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Abstract
The online joint replenishment problem (JRP) is a fundamental problem in the area of online
problems with delay. Over the last decade, several works have studied generalizations of JRP with
different cost functions for servicing requests. Most prior works on JRP and its generalizations have
focused on the clairvoyant setting. Recently, Touitou [44] developed a non-clairvoyant framework
that provided an O(

√
n log n) upper bound for a wide class of generalized JRP, where n is the

number of request types.
We advance the study of non-clairvoyant algorithms by providing a simpler, modular framework

that matches the competitive ratio established by Touitou for the same class of generalized JRP.
Our key insight is to leverage universal algorithms for Set Cover to approximate arbitrary monotone
subadditive functions using a simple class of functions termed disjoint. This allows us to reduce the
problem to several independent instances of the TCP Acknowledgement problem, for which a simple
2-competitive non-clairvoyant algorithm is known. The modularity of our framework is a major
advantage as it allows us to tailor the reduction to specific problems and obtain better competitive
ratios. In particular, we obtain tight O(

√
n)-competitive algorithms for two significant problems:

Multi-Level Aggregation and Weighted Symmetric Subadditive Joint Replenishment. We also show
that, in contrast, Touitou’s algorithm is Ω(

√
n log n)-competitive for both of these problems.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Set Cover, Joint Replenishment, TCP-Acknowledgment, Subadditive Function
Approximation, Multi-Level Aggregation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.12

Category APPROX

Funding Tomer Ezra: Supported by the Harvard University Center of Mathematical Sciences and
Applications.
Stefano Leonardi: Supported by the ERC Advanced Grant 788893 AMDROMA and MIUR PRIN
project ALGADIMAR.
Matteo Russo: Supported by the ERC Advanced Grant 788893 AMDROMA and MIUR PRIN
project ALGADIMAR.
Seeun William Umboh: Part of this work was done when the author was visiting the Sapienza
University of Rome, and at the School of Computer Science, University of Sydney.

Acknowledgements We thank the anonymous reviewers for their valuable feedback.
© Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomer@cmsa.fas.harvard.edu
mailto:leonardi@diag.uniroma1.it
mailto:michal.pawlowski196@gmail.com
mailto:mrusso@diag.uniroma1.it
mailto:william.umboh@unimelb.edu.au
https://orcid.org/0000-0001-6984-4007
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

1 Introduction

Online problems with delay have received much attention in the last few years. An important
family of online problems with delay consists of the Joint Replenishment Problem (JRP)
and its variants. A typical instance consists of a sequence of requests that arrive over time.
Each request can be one of n request types, and the cost of serving a set of requests is a
subadditive1 function of their types. We assume that the algorithm has oracle access to
the service cost function. Requests do not need to be served on arrival but each request
accumulates a delay cost while unserved. In particular, each request q has an associated delay
cost function dq and its delay cost is dq(t) if it is served at time t. The goal of the problem is
to serve all requests minimizing the total service cost and delay cost. An important special
case is the deadline case; this is when requests do not incur delay cost but instead must be
served by some given time. We call this family of problems Subadditive JRP.

These problems can be studied under the clairvoyant and non-clairvoyant settings. In
the clairvoyant setting, when a request q arrives, the algorithm is given the entire delay cost
function dq (or its deadline in the case of deadlines). In contrast, in the non-clairvoyant
setting, the algorithm only knows of the delay cost accumulated so far. In the case of
deadlines, the algorithm only knows whether the request’s deadline is now (and must be
served immediately) or later.

Most previous works on Subadditive JRP have focused on the clairvoyant setting. Key
problems within the family of Subadditive JRP include (in increasing order of generality):
TCP Acknowledgement [36, 27, 20], Joint Replenishment Problem [21, 18, 14, 23], and
Multi-Level Aggregation (MLA) [19, 7, 12, 11, 42]. For general subadditive service cost
functions, deterministic O(log N) (where N is the number of requests) and O(log n) upper
bounds are known ([22] and [8], respectively).

There is much less work in the non-clairvoyant setting. For a small number of problems,
such as TCP Acknowledgement and Set Cover with Delay [3], clairvoyance is not required
in the sense that the same competitive ratio can be attained in both the clairvoyant and
non-clairvoyant settings. However, Azar et al. [5]’s lower bound for Online Service with
Delay (a different family of online problems with delay) can be translated into an Ω(

√
n)

lower bound against deterministic algorithms for JRP, and thus, MLA and Subadditive JRP.
In contrast, clairvoyant Subadditive JRP has a O(log n) competitive ratio [8]. Recently, Le
et al. [39] showed that randomization does not help in breaking the Ω(

√
n) barrier and also

developed algorithms for JRP and MLA with matching and nearly-matching upper bounds.
Shortly after, Touitou [44] presented a general non-clairvoyant framework for Subadditive
JRP with a deterministic O(

√
n log n) competitive ratio.

1.1 Our Results

Our main contribution is a simple, modular framework for non-clairvoyant Subadditive JRP
that matches the current-best competitive ratio of O(

√
n log n), and yields tight O(

√
n)

competitive ratios for the key problems of Multi-Level Aggregation and Weighted Symmetric
Subadditive Joint Replenishment. We also show that the framework of Touitou [44] is
Ω(

√
n log n) for these problems. We now formally define these problems and state our results.

1 A set function over a ground set U is subadditive if f(A) + f(B) ≥ f(A ∪ B) for every A, B ⊆ U .
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1.1.1 General Framework for Subadditive JRP

Subadditive JRP. We have a set U of n request types and a monotone non-decreasing,
subadditive service function f : 2U 7→ R≥0 that satisfies f(∅) = 0. Requests q arrive over
time. Each request q has a type hq ∈ U , an arrival time aq, and a non-decreasing, continuous
delay function dq. At any point in time, the algorithm can serve a subset Q of the requests
that have arrived and incur a service cost of f(SQ) where SQ = {hq : q ∈ Q} is the set of
types of Q. Let Cq be the time when request q was served. The delay cost of request q is
dq(Cq).2 The goal is to serve all requests while minimising the sum of the total service and
delay costs.

Approximating set functions. The core idea underlying our framework is the following
simple but powerful observation. Given two set functions f, g over the same ground set U of n

elements, we say that g is an α-approximation of f if f(S) ≤ g(S) ≤ αf(S) for every S ⊆ U .
Our observation is that for a given subadditive service function f , if we can α-approximate
f by a simpler service function g, then we can reduce any instance of Subadditive JRP with
service function f to one with g instead. In fact, this leads us to the following simplification
of the problem.

Disjoint TCP Acknowledgement. In Disjoint TCP Acknowledgement, we have a set U of
n request types. We also have a partition of U into subsets S1, . . . , Sk with costs c1, . . . , ck.
For a subset S ⊆ U , we have f(S) =

∑k
i=1 ci · 1 {Si ∩ S ̸= ∅}. In other words, we pay ci for

every part Si that intersects with S. Such a function is called a disjoint service function.
Observe that when k = 1, this is equivalent to the TCP Acknowledgement problem; when
k > 1, this corresponds to several independent instances of TCP Acknowledgement. The
2-competitive algorithm for TCP Acknowledgement of [27] can be easily extended to a
2-competitive algorithm for Disjoint TCP Acknowledgement (see Section 2.1).

We now state our main technical lemma.

▶ Lemma 1.1 (Reduction Lemma). If there exists a disjoint service function g that α-
approximates f , then there exists a non-clairvoyant algorithm that is 2α-competitive non-
clairvoyant algorithm for every Subadditive JRP instance with service cost function f .

A major advantage of our Reduction Lemma is that it reduces the task of designing and
analyzing an online algorithm for a Subadditive JRP problem to the much cleaner task of
showing that the corresponding service function f can be approximated by a disjoint service
function well. In particular, this boils down to finding a partition of the set of request types
U into subsets S1, . . . , Sk, for some k, such that the following quantity is small

max
S⊆U

∑k
i=1 f(Si) · 1 {Si ∩ S ̸= ∅}

f(S) .

For general Subadditive JRP, our key insight is that the problem of approximating an
arbitrary service function f by a disjoint service function can be reformulated as the Universal
Set Cover problem.

2 We assume W.L.O.G. that dq(aq) = 0, i.e., serving a request immediately on arrival incurs no delay
cost.

APPROX/RANDOM 2024
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Universal Set Cover (USC). An instance of the Universal Set Cover (USC) problem consists
of a universe U of n elements, a collection C of subsets of U , and costs c(S) for each set S ∈ C.
A solution is an assignment a of each element e to a set a(e) ∈ C. For any subset X ⊆ U ,
define a(X) = {a(e) : e ∈ X}. The stretch of the assignment a is maxX⊆U c(a(X))/OPT(X)
where OPT(X) is the cost of the optimal set cover of X.

Jia et al. [35] introduced the Universal Set Cover problem and showed that a O(
√

n log n)-
stretch assignment can always be found efficiently. We show that this implies that any
subadditive service function f can be approximated by a disjoint service function to within a
factor of O(

√
n log n) (Lemma 2.2). Together with our Reduction Lemma, we get a determ-

inistic O(
√

n log n)-competitive algorithm for Non-Clairvoyant Subadditive JRP, matching
the current state-of-the-art [44].

1.1.2 MLA and Weighted Symmetric Subadditive JRP
One main technical contribution of the paper is to exploit the inherent structure of the
MLA and Weighted Symmetric Subadditive JRP functions to show that they can be O(

√
n)-

approximated by disjoint service functions. We then employ the Reduction Lemma to prove
tight O(

√
n)-competitive ratios for the two corresponding problems.

Multi-Level Aggregation. In the Multi-Level Aggregation (MLA) problem, the service
function f is defined by a rooted aggregation tree T , where each node corresponds to a
different request type. Let r be the root of T and let c(v) be the cost of node v for each
v ∈ T . For a subset V of nodes, f(V ) is defined to be the total cost of the nodes in the
minimal subtree connecting V to r.

▶ Theorem 1.2. There exists an efficient deterministic O(
√

n)-competitive algorithm for the
Non-Clairvoyant Multi-Level Aggregation problem.

To show the above result, given Lemma 1.1, our goal is to find a good partition P of the
tree T ’s nodes into subtrees and subforests (that we refer to as clusters). More precisely,
let us use P to define a disjoint service function g where for each subset V of nodes of T ,
g(V ) =

∑
C∈P :C∩V ̸=∅ f(C).

The crucial idea is to notice that since we aim for the gap of order at most
√

n between g

and f , we can see it as g being assigned a budget of roughly
√

nf(V ) to serve V for each
subset V of T ’s nodes. Since the cost that f incured on a set V equals the cost of the minimal
subtree connecting all the nodes in V to the root r of T , the value of g(V ) cannot exceed
β

√
n times this cost for some fixed β ∈ N. To achieve this, we generate a partition consisting

of two types of clusters. First are the subtrees rooted at “expensive” nodes. The intuition
is that their cost alone multiplied by α

√
n for some α ∈ N is enough to “cover” the cost of

both their subtree and the path to r. The second type is the clusters that contain more than√
n nodes, since there cannot be many of them.

Weighted Symmetric Subadditive JRP. In Weighted Symmetric Subadditive JRP, the
service function f is a function of the total weight w(S) =

∑
i∈S wi of the set of types

being served. In particular, f is a monotone non-decreasing subadditive function with
f(S) = f(w(S)) and f(0) = 0, that satisfies that for every weights x, y, f(x+y) ≤ f(x)+f(y).
We refer to these functions as weighted symmetric subadditive.

▶ Theorem 1.3. There exists an efficient deterministic O(
√

n)-competitive algorithm for the
Non-Clairvoyant Weighted Symmetric Subadditive Joint Replenishment problem.
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As in the MLA case, given Lemma 1.1, our goal is to devise a partitioning algorithm
inducing a disjoint service function that O(

√
n)-approximates the corresponding weighted

symmetric subadditive service cost function. We first consider the special case where each
weight equals 1. In this scenario, the service function f is symmetric and becomes a function
of the cardinality of the set of types being served. Consequently, the partition of elements
should ideally reflect this symmetry by ensuring equal-sized parts.

Determining the optimal size for each part involves striking a delicate balance. Larger
sizes enable us to leverage the subadditivity of f but excessively large sizes incur higher
costs for smaller sets. We demonstrate that selecting sets of size O(

√
n) is the optimal

tradeoff in worst-case scenarios. Notably, this partition remains effective across all symmetric
subadditive functions simultaneously.

Extending this approach to the general case of weighted symmetric subadditive functions
involves categorizing elements into weight classes based on powers of 2, ensuring approximate
size equivalence, and then partitioning into sets of size

√
n. However, this approach risks

generating an excessive number of sets. To address this issue, we devise a partitioning
strategy that accommodates light-weight elements first. Then, for heavier-weight elements,
we further partition by a factor of 2, provided it is feasible, to achieve a refined division.

1.1.3 Running time of Algorithms and Reductions

Regarding the running time of our algorithms, we stress that, in the case of Multi-Level
Aggregation and Weighted Symmetric Subadditive JRP, the reductions are executed in
polynomial time. However, the reduction for general subadditive functions is executed in
exponential time, as we need to create a set for each subset of types.

1.1.4 Lower bounds on approximating subadditive service functions

Since Non-Clairvoyant MLA and Weighted Symmetric Subadditive JRP have a Ω(
√

n)
lower bound [5, 39], the Reduction Lemma implies that MLA and Weighted Symmetric
Subadditive JRP service functions do not admit o(

√
n)-approximation by disjoint service

functions. Nevertheless, we also give direct proofs in Sections 3 and 4, respectively. The latter
provides a simpler alternative proof for the Ω(

√
n) lower bound for unweighted Universal

Set Cover shown in [35]. We also show, in Proposition 5.1, that Jia et al.’s analysis of
their Universal Set Cover algorithm [35] is tight. Thus, we need a different approach to
o(

√
n log n)-approximate arbitrary subadditive service functions by disjoint service functions.

Finally, in Proposition 5.2, we exhibit an MLA and Weighted Symmetric Subadditive JRP
instance where Touitou’s algorithm [44] can only achieve an Ω(

√
n log n)-approximation to

the respective service cost functions.

1.2 Future Directions

Our work leaves several tantalizing open questions. The main open problem is whether
subadditive service functions admit better than O(

√
n log n)-approximation by disjoint service

functions. This would immediately improve the competitive ratio for general non-clairvoyant
Subadditive JRP. It would also be interesting to find better approximations of other interesting
subclasses such as XOS and submodular functions.

APPROX/RANDOM 2024
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1.3 Further Related Work
Network Design with Delay. Network Design with Delay is very closely related to Subad-
ditive JRP. In Network Design with Delay, we are given a universe of n request types and m

items with costs. Each request type h has a corresponding upwards-closed collection Ch of
subsets of items that satisfy it. At any point in time, the algorithm can transmit a set of
items. A request of type h is served by a transmission that contains some subset in Ch. Some
specific problems are Set Cover with Delay [22, 3, 43], Facility Location [7, 8, 13] and other
network design problems [7, 8]. Network Design with Delay is equivalent to Subadditive JRP
as the optimal cost of satisfying a subset of request types is subadditive, and Subadditive
JRP can be formulated as Set Cover with Delay with exponentially many sets.

Online problems with delay. There has been a lot of work on other online problems with
delay as well. In Online Service with Delay, we are given one or multiple servers on a metric
space. Requests arrive on points of the metric space and are served when a server is moved
to their location. In Online Matching with Delay, we are given an underlying metric space.
Requests arrive on points of the metric space and are served when they are matched. Most
of the work on Online Service with Delay [5, 33, 34, 17, 38, 45] and Online Matching with
Delay [28, 2, 1, 16, 4, 15, 29, 6, 41, 24] has been in the clairvoyant setting. Nevertheless,
non-clairvoyant algorithms have been designed for Online Service with Delay [38] and Online
Matching with Delay [24].

Approximating subadditive functions. The approximation of subadditive functions has
been a focal point of research, at least since the introduction of the complement-free hierarchy
of functions introduced in [40]. This consists of the class of submodular function, which
is strictly contained into the XOS class, which in turn is strictly contained in the general
subadditive class.3 As for approximation, it is known that XOS approximates subadditive
within a factor of O(log(n)), which is tight [25, 10]. The approximability gap between
Submodular and XOS is Θ(

√
n) [9, 31]. In a similar vein, [26] prove that Gross-Substitute

functions (first introduced in [37]) cannot approximate submodular set functions within a
factor better than Ω

(
log(n)

log log(n)

)
. In the context of symmetric function approximation, [30]

show that symmetric subadditive, symmetric XOS and symmetric submodular4 functions
are all 2-close to each other, which is tight.

2 Subadditive Joint Replenishment

In this section, we prove our Reduction Lemma (Lemma 1.1) and apply it to Subadditive
JRP.

2.1 Reduction Lemma
We begin by showing that there is a simple deterministic 2-competitive algorithm for Disjoint
TCP Acknowledgement via a straightforward extension of the classic algorithm for TCP
Acknowledgement of [27].

3 Several other classes within the submodular class have been considered (e.g. additive, unit-demand,
Gross-Substitutes).

4 We use the term symmetric submodular to indicate functions that are (monotone) concave in the size of
the set.
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In the following, we use λ to denote a service and Qλ to be the set of request types
transmitted by λ. We also use OPT to mean both the optimal solution and the cost of the
optimal solution.

▶ Lemma 2.1. There is a deterministic 2-competitive algorithm for Disjoint TCP Acknow-
ledgement.

Proof. Suppose there is a partition of H into subsets S1, . . . , Sk with costs c1, . . . , ck and
f(S) =

∑k
i=1 ci · 1 {Si ∩ S ̸= ∅}. Our algorithm works as follows: for each set Si, transmit

Si whenever the pending requests in Si have accumulated a total delay equal to ci.
It is clear that the total service cost of the algorithm is at most its total delay cost. We

now show that the latter is at most the cost of the optimal solution. To this end, let us
consider the cost of the optimal solution. Suppose that the optimal solution makes a set of
services Λ∗. Let Λ∗

i denote the subset of services that transmit a request type in Si. The
total service cost of the optimal solution is then

∑
λ∈Λ∗

f(Qλ) =
∑

λ∈Λ∗

k∑
i=1

ci · 1 {Si ∩ Qλ ̸= ∅} =
k∑

i=1
ci · |Λ∗

i |.

Define dOPT
q and dALG

q to be the delay cost of q in the optimal solution and algorithm’s
solution, respectively. Let OPTi = ci · |Λ∗

i | +
∑

q:hq∈Si
dOPT

q . This is the total cost that OPT
incurs on requests on Si. Observe that OPT =

∑k
i=1 OPTi.

We now show that
∑

q:hq∈Si
dALG

q ≤ OPTi for each set Si. Suppose that the algorithm
transmits Si at times t1, . . . , tℓ. Since every request must be served eventually, no request with
type in Si arrives after tℓ. Consider the intervals [0, t1], (t1, t2], . . . (tℓ−1, tℓ). By construction,
the delay cost of the algorithm is exactly ℓci. For each interval I, let Q(I) denote the requests
with types in Si that arrived during the interval. During I, the optimal solution either
transmits a type in Si or incurs a delay cost of ci on the requests in Q(I). Since the intervals
are disjoint, OPTi ≥ ℓci, as desired.

The lemma now follows from the fact that the total service cost of the algorithm is exactly
its delay cost, which in turn is at most OPT. ◀

We are now ready to prove the Reduction Lemma which we restate here.

▶ Lemma 1.1 (Reduction Lemma). If there exists a disjoint service function g that α-
approximates f , then there exists a non-clairvoyant algorithm that is 2α-competitive non-
clairvoyant algorithm for every Subadditive JRP instance with service cost function f .

Proof. Lemma 2.1 implies that it suffices to reduce the Subadditive JRP instance to an
instance of Disjoint TCP Acknowledgement losing at most a factor of α. Let Q be the set
of requests of the Subadditive JRP instance and let OPTf denote the cost of the optimal
solution. Our reduction creates an instance of Disjoint TCP Acknowledgement with the same
set of requests but with service cost function g. Let OPTg denote the cost of the optimal
solution to the instance of Disjoint TCP Acknowledgement. We now show that OPTf ≤
OPTg ≤ αOPTf . Let Λ be a feasible solution to Q, cf (Λ) be its cost in the Subadditive
JRP instance and cg(Λ) be its cost in the Disjoint TCP Acknowledgement instance. The
delay cost of Λ is the same in both instances. The service cost of Λ in the Subadditive JRP
instance has cost

∑
λ∈Λ f(Qλ) and in the Disjoint TCP Acknowledgement instance, it has

cost
∑

λ∈Λ g(Qλ). Since g α-approximates f , we get that cf (Λ) ≤ cg(Λ) ≤ αcf (Λ). This
implies that OPTf ≤ OPTg ≤ αOPTf , as desired. ◀

APPROX/RANDOM 2024
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2.2 Applying the Reduction Lemma to Subadditive JRP
We use the Reduction Lemma proved earlier to give a simple deterministic O(

√
n log n)-

competitive algorithm for Non-Clairvoyant Subadditive JRP. The main insight is to reduce
the problem of showing that an arbitrary service function f can be approximated by a disjoint
service function to the Universal Set Cover problem.

▶ Lemma 2.2. Suppose every instance of USC admits a α-stretch assignment. Then every
subadditive service function f can be α-approximated by some disjoint service function g.

Proof. We will construct an instance of USC and use the α-stretch assignment to construct
g. Consider the instance of USC with universe U = H, C = 2H , and c(S) = f(S) for every
S ∈ C. Note that OPT(S) = f(S) since f is monotone non-decreasing and subadditive.

Let a be an α-stretch assignment for this USC instance. Suppose a(U) = {S1, . . . , Sk}.
Since a maps each element to a set containing it, we have that a−1(Si) ⊆ Si. Moreover,
f is monontone non-decreasing, so we can assume W.L.O.G. that a−1(Si) = Si;5 thus
S1, . . . , Sk are disjoint and partition H. Define the disjoint service function g with the
partition {S1, . . . , Sk} and costs c1, . . . , ck where ci = f(Si). Observe that g(S) = c(a(S)) ≥
OPT(S) = f(S). Since a has α-stretch, we get that for every S, f(S) ≤ g(S) ≤ αf(S). ◀

Jia et al. [35] showed that every instance of USC has a O(
√

n log n)-stretch assignment.
Together with the above lemma, we get the following theorem.

▶ Theorem 2.3. For every subadditive service function f , there is a disjoint service function
g that O(

√
n log n)-approximates f .

Combining this with the Reduction Lemma yields the desired theorem.

▶ Theorem 2.4. There is a deterministic O(
√

n log n)-competitive algorithm for Non-
Clairvoyant Subadditive JRP.

3 Multi-Level Aggregation

In this section, we consider the Multi-Level Aggregation (MLA) problem. Let T = (U, E)
be a rooted tree defined over the universe U of n request types and let c : U 7→ R≥0 be
a cost function assigning weights to the nodes. We recall that c determines the service
function f : 2U 7→ R≥0 for this problem as f assigns to each subset of nodes V ⊆ U

the cost of the minimal subtree that connects all the nodes in V to the root r. Here,
we prove that for every MLA service function f , there exists a disjoint service function
g : 2U 7→ R≥0 that O(

√
n)-approximates f . In other words, we show that for every MLA

instance (T, c), there exists a partition P1, . . . , Pk of nodes of T for some k (which defines
g(X) =

∑
i∈[k] f(Pi) · 1 {Pi ∩ X ̸= ∅} for all X ⊆ U), such that for all V ⊆ U , it holds that

g(V )/f(V ) ≤ O(
√

n). Moreover, one can find such a partition in polynomial time.

3.1 Notation and Algorithm Overview
Throughout this section, we assume tree T is the current MLA instance that we work with
and thus is known from the context. In what follows, we refer to the maximal subtree of
T rooted at node v and to the path connecting v to the root r by simply writing T (v) and
R(v), respectively. Moreover, to denote these objects with node v excluded, we use To(v)
and Ro(v). Finally, we let C(v) be the set of v’s children in T .

5 Otherwise, we can assign the elements in the preimage of Si under a, i.e., a−1(Si), to the preimage
itself.
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Figure 1 In the first three figures we show the costs of serving the orange nodes. The first figure
corresponds to the cost of f on these nodes. The following two figures show the cost of g on these
nodes, assuming that they belong to different clusters A and B. Fourth figure shows the set of active
nodes in the tree (colored in green) after T (v) gets clustered. Fifth figure presents the setting in
Proposition 3.7.

First, we present the idea behind our approach. Recall that our goal is to find a partition
P1, . . . , Pk of nodes of T such that the gap between the values f(V ) and g(V ) is at most of
order

√
n for all the sets V ⊆ U . Here, f(V ) is the cost of minimal subtree TV of T that

connects all the nodes in V to the root, as stated before. On the other hand, g(V ) needs
to cover the costs of all the parts in P that intersect with V . For instance, if V intersects
exactly two parts A and B in P , then g(V ) = f(A) + f(B). Although these parts themselves
are disjoint by the definition of partition P , as we pay for each of them separately in g (by
paying for set A, we mean generating the cost of f(A)), we incur not only the costs of their
nodes c(A) and c(B) but also the costs of the paths that connect them to the root r (see
Figure 1).

Note that this process can cause us to incur two types of additional costs with respect to
the optimal value f(V ). First, both parts A and B may contain not only the nodes in V

but also their neighbors, for which we need to pay as well. Second, as we pay for each part
separately, we may be forced to pay for some nodes on the paths to the root multiple times
(see Figure 1).

Since f(V ) is equal to the cost of the nodes in TV and we aim for g to be
√

n-approximation
of f , the intuition is that g can afford to pay the cost of each node in TV roughly

√
n times

(as this gives the desired ratio). This observation provides the foundations for our algorithm.
Let us remark that at the beginning, all the nodes in T are unpartitioned, i.e., P = ∅. Our
algorithm revolves around two procedures. The first one can be seen as assigning each node
v in T a budget of α

√
n · c(v) for some α ∈ N. A vertex v may then use such a budget to

create a new part K in the partition. We allow v to generate only one form of a cluster, i.e.,
a part to be included in P , that consists of all the unpartitioned nodes in its subtree T (v).
Furthermore, for such a part K to be added to P , it needs to hold that the costs of (the
unpartitioned nodes in) T (v) and R(v) both fit into v’s budget. If we manage to add K to
P , we call both node v and cluster K heavy.

Whenever the first procedure cannot be applied, i.e., there are no vertices that can
generate heavy clusters from the unpartitioned nodes, we run the second procedure. The idea
then is to find a subtree (or a family of subtrees) of size roughly

√
n (details to be presented

later) and group them together into a new part in the partition. We call this part a light
cluster. In case there are nodes that become heavy after this action (as their descendants
got clustered), we go back to the first procedure, which starts a new iteration of the main
algorithm.

Notice that the idea behind the second procedure is to upper bound the number of times
we need to pay the cost of the paths connecting the clusters to the root r. Since T has
n nodes and each light cluster is of size close to

√
n, we can only create roughly

√
n such

clusters. Thus, even when V intersects all the light clusters, we pay for the nodes in TV

at most O(
√

n) times, which we can afford. It remains to estimate the cluster costs, which
follow in the next section.
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3.2 MLA Partitioning Algorithm
Heavy clusters. Let us first present two definitions. Here, we assume that whenever we are
given a partially created partition P̃ of nodes of an MLA tree T , then the set of nodes it
already partitioned, i.e., V (P̃ ) =

⋃
P̃ , does not disconnect T , i.e., tree T ′ = T \

⋃
P̃ is a

subtree of T .

▶ Definition 3.1. Let T be a tree given in an MLA instance, denote the set of its nodes by
U , and let P̃ be a partially created partition of U (i.e., V (P̃ ) =

⋃
P̃ is a proper subset of U).

Then we call all the nodes that are not partitioned yet, i.e., belong to U \ V (P̃ ), active (see
Figure 1). We use the notation of V |act to restrict any subset V of nodes in T to the nodes
that are active.

▶ Definition 3.2. Let (T, c) be an MLA instance, and let P̃ be a partially created partition
of T ’s nodes. We say that an active node v is heavy if the costs of path R(v) and subtree
Tact(v) are at most 4

√
n · c(v) each. If we extend P̃ by adding Tact(v), we call this new part

a heavy cluster.

Now, we can prove a simple fact about heavy clusters.

▶ Proposition 3.3. Let (T, c) be an MLA instance. Take any partition P of nodes of
T and let Ph,1, . . ., Ph,s be a sublist of all heavy clusters in P . We denote their roots
by vh,1, . . ., vh,s, respectively, and the set containing them by Vh. Then, it holds that∑s

i=1 f(Ph,i) ≤ 8
√

n · f(Vh).

Proof. By Definition 3.2, we have that for each node vh,i the following is satisfied: c(Ph,i) ≤
4
√

n · c(vh,i) and c(R(vh,i)) ≤ 4
√

n · c(vh,i). The first inequality here comes from the fact
that cluster Ph,i was the set of all active nodes (Definition 3.1) contained in the subtree
T (vh,i) at the moment it was created (i.e., it was Tact(vh,i)). Hence, it holds that

f(Ph,i) = c(Ph,i) + c(Ro(v)) ≤ c(Ph,i) + c(R(v))

≤ 4
√

n · c(vh,i) + 4
√

n · c(vh,i) = 8
√

n · c(vh,i), (1)

where the first equality comes from the fact that Ph,i is a subtree, which means that the
minimal tree containing all its nodes and the root r is only missing the path from v to
r (with v excluded as we already counted it in the cluster). Moreover, let us notice that
f(Vh) ≥

∑s
i=1 c(vh,i), as it is the cost of the minimal tree containing all the nodes vh,i. Thus,

to obtain the desired inequality, we only need to sum (1) over all the heavy clusters and then
apply the inequality above. ◀

Light clusters. Here, we present a procedure that generates a light cluster.

▶ Definition 3.4. Let (T, c) be an MLA instance, and let P̃ be a partially created partition
of T ’s nodes. We say that a subset K of nodes of Tact is a light cluster if (1) its size fits
into the range I(n) := [

√
n, 2

√
n], (2) it is either a maximal subtree in Tact or a collection of

maximal subtrees having the same parent, and (3) Tact does not contain any heavy nodes.6
In case Tact is of size smaller than

√
n, and we set K = Tact, we drop the first condition and

still call K a light cluster.

Given the definition above, we present Algorithm 1 that shows how to find such a cluster.

6 This third condition is for analysis purposes only and the property giving the name to light clusters.
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Algorithm 1 MLA Light Cluster Search.
Input: MLA tree T with some nodes marked active (Tact is a subtree of T containing its
root r)
Output: light cluster formed of the nodes in Tact

1: if |Tact| ≤ 2
√

n

2: return Tact

3: u := r

4: while there exist a node v ∈ Cact(u) such that |Tact(v)| > 2
√

n

5: u := v

6: if there exist a node v ∈ Cact(u) such that |Tact(v)| ≥
√

n then
7: return Tact(v)
8: else
9: denote all the elements in Cact(u) by v1, v2, . . . , vj for some j

10: set iterator i = 1 and initialize a new cluster V with an empty set
11: while |V | <

√
n

12: add Tact(vi) to V

13: increment i by 1
14: return V

▶ Proposition 3.5. If there are no heavy nodes in Tact (see condition (3) in Definition 3.4),
then Algorithm 1 finds a light cluster in Tact.

Proof. Notice that we start the search of a new cluster by checking whether the size of Tact

(the subtree containing all the active nodes in T ) is smaller or equal to 2
√

n (line 1). If so,
we return the whole tree Tact since it fits into the description given in the last sentence of
Definition 3.4. Otherwise, we set r to be the current node we are at, which we denote by u

(line 3). Then, we go through the while loop from line 4 to 5, each time picking a child v of
the current node u such that the subtree Tact(v) is of size greater than 2

√
n. If such a node

exists, we move to it, setting u = v, and we leave the while loop otherwise.
In the second case, we know that, as we go to line 6, two conditions are satisfied. First,

the size of the subtree Tact(u) rooted at the current node u is at least 2
√

n. Indeed, we
either stayed at the root node, not satisfying the condition in the if statement in line 1, or
we further went from r through a sequence of its descendants, each having a subtree of size
greater than 2

√
n. Second, none of u’s children has a subtree of size greater than 2

√
n, as we

already left the while loop.
Now, in line 6, we check whether there exists a child v of the current node, which subtree

Tact(v) is of size at least
√

n. If so, we return Tact(v), as it satisfies the conditions to be a
light cluster. Otherwise (line 8), we iterate through u’s children vi (line 11) and add the
nodes contained in their subtrees Tact(vi) to a set V . We stop at the moment when the size
of V becomes at least

√
n and return V as a new cluster. It is easy to notice that in the

while loop, we indeed need to pass the
√

n size threshold, as |Tact(u)| > 2
√

n. Moreover, we
know that before we added the nodes of the last subtree T ′ to V , V had a size smaller than√

n. Since |T ′| <
√

n, we have that the whole group is of size smaller than 2
√

n. ◀

Main algorithm. Before we describe the partitioning algorithm, let us introduce a helper
function. We define method cluster(V ) to group all the elements of V together and include
them as a new part in the partition. Let us also emphasize that after this call, all the
elements in V become inactive. With the above notation, we can formalize our approach as
presented in Algorithm 2.

APPROX/RANDOM 2024



12:12 Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Algorithm 2 MLA Partitioning Algorithm.
Input: MLA instance (T, c)
Output: partition P of the nodes of T

1: initialize an empty partition P

2: while Tact is not empty
3: while there exist a heavy node v ∈ Tact

4: cluster(Tact(v))
5: if Tact is empty
6: break
7: apply Algorithm 1 to find a light cluster V in Tact

8: cluster(V )
9: return P

As mentioned in the first part of this section, the main partitioning algorithm runs heavy
and light cluster searches in a loop. In the first step, it iteratively finds the heavy clusters in
the tree Tact determined by the already created partition (lines 3 to 4). Then, if tree T is
not yet partitioned (condition in line 5 does not hold), it goes to the second step that finds
one light cluster and adds it to the partition (lines 7 to 8). After this point, it goes to the
initial step and loops.

Let us emphasize that during the whole partitioning procedure, the set Tact of all active
elements in T forms a proper subtree containing the root r of T . Indeed, in the beginning,
Tact = T and all the cluster calls truncate one or more maximal subtrees from Tact. Now,
given Algorithm 2, we go back to proving the properties of light clusters.

▶ Proposition 3.6. Let T be an MLA tree rooted at some node r and let P be the partition of
nodes of T created by Algorithm 2. We denote all the light clusters in P by Pℓ,1, Pℓ,2, . . . , Pℓ,t

and require them to be listed in the creation order. Then, it holds that there are at most√
n + 1 parts Pℓ,i.

Proof. Notice that by the definition, the only light cluster that can have a size smaller than√
n is the one containing the root r. Thus, all the light clusters created before, i.e., at least

t − 1 of them, have the size at least
√

n. Since there are n nodes in tree T , we get that there
are at most n/

√
n =

√
n such clusters. Thus, t ≤

√
n + 1, which concludes the proof. ◀

In the remaining part of this section, we refer to the clusters created in lines 2, 7 of
Algorithm 2, i.e., the ones that consist of a single subtree, as the light clusters of type I. We
call the light clusters consisting of forests (created in line 14) the light clusters of type II. We
prove that the cost function c satisfies the following properties. Here, we overuse the notation
of c and extend it to the subsets as well, i.e., for any V ⊆ U we set c(V ) =

∑
v∈V c(v).

▶ Proposition 3.7. Let (T, c) be an MLA instance and let P be the partition obtained on
it by Algorithm 2. Take any light cluster K in P and denote by rK the root of K if it is a
cluster of type I. Otherwise, if K is a cluster of type II, we use rK to denote the parent node
of the forest contained in K. Then it holds that c(P (rK)) ≥ c(K).

Proof. Without loss of generality, assume that K is of type I. Let w be the node in K

that has the highest cost. By Definition 3.4, we know that |K| ≤ 2
√

n. Hence, by an
averaging argument, we have c(w) ≥ c(K)/(2

√
n), which implies 2

√
n · c(w) ≥ c(K). Now,

assume by contradiction that c(P (r(K))) < c(K). Then, if we split the path from w to r

into two parts by cutting it on the node rK , we got c(P (w)) = c(P (w) ∩ K) + c(Po(rK).
Since c(P (w) ∩ K) ≤ c(K) and c(P (rK) ≤ c(K) by our assumption, we get that c(P (w)) ≤
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2c(K) ≤ 2 · 2
√

n · c(w) = 4
√

n · c(w). However, this means that w is a heavy node, which
contradicts the initial assumption. Thus, it holds that c(P (rK)) ≥ c(K). The proof for type
II follows the same steps. ◀

▶ Corollary 3.8. Let us subsume the notation and the conditions of Proposition 3.7. Then,
it holds that f(K) ≤ 2f(rK).

Proof. Notice that for type I cluster K, f(K) consists of the cost of K and the cost of the
path connecting it to the root r of T (to be precise, excluding rK from this path, as we
already count its cost in the cluster). Thus, the following holds

f(K) = c(K) + c(Po(rK)) ≤ c(P (rK)) + c(Po(rK)) ≤ 2c(P (rK)) = 2f(rK),

where the first inequality is implied by Proposition 3.7, the second one from the fact that we
added the cost of rK to the right side, and the last inequality is by the definition of f . ◀

Given the above, we can prove the main theorem of this section.

▶ Theorem 3.9. For any MLA service function f , there exists a disjoint service function
g that O(

√
n)-approximates f . It can be found in time polynomial w.r.t. the MLA instance

defining f .

Proof. Let (T, c) be the MLA instance that defines f , and let U be the set of nodes in T .
The idea is to prove that the partition P = {P1, P2, . . . , Pk} generated on T by Algorithm 2
induces a set function g(V ) =

∑
i∈[k] f(Pi)1 {Pi ∩ V ̸= ∅} on all subsets V ⊆ U that is an

O(
√

n)-approximation to f . The function g is a disjoint service function by design.
For this purpose, we need to show that maxV ⊆U g(V )/f(V ) is of order at most

√
n. Let

us note that in our case, f(V ) is just the cost of the minimal subtree connecting V to the
root. Thus, for any subset V ′ of V it holds that f(V ′) ≤ f(V ).

Let V ⊆ U be any subset of nodes and let Ph,1, . . ., Ph,s and Pℓ,1, Pℓ,2, . . . , Pℓ,t be the
lists of all the heavy and light clusters that intersect V , respectively. We also denote the
roots of the heavy clusters by vh,1, . . ., vh,s, respectively, and the set containing them by Vh.
Similarly, we use the convention from Proposition 3.7 to define light cluster nodes. For Pℓ,i,
we denote its root by rℓ,i.

By Proposition 3.3, it holds that
∑s

i=1 f(Ph,i) ≤ 8
√

n·f(Vh). Moreover, since V intersects
all these heavy clusters, it either contains their roots or some nodes that are their descendants.
Thus, the minimal subtree connecting V to the root r contains the minimal subtree connecting
Vh to the root r. Hence,

s∑
i=1

f(Ph,i) ≤ 8
√

n · f(Vh) ≤ 8
√

n · f(V ). (2)

Now, for each light cluster Pℓ,i, we notice that since V intersects it, the minimal tree
connecting V to r contains the path from rℓ,i to r. Thus, f(V ) ≥ f(rℓ,i) and by Proposition
3.3, we get that

f(Pℓ,i) ≤ 2f(rK) ≤ 2f(V ) (3)

for each ℓ ∈ [t]. Note that g(V ) =
∑

K∈P :V ∩K ̸=∅ f(K). Combining inequalities 2 and 3, we
obtain that

g(V )
f(V ) =

∑
K∈P :V ∩K ̸=∅ f(K)

f(V ) =
∑s

i=1 f(Ph,i) +
∑t

i=1 f(Pℓ,i)
f(V ) ≤

8
√

n · f(V ) +
∑t

i=1 2f(V )
f(V )

≤ 8
√

n · f(V ) + 2(
√

n + 1) · f(V )
f(V ) = 10

√
n + 2,

with the last inequality implied by Proposition 3.6. This concludes the proof that g is an
O(

√
n)-approximation to f .
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Finally, it is easy to notice that the algorithm runs in polynomial time. We can define a
dynamic structure over the tree T that, for each node v, stores its subtree and path costs
(c(T (v)), c(P (v)), together with the size |T (v)| of its subtree. Updates on such a structure
take at most polynomial time in n (as we create a cluster, we go from the cluster root to the
root of T , updating the data on all the nodes on the path, which is of length at most n).
With such a structure, checking whether a node is heavy or going through a path from r in
search of a light cluster also takes at most linear time in n. ◀

Thus, by Lemma 1.1, we get Theorem 1.2. The result of Theorem 3.9 is tight:

▶ Proposition 3.10. There exists a decreasing MLA instance T, c with n nodes, such that
for every partition P1, . . . , Pk of T for some k, there exists a non-empty set S ⊆ T such that∑

i∈[k] f(Pi)1 {S ∩ Pi ̸= ∅}
f(S) = Ω(

√
n).

Proof. Consider the tree T with a root r and n − 1 children of r denoted by v1, . . . , vn−1.
The cost c is such that c(r) =

√
n, while for all i ∈ [n − 1], c(vi) = 1. Now, consider any

partition P1, . . . , Pk. If k >
√

n, then consider a set S that intersects each Pi exactly once.
Thus, f(S) ≤

√
n + k ≤ 2k, while

∑
i∈[k] f(Pi)1 {S ∩ Pi ̸= ∅} ≥ k ·

√
n, which proves this

case. Else (k ≤
√

n), consider a set S that intersects Pi once if and only if |Pi| <
√

n/2
(otherwise does not intersect at all). It holds that f(S) ≤ 2

√
n because one has

√
n from r

and
√

n intersections with Pi’s in the worst case, while∑
i∈[k]

f(Pi)1 {S ∩ Pi ̸= ∅} ≥ n −
∑
i∈[k]

|Pi| · 1 {S ∩ Pi = ∅} ≥ n − k
√

n/2 ≥ n/2,

which concludes the proof. ◀

4 Weighted Symmetric Subadditive Joint Replenishment

In this section, we study Weighted Symmetric Subadditive JRP. We have a set U of n

request types with weights w({j}) = wj for each j ∈ U . Let f be the set function over U :
In this setting, we have that the service cost of a set S only depends on the total weight
of the elements belonging to S, as opposed to the identity of those elements. Formally,
f(S) = f(w(S)), where function f is now intended as a monotone non-decreasing subadditive
function of weights of a set with f(0) = 0, and for every two weights x, y, it holds that
f(x + y) ≤ f(x) + f(y). For brevity, we call these functions weighted symmetric subadditive.
Our goal is to show that for every weighted symmetric subadditive service function f on U ,
there exists a partition of U into sets S1, . . . , Sk for some k, such that the disjoint service
function g : U → R≥0 defined by this partition where g(S) =

∑k
i=1 f(Si) · 1[S ∩ Si ̸= ∅]

satisfies g(S) ≤ O(
√

n)f(S) for every S ⊆ U .
We begin, in Section 4.1, by analyzing a special case of unweighted symmetric subadditive

service costs. Namely, where the weight of each element is 1, and thus, w(S) = |S|: These
functions are simply referred to as symmetric subadditive. We achieve a tight Θ(

√
n)-stretch

with a simple partitioning algorithm (partition into
√

n sets of size
√

n each), and this serves
as a warm-up to the weighted symmetric subadditive case presented in Section 4.2, where we
also achieve a tight Θ(

√
n)-stretch.
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4.1 Symmetric Subadditive JRP
We first consider symmetric subadditive service functions. Observe that these functions are
symmetric (i.e., f(S) = f(S′) for all sets S, S′ ⊆ U such that |S| = |S′|). For convenience,
for a cardinality 0 ≤ s ≤ |U |, we use f(s) as the value of sets of size s. We show that
for symmetric subadditive f , one can construct a disjoint service function g that O(

√
n)-

approximates f . We then show that O(
√

n) is tight even in the special case of f being a
symmetric unweighted set cover function. This provides an alternative, simpler proof for the
lower bound on USC of [35]. We first state the following simple but useful observation.

▶ Observation 4.1. For all symmetric subadditive functions f : R+ → R+, and all y ≥ x > 0,
it holds that f(y)/f(x) ≤ ⌈y/x⌉.

Proof. Let k = ⌈y/x⌉. Then, f(y) ≤ f(kx) ≤ f(x)+f((k−1)x) ≤ f(x)+. . .+f(x) = k ·f(x).
The first inequality is by monotonicity, and the second and third by subadditivity. ◀

▶ Lemma 4.2. For every symmetric subadditive service function f , there exists a disjoint
service function g that O(

√
n)-approximates it.

Proof. Let us consider an arbitrary symmetric subadditive service function f on request
types U . Let g be the disjoint service function that induces an arbitrary partition of the
elements of U into sets {X1, . . . , Xk}, where k = ⌈

√
n⌉, each of cardinality |Xi| ≤ ⌈

√
n⌉

(such a partition always exists). We now bound the following fraction for every S ⊆ U :∑
i∈[k] f(Xi) · 1 {S ∩ Xi ̸= ∅}

f(S) ≤
∑

i∈[k] f(⌈
√

n⌉) · 1 {S ∩ Xi ̸= ∅}

f
(∑

i∈[k] 1 {S ∩ Xi ̸= ∅}
)

≤

∑
i∈[k]

1 {S ∩ Xi ̸= ∅}

 ·

⌈
⌈
√

n⌉∑
i∈[k] 1 {S ∩ Xi ̸= ∅}

⌉
≤ 2⌈

√
n⌉.

The first inequality is because |Xi| ≤ ⌈
√

n⌉ and from the fact that, since Xi’s are disjoint,
the size of S is at least the number of non-empty intersections with sets Xi’s. The second
inequality follows from Observation 4.1, and the third inequality follows since ⌈ a

b ⌉ ≤ 2 · a
b ,

for every a
b ≥ 1

2 , and the denominator
∑

i∈[k] 1 {S ∩ Xi ̸= ∅} ≤
√

n + 1. ◀

Thus, by Lemma 1.1 and Lemma 4.2, the following holds:

▶ Theorem 4.3. There exists a deterministic O(
√

n)-competitive algorithm for the Non-
Clairvoyant Symmetric Subadditive Joint Replenishment problem.

We complement the above result by giving a tight instance:

▶ Theorem 4.4. There exists a symmetric subadditive service function such that every
disjoint service function is an Ω(

√
n)-approximation of it.

Proof. Let U be the set of request types. For simplicity of the proof, we assume that n = |U |
has an integer square root. Let us consider the service function f(S) =

⌈
|S|√

n

⌉
, which is

symmetric and subadditive, let g be any disjoint service function, let S be the collection of
disjoint sets Xi’s that g generates, and let k be the number of parts in the partition S.
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Consider some X ⊆ U that intersects each Xi exactly once. We now analyze the cost of
this induced partition on X:∑k

i=1 f(Xi)
f(X) =

∑k
i=1

⌈
|Xi|√

n

⌉
⌈

k√
n

⌉ ≥ max{k,
√

n}⌈
k√
n

⌉ ,

where the inequality holds since the it is a sum of k terms where each is at least 1, and since
the sets X1, . . . , Xk cover U , thus

∑k
i=1 |Xi| = n.

Now, if k ≤
√

n then

max{k,
√

n}⌈
k√
n

⌉ =
√

n.

Otherwise, k√
n

> 1, thus
⌈

k√
n

⌉
≤ 2 k√

n
, which implies that

max{k,
√

n}⌈
k√
n

⌉ ≥ k

2k/
√

n
=

√
n

2 ,

which concludes the proof. ◀

4.2 Weighted Symmetric Subadditive JRP
We now relax the assumption of w(S) = |S| and provide a O(

√
n)-approximation for every

weighted subadditive function. We begin with some facts about weighted subadditive and
symmetric concave functions. Every symmetric concave function is the pointwise infimum of a
set of affine functions, and can be approximated by a set of affine functions with exponentially
decreasing slopes. The next lemma combines this fact with the fact that every weighted
subadditive function can be approximated by a symmetric concave function.

▶ Lemma 4.5. Let g : {0, 1 . . . , W} → R≥0 be a monotone non-decreasing subadditive
function. Then, there exists a finite set of affine functions {g1, . . . , gp} for some p ≤ log(W )
where gi(x) = σi + x · δi such that σi+1 > 2σi and δi+1 < δi/2 for every i < p, and the
function ĝ defined by ĝ(x) = mini gi(x) satisfies that for every x ∈ {0, . . . , W}, it holds that:

g(x) ≤ ĝ(x) ≤ 8g(x).

Proof. By [30], we know that there exists a concave function g′ : {0, . . . , W} → R≥0 that
approximates g within a factor of 2. Now, for every i = 2, . . . , ⌈log(W )⌉ consider the affine
function g′

i : {0, . . . , W} → R≥0 that interpolates between (2i−1, g′(2i−1)) and (2i, g′(2i)), and
g′

1(x) that interpolates between (0, g′(0)) and (1, g′(1)). It holds that for every x ∈ {0, . . . , W}
then

g′(x)
2 ≤ min

i=1,...,p
g′

i(x) ≤ g′(x),

where the first inequality holds since

g′(x) ≤ g′(2⌈log(x)⌉) ≤ 2g′(2⌊log(x)⌋)

≤ 2g′
2⌊log(x)⌋(2⌊log(x)⌋) = 2 min

i=1,...,p
g′

i(2⌊log(x)⌋) ≤ 2 min
i=1,...,p

g′
i(x),

and the second inequality holds by concavity of g′. In [32], they present an algorithm that
reduces the set of affine functions such that the coefficients and slopes satisfy the conditions
of the lemma while losing a factor of 2, which, if applied to the set of affine functions 2g′

i,
concludes the proof. ◀
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Henceforth, we will denote by W = w(U), and assume that f is defined on {0, . . . , W},
and is a pointwise infimum of p affine functions g1, . . . , gp where gi(x) = σi +x ·δi and the σis
and δis satisfy the properties stated in the lemma. Proving the theorem for f that satisfies
the condition proves the same (with additional loss of a factor of 8) for general symmetric
subadditive functions.

The following lemma will be useful to lower bound f(w(S)) using the largest weight in S.

▶ Lemma 4.6. For every k ∈ {2, . . . , p}, if x ≥ σk

δk−1
, then f(x) ≥ σk.

Proof. Recall that f(x) = min1≤i≤p σi + xδi. For i < k, we have σi + xδi ≥ xδk−1 ≥ σk. For
i ≥ k, we have σi + xδi ≥ σk. Thus, f(x) ≥ σk. ◀

Henceforth, for brevity, we write f(S) to mean f(w(S)), for an arbitrary set S. In the
following, we frequently use the fact that for any set H, f(H) = min1≤i′≤p σi′ + w(S)δi′ ≤
σi + w(H)δi for every i.

High-Level Overview. Let S be a set chosen by an adversary, unknown to us. Suppose
that f(S) = min1≤i≤p σi + w(S)δi = σℓ + w(S)δℓ. The idea is to construct a partition such
that some of the parts that intersect S can be charged to σℓ, and the remaining parts that
intersect S can be charged to w(S)δℓ. Towards this end, we first classify each type j as
follows. We say that type j is eligible for class 2 ≤ k ≤ p if wj ≥ σk

δk−1
. All types are eligible

for class 1. Define the class of type j to be the largest class it is eligible for and Xk to be
the set of class-k types.

Next, we partition Xk into heavy and light types. The light part Zk contains all types
j ∈ Xk with wjδk ≤ σk/

√
n. Since Zk is light, f(Zk) ≤ σk + w(Zk)δk ≤ O(

√
n)σk. Also, if

S ∩ Xk ̸= ∅, then Lemma 4.6 implies that f(S) ≥ σk. We can then use the fact that σk’s are
geometric to show that the total value of the parts Zk that intersect S is at most O(

√
n)f(S).

Now, consider the heavy types in Xk, i.e. those types j with wjδk > σk/
√

n. We further
partition these types according to their weights in powers of 2. Let Rk,i = {j ∈ Xk \ Zk :
wj ∈ [2i, 2i+1)}. For each weight class i, we greedily partition Rk,i into as many parts of
size ⌈

√
n⌉ as we can. This produces a collection Fk,i of parts of size ⌈

√
n⌉ and at most one

leftover part Gk,i of size less than
√

n. We say that a part is nice if it belongs to Fk,i and
the part Gk,i a leftover part.

Observe that there are at most ⌈
√

n⌉ nice parts, each of size at most ⌈
√

n⌉ and contains
types of roughly the same weight. Thus, we can use a similar argument as in the unweighted
case to show that the total value of the nice parts that intersect S is at most O(

√
n)f(S).

For the leftover parts, we charge the parts Gk,i that intersect S with k < ℓ to w(S)δℓ and
those with k ≥ ℓ to σℓ.

Algorithm 3 Weighted Symmetric Subadditive Partitioning Algorithm.

1: for k = 1 to p do
2: Create a part Zk = {j ∈ Xk : wjδk ≤ σk/

√
n}

3: Let Rk,i = {j ∈ Xk \ Zk : wj ∈ [2i, 2i+1)}
4: for each i do
5: Greedily partition Rk,i into as many sets of size exactly ⌈

√
n⌉ as possible

6: Let Fk,i denote the sets of size of size ⌈
√

n⌉
7: Let Gk,i denote the remaining set of size less than

√
n, if it exists

8: Create a part for each set in Fk,i and a part for the set Gk,i

APPROX/RANDOM 2024
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We now give the detailed analysis below.

▶ Theorem 4.7. For any weighted symmetric subadditive service function f , there exists a
disjoint service function g that O(

√
n)-approximates f . It can be found in time polynomial

w.r.t. the weights defining f .

Proof. Let S be an arbitrary set and suppose f(S) = min1≤i≤p σi + w(S)δi = σℓ + w(S)δℓ.
We now decompose w(S) using the partition produced by our algorithm. In particular, we
have

f(S) = σℓ +

∑
k

w(Zk ∩ S) +
∑
k,i

∑
T ∈F ′

k,i

w(T ∩ S) +
∑
k,i

w(Gk,i ∩ S)

 · δℓ.

Define F ′
k,i as the subset of parts in Fk,i that intersects with S. We now show that the

algorithm pays at most O(
√

n)f(S). In other words, we will prove that the total value of the
parts that intersect S are upper bounded as follows:∑

k:Zk∩S ̸=∅

f(Zk) +
∑
k,i

∑
T ∈F ′

k,i

f(T ) +
∑

k,i:Gk,i∩S ̸=∅

f(Gk,i) ≤ O(
√

n)f(S).

We begin by bounding
∑

k:Zk∩S ̸=∅ f(Zk). Let kmax be the largest k such that Zk ∩ S ̸= ∅.
(If none exists, then we do not need to bound this term.) We have that w(S) · δkmax−1 ≥
w(Zk ∩ S) · δkmax−1 ≥ σkmax . Thus, Lemma 4.6 implies that f(S) ≥ σkmax . On the other
hand, ∑

k:Zk∩S ̸=∅

f(Zk) ≤
∑

k:Zk∩S ̸=∅

O(
√

n)σk ≤ O(
√

n)σkmax ≤ O(
√

n)f(S).

where the first inequality follows directly from the definition of Zk in line 2 of Algorithm 3
and since there are at most n elements in Zk, the second inequality is since the σk’s are
geometrically increasing.

Next, we bound
∑

k,i

∑
T ∈F ′

k,i
f(T ). Since every set T ∈ F ′

k,i has size ⌈
√

n⌉, we have∑
k,i |F ′

k,i| ≤
√

n. Moreover, every j ∈ T has wj ∈ [2i, 2i+1), so w(T ) ≤ O(
√

n)w(T ∩ S).
Thus, we have∑

k,i

∑
T ∈F ′

k,i

f(T ) ≤
∑
k,i

∑
T ∈F ′

k,i

σℓ + w(T )δℓ

≤
∑
k,i

|F ′
k,i|σℓ + O(

√
n)

∑
k,i

∑
T ∈F ′

k,i

w(T ∩ S)δℓ

≤ O(
√

n)

σℓ +
∑
k,i

∑
T ∈F ′

k,i

w(T ∩ S)δℓ

 ≤ O(
√

n)f(S).

where the last inequality follows from the fact that all T ∈ F ′
k,i are disjoint so we have that

w(S) ≥
∑

k,i

∑
T ∈F ′

k,i
w(T ∩ S).

We now turn to bounding
∑

k,i:Gk,i∩S ̸=∅ f(Gk,i). Consider a set Gk,i that intersects S

for ℓ ≤ k ≤ p. Since Gk,i is a subset of Xk \ Zk and is at most of size
√

n, we have that

f(Gk,i) ≤ σk + w(Gk,i)δk ≤ O(
√

n)w(Gk,i ∩ S)δk.
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Since δk ≤ δℓ, we get that∑
k≥ℓ

∑
i:Gk,i∩S ̸=∅

f(Gk,i) ≤
∑
k≥ℓ

∑
i:Gk,i∩S ̸=∅

O(
√

n)w(Gk,i ∩ S)δℓ ≤ O(
√

n)f(S).

Finally, when ℓ = 1, the argument is complete. Let us now consider the case when ℓ > 1.
Consider a set Gk,i that intersects S for 1 ≤ k < ℓ. We have that f(Gk,i) ≤ σk +w(Gk,i)δk ≤
O(

√
n)2i+1δk. Moreover, since every j ∈ Xk has wjδk < σk+1, we have that∑

k<ℓ

∑
i:Gk,i∩S ̸=∅

f(Gk,i) ≤ O(
√

n)
∑
k<ℓ

σk+1 ≤ O(
√

n)σℓ ≤ O(
√

n)f(S).

Finally, it is not hard to see that, by design, Algorithm 3 can be implemented in polynomial
time in the logarithm of the total weight, log(w(U)). This concludes the proof. ◀

Thus, by Lemma 1.1, we get Theorem 1.3.

5 Tight Instances against Previous Algorithms

5.1 An Ω(
√

n log n) Tight Instance for the Algorithm of [35]
▶ Proposition 5.1. There exists a weighted set cover instance for which the Universal Set
Cover algorithm of [35] has stretch Ω(

√
n log n).

Proof. The algorithm of [35] works as follows: while the set U of elements e for which f(e)
is undefined is non-empty, pick the set S that minimizes c(S)√

|S∩U |
and for all e ∈ S ∩ U , define

f(e) = S.
The high-level idea is that [35]’s analysis uses the Cauchy-Schwarz inequality and the

tight instance is created by looking at when the Cauchy-Schwarz inequality is tight.
Consider the following set system where we have sets S, S1, . . . , Sk for some k that we

will choose later. The set S contains k elements and set Si contains
⌊

k
k−(i−1)

⌋
elements. The

sets also satisfy that |S ∩ Si| = 1 and Si ∩ Sj = ∅ for 1 ≤ i < j ≤ k. Moreover, the sets Si

form a partition of all the n elements. The costs of the sets are: c(S) = 1, c(Si) =
√

|Si|√
k−(i−1)

.
We now claim that in the i-th iteration, the algorithm chooses Si. First observe that for

1 ≤ i < j ≤ k, we have

c(Si)√
|Si|

<
c(Sj)√

|Sj |
.

Thus, it suffices to show that in each iteration i, the algorithm chooses Si over S. We do
this by induction on i. When i = 1, we have that

c(S1)√
|S1|

= 1√
k

= c(S)√
|S|

.

Now consider i > 1. By induction, we have that |S ∩ U | = k − (i − 1) and Si ∩ U = Si (the
latter is because the only set that intersects Si is S). Thus, we also have

c(Si)√
|Si|

= 1√
k − (i − 1)

= c(S)√
|S ∩ U |

.

We conclude that in each iteration i, the algorithm chooses Si.

APPROX/RANDOM 2024
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v1

Figure 2 Tight instance for [44], where w =
√

n log n−1
n−1 .

Thus, the competitive ratio of the algorithm is at least (
∑k

i=1 c(Si))/c(S) =
∑k

i=1 c(Si)
since c(S) = 1. We have that

k∑
i=1

c(Si) =
k∑

i=1

√⌊
k

k−(i−1)

⌋
√

k − (i − 1)
= Ω(

√
k log k). (4)

It now remains to maximize k. The constraint on k is that
∑k

i=1 |Si| = n since Sis
are disjoint. Now,

∑k
i=1 |Si| =

∑k
i=1

⌊
k

k−(i−1)

⌋
= Θ(k log k). Thus, setting k = Θ(n/ log n)

satisfies the constraint on k. Plugging this into (4) yields the claim. ◀

5.2 An Ω(
√

n log n) Tight Instance for the Algorithm of [44]
We complement the O(

√
n)-stretch achieved by Algorithm 2 and Algorithm 3 with a JRP

instance such that the algorithm of [44] (Algorithm 2) must suffer a stretch of at least
Ω(

√
n log n). Note that the instance we present in Figure 2 is both an MLA instance and a

weighted concave one. This shows that for the specific case of MLA and weighted concave
functions, not only is our algorithm optimal, but also that Touitou’s algorithm cannot achieve
the same guarantee. At a high level, whenever Touitou’s algorithm decides to serve some
requests, it issues up to two services (lines 9 and 12). One of them serves a subset of requests
R for which delay and service costs are the same. At the same time, a second service with
a budget of up to

√
n log n · c(R) can be issued to serve some pending requests in advance.

The following example is one where the optimal algorithm rarely issues this second service.

▶ Proposition 5.2. There exists an instance for which the algorithm of [44] has stretch
Ω(

√
n log n). Moreover, this is an MLA and a weighted concave instance.

Proof. Let us consider the JRP tree T in Figure 2, where w =
√

n log n−1
n−1 and the delay cost

functions on the nodes read

di(t) =
{

2t, if i = 1
εt, if i ≥ 2

,

for ε ≪ w to be set later. In particular, at each time step, there are n requests arriving on
tree T , one per node.

Let us first observe that the optimum algorithm only serves the requests at v1, paying a
service cost of 1 at each time step. Moreover, it serves requests arriving at any vi with i ≥ 2
once εt = w, i.e., every w/ε time steps, and pays (n − 1)w + 1 =

√
n log n. Thus, letting τ be

the length of the requests sequence, the overall optimal cost is OPT(τ) = τ + ετ
w

√
n log n ≤ 2τ ,

by setting ε = w/n.
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Algorithm 2 in [44] (whose cost is referred to as ALG from now on) serves a request
arriving at v1 (line 9) as soon as its accumulated delay equals its service cost (this is
when the UponCritical event occurs). Once a request at v1 arrives, the algorithm waits
until the time elapsed t is such that 2t = 1 to serve it. That is, when the j-th request
located at v1 arrives, the algorithm serves it at time tj = j + 1

2 . Right after, it issues a
second service (line 12) to serve all other requests at v2, . . . , vn. Overall, the algorithm pays
ALG(τ) = τ · (1 + (n − 1)w) = τ

√
n log n.

Hence,

ALG(τ)
OPT(τ) ≥

√
n log n

2 ,

for all τ ≥ 1. To conclude, the fact that the instance in Figure 2 is an MLA one comes
directly from the fact that it is a depth 2 tree. Moreover, observe that no matter how we
choose S ⊆ V , f(S) = f(w(S)), and thus the instance in Figure 2 is also a weighted concave
instance. ◀
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