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Abstract
We consider a new scheduling problem on parallel identical machines in which the number of
machines is initially not known, but it follows a given probability distribution. Only after all jobs
are assigned to a given number of bags, the actual number of machines is revealed. Subsequently,
the jobs need to be assigned to the machines without splitting the bags. This is the stochastic
version of a related problem introduced by Stein and Zhong [SODA 2018, TALG 2020] and it is, for
example, motivated by bundling jobs that need to be scheduled by data centers. We present two
PTASs for the stochastic setting, computing job-to-bag assignments that (i) minimize the expected
maximum machine load and (ii) maximize the expected minimum machine load (like in the Santa
Claus problem), respectively. The former result follows by careful enumeration combined with known
PTASs. For the latter result, we introduce an intricate dynamic program that we apply to a suitably
rounded instance.
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1 Introduction

Stein and Zhong [20] recently introduced scheduling problems in which the number of the
given (identical) machines is initially unknown. Specifically, all jobs must be assigned to a
given number of bags before the actual number of machines is revealed. When that happens,
the bags cannot be split anymore and they have to be assigned to the machines as whole
bags, optimizing some objective function. Such problems arise, e.g., when “bundling” jobs to
be scheduled in data centers, where the number of available machines depends on external
factors such as momentary demand [4, 20].

The aforementioned work (as well as follow-up works [1, 5]) focused on the robustness of
a job-to-bag assignment. Specifically, they assumed a worst-case number of machines and
compared their solution with the in-hindsight optimum for the respective objective function,
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14:2 Scheduling on a Stochastic Number of Machines

i.e., a direct job-to-machine assignment without bags. In contrast to this information-
theoretic question, we assume that a distribution of the number of machines is known (e.g.,
from historical data) and aim to efficiently compute a job-to-bag assignment that optimizes
the objective function in expectation – a common formulation of the objective function for
stochastic (scheduling) problems [4, 9, 10, 14, 15, 17, 18]. In other words, we use a “fairer”
benchmark for our algorithms, allowing us to sidestep the strong lower bounds by [20]. We
are the first to study this novel type of scheduling problem, already proposed in [20].

We consider two classic objective functions: minimizing the maximum machine load
(makespan) and maximizing the minimum machine load (Santa Claus). Both objectives
are well-studied in the deterministic setting, the special case of our problem with one-point
distributions, i.e., the distributions in which only one event happens with positive probability.
These problems are well understood from a classic approximation perspective: both are
known to be strongly NP-hard [7] and both admit Polynomial-Time Approximation Schemes
(PTASs) [11, 21], i.e., polynomial-time (1 + ε)-approximation algorithms for any ε > 0. In
this paper, surprisingly, we recover the same state for the stochastic versions by designing a
PTAS in both cases. In contrast to the deterministic setting, we require different techniques
tailored to each objective function. For the makespan minimization objective, our main
technical contribution is the application and analysis of techniques that have previously been
used in approximation schemes for deterministic scheduling and packing problems. Our
approach for the Santa Claus objective is technically much more intriguing and requires the
careful set-up of a novel dynamic program (DP) in order to control its size.

Our results are in stark contrast to classic stochastic scheduling problems, where in some
cases the currently best known approximation algorithms have distribution-dependent or even
linear guarantees [14, 18]. Even for better-understood problems such as load balancing of
stochastic jobs on deterministic machines, previous approaches [4, 9, 15] rely on concentration
bounds which inherently prohibit approximation ratios of 1 + ε for arbitrarily small ε > 0.
Moreover, PTASs for stochastic load balancing on deterministic machines are only known for
identical machines and Poisson distributed jobs [2, 13]. We hope that our positive results
inspire research for other scheduling problems with a stochastic number of machines, even for
(in the classic model with jobs with stochastic processing times) notoriously hard objective
functions such as expected weighted sum of completion times.

1.1 Our Contribution and Techniques
Our first result is the following.

▶ Theorem 1. There is a PTAS for the problem of computing the job-to-bag assignment that
minimizes the expected maximum machine load.

We first guess the bag sizes of the optimal solution up to a factor of 1 + ε. For each
guess, we check whether there is a corresponding assignment of the jobs to the bags (up to a
factor of 1 + ε), using the PTAS for bin packing with variable sizes [12]. Among the guesses
that fulfill this condition, we can select the (approximately) best guess using the PTAS for
makespan minimization [11].

For this approach to yield a PTAS, we need to bound the number of guesses by a
polynomial (in the input length). First note that it is straightforward to get down to a
quasi-polynomial number of guesses (and thus a QPTAS). The approach is to disregard jobs
of size (ε/n) · pmax where pmax is the largest processing time; indeed, for any solution, such
jobs make up at most an ε-fraction of the objective-function value. The resulting number of
possible guesses for a single bag size is then logarithmic in n, leading to a quasi-polynomial
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number of guesses for the (multi-)set of bag sizes. To get a polynomial bound (and thus
a PTAS), we make the following crucial observation. Let C be an estimate for the largest
bag size, up to a constant factor. While bags of size O(εC) cannot be disregarded, it is
enough to know their number rather than approximate size. Intuitively, when computing a
bag-to-machine assignment, these bags are treated like “sand”, i.e., as infinitesimal jobs of
total volume equal to the total volume of those bags. The number of possible (rounded) bag
sizes is hence constant, leading to a polynomial number of guesses for the (multi-)set of bag
sizes.

Our second result is significantly harder to achieve.

▶ Theorem 2. There is a PTAS for the problem of computing the job-to-bag assignment that
maximizes the expected minimum machine load.

One may be tempted to try a similar approach as for our first result. Even getting a
QPTAS is, however, not possible in the same way as one cannot simply disregard jobs of
size (ε/n) · pmax. Consider an instance in which the number of machines is deterministically
M and in which there are one job of size 1 and M − 1 jobs of size ε/(2M). Here, ignoring
the jobs of size ε/(2M) leads to M − 1 empty bags, yielding an objective function value of 0
instead of the optimal value ε/(2M).

Also, it is no longer true either that for bags of size O(εC) (where C is the size of a largest
bag) it is enough to know their total number: Consider an instance with optimal objective-
function value Opt and add one huge job of size Opt/ε2 to the set of jobs and one machine
to each scenario. Clearly, this new instance has maximum bag size C ≥ Opt/ε2 while the
optimal objective-function value does not change since this huge job can safely be packed
in its private bag and scheduled on its private machine. (However, crucially for the PTAS
for makespan minimization, adding this huge job there would change the objective-function
value.) In this example, the probability that scenarios with optimal objective-function value
much smaller than εC occur is 1. To obtain a (1 + ε)-approximation, however, one still has
to compute a (1 + ε)-approximation for the original instance, for which the sizes of bags of
size O(εC) are relevant. Of course, the issue with this particular instance could be avoided
by removing the huge job in a pre-processing step. However, by concatenating the above
original instance at super-constantly many different scales, one can create a new instance
where one essentially has to identify the “relevant scales” in a preprocessing step.

In some sense, the first step of proving Theorem 2 is addressing precisely the problem
of identifying the correct scales: We show that, at a loss of 1 + O(ε) in the approximation
guarantee, the problem can be reduced to the case of polynomially bounded processing times
that are all powers of 1 + ε. To do so, we define suitable (non-trivial) subproblems and
assemble them to a global solution with a dynamic program (DP). This approach can be
seen as a simpler version of our approach for polynomially bounded processing times, which
we focus on in the following.

Our general approach is to divide the range of possible bag sizes into intervals that contain
Oε(1) possible approximate bag sizes each. For each such interval, it is then possible to guess
the set of bags of the respective size in polynomial time. Considering the same range for sizes
of jobs, rather than bags, we would also be able to guess the assignment of these jobs to these
bags. Observe that a job may, of course, be assigned to a bag whose size lies in a different
interval than the job’s size. However, we argue that the precise assignment is only relevant
when these intervals are neighboring intervals and, hence, can be guessed in polynomial
time. If this is not the case, i.e., if jobs are assigned to a bag whose size lies in a much
larger interval, then such jobs are sufficiently small for us to only consider their total volume.
The resulting parameters, such as number of bags created so far and the assignment of
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14:4 Scheduling on a Stochastic Number of Machines

smaller jobs to larger intervals, through which the subproblems corresponding to the intervals
interact, are kept track of by a DP. While it is straightforward to keep track of all bags from
larger intervals as well as the assignment of jobs from these intervals to the bags, it is not
clear how to do this with a polynomial-time DP. In particular, when we consider bag sizes of
one interval, we still need to remember previously defined bags of much larger sizes with a
super-constant number of possibilities for these sizes. In fact, we show that it is sufficient to
keep track of a constant number of parameters that capture all necessary information about
larger intervals. Using that the processing times are polynomially bounded, we can bound
the size of the DP table by a polynomial in the encoding of the input.

When considering a DP cell corresponding to some interval and guessing bag sizes along
with the other parameters implied by the discussion above, we need to evaluate the quality
of this guess. To do so, we guess additional parameters (also kept track of by the DP). The
main observation is as follows. Suppose that, in addition to the aforementioned parameters,
we know the relevant range of the number of machines and the bag sizes from the next-lower
interval. For each number of machines in the aforementioned range, we assign each bag

(i) from a higher interval to one machine each,
(ii) from the two currently relevant intervals optimally, and
(iii) from the lower intervals fractionally (the total volume of these bags can be approxim-

ated).
The reason we may do so is that the bags assigned in (i) are large enough to assign enough load
to an entire machine and the bags assigned in (iii) are small enough to be considered fractional.

We remark that for both problems considered, a PTAS is the best possible approximation
algorithm achievable when the number of bags (and machines) is part of the input, unless
P = NP: Since their strongly NP-hard deterministic counterparts [8] are special cases of the
stochastic problems, neither makespan minimization nor Santa Claus on stochastic machines
admits fully polynomial time approximation schemes (FPTASs) unless P = NP. If, however,
the number of bags (and machines) is not part of the input, i.e., a constant, a FPTAS can
be designed by directly guessing the bag sizes approximately, i.e., up to a factor of 1 + ε, in
polynomial time and using known FPTASs to compute a job-to-bag assignment based on
these bag sizes [6, 16].

Stein and Zhong [20] also considered a third objective function, minimizing the difference
between the maximum and the minimum machine load. Any polynomial-time approximation
algorithm (in the multiplicative sense) is, however, impossible here unless P = NP. Indeed,
already in the deterministic case, it is strongly NP-hard to decide whether the optimal
objective-function value is 0 (as can be seen, e.g., by a straightforward reduction from
3-Partition).

1.2 Further Related Work

We first review the literature on the aforementioned information-theoretic question in which
one compares with the in-hindsight optimum. Since this benchmark is stronger than ours and
the upper bounds are obtained through polynomial-time algorithms, the upper bounds carry
over to our setting as guarantees of polynomial-time approximation algorithms. Specifically,
for makespan, Stein and Zhong [20] showed how to compute for any ε > 0 a job-to-bag
assignment whose cost is guaranteed to be a factor of at most 5/3 + ε away from the cost of
the in-hindsight optimum. They also showed an impossibility of 4/3. When all jobs have
infinitesimal size, the best-possible guarantee is (1 +

√
2)/2 ≈ 1.207 [5, 20]. For Santa Claus

and infinitesimal jobs, the best-possible guarantee is 2 ln 2 ≈ 1.386 [20].
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This model has been generalized in two directions. First, Eberle et al. [5] considered
arbitrary machine speeds (rather than just 0 or 1) that are revealed after the bags have been
created. They gave a guarantee of 2 − 1/m with respect to the in-hindsight optimum and
improved guarantees for special cases. Second, Balkanski et al. [1] considered the problem
with arbitrary speeds in the algorithms-with-predictions framework.

In the majority of the scheduling literature, stochastic uncertainty refers to uncertainty
in the processing times of the jobs (see [17] for a survey and [4, 9, 10] for some recent works).
The literature on stochastic uncertainty, even uncertainty in general, in the machines is much
more scattered. Stadje considered the unrecoverable breakdown on a single machine caused
by stochastic jobs [19]. Temporary machine unavailability has also been studied in [3].

2 Preliminaries

Formally, we are given a job set J = [n] := {1, . . . , n}, where each job has a processing
time pj , and a maximum number of machines M . For each 1 ≤ m ≤ M , we are given its
probability qm, where

∑M
m=1 qm = 1. We want to find a partition of the job set J into M

sets, called bags. We denote the set of bags by B. For a bag B ∈ B, let p(B) =
∑

j∈B pj

denote its size. We typically say for j ∈ B that j is packed in bag B.
Clearly, if M ≥ n, we can pack every job in its own private bag, and the problem becomes

trivial. Hence, we assume from now on that M < n.
We denote by Opt(B, m) the optimal objective function value for a given set of bags B and

a scenario with m machines, that is, Opt(B, m) denotes the maximum or minimum machine
load of an optimal bag-to-machine assignment, or schedule, respectively. The objective is
to find a partition or set of bags B that optimizes

∑M
m=1 qmOpt(B, m). We denote a fixed

optimal set of bags by B∗ and its objective function value by Opt :=
∑M

m=1 qmOpt(B∗, m).
As discussed above, the problems we consider are generalizations of strongly NP-hard

problems. Thus, unless P = NP, we cannot expect to find B∗ in polynomial time. Hence,
we are interested in polynomial-time approximation schemes (PTASs), i.e., for each ε > 0, a
polynomial-time (1 + ε)-approximation algorithm. Such an algorithm is required to return a
partition of the job set J into M bags, denoted by B, that satisfies

∑M
m=1 qmOpt(B, m) ≤

(1 + ε)Opt for makespan, and
∑M

m=1 qmOpt(B, m) ≥ 1
1+ε Opt for Santa Claus.

3 Minimizing the maximum machine load

In this section we design and analyze our polynomial-time approximation scheme for the
setting of makespan minimization: For a given number of machines m and a set B of bags,
we want to find an assignment of bags to machines that minimizes the maximum total size
of bags assigned to any machine.

3.1 Algorithm

Let ε > 0; we will give a polynomial-time algorithm that achieves an approximation ratio of
1 + O(ε). This algorithm finds a good estimate of the optimal bag sizes in B∗. To this end,
we show later that the maximum size of a bag in B∗ is at most 4C, where

C :=
M∑

m=1
qm max

{
max
j∈J

pj ,
1
m

∑
j∈J

pj

}
.

APPROX/RANDOM 2024



14:6 Scheduling on a Stochastic Number of Machines

We say a bag B in B∗ is regular if its size is at least εC or if there is at least one job of size at
least ε2C packed in B. For ℓ ∈ L := {⌊log1+ε(ε2C)⌋, ⌊log1+ε(ε2C)⌋ + 1, . . . , ⌈log1+ε(4C)⌉},
the algorithm guesses the number Mℓ of optimal bags with p(B) ∈

[
(1 + ε)ℓ, (1 + ε)ℓ+1)

.
Further, it enumerates all possible numbers Msand of bags of size at most (1 + ε)εC,

called sand bags. These sand bags do not directly correspond to optimal bags, but instead
can pack all jobs not packed in regular bags in Opt.

Clearly, a guess (Mℓ)ℓ∈L combined with Msand sand bags does not necessarily guarantee
that it is feasible, i.e., that Msand +

∑
ℓ∈L Mℓ ≤ M and that there is a partition of J into bags

such that there are at most Mℓ bags with sizes in
[
(1 + ε)ℓ, (1 + ε)ℓ+1)

and Msand bags of size
at most (1 + ε)εC. Thus, the algorithm ignores all combinations of (Mℓ)ℓ∈L and Msand with
more than M bags. If the total number of bags is at most M , the algorithm uses the PTAS
by Hochbaum and Shmoys [12] for bin packing with variable bin sizes to check if there is a
feasible packing of jobs into the bags as follows: The input is ε as approximation parameter,
an item of size pj for each job j ∈ J , Mℓ bins of size (1 + ε)ℓ+1 for any ℓ ∈ L, and Msand bins
of size (1 + ε)εC. If the guess is feasible, the PTAS is guaranteed to return an item-to-bin
(here a job-to-bag) assignment that violates the bin sizes by at most a factor (1 + ε).

If all jobs can be packed by the above PTAS, the algorithm evaluates the current guess by
computing a (1 + ε)-approximation of Opt((Mℓ)ℓ∈L∪{sand}, m), where we overload notation
and let Opt((Mℓ)ℓ∈L∪{sand}, m) denote the minimum makespan for a set of bags consisting
of Mℓ bags of size (1 + ε)ℓ+1, for any ℓ ∈ L, and Msand bags of size (1 + ε)εC. We denote the
makespan of this (1 + ε)-approximation by z((Mℓ)ℓ∈L∪{sand}, m) and compute it by running
the PTAS by Hochbaum and Shmoys [11] for makespan minimization on identical machines
with approximation parameter ε, Mℓ jobs with processing time (1 + ε)ℓ+1, Msand jobs with
processing time (1 + ε)εC, and m machines.

The algorithm returns a feasible minimizer of
∑M

m=1 qmz((Mℓ)ℓ∈L∪{sand}, m).

3.2 Analysis
In this section, we analyze the algorithm designed in the previous section. We start by
justifying our bound on the maximum bag size before we argue that there exists a guess that
is similar to the optimal set B∗ in terms of the bag size and objective-function value. Last,
we evaluate the running time of the algorithm and conclude with the proof of Theorem 1.
For formal proofs we refer to the full version.

We begin by justifying our assumption to only consider bags of size at most 4C =
4

∑M
m=1 qm max

{
maxj∈J pj , 1

m

∑
j∈J pj

}
: By [20], 4C is an upper bound on Opt. As the

largest bag size lower bounds Opt(B, m) in scenario m, this implies the next lemma.

▶ Lemma 3. No optimal solution uses bags of size greater than 4C.

Fix a set of bags B∗ with objective-function value Opt. By Lemma 3, the maximum bag
size is at most 4C. The algorithm guesses a set of bag sizes similar to the bag sizes in B∗.

Based on B∗ we define a “good” guess (M̂ℓ)ℓ∈L∪{sand}, i.e., a set of possible bag sizes, as
follows: Let B∗

R denote the set of regular bags, i.e., the set of bags in B∗ that pack at least
one job of size at least ε2C or have size at least εC.

For ℓ ∈ L, let M̂ℓ be the number of regular bags in B∗
R with p(B) ∈

[
(1 + ε)ℓ, (1 + ε)ℓ+1)

.

Set M̂sand =
⌈∑

B∈B∗\B∗
R

p(B)

εC

⌉
; recall that sand bags have size at most (1 + ε)εC.

Since the sizes of regular bags are only rounded up, the bags in (M̂ℓ)ℓ∈L can pack the
same subset of jobs as B∗

R. Since the volume of any sand bag has been increased by a
(1 + ε)-factor as opposed to εC and the size of any job not packed in a regular bag is at most
ε2C, we show that the bag-size vector M̂ := (M̂ℓ)ℓ∈L∪{sand} is a possible and feasible guess.
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▶ Lemma 4. The above defined vector M̂ is a feasible guess of the algorithm. The jobs can
be packed into a set of bags consisting of M̂ℓ bags with size (1 + ε)ℓ+1 for ℓ ∈ L and M̂sand
bags with size (1 + ε)εC.

Combining this lemma with Theorem 2 of [12], we get the next corollary.

▶ Corollary 5. The PTAS by [12] returns a packing of all jobs into a set of bags with Mℓ

bags of size (1 + ε)ℓ+2 for ℓ ∈ L and Msand bags of size (1 + ε)2εC.

To prove the next lemma, we first assign the regular bags in the same way as in the
optimal solution and assign the sand bags one by one to the currently least loaded machine.
For bounding the makespan in a given scenario m, we distinguish whether a regular bag
determines the makespan (which increases the makespan by at most a factor (1+ε) compared
to Opt(B∗, m)) or whether a sand bag determines the makespan. In the latter case, we use a
volume bound to upper bound this sand bag’s starting time (losing at most a factor (1 + ε))
and amortize its maximum size, i.e., (1 + ε)εC, over all scenarios, using that

∑M
m=1 qm = 1.

▶ Lemma 6. M̂ = (M̂ℓ)ℓ∈L∪{sand} satisfies
∑M

m=1 qmOpt(M̂, m) ≤ (1 + 5ε)Opt.

Proof of Theorem 1. Using that we return the cheapest guess and that the number of
distinct rounded sizes of regular bags is bounded by O

( 1
ε2

)
, we can show the following two

lemmas. Combined, they complete the proof of Theorem 1.

▶ Lemma 7. The set of bags returned by the algorithm guarantees an objective function
value of at most (1 + O(ε))Opt.

▶ Lemma 8. For ε ∈
(
0, 1

2
)
, the algorithm runs in time O

((
n
ε

)O(1/ε2)
)

.

4 Maximizing the minimum machine load

In this section, we present our polynomial-time (1 + ε)-approximation algorithm for the
setting in which we want to maximize the minimum machine load. We refer to the full
version for the formal proofs for the results presented in this section.

Polynomially bounded processing times

First, we show that we can reduce our problem to the case of polynomially bounded job
processing times that are all essentially powers of 1 + ε, while losing at most a factor of
1 + O(ε) in our approximation guarantee. The main concepts of the reduction can be
summarized by the following three ideas.

The first idea is to disregard scenarios whose contribution to the expected objective
function value is very small. W.l.o.g., assume that pj ∈ N and let d be an integer such
that Opt(B∗, m) falls in the interval

[
1,

(
n
ε

)d]
for every scenario m. Then, for some offset

a ∈
{

0, 1, . . . , 1
ε + 3

}
we “split” the interval

[
1,

(
n
ε

)d]
into a polynomial number of pair-

wise disjoint intervals Ĩi =
[ (

n
ε

)3i+ i−1
ε +a

,
(

n
ε

)3i+ i
ε +a

)
. Observe that any two consecutive

intervals have a multiplicative gap of
(

n
ε

)3. Using probabilistic arguments, we show that
there is an offset a such that the scenarios with Opt(B∗, m) in the gaps contribute very little
to the expected objective function value. Hence, such scenarios can be neglected by losing a
factor of at most 1 + O(ε) in the approximation ratio. As there is only a polynomial number
of possible offsets a, we may assume that we correctly choose such a by enumeration.

APPROX/RANDOM 2024



14:8 Scheduling on a Stochastic Number of Machines

The second idea is to observe that the gaps enable us to actually ignore a carefully
chosen subset of jobs. Let Ĩ+

i =
[ (

n
ε

)3i+ i−1
ε +a−3

,
(

n
ε

)3i+ i−1
ε +a

)
∪ Ĩi denote the extended

interval obtained by the union of the interval Ĩi and the smaller of its adjacent gaps, and
let m be a scenario such that Opt(B∗, m) ∈ Ĩi. We show that, by losing a factor of at most
1 + O(ε) in the approximation ratio, we may assume that a machine with minimum load in
the schedule that achieves Opt(B∗, m) is assigned only bags with jobs whose processing time
is in Ĩ+

i . Then, based on this assumption, we show that we may assume that there are no jobs
whose processing times fall in the gaps by losing at most another factor of 1 + O(ε) in the
approximation ratio. Observe that we are now facing an instance where neither Opt(B∗, m)
nor pj belong to the just created gaps in the interval

[
1,

(
n
ε

)d]
.

The third idea is then to solve the problem restricted to the intervals Ĩi individually by
using the fact that within each interval Ĩi the processing times are polynomially bounded
and combine the obtained solutions into a single one with a dynamic program. We show that
rounding up the processing times and solving each subproblem that arises in the dynamic
program costs a factor of at most 1 + O(ε) in the approximation ratio. Formalizing this
proof sketch proves Lemma 9.

▶ Lemma 9. By losing a factor of at most 1 + O(ε) in the approximation ratio, we can
assume for each job j ∈ J that pj = ⌈(1 + ε)kj ⌉ for some kj ∈ N0 and pj ∈ [1, nc(ε)] where
c(ε) is some global constant.

Algorithmic overview. Based on Lemma 9, we assume that each job j ∈ J satisfies pj ∈
[1, nc(ε)]. The high-level idea of our algorithm is to partition [1, nc(ε)] into intervals of the form
Ik :=

[( 1
ε

)3k
,
( 1

ε

)3k+3)
for k ∈ N and only consider bags, jobs, and scenarios relevant for a

single interval. More precisely, we use these intervals to partition the processing times {pj}j∈J ,
the bag sizes in B∗ and in our solution as well as the values {Opt(B∗, m)}m. Let K such that∑

j∈J pj ∈ IK ; we ignore intervals Ik with k > K. For k ∈ [K], let Jk := {j ∈ J : pj ∈ Ik},
let Lk :=

{
ℓ ∈ N :

⌈
(1 + ε)ℓ

⌉
∈ Ik

}
, and let B∗

k := {B ∈ B∗ : p(B) ∈ Ik}.
Our algorithm recursively considers the intervals in the order IK , IK−1, ..., I1 and, step

by step, defines bags that correspond to B∗
K , B∗

K−1, ..., B∗
1 . When considering interval Ik,

the algorithm enumerates all possible bag sizes of bags in B∗
k and all possible assignments

of a subset of the jobs in Jk ∪ Jk−1 to those bags; the remaining jobs in Jk are implicitly
assigned to bags in

⋃K
k′=k+1 B∗

k′ . Here, we use the fact that by definition of our intervals
only a constant number of jobs in Jk ∪ Jk−1 can be assigned to any bag in B∗

k while jobs
in Jk are tiny compared to bags in

⋃K
k′=k+2 B∗

k′ (see Figure 1 for visualization) and, hence,
the assignment of jobs Jk to bags

⋃K
k′=k+2 B∗

k′ cannot be guessed in polynomial time. The
remaining jobs in Jk−1 will be assigned when interval Ik−1 is considered. We embed this
recursion into a polynomial-time dynamic program (DP). Since our DP is quite technical, we
first describe the algorithmic steps that correspond to the root subproblem of the recursion,
i.e., IK , before we define the DP cells and argue about their solution. Defining the DP
cells and solving their corresponding subproblem involves enumerating all possible values
of several quantities and storing an approximation of the objective-function value of the
(approximately) best combination in the DP cell. When arguing about the correctness of our
DP, we show that there is a chain of DP cells that represent some (fixed) optimal solution.
Hence, we use X∗ for some parameter X when referring to the correct value, i.e., the value of
this parameter in this optimal solution. We refer to this process as guessing X∗. In general,
we use X̂ to refer to an arbitrary guess.
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pj p(B1) p(B2) p(B3)

Ik Ik+1 Ik+2

B1

B2

B3

j

j

j

≪ ε p(B3)

{

Figure 1 Visualization of relation between jobs in Jk and bags in B∗
k, B∗

k+1 and
⋃K

k′=k+2 B∗
k′ .

4.1 Guessing initial quantities
In the following, we describe how to guess and evaluate initial parameters corresponding to a
(partial) solution of our root subproblem. Intuitively, we construct a partial assignment of
jobs to bags B∗

K and the parameters representing this partial assignment define the DP cell
corresponding to the remaining problem.

4.1.1 Algorithm
The algorithm to compute a partial solution to a root subproblem can be essentially split
into two phases: (1) guessing key quantities and (2) evaluating these guesses.

Guessing phase. We start by guessing |B∗
K | and |B∗

K−1|, the number of bags in B∗
K and in

B∗
K−1, before we guess (1 + ε)-approximations for the bags sizes in B∗

K ∪ B∗
K−1. Formally, for

each bag B ∈ B∗
K∪B∗

K−1 we guess a value ℓ(B) ∈ N such that p(B) ∈ [(1+ε)ℓ(B), (1+ε)ℓ(B)+1);
we say that such a value ℓ(B) is the size-estimate for B. Next, we guess an assignment of
all jobs in JK and a subset of the jobs in JK−1 to the bags B∗

K and an assignment of the
remaining jobs in JK−1 and of a subset of the jobs in JK−2 to the bags B∗

K−1. Finally, we
guess m

(K)
max which we define to be the largest value m ∈ M for which Opt(B∗, m) ∈ IK .

Evaluation phase. In contrast to the previous section, maximizing the minimum machine
load asks for “covering” a machine or, in our case, a bag. To this end, we potentially
have to assign jobs from

⋃K−2
k′=1 Jk′ to the bags in B∗

K . Formally, for B ∈ B∗
K let p+(B)

be the total size of the jobs from JK and JK−1 already assigned to B. We define S :=∑
B∈B∗

K
max{

⌈
(1 + ε)ℓ(B)⌉ − p+(B), 0}. Our DP also stores this value in order to guarantee

that, in the remainder, jobs from
⋃K−2

k′=1 Jk′ with total size S are assigned to bags in B∗
K . Let

JK−1(B∗
K−1) and JK−2(B∗

K−1) be the subsets of JK−1 and JK−2 already assigned to bags
in B∗

K−1. Then, S̄ :=
∑

B∈B∗
K−1

⌈
(1 + ε)ℓ(B)⌉ − p

(
JK−1(B∗

K−1) ∪ JK−2(B∗
K−1)

)
is the total

volume of bags in B∗
K−1 that needs to be covered with jobs from

⋃K−3
k′=1 Jk′ .

For evaluating our current guess, we fix some m ≤ m
(K)
max and create a set JT of dummy

jobs, each with processing time 1 and total size T :=
∑K−2

k=1
∑

j∈Jk
pj − S − S̄. Now, we

guess the assignment of the bags B∗
K ∪ B∗

K−1 to the machines. Based on the load guaranteed
by these bags, we now greedily distribute these dummy jobs as follows. Assume w.l.o.g.
that the machines are sorted non-decreasingly by their loads and consider the prefix of the
machines which all have the smallest load. We assign to each of these machines the same
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number of dummy jobs such that their new load is equal to the load of the machines with
the second smallest load. We repeat this procedure until all dummy jobs in JT are assigned.
At the end, among all possibilities to assign the bags B∗

K ∪ B∗
K−1, we choose the one which

maximizes the minimum machine load after the distribution of JT . We define Alg(m) as
the load of the least loaded machine for this fixed candidate solution.

Among all guesses with the same set of bag sizes for bags in B∗
K ∪ B∗

K−1, the same
value m

(K)
max and the same values S and S̄, we keep the guess which maximizes our proxy for

the (partial) objective function,
∑m(K)

max
m=1 qm · Alg(m).

4.1.2 Analysis
Observing that |B∗

K | ≤ M ≤ n and |B∗
K−1| ≤ M ≤ n implies that we can enumerate all

possible combinations in time O(n2). Since the relative length, i.e., the ratio of the left
interval border to the right interval border, of IK ∪IK−1 is bounded by

( 1
ε

)6, there are at most
Oε(1) possibilities for each size-estimate ℓ(B). By guessing the number of bags with a given
size estimate, we can guess the size-estimates of all bags in B∗

K ∪B∗
K−1 in time nOε(1). Further,

each bag in B∗
K can be assigned at most Oε(1) many jobs from JK ∪ JK−1 and, similarly,

each bag in B∗
K−1 can be assigned at most Oε(1) many jobs from JK−1 ∪ JK−2. Hence, there

is only a constant number of possible assignments for each bag, up to permutations of jobs
with the same size. We formalize these observations in the next lemma.1

▶ Lemma 10. In time nOε(1), we can guess the size-estimate ℓ(B) for each bag B ∈ B∗
K∪B∗

K−1
as well as the assignment of the jobs in JK to the bags B∗

K , of the jobs in JK−1 to the bags
B∗

K ∪ B∗
K−1 and of a subset of jobs in JK−2 to the bags in B∗

K−1, up to a permutation of bags.

First, observe that for each bag B ∈ B∗
K , the value max{⌈(1 + ε)ℓ(B)⌉ − p+(B), 0} ∈ N0

since pj ∈ N for each j ∈ J by Lemma 9. Hence, S accurately captures the total volume
missing to ensure that each B ∈ B∗

K packs jobs with a total size of at least (1 + ε)ℓ(B) ≥ p(B)
1+ε .

Using that each job in
⋃K−2

k=1 Jk is very small compared to a bag in B∗
K , we can argue that

knowing S is actually sufficient to cover B ∈ B∗
K with jobs of total size of at least p(B)

(1+ε)2 .
Similarly, for a bag in B∗

K−1, each job in
⋃K−3

k=1 Jk is very small compared to its size.
Hence, we can again argue that knowing S̄ ∈ N0 is sufficient to pack jobs of total size at least

p(B)
(1+ε)2 into bag B ∈ B∗

K−1.
Observing that no bag in

⋃K−2
k=1 B∗

k can pack a job from JK ∪ JK−1 by definition of their
sizes, we conclude that T indeed represents the total volume of bags in

⋃K−2
k=1 B∗

k. In fact,
we can show that for scenarios with m ≤ m

(K)
max machines any assignment of the remaining

jobs in
⋃K−2

k′=1 Jk′ of total volume at most T
1+ε to at most M − |B∗

K | − |B∗
K−1| bags of size at

most ε
( 1

ε

)3K yields the same objective function value (up to a factor of 1 + O(ε)). These
observations are formalized in the next lemma where some jobs are set aside in bags BS and
BS̄ , corresponding to the values S and S̄.

Recall that we use X̂ to denote a possible guess for parameter X considered by our
algorithm.

▶ Lemma 11. Let the guessed quantities be as defined above. Let B′ ∪{BS , BS̄} be a partition
of the jobs

⋃K−2
k′=1 Jk′ into M − |B̂K | − |B̂K−1| + 2 bags such that

for each bag B ∈ B′, p(B) ≤ ε · ( 1
ε )3K ,

1 For the initial guesses, one could give tighter bounds by observing that |B∗
K | + |B∗

K − 1| = Oε(1).
However, we give polynomial bounds which are sufficient and of the same kind as the bounds we will
use later in the DP.
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p(BS) ≥ S,
p(BS̄) ≥ S̄, and
p(B′) :=

∑
B∈B′ p(B) ≥ (1 + ε)−1T .

Suppose that B ∈ B̂K ∪B̂K−1 has size in [(1 + ε)ℓ(B), (1 + ε)ℓ(B)+1). We can compute the vec-
tor (Alg(m))m(K)

max
m=1 in polynomial time and Opt(B′ ∪B̂K ∪B̂K−1, m) ∈ [(1+ε)−5Alg(m), (1+

ε)Alg(m)) for each m ≤ m
(K)
max.

Note that the lemma does not state anything about the relationship of Opt(B∗, m) and
Opt(B′ ∪B̂K ∪B̂K−1, m); it relates our proxy function Alg(m) and Opt(B′ ∪B̂K ∪B̂K−1, m),
the best possible assignment for B′ ∪ B̂K ∪ B̂K−1.

In the remaining problem it suffices to focus on scenarios in which we have m > m
(K)
max

machines and which hence satisfy Opt(B∗, m) < ( 1
ε )3K . Note that for each bag B ∈ B∗

K we
have that p(B) ≥ ( 1

ε )3K . Therefore, if we are given m > m
(K)
max machines, it is optimal to

assign each bag B ∈ B∗
K to a separate machine without any further bags assigned to that

machine. Hence, if m > m
(K)
max, then the bags in B∗

1 , ..., B∗
K−1 need to ensure only that the

remaining m − |B∗
K | machines get enough load. This insight and the above lemma allow

us to decouple our decisions for scenarios with m ≤ m
(K)
max machines from scenarios with

m > m
(K)
max machines. This is the key idea for our DP.

4.2 Dynamic program
After our initial guesses above, it remains to

pack the jobs in
⋃K−1

k′=1 Jk′ into the bags in B∗
K−1,

compute the bag sizes in B∗
1 , ..., B∗

K−2, and
select jobs from

⋃K−2
k=1 Jk with total size at least S for filling B∗

K .

For each m ≥ m
(K−1)
min := m

(K)
max + 1, our goal is to obtain a value close enough to

Opt(B∗, m) so that, overall, we achieve a value of (1 − O(ε))Opt.
To this end, we design a dynamic program (DP) that solves the remaining problem from

above. Each DP cell corresponds to some subproblem. We show that for each possible guess
of the initial quantities in Section 4.1 there is a DP cell corresponding to the remaining
subproblem. In order to solve each subproblem, we guess similar quantities as in the previous
section and reduce the resulting remaining problem to the subproblem of another DP cell.

4.2.1 Algorithm
Following the same idea as for the root subproblem, our dynamic program proceeds as
follows: for each DP cell we first guess key quantities defining a partial solution as well as
the transition to the next DP cell and then we evaluate this guessed partial solution.

DP cell and its subproblem. Formally, each DP cell C is specified by
k ∈ N with k < K specifying that we still need to define B1, ..., Bk,
Mk+1,...,K ∈ N counting the previously defined (large) bags Bk+1, ..., BK ,
Mk ∈ N representing our decision |Bk| = Mk,
m

(k)
min ∈ N indicating the minimal number of machines we consider,

sℓ ∈ N for ℓ ∈ Lk counting B ∈ Bk with ℓ(B) = ℓ,
aℓ ∈ N for ℓ ∈ Lk counting the jobs j with pj = ⌈(1 + ε)ℓ⌉ that are assigned to bags
in Bk+1,
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14:12 Scheduling on a Stochastic Number of Machines

S ∈ N, defining the total size of jobs in
⋃k

k′=1 Jk′ that must not be assigned to bags⋃k
k′=1 Bk′ and that are neither assigned to bags in Bk+1 via the values aℓ; instead they

will be assigned to
⋃K

k′=k+1 Bk′ . (Note that we will make sure that even though jobs from
Jk might contribute to S, such jobs will not be used to cover bags in Bk+1.)

The goal of the subproblem of C is to pack a subset of the jobs
⋃k

k′=1 Jk′ into the bags⋃k
k′=1 Bk′ and define a size-estimate ℓ(B) for B ∈

⋃k
k′=1 Bk such that

|Bk| = Mk,
p(B) ∈ Ik′ for each k′ ∈ [k] and each B ∈ Bk′ ,
p(B) ∈ [(1 + ε)ℓ(B), (1 + ε)ℓ(B)+1) for each B ∈

⋃k
k′=1 Bk,

there are sℓ bags B ∈ Bk with ℓ(B) = ℓ for each ℓ ∈ Lk,
each job j ∈ Jk′ for k′ ∈ [k] is either assigned to some bag in Bk′ ∪ ... ∪ Bk or not at all,
there are aℓ jobs j with pj = ⌈(1 + ε)ℓ⌉ that are not assigned to any bag for each ℓ ∈ Lk,
the jobs in

⋃k
k′=1 Jk′ not packed in any bag have total size at least S.

For each DP cell C, we compute a solution and a corresponding objective function value
which we denote by profit(C). This objective function corresponds to the expected profit
from scenarios in {m

(k)
min, ..., M} that we achieve with the solution stored in the DP cell and

Mk+1,...,K “large” bags, i.e., bags B with p(B) ∈
⋃K

k′=k+1 Ik′ .

Guessing phase. By definition of the DP cell, |B∗
k| = Mk. For each ℓ ∈ Lk, there are sℓ

many bags B ∈ B∗
k with ℓ(B) = ℓ (and hence with p(B) ∈ [(1 + ε)ℓ, (1 + ε)ℓ+1)). We start by

guessing the assignment of the jobs Jk−1 ∪ Jk to the bags in B∗
k. We only consider guesses

satisfying the values aℓ and S of our current DP cell, i.e., for every possible processing time in
Ik enough jobs are left to be assigned to B∗

k+1 and enough total volume of jobs in
⋃k

k′=1 Jk′

is left to be assigned to bags in
⋃K

k′=k+1 B∗
k′ . Finally, we guess m

(k)
max which is the largest

value m for which Opt(B∗, m) ∈ Ik.

Evaluation phase. In order to calculate the proxy objective function value profit(C), we
need to combine C with a cell Ĉ corresponding to a DP cell for the remaining problem. To this
end, let us define the parameters of this cell Ĉ. Clearly, we only need to define B1, . . . , Bk−1.
Hence, the first parameter of Ĉ is k − 1. Further, the total number of previously defined
bags is given by M̂k,...,K = Mk + Mk+1,...,K . As we do not ignore scenarios, we choose
m

(k−1)
min := m

(k)
max + 1. Since we have already guessed the assignment of jobs in Jk−1 to bags

in B∗
k, we can simply calculate the values âℓ for ℓ ∈ Lk−1 that indicate the number of jobs j

with pj = ⌈(1 + ε)ℓ⌉ to be assigned to bags in B∗
k.

It remains to calculate the value S̄ ∈ N, the total size of jobs in
⋃k−1

k′=1 Jk′ assigned as very
small jobs to bags in

⋃K
k′=k B∗

k′ . To this end, we calculate the total size of jobs from
⋃k−2

k′=1 Jk′

that need to be packed in B∗
k. For each B ∈ B∗

k, let p+(B) be the total size of the jobs from
Jk−1 ∪ Jk that B already packs. We define Sk :=

∑
B∈B∗

k
max

{⌈
(1 + ε)ℓ(B)⌉ − p+(B), 0

}
.

Denote by Jk(B∗
k ∪ B∗

k+1) the set of jobs from Jk assigned to bags B∗
k and B∗

k+1. Then, S̄ is
defined as S̄ := S −

∑
j∈Jk\Jk(B∗

k
∪B∗

k+1) pj + Sk, where S is defined by the current DP cell C.
(Note that S̄ does not contain jobs from Jk−1 to be assigned to B∗

k as they are accounted for
by âℓ.)

Hence, the remaining problem corresponds to some DP cell Ĉ satisfying

Ĉ =
(

k − 1, Mk+1,...,K + Mk, M̂k−1, m(k)
max + 1, Ŝ ≥ S̄, (ŝℓ)ℓ∈Lk−1 , (âℓ)ℓ∈Lk−1

)
, (1)

where ŝℓ is a possible number of bags with size-estimate ℓ ∈ Lk−1, i.e., with size (1 + ε)ℓ, the
number of bags |B∗

k−1| is given by M̂k−1 =
∑

ℓ∈Lk−1
ŝℓ, and we require that Ŝ is at least S̄.
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Given profit(Ĉ) for some Ĉ, we can now calculate profit(C) as follows: For each value
m ∈ {m

(k)
min, ..., m

(k)
max}, we compute an estimate Alg(m) of the objective value of an optimal

bag-to-machines assignment of
⋃k

k′=1 B̂k′ and Mk+1,...,K large bags to m machines. To this
end, we use a variant of Lemma 11, which is explained in detail in the full version. Then, the
profit of the candidate combination of C with Ĉ is given by

∑m(k)
max

m=m
(k)
min

qmAlg(m) + profit(Ĉ).
Among all these candidate combinations, we choose the one with the largest profit and set
profit(C) =

∑m(k)
max

m=m
(k)
min

qmAlg(m) + profit(Ĉ).

4.2.2 Analysis
Observe that there are at most Oε(1) many distinct processing times of jobs Jk−1 ∪ Jk and
each bag B ∈ B∗

k contains at most Oε(1) many jobs from each of these processing times
because of the definition of B∗

k, Jk−1, and Jk.
We guess all possible assignments of jobs to a single bag of size at most

( 1
ε

)3k+3; typically
such an assignment is called a configuration. There are at most Oε(1) such configurations.
Then, for each configuration and each ℓ with

⌈
(1 + ε)ℓ

⌉
∈ Ik, we guess how often the

configuration is assigned to a bag B with ℓ(B) = ℓ. Following this sketch, the next lemma
proves that we can in fact guess the job-to-bag assignment in polynomial time.

▶ Lemma 12. In time nOε(1) we can guess the assignment of jobs from Jk−1 and Jk to the
bags B∗

k up to permuting jobs and bags.

During the evaluation phase, we try all possible combinations of the current DP cell C
with Ĉ satisfying (1), i.e., DP cells corresponding to the remaining subproblems matching
the parameters of C. We now give a proof sketch of why our guesses combined C indeed
give a feasible solution to the subproblem for k. Let B̂1, . . . , B̂k−1 be the bags given by the
solution to Ĉ and B̂k be the bags corresponding to our guess. (We do not change

⋃k−1
k′=1 B̂k′ .)

We need to assign jobs from
⋃k−1

k′=1 Jk′ to B̂k satisfying
(i) for every bag B ∈ B̂k, p(B) ≥ (1 + ε)ℓ(B)−1 and
(ii) the total processing time of

all jobs in
⋃k−1

k′=1 Jk′ not assigned to bags in
⋃k

k′=1 B̂k′ and
all jobs in Jk neither assigned to B̂k nor reserved by the values aℓ for the bags with
size in Ik+1

is at least S.

Each B ∈ B̂k has already jobs from Jk and Jk−1 of total size p+(B) assigned to it. Let
p−(B) := max

{ ⌈
(1 + ε)ℓ(B)⌉ − p+(B), 0

}
be the missing volume in B to cover B to the

desired level of
⌈
(1 + ε)ℓ(B)⌉. If p−(B) = 0, no additional job from

⋃k−2
k′=1 Jk′ needs to be

assigned to B. Otherwise, we greedily add jobs from
⋃k−2

k′=1 Jk′ not packed in
⋃k−1

k′=1 B̂k′ until
assigning the next job would exceed p−(B). Hence, the total size of jobs

⋃k−2
k′=1 Jk′ assigned

to B by this routine is at least p−(B) −
( 1

ε

)3k−6. Thus,

p(B) ≥ p+(B) + p−(B) −
(

1
ε

)3k−6
= (1 + ε)ℓ(B) −

(
1
ε

)3k−6
≥ (1 + ε)−1(1 + ε)ℓ(B)

since by definition (1 + ε)ℓ ≥ 1
ε ·

( 1
ε

)3k−6 for all ℓ ∈ Lk.
By choice of Ĉ, the total size Ŝ of jobs in

⋃k−1
k′=1 Jk′ neither assigned to bags in

⋃k−1
k′=1 B̂k′

nor reserved for Bk via the values (âℓ)ℓ∈Lk−1 is at least S̄. With the definition of S̄, we get

Ŝ ≥ S̄ = S −
∑

j∈Jk\Jk(B̂k∪B̂k+1)

pj + Sk = S −
∑

j∈Jk\Jk(B̂k∪B̂k+1)

pj +
∑

B∈B̂k

p−(B) .
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We remark that the second term indeed corresponds to the contribution of jobs from Jk

to filling bags with sizes in
⋃K

k′=k+1 Ik′ since such jobs cannot be packed into
⋃k−1

k′=1 B̂k

by definition of the corresponding sizes. Observe that the greedy procedure described
above assigns jobs from

⋃k−2
k′=1 Jk′ with total volume at most p−(B) to B ∈ B̂k. Hence, the

combination of our guess B̂k (and the guessed partial assignment of Jk−1 ∪ Jk to B̂k) and
the solution for Ĉ is indeed a feasible solution for C.

Similar to the proof of Lemma 11, we show that for any candidate solution (consisting of
a guess B̂k, a partial assignment of Jk ∪ Jk−1, and any solution for Ĉ as defined in (1)), we
can calculate the values Alg(m) for m ∈ {m

(k)
min, . . . , m

(k)
max} in polynomial time such that

Alg(m) is within a factor (1 + O(ε)) of the optimal assignment given the same set of bags.
This is formalized in the next lemma.

▶ Lemma 13. Let B̂k, m
(k)
max and the job-to-bag assignment of Jk ∪ Jk−1 to B̂k be guesses

as defined. Further, let Ĉ satisfy (1) and suppose that the bag sizes in B̂k−1 are given by
(ŝℓ)ℓ∈Lk−1 . Let B′ ∪ {BŜ} be a partition of the jobs

⋃k−2
k′=1 Jk′ into M − Mk+1,...,K − |B̂k| −

|B̂k−1| + 1 bags such that
for each bag B ∈ B′ we have that p(B) ≤ ε ·

( 1
ε

)3k,
p(BŜ) ≥ Ŝ,
p(B′) :=

∑
B∈B′ p(B) ≥ (1 + ε)−1T .

Suppose that each bag B ∈ B̂k ∪ B̂k−1 satisfies p(B) ∈ [(1 + ε)ℓ(B), (1 + ε)ℓ(B)+1) and let
B̂L contain Mk+1,...,K many large bags of size at least

( 1
ε

)3k+3. There is a polynomial-
time algorithm that either asserts that our guess is incorrect and cannot be combined with
Ĉ or that computes a vector (Alg(m))m(k)

max

m=m
(k)
min

such that Opt(BL ∪ B̂k ∪ B̂k−1 ∪ B′, m) ∈

[(1+ε)−5Alg(m), (1+ε)Alg(m)) holds for each m ∈ {m
(k)
min, ..., m

(k)
max} for which Opt(BL ∪

B̂k ∪ B̂k−1 ∪ B′, m) ≥ (1 + ε)−1( 1
ε )3k.

Further, we can find the best Ĉ that satisfies (1) and can be combined with our guess in
polynomial time.

To compute the final solution, we combine the correct initial guesses with the solution
stored in the DP cell corresponding to the remaining subproblem. This yields a global
solution to the original problem. In order to prove the correctness of our DP, we observe
that for each k ∈ [K − 1] there is a special DP cell for which k is the first parameter and
whose other parameters correspond to the optimal solution (e.g., the assignment of jobs in
Jk to bags in B∗

k+1). We then prove by induction that, for each k ∈ [K − 1], the solution
stored in the corresponding special DP cell yields a profit that is similar to the optimal profit
restricted to scenarios with m ∈ {1, ..., m

(k)
max} machines, using Lemma 13.

5 Conclusion

In this paper, we continue the recent line of research on scheduling with uncertainty in
the machine environment [1, 5, 20] by considering a stochastic machine environment in
which the number of identical parallel machines is only known in terms of a distribution
and the actual number is revealed once the jobs are assigned to bags which cannot be split
anymore. Interestingly, we present polynomial time approximation schemes for minimizing the
makespan as well as maximizing the minimum machine load, which matches their respective
deterministic counterparts from the perspective of approximation algorithms. We believe
that our insights open up many interesting questions for future research such as extending
the current model to the setting with uniformly related machines in which the uncertainty is
modeled in terms of machine speeds as done in [5] from a robustness point-of-view or to the
setting with different (job-based) objectives such as sum of weighted completion times.
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