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Abstract
In the Max-2Lin(2) problem you are given a system of equations on the form xi + xj ≡ b (mod 2),
and your objective is to find an assignment that satisfies as many equations as possible. Let
c ∈ [0.5, 1] denote the maximum fraction of satisfiable equations. In this paper we construct a curve
s(c) such that it is NP-hard to find a solution satisfying at least a fraction s of equations. This
curve either matches or improves all of the previously known inapproximability NP-hardness results
for Max-2Lin(2). In particular, we show that if c ⩾ 0.9232 then 1−s(c)

1−c
> 1.48969, which improves

the NP-hardness inapproximability constant for the min deletion version of Max-2Lin(2). Our work
complements the work of O’Donnell and Wu that studied the same question assuming the Unique
Games Conjecture.

Similar to earlier inapproximability results for Max-2Lin(2), we use a gadget reduction from the
(2k − 1)-ary Hadamard predicate. Previous works used k ranging from 2 to 4. Our main result is a
procedure for taking a gadget for some fixed k, and use it as a building block to construct better and
better gadgets as k tends to infinity. Our method can be used to boost the result of both smaller
gadgets created by hand (k = 3) or larger gadgets constructed using a computer (k = 4).
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1 Introduction

Maximum constraint satisfaction problems (Max-CSPs) form one of the most fundamental
classes of problems studied in computational complexity theory. A Max-CSP is a type of
problem where you are given a list of variables and a list of constraints, and your goal is
to find an assignment that satisfies as many of the constraints as possible. Some common
examples of Max-CSP are Max-Cut and Max-2Sat. Every Max-CSP also has a corresponding
Min-CSP-deletion problem where your objective is deleting as few constraints as possible
to make all of the remaining constraints satisfiable. The Min-CSP-deletion problem is
fundamentally the same optimisation problem as its corresponding Max-CSP, however their
objective values are different.

1.1 History of Max-Cut
The Max-Cut problem is arguably both the simplest Max-CSP as well as the simplest
NP-hard problem. In the Max-Cut problem you are given an undirected graph, and your
objective is to find a cut of the largest possible size. A cut of an undirected graph is a
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partition of the vertices into two sets and the size of a cut is the fraction of edges that connect
the two sets relative to the total number of edges. Solving Max-Cut exactly is difficult, but
there are trivial approximation algorithms that get within a factor of 1

2 of the optimum. One
such algorithm is randomly picking the cut by tossing one coin per vertex.

Knowing this, one natural question is, how close can a polynomial time algorithm get to
the optimum? Goemans and Williamson partly answered this in a huge breakthrough in
1995 [8] by applying semi-definite programming (SDP) to create a polynomial time algorithm
that finds a solution that is within a factor of αGW ≈ 0.87856 of the optimum. At the time,
there was hope that Goemans and Williamson’s algorithm could be improved further to
get even better approximation factors than 0.87856, but no such improvements were ever
found. Instead, in 2004 Khot et al [11] proved using the Unique Games Conjecture (UGC),
that approximating Max-Cut within a factor of αGW + ε is NP-hard for any ε > 0. This
conjecture had been introduced by Khot two years prior [12]. This was possibly the first
result establishing the close connection between UGC and SDP based algorithms.

To this day, UGC remains an open problem, and in particular no one has been able to
find an approximation algorithm for Max-Cut with a better approximation ratio than αGW.
In 2008 O’Donnell and Wu [14] were able to very precisely describe the tight connection
between SDP based approximation algorithms for Max-Cut and UGC. They constructed a
curve GapSDP(c) : [0.5, 1] → [0.5, 1] with the following two properties:
1. It is UGC-hard to find a cut of size GapSDP(c) + ε given that the optimal cut has size c

for any ε > 0. We here use UGC-hard as a short hand for “NP-hard under UGC”.
2. Within the RPR2-framework [7, 14], there are polynomial time algorithms that are

guaranteed to find a cut of size at least GapSDP(c) − ε if the optimal cut has size c. The
RPR2-framework is a generalisation of Goemans and Williamson’s algorithm.

This means that their work both describe the best known polynomial time approximation
algorithms for Max-Cut, and also show that under UGC these approximation algorithms
cannot be improved. It is important to note that their algorithmic results do not require
UGC. We emphasis that one implication of their result is that giving efficient algorithms
with a better performance would disprove UGC.

1.2 NP-hardness inapproximability of Max-2Lin(2)
Max-2Lin(2) is a Max-CSP that is very closely related to Max-Cut. An instance of Max-
2Lin(2) is a system of linear equations on the form xi + xj ≡ b (mod 2), and the objective is
to find an assignment that satisfies as many equations as possible. Max-Cut is the special
case where we only allow equations with right hand side equal to 1. This implies that any
hardness result for Max-Cut immediately yields the same hardness result for Max-2Lin(2).
One example of this is the UGC-hardness of Max-Cut described by the GapSDP(c) curve by
O’Donnell and Wu [14].

Furthermore, O’Donnell and Wu’s algorithmic results [14] also directly carries over to
Max-2Lin(2). This is because the RPR2-framework that they relied on uses odd rounding
functions, and therefore does not differentiate between Max-Cut and Max-2Lin(2).

The conclusion is that the GapSDP(c) describes a tight connection between the UGC-
hardness of Max-2Lin(2) as well as the best known polynomial time approximation algorithms
for Max-2Lin(2). On the other hand, the NP-hardness inapproximability of Max-2Lin(2)
is not well understood. The strongest NP-hardness inapproximability results known for
Max-2Lin(2) ([9], [16]) are still far off from the UGC-hardness described by the GapSDP(c)
curve.
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The aim of this paper is to improve the state of the art NP-hardness inapproximability
of Max-2Lin(2) and also to give the full picture of the state of the art NP-hardness inap-
proximability of Max-2Lin(2). We do this by constructing a curve s(c) : [0.5, 1] → [0.5, 1]
such that it is NP-hard to distinguish between instances where the optimal assignment
satisfies a fraction of c of the equations, and instances where all assignments satisfy at most a
fraction of s(c) of the equations. Our curve either matches or improves all previously known
NP-hardness inapproximability results for Max-2Lin(2). We construct the curve by solving a
separate optimisation problem for each value of c, so our result covers the entire spectrum of
c ∈ [0.5, 1].

Our result complements the work by O’Donnell and Wu [14]. Our curve describes the
state of the art NP-hardness inapproximability of Max-2Lin(2) while O’Donnell and Wu’s
GapSDP(c) curve describes the UGC-hardness of Max-2Lin(2). It is worth noting that UGC
is still an open problem that over the years has been the subject of much debate. There
are results that indicate that UGC might be true, such as the proof of the closely related
2-to-2 Games Conjecture [13]. But on the other hand there are also results that indicate the
UGC might be false, such as the existence of subexponential algorithms for Unique Games
[2]. Currently there is no consensus for whether UGC is true or not. It is for this reason
that it is important to study NP-hardness independent of UGC, especially for fundamental
problems such as Max-2Lin(2).

1.3 Gadget reductions
Gadgets are the main tools used to create reductions from one Max-CSP Φ to another
Max-CSP Ψ. A gadget is a description of how to translate a specific constraint φ of Φ into
one or more constraints of Ψ. For example, if Φ is Max-3Lin(2) and Ψ is Max-Cut, then a
gadget from φ to Ψ is a graph. A gadget is allowed to use both the original variables in the
constraint φ, which are called primary variables, and new variables specific to the gadget,
which are called auxiliary variables.

The standard technique used to construct gadgets is to follow the “automated gadget”
framework of Trevisan et al [15]. This framework describes how to construct a gadget by
solving a linear program and also proves that the constructed gadget is optimal. This
framework is mainly used to construct gadgets for small and simple Max-CSPs. This
is because the number of variables in the gadget scales exponentially with the number
of satisfying assignments of φ. Furthermore, the number of constraints in the LP scales
exponentially with the number of variables, so it scales double exponentially with the number
of satisfying assignment of φ.

As an example let us take the gadget from Max-3Lin(2) to Max-2Lin(2) used by Håstad
[9], which was originally constructed by Trevisan et al [15]. A constraint in Max-3Lin(2)
has 4 satisfiable assignments. Having 4 satisfiable assignments means that the gadget uses
24 = 16 variables. Furthermore, since Max-2Lin(2) allow negations, half of these variables
can be removed because of negations. So the actual number of variables in the gadget is
24−1 = 8. This in turn implies that the number of constraints in the LP is 28 = 256. This
number is small enough that it is feasible for a computer to solve the LP. In this paper we are
interested in constructing gadgets from generalisations of Max-3Lin(2), called the Hadamard
Max-CSPs. These have significantly more satisfying assignments than Max-3Lin(2). It is
easy to see that a simple-minded application of the “automated gadget” framework leads to
an LP that is far too large to naively be solved by a computer. This means that we have to
deviate from the “automated gadget” framework in order to construct our gadgets.

APPROX/RANDOM 2024
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Gadgets have two important properties, called soundness s and completeness c. If a
gadget is constructed using the “automated gadget” framework, then it is trivial to calculate
the completeness of the gadget. On the other hand, calculating the soundness of a gadget
from Φ to Ψ involves solving instances of Ψ. In practice, calculating the soundness of a large
gadget can be very difficult since Ψ is usually an NP-hard problem.

Gadgets can be constructed with different goals in mind. The case that we are interested
in is finding the gadget with the largest soundness for a fixed completeness. This is what
allows us to construct our curve s(c). In general there are also other objectives that could be
of interest when constructing gadgets. One such case is finding the gadget with the smallest
ratio of s

c . This corresponds to finding the best lower bound for the approximation ratio of
Max-2Lin(2). Another possibility is to maximise 1−s

1−c . This corresponds to finding the best
upper bound for the approximation ratio of Min-2Lin(2)-deletion. It is possible to use the
“automated gadget” framework by Trevisan et al [15] to find the optimal gadgets for all of
these scenarios.

1.4 The Hadamard Max-CSPs Max-Hadk

One of the earliest gadget reductions used to show NP-hardness inapproximability of Max-
2Lin(2) is a gadget reduction from Max-3Lin(2) used by Håstad in his classical paper
from 1997 [9], which was constructed by Trevisan et al [15]. More recently, NP-hardness
inapproximability results for Max-2Lin(2) have used gadget reductions from a generalisation
of Max-3Lin(2) called the Hadamard Max-CSPs [10, 16]. The (2k − 1)-ary Hadamard Max-
CSP, k ⩾ 2, is a constraint satisfaction problem where a clause is satisfied if and only if its
literals form the truth table of a linear k-bit Boolean function. The (2k − 1)-ary Hadamard
CSP is denoted by Max-Hadk. One special case is k = 2, where the number of literals of
a clause is 3. It turns out that this case coincides with Max-3Lin(2). This means that
Max-Hadk can be seen as a generalisation of Max-3Lin(2).

There are mainly two reasons as to why Max-Hadk is useful for gadget reductions. The
first reason is that Max-Hadk is a very sparse CSP. It being sparse refers to the number
of satisfiable assignments of a clause being few in relation to the total number of possible
assignments. The number of satisfying assignments of a clause is just 2k, one for each linear
k-bit Boolean function, while the total number of possible assignments is 2(2k−1).

The second reason is that Max-Hadk is a useless predicate for any k ⩾ 2, which is an even
stronger property than being approximation resistant. This was shown by Chan in 2013 [6].
Max-Hadk being a useless predicate means that if you are given a nearly satisfiable instance
of Max-Hadk, then it is NP-hard to find an assignment such that the distribution over the
(2k − 1) long bit strings given by the literals of the clauses is discernibly different from the
uniform distribution.

1.4.1 Historical overview of Hadk-to-2Lin(2) gadgets
In 1996, Trevisan et al [15] constructed the optimal gadget from Max-Had2 to Max-2Lin(2).
They showed that the Max-Had2 gadget that minimises s

c is the same gadget as the one that
maximises 1−s

1−c . Furthermore, since this gadget is very small, using only 8 variables, they
were able to construct it using the “automated gadget” framework.

In 2015, Håstad et al. [10] constructed gadgets from Max-Had3 to Max-2Lin(2). They
showed that the Max-Had3 gadget that minimises s

c is equivalent to the Max-Had2 gadget. So
using Max-Had3 over Max-Had2 does not give an improved hardness for the approximation
ratio of Max-2Lin(2). However, the Max-Had3 gadget that maximises 1−s

1−c is notably better
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than the Max-Had2 gadget. This gadget is relatively small, only using 128 variables. This is
too many variables for it to be possible to naively apply the “automated gadget” framework.
However, Håstad et al. were still able to construct and analyse the optimal gadget by hand
based on ideas from the “automated gadget” framework.

In 2018, Wiman [16] constructed gadgets from Max-Had4 to Max-2Lin(2). Note that
Max-Had4 gadgets have 215 variables. Calculating the soundness of a such a gadget requires
solving an instance of Max-2Lin(2) with 215 variables, which is infeasible to do by hand
or even with a computer. Wiman initially followed the “automated gadget” framework.
However, in order to be able to calculate the soundness of the gadget, Wiman relaxed the
Max-2Lin(2) problem into a Max-Flow problem. This relaxed soundness rs is an upper bound
of the true soundness. This relaxation made it possible for Wiman to use a computer to
find the gadget that maximises 1−rs

1−c . Wiman’s relaxation was successful, since by using it
he was able to find a Max-Had4 gadget that was better than the optimal Max-Had3 gadget.
Note, however, that by using a relaxation, it is uncertain whether Wiman found the optimal
Max-Had4 gadget or not.

1.4.2 Our Hadk-to-2Lin(2) gadgets
In this paper, we construct gadgets from Max-Hadk to Max-2Lin(2) for k approaching infinity.
Recall that a gadget uses 22k−1 variables, so using a computer to construct gadgets for k > 5
is normally impossible. We get around this limitation by introducing a procedure for taking
Max-Hadk gadgets and transforming them to Max-Hadk′ gadgets, for k′ > k. We refer to
this procedure as the lifting of a Max-Hadk gadget into a Max-Hadk′ gadget. Two of the
properties of lifting is that the completeness stays the same and the soundness does not
decrease.

To show NP-hardness of approximating Max-2Lin(2), we start by constructing Max-Hadk

to Max-2Lin(2) gadgets for k = 4 using a computer. We then analytically prove an upper
bound of Wiman’s relaxed soundness of the lifting of these gadgets as k′ → ∞.

The method we use to construct our gadgets is by solving an LP. This LP is similar to
what Wiman could have used to construct his gadget. The difference is that the LP we use is
made to minimise the soundness of the lifted gadget, instead of minimising the soundness of
the gadget itself. If done naively, this LP would have roughly 23·(2k−1) = 245 variables. But
by making heavy use of symmetries of the LP, we are able to bring it down to a feasible size.

The main technical work of this paper is proving an upper bound on Wiman’s relaxed
soundness of a lifted gadget as k′ → ∞. Recall that calculating Wiman’s relaxed soundness
involves solving instances of Max-Flow. As k′ tends to infinity, the size of these instances
also tend to infinity. In order to lower bound the value of these Max-Flow problems, we
introduce the concept of a type of infeasible flows which we call leaky flows. A leaky flow
is a flow for which the conservation of flows constraint has been relaxed. This allows leaky
flows to attain higher values compared to feasible flows. We then show that by randomly
overlapping leaky flows onto the large Max-Flow instances, we are able to get closer and
closer to a feasible flow as the size of the instances tend to infinity.

1.5 Our results and comparison to previous results
Using a gadget reductions from Max-Hadk to Max-2Lin(2), we are able to construct a curve
s(c) : [0.5, 1] → [0.5, 1] such that it is NP-hardto distinguish between instances of Max-2Lin(2)
where the optimal assignment satisfies a fraction of c of the equations and instances where
all assignments satisfy at most a fraction of s(c) of the equations. This curve does not have
an explicit formula. Instead, each point on the curve is defined as the solution to an LP,
which we solve using a computer.

APPROX/RANDOM 2024
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▶ Theorem 1.1. Let s(c) : [0.5, 1] → [0.5, 1] be the curve defined in Definition 4.1. Then for
every sufficiently small ε > 0, it is NP-hard to distinguish between instances of Max-2Lin(2)
such that
Completeness There exists an assignment that satisfies a fraction at least c − ε of the

constraints.
Soundness All assignments satisfy at most a fraction s(c) + ε of the constraints.

A notable point on the curve is c = 590174949
639271832 ≈ 0.9232 and s(c) = 141533171

159817958 ≈ 0.8856.
This is the point on the curve that gives the highest NP-hardness inapproximability factor
1−s
1−c of Min-2Lin(2)-deletion.

▶ Corollary 1.2. It is NP-hard to approximate Min-2Lin(2)-deletion within a factor of
73139148
49096883 + ε ≈ 1.48969 + ε.

In order to be able to compare our curve s(c) to prior results, we plot our curve together
with O’Donnell and Wu’s GapSDP(c) curve [14], which, as discussed earlier, describes both
the UGC-hardness of Max-2Lin(2), as well as the best known polynomial time approximation
algorithms of Max-2Lin(2). Additionally, we also include historical NP-hardness inapproxim-
ability results as points in the diagram. We have also marked the point (c, s) where Goemans
and Williamson’s algorithm achieves the approximation ratio of s

c = αGW ≈ 0.87856. This
point was shown to be UGC-hard by Khot et al. in 2004 [11].

The curve s(c) is plotted in three Figures. All three Figures contain the same exact same
data, but the data is plotted in different ways. In Figure 1 the soundness s(c) is on the
y-axis and the completeness c is on the x-axis. This plot has the disadvantage that to the
eye, it is difficult to distinguish the exact shape of the curve s(c). In the next plot, Figure 2,
s(c)

c is on the y-axis and c is on the x-axis. This plot describes the approximation ratio of
Max-2Lin(2). The third plot, in Figure 3, has 1−s(c)

1−c on the y axis and c on the x-axis. This
plot describes the approximation ratio of Min-2Lin(2)-deletion.

It is important to note that the curves in Figure 1 are convex functions since it is possible
to take the convex combination of two hard instances using disjoint sets of variables. One
implication from this is that it is possible to construct NP-hardness curves using any of the
points (c, s) by drawing two lines, one from (0.5, 0.5) to (c, s) and one from (c, s) to (1, 1).
This means that all of the historical inapproximability results can also be described using
convex curves.

In Figures 1-3 prior inapproximability results for Max-2Lin(2) are marked as dots. Bellare
et al [5] was first to give an explicit NP-hardness result, which had c = 0.72 and s = 0.71. In
2015, Håstad et al [10] used Chan’s result [6] to create a gadget reduction from Max-Had3
which had c = 7

8 and s = 53
64 . This result became the new record for the upper bound of the

approximation ratio of Min-2Lin(2)-deletion, as seen in Figure 3. Three years later, Wiman
[16] further improved on this result by using Max-Had4 instead of Max-Had3. Wiman’s
Max-Had4 gadget has c = 15

16 and s = 3308625759
3640066048 ≈ 0.9089. This further improved the upper

bound on the approximation ratio of Min-2Lin(2)-deletion.
Similar to earlier results, the technique we use to construct our curve is also a gadget

reduction from Max-Hadk to Max-2Lin(2). But instead of using a gadget reduction from
Max-Hadk for a fixed k, we instead let k tend to infinity. This improves the quality of our
gadget. One example of such an improvement is our upper bound on the approximation
ratio of Min-2Lin(2)-deletion, which can be seen in Figure 3. The ratio 1−s(c)

1−c is maximised
on our curve at c = 590174949

639271832 ≈ 0.9232 and s = 141533171
159817958 ≈ 0.8856, which is marked by a

blue cross in Figure 3.
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NP-Hardness of 2Lin(2) (Our result)
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Figure 1 The y-axis shows the soundness s and the x-axis the completeness c. The blue filled
curve is our NP-hardness curve s(c). The red dashed curve is the GapSDP(c) by O’Donnell and Wu’s
[14]. The points marked with arrows are prior inapproximability results of Max-2Lin(2). The blue
cross on the curve marks our best inapproximability result for Min-2Lin(2)-deletion, see Figure 3.
Note that both of the curves in this figure are convex functions.
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Figure 2 The y-axis shows s/c, which corresponds to the approximation ratio of Max-2Lin(2).
The point on the curve c(s) that minimises this ratio is c = 3/4 and s(c) = 11/16, which exactly
matches Håstad’s result from 1997 [9].
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Figure 3 The y-axis shows (1 − s)/(1 − c), which corresponds to the approximation ratio of
Min-2Lin(2)-deletion. This ratio reaches its maximum 1−s(c)

1−c
= 73139148

49096883 ≈ 1.4896 at c = 590174949
639271832 ,

which is marked by a blue cross. The curve stays constant after this point.
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1.6 The limitations of Hadk-to-2Lin(2) gadget reductions
In Figure 1, it is possible to see a clear gap between our s(c) curve and O’Donnell and Wu’s
GapSDP(c) curve [14]. The gap is especially noticeable in Figure 3, since the behaviour of
the two curves are completely different when c is close to 1. One natural question is, how
close can a Hadk-to-2Lin(2) gadget reduction get to the GapSDP(c) curve?

Håstad et al [10] showed that any gadget reduction from a Hadamard Max-CSP to
Max-2Lin(2) can never achieve an approximation ratio for Min-2Lin(2)-deletion better than

1
1−e−0.5 ≈ 2.54. In Appendix B we show that any gadget reduction from a Hadamard CSP
to Max-2Lin(2) that uses Wiman’s soundness relaxation can never achieve an approximation
ratio of Min-2Lin(2)-deletion better than 2. Both 2.54 and 2 are fairly large in comparison
to the current best value of 1.48969 shown in Figure 3. So it is potentially possible to still
improve our results in the future using a Hadk-to-2Lin(2) gadget reduction for some k ⩾ 4.
However, these limitations means that it is impossible to make s(c) match the behaviour of
GapSDP(c) when c is close to 1.

1.7 Outline of proof
Our result is based on Hadk-to-2Lin(2) gadget reduction for arbitrary large values of k. We
start from the “automated gadget” framework by Trevisan et al [15]. In this framework,
computing the soundness of of a Hadk-to-2Lin(2) gadget involves solving a Max-2Lin(2)
problem. Following the work of Wiman [16], we relax the soundness computation to a Max-
Flow problem on the 2k-dimensional hypercube. Using symmetries, it is computationally
feasible to construct Hadk-to-2Lin(2) gadgets that are optimal with respect to the relaxed
soundness for k ⩽ 4.

In order to be able harness the power of arbitrarily large k, we define a procedure of
embedding a Hadk-to-2Lin(2) gadget G inside a Hadk′-to-2Lin(2) gadget where k′ > k. By
overlapping multiple different embeddings of G, we construct a gadget G′ for an arbitrarily
large k′.

Recall that the relaxed soundness computation is a Max-Flow problem, which can be
expressed as an LP. By carefully relaxing this LP, we are able to create an infeasible flow
solution to rs(G), such that if we lift it, it becomes an almost feasible flow of rs(G′). The
underlying idea for this relaxation is based on leaky flows (flows where the flow entering a
node can be different than the flow exiting the node). The “leaks” of a leaky flow are signed,
so random overlap of leaky flows can result in a feasible flow. We show that this is actually
the case for the solution to our relaxed LP using a second order moment analysis.

The final step is to construct the Hadk-to-2Lin(2) gadget G and its corresponding leaky
flow for k = 4 used in the embedding. This construction is naturally done using a rational
LP solver to solve the relaxed LP.

1.8 Organisation of paper
Section 2 contain the preliminaries. It introduces Max-CSPs and the automated gadget
framework. Section 3 introduces Wiman’s relaxed soundness and the infinity relaxed sound-
ness in terms of an LP. This section also states our main Lemma, Lemma 3.11, relating the
infinity relaxed soundness to the relaxed soundness. Appendix A is about Max-Flow, and
it proves some general theorems about how symmetries can be used to simplify Max-Flow
problems. Appendix B contain an analysis of relaxed soundness, and how it relates to the
(true) soundness. Appendix C studies affine maps. These affine maps are used both to analyse
the infinity relaxed soundness, and to describe the symmetries of the LPs. Appendix D
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contains the proof of Lemma 3.11 using the affine maps. Appendix E describes the procedure
we use for constructing and verifying the gadgets. Section 4 contains our numerical results.
This includes both plots and tables of various Hadk-to-2Lin(2) gadgets. Finally, Appendix F
contains a compact description of all gadgets that we construct.

2 Preliminaries

This section is split into three parts. In Subsection 2.1 we introduce some basic concepts
and notations for Boolean functions Fk

2 → {1,−1}. After that, in Subsection 2.2 we formally
define the (2k − 1)-ary Hadamard predicate. The last subsection, Subsection 2.3, introduces
the “automated gadget” framework by Trevisan et al [15], and explains the classical result of
how to construct reductions from the (2k − 1)-ary Hadamard predicate to Max-2Lin(2).

2.1 Boolean functions
A k-bit Boolean function is a function that takes in k bits and outputs one bit. The k input
bits should be thought of as a vector in a k-dimensional vector field over F2. On the other
hand, the output bit is a scalar. For convenience, we denote the vectors as being elements
in Fk

2 and the scalars as elements in R, where a scalar bit is represented as 1 (False) or −1
(True).

▶ Definition 2.1. The set of k-bit Boolean functions is denoted by Fk =
{
f : Fk

2 → {1,−1}
}

.

One special type of Boolean functions that is of great importance is the set of linear
Boolean functions. Each linear Boolean function in Fk

2 corresponds to an element α ∈ Fk
2 ,

and is denoted by χα.

▶ Definition 2.2. For α ∈ Fk
2 let χα ∈ Fk be denote the function

χα(x) = (−1)(α,x)

where (α, x) =
∑k

i=1 αixi (mod 2).

Any Boolean function can be represented as a sum of linear Boolean functions using the
Fourier transform.

▶ Proposition 2.3. Given f ∈ Fk, then

f(x) =
∑

α∈Fk
2

χα(x)f̂α,

where f̂α denotes the Fourier transform of f at α, defined as

f̂α = 1
2k

∑
x∈Fk

2

χα(x)f(x), α ∈ Fk
2 .

The Fourier transform is used to define the supporting affine subspace of a Boolean
function. This also gives a natural definition for the dimension of a Boolean function.

▶ Definition 2.4. Given f ∈ Fk, its supporting affine sub-space affine(f) is the affine span
of
{
α ∈ Fk

2 : f̂α ̸= 0
}

.

▶ Definition 2.5. Let dim(f), f ∈ Fk, denote the dimension of affine(f).

APPROX/RANDOM 2024
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▶ Remark 2.6. Affine functions have dimension 0.
The distance between two Boolean function is given by the normalised Hamming distance.

▶ Definition 2.7. Let dist : Fk × Fk → R be the normalised Hamming distance between two
Boolean functions, i.e.

dist(f1, f2) = 1
2k

∑
x∈Fk

2

1 − f1(x)f2(x)
2 .

2.2 Max-CSP
This section introduces Constraint Satisfaction Problems (CSP) and Max-CSP. The frame-
work we use is that CSPs are defined by predicates, which describe which kind of constraints
that can appear in the CSP.

▶ Definition 2.8. An m-ary predicate is a function ϕ ∈ Fm. The predicate is said to be
satisfied by x ∈ Fm

2 if ϕ(x) = −1. Otherwise x is said to violate ϕ. The set of x ∈ Fm
2 that

satisfies ϕ is denoted by Sat(ϕ).

Given a set of Boolean variables V and a m-ary predicate ϕ, a ϕ-constraint C is a tuple
((x1, b1), . . . , (xm, bm)) where xi ∈ V, i = [m], and bi ∈ F2, i ∈ [m], where all of the xi’s are
distinct. The constraint C is said to be satisfied if

ϕ(b1 + x1, . . . , bn + xm) = −1,

where + denotes the xor-operation. In other words, if bi = 1 then xi is negated.

▶ Definition 2.9. Given a m-ary predicate ϕ, an instance I of the Max-ϕ-CSP is a variable
set V and a distribution of ϕ-constraints over V . The Max-ϕ-CSP optimisation problem is;
given an instance I, find the assignment A : V → F2 that maximises the fraction of satisfied
constraints in I. The optimum is called the value of I.

The main Max-CSPs of interest in this paper are the Hadamard Hadk Max-CSP, and
Max-2Lin(2) and Max-3Lin(2). These have the following predicates.

▶ Definition 2.10. The 2Lin(2) predicate is the function f(x, y) = (−1)x+y+1. Similarly,
the 3Lin(2) predicate is the function f(x, y, z) = (−1)x+y+z+1.

▶ Definition 2.11. The Hadamard Hadk predicate for k ⩾ 2 is a (2k − 1)-ary predicate.
There is one input variable per non-empty subset S ⊆ [k]. The Hadk predicate is satisfied by
a binary input string {xS}∅ ̸=S⊆[k] if and only if there exists some β ⊆ [k] such that

χβ(S) = (−1)xS

for all non-empty subset S ⊆ [k]. I.e. the Hadk predicate is satisfied if and only if the input
string forms the truth table of a linear function.

▶ Remark 2.12. The 3Lin(2) predicate and the Had2 predicate are in fact identical. Thus
the family of Hadamard Max-CSPs can be seen as a natural generalisation of Max-3Lin(2).
▶ Remark 2.13. The set Sat(Hadk predicate) can be expressed using a 2k dimensional
Hadamard matrix. Let Mk be a 2k × (2k − 1) matrix, where the rows are index by subsets
β ⊆ [k] and the columns are indexed by non-empty subsets S ⊆ [k]. Let

(Mk)β,S =
{

0 if χβ(S) = 1,
1 if χβ(S) = −1.
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0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1


Figure 4 The matrix Mk for k = 3. It is an 8 × 7 matrix. Note that prepending a zero column

to Mk and switching 0/1 to 1/ − 1 would make it into a Hadamard matrix, which is symmetric.

The matrix Mk is the set Sat(Hadk predicate) expressed on the form of a matrix, with one
row per element. Note that Mk is almost the 2k-dimensional Hadamard matrix. Mk can be
made into the Hadamard matrix by prepending an all 0 column to it, and then switching
out 0/1 to 1/− 1. This connection between Sat(Hadk predicate) and Hadamard matrices is
one of the reasons as to why this Max-CSP is called the Hadamard Max-CSP. An example
of the matrix Mk can be found in Figure 4.

The Hadamard predicate has been shown to be a useless predicate. The concept of
useless predicates was first introduced in [3]. This property of Hadk was originally proven
by Austrin and Mossel using UGC [4], which relies on the fact that Sat(Hadk) admits a
balanced pairwise independent set. Later on Chan was able to show that Hadk is a useless
predicate without requiring UGC [6]. To state this result we first need two definitions.

▶ Definition 2.14. Given an instance I of an m-ary Max-CSP and an assignment A, let
D(A, I) denote the distribution of binary strings Fm

2 generated by sampling
((x1, b1), . . . , (xm, bm)) ∼ I and outputting the binary string ((A(x1)+b1), . . . , (A(xm)+bm)).

▶ Definition 2.15. The total variation distance dTV between two probability measures µ1
and µ2 over a finite set Ω is defined as

dTV(µ1, µ2) = 1
2
∑
ω∈Ω

|µ1(ω) − µ2(ω)|.

▶ Theorem 2.16 ([6]). For every ε > 0, it is NP-hard to distinguish between instances I of
the Hadk Max-CSP such that
Completeness There exists an assignment A such that

dTV(D(A, I),uniform({Sat}(Hadk predicate))) ⩽ ε.

Soundness For every assignment A,

dTV(D(A, I),uniform(F2k−1
2 )) ⩽ ε.

Here uniform(Sat(Hadk predicate)) denotes the uniform distribution over binary strings that
satisfy the Hadk predicate. Similarly, uniform(F2k−1

2 ) denotes the uniform distribution over
all binary strings of length 2k − 1.

▶ Remark 2.17. The uniform distribution on satisfiable instances in the completeness case is
a subtle detail. The result by [6] is not formulated like this. However, it is trivial to take the
instances constructed by Chan and modify them to make the completeness case be uniformly
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distributed over satisfied instances. The first time this was used was by [16]. However, this
detail turns out to not actually matter in the end since all of the gadgets that we construct
and all of the gadgets that Wiman construct are symmetric. So this uniform randomness
assumption is only there because of convenience, and is not actually used in the end.

2.3 The automated gadget framework

The “automated gadget” framework by Trevisan et al [15] describes how to construct optimal
gadgets when reducing from one predicate to another. Let us denote the starting predicate
as ϕ and the target predicate as ψ. A ϕ-to-ψ-gadget is a description for how to reduce a
ϕ-constraint to one or more ψ-constraints. As an example, let us take a gadget from 3SAT
to 2Lin(2). In this case the gadget describes a system of linear equations that both involve
the three original variables from the 3SAT constraint (called primary variables, denoted by
X) as well as new extra variables (called auxiliary variables, denoted by Y).

Gadgets have two important properties, called completeness and soundness. These
properties describe how closely the ψ-constraints are able to mimic the satisfiability of the
original ϕ-constraint. The completeness of a gadget is a value between 0 and 1 that describe
how many of the ψ-constraints that can be satisfied under the restriction that X satisfies the
original ϕ-constraint. In a similar fashion, the soundness of a gadget is a value between 0
and 1 that describes the case when X does not satisfy the original ϕ-constraint. When we
construct our gadgets, we fix the completeness of the gadget, and then we find the gadget
that minimises the soundness for this fixed completeness. A gadget that minimises the
soundness for a given completeness is referred to as an optimal gadget.

There is no a priori upper bound on how many auxiliary variables that a ϕ-to-ψ-gadget
can have. However, the “automated gadget” framework by Trevisan et al [15] proves that,
under some reasonable assumptions, the number of variables |X ∪ Y| in an optimal gadget
can be assumed to be at most 2| Sat(ϕ)|. Furthermore, if ψ allows the negations of variables,
then this number drops to 2| Sat(ϕ)|−1.

In the case of a Hadk-to-2Lin(2) gadget, the number of satisfying assignments of Hadk is
2k, and 2Lin(2) allow the negation of variables. This means that the total number of variables
in the gadget is 22k−1. Out of these, 2k − 1 variables are in X, and 22k−1 −

(
2k − 1

)
variables

are in Y. Furthermore, the “automated gadget” framework gives a natural way to index
these variables in terms of | Sat(Hadk)|-long bitstrings. According to the framework, each
primary variable should be indexed by a bitstring describing that variable’s assignment to
all of the satisfying assignments to Hadk, meaning a column in the matrix shown in Figure 4.
The auxiliary variables are indexed by the bitstrings that do not appear in the matrix.

Instead of using 2k-long bitstrings to index the variables, it is arguably more natural to
index the variables using functions in Fk

2 . These representations are equivalent since every
2k long bitstring can be interpreted as a truth table of a function in Fk, and vice versa. By
indexing the set of variables using functions in Fk, the set of primary variables are indexed
by linear functions {χα}∅⊂α⊆[k], and the negations of linear functions {−χα}∅⊂α⊆[k]. This
gives us the following description of a Hadk-to-2Lin(2) gadget.

▶ Definition 2.18. A Hadk-to-2Lin(2) gadget is given by a tuple (G,Xk,Yk), where G is a
probability distribution over

(Fk

2
)

where G(f1, f2) = 0 if f1 = −f2. Xk is the set of primary
variables and Yk is the set of auxiliary variables. The set of variables Xk ∪ Yk are indexed
by functions in Fk, meaning Xk ∪ Yk = {xf : f ∈ Fk}. A variable xf is a primary variable
if and only if f is a linear function or −f is a linear function.



B. Martinsson 11:13

The reduction from a Hadk constraint Hadk

(
b{1} + y{1}, . . . , b[k] + y[k]

)
to 2Lin(2) is

given by the distribution formed by
1. Sampling (f1, f2) ∼ G,
2. Outputting the constraint T (f1) = T (f2) where

T (f) =


xf if xf ∈ Yk,

bα + yα if f = χα for some α ∈ Fk
2 ,

bα + yα + 1 if f = −χα for some α ∈ Fk
2 .

Let us now precisely define the soundness and completeness of a Hadk-to-2Lin(2) gadget
(G,Xk,Yk). From Theorem 2.16 it follows that the natural definition of soundness is to
uniformly at random assign the primary variables Xk to F2, and then assign the rest of the
variables in order to satisfy as many of the equations as possible.

▶ Definition 2.19. Given a set of Boolean variables X. Let F(X) denote the set of assignments
X → F2. Let Ffold(X) the set of all folded assignments, i.e. functions P : X → F2 such that
P (1 + x) = 1 + P (x)∀x ∈ X. Here 1 + x denotes the negation of the variable x.

▶ Definition 2.20. The soundness of G is defined as

s(G) = E
P ∈ Ffold(Xk)

max
A ∈ Ffold(Xk ∪ Yk),
A(x) = P (x), x ∈ Xk

val(A,G),

where

val(A,G) =
∑

(f1, f2) ∈
(Fk

2
) G(f1, f2)[A(xf1) = A(xf2)].

The completeness of G is defined using dictator cuts. A dictator cut δy of y ∈ Fk
2 is

an assignment where (−1)δy(xf ) = f(y). From Theorem 2.16 we see that that the natural
definition for completeness is the expectation over val(δy, G), where δy is a random dictator
cut.

▶ Definition 2.21. The completeness of G is defined as

c(G) = E
y ∈ Fk

2

val(δy, G) = 1 −
∑

(f1, f2) ∈
(Fk

2
) G(f1, f2) dist(f1, f2).

There is a result based on Theorem 2.16 that relates the soundness and completeness of
Hadk-to-2Lin(2) gadgets to NP-hardness results for Max-2Lin(2).

▶ Proposition 2.22 ([10, Proposition 2.17]). Given a Hadk-to-2Lin(2) gadget (G,Xk,Yk)
with s = s(G) and c = c(G), where c > s. Then for every sufficiently small ε > 0, it is
NP-hard to distinguish between instances I of Max-2Lin(2) such that

(Completeness) There exists an assignment that satisfies a fraction at least c− ε of the
constraints.

(Soundness) All assignments satisfy at most a fraction s+ ε of the constraints.

One particularly interesting case is the inapproximability of Min-2Lin(2)-deletion. From
UGC it follows that it is NP-hard to approximate Min-2Lin(2)-deletion within any constant
[14]. The following proposition from Håstad et al. [10] tells us that a Hadk-to-2Lin(2) gadget
reduction can never be used to show an inapproximability factor of Min-2Lin(2)-deletion
better than 2.54. This means that any NP-hardness result for Min-2Lin(2)-deletion shown
using a gadget reduction from Hadk-to-2Lin(2) cannot match results obtained by UGC.
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▶ Proposition 2.23 ([10, Proposition 2.29 and Theorem 6.1]). For any given Hadk-to-2Lin(2)
gadget (G,Xk,Yk). There exists a Hadk-to-2Lin(2) gadget (G̃,Xk,Yk) with completeness
1 − 2−k such that

1 − s(G)
1 − c(G) ⩽

1 − s(G̃)
1 − c(G̃)

,

and

1 − s(G̃)
1 − c(G̃)

⩽
1

1 − e−0.5 ≈ 2.54.

▶ Remark 2.24. A Hadk-to-2Lin(2) gadget having completeness 1 − 2−k implies that the
gadget only have positive weight edges of length 2−k. So far fewer edges are used compared
to the total number of possible edges.
▶ Remark 2.25. The upper limit of 2.54 shown by [10] is much more general than what is
stated here. In fact, they show that the bound of 2.54 holds for any gadget reduction from a
useless predicate ϕ such that Sat(ϕ) has a balanced pairwise independent subset.

3 Relaxed soundness and infinity relaxed soundness

The main difficulty when designing and analysing gadgets is that the soundness is difficult
to compute. In the case of a gadget reduction from Max-Hadk to Max-2Lin(2), computing
the soundness of the gadget involves solving an instance of Max-2Lin(2). For k ⩽ 3 this is
computationally feasible, since the Max-2Lin(2) instance is rather small, but for k ⩾ 4 the
instances can become so large that, even using a computer, it is practically impossible to
solve them.

To get around this issue, Wiman [16] proposed to relax the definition of the soundness
by not requiring that the assignment A of the auxiliary variables Yk is folded. Note
that the assignment A is still required to be folded on the primary variables Xk, meaning
A(xf ) = 1 +A(x−f )∀xf ∈ Xk. Removing the requirement that A is folded over Yk makes it
significantly easier to compute the soundness.

▶ Definition 3.1 ([16, Definition 3.3]). Wiman’s relaxed soundness

rs(G) = E
P ∈Ffold(Xk∪{x1,x−1})

max
A ∈ F(Xk ∪ Yk),
A(x) = P (x), x ∈ Xk ∪ {x1, x−1}

val(A,G),

where

val(A,G) =
∑

(f1, f2) ∈
(Fk

2
) G(f1, f2)[A(xf1) = A(xf2)].

This relaxation fundamentally changes the soundness computation from being a Max-2Lin(2)
problem to being an s-t Min-Cut problem. This is because the computation of 1 − rs(G)
for a fixed P is a minimisation problem where the goal is to minimise the number of times
that A(xf1) ̸= A(xf2), which makes it a s-t Min-Cut problem. According to the Max-Flow
Min-Cut Theorem, this also means that rs(G) can be computed by solving a Max-Flow
problem.

The conclusion from this is that 1 − rs(G) can be interpreted as the average max flow
on the fully connected 2k-dimensional hypercube, where the placement of sources and sinks
is randomly distributed over nodes labeled by affine functions. The sources correspond to
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primary variables xf where P (xf ) = 1 and the sink nodes correspond to primary variables
xf where P (xf ) = 0. The capacity of an edge {xf1 , xf2} in the fully connected hypercube is
given by G(f1, f2). Note that the sum over capacities in the graph is equals to 1.

There are some significant benefits to using the relaxed soundness. Firstly, it is significantly
simpler to solve a Max-Flow problem compared to a Max-2Lin(2) problem. The implication
from this is that it is computationally simple to compute the relaxed soundness of Had4-to-
2Lin(2) gadgets and even possible to compute relaxed soundness of Had5-to-2Lin(2) gadgets
if given enough computational resources. Furthermore, the relaxed soundness allows us to
analyse Hadk-to-2Lin(2) gadgets even in the case where k is very large. The disadvantage to
using relaxed soundness is that it is not guaranteed to be close to the true soundness.

3.1 Relaxed soundness described as an LP
Recall that 1 − rs(G) can be expressed as the average max flow on a fully connected 2k-
dimensional hypercube with randomised source/sink placements. This means that rs(G) can
be stated as an LP. One reason for why it is preferable to express this Max-Flow problem
as an LP is because it is possible to move the capacities (i.e. the “gadget variables”) of
the Max-Flow problem to the variable side of the LP. So the same LP can be used both to
calculate the the relaxed soundness of a specific gadget and to construct new gadgets.

One additional step we use in the formulation of this LP is to use a function g ∈ Fk to
describe the source/sink placement instead of using the assignment P . A node vχα , α ∈ Fk

2
is a sink node if g(α) = 1, and a source node if g(α) = −1. These two representations of
the source/sink placement are equivalent, but using a Boolean function g is more helpful for
understanding the symmetries of the LP, as done in Appendix C. The following is the LP
reformulation of the relaxed soundness rs(G).

▶ Definition 3.2. A flow w of a Hadk-to-2Lin(2) gadget (G,Xk,Yk) is a function F3
k → R⩾0.

The flow w is said to be feasible if and only if

w(f1, f2, g) + w(f2, f1, g) ⩽G(f1, f2) ∀f1, f2, g ∈ Fk, (1)
outw(f, g) = inw(f, g) ∀f, g ∈ Fk,dim(f) ⩾ 1. (2)

where outw(f, g) =
∑

f2∈Fk
w(f, f2, g) and inw(f, g) =

∑
f2∈Fk

w(f2, f, g). The value of w
for at a source/sink placement g ∈ Fk is defined as

valg(w) =
∑

α∈Fk
2

outw(g(α)χα, g) − inw(g(α)χα, g).

▶ Definition 3.3. The relaxed soundness LP for a Hadk-to-2Lin(2) gadget (G,Xk,Yk),
denoted by rsLP(G), is the following LP

rs(G) = 1 − max
w

Eg∈Fk
valg(w),

where the maximum is taken over feasible flows w of G.

▶ Remark 3.4. Recall that 1 − rs(G) is the average of 22k independent Max-Flow problems.
The different Max-Flow problems are indexed by the function g ∈ Fk, which describes the
placements of sinks and sources. The nodes in each Max-Flow problem are indexed by
functions in Fk. The sink nodes in the g-th Max-Flow problem are the nodes vg(α)χα

, α ∈ Fk
2 ,

and the source nodes are the nodes v−g(α)·χα
, α ∈ Fk

2 . The flow from vf1 → vf2 is w(f1, f2, g),
and the capacity of the undirected edge {vf1 , vf2} is G(f1, f2).
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▶ Remark 3.5. Note that it is possible to modify the rsLP(G) to include the capacities of
the graph (i.e. gadget G) as variables. The implications of this is that the optimisation
problem of finding a Hadk-to-2Lin(2) gadget with the maximum relaxed soundness for a
fixed completeness can also be expressed as an LP.
▶ Remark 3.6. Note that the rsLP(G) has roughly | Fk |3 = 23·2k variables. This is a very
large number, even for small values of k. So in order to be able to solve this LP, we have to
make use of the symmetries of the LP in order to reduce the number of variables.

3.2 Introduction of infinity relaxed soundness
One natural question is, how small can one make the relaxed soundness if we fix the
completeness of a Hadk-to-2Lin(2) gadget and let k → ∞? In practice, even just finding the
gadget minimising the relaxed soundness when k = 5 is a very daunting task, so cannot hope
to calculate this limit directly from the rsLP(G).

Our method to handle large values of k is to create a Hadk-to-2Lin(2) gadget for some
small value of k, for example k = 4, and then introduce the concept of embedding a Hadk-
to-2Lin(2) gadget G into a Hadk′-to-2Lin(2) gadget G′, where k′ > k. It is also possible to
embed the flow of the rsLP(G) onto the rsLP(G′). This embedding has the property that
the completeness and the soundness of both gadgets are the same.

The key insight is that by using multiple overlapping embeddings of G, we can improve
the soundness of G′ without affecting its completeness. Our argument for why multiple
overlapping embeddings improve the relaxed soundness is based on leaky flows. Note that the
leaks of a leaky flow have signs. This means that it is possible that overlapping embeddings
of leaky flows could become a feasible flow, since the overlap of the embeddings could cause
the signed leaks to sum to 0. We use this type of argument to show an upper bound on
rs(G′) based on a leaky flow solution to the rsLP(G).

The exact procedure for the embeddings is defined in Appendix C and analysed in detail
in Appendix D using second moment analysis. The conclusion from that analysis is that the
following relaxation of the rsLP(G), which we call the infinity relaxed soundness LP, denoted
by rs∞LP(G), has the following two important properties. Firstly, the solution of rs∞LP(G)
is a leaky flow of rsLP(G), and secondly, overlapping embeddings of this leaky flow tends to
a feasible flow of rsLP(G′) as k′ → ∞.

▶ Definition 3.7. A flow w̃ of a Hadk-to-2Lin(2) gadget (G,Xk,Yk) is said to be a infinity
relaxed flow if constraint (1) is satisfied and∑

g′

outw(f, g′) =
∑
g′

inw(f, g′) ∀g, f ∈ Fk : dim(f) ⩾ 1, (3)

where the sums are over functions g′ ∈ F ′
k such that g′|affine(f) = g|affine(f). The (signed)

leak at (f, g), where f, g ∈ Fk,dim(f) ⩾ 1, is defined as leakw̃(f, g) = inw(f, g) − outw(f, g).

▶ Definition 3.8. The infinity relaxed soundness of G, denoted by rs∞(G), is the solution to
the rs∞LP(G)

rs∞(G) = 1 − max
w̃

Eg∈Fk
valg(w̃),

where the maximum is taken over all infinity relaxed flows w̃ of G.

▶ Remark 3.9. The rs∞LP(G) is a constraint relaxation of the rsLP(G) where constraint
(2) has been relaxed to constraint (3). So a solution of the rs∞LP(G) is a leaky flow in the
rsLP(G).
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▶ Remark 3.10. Constraint (3) is used for a proof in Appendix D of Lemma D.5, which is a
2nd order moment analysis of the overlap of leaks from random embeddings. In the proof,
constraint (3) is used to show that if w is an infinity relaxed flow then ∀g, f ∈ Fk,dim(f) ⩾ 1 :∑

g′ leakw(f, g′) = 0, where the sum is over g′ ∈ Fk such that g′|affine(f) = g|affine(f).

The following lemma describes a relationship between the rsLP(G) and the rs∞LP(G).
This is the key Lemma, which is proven in Appendix D.

▶ Lemma 3.11. Let (G,Xk,Yk) be a Hadk-to-2Lin(2) gadget. For any ε > 0 there exists
a Hadk′-to-2Lin(2) gadget (G′,Xk′ ,Yk′) for some k′ > k such that c(G) = c(G′) and
rs(G′) ⩽ rs∞(G) + ε.

From this Lemma, it follows that rs∞(G)+ε is the upper bound of rs(G′) for some gadget
G′, which in turn is an upper bound of s(G′). This means that the NP-hardness result of
Max-2Lin(2) stated in Proposition 2.22 for rs(G) also holds for rs∞(G).This gives us our
main result.

▶ Theorem 3.12. Let (G,Xk,Yk) be a Hadk-to-2Lin(2) gadget with s = rs∞(G) and c = c(G),
where c > s. Then for every sufficiently small ε > 0, it is NP-hard to distinguish between
instances of Max-2Lin(2) such that
Completeness There exists an assignment that satisfies a fraction at least c − ε of the

constraints.
Soundness All assignments satisfy at most a fraction s+ ε of the constraints.

4 Numerical results

This section contains a presentation of constructed Hadk-to-2Lin(2) gadgets. Recall that
there are three different ways to measure the soundness of a Hadk-to-2Lin(2) gadget. There
is the true soundness of a gadget, which can be used to show NP-hardness results for Max-
2Lin(2), see Proposition 2.22. Then there is the relaxed soundness, denoted by rs. This is an
upper bound of the true soundness, see Proposition B.1. Finally there is the infinity relaxed
soundness, denoted by rs∞, which according to our main result, Theorem 3.12, also imply
NP-hardness results for Max-2Lin(2).

We compute gadgets for k = 2, 3, 4, optimised either for rs or rs∞. The short rundown of
the process of constructing a gadget is to first decide on the completeness of the gadget, and
then call an LP-solver to find the gadget with that completeness that either minimises rs or
rs∞, depending on which measure of soundness we want to optimise the gadget for.

4.1 Edges used/unused in constructed gadgets

The capacity G of a Hadk-to-2Lin(2) gadget (G,Xk,Yk) is a probability distribution over
(undirected) edges. Every gadget that we construct is symmetrical under the mappings of
Mk→k, so edges from the same edge orbit share the same capacity. Tables 7–9 in Appendix
F list all edge orbits that have non-zero weight in at least one of our constructed gadgets
for k = 2, 3, 4. Note that as discussed in Appendix E.2.1, in the case of k = 4 it is possible
that the gadgets we construct are sub-optimal if c < 1 − 2−k. This means that it is possible
that the Table for k = 4, Table 9, could look slightly different had we constructed optimal
gadgets.
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Table 1 The curve s(c) as shown in Figure 1. The values of s(c) in this table are rounded up to
4 decimals. This table has the same format as the table describing the GapSDP(c) curve, found in
Appendix E of [14].

c s(c) c s(c) c s(c) c s(c) c s(c)
0.500 0.5000 0.600 0.5750 0.700 0.6500 0.800 0.7343 0.900 0.8516
0.505 0.5038 0.605 0.5788 0.705 0.6538 0.805 0.7390 0.905 0.8586
0.510 0.5075 0.610 0.5825 0.710 0.6575 0.810 0.7437 0.910 0.8661
0.515 0.5113 0.615 0.5863 0.715 0.6613 0.815 0.7485 0.915 0.8735
0.520 0.5150 0.620 0.5900 0.720 0.6650 0.820 0.7535 0.920 0.8809
0.525 0.5188 0.625 0.5938 0.725 0.6688 0.825 0.7588 0.925 0.8884
0.530 0.5225 0.630 0.5975 0.730 0.6725 0.830 0.7642 0.930 0.8958
0.535 0.5263 0.635 0.6013 0.735 0.6763 0.835 0.7696 0.935 0.9032
0.540 0.5300 0.640 0.6050 0.740 0.6800 0.840 0.7752 0.940 0.9107
0.545 0.5338 0.645 0.6088 0.745 0.6838 0.845 0.7809 0.945 0.9181
0.550 0.5375 0.650 0.6125 0.750 0.6875 0.850 0.7868 0.950 0.9256
0.555 0.5413 0.655 0.6163 0.755 0.6922 0.855 0.7927 0.955 0.9330
0.560 0.5450 0.660 0.6200 0.760 0.6969 0.860 0.7988 0.960 0.9405
0.565 0.5488 0.665 0.6238 0.765 0.7016 0.865 0.8050 0.965 0.9479
0.570 0.5525 0.670 0.6275 0.770 0.7063 0.870 0.8115 0.970 0.9554
0.575 0.5563 0.675 0.6313 0.775 0.7109 0.875 0.8181 0.975 0.9628
0.580 0.5600 0.680 0.6350 0.780 0.7156 0.880 0.8247 0.980 0.9703
0.585 0.5638 0.685 0.6388 0.785 0.7203 0.885 0.8313 0.985 0.9777
0.590 0.5675 0.690 0.6425 0.790 0.7250 0.890 0.8380 0.990 0.9852
0.595 0.5713 0.695 0.6463 0.795 0.7297 0.895 0.8448 0.995 0.9926

4.2 Lists and plots of gadgets

Figures 5, 6 and 7 show Hadk-to-2Lin(2) gadgets with completeness on the x-axis, and either
maximal 1−rs(G)

1−c(G) or maximal 1−rs∞(G)
1−c(G) on the y-axis. To create this plot, we construct

one gadget for each completeness value from 0.5 to 1 − 2−k (inclusive), with a spacing of
2−9. The curve is constructed using interpolation by taking convex combinations of pairs of
neighbouring gadgets.

4.2.1 The curve s(c)

The curve s(c) describes the infinity relaxed soundness of Had4-to-2Lin(2) gadgets as a
function of completeness, shown as the upper curve in Figure 7, as well as in Figures 1, 2 and
3. The data for this curve can be found in Table 1. It has the following formal definition.

▶ Definition 4.1. The curve s(c) : [0.5, 1] → [0.5, 1], k = 4, is for c ∈ [0.5, 1 − 2−k] defined
as the solution to the restricted compressed rs∞LP. For c ⩾ 1 − 2−k the curve is defined as
s(c) = 1 + 2k(s(1 − 2−k) − 1)(1 − c), meaning 1−s(c)

1−c is constant for all c ⩾ 1 − 2−k.

Proof of Theorem 1.1. For c ∈ [0.5, 1 − 2−k], the NP-hardness result follows directly from
Theorem 3.12 since the solution of the restricted compressed rs∞LP(G) is an upper bound
of the (non-restricted) rs∞LP(G). For c ⩾ 1 − 2−k the NP-hardness result follows from
taking the convex combination of (c, s) = (1 − 2−k, s(1 − 2−k)) and (c, s) = (1, 1). Since it is
possible to create a hard instance by taking the convex combination of two hard instances
using separate variables. ◀



B. Martinsson 11:19

10.950.90.850.80.750.70.650.60.550.5
c

1.0

1.1

1.2

1.3

1.4

1.5

1
s

1
c

Infinity relaxed soundness
Relaxed soundness

Figure 5 This plot shows two types of Had2-to-2Lin(2) gadgets. The filled curve describes the
minimisation of rs and the striped curve describes the minimisation of rs∞. The completeness value
is on the x-axis, and either 1−rs(G)

1−c(G) or 1−rs∞(G)
1−c(G) on the y-axis. In this particular case, the case of

k = 2, it turns out that these two curves are identical.
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Figure 6 This plot shows two types of Had3-to-2Lin(2) gadgets. The filled curve describes the
minimisation of rs and the striped curve describes the minimisation of rs∞. The completeness value
is on the x-axis, and either 1−rs(G)

1−c(G) or 1−rs∞(G)
1−c(G) on the y-axis.
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Figure 7 This plot shows two types of Had4-to-2Lin(2) gadgets. The filled curve describes the
minimisation of rs and the striped curve describes the minimisation of rs∞. The completeness value
is on the x-axis, and either 1−rs(G)

1−c(G) or 1−rs∞(G)
1−c(G) on the y-axis. The top part of both of these curves

are perfectly flat, which is not the case in Figure 5 and Figure 6. The gadgets that mark the point
where the curves become flat can be found in Tables 2 and 3, and are marked by crosses in the plot.
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Table 2 The Had4-to-2Lin(2) gadget G with minimal completeness among those that min-
imise 1−rs(G)

1−c(G) . The completeness of G is c(G) = 9939/10768 and relaxed soundness is rs(G) =
2623643487/2955083776. The right most column tells how much of the total capacity is contained in
each edge orbit. This column sums up to 100%.

f1 f2 length G(f1, f2) % of total
1100000000000000 1110000000000000 1 5461/969636864 30.3
1110000000000000 1111000000000000 1 17007/1616061440 18.9
1110000000000000 1110100000000000 1 437/404015360 23.2
1110100000000000 1110100010000000 1 19/92346368 4.4
0000000000000000 1100000000000000 2 13/215360 23.2

Table 3 The Had4-to-2Lin(2) gadget G with minimal completeness among those that minimise
1−rs∞(G)

1−c(G) . The completeness of G is c(G) = 590174949/639271832 and the infinity relaxed soundness
is rs∞(G) = 141533171/159817958. The right most column tells how much of the total capacity is
contained in each edge orbit. This column sums up to 100%.

f1 f2 length G(f1, f2) % of total
1100000000000000 1110000000000000 1 4899/799089790 33.0
1110000000000000 1111000000000000 1 11843/799089790 26.5
1110000000000000 1110100000000000 1 1427/1917815496 16.0
1110100000000000 1110100010000000 1 1427/19178154960 1.60
0000000000000000 1100000000000000 2 6094929/102283493120 22.9

4.3 Notable gadgets
There are two gadgets that are of particular interest. These are the gadgets with minimal
completeness among those that maximises either 1−rs(G)

1−c(G) or 1−rs∞(G)
1−c(G) . These gadgets are

marked by crosses in Figure 7. The gadget with minimal completeness that maximises
1−rs(G)
1−c(G) can be found in Table 2. The gadget with minimal completeness that maximises
1−rs∞(G)

1−c(G) can be found in Table 3, and is also marked by a cross on the curve s(c) in Figures
1-3. The method used to construct such minimal completeness gadgets is slightly different
compared to the construction of gadgets with fixed completeness. Propositions 2.23 and B.1
guarantees that gadgets with completeness 1 − 2−k can be used to maximise 1−rs(G)

1−c(G) and
1−rs∞(G)

1−c(G) . This means that the maximum values of 1−rs(G)
1−c(G) and 1−rs∞(G)

1−c(G) can be computed
by fixing the completeness to c(G) = 1 − 2−k. Using these maximums, it is possible to
slightly modify the objective of the LP such that its solution is the gadget with minimal
completeness that maximises either 1−rs(G)

1−c(G) or 1−rs∞(G)
1−c(G) .

5 Conclusions

In this work, we have introduced a procedure called lifting for taking a Hadk-to-2Lin(2)
gadget for a fixed k and using that gadget to construct better and better Hadk′-to-2Lin(2)
gadgets, as k′ tends to infinity. In order to be able to analyse this, both numerically and
analytically, we made use of a relaxation of the (true) soundness, first introduced by Wiman
[16] in their analysis of the Had4-to-2Lin(2) gadget. This procedure allowed us to show new
inapproximability results of Max-2Lin(2), and most notably using k = 4, we have shown that
Min-2Lin(2)-deletion has an inapproximability factor of 73139148

49096883 ≈ 1.48969.
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Some open problems still remain. The most obvious one is that it is likely within reach
to carry out the analysis we did for k = 4 also for k = 5. The main bottleneck is to find
or write a very efficient LP solver that is able to handle large instances and give consistent
and stable results. The solvers available to us were not quite able to get trustworthy results.
This being said, without substantial new ideas we do not see how to attack the k = 6 case.

Another open problem is to understand the best possible gadget reduction from Hadk-
to-2Lin(2) as k → ∞. More specifically, which is the best possible inapproximability factor
of Min-2Lin(2)-deletion attainable using such a gadget reduction? We were able to show
an inapproximability factor of 73139148

49096883 ≈ 1.48969 using relaxed soundness. We have also
shown that by using relaxed soundness, it is impossible to go above 2 (see Proposition B.1).
Furthermore, it is known from a previous work [10, Theorem 6.1] that by using (non-relaxed)
soundness, 1

1−e−0.5 ≈ 2.54 is an upper bound. This leaves us with a fairly large gap. So it
would be of interest to close this gap.

In comparison, by assuming the Unique Games Conjecture (UGC), it is possible to show
that the inapproximability factor of Min-2Lin(2)-deletion can be made arbitrarily large. The
main open problem here is to show this without assuming UGC. This however, is not possible
to do using a gadget reduction from Hadk-to-2Lin(2), and would instead require a completely
new approach.

Finally, as a concluding remark, it would be interesting to see if our ideas of lifting small
gadgets and analysing them using a relaxed version of the (true) soundness, could be used in
other applications. Maybe there are other gadgets out there that could be improved using a
similar procedure?
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A Max-Flow and symmetries

This section introduces the concepts of feasible flows and leaky flows, and show how to make
use symmetries in a graph to more efficiently solve the Max-Flow problem. These Max-Flow
techniques and concepts are used during the construction of gadgets. These techniques are
very general, and become easier to explain without involving the intricacies of gadgets. Let
us start by defining the Max-Flow problem as an LP.

▶ Definition A.1. A flow graph is a tuple G = (V,C, S, T ), where C(u, v) = C(v, u) ⩾ 0 is
the capacity of edge (u, v) ∈ V × V , and S ⊂ V is a set of sources and T ⊂ V is a set of
sinks, and S ∩ T = ∅.

▶ Definition A.2. A flow w of a flow graph G = (V,C, S, T ) is a function V × V → R⩾0.
The flow w is said to be feasible if and only if

w(v, u) + w(u, v) ⩽ C(u, v) ∀v, u ∈ V, (4)
outw(v) = inw(v) ∀v ∈ V \ (S ∪ T ). (5)

where

outw(v) =
∑
u∈V

w(v, u),

inw(v) =
∑
u∈V

w(u, v).

The value of a flow is defined as

val(w) =
∑
s∈S

outw(s) − inw(s).
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The value of the maximum flow of a flow graph G is denoted by max_flow(G).

A.1 Feasible flows and leaky flows
When solving a Max-Flow problem we normally require the flow to be conserved (constraint
(5) above), meaning that the incoming flow into a node is equal to the outgoing flow. This is
the definition of a feasible flow. However, to find an approximate solution to a Max-Flow
problem, it can be helpful to relax the conservation of flows constraint, allowing for “leaks”.
A flow that does not fulfil the conservation of flow constraint is called a leaky flow. This
section aims to analyse the relation between leaky flows and feasible flows, with the goal of
showing that if the leaks of a leaky flow are small, then there is a feasible flow with almost
the same value as the leaky flow.

▶ Definition A.3. A flow w̃ is said to be a leaky flow if constraint (4) is satisfied. The
(signed) leak at node v be defined as leakw̃(v) = inw̃(v) − outw̃(v) for v ∈ V \ (S ∪ T ).

▶ Remark A.4. Note that a leaky flow w̃ is also a feasible flow if and only if leakw̃(v) = 0 for
all v ∈ V \ (S ∪ T ).

The following theorem tells us that if the sum of absolute values of the leaks are small,
then there is a feasible flow having almost the same value as the leaky flow. The implications
from this is that we can use leaky flows to get an approximation of the true Max-Flow.

▶ Theorem A.5. Given a leaky flow w̃ of a flow graph G = (V,C, S, T ), there exists a feasible
flow w of G such that

val(w) ⩾ val(w̃) −
∑

v∈V \(S∪T )

| leakw̃(v)|.

Proof. Create a new graph G̃ = (V ∪{s̃, t̃}, C̃, S∪{s̃}, T ∪{t̃}) with an additional new source
node s̃ and sink node t̃. We construct C̃ using C. Firstly let C̃(u, v) = C(u, v) for all nodes
u, v ∈ V . Secondly, for every v ∈ V \ (S∪T ) such that leakw′(v) > 0, let C̃(u, t̃) = leakw′(v),
and for every v ∈ V \ (S ∪ T ) such that leakw′(v) < 0 let C̃(u, s̃) = − leakw̃(v). Finally let
C̃ be 0 in all other cases.

Note that for this new graph G̃, the leaky flow w̃ can be extended into a feasible flow
since all of the leaks can be routed to either s̃ or t̃ depending on the sign of the leakage.
Furthermore, if we can show that

max_flow(G̃) ⩽ max_flow(G) +
∑

v∈V \(S∪T )

| leakw̃(v)|, (6)

then that would imply the the Theorem.
To show (6) we use the Max-Flow Min-Cut Theorem. Note that any S-T cut in G̃ has a

corresponding S-T cut in G and vice versa since G and G̃ share the same non-source/sink
nodes. Additionally, note that the value of a S-T cut in G̃ can be bounded from above by
the value of the corresponding cut in G plus the extra capacities in G̃. The conclusion from
this is that

max_flow(G̃) = min_cut(G̃)

⩽ min_cut(G) +
∑

v∈V \(S∪T )

| leakw̃(v)|

= max_flow(G) +
∑

v∈V \(S∪T )

| leakw̃(v)|. ◀
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A.2 Symmetries of Max-Flow graphs
If a flow graph G = (V,C, S, T ) has some kind of symmetry, then we can use them to more
efficiently solve the Max-Flow problem. In our setting, the symmetries are described by a
group H acting on V with the property that the capacities are invariant under the group
action, meaning C(u, v) = C(h · u, h · v) for all h ∈ H and u, v ∈ V . Here h · u denotes the
group action of h on u.

▶ Definition A.6. Given a flow graph G = (V,C, S, T ) and a group H acting on V , then H

is said to be a symmetry group of G if and only if ∀h ∈ H:
1. h · s ∈ S ∀s ∈ S,
2. h · t ∈ T ∀t ∈ T ,
3. C(u, v) = C(h · u, h · v)∀h ∈ H and ∀u, v ∈ V .

Using G and the group H acting on V , we can create a new flow graph where the set of
vertices is the quotient space V/H. This “compresses” the graph G into one vertex per orbit.
Let the capacities between two orbits A,B ∈ V/H be the sum capacities over all pairs in
A×B.

▶ Definition A.7. Given a flow graph G = (V,C, S, T )and a symmetry group H of G. Let
the quotient flow graph G/H = (V/H,C/H, S/H, T/H) where V/H is the set of all orbits of
V under the action of H, and similarly S/H is the set of orbits of S and T/H is the set of
orbits of T . Let C/H be defined as a function V/H × V/H → R such that

(C/H)(A,B) =
∑
u∈A

∑
v∈B

C(u, v)

for all A,B ∈ V/H.

What remains to show is that the original graph G and the compressed graph G/H has
the same Max-Flow.

▶ Theorem A.8. Given a flow graph G = (V,C, S, T )and a symmetry group H of G. Then
max_flow(G) = max_flow(G/H).

Proof. First let us show that max_flow(G) ⩽ max_flow(G/H). Let w be the max-flow of
G. Now define w/H as a function from V/H × V/H → R such that

(w/H)(A,B) =
∑
a∈A

∑
b∈B

w(a, b).

What remains to show is that that w/H is a feasible flow of G/H and that val(w) = val(w/G)
since those two properties would imply that max_flow(G) ⩽ max_flow(G/H). Firstly, note
that w/H fulfills (4) and (5) from Definition A.2 for the graph G/H since the constraints
are linear. For example take constraint (4),

(w/H)(A,B) + (w/H)(B,A) =
∑
a∈A

∑
b∈B

w(a, b) + w(b, a)

⩽
∑
a∈A

∑
b∈B

C(a, b)

= (C/H)(A,B).
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So w/H is a feasible flow of G/H. Secondly note that the value of w is the same as the value
of w/H since

val(w/H) =
∑

A∈S/H

outw/H(A) − inw/H(A)

=
∑

A∈S/H

∑
s∈A

outw(s) − inw(s)

=
∑
s∈S

outw(s) − inw(s)

= val(w).

It remains to show that max_flow(G) ⩾ max_flow(G/H). Let w′ be a max-flow of G/H.
Now define w : V × V → R such that

w(a, b) = w′(H · a,H · b) C(a, b)
(C/H)(H · a,H · b)

where a, b ∈ V and H · a is the orbit of a and H · b is the orbit of b. What remains to show
is that w(a, b) is a feasible flow of G and that the value of w is the same as the value of w′.
Firstly, note that w/H fulfill constraints (4) and (5) from Definition A.2 for the graph G

since the constraints are linear. For example take constraint (4),

w(a, b) + w(b, a) = (w′(H · a,H · b) + w′(H · b,H · a)) C(a, b)
(C/H)(H · a,H · b)

⩽ (C/H)(H · a,H · b) C(a, b)
(C/H)(H · a,H · b)

= C(a, b).

Secondly note that the value of w is the same as w′ since

val(w′) =
∑

A∈S/H

outw′(A) − inw′(A)

=
∑

A∈S/H

∑
B∈V/H

w′(A,B) − w′(B,A)

=
∑

A∈S/H

∑
B∈V/H

(w′(A,B) − w′(B,A))
(∑

a∈A

∑
b∈B

C(a, b)
(C/H)(A,B)

)

=
∑

A∈S/H

∑
B∈V/H

∑
a∈A

∑
b∈B

(w′(A,B) − w′(B,A)) C(a, b)
(C/H)(A,B)

=
∑

A∈S/H

∑
B∈V/H

∑
a∈A

∑
b∈B

w(a, b) − w(b, a)

=
∑
a∈S

∑
b∈V

w(a, b) − w(b, a)

=
∑
a∈S

outw(a) − inw(a)

= val(w).

So w is a feasible flow of G and val(w) = val(w′), so max_flow(G) ⩾ max_flow(G/H). ◀
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B Properties of relaxed soundness

The relaxed soundness share many similarities with the (true) soundness. One example is the
following Proposition, which is an analogue to Proposition 2.23 but for relaxed soundness.

▶ Proposition B.1. For any Hadk-to-2Lin(2) gadget (G,Xk,Yk)

(a)

s(G) ⩽ rs(G).

(b) There exists a Hadk-to-2Lin(2) gadget (G̃,Xk,Yk) with completeness 1 − 2−k such that

1 − rs(G)
1 − c(G) ⩽

1 − rs(G̃)
1 − c(G̃)

,

(c) and for any Hadk-to-2Lin(2) gadget (G̃,Xk,Yk) with completeness 1 − 2−k

1 − rs(G̃)
1 − c(G̃)

⩽ 2.

Proof.
(a) Note that interpreting x1 and x−1 as being primary variables do not affect soundness,

i.e.

s(G) = E
P ∈Ffold (Xk∪{x1,x−1})

max
A ∈ Ffold (Xk ∪ Yk),
A(x) = P (x), x ∈ Xk ∪ {x1, x−1}

val(A,G). (7)

The reason for this is that there exists a degree of freedom in the choice of A since for
any A, val(A,G) = val(1 + A,G). This means for example that we can add one extra
constraint like A(x1) = 1 + A(x−1) = 1 to the definition of s(G) without affecting its
value.
Comparing (7) and the definition of relaxed soundness, we can clearly see that s(G) ⩽ rs(G)
since the relaxed soundness is a less constrained maximisation problem compared to the
right hand side of (7).

(b) This proof is analogous to the proof of [10, Proposition 2.29]. Note that by definition
1 − c(G̃) is the average length of edges (f1, f2) of the gadget G̃, weighted by G̃(f1, f2).
For G̃ to have completeness 1 − 2−k, the edges in G̃ need to have an average length of
2−k. Since there are no edges shorter than 2−k, G̃ can only put non-zero capacity on
edges of length exactly 2−k.
Construct G̃ using the following procedure. Start with G. Split up each edge (f1, f2) in
G into an arbitrary path starting at f1, ending at f2, with edges of length 2−k, where
the sum of lengths of edges in the path should be equal to the length of the original edge
(f1, f2). Remove the capacity of edge (f1, f2) and give each edge in the path the same
capacity as the capacity of the original edge (f1, f2). This will increase the total capacity
of the graph by a factor of (1 − c(G))/2k. As a final step, normalize the capacity by
dividing the capacity of all edges by (1 − c(G))/2k. Let the resulting graph be G̃. Note
that G̃ is a Hadk-to-2Lin(2) consisting only of edges of length 2−k, so its completeness is
1 − 2−k.
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Recall that 1 − rs(G) can be interpreted as the expected value of a Max-Flow problem
on a fully connected 2k-dimensional hypercube, where the placements of sources and
sinks have been randomised. Note that any feasible flow ω of G, when scaled down
by a factor of (1 − c(G))/2−k, corresponds to a feasible flow of G̃. This implies that
(1 − rs(G)) ⩽ (1 − rs(G̃))(1 − c(G))/2−k.
The conclusion from this is that

1 − rs(G̃)
1 − c(G̃)

= 1 − rs(G̃)
2−k

⩾
1 − rs(G)
1 − c(G) .

(c) Let G̃ be the gadget from b). Recall that 1 − rs(G̃) can be interpreted as the expected
value of a Max-Flow problem on a fully connected 2k-dimensional hypercube, where the
placements of sources and sinks have been randomised. The capacities of this flow graph
sum to 1.
Note that the sources and sinks correspond to affine functions, which have a normalised
Hamming distance of at least 1/2. Furthermore, since all edges in G̃ has length 2−k, any
path in G̃ between a source and a sink must contain at least 2k−1 edges.
For any flow graph, if all paths between sources and sinks contain at least 2k−1 edges,
and the sum of capacity over all edges in the graph is 1, then the maximum flow is at
most 21−k. So 1 − rs(G̃) ⩽ 21−k, which implies that

1 − rs(G̃)
1 − c(G̃)

⩽
21−k

2−k
= 2. ◀

▶ Remark B.2. Since the relaxed soundness is an upper bound of the true soundness, it
follows that the NP-hardness result of Max-2Lin(2) as stated in Proposition 2.22 also holds
for s = rs(G).

C Affine maps and lifts

Recall that the rsLP(G) can be interpreted as the expected value of a Max-Flow problem
with a randomised source/sink placement over a fully connected 2k-dimensional hypercube,
where the nodes are indexed by Boolean functions f ∈ Fk. The source/sink nodes are
indexed by affine Boolean functions. In order to be able to describe the symmetries of these
graphs, we want to study mappings M : Fk → Fk with the following properties:
1. Source and sink nodes map to source and sink nodes, i.e. if f is an affine function then

M(f) is also an affine function.
2. The length of all edges {vf1 , vf2} are preserved by the mapping, i.e. dist(M(f1),M(f2)) =

dist(f1, f2).
There is a natural choice of mappings from Fk → Fk for which Property 1 and 2 hold.
Additionally as a bonus, the same natural choice of mappings can also be extended to
construct mappings from Fk → Fk′ , k ⩽ k′, and still have that both Property 1 and 2
hold. This can then be used to embed the 2k-dimensional hypercube in the 2k′ -dimensional
hypercube.

▶ Definition C.1. Let MA,b,β,c : Fk → Fk′ be defined as

MA,b,β,c(f)(y) = f(Ay + b)(−1)cχβ(y),

where k, k′ ∈ Z>0, k ⩽ k′, y ∈ F2
k′ , A ∈ F2

k×k′ is a full rank matrix, b ∈ Fk
2, c ∈ F2 and

β ∈ F2
k′ . Let Mk→k′ denote the set of all maps MA,b,β,c from Fk → Fk′ . For convenience,

we often denote MA,b,β,c by M , where the A, b, β, c are all implicit.
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Since these mappings are reminiscent of affine maps from linear algebra, we call them
affine maps. However, they are not affine maps in the classical sense.

The function M(f) ∈ Fk′ is called the M -lift of f . It is not hard to see that the M -lift of
an affine function is an affine function. More generally, M -lifts always preserve the dimension
of Boolean functions.

▶ Proposition C.2. Given f ∈ Fk and M ∈ Mk→k′ , k ⩽ k′, then dim(M(f)) = dim(f).

Proof. It follows from a direct calculation that

MA,b,β,c(f)(y) = (−1)c
∑

α∈{0,1}k

χAT α+β(y)f̂αχb(α).

This shows that the affine mapping M moves affine(f) to affine(M(f)) = {ATα + β : α ∈
affine(f)}. Furthermore, since A is a full rank matrix, dim(f) = dim(M(f)). ◀

Affine maps also preserve the (normalised Hamming) distance of affine functions.

▶ Proposition C.3. Given f1, f2 ∈ Fk and M ∈ Mk→k′ , k ⩽ k′, then dist(M(f1),M(f2)) =
dist(f1, f2).

Proof. Let M = MA,b,β,c. Note that dist(M(f1),M(f2)) only depends on A and b since

dist(M(f1),M(f2)) = 1
2k′

∑
y∈F2k′

1 −M(f1)(y)M(f2)(y)
2

= 1
2k′

∑
y∈F2k′

1 − f1(Ay + b)f2(Ay + b)
2 .

Furthermore, since A is a full rank k × k′ Boolean matrix, the kernel of A has dimension
k′ − k and size 2k′−k, so∑

y∈{0,1}k′

f1(Ay + b)f2(Ay + b) = 2k′−k
∑

x∈{0,1}k

f1(x)f2(x).

This shows that dist(M(f1),M(f2)) = dist(f1, f2). ◀

The last notable property of the affine maps is that they form a group under composition.
This property is needed to be able to apply the techniques from Appendix A.2 to the rsLP(G)
and to the rs∞LP(G) in order to “compress” them.

▶ Proposition C.4. Mk→k under composition forms a group.

Proof. The composition of two affine mapsMA′,b′,β′,c′◦MA,b,β,c, is an affine mapMA′′,b′′,β′′,c′′ ,
where

A′′ = AA′,

b′′ = Ab′ + b,

β′′ = (A′)Tβ + β′,

c′′ = (b′, β) + c′ + c.
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Furthermore, the left and right inverse of an affine map MA,b,β,c is given by MA′,b′,β′,c′ where

A′ = A−1,

b′ = A−1b,

β′ = (A−1)Tβ,

c′ = c+ (A−1b, β).

This shows that Mk→k forms a group under composition. ◀

C.1 M -lifts of sink and sources
Recall that the source/sink placements of the rsLP(G) and the rs∞LP(G) are described
using a Boolean function g ∈ Fk,

g(α) =
{

1 iff vχα
is a sink,

−1 iff vχα is a source.

Note that M -lifts move the sink and source nodes. If k = k′, then the M -lift permutes the
sink and source nodes. If k < k′, then the M -lift “lifts” the sink and source nodes onto a
higher dimensional hypercube. This means that there exists multiple different source/sink
placements g′ ∈ Fk′ that all match the lifted positions of the sinks and sources. The condition
for when an M -lift of a source/sink placement g ∈ Fk is described by a source/sink placement
g′ ∈ Fk′ is given by the following proposition.

▶ Proposition C.5. An M -lift will map sink nodes in Fk onto sink nodes of Fk′ and source
nodes in Fk onto source nodes in Fk′ if and only if

MAT ,β,b,c(g′) = g.

Proof.
Note that the MA,b,β,c-lift of χα is MA,b,β,c(χα) = χAT α+β(x)(−1)cχb(α). Using the

source/sink placement g′ we can tell whether a node vχα
is lifted onto a sink node or a source

node,

g′(ATα+ β)(−1)cχb(α) =
{

1 iff vMA,b,β,c(χα) is a sink according to g′,

−1 iff vMA,b,β,c(χα) is a source according to g′.

This implies that the sufficient and necessary condition to make all sinks in Fk to be
MA,b,β,c-lifted to sinks in Fk′ and all sources in Fk to be MA,b,β,c-lifted to sources in Fk′ , is
that

g(α) = g′(ATα+ β)(−1)cχb(α)

for all α ∈ Fk
2 . This is identical to requiring that MAT ,β,b,c(g′) = g. ◀

▶ Definition C.6. The operator MAT ,β,b,c is denoted by M#
A,b,β,c.

C.2 Lifting gadgets and flows
It is possible to extend the definition of M -lifting to Hadk-to-2Lin(2) gadgets G by defining
M ·G as

(M ·G)(f ′
1, f

′
2) =

∑
f1 ∈ M−1(f ′

1),
f2 ∈ M−1(f ′

2)

G(f1, f2).
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This moves the capacity G(f1, f2) of edge {vf1 , vf2} onto edge {vM(f1), vM(f2)}. Furthermore,
let the full k → k′ lift of G be defined as the average of all possible M -lifts, i.e.

liftk→k′(G) = 1
| Mk→k′ |

∑
M∈Mk→k′

(M ·G).

Completely analogue to the definition of M -lifts of gadgets, let the M -lift of a flow w of the
rs(G) LP be defined as

(M · w)(f ′
1, f

′
2, g

′) =
∑

f1 ∈ M−1(f ′
1),

f2 ∈ M−1(f ′
2)

w(f1, f2,M
#(g′)),

and let the full k → k′ lift of w be defined as

liftk→k′(w) = 1
| Mk→k′ |

∑
M∈Mk→k′

(M · w).

By connecting these two concepts of lifting gadgets and flows, we can show the following
proposition.

▶ Proposition C.7. The full lift of G is a Hadk-to-2Lin(2) gadget G′ where c(G′) = c(G)
and rs(G′) ⩽ rs(G).

Proof. Let w be a feasible flow of G and let w′ = liftk→k′(w). Note that w′ is a feasible flow
of G′ since the capacity of G is lifted together with the flow w. So constraints (1) and (2)
are satisfied by w′. Additionally,

Eg∈Fk
valg(w) = Eg′∈Fk′ valg′(w′).

since any lift preserves the amount of flow going in and out of sink nodes and source nodes. ◀

The final Proposition that we need for Appendix D is that the full lift of a leaky flow w

of the rsLP(G) is a leaky flow of the rsLP(G′), and that the full lift does not affect the value
of the flow. This is a fundamental property of lifts that is used in Appendix D to upper
bound rs(G′) when k′ → ∞.

▶ Proposition C.8. Let G′ be the full lift of G, and let w′ be the full lift of a leaky flow w of
the rsLP(G). Then w′ is a leaky flow of the rsLP(G′), and Eg∈Fk

valg(w) = Eg′∈Fk′ valg′(w′).

Proof. Let w be a leaky flow of G and let w′ = liftk→k′(w). Note that constraint (1) is
satisfied by w′ since the capacity of G is lifted together with the flow w. So w′ is a leaky
flow. Additionally,

Eg∈Fk
valg(w) = Eg′∈Fk′ valg′(w′).

since any lift preserves the amount of flow going in and out of sink nodes and source nodes. ◀

D Proving that rs∞(G) can be attained in the limit

The goal of this section is to prove Lemma 3.11, which relates the infinity relaxed soundness
to the relaxed soundness. Let G be the Hadk-to-2Lin(2) gadget in Lemma 3.11 and let w be
the optimal flow of the rs∞LP(G), which implies that rs∞(G) = 1 − Eg∈Fk

valg(w). Let k′

be some integer greater than k and define G′ = liftk→k′(G) and w′ = liftk→k′(w). According
to Proposition C.7 G′ is a Hadk-to-2Lin(2) with c(G′) = c(G) and according to Proposition
C.8 w′ is a leaky flow of the rsLP(G′) and Eg∈Fk

valg(w) = Eg′∈Fk′ valg′(w′). We prove that
as k′ tends to infinity the total leakage of G′ converges to 0. After we have established this,
Lemma 3.11 follows from Theorem A.5.
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D.1 Total leakage approaches 0 as k′ → ∞
Let us start by formally defining the leaks of w and w′, where w is a leaky flow of the rsLP(G)
and w′ is a leaky flow of the rsLP(G′). Recall that the rsLP(G′) describe the expectation of
the maximum flow of a graph with a random source/sink placement g′ ∈ Fk′ . It is for this
reason that the total leakage of w′ is defined as an expectation over g′ ∈ Fk′ of the total
leakage of the graph with source/sink placement given by g′.

▶ Definition D.1. Let Lk′ denote the total leakage of w′,

Lk′ = Eg′∈Fk′


∑

f ′ ∈ Fk′

s.t.dim(f ′) > 0

| leakw′(f ′, g′)|

 ,

where

leakw′(f ′, g′) = outw′(f ′, g′) − inw′(f ′, g′)

= 1
| Mk→k′ |

∑
M∈Mk→k′


∑

f ∈ Fk

s.t.M(f) = f ′

leakw(f,M#(g′))

 .

The aim of this subsection is to prove that Lk′ → 0 as k′ → ∞. We do this by proving
the following upper bound on Lk′ through a second order moment analysis.

▶ Proposition D.2.

Lk′ ⩽
22k+k

√
2k′ − 2k

.

The proof of Proposition D.2 relies on the following Proposition describing the relationship
between random pairs of affine maps M1,M2 ∈ Mk→k′ such that M1(f) = M2(f) for some
fixed f ∈ Fk.

▶ Definition D.3. Given MA,b,β,c ∈ Mk→k′ , let TM : Fk
2 → F2

k′ denote the affine
map TM (x) = ATx + β. Furthermore, let affine(MA,b,β,c) denote the affine subspace{
TM (x) : x ∈ Fk

2
}

⊆ Rk′ .

▶ Proposition D.4. Given f ∈ Fk and f ′ ∈ Fk with dim(f) = dim(f ′) = d. Then

|{(M1,M2) ∈ N f→f ′ × N f→f ′ : dim(affine(M1)∩affine(M2)) > d}| ⩽ | N f→f ′ |2
(
2k − 2d

)2

2k′ − 2d
,

where N f→f ′ = {M ∈ Mk→k′ : M(f) = f ′} denotes the set of affine maps in Mk→k′ that
lifts f to f ′.

Proof. Note that for any M1,M2 ∈ N f→f ′ , the dimension of affine(M1) ∩ affine(M2) is at
least d, since according to the proof of Proposition C.2 both TM1 and TM2 must map affine(f)
onto affine(f ′), so dim(affine(M1) ∩ affine(M2) ∩ affine(f ′)) = d. However, the two maps TM1

and TM2 can map the complement of affine(f) in different ways since there is no restriction
to how they map the complement of affine(f).
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Fix M1 and uniformly at random pick M2 from N f→f ′ . Given any fix x ̸∈ affine(f), the
probability that TM2(x) ∈ affine(M1) is (2k − 2d)/(2k′ − 2d) since | affine(M1) \ affine(f ′)| =
2k − 2d and TM2(x) is uniformly distributed over the complement of affine(f ′). Taking a
union bound over all x ̸∈ affine(f) shows that

PM2∈N f→f′ [dim(affine(M1) ∩ affine(M2)) > d] ⩽

(
2k − 2d

)2

2k′ − 2d
.

Proposition D.4 follows directly from this inequality. ◀

The takeaway from Proposition D.4 is that if M1 and M2 are two random affine maps
such that M1(f) = M2(f) for some fixed f ∈ Fk, then with high probability affine(M1) ∩
affine(M2) = affine(f). This allows us to create a bound on the second order moment of the
terms that define Lk′ .

▶ Lemma D.5. Given f ∈ Fk, f ′ ∈ Fk′ and g′ ∈ Fk′ , where dim(f) = dim(f ′) = d > 0,
then

Eg′∈Fk′


∣∣∣∣∣∣∣∣

∑
M ∈ N f→f ′

leakw(f,M#(g′))

∣∣∣∣∣∣∣∣
2 ⩽ | N f→f ′ |2

(
2k − 2d

)2

2k′ − 2d
.

Proof. Expanding the square we need to prove that,

∑
M1,M2 ∈ N f→f ′

Eg′∈Fk′ (leakw(f,M#
1 (g′)) leakw(f,M#

2 (g′))) ⩽ | N f→f ′ |2
(
2k − 2d

)2

2k′ − 2d
.

Split the terms up into two cases, either dim(affine(M1)∩affine(M2)) > d or dim(affine(M1)∩
affine(M2)) = d. By Proposition D.4 the number of terms of the first type is at most
| N f→f ′ |2

(
2k − 2d

)2
/(2k′ − 2d). Each term is bounded by one since the sum of capacities

in the rs(G) LP is equal to 1, so the absolute value of a leak is always smaller than or equal
to 1 at any node and for any source/sink placement.

In the other case, when dim(affine(M1) ∩ affine(M2)) = d, then the two random functions
M#

1 (g′) and M#
2 (g′) are equal on affine(f), and independently uniformly random {1,−1}

on the complement of affine(f). This allows us to rewrite the expectation over g′ as

Eg′∈Fk′ (leakw(f,M#
1 (g′)) leakw(f,M#

2 (g′)))

=Eg′∈Fk′

leakw(f,M#
1 (g′))E

g′
2 ∈ Fk′

s.t.M#
2 (g′

2)|affine(f) = M#
1 (g′)|affine(f)

leakw(f,M#
2 (g′

2))



=Eg∈Fk

leakw(f, g)E
g2 ∈ Fk

s.t.g2|affine(f) = g|affine(f)

leakw(f, g2)

 .

This is equal to 0, since for any infinity relaxed flow w (see Definition 3.7) the expectation
of leakw(f, g2) over g2 given g is 0. ◀

We are now at the point where we can prove Proposition D.2 using Lemma D.5.
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Proof of Proposition D.2. A trivial upper bound of Lk′ using the triangle inequality is

Lk′ ⩽
1

| Mk→k′ |
∑

f∈Fk

∑
f ′ ∈ Fk′

s.t.dim(f ′) > 0

Eg′∈Fk′

∣∣∣∣∣∣
∑

M∈N f→f′

leakw(f,M#(g′))

∣∣∣∣∣∣
 .

Applying Jensen’s inequality to the expectation over g′ ∈ Fk′ gives

Eg′∈Fk′

∣∣∣∣∣∣
∑

M∈N f→f′

leakw(f,M#(g′))

∣∣∣∣∣∣
 ⩽

√√√√√√Eg′∈Fk′


∣∣∣∣∣∣
∑

M∈N f→f′

leakw(f,M#(g′))

∣∣∣∣∣∣
2
,

which according to to Lemma D.5 can be further upper bounded by√√√√√√Eg′∈Fk′


∣∣∣∣∣∣
∑

M∈N f→f′

leakw(f,M#(g′))

∣∣∣∣∣∣
2
 ⩽

2k − 2dim(f)
√

2k′ − 2dim(f)
| N f→f ′ |

⩽
2k

√
2k′ − 2k

| N f→f ′ |.

We have so far shown that

Lk′ ⩽
2k

√
2k′ − 2k

∑
f∈Fk

∑
f ′ ∈ Fk′

s.t.dim(f ′) > 0

| N f→f ′ |
| Mk→k′ |

.

Finally, note that
∑

f ′∈Fk′ | N f→f ′ | = | Mk→k′ | since N f→f ′ are disjoint subsets of Mk→k′

for different f ′ ∈ Fk′ and their union over f ′ ∈ Fk′ is equal to Mk→k′ . So

Lk′ ⩽
2k

√
2k′ − 2k

∑
f∈Fk

∑
f ′ ∈ Fk′

s.t.dim(f ′) > 0

| N f→f ′ |
| Mk→k′ |

⩽
2k

√
2k′ − 2k

∑
f∈Fk

1 ⩽
22k+k

√
2k′ − 2k

. ◀

D.2 The proof of Lemma 3.11
All that remains is to tie up the loose ends by proving Lemma 3.11 using Proposition D.2
combined with Theorem A.5.

Proof of Lemma 3.11. Since w′ is a leaky flow of the rsLP(G′), it follows from Theorem
A.5 that there exists a feasible flow w̃′ of the rsLP(G′) such that

Eg′∈Fk′ valg′(w̃′) + Lk′ ⩾ Eg′∈Fk′ valg′(w′).

Note that rs(G′) ⩾ 1 − Eg′∈Fk′ valg′(w̃′) since w̃′ is a feasible flow of the rsLP(G′). Further-
more, recall that rs∞(G) = 1 − Eg′∈Fk′ valg′(w′). So

rs(G′) − Lk′ ⩽ rs∞(G).

Proposition D.2 implies that Lk′ → 0 as k′ → ∞, which proves that ∀ε > 0 there exists a
gadget G′ with c(G′) = c(G) such that rs(G′) − ε ⩽ rs∞(G). ◀
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E Gadget construction and verification

This section contains the details for how to practically compute Hadk-to-2Lin(2) gadgets using
the rsLP(G) and the rs∞LP(G) . These LPs have far too many variables and constraints to
directly be solved by a computer when k ⩾ 4. The solution is to make use of the symmetries
of the LP:s to construct smaller LP:s with the same optimum. This is done in two steps.
Step 1 is to use Proposition C.7 to argue that best gadgets are the symmetrical gadgets.
This means that we only need to take into account symmetrical gadgets when solving the
rsLP(G) and the rs∞LP(G). Step 2 is to use the fact that if G is symmetrical, then Theorem
A.8 allows us to compress the LP, merging a huge number of variables into a single variable.

E.1 Symmetrical Hadk-to-2Lin(2) gadgets are optimal
The meaning of a Hadk-to-2Lin(2) gadget (G,X,Y) being optimal is that there exists no
Hadk-to-2Lin(2) gadget (G̃,X,Y) such that c(G) = c(G̃) and rs(G) > rs(G̃). The following
Proposition states that symmetric gadgets are optimal. By symmetric, we refer to the
property that the gadget G is invariant under M -lifts.

▶ Proposition E.1. Given any Hadk-to-2Lin(2) gadget (G,X,Y), there exists a symmetric
Hadk-to-2Lin(2) gadget (G̃,X,Y) such that c(G) = c(G̃) and rs(G) ⩾ rs(G̃).

Proof. Let G̃ = liftk→k(G). According to Proposition C.7, c(G) = c(G̃) and rs(G) ⩾ rs(G̃).
Furthermore, G̃ is a symmetric gadget since for any f1, f2 ∈ Fk and M ∈ Mk→k,

(M · G̃)(f1, f2) = 1
| Mk→k |

∑
M2∈Mk→k

((M ◦M2) · G̃)(f1, f2)

= 1
| Mk→k |

∑
M2∈M◦Mk→k

(M2 · G̃)(f1, f2).

According to Proposition C.4, Mk→k forms a group, so M ◦ Mk→k = Mk→k. We have
shown that M · G̃ = G̃ and thus G̃ is a symmetric gadget. ◀

E.2 Compressing the rsLP(G) and rs∞LP(G)
As discussed earlier, both the rsLP(G) and the rs∞LP(G) can be interpreted as Max-Flow
problems. Furthermore, if G is symmetric under M -lifts, then Mk→k is a symmetry group for
both of these Max-Flow problems. This means that we can apply Theorem A.8 to compress
the Max-Flow problems, giving us the compressed rsLP(G) and the compressed rs∞LP(G).

One of the symmetries that the compression is able to capture is that many different
source/sink placements are equivalent. In a sense, the source/sink placements of the com-
pressed LPs consist of one representative source/sink placement from each set of equivalent
source/sink placements. This symmetry turns out to be the main contributor as to why the
compressed LP is significantly smaller than the original LP.

Without the compression, the LPs each have 23·2k variables, which for k ⩾ 4 is compu-
tationally infeasible. However, even with the compression, for k = 4 the LPs are still large
enough that it is computationally challenging to solve them.

E.2.1 Further restricting the compressed LPs
To further restrict the size of the LPs in the case of k = 4, we heuristically identify a list
of beneficial gadget variables by solving the compressed LPs with floating point numbers
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Table 4 Sizes of the rsLP(G) and rs∞LP(G) for Had2-to-2Lin(2) gadgets G. The three numbers
are the number of linear constraints, number of variables and number of non-zero entries in the
constraints. All variables have the implicit constraint of being non-negative.

rsLP(G) rs∞LP(G)
Original 163 343 534 163 343 534
Compressed 23 38 106 23 38 106

Table 5 Sizes of the rsLP(G) and rs∞LP(G) for Had3-to-2Lin(2) gadgets G. The three numbers
are the number of linear constraints, number of variables and number of non-zero entries in the
constraints. All variables have the implicit constraint of being non-negative.

rsLP(G) rs∞LP(G)
Original 8 · 106 2 · 107 5 · 107 8 · 106 2 · 107 5 · 107

Compressed 298 546 2330 243 462 1987

using Gurobi. Any gadget variable that is given non-zero weight in at least one floating
point solution is added to the list. Using this list, we define the restricted compressed LP
as the compressed LP but with all other gadget variables that are not on the list, removed.
The list we use can be found in Table 9 in Appendix F. Note that one possible drawback to
restricting the LPs like this is that the restriction could lead to construction of sub-optimal
gadgets.

Tables 4–6 show the sizes of the LPs depending on if compression or restriction is being
applied. Note that the restricted and compressed LP:s have significantly fewer variables than
the original LP:s.

There is a special case where we do not need the restrictions. If the completeness of a
gadget is 1 − 2−k, then the gadget only has non-zero weight on edges of length 2−k. There
are comparatively relatively few edges of length 2−k. This allows us to directly construct the
gadget by solving the non-restricted LP. So in the case of completeness 1 − 2−k, the gadgets
we construct are guaranteed to be optimal since we do not make use of any restrictions.

E.3 Implementation details
The compressed rsLP(G) and compressed rs∞LP(G) are constructed using a Python script
where all of the calculations are done using integer arithmetic. The script makes use of
affine maps to efficiently compute the symmetries of the two LPs, in order to compress them.
The time and memory complexities of the script are roughly O(22·2k ), so the script is able
to handle k = 2, 3 and 4. In theory it would be possible to also make the script support
k = 5, but that would require both more powerful hardware, as well as improving the time
complexity to roughly O(22k ) time.

Table 6 Sizes of the rsLP(G) and rs∞LP(G) for Had4-to-2Lin(2). The three numbers are the
number of linear constraints, number of variables and number of non-zero entries in the constraints.

rsLP(G) rs∞LP(G)
Original 1 · 1014 3 · 1014 4 · 1014 1 · 1014 3 · 1014 4·1014

Restricted 2 · 1011 4 · 1011 6 · 1011 2 · 1011 4 · 1011 6 · 1011

Compressed 4 · 105 7 · 105 1 · 107 3 · 105 6 · 105 9 · 106

Restricted & compressed 3 · 104 6 · 104 2 · 105 3 · 104 5 · 104 2 · 105
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After having computed the compressed rsLP(G) and compressed rs∞LP(G), the list
of beneficial gadget variables found in Section 4.1 are used to construct the restricted
compressed LPs. In order to solve the compressed LP we use the exact rational number LP
solver QSopt_ex[1]. This results in a gadget described only using rational numbers, as well
as an accompanying compressed flow, also described only using rational numbers.

E.4 Verification of rs(G) and rs∞(G)

It is significantly simpler to verify the relaxed soundness and the infinity relaxed soundness
of a gadget than it is to construct the gadget. The verification can be done almost directly
on the original LPs, without needing the restricted compressed LPs or the compressed LPs.

The input to the verification program is a gadget G :
(Fk

2
)

→ [0, 1] together with a flow
wg : Fk × Fk → R, for each source/sink placement equivalence class representative g. The
flow acts as a witness for the relaxed soundness / infinity relaxed soundness of the gadget.
In order to avoid floating point errors, we require both G and the wg to be rational.

The verification process is done in five steps.

1. For each source/sink placement representative g, verify that the flow wg satisfies the
capacity constraints of the rs(G) LP / rs∞(G) LP, i.e. that wg(f1, f2) + wg(f2, f1) ⩽
G(f1, f2) for all f1, f2 ∈ Fk.

2. Verify that the gadget G is symmetric under action by M ∈ Mk→k, meaning that
for all functions f1, f2 ∈ Fk and affine maps M ∈ Mk→k, it holds that G(f1, f2) =
G(M(f1),M(f2)).

3. For each source/sink placement representative g and each function f ∈ Fk, compute
in(f, g) and out(f, g). Now extend in and out to be defined for all f and g in Fk. For any
source/sink placements g̃ ∈ Fk that is not a representative, pick a map M ∈ Mk→k and
representative g such that g = M#(g̃), and define in(f, g̃) as in(M−1(f), g) and out(f, g̃)
as out(M−1(f), g).

4. Verify the conservation of flow constraint in the rsLP(G) / rs∞LP(G′) by iterating
over all (f, g) ∈ Fk × Fk that are not sinks or sources. For the rsLP(G) this just
involves checking that in(f, g) = out(f, g). For the rs∞LP(G) this involves checking that∑

g′ in(f, g′) =
∑

g′ out(f, g′), where the sum is over all g′ such that g′|affine(f) = g|affine(f).

5. Compute and output the completeness and rs / rs∞ of the gadget using the extended
inflow and outflow as a witness.

Note that the first step verifies the capacity constraints only for representatives of equivalent
source/sink placements. The second step checks that the gadget G is symmetric, which
combined with the first step implies that any extension of the flow to an arbitrary source/sink
placement will fulfil the capacity constraints. The fourth step checks that the conservation of
flow constraint is fulfilled, which in the case of the rs∞LP(G) involves computing the affine
support of all possible source/sink placements.

The LP’s we use and the gadgets we present in this paper can be found at https:
//github.com/bjorn-martinsson/NP-hardness-of-Max-2Lin-2, as well as a stand alone
implementation of a verification script written in Python. As described in the verification
process above, the verification requires a flow wg as input. So on the Github, there is also a
script used to generate this witness flow. This is done by solving the restricted compressed
rsLP(G) / rs∞LP(G) using an integral Max-Flow solver, and then uncompressing the result.

https://github.com/bjorn-martinsson/NP-hardness-of-Max-2Lin-2
https://github.com/bjorn-martinsson/NP-hardness-of-Max-2Lin-2
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F Edges used/unused in constructed gadgets

During the numerical analysis, we solve LPs to construct the gadgets. A gadget can be
interpreted as a probability distribution over (undirected) edges. Tables 7–9 list all edges
that have been given non-zero weight in at least one solution to an LP, for k = 2, 3, 4. Recall
that every gadget that we construct is symmetrical under the mappings of Mk→k, so edges
from the same edge orbit share the same capacity. More specifically, the tables contain a list
of all edge orbits that are used in at least one constructed gadget.

APPROX/RANDOM 2024
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Table 7 The relevant edge orbits for Had2-to-2Lin(2) gadgets. The edges of a Had2-to-2Lin(2)
gadget has a total of 4 edge orbits, but only two are ever used in our constructed gadgets. The rest
of the edges were always given capacity 0 by the (rational) LP-solver.

f1 f2 Ham.dist. size
0000 1000 1 32
0000 1100 2 24

Table 8 The relevant edge orbits for Had3-to-2Lin(2) gadget. The edges of a Had3-to-2Lin(2)
gadget has a total of 26 edge orbits, but only four are ever used in our constructed gadgets. The
rest of the edges were always given capacity 0 by the (rational) LP-solver.

f1 f2 Ham.dist. Size
00000000 10000000 1 128
10000000 11000000 1 896
00000000 11000000 2 448
00000000 11110000 4 112

Table 9 The relevant edge orbits for Had4-to-2Lin(2) gadget. The edges of a Had4-to-2Lin(2)
gadget has a total of 1061 edge orbits, but only 21 are ever used in our constructed gadgets. Note
that as discussed in Appendix E.2.1, this list of edges was identified using the Gurobi LP-solver,
and not using a rational LP solver. See Appendix E.2.1 for more information.

f1 f2 Ham.dist. Size
0000000000000000 1000000000000000 1 512
1000000000000000 1100000000000000 1 7680
1100000000000000 1110000000000000 1 53760
1110000000000000 1111000000000000 1 17920
1110000000000000 1110100000000000 1 215040
1110100000000000 1110100010000000 1 215040
0000000000000000 1100000000000000 2 3840
1100000000000000 1111000000000000 2 26880
1100000000000000 1110100000000000 2 322560
1110000000000000 1111100000000000 2 107520
1110000000000000 1110110000000000 2 161280
1111000000000000 1110100000000000 2 107520
1110100000000000 1110100011000000 2 322560
0000000000000000 1110000000000000 3 17920
1100000000000000 1111100000000000 3 322560
1100000000000000 1110101000000000 3 215040
1110000000000000 1110100010001000 3 860160
0000000000000000 1111000000000000 4 4480
0000000000000000 1110100000000000 4 53760
0000000000000000 1111100000000000 5 53760
0000000000000000 1111111100000000 8 480
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