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Abstract
We initiate the study of centralized algorithms for welfare-maximizing allocation of goods to buyers
subject to average-value constraints. We show that this problem is NP-hard to approximate beyond
a factor of e

e−1 , and provide a 4e
e−1 -approximate offline algorithm. For the online setting, we show

that no non-trivial approximations are achievable under adversarial arrivals. Under i.i.d. arrivals,
we present a polytime online algorithm that provides a constant approximation of the optimal
(computationally-unbounded) online algorithm. In contrast, we show that no constant approximation
of the ex-post optimum is achievable by an online algorithm.
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1 Introduction

Allocating goods to buyers so as to maximize social welfare is one of the most central problems
in economics. This problem, even under linear utilities, is complicated by buyers’ various
constraints and the manner in which items are revealed.

In this work we introduce the average-value allocation problem (AVA). Here, we wish to
maximize social welfare (total value of allocated items), while guaranteeing for each buyer j

an average value of allocated items of at least ρj . Formally, if the value of item i for buyer j

is vij , and xij ∈ {0, 1} indicates whether item i is allocated to buyer j, we wish to maximize
the social welfare

∑
ij vij xij , subject to each item being allocated to at most one buyer (i.e.,∑

j xij ≤ 1), and to the “average value” constraint:
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13:2 The Average-Value Allocation Problem

∀j,
∑

i

vij xij ≥ ρj ·
( ∑

i

xij

)
. (1.1)

Average-value constraints arise naturally in numerous situations. E.g., consider settings
when goods are to be distributed among “buyers”, and the (fixed) cost of distributing,
receiving, or deploying each such good allocated is borne by the recipient. Each buyer wants
their average value for their goods to be at least some parameter ρj . This parameter ρj

allows to convert between units, and so this fixed cost for each buyer can be in money, time,
labor, or any other unit. So, for example, for allocation and distribution of donations to a
charitable organization, a certain value-per-item is required to justify the time contributed
by volunteers, or the money spent by government in the form of subsidies. In other words,
the amount of “benefit” per task allocated to an individual j should be above the threshold
ρj , so that even if some of the tasks are individually less rewarding (i.e., they have benefit
less than ρj , the total amount of happiness they get overall justifies their workload.

In addition to this average-value constraint on the allocation, we may also consider
side-constraints (such as the well-studied budget constraints), but for now we defer their
discussion and focus on on the novel constraint (1.1). At first glance, the AVA problem may
seem similar to other packing problems in the literature, but there is a salient difference – it
is not a packing problem at all! Indeed, if buyer i gets some subset Si = {j | xij = 1} of items
in some feasible allocation, it is possible that a subset S′ ⊆ Si of this allocation is no longer
feasible, since its average value may be lower. Given that this packing (subset-closedness)
property is crucial to many previous results on allocation problems, their techniques do
not apply. Hence, we have to examine this problem afresh, and we ask: how well can the
average-value allocation be approximated? We investigate this question, both in the offline
and online settings.

1.1 Our Results and Techniques
Recall that the AVA problem seeks to maximize the social welfare

∑
ij vijxij subject to each

item going to at most one buyer, and also the novel average-value constraint (1.1) above.
Our first result rules out polynomial-time exact algorithms for AVA in an offline setting, or
even a PTAS, showing that this problem is as hard to approximate as the Max-Coverage
problem:

▶ Theorem 1 (Hardness of AVA). For any constant ε > 0, the AVA problem is NP-hard to
( e

e−1 − ε)-approximate.

We then turn our attention to positive results, and give the following positive result for
the problem:

▶ Theorem 2 (Offline AVA). There exists a randomized polynomial-time algorithm for the
AVA problem which achieves an approximation factor of 4e

e−1 .

To prove Theorem 2, we would like to draw on techniques used for traditional packing
problems, but the non-traditional nature of this problem means we need to investigate
its structure carefully. A key property we prove and leverage throughout is the existence
of approximately-optimal solutions of a very special kind: each buyer gets a collection of
“bundles”, where a bundle for buyer j consists of a single item i with positive vij − ρj (i.e.,
contributing positively to the average-value constraint (1.1)) and some number of items i with
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negative vij − ρj , such that they together satisfy the AVA constraint. Given this structure
we can focus on partitioning items among bundles, and allocating bundles to buyers. Note
that this partitioning and allocation have to happen simultaneously, since the values (i.e.,
vij) and whether it contributes positively or negatively (i.e., vij − ρj) depend on the buyer
and bundle under consideration. We show how algorithms for GAP (generalized assignment
problem) with matroid constraints [13] can be used.

Relax-and-Round. In order to extend our results from the offline to the online settings, and
to add in side-constraints, we then consider linear programming (LP) based relax-and-round
algorithms for the AVA problem. The LP relaxations take advantage of the structural
properties above, as they try to capture the best bundling-based algorithms (and hence to
approximate the optimal solution of any kind). Once we have fractional solutions to the LP,
we can then round these in both offline and online settings to get our feasible allocations.

Our first rounding-based algorithm, given in §4, is in the offline setting, and yields another
O(1)-approximate algorithm for AVA, qualitatively matching the result from Theorem 2.
While the constants are weaker, the result illustrates our ideas, and allows us to support
additional side-constraints (more on this in §1.1.1).

Online Algorithms. We then turn to online AVA, where items arrive over T timesteps,
and must be allocated to buyers as soon as they arrive. We want to maintain feasible
solutions to the AVA at all times. We show that under adversarial arrivals, only trivial O(T )
approximations are possible. This forces us to focus our attention on i.i.d. arrivals. Our first
result is a time-efficient approximation of the optimum (computationally-unbounded) online
algorithm:

▶ Theorem 3 (Online AVA: Approximating the Optimal Online IID Algorithm). There exists a
randomized polynomial-time online algorithm for the AVA problem which achieves a constant
factor of the value achieved by the optimal (computationally-unbounded) online algorithm.

To approximate the optimum online algorithm, we provide an LP capturing a constraint
only applicable to online algorithms, inspired by such constraints from the secretary problem
and prophet inequality literatures [12, 34]. We then provide a two-phase online algorithm
achieving a constant approximation of this LP, analyzed via a coupling with an imaginary
algorithm that may violate AVA constraints and allocate items to several buyers.

We then turn our attention to approximating the ex-post optimum (a.k.a., getting a
competitive ratio for the observed sequence). In contrast, we show that when comparing
with the ex-post optimum, no such constant approximation ratio is possible, but we give
matching upper and lower bounds. (Due to lack of space, this is deferred to Appendix A.)

▶ Theorem 4 (Online AVA: Ex-post Guarantees (Informal)). There exist families of online
i.i.d. AVA instances on which any online algorithm is Ω

( log T
log log T

)
-competitive. In contrast,

there exists an online algorithm matching this bound asymptotically (on all instances).

The lower bound is proved by giving an example using a balls-and-bins process (and its
anti-concentration). Then we formulate an LP capturing this kind of anti-concentration,
using which we match the lower bound, under some mild technical conditions (see Appendix A
for details).

APPROX/RANDOM 2024



13:4 The Average-Value Allocation Problem

1.1.1 Generalizations
There are many interesting generalizations of the basic problem. For example, there might
exist “budgets” which limit the number of items any buyer can receive; or more generally we
may have costs on items which must sum to at most the buyer’s budgets. These costs could
be different for different buyers, and in different units than those captured by constraint
(1.1). These constraints are the natural ones considered in packing problems; in general,
we can consider the AVA constraint as being a non-packing constraint on the allocation
that can supplemented with other conventional packing constraints. As we show in §4.3,
our relax-and-round algorithm extends seamlessly to accommodate such side constraints,
provided any individual item has small cost compared to the relevant budgets.

Another natural generalization is return-on-spend (RoS) constraints, which have been
central to much recent work on advertisement allocation (see [25, 20]) and §1.2). We call the
problem generalized AVA (GenAVA) and define it as follows: the objective is to maximize
social welfare, but now the average value is measured in a more general way. Indeed, the
allocation of item i to buyer j can incur a different “cost” cij , and the average-value constraint
becomes the following ROS constraint:

∀j,
∑

i

vij xij ≥ ρj ·
( ∑

i

cij xij

)
. (1.2)

In contrast to AVA, we show that allowing general costs cij in the generalized AVA problem
in (1.2) makes it as hard as one of the hardest combinatorial problems – computing a
maximum clique in a graph. In particular, we show that it is NP-hard to n1−ε-approximate
GenAVA with n buyers, for any constant ε > 0. In Appendix B we show that similar hardness
persists even for stochastically generated inputs, and the problem remains hard even if we
allow for bicriteria approximation.

1.2 Related Work
Resource allocation is one of the most widely-studied topics in theoretical computer science.
Here we briefly discuss some relevant lines of work.

Packing/Covering Allocation Problems. The budgeted allocation problem or AdWords
of [32] is NP-hard to approximate within some constant [14], and constant approximations
are known even online [32, 11, 28]. The generalized assignment problem (GAP) [22] and its
extension, the separable assignment problem, have constant approximations in both offline [23,
13] and (stochatic) online settings [30]. In both cases, arbitrarily-good approximations are
impossible under adversarial online arrivals, even under structural assumptions allowing for an
offline PTAS (e.g., “small” bids) [32]. However, assuming both small bids and random-order
(or i.i.d.) arrivals allows us to achieve (1− ε)-competitiveness [16, 18, 30, 26, 2]. Some such
allocation problems are also considered with concave or convex utilities [17, 7]. As noted
above, many results and techniques for (offline and online) packing and covering constraints
are not applicable to our problem, which is neither a packing nor covering problem in the
conventional sense.

RoS constraints in online advertising. Return-on-spend constraints as defined in (1.2) have
received much attention in recent years in the context of online advertising. Several popular
autobidding products allow advertisers to provide campaign-level RoS constraints with a goal
to maximize their volume or value of conversions (sales) [25, 20]). Fittingly, there has been
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much interest in understanding the RoS setting along various directions, including optimal
bidding [1], mechanism design [8, 24], and on welfare properties at equilibrium [1, 15, 31]. In
these results, distributed bidding based algorithms are shown to achieve a constant fraction
of the optimal welfare. However, note that the per-item costs in the autobidding setting are
endogenous (set via auction dynamics) whereas in our allocation problem there is no pricing
mechanism and the costs are exogenous. Our results about the hardness of the generalized
AVA show that under exogenous prices, such allocation problems do not admit constant (or
even sublinear) approximation guarantees.

Approximating the optimum online algorithm. Our online i.i.d. results relate to a recent
burgeoning line of work on approximation of the optimum online algorithm via restricted
online algorithms. This includes restriction to polynomial-time algorithms (as in our case)
[34, 33, 10, 3, 29], fair algorithms [5], order-unaware algorithms [19] and inflexible algorithms
[4, 35], and more. These works drive home the message that approximating the optimum online
algorithm using restricted algorithms is hard, but can often lead to better approximation than
possible when comparing to the (unattainable) benchmark of the ex-post optimum. We echo
this message, showing that for our problem under i.i.d. arrivals, a constant-approximation
of the optimum online algorithm (using polytime algorithms) is possible, but is impossible
when comparing to the optimum offline solution.

1.3 Problem Formulation
In the average-value-constrainted allocation problem (AVA), allocating item i to buyer j

yields a value of vij . Each buyer j requires that the average value they obtain from allocated
items be at least ρj . We wish to (approximately) maximize the total social welfare, or sum
of values obtained by the buyers, captured by the following integer LP:

max
∑

(i,j)∈E

vij xij (AVA-ILP)

s.t.
∑

i

vij xij ≥ ρj ·
∑

i

xij ∀ buyers j∑
j

xij ≤ 1 ∀ items i

xij ∈ {0, 1} ∀ items i, buyers j.

An instance I of AVA can be captured by a bipartite graph (I, J, E), with a set I of items
and set J of buyers, and edges E ⊆ I × J , capturing all buyer-item pairs with non-zero value.
For i ∈ I and j ∈ J , edge (i, j) has value vij . We say edge (i, j) is a P -edge (positive edge) if
it has non-negative excess vij − ρj ≥ 0, and an N -edge otherwise, in which case we refer to
vij − ρj < 0 as its deficit. An item i is a P -item if all its edges in E are P -edges, and an
N -item if all its edges in E are N -edges: naturally, some items may be neither P -items or
N -items. We will call an instance unit-ρ if ρj = 1 for all buyers.2

In the online setting, the n buyers and their ρj values are known a priori, but items i

are revealed one at a time, together with their value vij for each buyer j, and an algorithm
must decide what buyer to allocate an item to (if any), immediately and irrevocably on

2 Such instances capture the core difficulty of the AVA problem, and our examples (except those for
GenAVA in Section B) are unit-ρ instances, so one can WLOG take ρj = 1 in the first read.

APPROX/RANDOM 2024



13:6 The Average-Value Allocation Problem

arrival. In the online i.i.d. setting, T items are drawn (one after another) i.i.d. from a known
distribution over m known item types, with type i drawn with probability qi. We say an edge
type (i, j) is an N -edge type or a P -edge type if vij − ρj < 0 or vij − ρj ≥ 0, respectively.

1.4 Paper Outline
We begin in §2 by proving some structural lemmas regarding AVA, including an unintuitive
non-linear dependence of the welfare on the amount of supply. In §3 we present the improved
algorithm for the offline setting giving Theorem 2. In §4 we present our LP-rounding
algorithm for AVA in an offline setting. We also discuss the approach’s extendability, allowing
to incorporate additional constraints, in §4.3. Building on this offline rounding-based
algorithm, in §5 we present a constant-approximation of the optimum online algorithm. In
the interest of space, we defer the discussion of competitive ratio bounds to Appendix A,
and our hardness results to Appendix B.

2 The Structure of Near-optimal Solutions for AVA

In this section, we show how to partition any feasible allocation of AVA instances into
structured subsets (which we call permissible bundles). This bundling-based structure will
prove useful for all of our algorithms.

▶ Definition 5 (Bundling). A set S of edges incident on buyer j is a permissible bundle if
nolistsep S consists of a single P -edge (i⋆, j) and zero or more N -edges (i, j), and
noliistsep the edges in S satisfy the average-value constraint, i.e.,

∑
(i,j)∈S vij ≥ ρj · |S|.

A bundling-based solution is one that can be partitioned into a collection of permissible
bundles.

Clearly, no bundling-based solution can be better than the best unconstrained solution,
but in the following lemma we show a converse, up to constant factors. (Throughout, we use
the shorthand notation v · x :=

∑
ij vijxij for any vector x ∈ RE .)

▶ Lemma 6 (Good Bundling-Based Solution). Let x∗ be a solution to an instance of AVA.
Then, there exists a bundling-based solution x̂ of value at least v · x̂ ≥ 1

2 v · x∗.

As a corollary, the best bundling-based solution is a 2-approximation, and so we will strive
to approximate such bundling-based solutions.

We prove a strengthening of Lemma 6 which also addresses online settings.

▶ Definition 7 (Committed Bundling). An online algorithm is a committed bundling-based
algorithm if its solution consists of permissible bundles, and items can only be added to
bundles; in particular, it commits to the allocation of each item to a particular bundle, and
does not move items between permissible bundles.

▶ Lemma 8 (Online Bundling-Based Solution). Let x∗ be a solution to an instance of
AVA, with x∗ revealed online and (all interim partial solutions) satisfying the average-value
constraints throughout. Then there exists a solution x̂ that is the output of a committed
online bundling-based algorithm, of value at least v · x̂ ≥ 1

2 v · x∗.

Proof. For each buyer j, consider the edges S := {(i, j) | x∗
ij = 1} corresponding to

items assigned to buyer j in solution x∗, in order of addition to the solution x∗, namely
e1, e2, . . . , e|S|, with ek = (ik, j). We now show how a committed online algorithm can output
a collection of permissible bundles of at least half the value from among the edges in S; doing
this for each buyer proves the result.
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Consider ik, i.e., the k-th item allocated to j by x∗, if ek is a P -edge (i.e. vik,j ≥ ρj), we
denote p = ik, open (create) a bundle Bp = {(j, p)} and allocate appropriately in the new
solution x̂. When ek = (ik, j) is an N -edge, if ek can be added to some open bundle Bp of j

while keeping it permissible, we add (ik, j) to Bp in solution x̂; otherwise, we pick some open
bundle Bp of j and mark it as closed (and never add more edges to this bundle). Since x∗ is
feasible throughout the online arrival, for any k ∈ [1, |S|] we have that

∑
ℓ≤k viℓ,j ≥ k · ρj ,

and since we allocate all P -edges of x∗ in x̂ and only allocate a subset of the N -edges, we find
that there must always be some open bundle of j when considering an N -edge ek. Therefore,
the above (committed) bundling-based online algorithm is well-defined. Now, each bundle
is closed by at most one N -edge (i, j), and so we can charge the N -edges (i, j) allocated in
x∗ but not in x̂ to the P -edge (p, j) in the bundle Bp that they closed. But by definition of
the P -edge and N -edge, we know vpj ≥ ρj ≥ vij . Therefore, denoting by x∗

D the part of the
solution x∗ that is discarded in x̂ and by x∗

p and x∗
n the value of the P -edges and N -edges

allocated by both x∗ and the new solution x̂, we have that v · x∗
D ≤ v · x∗

p. Hence,

v · x∗ = v · x∗
D + v · (x∗ − x∗

D) ≤ 2 v · x∗
p + x∗

n ≤ 2 v · (x∗
p + x∗

n). (2.3)

That is, the obtained bundles of the solution x̂ = x∗
p + x∗

n constitute a 2-approximation. ◀

▶ Remark 9. This loss of a factor of two in the value is tight. To see this, consider a
single-buyer unit-ρ AVA instance. There are 1

ε N -edges each with value 1 − ε and 1
ε(1−ε)

P -edges each with value 1 + ε(1− ε). It is feasible to allocate all items to the buyer, and
(arbitrarily close to) half the value of this solution is given by N -edges, but any permissible
bundle contains no N -edges as any single P -edge doesn’t have enough excess to cover the
deficit of any N -edge.

For our algorithms it will be convenient if each item is incident only on P -edges, or only
on N -edges, thus removing the ambiguity about whether to use these as the single P -edge in
a permissible bundle. Fittingly, we call such instances unambiguous. For example, when all
buyers have the same average-value constraint (i.e. ∀j : ρj = ρ), for any item i incident on
a P -edge (i.e., ∃j : vij ≥ ρ), we can trivially drop all N -edges of the item (i.e., drop (i, j′)
where vij′ < ρ) since there is no reason to allocate any N -edge instead of a P -edge of i, and
so making such instances unambiguous comes with no cost. As we now show, any instance of
AVA in general can be made unambiguous while still preserving a bundling-based allocation
that is constant-approximate for the original instance.

▶ Lemma 10 (Bundling Unambiguous Sub-Instances). Given an AVA instance I = (I, J, E),
dropping all of the P -edges or all the N -edges of each item i ∈ I independently with probability
1/2 results in an unambiguous sub-instance I ′ = (I, J, E′) (where E′ ⊆ E), admitting a
bundling-based solution x′ which is 4-approximate for I.

Proof. Let x∗ be an optimal solution for I. If we denote by x∗
p and x∗

n the characteristic vector
for P -edges and N -edges allocated by both x∗ and x̂ = x∗

p + x∗
n as in the proof of Lemma 8,

then, by the penultimate inequality of Equation (2.3), we have that v · x∗ ≤ 2 v · x∗
p + v · x∗

n.
Now, consider the solution x′ consisting of all P -edges allocated in x̂ that were not dropped
and all non-dropped N -edges allocated in bundle S whose P -edge was also not dropped.
We therefore have that this new solution has value precisely 1

2 v · x∗
p + 1

4 v · x∗
n, and so, by

Equation (2.3), we have that x′ is a 4-approximation, since

v · x∗ ≤ 4 ·
(

1
2 v · x∗

p + 1
4 v · x∗

n

)
= 4 v · x′. ◀

APPROX/RANDOM 2024



13:8 The Average-Value Allocation Problem

We also provide an alternative, deterministic method to find such an unambiguous sub-
instance. However, since our algorithms are randomized, we defer discussion of this method
to the full version.Note in unambiguous instances, every item is either a P -item or an N -item.

2.1 Welfare is non-linear in supply
In this section we provide a bound on the multiplicative gain in welfare in terms of increased
supply. This will prove useful later. For now, it illustrates non-linearity of the AVA problem
in its supply. (This is in contrast to other allocation problems where the welfare is at best
linear in the supply.)

To motivate this bound, consider the outcome of creating k copies of each item in an
AVA instance. Clearly, the welfare increases by a factor of at least k, as we can just repeat
the optimal allocation for the original instance k times. However, as the following example
illustrates, welfare can be super-linear in the supply size increase for AVA.

▶ Example 11. Consider a unit-ρ instance of k-buyer AVA with a single P -item of value
1 + kε for all buyers and k many N -items, with the i-th N -items having value zero for all
buyers except for one distinct buyer i, to whom it has value 1− ε. In this instance OPT ≈ 2,
since the P -item can only be allocated to a single buyer, who can then only be allocated one
N -item, while in the instance obtained by creating k copies of each item we can allocate a
P -item to each buyer together with k many N -items, and so for this instance OPT ≈ k2, i.e.,
increasing supply k-fold increases the welfare (k2/2)-fold.

The following lemma shows that the above example is an extreme case, and for a k-fold
increase in supply, an O(k2)-fold increase in welfare is best possible.

▶ Lemma 12 (Supply Lemma). Let I = (I, J, E) be an AVA instance, and let I ′ = (I ′, J, E′)
be an instance with the same buyer set and underlying costs and values obtained by copying
each item in I some k times.

OPT(I ′) ≤ O(k2) · OPT(I).

Proof. Since bundling-based solutions are nearly optimal up to a constant factor of 2, we can
start with an optimal bundling-based allocation A′ for I ′ and randomly (and independently)
associate the items of I with one of their k copies in I ′, allocating them as in A′. Finally,
we remove all non-permissible obtained bundles to obtain allocation A for I. For each copy
i′ of an item i, if i′ is allocated in a P -edge in A′, the probability that i is associated with i′

(and thus assigned to the same buyer by A) is precisely 1/k. In contrast, if i′ is allocated
in an N -edge by A′, the probability that A allocates i the same way as i′ is precisely 1/k2,
as this requires both i to be assigned to the same bundle (associated with the same copy)
and the P -edge of this bundle to similarly be assigned to the same bundle. The lemma then
follows by linearity of expectation. ◀

3 Offline Algorithm via Reduction to Matroid-Constrained GAP

In this section we provide an improved constant-approximation for AVA in the offline setting;
we will show in Appendix B.1 that the problem is hard to approximate to better than e

e−1 .

▶ Theorem 13. There exists a ( 4e
e−1 + o(1))-approximate randomized algorithm for AVA.

The algorithm proceeds by reducing AVA to GAP with matroid constraints. Recall that
an instance of the generalized assignment problem (GAP) consists of n elements that can be
packed into m bins. Packing an element e into a bin b gives a value veb and uses up seb space
in that bin. If we let yeb ∈ {0, 1} denote the indicator for whether element e is assigned to
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bin b, then naturally
∑

b yeb ≤ 1. Each bin has unit size, and so the size of elements assigned
to bin b is at most 1: in other words,

∑
e seb yeb ≤ 1. The goal is to maximize the total value

of the assignment
∑

eb veb yeb. [23] gave a (1 − 1/e)-approximation for this problem. [13]
gave the same approximation for an extension of the problem, where the opened subset of
bins must be an independent set in some given matroid M.

▶ Theorem 14. There exists a randomized polynomial-time algorithm that, for any unam-
biguous AVA instance, outputs a solution with expected value at least

(
1− 1/e− o(1)

)
times

the optimal bundling-based solution.

Proof. Given an unambiguous AVA instance (i.e., one where each item is incident on only
P -edges or only N -edges), we construct an instance of Matroid-Bin GAP as follows:
1. Elements and bins: For each P -item p and buyer j, construct a bin (p, j) in the GAP

instance. The elements of the GAP instance are exactly the items of the AVA instance.
2. Values/sizes of P -items: Assigning a P -item p to bin (p, j) yields value vpj and uses zero

space; Assigning P -item p to a bin (p′, j) with p ̸= p′ yields value zero and uses 1 + ε

space.
3. Values/sizes of N-items: Assigning N -item i to bin (p, j) yields value vij and uses

ρj−vij

vpj−ρj
space.

4. Matroid on the bins: Finally, the matroid M on the bins is a partition matroid, requiring
that we choose at most one bin from {(p, j) | j ∈ B}, for each P -item p.

The construction above results in a value-preserving one-to-one correspondence between
feasible GAP solutions which are maximal, i.e., where each P -item p is assigned to some
bin, and permissible bundling-based solutions to the AVA instance. Indeed, for any feasible
bundling-based solution to the AVA instance, fix a bundle (p, j) containing the item set S.
The value of placing the items in S in the bin (p, j) is precisely

∑
i∈S vij . Summing over all

bins, we find that both solutions (to the AVA and GAP instance) have the same value. On
the other hand, the GAP solution is feasible since for each P -item p we open up at most one
bin (p, j) (thus respecting the matroid constraint) and moreover each bin’s size constraint
is respected due to the per-bundle average-value constraint and the zero size of p in bin
(p, j), implying that

∑
i∈S si,(p,j) =

∑
i∈S\{p}

ρj−vij

vpj−ρj
≤ 1. Similarly, starting with a maximal

solution to the GAP instance, the single bin (p, j) into which p is placed has its average-value
constraint satisfied (note that p cannot be placed in a bin (p′, j) for p′ ≠ p, where its size is
1 + ε), and the value of the bundles obtained this way is the same as the GAP solution’s
value. Now the (1− 1/e− o(1))-approximation algorithm for GAP with matroid constraints
[13] gives the same approximation for AVA on unambiguous instances. ◀

Theorem 14 combined with Lemma 10 completes the proof of Theorem 13.

4 An Offline Algorithm via Relax-and-Round

Let us now present an LP-rounding based algorithm for AVA. This more sophisticated
algorithm yields another constant-approximate offline algorithm, which also allows to incor-
porate additional side constraints, see Section 4.3). Moreover, this section’s algorithm also
provides a template for our main online algorithms.

The natural starting point for an LP-rounding based algorithm, the LP relaxation obtained
by dropping the integrality constraints of (AVA-ILP), turns out to be a dead end. This
relaxation has an integrality gap of Ω(n) on n-buyer instances,3 even for unit-ρ, as shown by
the reinspecting the instance of Example 11.

3 Recall that an LP relaxation’s integrality gap is the difference in objective between its best fractional
and integral solutions.
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13:10 The Average-Value Allocation Problem

▶ Example 15. Consider an n-buyer unit-ρ instance with a single P -item p of value 1 + nε

for all buyers, and n N -items, with the i-th N -item having zero value for all buyers except
for buyer ji, for whom its value is 1− ε. An assignment xpj = 1

n for all buyers j and xiji
= 1

for every N -item i gives value n + 1 for the LP relaxation of (AVA-ILP), while clearly the
optimal integral solution has value ≈ 2.

Therefore, to obtain any constant approximation via LP rounding, we need a tighter relaxation.
To this end, we rely on Lemmas 6 and 10, and provide the following relaxation for bundling-
based solutions for unambiguous AVA instances. This LP has decision variables xijp for
(P or N)-item i, buyer j and P -item p. Informally, these correspond to the probability
that i is allocated to j in the bundle with P -item p, which we denote by jp. (Note: this
polynomially-sized LP is clearly poly-time solvable.)

max
∑
i,j,p

vij xijp (Bundle-LP)

s.t.
∑

i

(ρj − vij) xijp ≤ 0 ∀j, p (4.4)∑
j,p

xijp ≤ 1 ∀i (4.5)

xijp ≤ xpjp ∀i, j, p (4.6)
xp′jp = 0 ∀j, P -item p′ ̸= p (4.7)
xijp ≥ 0 ∀i, j, p

Intuitively, the bundling, and in particular Equation (4.6), will allow us to overcome the
integrality gap example above. We formalize this intuition later by approximately rounding
this LP, but first we show that (Bundle-LP) is a relaxation of bundling-based allocations for
unambiguous AVA instances.

▶ Lemma 16. For any unambiguous AVA instance, the value of (Bundle-LP) is at least as
high as that of the optimal bundling-based allocation.

Proof. Fix a (randomized) bundling-based allocation algorithm A. Let Yijp be the indicator
for A having allocated item i in bundle jp. We argue that Yijp satisfy the constraints of
(Bundle-LP), realization by realization. Consequently, by linearity of expectation, so do their
marginals, E[Yijp]. Constraint (4.4) holds since A satisfies the average-value constraint for
each bundle. Constraint (4.5) holds since each item is allocated at most once. Constraint
(4.6) holds because bundle jp must be opened for i to be allocated in it. Constraint (4.7)
holds since permissible bundles have a single P -item in them. Finally, non-negativity of Y is
trivial. We conclude that E [Y] is a feasible solution to the above LP, with objective precisely∑

ijp vij E[Yijp]. The lemma follows. ◀

We now turn to rounding this LP. To this end, we consider a two-phase algorithm, whose
pseudo-code is given in Algorithm 1. In Phase I we open bundles, letting each P -item p pick
a single buyer j with probability xpjp,4 and opening the bundle jp. In Phase II we enrich
the bundles, by adding N -items to them. Specifically, for each N -item i, we create a set Si

containing each open bundle jp independently with probability α · xijp

xpjp
, where α ∈ [0, 1]

4 Since Constraint (4.5) is tight for every P -item in any optimal LP solution, {xpjp}j is a distribution
over buyers.
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is a parameter to be specified later. Then, if this set Si contains a single bundle jp and
adding i to this bundle would not violate the average-value constraint restricted to the bundle
(denoted by BundleAVjp), i.e., this bundle would remain permissible, then we allocate i to
the bundle jp. Otherwise, we leave i unallocated.

Algorithm 1 Offline rounding of Bundle-LP.
1: Make the instance unambiguous as in Lemma 10
2: Let x be an optimal solution to (Bundle-LP) for the obtained unambiguous instance
3: for each P -item p do ▷ Phase I
4: Pick j according to distribution {xpjp}j=1,...,n and open bundle jp

5: for each N -item i do ▷ Phase II
6: Si ← ∅
7: for each bundle jp, with probability α · xijp

xpjp
do

8: if jp was opened in Phase I then
9: Si ← Si ∪ {jp}

10: if |Si| = 1 then
11: if the only bundle jp ∈ Si remains permissible after adding i to it then
12: Allocate i to jp

Algorithm 1 clearly outputs a feasible allocation, since it only allocates N -items i to a
bundle jp if this would not violate the average-value constraint of the bundle, and hence by
linearity the average-value constraint of the buyer remains satisfied. Moreover, the algorithm
is well-defined; in particular, the probability spaces defined in lines 4 and 7 are valid, by
constraints (4.5) for P -item p, and (4.6) for triple i, j, p, respectively. We turn to analyzing
this algorithm’s approximation ratio. For this, we will lower bound the probability of each
item i to be allocated in bundle jp in terms of xijp.

By Section 4, each P -item p is assigned in bundle jp precisely with probability xpjp.
Consequently, the expected value Algorithm 1 obtains from P -items is precisely their
contribution to the LP solution’s value. It remains to understand what value we get
from N -items.

4.1 Allocation of N -items

To bound the contribution of N -items, we consider any tuple of N -item i, buyer j and P -item
p. Note that N -item i is assigned to bundle jp if and only if all the four following events
occur:
1. E1: the event that bundle jp is open, which happens with probability xpjp.
2. E2: the event that the Bernoulli(α · xijp

xpjp
) in Section 4 comes up heads for jp.

3. E3: the event that Si \
⋃

j′=1,...,n{j′p} = ∅.
4. E4: the event that jp would remain permissible if we were to add i to bundle jp.
We note that events E1, E2, E3 are all independent, as they depend on distinct (and independ-
ent) coin tosses. So, for example, Pr [Si ∋ jp] = Pr [E1 ∧ E2] = Pr [E1] · Pr [E2] = α · xijp.
Moreover, we have the following simple bound on Pr [E3].

▶ Lemma 17. Pr
[∧3

ℓ=1 Eℓ

]
=

∏3
ℓ=1Pr [Eℓ] ≥ (1− α) · α · xijp.
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13:12 The Average-Value Allocation Problem

Proof. The first equality follows from independence of E1, E2, E3. We therefore turn to lower
bounding Pr [E3]. Since Pr[X > 0] ≤ E[X] for any integer random variable X ≥ 0, we know

Pr[E3] ≤ E

∣∣∣∣∣∣Si \
⋃
j′

{j′p}

∣∣∣∣∣∣
 =

∑
p′ ̸=p

∑
j′

α · xij′p′ ≤ α,

where the equality follows from Pr[Si ∋ j′p′] = α ·xij′p′ by the above, and the last inequality
follows from Constraint (4.5). Since Pr [E1] · Pr [E2] = α · xijp, the lemma follows. ◀

A challenge. As noted above, E1, E2, E3 are independent, resulting in a simple analysis for the
probability Pr

[∧3
ℓ=1 Eℓ

]
=

∏3
ℓ=1Pr [Eℓ]. Unfortunately, lower bounding Pr[E4 | E1 ∧E2 ∧E3]

is more challenging, due to possible negative correlations between E4 and E3. To see this, note
that E3 ∧ E1 implies Si = {jp}, and this event can be positively correlated with previous N -
items i′ having Si′ = {jp}, thus making it more likely that jp won’t be able to accommodate
i under BundleAVjp.

We can overcome this challenge of negative correlations, provided (i, j) has small deficit
compared to (p, j)’s excess. (We address the large deficit case separately later.) Specifically,
by coupling our algorithm with an algorithm that allocates more often and does not suffer
from such correlations, we can lower bound this conditional probability as follows.

▶ Lemma 18. Let β ∈ [0, 1]. If i, j, p are such that ρj − vij ≤ β · (vpj − ρj), then

Pr[E4 | E1 ∧ E2 ∧ E3] ≥ 1− α

1− β
.

Proof. Consider an imaginary algorithm A′ that allocates every N -item i′ into every bundle
j′p′ ∈ Si′ , even when |Si′ | > 1 (so we may over-allocate) and even if this violates the
BundleAVj′p′ constraint. Coupling A′ with Algorithm 1 by using the same randomness for
both algorithms, we have that item i′ is allocated to bin j′p′ by A′ with probability precisely
Pr [Si′ ∋ j′p′] = α · xi′j′p′ . In particular, A′ only allocates more items than Algorithm 1.

We denote by N ′
jp the set of N -items allocated to bundle jp by A′. Now, let E ′

4 be the
event that

∑
i′∈N ′

jp
\{i}(ρj − vi′j) ≤ (1− β) · (vpj − ρj), that is, the deficit of N -items other

than i that A′ allocated to the bundle jp together only consumes at most a (1−β) fraction of
p’s excess for j. By the small deficit assumption on i, j, p, we know that event E ′

4 is sufficient
for BundleAVjp to be satisfied if Algorithm 1 were to add i to jp. Thus, E ′

4 implies E4 in
any realization (of the randomness), since A′ only allocates more items to each bin than
Algorithm 1. On the other hand, we also have that both E ′

4 and E1 are independent of both
E2 ∧ E3, since the latter combined event depends on an independent random coin toss (E2)
and events concerning other bundles jp′, which are both independent of the randomness
concerning bundle jp. (Here we use that A′ allocates i to jp whenever Si ∋ jp, regardles of
other bundles j′p′ belonging to Si.) Consequently, by standard applications of Bayes’ Law,
we obtain the following.

Pr[E ′
4 | E1 ∧ E2 ∧ E3] = Pr[E ′

4 | E1].

As the imaginary algorithm A′ assigns i′ to jp (i.e. i′ ∈ N ′
jp) iff Si′ ∋ jp, we know that

E

 ∑
i′∈N ′

jp

(ρj − vi′j)

∣∣∣∣∣∣ E1

 =
∑
i′ ̸=p

(ρj − vi′j) · Pr [Si′ ∋ jp | E1]

= α ·
∑
i′ ̸=p

(ρj − vi′j) xi′jp

xpjp
≤ α · (vpj − ρj).
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Above, the second equality follows from linearity and Pr[Si′ ∋ jp | E1] = α · xij′p′

xpjp
, and the

inequality follows from the average-value constraint for bundle jp (i.e. Equation (4.4)) in
our LP. Therefore, by Markov’s inequality

Pr

 ∑
i′∈N ′

jp
\{i}

(ρj − vi′j) > (1− β) · (vpj − ρj)

∣∣∣∣∣∣ E1

 ≤ E
[∑

i′∈N ′
jp

\{i}(ρj − vi′j)
∣∣∣ E1

]
(1− β) · (vpj − ρj)

≤ α

1− β
,

and thus Pr [E ′
4 | E1] ≥ 1− α

1−β . Recalling that E ′
4 implies E4 in any realization, we conclude

with the desired bound, as follows.

Pr[E4 | E1 ∧ E2 ∧ E3] ≥ Pr[E ′
4 | E1 ∧ E2 ∧ E3] = Pr[E ′

4 | E1] ≥ 1− α

1− β
. ◀

Lemma 18 and the preceding discussion yield a lower bound on the probability of an
N -item i being successfully allocated to a bundle jp when i’s deficit is small relative to the
excess of the P -item p. For the large deficit case, no such bound holds. However, as we
now observe (with proof deferred to the full version), large-deficit edges contribute a relative
small portion of the allocation’s value in the optimal LP solution.

▶ Lemma 19. Let β ∈ [0, 1]. For any bundle jp, let Lβ
jp denote the set of β-large deficit

N -items for bundle jp, i.e., N -item i with ρj − vij > β · (vpj − ρj). Then,∑
j,p

∑
i∈Lβ

jp

vij xijp ≤
1
β

∑
j,p

vpj xpjp.

4.2 Completing the analysis
We are now ready to bound the approximation ratio of Algorithm 1.

▶ Theorem 20. Algorithm 1 with α = 0.3 is a 32-approximation for AVA.

Proof. Let β ∈ [0, 1] be some constant to be determined and let γ = γ(α, β) := α · (1− α) ·(
1− α

1−β

)
. Denote Njp by the set of N -items allocated to bundle jp by the algorithm. By

Lemmas 17 and 18 we have for bundle jp and N -item i /∈ Lβ
jp that

Pr[i ∈ Njp] = Pr

[
E4

∣∣∣∣∣
3∧

ℓ=1
Eℓ

]
Pr

[ 3∧
ℓ=1
Eℓ

]
≥

(
1− α

1− β

)
· α · (1− α) · xijp = γ · xijp.

Therefore, by linearity of expectation and Lemma 19, the expected value of the (feasible)
random allocation of Algorithm 1 is at least∑

j,p

vpj xpjp + γ
∑

i,j,p:i ̸=p

vij xijp − γ
∑
j,p

∑
i∈Lβ

jp

vij xijp

≥
(

1− γ

β

) ∑
j,p

vpj xpjp + γ
∑

i,j,p:i ̸=p

vij xijp.

So, this algorithm’s output has value at least a min{1− γ
β , γ} fraction of the optimal LP

value; i.e., it is a 1/ min{1− γ
β , γ}-approximation. Taking α ≈ 0.3 and β ≈ 0.156 (optimized

by an off-the-shelf numerical solver) yields a ratio of 1/0.13 < 8. The theorem then follows
from Lemma 16 and Lemma 10. ◀
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13:14 The Average-Value Allocation Problem

4.3 Extension: adding side constraints
Before moving on to our online algorithms, we note that the LP-based approach allows us
to incorporate additional constraints seamlessly. For example, our LP and algorithm, with
minor modifications, allow to approximate allocation problems with both the average-value
constraint and O(1) many budget constraints (for every buyer), corresponding to different
resources. More formally, for a cost function ℓ (e.g., corresponding to storage, time, or other
costs), each buyer j has some budget B

(ℓ)
j , and the ℓ-cost of allocation to buyer j must not

exceed this budget. That is, for xij ∈ {0, 1} an indicator for item i being allocated to buyer
j, we have

∀j, ℓ-costj =
∑

i

ℓij xij ≤ B
(ℓ)
j . (4.8)

The small-cost assumption (a.k.a. the small-bids assumption for online AdWords [32])
stipulates that no particular item has high cost compared to the budget, i.e. maxij ℓij/B

(ℓ)
j ≤

ε→ 0.

▶ Theorem 21. There exists a constant-approximate algorithm for AVA and any constant
number of budget constraints (for every buyer) subject to the small-bids assumption.

We defer the proof of the above result to the full version. The same arguments in this
section extend to our online algorithms, but are omitted for brevity.

5 Online Algorithms: Approximating the Online Optimum

In this section and the next we study AVA in the online i.i.d. setting (see Section 1.3 for
definition and notation). Specifically, in this section we provide a polynomial-time online
algorithm which provides a constant approximation of the optimal online algorithm.

First, by Lemma 6, we have that the optimal online algorithm is approximated within a
factor two by a bundling-based online algorithm which is committed. As we will show, the
following LP provides a relaxation for the value of the best such online algorithm. Our LP
consists of variables xijp for each item type i ∈ [m], buyer j ∈ [n] and item type p such that
(p, j) is a P -edge.

max
∑
i,j,p

vij xijp (OPTon-Bundle-LP)

s.t.
∑

i

(ρj − vij) xijp ≤ 0 ∀ P -edge type (p, j) (5.9)∑
j,p

xijp ≤ qi · T ∀ item type i (5.10)

xijp ≤ xpjp · qi · T ∀ N -edge type (i, j), P -edge type (p, j) (5.11)
xp′jp = 0 ∀ P -edge types (p, j) ̸= (p′, j) (5.12)
xijp ≥ 0 ∀ item type i, P -edge type (p, j)

▶ Lemma 22. (OPTon-Bundle-LP) has value which is at least half the expected value of
any online AVA algorithm under i.i.d. arrivals (from the same distribution used in the LP),
where item type i is drawn with probability qi.
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Proof. First, by the Online Bundling Lemma (Lemma 8), the best committed online bundling-
based algorithm 2-approximates the best online algorithm. We therefore turn to showing
that (OPTon-Bundle-LP) is a relaxation of the value of the best committed bundling-based
online algorithm, A. Let xijp be the average number of times a copy of item type i is
allocated in a copy of bundle jp by A. Constraint (5.9) follows by linearity of expectation,
together with the fact that each opened copy of bundle jp must satisfy the average-value
constraint. Constraint (5.10) simply asserts that i is allocated at most as many times as it
arrives. Constraint (5.11) holds for a committed online algorithm (that guarantees feasibility
with probability 1), for the following reason: for every copy of bundle jp opened, no items
can be placed in that bundle before it is opened. But the expected number of copies of i to
be assigned after any bundle jp is opened is at most the number of arrivals of i after this
bundle is opened and is at most qi · T , which upper-bounds the ratio between xijp and xpjp.
All other constraints hold similarly to their counterparts in the proof of Lemma 16. ◀

Note. Constraint (5.11) is reminiscent of constraints bounding the optimal online algorithm
in the secretary problem literature [12] and prophet inequality literature [34].

The outline of our algorithm is similar to that of Algorithm 1, though as it does not have
random access to the different items throughout, it first allocates P -edges in the first T/2
arrivals, and only then allocates N -edges in the last T/2 arrivals. To distinguish between
bundles opened at different times, we now label copies of bundle type jp (i.e., items allocated
to buyer j with single P -edge of type (p, j)) opened at time t by jpt. The algorithm’s
pseudocode is given in Algorithm 2.

Note that in our online algorithms (here and in Appendix A), the LPs are based on
distributions that can be ambiguous in the sense that each item type in the distribution can
have both P -edges and N -edges, and we don’t explicitly modify the distribution to make it
unambiguous. However, our algorithm effectively makes each realized instance (of T sampled
items) unambiguous, as we ignore all N -edges incident to the first T/2 items and vice versa
for the last T/2 items.

Algorithm 2 Online rounding of bundling-based LP.
1: Let x be an optimal solution to Equation (OPTon-Bundle-LP)
2: for all arrivals t = 1, . . . , T/2, of type p do
3: Pick a j according to the distribution { xpjp

qp·T }j=1,...,n and open bundle jpt

4: for all arrival t⋆ = T/2 + 1, . . . , T of type i do
5: Sit⋆ ← ∅
6: for all bundles jpt, with probability α·xijp

xpjp·qi·T do
7: if bundle jpt is open then
8: Sit⋆ ← Sit⋆ ∪ {jpt}
9: if |Sit⋆ | = 1 then

10: if jpt ∈ Sit⋆ remains permissible after adding it⋆ to it then
11: Allocate it⋆ to jpt

5.1 Analysis

In what follows we provide a brief overview of the relevant events in the analysis of Algorithm 2,
deferring proofs reminiscent of the analysis of Algorithm 1 to the full version.
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First, the value obtained from P -edges by Algorithm 2 is clearly half that of the LP, by
linearity of expectation. In particular, we create xpjp/2 copies of bundle jp in expectation.
The crux of the analysis is in bounding our gain from N -edges.

To bound the contribution of N -edges, we note that a copy of item i at time t⋆ > T/2,
which we denote by it⋆, is assigned to bundle jpt if and only if all the five following events
(overloading notation from Section 4) occur:
1. E0: the event that it⋆ is the realized item at time t⋆, which happens with probability qi

2. E1: the event that bundle jpt is open, which happens with probability qp · xpjp

qp·T = xpjp

T .
3. E2: the event that the Bernoulli( α·xijp

xpjp·qi·T ) in Section 5 comes up heads for jpt.
4. E3: the event that Sit⋆ \

⋃
j′p′

⋃
t′ ̸=t{j′p′t′} = ∅.

5. E4: the event that jpt would remain permissible if we were to add it⋆ to bundle jpt.

Similarly to the events we studied when anlyzing our offline Algorithm 1, the events
E0, E1, E2 are independent, as are the events E1, E2, E3. However, E3 is not independent of E0

(in particular, it occurs trivially if E0 does not). Nonetheless, bounding Pr
[∧3

ℓ=0 Eℓ

]
is not

too hard. The following lemma, whose proof essentially mirrors that of Lemma 17, and is
thus deferred to the full version, provides a bound on the probability of all first four events
occurring.

▶ Lemma 23. Pr[E0 ∧ E1 ∧ E2 ∧ E3] ≥ α · (1− α/2) · xijp

T 2 .

As with our offline Algorithm 1, the challenge in the analysis is due to possible negative
correlations between E4 and E3. Similarly, we overcome this challenge of negative correlations,
provided (i, j) has small deficit compared to (p, j)’s excess, by coupling with an algorithm
with no such correlations. (We address large-deficit (i, j) later.) The obtained syntactic
generalization of Lemma 18, whose proof is deferred to the full version, is the following.

▶ Lemma 24. Let β ∈ [0, 1]. If i, j, p are such that ρj − vij ≤ β · (vpj − ρj), then

Pr[E4 | E0 ∧ E1 ∧ E2 ∧ E3] ≥ 1− α

2(1− β) .

Lemma 24 and the preceding discussion yield a lower bound on the probability of a
copy of item i be allocated to a bundle jpt at time t⋆ if i, j, p is in the small deficit case
as the above lemma. For large-deficit items, no such bound holds. However, large-deficit
edges contribute a small portion of the allocation’s value. Specifically, Lemma 19, holds for
(OPTon-Bundle-LP) as well, since the only constraint that this lemma’s proof relied on was
Constraint (4.4), which is identical to Constraint (5.9) in (OPTon-Bundle-LP).

We are now ready to bound the approximation ratio of Algorithm 1.

▶ Theorem 25. Algorithm 1 with α = 0.64 is a polynomial-time algorithm achieving a
57-approximation of the optimal online algorithm for AVA under known i.i.d. arrivals.

Proof. That the algorithm runs in polynomial time follows from its description, together
with the LP (OPTon-Bundle-LP) having polynomial size (in the distribution size). The
analysis is essentially identical to that of Theorem 20, with the following differences. First,
we recall that the expected number of copies of bundle jp opened is T

2 · qp · xpjp

qp·T = 1
2 xpjp.

Next, by Lemmas 23 and 24, the probability that copy it⋆ of small-deficit item i for bundle
jpt is allocated to it is at least γ · xijp

T 2 , for γ = γ(α, β) := α
2 ·

(
1− α

2
)
·
(

1− α
2(1−β)

)
. Again,

linearity of expectation and summation over all (t, t⋆) ∈ [T/2] × (T/2, T ] in combination
with Lemma 19 implies that for any β ∈ [0, 1], the gain of Algorithm 2 is at least
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1
2

∑
j,p

vpj xpjp + γ

4
∑

i,j,p:i ̸=p

vij xijp −
γ

4
∑
j,p

∑
i∈Lβ

jp

vij xijp


≥

(
1
2 −

γ

4β

) ∑
j,p

vpj xpjp + γ

4
∑

i,j,p:i ̸=p

vij xijp

 .

Therefore, by Lemma 22, Algorithm 2 yields a 2/ min{ 1
2 −

γ
4β , γ

4 }-approximation. This
expression is optimized by α ≈ 0.64 and β ≈ 0.0766, yielding a ratio of ≈ 2

0.0355 < 57, as
claimed. ◀
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A Online Algorithms: Approximating the Offline Optimum

In this section we look at the lower and upper bounds of the competitive ratio for online
algorithms, i.e. the approximation of the ex-post optimum allocation’s value, and we consider
both the adversarial and i.i.d. cases.

Adversarial arrival. In this setting, we note that no online algorithm can be o(T )-competitive.
To see this, consider the unit-ρ instance where the first T − 1 arriving items have value 1− ε

for all n = T buyers, followed by a single item at the end with value 1 + εT for a single
adversarially chosen buyer and value 0 for all other buyers. Any online algorithm cannot
allocate any of the first T − 1 items due to the average-value constraint, and thus can only
get value 1 + εT from the last item. In contrast, the ex-post optimum can allocate all items
to one buyer and collect value T + 1 − ε. On the other hand, a competitive ratio of T is
trivial to achieve for online AVA, by simply allocating any item i with a P -edge (i, j) greedily
to the buyer j yielding the highest value. This is a feasible allocation and has value equal to
the highest-valued edge in the T -item instance, which is obviously at least a 1/T fraction of
the optimal allocation’s value.

The rest of this section will therefore be dedicated to AVA with i.i.d. arrivals, as in Section 5,
but now focusing on approximating the ex-post optimum. We start with the following result
lower bounding the competitive ratio.

▶ Lemma 26. There exists a family of uniform online i.i.d. unambiguous unit-ρ AVA
instances with n = m = T ≥ 2 growing, on which every online algorithm’s approximation
ratio of the ex-post optimum is at least Ω

( ln n
ln ln n

)
= Ω

( ln m
ln ln m

)
= Ω

( ln T
ln ln T

)
.

Proof. Let ε = 1
T . Consider an instance with T buyers j1, . . . , jT , where all buyers have

ρ = 1, and T item types. Each item type i ∈ [T − 1] is an N -item, with value 1− ε for buyer
ji and value zero for all others. (So, buyer jT has zero value for all N -items.) The single
P -item type T has value 1 + εT for all buyers. The T arrival types are drawn uniformly from
these T types, and consequently there is a single arrival of each type in expectation. Now,
an online algorithm (that guarantees average-value constraints in any outcome) can only
allocate N -items to a buyer after the buyer was allocated a P -item. But since each N -item
appears only once in expectation (and hence at most once after the arrival of a P -item
type), each allocation of a P -item (and N -items) to a buyer yields expected value at most
1 + εT + 1− ε = 3− ε to an online algorithm. Since only one P -item arrives in expectation,
an online algorithm accrues value at most 3− ε in expectation on this instance family.

In contrast, the event E that a single P -item arrived satisfies Pr[E ] = T · 1
T · (1−

1
T )T −1 ≥

(1 − 1
T )T ≥ 1

4 . Conditioned on E , we have a multi-nomial distribution for the number of
arrivals Ai’s of the N -item types. Therefore, by standard anti-concentration arguments for
the classic balls and bins process [6], we have

Pr

[
max

i
Ai ≥

ln T

ln ln T
− 1

∣∣∣∣ E]
= 1− o(1).

APPROX/RANDOM 2024
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Consequently, the offline algorithm which, if event E occurs, allocates the single P -item and
all copies of i⋆ := arg maxi Ai to ji⋆ yields expected value at least E[maxi Ai | E ] · Pr[E ] =
Ω

( ln T
ln ln T

)
. Consequently, this asymptotic ratio also lower bounds any online algorithm’s

approximation ratio of the ex-post optimum. The full lemma statement follows, since
n = m = T . ◀

A.1 A matching algorithm assuming constant expected arrivals
Lemma 26 relied on anti-concentration. If the expected number of arrivals Ai of each item
type i is at least some constant Γ > 0, namely E [Ai] = qi · T ≥ Γ (e.g., in Lemma 26 we
had qi · T = 1 for every i), then this anti-concentration is tight. In particular, we have the
following, by standard Chernoff bounds and union bound (see the full version for proof).

▶ Observation 27. If E [Ai] ≥ Γ for all i ∈ [m] and κ := 6
min(1, Γ) ·

ln T
ln ln T , then

Pr
[
max

i
Ai ≥ κ · qi · T

]
≤ 1

T 2 .

We will show that if the distribution satisfies the assumption on all E [Ai] ≥ Γ = Θ(1),
we can show an asymptotically matching upper-bound O( ln T

ln ln T ) of the competitive ratio.
Our first ingredient towards this proof will, naturally, be another LP, this time capturing

possible anti-concentration of arrivals. Similar to (OPTon-Bundle-LP), the LP has one
variable xijp for each item type i ∈ [m], buyer j ∈ [n] and item type p such that (p, j) is a
P -edge.

max
∑
i,j,p

vij xijp (OPToff-Bundle-LP)

s.t.
∑

i

(ρj − vij) xijp ≤ 0 ∀ P -edge type (p, j) (A.13)∑
jp

xijp ≤ 2 · ⌈qi · T ⌉ ∀ item type i (A.14)

xijp ≤ xpjp · ⌈qi · T · κ⌉ ∀ N -edge type (i, j), P -edge type (p, j) (A.15)
xp′jp = 0 ∀ P -edge types (p, j) ̸= (p′, j) (A.16)
xijp ≥ 0 ∀ item type i, P -edge type (p, j)

▶ Lemma 28. Fix an AVA instance with i.i.d. arrivals satisfying qi · T ≥ Γ = Θ(1)
for all i ∈ [m]. Let OPT be the ex-post optimal value and let V [OFF] be the value of
(OPToff-Bundle-LP). Then,

E [OPT] ≤ O(V [OFF]).

Proof. By Lemma 16, we can restrict to the optimal ex-post bundling-based solution and
just lose a factor of 2 in the approximation ratio. We start with a trivial upper-bound on
the value of OPT in any outcome of the i.i.d. arrivals. Consider the instance with exactly
one copy of each item type from the support of the distribution. The best bundling-based
offline solution for this instance is upper-bounded by (Bundle-LP) (Lemma 16), and this
value is clearly upper bounded by V [OFF] since the constraints for (Bundle-LP) are tighter
than those of (OPToff-Bundle-LP). Under T i.i.d. arrivals, each item can appear at most
T times, and thus by the Supply Lemma (Lemma 12) applied to the instance with a single
occurrence per item type, we find that the following bound holds deterministically.

OPT ≤ O(T 2) · V [OFF].
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Next, let E be the event that no item type i has more than ⌈qi · T · κ⌉ arrivals. By
Observation 27, Pr [E ] ≥ 1− 1

T 2 . Conditioned on E , consider the expected number of times
(over the randomness of the i.i.d. arrivals) that the ex-post optimal bundling-based solutions
allocate an item of type i to a copy of bundle jp, and denote this value by xijp. We will argue
that such xijp’s form a feasible solution for (OPToff-Bundle-LP). Since the expected value
of the ex-post optimal bundling-based solution conditioned on E is simply

∑
i,j,p vij xijp,

this immediately gives that E [OPT | E ] ≤ 2 · V [OFF].
The proof that xijp constructed above is feasible follows essentially the same argument

as Lemma 22. The average-value constraint (A.13) holds by linearity of expectation because
the ex-post (bundling-based) optimum for any outcome satisfies the average-value constraint.
Constraint (A.14) holds since the expected times we allocate items of type i cannot exceed
i’s expected number of occurrences, which is bounded by E [Ai | E ] ≤ E[Ai]

Pr[E] ≤
qi·T

1−1/T 2 ≤
2 · qi · T ≤ 2 · ⌈qi · T ⌉. Constraint (A.15) holds since whenever a bundle jp is opened in the
ex-post optimum for any outcome, conditioned on E we have at most qi · T · κ items of type
i, which is a trivial upperbound on how many items of type i can be allocated to bundle jp,
and thus cap the ratio between xijp and xpjp.

Combining the above arguments together with linearity of expectation, the lemma follows.

E [OPT] = E [OPT|E ] · Pr [E ] + E
[
OPT|E

]
· Pr

[
E

]
≤ O(V [OFF]). ◀

We make the simple observation that (OPTon-Bundle-LP) and (OPToff-Bundle-LP) only
differ at the RHS of the constraints, with the most crucial difference being in the constraints
upper bounding xijp/xpjp, where they differ by a factor of ⌈qi·T ·κ⌉

qi·T = O(κ) (using that
Γ = Ω(1)). As we prove in the full version, scaling down any feasible solution of the latter
LP by O(κ) yields a feasible solution to the former LP, leading to the following observation.

▶ Observation 29. Fix an AVA instance with i.i.d. arrivals, satisfying qi · T ≥ Γ = Θ(1)
for all item type i. Then, V [OFF] and V [ON], the values of (OPToff-Bundle-LP) and
(OPTon-Bundle-LP) (respectively) satisfy V [OFF] ≤ O

( ln T
ln ln T

)
· V [ON]

In our proof of Theorem 25, we showed that Algorithm 2 achieves value at least Ω(V [ON]).
Consequently, Lemma 28 and Observation 29 imply the following result.

▶ Theorem 30. Algorithm 2 is an O
( ln T

ln ln T

)
-competitive online algorithm for AVA under T

known i.i.d. arrivals with each item type arriving an expected constant number of times.

▶ Remark 31. Under the stronger assumption that E [Ai] = qi ·T = Ω(ln(mT )/ε2) for each of
the m item types i (e.g., if T grows while the distribution {qi} remains fixed), the number of
arrivals of each item is more concentrated: it is E [Ai] · (1± ε) w.h.p. Consequently, natural
extensions of the arguments above, with a smaller blow-up of the RHS of the constraints
in (OPTon-Bundle-LP), imply that Algorithm 2’s competitive ratio improves to O(1) in this
case.

B Hardness Results

In this section we provide hardness of approximation results for AVA and stark impossibility
results for the generalization to GenAVA.

B.1 Max-Coverage hardness of AVA
Here we prove that AVA is as hard as the Max-Coverage problem, even if restricted to the
unit-ρ case.
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▶ Theorem 32 (Hardness of AVA). For any constant ε > 0, it is NP-hard to approximate
AVA to a factor better than

(
e

e−1 + ε
)

even for unit-ρ instances.

Proof. We give a reduction from “balanced” instances of the Max-Coverage problem.
Such an instance consists of a set system with n elements and m sets, with each set containing
n/k elements. A classic result of [21] shows that for each δ > 0, there exist n and k ≤ nδ,
such that it is NP-hard to distinguish between the following two cases: (a) there exists a
perfect partition, i.e., k sets in the set system that cover all n elements (YES-instances),
and (b) no collection of k sets from the set system cover more than n(1− 1/e + δ) elements
(NO-instances). We now define a unit-ρ AVA instance consisting of:
1. m buyers, where each buyer iS corresponds to a set S in the set system,
2. k identical choice items, which have value 1 + (ε/2) · n/k for every buyer, and
3. n distinct element items, one for each element e, which has value 1− (ε/2) for the buyers

iS such that set S contains element e, and value zero for the other buyers.

For a YES-instance of Max-Coverage, there is a solution with value k + n: we can
assign both the choice and element items to the buyers corresponding to the k sets in
the perfect partition, thereby getting us value n + k. (The excess for each choice item
can subsidize the deficit for the n/k element items assigned to that buyer.) On the other
hand, for a NO-instance, the k buyers/sets selected by the choice items can give value
k and also subsidize at most n(1 − 1/e + δ) element items with deficit. (No other items
with deficit can be chosen.) Setting δ = ε/2 means the NO-instances have value at most
k + n(1− 1/e + δ) + nε/2 ≤ n(1− 1/e + ε). This gives a gap between instances with value at
least n and at most n(1− 1/e + ε), proving the theorem. ◀

B.2 Clique hardness of GenAVA
Next, we prove that approximating GenAVA defined in (1.2) is as hard as approximating the
maximum independent set number in a graph. Recall that the objective in GenAVA is to
maximize welfare

∑
ij vijxij subject to the more general return-on-spend (ROS) constraints:

∀j,
∑

i

vij xij ≥ ρj ·
( ∑

i

cij xij

)
. (B.17)

Without loss of generality, we scale cij and ensure that all ρj = 1. We show the hardness even
for the case where costs depend only on the items, i.e., cij = ci for each item i. (The case
where cij = cj for each buyer j is much easier – equivalent to the AVA problem – because we
can just fold the cj term into the ρj threshold.)

▶ Theorem 33 (Hardness of GenAVA). For any constant ε > 0, it is NP-hard to approximate
GenAVA for n-buyer instances with Ω(n2) items to better than a factor of n1−ε.

The proof uses a reduction from the Maximum Independent Set problem. The reduction
proceeds as follows: given a graph G = (V, E) with |V | = n, define M := 2|E|/nε, and
construct the following GenAVA instance.
1. For each vertex v ∈ V , there is a buyer jv with ρjv

= 1.
2. For each vertex v ∈ V , there is a vertex item iv with item cost ci := M + deg(v), where

deg(v) is v’s degree in G; it has value M for the buyer jv, and zero value for all other
buyers.

3. For each edge e = (u, v) ∈ E, there is an edge item ie having zero cost; it has value 1 for
buyers ju and jv, and zero value for all others.
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Proof of Theorem 33. If vertex item iv is allocated to buyer jv, then by the constraints
above, all edge items je with e ∋ v must be allocated to iv. Thus, the set of vertices U ⊆ V

whose buyers are sold their respective vertex item is an independent set in G. Conversely, U

can be taken to be any independent set. Thus, the maximum value obtained by allocating
vertex items is precisely M · α(G). On the other hand, any optimal allocation must allocate
all edge items, as this does not violate any of the ROS constraints. Combining the above, we
have that OPT = α(G) ·M + |E|, where α(G) is the independence number of G, i.e., the
size of the maximum independent set of G.

Finally, we use the result that for any constant ε > 0, it is NP-hard to distinguish
between the following two scenarios for an n-node graph G: (a) G contains a clique on
n1−ε nodes (YES instances), and (b) G contains no clique on nε/2 nodes (NO instances)
[27, 36]. This means that it is NP-hard to distinguish between instances of GenAVA with
value at least n1−ε ·M (corresponding to YES instances) from those with value at most
(nε/2) ·M + |E| = nε ·M corresponding to the NO instances, and hence proves the claim. ◀

The above hardness construction can, with small changes, show the following hardness
results. We defer these additional results’ proofs, as well as algorithms showing the (near)
tightness of our lower bounds for general GenAVA, to the full version.

▶ Theorem 34 (Hardness of i.i.d. GenAVA). For any constant ε > 0, it is NP-hard to n1−ε-
approximate GenAVA in n-buyer instances with poly(n) items drawn i.i.d. from a known
distribution.

▶ Theorem 35 (Hardness of Bicriteria GenAVA). For any ε > 0, it is NP-hard to obtain a
solution (which can even be infeasible) to GenAVA that achieves an objective value at least
Ω̃(
√

ε) times the optimal value (i.e. an Õ(1/
√

ε)-approximation), while guaranteeing the cost
for each buyer is at most 1 + ε times their total value, assuming the UGC.5

5 As usual, the soft-Oh notation hides polylogarithmic factors in its argument: i.e., Õ(f) = f · poly log(f).
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