 7ε

10 + 6ε
(m − c) + 9 − ε

10 + 6ε
· 14 + c

3 The at most two bins in ∆nice,1 ∪ ∆nice,2 can be placed anywhere. However, they are ignored when
determining β0 later.
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bins will not receive top items in the fill-up phase (but c of those bins are unavailable for top
items anyway). Then after removing N and Q5 from the unused bins, we have u = m − c, so
at least

1 + 7ε

10 + 6ε
· u + 9 − ε

10 + 6ε
· 14

unused bins will not receive top items. We will initially set d = 1+7ε
10+6ε · u + 9−ε

10+6ε · 14.
Analogously, BigThreat ≤ m − c − 14, so at least c + 14 bins will not receive big items,

meaning that at least 14 unused bins will not receive big items in the fill-up phase. While
packing the input, at any time there will be half-full bins. These are bins which have received
some items during the fill-up phase but have not yet received (or been counted for) 9 − ε

or, in the case of non-D bins, 10 + 6ε. These half-full bins need to be taken into account to
ensure that Invariant 2.5 is maintained. Denote their number by h.

▶ Invariant 4.2. At any time, the number of bins in D that have not yet received any item
in the fill-up phase it at least 1+7ε

10+6ε · u + 9−ε
10+6ε · 14 − h, where u = m − c initially and u is

updated according to Rule 2.

▶ Lemma 4.3. As long as we pack items according to Rule 1 and update D and U according
to Rule 2 for all except at most 10 bins, or pack items according to Rule 3, and at most 13
bins are half-full at any time, TopThreat ≤ u − d, BigThreat ≤ m − BigBlock and
Invariant 4.2 are maintained.

Proof. If we pack items according to Rule 3, the claims follow from the fact that we pack
at least 10 + 6ε in every non-D bin, decreasing TopThreat and BigThreat by at least
1 while increasing BigBlock by at most 1 and removing exactly 1 bin from U when we
start using a new bin. Hence u − d and TopThreat both decrease by 1, and BigThreat
decreases by at least 1. In this case the ratio d : u increases.

Regarding items that get packed according to Rule 1, we pack at least 9 − ε in every
bin in D (and then remove such bins from D and U) and add a new bin to D after packing
10 + 6ε, which means that we add a bin on average after using 10+6ε

9−ε bins in D. The ratio
d : u remains constant during this process apart from at most one bin.

The ratio can be seen as follows. After packing a total size of x into D, we have removed
at most x/(9 − ε) bins from D (because we only remove a bin from D once we start using
the next one) and we have added ⌊x/(10 + 6ε)⌋ bins to D. Ignoring the rounding, overall d

has decreased by at most x( 1
9−ε − 1

10+6ε ) and u has decreased by at most x/(9 − ε). The
ratio is maintained. The rounding means that the set D may be 1 smaller during processing.
This together with the initial value d = 1+7ε

10+6ε · u + 9−ε
10+6ε · 14 leaves 10 bins for which the

rules do not need to be followed, since 9−ε
10+6ε · 14 > 11.

Finally, maintaining BigThreat ≤ m − BigBlock given that initially BigThreat ≤
m − c − 14 means that it is sufficient (due to the bin ∆nice,2) that at most 13 bins will be
half-full at any time during the fill-up phase. ◀

A consequence of Invariant 4.2 is that the set D does not become empty during the
packing if we indeed maintain h ≤ 13. Maintaining this invariant means that all remaining
big and top items can be packed at any point during the fill-up phase. Note that if at some
point indeed very many top items arrive, they can perhaps not all of them be packed outside
of D, as there can be various half-full bins outside of D. However, by Invariant 4.2, as long
as the total number of half-full bins is at most 13, all top items can indeed be packed.
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Item types

Naturally, as we start filling up bins in the fill-up phase, new thresholds become important.
Rather than leaving enough space for items that may arrive in the future as in the starting
phase, we now want to use the remaining space efficiently. Bins in S have at least (18 − 2ε) −
(6−6ε) = 12+4ε space remaining and bins in Q2 leave at least (18−2ε)−2(4−4ε) = 10+6ε

space. If some item type fits at least three times on top of bins in Q2, then First Fit gives a
stronger bound on the packing and Rule 1 is satisfied. As there is at least 10 + 6ε remaining
space, we define small items to be of size at most 10+6ε

3 . Items of size more than 9−ε
2 that

fit twice in this space are also small items. Apart from the range (5 + ε, 5 + 3ε], these size
ranges are a subset of what defined small items in the starting phase.

The next items are quarter items which may not fit three times on Q2 but at least three
times on S. For these we need to be slightly more careful; this is described below. Small
items fit at least four times in an empty bin and at least two times on S ∪ Q2. It can be seen
that two items that are larger than small items satisfy Rule 1. To fill the remaining space
well, the remaining items are split into quarter+ and quarter++ items. Analogously, easy
items fit twice on S and satisfy Rule 3, explaining the (unchanged) threshold 6 + 2ε. These
items have good sizes as well as large weights. To pack large items in the range (6 + 2ε, 9 − ε]
efficiently we introduce a new threshold at 18−2ε−β

2 separating large− and large+ items which
will be explained later.

0
10+6ε

3 5 + 3ε

6 + 2ε

18−2ε−β
3

18−2ε−β
2

4 + ε 9−ε
2

9− ε

small quarter small easy2 large+

quarter+

quarter++ large−

9− ε6 + 2ε

6− 2ε

5 + ε4− 4ε3− 3ε

0

small quarter small large

half

nice

Figure 4 (Sketch, using ε = 1/31, β = 5) A comparison of the important thresholds for our
algorithm in the starting phase (top) and in the fill-up phase (bottom). The small (green) items fit
at least three times (resp. twice) in the remaining empty space in a Q2 bin (10 + 6ε), the easy2

(yellow) items fit at least twice in the remaining empty space in a S bin (12 + 4ε) and the large−

(red) (resp. quarter+ (purple)) items fit at least twice (resp. three times) in the remaining empty
space in a bin filled to at most β (18 − 2ε − β).

The value β will be defined later and will change during the fill-up phase; we will have
β ∈ (3 − 3ε, 6 − 6ε]. There are ten size ranges, but the items in six ranges are straightforward
to pack (see below). We call the quarter+, quarter++, large− and large+ items hard items.

Type Max size
small 10+6ε

3
quarter 4 + ε

quarter+ 18−2ε−β
3

quarter++ 9−ε
2

small 5 + 3ε

Type Max size
easy 6 + 2ε

large− 18−2ε−β
2

large+ 9 − ε

big 10 + 6ε

top 12

We see that quarter items and small items may be slightly larger than in the starting
phase. This does not decrease their weight. From the starting phase, we will only use the
facts that bins in Q2 have level at most 8 − 8ε and bins in S have level at most 6 − 6ε; the
old size thresholds play no further part in the analysis.
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4.2 Packing methods for non-hard items
small and big These are items such that when packing them into Q2 using First Fit (which

are the fullest bins (ignoring X ) that possibly still need to receive items in the fill-up
phase), each bin (apart from constantly many) will receive at least 9 − ε of items.
These items are always packed in the leftmost available bin that did not already receive
items from another type in the fill-up phase. That is, we essentially use First Fit, but
items of the three different size ranges are not packed together into bins. We only use
bins in D. This is feasible because new bins will enter the set D as we pack items in it
(Rule 2).

easy and top When packing easy or top items using First Fit into any bin that is not in
Q2 ∪ ∆large ∪ ∆nice,1, Rule 3 is automatically satisfied. (We have |∆large ∪ ∆nice,1| ≤ 2.)
These items are packed exactly like the small items except that we skip the bins in Q2.
We use First Fit for easy and top items (on the bins not in Q2) separately.

quarter The quarter items are packed by First Fit, alternating between bins in Q2 and bins
not in Q2. If we run out of bins in Q2 we use First Fit on dedicated bins not in Q2. If we
run out of nonempty bins not in Q2 we can always pack all remaining items as is shown
in the full version.

hard These are the quarter+, quarter++, large− and large+ items. These are the only types
of items that we will sometimes (have to) pack into empty bins although nonempty bins
that are not in Q2 are still available. When packing hard items of one type using First
Fit into empty bins, Rule 3 is satisfied and there is a surplus above the requirement of
10 + 6ε. We use this surplus to pack as many items as possible into nonempty bins, which
is necessary to succeed. See Section 4.3.

Once First Fit uses a new bin for an item, the bin previously considered (in which the item
did not fit anymore) is removed from U .

4.3 Hard (quarter+(+) and large) items
The above lemmas show that in the fill-up phase, all items except quarter+(+) and large
items can be packed while following the rules – as long of course as quarter+(+) and large
items are packed following the rules as well. We next consider quarter+(+) and large items
separately. For this we first need to define some important sets.

4.3.1 Sets considered for packing hard items
The set S−L and the parameter β0

At the beginning of the fill-up phase, if there are e empty bins, then if we pack two large
items in each empty bin, there will be e nonempty bins that will not be needed to pack large
items that have not arrived yet, even if u of them arrive in total. In principle, we let S−L be
the e rightmost nonempty bins. We only deviate from this if there are less than e nonempty
bins. In that case S−L consists of all nonempty unused bins (after the removal of N ∪ Q2,5).
We define β0 as the level of the leftmost bin in S−L unless all other nonempty bins are in
N ∪ Q2,5, in which case β0 is set to 6 − 6ε. Of course, due to other items arriving, it may
well be that some large items end up getting packed in S−L after all.

Since u = m − ℓ − qmatch at the start of the fill-up phase, it is not possible that more
than u − q5 large items arrive in the fill-up phase. This holds because each bin counted in
q5 + qmatch contains two items larger than 6 − 2ε or a dominant item, and each bin counted
in ℓ contains two items larger than 6 − 2ε or an item larger than 6. Moreover, as above,
Invariant 4.2 is maintained by the (9 − ε)-guarantee. As soon as u starts to decrease in the
fill-up phase, more than u − q5 large items may still arrive.
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Construction of the set D

We initially define D as the leftmost 1+7ε
10+6ε · u + 9−ε

10+6ε · 14 unused bins (where bins in Q5
and N have already been eliminated).

Definition of the set SL

We define SL as the set of the remaining nonempty bins in U (that is, all the unused bins
that are not in D ∪ S−L ∪ E). The set SL may be empty.

Note that the above construction is done only once. The sets SL and S−L do not increase
and a bin leaves such a set only if the bin leaves U or is added to D. While packing items in
the fill-up phase, bins will be added to D from left to right. Hence entering D will happen
first to bins in SL and then (possibly) to S−L and E . Such bins leave their original sets.

Bins in S are filled to at most 6 − 6ε and hence have at least 12 + 4ε empty space.
Easy2 items fit at least twice. Bins in S−L are filled to at most β0 and hence have at
least 18 − 2ε − β0 empty space. Large− items therefore fit at least twice (explaining that
threshold). Bins initially in D are loaded to at most 2(4 − 4ε) and hence have at least
18 − 2ε − 2(4 − 4ε) = 10 + 6ε space.

4.3.2 Packing methods for hard items: Five stages
Hard items are packed as follows. There are five possible stages; depending on what the
packing looks like when the fill-up phase starts, not all stages might be applicable. Generally,
we start by taking advantage of any Q1,5 bins that are available, then we start filling the
nonempty bins from right to left, always trying to avoid using empty bins as much as possible.

Hard items are always distributed among several types of bins (D, SL, S−L, E). One of
the used types will always be D. In several cases, we will specify that nonintegral numbers
of bins need to be used for some items. This can be implemented as follows. We always start
by using a bin that is not in D. Then, we keep using bins in D until we would exceed the
desired ratio. At that point we use a bin that is not in D again, and repeat the process. In
the long term we get closer and closer to the desired ratio.

Stage 1

In this stage, as mentioned above we first exploit any bins in Q1,5 that may exist. These bins
can be intermixed with Q1 in the sorted order, but we use them first. To be more precise,
these bins are not used to pack any new items (as they are already quite full) but rather to
pack additional items into D, as follows. Note that these bins are not in U . For this stage
we define the upper bound for quarter+ items as 9−ε

2 and the upper bound for large− items
as 9 − ε and hence neither quarter++ items nor large+ items exist. This also means that the
value of β (see table of item type thresholds for the fill-up phase) does not yet play a role.

Quarter+(+): As long as there exist bins in Q1,5 with partially uncounted contents, for
packing quarter+(+) items such bins are considered to contain quarter+(+) items (of
the size of the ignored items). Each such bin allows us to pack 1+7ε

1−3ε bins in D with
two quarter+(+) items each. In these 1+7ε

1−3ε bins we then pack (or count) more than
2 1+7ε

1−3ε (4 + ε) + (1 + 7ε) = 1+7ε
1−3ε · (9 − ε), which includes the so far uncounted part of the

bin in Q1,5.
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Large: As long as there exist bins in Q1,5 with partially uncounted contents, for packing
large items such bins are considered to contain large items (of the size of the ignored
items). Each such bin allows us to pack 1+7ε

3−3ε bins in D with one large item each. In these
1+7ε
3−3ε bins we then pack (or count) more than 1+7ε

3−3ε (6 + 2ε) + (1 + 7ε) = 1+7ε
3−3ε · (9 − ε),

which includes the so far uncounted part of the bin in Q1,5.

It can be seen that by packing quarter+(+) and large items this way, Rule 1 and Rule 3
are followed. Once we run out of bins in Q1,5, we start using the methods in the following
table. The value of β will change over time and is set at the start of each of the following
stages. Note here that for β ≤ 9−ε

2 the upper bound for quarter+ items is at least the upper
bound for quarter++ items and hence quarter++ items do not exist as long as β ≤ 9−ε

2 .

Item type Bin type Nr bins Per bin Counted Average
quarter+ D 3 2 2(4 + ε) 9 + 9

4 ε

Q1, S−L(, SL), E 1 3 3(4 + ε)

quarter++ E 1 4 4
3 (18 − 2ε − β) 9 − ε

D 45−4β−5ε
2β−(9−ε) 2 2

3 (18 − 2ε − β)

large− D 1 1 6 + 2ε 9 + 3ε

Q1, S−L(, SL), E 1 2 12 + 4ε

large+ D 18−2ε
β − 2 1 18−2ε−β

2 9 − ε

E 1 2 18 − 2ε − β

The third column indicates the number of bins used each time. The column “Average”
contains the average amount counted over all bin types used for this item.

This table is implemented as follows. Items from these four types are packed into separate
bins. For each type except quarter++ items, we first use a bin in D. For quarter++ items, we
use E first to ensure that the average packed in the bins with these items is always greater
than 9 − ε, apart from at most one bin: the bin currently being used. For all other types, we
have this guarantee for all used bins up to and including the most recently filled bin in E ,
which is all but at most four bins for each type.

For each bin used we pack items in it until we have packed the number of items in the
column Per bin. We first use bins in D until we have packed the number of items in the
column Per bin and until we have used the number of bins in the column Nr bins, followed
by one bin in E . (If the number of bins supposed to be used in D is not an integer, then the
number of bins used in D is always off by less than 1 compared to the desired ratio of D : E
usage.) This procedure keeps repeating. Whenever we start using a new bin, the previous
bin for this type is called closed. Once a bin is closed it is removed from U .

In the following we will always check if bins with level at most β exist. While this is true
we remain in the current stage. Else we update β to the next higher bound.

Stage 2

We set β := min(β0, 4 − 4ε). As long as there are bins with level at most β available, we use
these bins (including bins in SL if needed) for packing quarter+ and large− items. There are
no quarter++ items and only large+ items are packed into empty bins.

Stage 3

As Stage 2, but with β := min(β0, 9−ε
2 ). Bins in SL with level at most β will still be used for

quarter+ and large− items. There are no quarter++ items and only large+ items are packed
into empty bins.

APPROX/RANDOM 2024
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Stage 4

This stage only exists if β0 > 9−ε
2 . We set β := β0.

Quarter++ and large+ items are packed into empty bins. All items are packed according
to the table. Bins in SL are not used for quarter+ items; we would go to Stage 5 instead.
This is done to ensure that enough bins are left for large− items and that we do not waste
bins on quarter+ items.

Stage 5

Only bins in SL ∪ D ∪ E are left. At this point quarter+ and large− items are also packed
into empty bins.

Stage 6 would be the stage where all empty bins have been filled while some bins in
SL \ D remain. The case where all nonempty bins get filled first is discussed in the full
version. We will show that Stage 6 is not reached or we are in a good situation.

As is in the starting phase, if some item cannot be packed according to the packing rules
(including the case where we change the packing rules if we reach a good situation) we use
the rule of last resort.
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