
Distributional Online Weighted Paging with
Limited Horizon
Yaron Fairstein #

Amazon.com, Haifa, Israel1

Joseph (Seffi) Naor #

Computer Science Department, Technion, Haifa, Israel

Tomer Tsachor #

Computer Science Department, Technion, Haifa, Israel

Abstract
In this work we study the classic problem of online weighted paging with a probabilistic prediction
model, in which we are given additional information about the input in the form of distributions
over page requests, known as distributional online paging (DOP). This work continues a recent line
of research on learning-augmented algorithms that incorporates machine-learning predictions in
online algorithms, so as to go beyond traditional worst-case competitive analysis, thus circumventing
known lower bounds for online paging. We first provide an efficient online algorithm that achieves a
constant factor competitive ratio with respect to the best online algorithm (policy) for weighted
DOP that follows from earlier work on the stochastic k-server problem.

Our main contribution concerns the question of whether distributional information over a limited
horizon suffices for obtaining a constant competitive factor. To this end, we define in a natural
way a new predictive model with limited horizon, which we call Per-Request Stochastic Prediction
(PRSP). We show that we can obtain a constant factor competitive algorithm with respect to the
optimal online algorithm for this model.

2012 ACM Subject Classification Theory of computation → Caching and paging algorithms; Theory
of computation → Probabilistic computation; Theory of computation → Linear programming

Keywords and phrases Online algorithms, Caching, Stochastic analysis, Predictions

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.15

Category APPROX

Funding Joseph (Seffi) Naor : Supported in part by Israel Science Foundation grant 2233/19 and
United States – Israel Binational Science Foundation (BSF) grant 2033185.

1 Introduction

In the weighted paging problem there is a universe of n pages, where each page has a weight2,
and there is a cache that can hold up to k pages. At each time step a page is requested, and
if the requested page is already in the cache then no cost is incurred, otherwise, the page
must be loaded into the cache, incurring a cost equal to its weight. The goal is to minimize
the total cost incurred.

Paging is one of the earliest and most extensively studied problems in online computation
and competitive analysis [38, 22, 40, 42, 36, 7, 6, 1, 4, 11, 10, 27, 28, 29], including works on
non-standard caching models, e.g., elastic caches [25], caching with time windows [26], caching
with dynamic weights [21], and caching with machine learning predictions [35]. In fact, online
paging has become a focal point for many of the recent developments in competitive analysis,
e.g., the online primal-dual method, projections, and mirror descent [17, 16, 15].

1 Work done while at the Technion before joining Amazon.
2 In the unweighted version of the problem, all weights are equal (unit weights).

© Yaron Fairstein, Joseph Naor, and Tomer Tsachor;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yyfairstein@gmail.com
https://orcid.org/0000-0002-9865-9510
mailto:naor@cs.technion.ac.il
mailto:tomer.ts@cs.technion.ac.il
https://orcid.org/0009-0000-1564-216X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Distributional Online Weighted Paging with Limited Horizon

In their seminal paper, Sleator and Tarjan [38] showed that any deterministic online
algorithm is at least k-competitive and that the LRU policy (Least Recently Used) is exactly
k-competitive for unweighted paging. The k-competitive bound was later generalized to
weighted paging as well [19, 41]. When randomization is allowed, Fiat et al. [22] gave the
elegant randomized marking algorithm for unweighted paging, which is Θ(log k)-competitive
against an oblivious adversary. Bansal et al. [7] gave a Θ(log k)-competitive randomized
algorithm for weighted paging based on the online primal-dual framework [17].

Algorithms with predictions, or learning-augmented algorithms, is an emerging field
of research lying at the intersection of machine learning and foundations of algorithms
(e.g. [5]). The goal is to use machine-generated predictions, that can be either deterministic
or probabilistic, so as to go beyond traditional worst-case competitive analysis, and relax the
overly pessimistic assumption of not having any prior knowledge of the future. This is in line
with recent momentum in deploying machine learning techniques for various applications,
e.g., search, business processes, and health.

The study of online paging with predictions has been a catalyst for the development of
this new field. In an influential paper, Lykouris et al. [35] studied a simple predictor that
provides for each requested page the next time step in which it is requested again, called PRP
(Per-Request Prediction). Clearly, for unweighted paging, PRP suffices for implementing
Belady’s algorithm. Lykouris et al. [35] analyzed the robustness of PRP.

Computationally, weighted paging is a very different problem from unweighted paging,
since it requires more global information about the request sequence to obtain (near) optimal
algorithms. For example, Belady’s local rule suffices to define an optimal offline algorithm
in the unweighted case, while a minimum cost flow procedure is needed for computing an
optimal solution in the weighted case. This is also manifested in the online setting, where
PRP does not improve on the competitive factor in the weighted case [31]. Even with precise
PRP, any deterministic online algorithm remains Ω(k)-competitive, and any randomized
algorithm is Ω(log k)-competitive.

Distributional Online Paging

We focus on probabilistic prediction models for online weighted paging. Suppose that an
online algorithm is given in advance, for each time step t ∈ {1, 2, . . . , T}, a distribution
over page requests at t. Thus, the request at time t is drawn according to Dt. The given
distributions are assumed to be independent between different time steps and the distributions
are not necessarily identical. This model is known in the literature as distributional online
paging, or DOP [34], and it can be viewed as the probabilistic counterpart of PRP. DOP
is also a special case of the stochastic uber problem studied by [20]. (See more about this
problem in the sequel.)

Define the cost of an online algorithm (or policy) for DOP to be the expected cost taken
over all possible request sequences, where the probability of a request sequence is determined
by the distributions D1, . . . DT . An optimal online algorithm minimizes the expected cost and
is defined by a Markov Decision Process. It can be computed by either a dynamic program
or a linear program. Unfortunately, the state space of the dynamic program, or the size of
the linear program, is of exponential size in k, rendering it computationally impractical. The
computational hardness of finding an optimal algorithm for DOP is still open to the best of
our knowledge3.

3 It is stated as an open problem in [13]. For general metrics (i.e., the k-server problem), [20] gives a
simple reduction to prove hardness: the uniform distribution over the points in the metric is given at all
times; thus, a solution to the k-median problem on the metric defines the placement of the servers in an
optimal online algorithm.

Y. Fairstein, J. Naor, and T. Tsachor 15:3

For unweighted DOP, the work of Lund et al. [34] is seminal. They show that full
information about the distributions in each time step is actually not needed in order to get a
near-optimal online algorithm. Specifically, for general distributions over page requests, if
the probability that p is requested before q is available for any pair of pages p and q, then
this information can be leveraged to get an efficient and simple 4-competitive algorithm with
respect to the best online algorithm. However, these ideas do not seem to generalize to the
weighted setting, due to the more global nature of weighted paging, as indicated before.

1.1 Our Results
We study the weighted DOP problem. Our goal is to provide an efficient online algorithm
that achieves a constant competitive factor with respect to the best online algorithm (policy)
for weighted DOP. Our starting point is a linear program for DOP which is based on the
work of [20] for the stochastic k-server problem. In the case of the paging problem, this
linear program specifies to which cache slot a page is loaded. The linear program provides a
lower bound on the cost of any non-adaptive algorithm for DOP. However, [20] show that
an optimal non-adaptive algorithm can cost at most thrice the cost of an optimal online
algorithm for DOP. In Section 3 we provide the details for rounding the k-server linear
program, yielding a constant competitive algorithm for the weighted DOP problem.4 This is
summarized in the following theorem.

▶ Theorem 1. There exists an efficient algorithm for weighted DOP with O(1)-competitive
ratio.

The constant competitive factor obtained in Theorem 1 strongly utilizes information
about the page distributions over the entire time horizon. However, such distributional
information may not always be available. Thus, a natural question is whether distributional
information over a limited horizon suffices for obtaining a constant competitive factor. This
is the main focus of our paper.

In [31], a new deterministic predictive model for online weighted paging is suggested, due
to the weakness of PRP in the weighted setting, as indicated earlier. This model, called
SPRP, assumes that when a page p is requested, the full request sequence up to the next
request for p is revealed. It turns out that the SPRP predictive model is strong enough to
obtain a 2-competitive algorithm for online weighted paging in the adversarial setting [31].

Our first contribution is a novel limited horizon distributional model which we call the
Per-Request Stochastic Prediction (PRSP) model. In this model, at any point of time, the
known horizon of (future) distributions guarantees that for each page p in the cache, the sum
of the probabilities of requesting p (in the known horizon) is at least one. Interestingly, this
model captures the property needed from a limited horizon distributional model in order to
design a near-optimal online algorithm.

Note that in a deterministic setting, Dt is equal to zero for all pages, except for one page,
for which it is equal to one. Thus, when PRSP is restricted to a deterministic setting, it is
equivalent to the SPRP model of [31].

We show that any algorithm for (full horizon) weighted DOP can be used in a black-box
manner in the PRSP model, while increasing the competitive factor only by a constant. We
thus obtain the next theorem.

4 It is interesting to note that a natural linear programming formulation for the weighted DOP problem
that provides a lower bound on the best online algorithm has a large integrality gap which depends
on the maximum page weight. Thus, the work of [20] manages to circumvent this gap by utilizing a
stronger LP.

APPROX/RANDOM 2024

15:4 Distributional Online Weighted Paging with Limited Horizon

▶ Theorem 2. If there exists an α-competitive algorithm for weighted DOP, then there exists
an O(α)-competitive algorithm for weighted DOP under the PRSP model. I.e., there exists
an efficient O(1)-competitive algorithm for weighted DOP under the PRSP model.

To prove Theorem 2, we design an algorithm called Split-and-Solve. The algorithm is
very natural and it splits the time horizon into phases, solving each one separately. Using
the properties of the PRSP model, the phases are chosen such that at the beginning of the
phase the distributions are known for all times in the phase. Therefore, each phase can be
regarded as a weighted DOP instance. As the analysis of Split-and-Solve does not make any
assumptions regarding the solutions of the phases, any algorithm for weighted DOP can be
employed in a black-box manner (e.g., Theorem 1). However, as each phase commences, the
cache is reset to be the final cache state of the optimal offline solution of the realization of
the request sequence of the previous phase.

The difficulty with analyzing the Split-and-Solve algorithm is in stitching together the
performance of the different phases. Even though the policy employed in each phase by itself
may be optimal, note that the initial cache states (in each phase) may be very different
from the corresponding cache states of the optimal online algorithm (which is familiar with
the full horizon). In particular, since our caching problem is weighted, the gap (in terms
of weight) between cache states can be arbitrarily large, and may also further lead to poor
performance within the phase. However, the crucial ingredient for bounding the performance
of each phase is the property of the PRSP model that guarantees that for each page in the
cache the sum of the probabilities in the known horizon adds up to at least 1. Thus, the
performance of each phase can be related to the performance of the optimal online algorithm
in the phase with a multiplicative constant factor (together with an additive term). Using a
global analysis that considers all phases, the loss incurred by the sum of the additive terms
can be charged to the cost of the optimal online algorithm, yielding Theorem 2.

1.2 Related Work
The k-server problem generalizes the paging problem to arbitrary metric spaces. (In paging
the underlying metric is a weighted star.) A natural generalization of DOP is distributional
k-server, where in every time step there is a given distribution over the possible request point.
This problem was studied by [20], who also introduced the stochastic Uber problem, where
each request is defined by two points in the metric. The server satisfying a request must
travel to the start point of the request and then to its end point, incurring a cost equal to
the total distance traveled. [20] gave a constant competitive factor algorithm for the case
where the metric is a line. For general metrics, they gave an O(log n)-competitive algorithm,
where n is the number of points in the metric.

Work on distributional paging goes back more than fifty years. Franaszek and Wagner [24]
compared FIFO and LRU in a model where every request is drawn from a fixed probability
distribution over time. Shedler and Tung [37] suggested a Markov model for generating
requests. This model and its extensions were analyzed in [32]. They also showed a gap of
Ω(log k) between optimal online and offline algorithms in the case of a uniform distribution.

Besides stochastic models, several paging models assuming partial knowledge of future
requests have been studied. For example, [8] studied the PRP model of Lykouris et al. [35]
(mentioned earlier) in the weighted setting. A very sophisticated algorithm is given in [8] for
this model whose competitive factor is at most a logarithm of the number of weight classes.
Other examples for models with predictions are paging with locality of reference [12, 23, 30],
paging with lookahead [3, 14, 39] and interleaved paging [9, 18, 33].

Y. Fairstein, J. Naor, and T. Tsachor 15:5

2 Preliminaries

2.1 Distributional Online Paging
In the weighted paging problem there is a universe of n pages, denoted by P = {p1, p2, ..., pn},
and a cache of size k. The initial cache state is C0 ⊆ P . Each page p is associated
with a weight wp, the cost of loading or evicting page p to the cache. For a sequence of
requests σ1, σ2, ..., σT , an algorithm A determines a series of cache states C1, ..., CT , such
that ∀t : σt ∈ Ct. The cost of serving the request sequence by A is

∑T
t=1

∑
p∈Ct△Ct−1

wp,
which is equal to the sum of the loading costs and the eviction costs. Note that the sum of
the eviction costs and the loading costs can differ by at most an additive constant depending
only on the initial and final cache contents. For simplicity, we assume the initial cache and
final cache are identical, i.e., C0 = CT . This means that the loading costs are equal to the
eviction costs.

We focus on distributational prediction models in this paper. Suppose that we are given
in advance at time t = 0, for each (future) time step t ∈ {1, 2, . . . , T}, a distribution over
page requests at t. The given distributions are not necessarily identical, yet assumed to be
independent between different time steps. More formally, for every t ∈ [T], a probability
distribution Dt is given from which request σt is drawn at time t. This model is called
distributional online paging, or DOP.

▶ Definition 3. For an algorithm A, let E(A) denote the expected cost of A over all
realizations of input sequences generated according to distributions D1, . . . , DT .

Denote by O the best online algorithm (in expectation) for DOP, i.e., it minimizes E(O).
We emphasize that algorithm O is only familiar with the distributions D1, . . . , Dt, but does
not have prior knowledge of the actual realization of the requests. Let E(O) = OPT .

2.2 Limited Horizon
So far we have assumed that all distributions D1, ..., DT are given as input at the beginning.
This is, of course, unreasonable in many cases as T may be very large. We aspire to bound the
horizon that an online algorithm needs to “see”, i.e., at any time t, how many distributions
into the future are available to the algorithm.

In [31] it was shown that the per-request-prediction (PRP) model and the lookahead
model are not sufficient to circumvent the known lower bounds for online paging. In [31] a
constant competitive factor for deterministic online weighted paging is achieved only through
a combination of two models which they call SPRP. Specifically, upon arrival of a page, the
time of its next request t is given, as in PRP, as well as the full sequence of page requests up
to t.

Here, we propose an extension of the above model for our stochastic setting called
Per-Request Stochastic Prediction (PRSP). The PRSP model requires that at any time t a
sequence of future distributions is revealed such that sufficient information is revealed for
each page in the current cache, as follows.

▶ Definition 4. Given a cache C ⊆ P and time t, let N(C, t) be the earliest time t′ that
satisfies:

∀p ∈ C :
t′∑

τ=t

Dτ (p) ≥ 1.

APPROX/RANDOM 2024

15:6 Distributional Online Weighted Paging with Limited Horizon

Note that in the deterministic setting, Dt is equal to zero for all pages, except for one page,
for which it is equal to one. Assuming all pages in C are there because they were previously
requested, Definition 4, restricted to a deterministic setting, is equivalent to the SPRP model
of [31].

Using the definition of N(C, t) we can now give a formal definition of the PRSP model.

▶ Definition 5. In the PRSP model at each time step t, where the cache is Ct, the sequence
of distributions (Dt, ..., DN(Ct,t)) is revealed to the algorithm.

In a deterministic setting, at each time t it holds that there exists a single page p such
that Dt(p) = 1 and it is equal to zero for all other pages. Thus, in the PRSP model, when
restricted to a deterministic setting, at any time t, N(Ct, t) is equal to the latest time over
the next arrivals of all pages in Ct. In reality, the distributions up to time N(Ct, t) were
revealed earlier when the pages in Ct were requested and they were loaded to the cache.
Thus, in the deterministic setting, we can interpret PRSP as SPRP since it reveals upon a
request to a page the whole sequence of pages up to its next request.

3 Full Horizon

In this section we consider the weighted DOP problem when all the distributions are given
in advance and provide a proof for Theorem 1. The proof essentially follows from the work
of [20] on the stochastic k-server problem. Recall that weighted paging is the special case of
k-server when the underlying metric is a weighted star. We show here that when applying
the linear program for stochastic k-server to the special case of DOP, it can be rounded
yielding a constant competitive algorithm. It is interesting to note that a natural linear
programming formulation for the weighted DOP problem has a large gap compared to the
best online algorithm, where the gap depends on the maximum page weight. Thus, the work
of [20] manages to circumvent this gap by utilizing a stronger LP.

In [20], an algorithm A for DOP is defined to be non-adaptive if it satisfies the following.
First, algorithm A pre-computes a sequence of cache configurations C1, ..., CT ; then it serves
the request sequence as follows. Upon arrival of request σt at time t: (i) A changes the cache
contents to configuration Ct; (ii) A replaces the lightest page in Ct with σt; (iii) A changes
the cache contents back to the configuration that preceded the arrival of σt. The linear
program for stochastic k-server suggested in [20] provides a lower bound on the cost of any
non-adaptive algorithm. However, an online algorithm for the stochastic k-server problem
does not necessarily imply a feasible solution for the latter linear program. It is shown in
[20, Theorem 1.3] that an optimal non-adaptive online algorithm is a 3-approximation with
respect to an optimal online algorithm for stochastic k-server. Thus, non-adaptive algorithms
provide a useful tool for obtaining a competitive algorithm for stochastic k-server.

In what follows we describe the specialization of the linear program for the stochastic
k-server problem [20] to DOP. Essentially, this means specifying to which cache slot is a page
loaded. Thus, for each page p, there is a variable bt,p that indicates the fraction of p that is
not in the cache. For each page p and possible request q, variable xt,p,q indicates whether q

is served by replacing p.

Y. Fairstein, J. Naor, and T. Tsachor 15:7

Serving requests using A

Retrieving
Dfi+1, ..., Dfi+1

.

Find the offline solution of
the phase: Hfi+1, ..., Hfi+1

and set Cfi+1
= Hfi+1

.

f0 = 0 f1 = N(C0, 0)
...

fi = N(Ci−1, fi−1) fi+1 = N(Ci, fi)

Figure 1 Algorithm Split-and-Solve splits the timeline into phases and separately solves each
phase as DOP. As phase i begins at fi the distributions t ill N(Cfi , fi) are revealed. The DOP black
box A serves the requests during the phase. As the phase terminates at N(Cfi , fi), the optimal
offline solution Hfi+1, ..., Hfi+1 is computed with the realization of the phase and Hfi+1 is loaded
into Cfi+1 .

min
∑

p,q,t≥1
(wp + wq) · Dt(q) · xt,p,q +

∑
p,t≥1

wp · |bt,p − bt−1,p| s.t.

∀t, q :
∑
p ̸=q

xt,p,q ≥ bt,q

∀t, p, q : xt,p,q ≤ 1 − bt,p

∀t :
∑

p

bt,p ≥ n − k

(31)

The cost function accounts for the weight of the pages that make two switches when serving
a request. By doing so it forces the solution to be non-adaptive. Note that (31) gives us a
lower bound only on the optimal non-adaptive algorithm. Thus, not every paging algorithm
can be mapped into a solution for (31), only a non-adaptive one.

The details for rounding the LP solution so as to yield a 60-competitive algorithm are
given in Appendix A.

4 The Split-and-Solve Algorithm

Section 3 provides us with a constant competitive factor algorithm, but requires that at
time 0 all distributions D1, ..., DT are known. In this section we present the Split-and-
Solve algorithm that provides a constant-competitive factor for DOP in the PRSP model.
The algorithm is very natural. It first splits the time horizon into phases: if a phase
begins at time t, then it ends at time N(Ct, t). As the horizon of the algorithm is at most
max{N(Ct′ , t′)|t′ <= t} for every time step t, the distributions Dt+1, ..., DN(Ct,t) can be
retrieved by the properties of the PRSP model.

Each phase is solved independently using a (full horizon) DOP algorithm in a black-box
manner. However, as each phase commences, the cache is reset to be the final cache state of
the optimal offline solution of the realization of the request sequence of the previous phase.
This cache state can be computed by running a min cost flow algorithm. This guarantees
that the definition of phases is independent of the algorithm A. The steps of the algorithm
are depicted in Figure 1. We are now ready to give a formal definition of the Split-and-Solve
algorithm.

APPROX/RANDOM 2024

15:8 Distributional Online Weighted Paging with Limited Horizon

Algorithm 1 Split-and-Solve (SaS).

Input: Instance I of DOP and Algorithm A for DOP.
1: Initialize i = 0, f0 = 0, H0 = C0.
2: while fi < T do
3: Let fi+1 = N(Cfi , fi).
4: Retrieve Dfi+1, ..., Dfi+1 .
5: Set Cfi+1, ..., Cfi+1 as the solution returned by A for serving requests in time range

[fi, fi+1] with initial cache Hfi
.

6: Let Hfi+1, ..., Hfi+1 be the optimal offline solution for time range [fi, fi+1] with initial
cache Cfi .

7: After serving σfi+1 , set Cfi+1 = Hfi+1 as the initial cache of the next phase.
8: Update i := i + 1.

Before analyzing the algorithm, we need the following notation. We denote by F + 1
the number of phases into which the time horizon is split. The optimal online algorithm is
denoted by Oon and its caches are denoted by {Ot}t∈[T].

In the sequel we will show that given an α-competitive algorithm for DOP, the Split-
and-Solve (SaS) algorithm has an O(α) competitive ratio, losing only an additional constant
factor. To do so, we first bound in Lemma 7 the cost of our algorithm by the cost of the
online algorithm when we also reset its cache at the beginning of each phase (i.e., similarly
to Step 6, where at the beginning of each phase the cache is set to Hfi). Then, Lemma 8
bounds the cost of the online algorithm (with the cache reset) at phase i by the sum of three
components:
1. The expected cost of Oon during the phase.
2. The total weight of Hfi \ Ofi .
3. The sum over pages in Ofi

\ Hfi
of the page weight times the probability it is requested

in phase i.
Lemmas 9, 11 and 12 bound the last two components by a constant factor of the cost of Oon.

In the following definition we provide a notation for a partial solution.

▶ Definition 6. Let t1, t2 ∈ [T] such that t1 < t2 and C ⊆ P . We denote the expected cost
of an algorithm A on the sub-range [t1, t2] with Ct1 = C as its initial cache by A(C, t1, t2).

From the definition of the optimal offline and online algorithms it is easy to see that for
any t1 < t2 and cache C it holds that Ooff (C, t1, t2) ≤ Oon(C, t1, t2). The following lemma
bounds the expected cost of phase i by 2α + 1 times the expected cost of O during the phase
when O begins the phase with the same cache.

▶ Lemma 7. Given an α-competitive algorithm A for DOP it holds that for every phase i:

SaS(Hfi
, fi, fi+1) ≤ (2α + 1) · Oon(Hfi

, fi, fi+1).

Proof. At the beginning of each phase i we set the initial cache passed to algorithm A in
Step 5 to be the cache of the optimal offline solution Hfi

. For simplicity, we associate this
cost with phase i − 1 (note that for i = 0 the cost is zero as H0 = C0). Thus, in phase i we
need to bound the cost of serving requests as well as the cost of loading cache Hfi+1 at the
end of the phase.

The expected cost of serving requests in phase i is at most α · Oon(Hfi , fi, fi+1) due to
the competitive ratio of A. Next, loading Hfi+1 can be bounded by the cost of loading Hfi

and only then loading Hfi+1 . Loading Hfi
must cost less then the cost of SaS at this phase

(as eviction and loading costs are symmetric). Afterwards, loading Hfi+1 is bounded by the
cost of the optimal offline algorithm, but

Y. Fairstein, J. Naor, and T. Tsachor 15:9

Ooff (Hfi
, fi, fi+1) ≤ Oon(Hfi

, fi, fi+1).

Summarizing over the three cost components produces the desired bound. ◀

The following lemma bounds Oon(Hfi
, fi, fi+1) with the total cost of evicting Hfi

\ Ofi
,

loading the requested pages from Ofi
\ Hfi

and then serving the requests as on.

▶ Lemma 8. Let γi,p be the event that page p is requested in phase i, i.e.,
γi,p = 1p is requested in [fi,fi+1]. Then, it holds that:

Oon(Hfi
, fi, fi+1) ≤ Oon(Ofi

, fi, fi+1) +
∑

p∈Hfi
\Ofi

wp + E

 ∑
p∈Ofi

\Hfi

wp · γi,p

 .

Proof. Consider the following online algorithm for serving phase i. First, evict the pages
in Hfi

\ Ofi
, incurring a cost of

∑
p∈Hfi

\Ofi
wp. Next, run the optimal online algorithm. A

feasible solution for the online algorithm would be to act as if Ofi \ Hfi are in the cache,
incurring a cost of Oon(Ofi

, fi, fi+1). Nonetheless, it might be that a page p ∈ Ofi
\ Hfi

is requested, incurring an additional cost of wp, though this only happens with probability
E[γi,p]. Summing over the three terms produces the desired bound. ◀

After bounding the cost at each phase, we will now evaluate the cost of all phases,
bounding the cost of splitting the time horizon. To do so we must bound

∑
i

∑
p∈Hfi

\Ofi
wp

and
∑

i E
[∑

p∈Ofi
\Hfi

wp · γi,p

]
. The following lemma bounds the former term. It strongly

uses the property of the PRSP model that for every page in cache the sum of the probabilities
of requesting this page in the known horizon is at least 1.

▶ Lemma 9. In each phase i ∈ [F] it holds that
∑

p∈Hfi
\Ofi

wp ≤ e
e−1 · Oon(Ofi

, fi, fi+1).

Proof. At the beginning of each phase we set fi+1 = N(Hfi , fi). Thus from Definition 4 if
holds that

∑fi+1−1
t=fi

Dt(p) ≥ 1 for each page p ∈ Hfi
. Using the inequality 1 − x ≤ e−x for

x ∈ [0, 1] we get that for p ∈ Hfi
:

E[γi,p] = 1 −
fi+1−1∏

t=fi

(1 − Dt(p)) ≥ 1 −
fi+1−1∏

t=fi

e−Dt(p) = 1 − e

∑fi+1−1
t=fi

−Dt(p) ≥ 1 − e−1. (42)

Each page p ∈ Hfi \ Ofi must be loaded by Oon at phase i if it is requested. Thus from
Equation (42) it follows that,

Oon(Ofi , fi, fi+1) ≥
∑

p∈Hfi
\Ofi

E [γi,p] · wp ≥
∑

p∈Hfi
\Ofi

(1 − e−1) · wp.

Dividing by 1 − e−1 completes the proof of the lemma. ◀

The next corollary follows from lemmas 8 and 9.

▶ Corollary 10.

Oon(Hfi , fi, fi+1) ≤ 2e − 1
e − 1 Oon(Ofi , fi, fi+1) + E

 ∑
p∈Ofi

\Hfi

Wp · γi,p

 .

APPROX/RANDOM 2024

15:10 Distributional Online Weighted Paging with Limited Horizon

Next, we bound
∑

i E
[∑

p∈Ofi
\Hfi

wp · γi,p

]
. To do so we need the following auxiliary

lemma which bounds the expected eviction costs of Ooff .

▶ Lemma 11. Let Evoff (Hfi , fi, fi+1) be the expected eviction costs of the optimal offline
algorithm at phase i when initialized with cache Hfi

. It holds that,

Evoff (Hfi
, fi, fi+1) ≤ 2e − 1

e − 1 Oon(Ofi
, fi, fi+1).

Proof. Due to the optimallity of the offline algorithm,
Ooff (Hfi

, fi, fi+1) ≤ Oon(Hfi
, fi, fi+1). So from Corollary 10 it follows that,

Ooff (Hfi
, fi, fi+1) ≤ 2e − 1

e − 1 Oon(Ofi
, fi, fi+1) + E

 ∑
p∈Ofi

\Hfi

Wp · γi,p

 . (43)

In addition, the offline optimal algorithm must load any page p /∈ Hfi in phase i if it is
requested. Thus, the expected loading costs of the offline optimal algorithm are at least
E

[∑
p∈Ofi

\Hfi
Wp · γi,p

]
. By combining the bound on the loading costs and Equation (43)

we get that,

Evoff (Hfi , fi, fi+1) + E

 ∑
p∈Ofi

\Hfi

Wp · γi,p

 ≤ Ooff (Hfi , fi, fi+1)

≤ 2e − 1
e − 1 Oon(Ofi

, fi, fi+1) + E

 ∑
p∈Ofi

\Hfi

Wp · γi,p

 .

Subtracting the last term from both sides proves the lemma. ◀

▶ Lemma 12.

E

 ∑
i∈[F]

∑
p∈Ofi

\Hfi

wp · γi,p

 ≤
∑

i∈[F]

2e − 1
e − 1 Oon(Ofi

, fi, fi+1).

Proof. In Section 2.1 it is stated that we assume C0 = CT . If this was not the case, we can
simply load CT with only a constant additional cost. From this assumption it follows that
the total eviction costs are equal to the total expected loading costs.

At each phase i, Ooff must load pages in Ofi
\ Hfi

if they are requested. Thus, in the
event γi,p it will incur a loading cost of wp. As the total expected eviction costs are equal to
total expected loading costs we get that,

E

 ∑
i∈[F]

∑
p∈Ofi

\Hfi

wp · γi,p

 ≤
∑

i∈[F]

Evoff (Hfi , fi, fi+1).

Due to Lemma 11 it holds that

E

 ∑
i∈[F]

∑
p∈Ofi

\Hfi

wp · γi,p

 ≤
∑

i∈[F]

2e − 1
e − 1 Oon(Ofi

, fi, fi+1). ◀

The following lemma combines the above results to produce a bound on the competitive
ratio of SaS.

Y. Fairstein, J. Naor, and T. Tsachor 15:11

▶ Lemma 13. Given an α-competitive algorithm A for DOP, the Split-and-Solve algorithm
is (2α + 1) · 4e−2

e−1 -competitive.

Proof. From Lemma 7 the cost of the Split-and-Solve algorithm is at most∑
i∈[F]

(2α + 1) · Oon(Hfi , fi, fi+1).

Combining with Corollary 10 and Lemma 12 which provides a bound on∑
i∈[F] Oon(Hfi

, fi, fi+1), we can bound the competitive ratio of the Split-and-Save algorithm
by (2α + 1) · 4e−2

e−1 . ◀

Theorem 2 follows immediately from Lemma 13.

References
1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized pa-

ging algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000. doi:10.1016/S0304-3975(98)
00116-9.

2 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. An o(log k)-competitive
algorithm for generalized caching. ACM Trans. Algorithms, 15(1), November 2018. doi:
10.1145/3280826.

3 Susanne Albers. On the influence of lookahead in competitive paging algorithms. Algorithmica,
18(3):283–305, 1997. doi:10.1007/PL00009158.

4 Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. Page replacement for general caching
problems. In Robert Endre Tarjan and Tandy J. Warnow, editors, Proceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January 1999, Baltimore,
Maryland, USA, pages 31–40. ACM/SIAM, 1999. URL: http://dl.acm.org/citation.cfm?
id=314500.314528.

5 Algorithms with predictions (ALPS). https://algorithms-with-predictions.github.io/.
Accessed: 2022-11-07.

6 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Randomized competitive algorithms for
generalized caching. SIAM J. Comput., 41(2):391–414, 2012. doi:10.1137/090779000.

7 Nikhil Bansal, Niv Buchbinder, and Joseph Seffi Naor. A primal-dual randomized algorithm
for weighted paging. Journal of the ACM (JACM), 59(4):19, 2012.

8 Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. Scale-free
allocation, amortized convexity, and myopic weighted paging. CoRR, abs/2011.09076, 2020.
arXiv:2011.09076.

9 Rakesh D. Barve, Edward F. Grove, and Jeffrey Scott Vitter. Application-controlled paging
for a shared cache. SIAM Journal on Computing, 29(4):1290–1303, 2000. doi:10.1137/
S0097539797324278.

10 A. Blum, M. Furst, and A. Tomkins. What to do with your free time: algorithms for infrequent
requests and randomized weighted caching, 1996.

11 Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. In 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York,
NY, USA, pages 450–458. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814617.

12 A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging with locality of
reference. Journal of Computer and System Sciences, 50(2):244–258, 1995. doi:10.1006/jcss.
1995.1021.

13 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

14 Dany Breslauer. On competitive on-line paging with lookahead. Theor. Comput. Sci., 209(1-
2):365–375, 1998. doi:10.1016/S0304-3975(98)00118-2.

APPROX/RANDOM 2024

https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1145/3280826
https://doi.org/10.1145/3280826
https://doi.org/10.1007/PL00009158
http://dl.acm.org/citation.cfm?id=314500.314528
http://dl.acm.org/citation.cfm?id=314500.314528
https://algorithms-with-predictions.github.io/
https://doi.org/10.1137/090779000
https://arxiv.org/abs/2011.09076
https://doi.org/10.1137/S0097539797324278
https://doi.org/10.1137/S0097539797324278
https://doi.org/10.1109/SFFCS.1999.814617
https://doi.org/10.1006/jcss.1995.1021
https://doi.org/10.1006/jcss.1995.1021
https://doi.org/10.1016/S0304-3975(98)00118-2

15:12 Distributional Online Weighted Paging with Limited Horizon

15 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry.
k-server via multiscale entropic regularization. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 3–16.
ACM, 2018. doi:10.1145/3188745.3188798.

16 Niv Buchbinder, Shahar Chen, and Joseph Naor. Competitive analysis via regularization. In
Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 436–444.
SIAM, 2014. doi:10.1137/1.9781611973402.32.

17 Niv Buchbinder, Joseph Seffi Naor, et al. The design of competitive online algorithms
via a primal–dual approach. Foundations and Trends® in Theoretical Computer Science,
3(2–3):93–263, 2009.

18 Pei Cao, Edward W. Felten, and Kai Li. Application-Controlled file caching
policies. In USENIX Summer 1994 Technical Conference (USENIX Summer
1994 Technical Conference), Boston, MA, June 1994. USENIX Association. URL:
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/
application-controlled-file-caching-policies.

19 Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on trees.
SIAM J. Comput., 20(1):144–148, 1991. doi:10.1137/0220008.

20 Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed
Seddighin. Stochastic k-server: How should uber work? In Ioannis Chatzigiannakis, Piotr
Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80
of LIPIcs, pages 126:1–126:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.126.

21 Guy Even, Moti Medina, and Dror Rawitz. Online generalized caching with varying weights
and costs. In Christian Scheideler and Jeremy T. Fineman, editors, Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018, Vienna, Austria,
July 16-18, 2018, pages 205–212. ACM, 2018. doi:10.1145/3210377.3210404.

22 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator,
and Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.
doi:10.1016/0196-6774(91)90041-V.

23 Amos Fiat and Manor Mendel. Truly online paging with locality of reference. CoRR,
abs/cs/0601127, 2006. arXiv:cs/0601127.

24 Peter A. Franaszek and T. J. Wagner. Some distribution-free aspects of paging algorithm
performance. J. ACM, 21(1):31–39, 1974.

25 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Elastic
caching. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 143–156. SIAM, 2019. doi:10.1137/1.9781611975482.10.

26 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1125–1138. ACM, 2020.
doi:10.1145/3357713.3384277.

27 Sandy Irani. Competitive analysis of paging. In Amos Fiat and Gerhard J. Woeginger,
editors, Online Algorithms, The State of the Art (the book grow out of a Dagstuhl Seminar,
June 1996), volume 1442 of Lecture Notes in Computer Science, pages 52–73. Springer, 1996.
doi:10.1007/BFb0029564.

28 Sandy Irani. Page replacement with multi-size pages and applications to web caching. In
Frank Thomson Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual
ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
701–710. ACM, 1997. doi:10.1145/258533.258666.

https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1137/1.9781611973402.32
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/application-controlled-file-caching-policies
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/application-controlled-file-caching-policies
https://doi.org/10.1137/0220008
https://doi.org/10.4230/LIPIcs.ICALP.2017.126
https://doi.org/10.1145/3210377.3210404
https://doi.org/10.1016/0196-6774(91)90041-V
https://arxiv.org/abs/cs/0601127
https://doi.org/10.1137/1.9781611975482.10
https://doi.org/10.1145/3357713.3384277
https://doi.org/10.1007/BFb0029564
https://doi.org/10.1145/258533.258666

Y. Fairstein, J. Naor, and T. Tsachor 15:13

29 Sandy Irani. Randomized weighted caching with two page weights. Algorithmica, 32(4):624–640,
2002. doi:10.1007/s00453-001-0095-6.

30 Sandy Irani, Anna R. Karlin, and Steven Phillips. Strongly competitive algorithms for
paging with locality of reference. SIAM Journal on Computing, 25(3):477–497, 1996. doi:
10.1137/S0097539792236353.

31 Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms for weighted paging with
predictions. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 69:1–69:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.69.

32 Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan. Markov paging (extended
abstract). In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh,
Pennsylvania, USA, 24-27 October 1992, pages 208–217. IEEE Computer Society, 1992.
doi:10.1109/SFCS.1992.267771.

33 Ravi Kumar, Manish Purohit, Zoya Svitkina, and Erik Vee. Interleaved caching with access
graphs. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’20, pages 1846–1858, USA, 2020. Society for Industrial and Applied
Mathematics.

34 Carsten Lund, Steven J. Phillips, and Nick Reingold. Paging against a distribution and IP
networking. J. Comput. Syst. Sci., 58(1):222–232, 1999. doi:10.1006/jcss.1997.1498.

35 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 3302–3311. PMLR, 2018. URL:
http://proceedings.mlr.press/v80/lykouris18a.html.

36 Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized paging
algorithm. Algorithmica, 6(6):816–825, 1991. doi:10.1007/BF01759073.

37 Gerald S. Shedler and C. Tung. Locality in page reference strings. SIAM J. Comput.,
1(3):218–241, 1972.

38 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

39 Neal Young. Competitive paging and dual-guided on-line weighted caching and matching
algorithms. Princeton University, 1991.

40 Neal E. Young. On-line caching as cache size varies. In Alok Aggarwal, editor, Proceedings of
the Second Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 28-30 January
1991, San Francisco, California, USA, pages 241–250. ACM/SIAM, 1991. URL: http://dl.
acm.org/citation.cfm?id=127787.127832.

41 Neal E. Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11(6):525–541, 1994. doi:10.1007/BF01189992.

42 Neal E. Young. On-line file caching. In Symposium on Discrete algorithms, pages 82–86, 1998.

A Rounding the LP

We show how to discretize to multiples of 1/k a solution to the LP. We use techniques from
[2] and transform each xt,p to a multiple of 1

8k . First, We set b′
t,p := min {1, 2 · bt,p}. Assume

at,p ∈ [8k] denote ⌈8k·b′
t,p⌉

8k = at,p

8k . For every p ∈ P , we do the following iterative process for
t = 1 ... T :
1. If at,p is even, set yt,p := at,p

8k .
2. Else, if yt−1,p >

at,p

8k , set yt,p := at,p+1
8k .

3. Otherwise, set yt,p := at,p−1
8k .

▶ Lemma 14. The following statements hold:

APPROX/RANDOM 2024

https://doi.org/10.1007/s00453-001-0095-6
https://doi.org/10.1137/S0097539792236353
https://doi.org/10.1137/S0097539792236353
https://doi.org/10.4230/LIPIcs.ICALP.2020.69
https://doi.org/10.1109/SFCS.1992.267771
https://doi.org/10.1006/jcss.1997.1498
http://proceedings.mlr.press/v80/lykouris18a.html
https://doi.org/10.1007/BF01759073
https://doi.org/10.1145/2786.2793
http://dl.acm.org/citation.cfm?id=127787.127832
http://dl.acm.org/citation.cfm?id=127787.127832
https://doi.org/10.1007/BF01189992

15:14 Distributional Online Weighted Paging with Limited Horizon

1. ∀t, p : if bt,p = 0 then yt,p = 0.
2. ∀t, p : if bt,p = 1 then yt,p = 1.
3. ∀t, p : yt,p ≤ 4 · bt,p.
4. ∀p :

∑
t∈[1,T] |yt,p − yt−1,p| ≤ 4 ·

∑
t∈[1,T] |bt,p − bt−1,p|.

5. ∀t :
∑

p∈P yt,p ≥ n − k.

Proof.
1. bt,p = 0 → at,p = 0 → yt,p = 0.
2. bt,p = 1 → at,p = 8k → yt,p = 1.
3. If bt,p < 1

16k , then at,p = 0 implying yt,p = 0. Otherwise, yt,p ≤ 2bt,p + 1
8k ≤ 4bt,p.

4. For a page p ∈ P , we prove the claim by induction on T .
Basis: for t = 0 the claim holds trivially.
Inductive step: Assume the claim holds for every τ ′ < t. We assume w.l.o.g that
at,p ≤ at−1,p We split to cases:
a. If at,p = at−1,p then also yt,p = yt−1,p.
b. If at,p = at−1,p − 2 then

∣∣b′
t,p − b′

t−1,p

∣∣ ≥ 1
8k , in addition note that |yt,p − yt−1,p| = 1

4k .
Overall, |yt,p − yt−1,p| = 1

4k ≤ 2
∣∣b′

t,p − b′
t−1,p

∣∣ ≤ 4 |bt,p − bt−1,p|.
c. If at,p ≤ at−1,p−3 then

∣∣b′
t,p − b′

t−1,p

∣∣ ≥ 1
4k , in addition |yt,p − yt−1,p| ≤

∣∣b′
t,p − b′

t−1,p

∣∣−
1

4k . Overall, |yt,p − yt−1,p| ≤
∣∣b′

t,p − b′
t−1,p

∣∣ − 1
4k ≤ 2

∣∣b′
t,p − b′

t−1,p

∣∣ ≤ 4 |bt,p − bt−1,p|.
d. Else, at,p = at−1,p − 1. In case that at,p is odd we that yt,p = yt−1,p. Otherwise, let t′

be the last time before t−1 such that at′,p ̸= at−1,p. It holds that at′,p ≤ at,p −2 and we
get, similar to Cases 4b and 4c,

∑t
i=t′+1 |yi,p − yi−1,p| = |yt,p − yt′,p| ≤ 2 |bt,p − bt′,p|.

We show that we can find t′ < t such that:∑
τ∈[t′,t] |yτ,p − yτ−1,p| ≤ 4 ·

∑
τ∈[t′,t] |bτ,p − bτ−1,p|. Finally, we apply the inductive

assumption for t′.
5. For time t we note A = {p|bt,p < 0.5}. It holds for every p that if p ∈ A then yt,p ≥

2 · bt,p − 1
8k , else yt,p = 1. Therefore, if |A| ≤ k we are done. Else,

∑
p∈P yt,p =∑

p∈A yt,p +
∑

p∈P \A yt,p ≥
∑

p∈A(2 · bt,p − 1
8k)+ |P |− |A| ≥ 2(|A|−k)− |A|

8k + |P |− |A| =
|P | + |A| − |A|

8k − 2k. Now, note that if k + 1 ≤ |A| ≤ 2k, then |A| ≥ k + |A|
8k so

|P | + |A| − |A|
8k − 2k ≥ n − k. Else, |A| > 2k and |P | + |A| − |A|

8k − 2k ≥ n − k. ◀

A similar process is required for discretizing the value of the x variables. For simplicity
we assume there is an additional page z with weight 0 such that
yz = max

{
0,

∑
p yt,p − (n + 1 − k)

}
. For time t and pages p, q ̸= z in P : if xt,p,q ≥ 0.5 then

vt,p,q = 1 − yt,p, else vt,p,q = min {1 − yt,p, xt,p,q}. For z, vt,z,q = max
{

0, yt,z −
∑

p vt,p,q

}
.

▶ Lemma 15. The following statements hold:
1. ∀t, p, q : vt,p,q ≤ 1 − yt,p.
2. ∀t, q :

∑
p vt,p,q = yt,q.

3.
∑

p,q,t≥1 (wp + wq) · vt,p,q ≤ 2 ·
∑

p,q,t≥1 (wp + wq) · xt,p,q.

Proof.
1. For every page p ̸= z the statement holds by definition. For z, since (1−bt,q)+

∑
p xt,p,q ≥

1, we can view it as a rounding of a cache with (at least) one slot. The value of vt,p,z is
the empty space in the cache, which is at most the empty space in the fractional cache Y ,
i.e. 1 − yt,z.

2. Holds immediately following definition of vt,z,q.

Y. Fairstein, J. Naor, and T. Tsachor 15:15

3. We can rewrite the sum:
∑

p,q,t≥1 wp · vt,p,q +
∑

p,q,t≥1 wq · vt,p,q. Since
∑

q vt,p,q = yt,p

and yt,p ≤ 2bt,p, implying
∑

p,q,t≥1 wp · vt,p,q ≤ 2 ·
∑

p,q,t≥1 wp · xt,p,q. In addition, for
every page q, vt,p,q ≤ 2 · xt,p,q. ◀

We use Lemma 7.3 from [17] that provides a method for transforming distributions over
pages into distributions over cache states. It is immediate from the proof of this lemma that
if every distribution over the pages is a multiple of 1

L , for some L ∈ N, then the size of the
distribution is polynomial in L, n and T .

▶ Definition 16. For a page p and a cache C, W (C, p) = 0 if p ∈ C, otherwise W (C, p) =
min {wq|w ∈ C}.

We state here a lemma that summarizes the desired construction and its properties.

▶ Lemma 17. Given a solution (B, X) to the LP, a collection of random integral cache
states R(B, X) = {R1, ..., RT } can be constructed in polynomial time (in n, k, and T) such
that:
1. ∀t, p: if bt,p = 0, then p ∈ Rt; if bt,p = 1, then p /∈ Rt.
2. ∀t, p : Pr[p /∈ Rt] ≤ 4 · bt,p.
3. E

[∑
t∈[1,T],p∈Rt△Rt−1

wp

]
≤ 20 ·

∑
t∈[1,T] |bt,p − bt−1,p| · wp.

4. ∀t, p : E [W (R(t), p] ≤ 8
∑

p,q,t≥1 wp · xt,p,q.
We use the construction in the above lemma as a black box. When X is obvious from the
context, we replace R(X) with R. Thus, we get the following algorithm:

Algorithm 2 DOP Algorithm.

Input: Fractional solution B to LP (31).
1: Initialize: let R(B) = {R1, ..., RT } (see Lemma 17).
2: for time t and request σt do
3: Set Ct = Rt.
4: if σt /∈ Rt then
5: Evicts the lightest page in Rt and loads σt instead.
6: Set Ct = Rt.

▶ Lemma 18. Algorithm 2 is 60-competitive.

Proof. The expected cost of Step 3 is 20 ·
∑

p,t≥1 wp · |Bt,p − Bt−1,p|. In Step 5 the cost is 0
if σt ∈ Rt and wσt

otherwise. Therefore the expected cost of Step 5 at time t is
∑

t,p yt,p · wp.
Now let us assume for time t that σt /∈ Rt. In this case, the cost of Step 6 is equal to
min {wq|q ∈ Rt} = W (σt, Ct). Therefore the expected cost of this step is E [= W (σt, R(t))].
From the construction of Rt in [17], this value is at most 8 ·

∑
q wq · vt,σt,q. In total, the

expected cost of the algorithm is at most 20 times the optimal value of the linear program (31),
hence at most 20 times the cost of the best non-adaptive algorithm. With [20, Theorem 1.3]
we get that the expected cost is at most 60 · OPT . ◀

Note that all the cache configurations during the execution of the algorithm contain at
most k pages. In addition, for every time t, the request σt is loaded in case it is not part
of Ct.

APPROX/RANDOM 2024

	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Distributional Online Paging
	2.2 Limited Horizon

	3 Full Horizon
	4 The Split-and-Solve Algorithm
	A Rounding the LP

