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Abstract
We study the maximum weight matching problem in the random-order semi-streaming model and in
the robust communication model. Unlike many other sublinear models, in these two frameworks,
there is a large gap between the guarantees of the best known algorithms for the unweighted and
weighted versions of the problem.

In the random-order semi-streaming setting, the edges of an n-vertex graph arrive in a stream
in a random order. The goal is to compute an approximate maximum weight matching with a
single pass over the stream using O(n polylog n) space. Our main result is a (2/3 − ϵ)-approximation
algorithm for maximum weight matching in random-order streams, using space O(n log n log R),
where R is the ratio between the heaviest and the lightest edge in the graph. Our result nearly
matches the best known unweighted (2/3 + ϵ0)-approximation (where ϵ0 ∼ 10−14 is a small constant)
achieved by Assadi and Behnezhad [6], and significantly improves upon previous weighted results.
Our techniques also extend to the related robust communication model, in which the edges of
a graph are partitioned randomly between Alice and Bob. Alice sends a single message of size
O(n polylog n) to Bob, who must compute an approximate maximum weight matching. We achieve
a (5/6 − ϵ)-approximation using O(n log n log R) words of communication, matching the results of
Azarmehr and Behnezhad [20] for unweighted graphs.
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1 Introduction

The maximum matching problem is a fundamental problem in graph algorithms. In the
unweighted version of the problem, we are interested in computing a maximum cardinality
matching, i.e. to maximize the total number of edges in the matching. In the weighted
version, we are interested in computing a maximum weight matching, i.e. to maximize the
sum of the edge weights in the matching.

In this paper, we study matchings in the semi-streaming model. The semi-streaming
model, originally introduced in [42], is motivated by the rise of massive graphs where the data
is too large to be stored in memory, and has received extensive attention (see among others
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16:2 Weighted Matching in Random-Order Streams

[69, 38, 48, 78, 58, 35, 73, 47, 59]). In this model, the edges of a graph arrive sequentially
as a stream. The algorithm typically makes a single pass over the stream using space
O(n polylog n), and must output an approximate maximum matching at the end of the
stream. If the graph is unweighted, the greedy algorithm trivially gives a 1/2-approximation,
which is the best known for adversarially ordered streams. On the hardness side, it is known
that a 0.59-approximation is not possible [59] (see also [48, 58]). Closing the gap between these
upper and lower bounds is one of the major open problems in the graph streaming literature.
There has also been a long line of work on the weighted problem [42, 69, 38, 78, 35, 73, 47],
culminating in a (1/2− ϵ)-approximation using space O(n) [73, 47].

Recently, there has been a wide interest in the random-order version of this problem,
in which the arrival order of the edges is chosen uniformly at random. This problem has
been extensively studied in the unweighted setting [64, 63, 5, 45, 41, 22, 6, 18]. Notably,
Bernstein [22] gave a 2/3-approximation, and Assadi and Behnezhad [6] improved it to
(2/3 + ϵ0) for a small constant ϵ0 ∼ 10−14.

Progress on the weighted version of the problem lags behind. Gamlath et al. [45] broke
the barrier of 1/2 in weighted graphs by obtaining a (1/2 + δ)-approximation for a small
constant δ ∼ 10−17. More recently, Huang and Sellier [54] gave a 1

2−1/(2W ) -approximation
under the assumption that the weights take integral values in [W ]. This leaves a considerable
gap between the best known results for the unweighted and weighted versions of the problem.
In contrast, in other sublinear contexts, such as adversarially ordered streams or the dynamic
graph setting, the weighted/unweighted gap has largely been closed [23]. The challenge of
closing the gap in random-order streams remains an open problem, and has been highlighted
explicitly in [22] and [23].

In this paper, we give a ( 2
3 − ϵ)-approximation algorithm for the weighted setting. Our

result almost matches the best known ( 2
3 + ϵ0)-guarantee for the unweighted setting, and

improves significantly upon the previous results for the weighted setting.

▶ Theorem 1.1. Given any constant ϵ > 0, there exists a deterministic single-pass streaming
algorithm that with high probability computes a ( 2

3−ϵ)-approximate maximum weight matching
if the edges arrive in a uniformly random order. The space usage of the algorithm is
O(n log n log R), where R is the ratio between the heaviest and the lightest edge weight in the
graph.

We also consider the two-player communication complexity model [77], and in particular
the one-way communication complexity of matching, which was first studied in [48]. Here,
the edge-set is partitioned between two parties Alice and Bob. Alice sends a single message
to Bob, who must output an approximate maximum matching. Typically, we are interested
in protocols with communication complexity O(n polylog n).

If the edges are partitioned adversarially between Alice and Bob, the right answer turns
out to be 2/3. A 2/3-approximation can be achieved using O(n) communication for both
bipartite unweighted [48], general unweighted [9] and general weighted [23] graphs. Going
beyond a 2/3-approximation requires n1+1/(log log n) ≫ n polylog n communication even for
unweighted bipartite graphs [48].

If instead the edges are partitioned randomly between the two parties, the answer is
less clear. Recently, Azarmehr and Behnezhad [20] gave a 5/6-approximation algorithm
for unweighted graphs, improving upon a previous result of Assadi and Behnezhad [7]. To
the best of our knowledge, prior to our work there were no results for weighted graphs
(besides the 2/3-approximation implied by adversarial protocols). We match the unweighted
guarantees of Azarmehr and Behnezhad [20], thus closing weighted/unweighted gap in the
robust communication complexity model.
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▶ Theorem 1.2. Given any constant ϵ > 0, there exists a protocol that with high probability
computes a ( 5

6 − ϵ)-approximate maximum weight matching in the two-party robust commu-
nication model using O(n log n log R) words of communication, where R is the ratio between
the heaviest and the lightest edge weight in the graph.

More generally, we match the results of Azarmehr and Behnezhad [20] for unweighted k-party
robust communication, thus closing the unweighted/weighted gap also in this model.

▶ Theorem 1.3. Given any k ≥ 2 and any constant ϵ > 0, there exists a protocol that
with high probability computes a ( 2

3 + 1
3k − ϵ)-approximate maximum weight matching in the

k-party one-way robust communication model using O(n log n log R) words of communication,
where R is the ratio between the heaviest and the lightest edge weight in the graph.

1.1 Related Work
The maximum matching problem is one of the most studied problems in the streaming
setting, with numerous lines of work. This includes among others single-pass algorithms
[42, 69, 38, 48, 78, 73, 47, 58, 35, 59, 8], multi-pass algorithms using 2 or 3 passes [64,
40, 56, 63, 65, 43, 3, 67, 66], and (1 − ϵ)-approximation using a higher number of passes
[69, 37, 1, 53, 2, 75, 45, 14, 10, 44, 18, 55, 4]. Garg et al. considered matching in a robust
random-order streaming model with adversarial noise [46]. There are many results on
dynamic streams, where edges can be deleted [33, 62, 12, 32, 11, 36, 17]. A different line of
work considers estimating matching size, either in random-order streams [60, 28, 72, 61, 19]
or in adversarially ordered streams [28, 70, 11, 34, 39, 71, 27, 13, 15]. Finally, there have
also been several works on exact matching [42, 32, 53, 16, 30, 10].

2 Technical Overview

In this paper, we are interested in the random-order streaming model. The maximum
cardinality matching problem has gained significant attention within this framework [64, 63,
45, 5, 41, 22, 6]. Bernstein [22] gave a 2/3-approximation algorithm by adapting the “matching
sparsifier” Edge-Degree Constrained Subgraph (EDCS) to the streaming context. Subsequent
work by Assadi and Behnezhad [6] improved upon this, achieving a (2/3 + ϵ0)-approximation
by simultaneously running Bernstein’s algorithm while identifying short augmenting paths.
One of the motivations for studying the random-order setting, is that real-world data is rarely
ordered adversarially. Rather, in most practical applications, it is reasonable to assume that
the data is drawn from some distribution. However, assuming uniform randomness is often
too strong of an assumption, since data correlations are prevalent in many real-world settings.
This raises the question:

How robust are random-order streaming algorithms to correlations in the arrival order?

The robustness of random-order streaming algorithms to various types of adversarial distor-
tions has already been studied previously, among others in the context of maximum matching
and submodular maximization [46], rank selection [49, 50, 51], clustering problems [68] and
component collection and counting [31]. In this paper, we focus on matchings. Our first
contribution, is showing that existing algorithms for unweighted matching in random-order
streams are in fact robust to correlations in the arrival order.

Bernstein’s
( 2

3 − ϵ
)
-approximation algorithm is resilient to (limited) adversarial

correlations in the arrival order.

APPROX/RANDOM 2024



16:4 Weighted Matching in Random-Order Streams

Surprisingly, this immediately gives a reduction from weighted matching in random-order
streams.

In adversarially ordered streams, Bernstein, Dudeja and Langley [23] gave a reduction
from maximum weight matching to maximum cardinality matching. Progress in random-
order streams has been comparatively limited. Gamlath et al. [45] achieved a (1/2 + δ)-
approximation, where δ ∼ 10−17 is a small constant. More recently, Huang and Sellier [54]
gave a 1

2−1/(2W ) -approximation under the assumption that the weights take integral values in
[W ], improving upon the result of Gamlath et al. [45] for small weights. They generalized the
definition of EDCS to weighted graphs, which enabled them to adapt Bernstein’s algorithm [22]
to weighted graphs. However, their generalized notion of EDCS has weaker guarantees
compared to the unweighted version, resulting in a significant loss in the approximation ratio.

Our second contribution is to nearly close the gap between weighted and unweighted
maximum matching in random-order streams. We show that the reduction of Bernstein,
Dudeja and Langley can be applied to random-order streaming algorithms which are resilient
to specific correlations in the arrival order. This, together with the fact that Bernstein’s
algorithm [22] is robust to the appropriate correlations, gives a 2/3-approximation algorithm
for weighted bipartite graphs. We are also able to extend the guarantees to non-bipartite
graphs.

2.1 Reduction in Adversarial Streams
First, we review the reduction of Bernstein, Dudeja and Langley [23] for adversarial streams.
It is based on a technique called graph unfolding by Kao, Lam, Sung and Ting [57].

▶ Definition 2.1 (Graph Unfolding [57]). Let G = (V, E, w) be a graph with non-negative
integral edge weights. The unfolded graph ϕ(G) is an unweighted graph created as follows.
For each vertex u ∈ V , let Wu = maxe∋uwe be the maximum edge weight incident on u.
There are Wu copies of u in ϕ(G), denoted by u1, ..., uWu . For each edge e = (u, v) in G,
there are we edges {(ui, vwe−i+1)}i∈[we] in ϕ(G). See Figure 1 for an illustration.

G

x

y z

2 3 ϕ

ϕ(G)

x1 x2 x3

y1 y2 z1 z2 z3

Figure 1 An example of a weighted graph G and its unfolding ϕ(G).

One can also do a reverse operation of unfolding to bring a subgraph back to G.

▶ Definition 2.2 (Refolding [23]). Let G = (V, E) be a weighted graph and let H ⊆ ϕ(G).
The refolded graph R(H) has vertex set V and edge set E(R(H)) := {e = (u, v) ∈ G :
(ui, vwe−i+1) ∈ H for some i ∈ [we]}. See Figure 2 for an illustration.

Figure 1 illustrates the unfolding operation and Figure 2 illustrates the refolding operation.
The key property of refolding is that it preserves the matching size in bipartite graphs.

▶ Lemma 2.3 (Refolding preserves matching size in bipartite graphs [23]). Let G be a weighted
bipartite graph, and let H ⊆ ϕ(G) be a subgraph of its unfolding. Then µw(R(H)) ≥ µ(H).
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G

x

y z

2 3
R(H)

R

ϕ(G)

x1 x2 x3

y1 y2 z1 z2 z3

H

Figure 2 An example of a subgraph H ⊆ ϕ(G) and its refolding R(H) ⊆ G. In this example,
H = {(u1, v2)}. Then R(H) = {(u, v)}.

This leads to a reduction from maximum weight bipartite matching to maximum cardinality
bipartite matching in adversarially ordered streams: Upon arrival of each weighted edge
e ∈ G, unfold e and pass the corresponding unweighted edges ϕ(e) into an unweighted
streaming algorithm. At the end of the stream we obtain an unweighted matching in ϕ(G),
which we can refold to obtain a weighted matching in G.

In random-order streams, this reduction breaks for the following reason: For each weighted
edge e ∈ G, the unweighted edges ϕ(e) will necessarily arrive together. This introduces
correlations in the arrival order of the edges, so the guarantees of random-order streaming
algorithms do not apply. To address this, we consider a new streaming model, the b-batch
random-order stream model, which is similar to the hidden-batch model introduced in [31].
This model allows us to capture the edge-correlations that arise from graph unfolding.

▶ Definition 2.4 (b-batch random-order stream model). In the b-batch random-order stream
model the edge set of the input graph G = (V, E) is presented as follows: An adversary
partitions the edge set E into batches B = {B1, ..., Bq} with |Bi| ≤ b for all i. The arrival order
of the batches (Bi1 , ..., Biq

) is then chosen uniformly at random among all the permutations
of B. The edges in each batch arrive simultaneously.

Graph unfolding gives a reduction from weighted bipartite random-order streams to
unweighted bipartite b-batch random-order streams. Each batch corresponds to one weighted
edge, so given a weighted graph G, we can simply run a b-batch random-order stream
algorithm on ϕ(G) with batches B = {ϕ(e) : e ∈ G}.

2.2 Bernstein’s Algorithm for Unweighted Random-Order Streams
We now review Bernstein’s algorithm for unweighted random-order streams [22]. The
algorithm proceeds in two Phases. Let β = O(poly(ϵ−1)) be a parameter. Phase 1 constructs
a subgraph H such that for all (u, v) ∈ H,

degH(u) + degH(v) ≤ β. (1)

Given a subgraph H, we will say that an edge (u, v) ∈ G is underfull if degH(u) + degH(v) ≤
β − 2, otherwise say that (u, v) is non-underfull.

The algorithm constructs H by adding underfull edges in a greedy manner, and then
removing any edges that violate Equation 1. Phase 1 terminates when ≈ poly(ϵ)m

n non-
underfull edges arrive in a row, and the algorithm then moves on to Phase 2. Bernstein [22]
showed that it is only possible to make at most nβ2 modifications to H. Since Phase 1
terminates when we see ≈ poly(ϵ)m

n edges in a row without modifying H, the Phase must
terminate within the first ≈ nβ2 · poly(ϵ)m

n ≈ ϵm edges. This argument also holds in the
b-batch random-order stream model.

APPROX/RANDOM 2024



16:6 Weighted Matching in Random-Order Streams

Then, in Phase 2, the algorithm simply collects all underfull edges into a separate set
U (without modifying the graph H). Let Glate denote the edges that arrive in Phase 2.
Bernstein [22] proved the following structural result about H ∪ U , which holds regardless of
the assumptions on the arrival order:

µ(H ∪ U) ≥
(

2
3 − ϵ

)
µ(Glate). (2)

Since Phase 2 contains at least a (1−ϵ) fraction of the edges, and since the stream is uniformly
at random, it follows from the Chernoff bound that µ(Glate) ≥ (1− 2ϵ)µ(G). Consequently,
by Equation 2, it holds that

µ(H ∪ U) ≥
(

2
3 − 3ϵ

)
µ(G).

For the space analysis, observe that H contains at most nβ = O(n) edges. Let us now
consider U . Recall that U is the set of all underfull edges that arrive after the termination of
Phase 1, and that Phase 1 terminates when we see ≈ m

n non-underfull edges in a row. So the
only way for U to become too large, is if we draw ≈ m

n non-underfull edges in a row when
there are more than C · n log n underfull edges left in the stream, for some constant C. The
probability of this event can be upper-bounded by(

1− C · n log n

m

)m/n

≤ n−C ,

so with high probability, the algorithm stores at most O(n log n) edges. Note that the space
analysis breaks down in the b-batch random-order stream model, due to the correlated arrival
orders.

2.3 Applying the Algorithm to Batch Arrivals
We now sketch why Bernstein’s algorithm can be adapted to work under batch arrivals. Let b

denote the upper-bound on the batch-size, and let q denote the total number of batches in the
stream. Recall that in the reduction from weighted random-order streams, b corresponds to
the maximum weight in the graph and q corresponds to the number of edges in the weighted
graph. We will now describe how to obtain an algorithm with a polynomial space dependence
on b. We will later discuss how to remove this dependence in the reduction from weighted
random-order streams.

We will say that a batch is underfull if it contains at least one underfull edge. Otherwise,
if it does not contain any underfull edges, say that it is non-underfull.

We terminate Phase 1 when ≈ poly(ϵ) q
bn non-underfull batches arrive in a row. This

ensures that Phase 1 terminates within the first ≈ nβ2 · poly(ϵ) q
bn ≈

ϵ
b q batches. Since each

batch contains at most b edges, and since the arrival order of the batches is uniformly at
random, it follows from Chernoff bounds that

µ(Glate) ≥ (1− 2ϵ)µ(G).

Combining with Equation 2 we obtain

µ(H ∪ U) ≥
(

2
3 − 3ϵ

)
µ(G).
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The only way for the space usage to become too large, is if ≈ poly(ϵ) q
b·n non-underfull

batches arrive in a row when there are more than C · n log n poly( b
ϵ ) underfull batches left in

the stream, for some large constant C. The probability of this event can be upper-bounded
by (

1− C · n log n

q
poly

(
b

ϵ

))poly(ϵ/b)q/n

≤ n−C ,

so with high probability, the algorithm stores at most O(n log n poly(b)) edges.
In our reduction, the parameter b corresponds to the maximum edge weight W in the

graph. This means that we would incur a polynomial dependence on W in the space usage.
However, a reduction due to Gupta and Peng [52] allows us to offset this space dependence.
Gupta and Peng [52] devised a scheme for bucketing together edges according to their weight,
which gives a reduction from general (possibly non-integral) weights, to integral bounded
weights. Combining with this reduction, our algorithm uses space O(n log n log R), where R

is the ratio between the heaviest and the lightest edge in the graph, and it can handle any
(possibly non-integral) edge weights. In particular, the space usage is O(n polylog n) as long
as the weights are polynomial in n.

2.4 Non-bipartite graphs
In general, the reduction of Bernstein, Dudeja and Langley only holds for bipartite graphs.
For non-bipartite graphs, it is no longer true that refolding preserves the matching size, since
refolding a matching in ϕ(G) can incur an additional 2/3 loss in the approximation ratio.
Indeed, consider for example a weighted triangle with all edges of weight 2 (see Figure 3).

ϕ

R

G

x

y z

2
2

2

R(H)

ϕ(G)

x1x2

y1

y2 z1

z2

H

Figure 3 Refolding does not in general preserve matching size in non-bipartite graphs. Consider
for example the blue subgraph H = {(x1, z2), (z1, y2), (y1, x2)} ⊆ ϕ(G) shown in the diagram. Then
µ(H) = 3, but µw(R(H)) = 2.

We prove that the subgraph H ∪ U computed by Bernstein’s algorithm still satisfies
µw(R(H ∪ U)) ≥ (2/3 − ϵ)µw(G), even for non-bipartite graphs. This allows us to apply
the unfolding reduction without any loss in the approximation ratio. We achieve this by
reducing to the bipartite case: We show that for every weighted graph G, there exists a
bipartite subgraph G̃ ⊆ G such that µ((H ∪ U) ∩ ϕ(G̃)) ≥ (2/3 − ϵ)µw(G). We can then
apply Lemma 2.3 to the bipartite graph G̃ to get the result.

In order to “bipartify” the graph, we use the following lemma from [23], which says that
there exists a bipartite subgraph in which the degrees to H concentrate well (See Lemma
4.10 for the formal statement).

▶ Lemma 2.5 (Informal version of Lemma 5.7 in [23]). Let G be a weighted graph and let M∗

be a maximum weight matching in G. Suppose that H ⊆ ϕ(G) satisfies Equation 1. Then
there exists a bipartite subgraph G̃ ⊆ G such that G̃ contains M∗, and, setting H̃ := H ∩ G̃,
it holds that

deg
H̃

(v) ≈ degH(v)
2 ∀v ∈ V.

APPROX/RANDOM 2024



16:8 Weighted Matching in Random-Order Streams

Using this, we will show that (H ∪ U) ∩ ϕ(G̃) contains an EDCS, and therefore also contains
a large matching.

▶ Definition 2.6 (EDCS [24]). Let G = (V, E) be an unweighted graph, and H = (V, EH) a
subgraph of G. Given parameters β ≥ 2 and λ < 1, we say that H is a (β, λ)-EDCS of G if
H satisfies the following properties:

(Property P1:) For all edges (u, v) ∈ H, it holds that degH(u) + degH(v) ≤ β.

(Property P2:) For all edges (u, v) ∈ G \H, it holds that degH(u) + degH(v) ≥ β(1− λ).
The crucial property of EDCS is that it contains a 2/3-approximate maximum cardinality
matching. This was first proved in [24] for bipartite graphs and in [25] for general graphs.
See also Lemma 3.2 in [9] for a simpler proof with improved parameters.

▶ Theorem 2.7 (EDCS contain a 2/3-approximate matching [9]). Let G be an unweighted
graph and let ϵ < 1/2 be a parameter. Let λ, β be parameters with λ ≤ ϵ

64 , β ≥ 8λ−2 log(1/λ).
Then, for any (β, λ)-EDCS H of G, we have that µ(H) ≥ ( 2

3 − ϵ)µ(G).

Now consider the weighted input graph G. Fix a maximum weight matching M∗ in G and let
H be the graph computed by Phase 1 of Bernstein’s algorithm on input ϕ(G). Let G̃ ⊆ G be
the bipartite subgraph from Lemma 2.5. Ideally, we would like to show that (H ∪ U) ∩ ϕ(G̃)
is an EDCS. However, this is not true in general, since the degrees to U can be arbitrarily
large (consider for example the case when U is a star, see Figure 4 for an illustration), so
deg(H∪U)∩ϕ(G̃) cannot be upper-bound by a constant. Instead, we will sparsify U , so that its
contribution to the degrees becomes insignificant. Let H̃ = H ∩ϕ(G̃) and let Ũ = U ∩ϕ(M∗)
(see Figure 4). This idea is similar to Bernstein’s original analysis [22], except that now we
perform this sparsification in the unfolded and “bipartified” graph.

Weighted

Non-bipartite

G

High-degree vertex affecting the edge-degrees

M∗

Bipartite

Bipartify

G̃

M∗

Unweighted

Unfold and run
Bernstein’s algorithm

ϕ(G)
Underfull edges are marked blue

ϕ(M∗)

U

Bipartify and
Sparsify

Unfold and
Sparsify

H̃ ∪ ϕ(M∗) ⊆ ϕ(G̃)
Restrict U in order to reduce edge-degrees

ϕ(M∗)

Ũ = U ∩ ϕ(M∗)

Figure 4 Illustration of the reduction to the bipartite case. We show that H̃ ∪ Ũ contains a
matching of size at least

(
2
3 − ϵ

)
µw(G). Since G̃ is bipartite, we can refold H̃ ∪ Ũ without reducing

the matching size.

Now Ũ is a matching, so for all v ∈ V , we have deg
H̃∪Ũ

(v) ∈ {deg
H̃

(v), deg
H̃

(v) + 1}. So

deg
H̃∪Ũ

(v) ≈ deg
H̃

(v) ≈ 1
2 degH(v).

In particular,

∀(u, v) ∈ H̃ ∪ Ũ , deg
H̃∪Ũ

(u) + deg
H̃∪Ũ

(v) ≈ 1
2 degH(u) + 1

2 degH(v) ≤ β

2 ,
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and

∀(u, v) ∈ ϕ(M∗)\(H̃∪Ũ), deg
H̃∪Ũ

(u)+deg
H̃∪Ũ

(v) ≈ 1
2 degH(u)+ 1

2 degH(v) ≥ β

2 −1.

Setting X = H̃ ∪ Ũ , β′ ≈ β
2 , and λ′ to be a sufficiently small constant, we can now apply

Theorem 2.7 to the graph H̃ ∪ ϕ(M∗), and obtain

µ(H̃ ∪ Ũ) ≥ (2/3− ϵ) µ(H̃ ∪ ϕ(M∗)) ≥ (2/3− ϵ) µ(ϕ(M∗)).

Since H̃ ∪ Ũ ⊆ ϕ(G̃) and since G̃ is bipartite, we can apply Lemma 2.3 to get the required
result

µw(R(H ∪ U)) ≥ µw(R(H̃ ∪ Ũ)) = µ(H̃ ∪ Ũ) ≥ (2/3− ϵ) µ(ϕ(M∗)) = (2/3− ϵ) µw(G).

In the rest of the paper, we will present the full analysis. In Section 4, we formally present
the algorithm and analysis for random-order streams. In Section 5, we prove Theorem 1.2
and Theorem 1.3.

3 Notation and Preliminaries

Given a graph G = (V, E), we will use n := |V | to denote the number of vertices and m := |E|
to denote the number of edges in G. If G is weighted, then we will use w : E → R+ to denote
the edge weights, and R := maxe∈E we/ mine∈E we to denote the ratio between the heaviest
and the lightest edge in G. We use µ(G) to denote the size of the maximum cardinality
matching in G, and µw(G) to denote the weight of the maximum weight matching in G.

Given ϵ > 0, define γϵ := (4/ϵ)⌈1/ϵ⌉, a large constant which will be incurred in the space
usage of our algorithms (instead of a dependence on the maximum weight of the graph).
Note that for any fixed ϵ, we have γϵ = O(1).

3.1 Models
Random-order streams In the random-order stream model, the weighted edges of the input

graph arrive one-by-one in an order chosen uniformly at random from all possible orderings.
The algorithm makes a single pass over the stream and must output an approximate
maximum weight matching at the end of the stream.

Robust communication model In the k-party one-way robust communication model, each
weighted edge of the input graph is assigned independently and uniformly at random to
one of the k parties. The ith party is supplied with its assigned edges and a message
mi−1 from the (i− 1)st party, and must send a message mi to the (i + 1)st party. The
kth party must output a valid weighted matching of the input graph. The communication
complexity of a protocol is defined to be max1≤i≤k |mi|, where |mi| is the number of
words in message mi.
In the case of k = 2, we refer to the first party as Alice and to the second party as Bob.

3.2 Graph Unfolding
In addition to the facts already stated in Section 2, we will need the following:

▶ Theorem 3.1 (Unfolding preserves matching size in bipartite graphs [57]). If G is a weighted
bipartite graph, then µw(G) = µ(ϕ(G)).

▶ Definition 3.2 (Refolding approximate [23]). Let G be a weighted graph. A subgraph
H ⊆ ϕ(G) is α-refolding-approximate if µw(R(H)) ≥ α · µw(G).
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16:10 Weighted Matching in Random-Order Streams

3.3 EDCS
We will use the following guarantee which holds for a relaxed notion of EDCS.

▶ Definition 3.3 (Bounded edge-degree [22]). We say that a graph H has bounded edge-degree
β if for every edge (u, v) ∈ H, it holds that degH(u) + degH(v) ≤ β.

▶ Definition 3.4 (Underfull edge [22]). Let G be any unweighted graph, and let H be a
subgraph of G with bounded edge-degree β. For any parameter λ < 1, we say that an edge
(u, v) ∈ G \H is (G, H, β, λ)-underfull if degH(u) + degH(v) < β(1− λ).

▶ Lemma 3.5 (Relaxed EDCS contain a 2/3-approximate matching [22]). Let ϵ < 1
2 be a

parameter, and let λ, β be parameters with λ ≤ ϵ
128 , β ≥ 16λ−2 log(1/λ). Consider any

unweighted graph G and any subgraph H with bounded edge-degree β. Let U contain all edges
in G \H that are (G, H, β, λ)-underfull. Then µ(H ∪ U) ≥ (2/3− ϵ)µ(G).

3.4 Concentration Inequality
We will use the Chernoff bound for negatively associated random variables (see e.g. the
primer in [76]).

▶ Theorem 3.6. Let X1, . . . Xn be negatively associated random variables taking values in
[0, 1]. Let X :=

∑
Xi and let µ := E[X]. Then, for any 0 < δ < 1, we have

Pr[X ≤ µ(1− δ)] ≤ exp
(
−µδ2

2

)
.

4 2/3-Approximation in Random-Order Streams

In this section we prove Theorem 1.1. In Section 4.1, we formally describe the reduction from
weighted random-order streams to unweighted b-batch random-order streams, and we prove
its correctness. In Section 4.2, we show that Bernstein’s 2/3-approximation algorithm [22]
for random-order streams still works under batch-arrivals. Finally, in Section 4.3, we show
that the obtained weighted random-order streaming algorithm still works for non-bipartite
graphs, and we complete the proof of Theorem 1.1.

4.1 Reduction to Unweighted b-batch Random-Order Streams
Gupta and Peng [52] gave a reduction which allows us to assume that the edge weights are
integral and bounded above by a large constant.They originally proved the reduction for the
dynamic graph model, however it also applies to the streaming and one-way communication
models (See Theorem 6.1 and Theorem 6.2 in [23]).

▶ Theorem 4.1 (Reduction to bounded integral weights [52, 23]). If there is a random-order
streaming algorithm A to compute an α-approximate maximum weight matching in graphs
with edge weights in [W ] and using space S(n, m, W, α), then there exists a random-order
streaming algorithm A′ to compute a (1− ϵ)α-approximate maximum weight matching with
weights in graph with weights R+ using space O(S(n, m, γϵ, α) log R).

Similarly, if there is a one-way robust communication complexity protocol to com-
pute an α-approximate maximum weight matching for graphs with edge weights in [W ]
using C(n, m, W, α) words of communication, then there exists a protocol to compute
a (1 − ϵ)α-approximate maximum weight matching in graphs with weights in R+ using
O(C(n, m, γϵ, α) log R) words of communication.
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We would like to use the unfolding technique to reduce to the unweighted problem. As
Bernstein, Dudeja and Langley [23] showed, in adversarially ordered streams, unfolding
immediately gives a reduction for bipartite graphs: Whenever a weighted edge e ∈ G arrives,
we can unfold it and pass the unweighted edges ϕ(e) sequentially into an unweighted streaming
algorithm while tracking the updates in the weighted stream. In random-order streams,
there is a subtle issue with this approach. If the edges arrive uniformly at random in G, then
the arrival order in ϕ(G) will not be uniformly at random, but rather there will be batches
of edges which necessarily arrive together. To overcome this issue, we consider the b-batch
random-order stream model, restated below.

▶ Definition 2.4 (b-batch random-order stream model). In the b-batch random-order stream
model the edge set of the input graph G = (V, E) is presented as follows: An adversary
partitions the edge set E into batches B = {B1, ..., Bq} with |Bi| ≤ b for all i. The arrival order
of the batches (Bi1 , ..., Biq ) is then chosen uniformly at random among all the permutations
of B. The edges in each batch arrive simultaneously.

Graph unfolding naturally gives a reduction from weighted random-order streams to
unweighted b-batch random-order streams.

▶ Theorem 4.2 (Reduction to the b-batch model). If there exists an algorithm AB for
the unweighted b-batch random-order stream model that computes an α-approximate max-
imum cardinality matching in bipartite graphs using space S(n, m, b, α), then there ex-
ists an algorithm Aw for weighted random-order streams (with weights in R+) that com-
putes a (1 − ϵ)α-approximate maximum weight matching in bipartite graphs using space
O(S(nγϵ, mγϵ, γϵ, α) log R).

Moreover, suppose that AB computes an α-refolding approximate subgraph whenever the
input graph is of the form ϕ(G) for some weighted graph G with batches B = {ϕ(e) : e ∈ G}.
Then the guarantees of Aw also hold for non-bipartite graphs.

Proof. Let AB be the unweighted b-batch random-order streaming algorithm using space
S(n, m, b, α). By Theorem 4.1, it suffices to construct an algorithm AW that computes an
α-approximate maximum weight matching using space S(Wn, Wm, W, α) when the edge
weights are in [W ]. We can obtain the required algorithm AW as follows:

Whenever an edge e arrives in the weighted stream, define a batch Be := ϕ(e) consisting
of the unfolded edges of e. Feed the batch Be as an update to the batch algorithm AB . In
other words, AB is applied to the graph ϕ(G) with batches B = {ϕ(e) : e ∈ G}. At the end
of the stream, AB outputs an α-approximate maximum cardinality matching M of ϕ(G).
The algorithm AW outputs the maximum weight matching in R(M) (which can easily be
computed from M). We have

µw(R(M)) ≥ µ(M), by Lemma 2.3
≥ α · µ(ϕ(G)), by the assumption on M

= α · µw(G), by Theorem 3.1

so AW outputs an α-approximate maximum weight matching. Since the graph ϕ(G) has at
most Wn vertices and Wm edges, the space usage of AW is at most S(Wn, Wm, W, α), as
required.
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For the “Moreover”-part, suppose that AB computes an α-refolding approximate subgraph
H. Define AW as before, except that now AW should output the maximum weight matching
in R(H). Then

µw(R(H)) ≥ α · µw(G), by Definition 3.2,

so the approximation ratio achieved by AW is still α, even for non-bipartite graphs, as
required. ◀

▶ Remark 4.3. The argument can easily be adapted to the robust communication model.
Consider a b-batch robust communication model, in which an adversary partitions the edges
into batches of size at most b, and each batch gets assigned uniformly at random to each of
the parties. Then any protocol for the b-batch robust communication model gives a protocol
for the weighted robust communication model.

4.2 2/3-Approximation in b-batch Random-Order Streams
In this section, we prove the following proposition.

▶ Proposition 4.4. Given any unweighted graph G and any approximation parameter
0 < ϵ < 1, Bernstein’s algorithm (Algorithm 1) with high probability computes a (2/3− ϵ)-
approximate maximum cardinality matching in the b-batch random-order stream model. The
space complexity of the algorithm is O(nb2 log n log b poly(ϵ−1)), where b is the upper bound
on batch-size.

▶ Definition 4.5 (Parameters). Let ϵ < 1
2 be the final approximation parameter we are aiming

for, λ = ϵ
512 , β = 144λ−2 log(2b/λ); note that β = O(poly(ϵ−1) log b). Set α = ϵq

b(nβ2+1) and
γ = 7 log n q

α = O(nb log n log b poly(ϵ−1)).

We now describe Bernstein’s algorithm [22] adapted to the b-batch model. The algorithm
has two Phases. In Phase 1, it computes a subgraph H that is bounded edge-degree β

(Definition 3.3). In Phase 2, it stores all the (G, H, β, λ)-underfull edges (Definition 3.4).
That way, the algorithm computes a “relaxed” EDCS, which by Lemma 3.5 contains a
(2/3− ϵ)-approximate maximum cardinality matching.

More concretely, the algorithm proceeds as follows: Initialize an empty subgraph H and
start Phase 1. Phase 1 is split into epochs, each of which contains exactly α batches. In
each epoch, the algorithm processes the batches sequentially. For each edge (u, v) in the
batch, if degH(u) + degH(v) < β(1− λ), then (u, v) is added to the subgraph H (note that
the algorithm changes H over time, so degH always refers to the degree of H at the time
when the edge is examined). After adding an edge to H, the algorithm runs procedure
RemoveOverfullEdges(H) to ensure that H is always bounded edge-degree β. In each
epoch, the algorithm also has a boolean FoundUnderfull, which tracks whether at least
one underfull edge arrived in the epoch. If FoundUnderfull is FALSE at the end of
an epoch, then the algorithm terminates Phase 1 and moves on to Phase 2. Once Phase
1 terminates, the subgraph H becomes fixed and does not change anymore. Then, in
Phase 2, the algorithm simply picks up all the underfull edges into a separate set U . For a
formal description, see Algorithm 1. Note that the only difference between Algorithm 1 and
Bernstein’s original algorithm (Algorithm 1 in [22]) is that the length of each epoch is now
determined by the number of batches, rather than the number of edges.

▶ Definition 4.6. Let Bearly denote the first ϵ
b q batches in the stream and let Blate denote

the remaining batches. Let Elate := {e ∈ E : e ∈ B for some B ∈ Blate} be the set of edges
that arrive as part of the late batches. More generally, let E>i denote the the set of edges
that arrive after the first i batches.
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Algorithm 1 Bernstein’s Algorithm [22] adapted to the b-batch model.

1 H ← ∅, U ← ∅
2 Procedure Phase 1
3 Do until termination
4 FoundUnderfull ← FALSE
5 for i = 1, . . . , α do // Each epoch has α batches
6 Let Bi denote the ith batch in the epoch
7 for (u, v) ∈ Bi do
8 if degH(u) + degH(v) < β(1− λ) then
9 H ← H ∪ {(u, v)}

10 FoundUnderfull ← TRUE
11 RemoveUnderfullEdges(H)
12 if FoundUnderfull = FALSE then
13 Go to Phase 2
14 Procedure RemoveOverfullEdges(H)
15 while there exists (u, v) ∈ H such that degH(u) + degH(v) > β do
16 Remove (u, v) from H

17 Procedure Phase 2
18 foreach remaining edge (u, v) in the stream do
19 if degH(u) + degH(v) < β(1− λ) then
20 U ← U ∪ {(u, v)}
21 return the maximum matching in H ∪ U

First, we show that we don’t loose too many matching edges in the early part of the stream.
To this end, we need to assume that the maximum cardinality matching is sufficiently large.

▷ Claim 4.7. We can assume that µ(G) ≥ 20b2 log nϵ−2.

Proof. It is well known that every graph G satisfies m ≤ 2nµ(G). Hence, if µ(G) <

20b2 log nϵ−2, then m = O(nb2 log nϵ−2), so we can simply store all the edges. ◁

▶ Lemma 4.8. For ϵ < b/2, it holds that Pr[µ(Elate) ≥ (1− 2ϵ)µ(G)] ≥ 1− n−5.

Proof. Fix a maximum cardinality matching in M∗ in G, and let B1, . . . , Bk be the set of
batches containing at least one matching edge from M∗. Each batch Bi contains at most
b edges from M∗, so it suffices to show that at most 2ϵµ(G)

b of these batches arrive in the
early part of the stream. For 1 ≤ i ≤ k, let Xi be the indicator that Bi ∈ Blate, and let
X =

∑k
i=1 Xi. We will show that with high probability, X ≥ k − 2ϵµ(G)

b . For 1 ≤ i ≤ k, we
have E[Xi] = (1− ϵ

b ), and so E[X] = k(1− ϵ
b ).

The Xis are negatively associated, since these variables correspond to sampling (1− ϵ)q
batches uniformly at random without replacement, which is known to be negatively associated
(see the primer [76]). Applying Theorem 3.6 gives

Pr
[
X ≥ k − 2ϵµ(G)

b

]
= 1− Pr

[
X − E[X] < −

(
2ϵµ(G)

b
− ϵk

b

)]
≥ 1− exp

(
−ϵ2(2µ− k)2

4b2k

)
≥ 1− n−5.

The last inequality follows because µ(G) ≥ k and µ(G) ≥ 20b2ϵ−2 log n, by Claim 4.7. ◀
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▶ Lemma 4.9. Phase 1 satisfies the following properties:
1. Phase 1 terminates within the first ϵq

b batches of the stream.
2. Phase 1 constructs a subgraph H ⊆ G with bounded edge-degree β. As a corollary, H has

at most O(nβ) edges.
3. When Phase 1 terminates after processing some batch Bl, with probability at least 1−n−5,

the total number of (E>l, H, β, λ)-underfull edges in E>l \H is at most bγ.
The proof of Lemma 4.9 proceeds similarly to the proof of Lemma 4.1 in [22]. We will use
the following result from the original analysis.

▶ Lemma 4.10 ([22]). Fix any parameter β > 2. Let H = (V, EH) be a graph, with EH

initially empty. Say that an adversary adds and removes edges from H using an arbitrary
sequence of two possible moves.

(Deletion move) Remove an edge (u, v) from H for which degH(u) + degH(v) > β.
(Insertion move) Add an edge (u, v) to H for some pair u, v ∈ V for which degH(u) +
degH(v) < β − 1.

Then, after nβ2 moves, no legal move remains.

Proof of Lemma 4.9. Property 1: By Lemma 4.10, the algorithm can make at most nβ2

changes to H. Since each epoch that does not terminate Phase 1 must make at least one
change to H, there can be at most nβ2 + 1 epochs in Phase 1. So overall, Phase 1 goes
through at most α(nβ2 + 1) = ϵq

b batches in Phase 1.
Property 2: Holds by construction of the algorithm, since the RemoveOverfull procedure
ensures that H is always bounded edge-degree β.
Property 3: Let l be the last batch processed in Phase 1. We will say that a batch Bj with
j > l is underfull if it contains at least one (E>l, H, β, λ)-underfull edge. We will show that
with probability at least 1− n−5, the number of underfull batches is at most γ. Since each
underfull batch contains at most b underfull edges, this will give the result. The intuition
is as follows: Phase 1 terminates only if there is an epoch without a single underfull batch.
Since the stream is random, this means that there are relatively few underfull batches left
in the stream. More formally, for each epoch 0 ≤ i ≤ ϵq

b , say that a batch is underfull if it
contains at least one (G, Hi, β, λ)-underfull edge, where Hi is the subgraph H constructed
by the algorithm at the beginning of epoch i. Let Ei be the event that no underfull batches
appear in epoch i, and let Fi be the event that there are more than γ underfull batches left
in the stream when epoch i begins. Property 3 fails only if Ei ∧Fi happens for some i, so we
need to upper bound Pr[∪ϵq/b

i=1 Ei ∧ Fi]. Let Br
i denote the set of batches that have not yet

appeared at the beginning of epoch i (r for remaining), let Be
i denote the set of batches that

appear in epoch i (e for epoch) and let Bu
i denote the set of underfull batches that remain

in the stream (u for underfull). With these definitions, we can write Ei ∧ Fi as the event
(Bu

i ∩ Be
i = ∅) ∧ (|Bu

i | > γ), since the event Bu
i ∩ Be

i = ∅ ensures that the graph H does not
change throughout the epoch. We have

Pr [Ei ∧ Fi] = Pr [(Bu
i ∩ Be

i = ∅) ∧ (|Bu
i | > γ)]

≤ Pr
[
Bu

i ∩ Be
i = ∅

∣∣|Bu
i | > γ

]
<

(
1− γ

q

)α

=
(

1− 7 log n

α

)α

≤ n−7.



D. Hashemi and W. Wrzos-Kaminska 16:15

Here the second inequality follows because Be
i is obtained by sampling α batches from Br

i

uniformly at random without replacement, and since |Bu
i | > γ and |Br

i | ≤ q. There are at
most n2 epochs in total, so taking the union bound over all epochs gives the result. ◀

Finally, we complete the proof of Proposition 4.4.

Proof of Proposition 4.4. Let us first show the approximation guarantee. By Part 2 of
Proposition 4.9, Phase 1 computes a subgraph H which has bounded edge-degree β. Moreover,
by Part 1 of Proposition 4.9, it holds that H ⊆ Elate. Phase 2 finds the set U of all
(Elate, H, β, λ)-underfull edges. So by Lemma 3.5 applied to the graph Elate, the algorithm
returns a matching of size at least

µ(H ∪ U) ≥ (2/3− ϵ)µ(Elate) by Lemma 3.5
≥ (2/3− ϵ)(1− 2ϵ)µ(G), by Lemma 4.8,

where the last inequality holds with probability at least 1 − n−5. Re-scaling ϵ gives the
approximation ratio.

For the space analysis: By Part 2 of Lemma 4.9, the space usage of Phase 1 is O(nβ) =
O(n log b poly(ϵ−1)). By Part 3 of Lemma 4.9, with probability at least 1− n−5, the space
usage of Phase 2 is at most O(bγ) = O(nb2 log n log b poly(ϵ−1)). So with probability at least
1− n−5, the total space usage is at most O(nb2 log n log b poly(ϵ−1)). By a union bound, the
overall success probability of the algorithm is at least 1− 2n−5. ◀

4.3 Extension to Non-Bipartite Graphs
In this section, we show that the computed graph H ∪ U is (2/3− ϵ)-refolding approximate.
This, together with Proposition 4.4 and Theorem 4.2 will complete the proof of Theorem 1.1.

In [23], it was shown that EDCS are (almost) 2/3-refolding approximate. However, since
H ∪ U is not actually an EDCS, but rather a relaxed version of an EDCS, this result cannot
be applied directly. Instead, we need a more careful argument. We need the following lemma
which was proved in [23].

▶ Lemma 4.11 (Lemma 5.7 in [23]). Let G be a weighted graph with weights in [W ]. Let
δ ∈ (0, 1/2), and let d ≥ 36δ−2log(W/δ). For any matching M in G and any subgraph H of
ϕ(G) with maximum degree at most d, there exists a bipartite subgraph G̃ = G̃(M, H) of G

such that, setting H̃ := H ∩ ϕ(G̃), it holds that
1. M ⊆ G̃ and
2. |deg

H̃
(v)− degH(v)/2| ≤ δd for all vertices v ∈ V (H).

▶ Remark 4.12. Bernstein, Dudeja and Langley [23] state the lemma for the special case
when M is a maximum weight matching in G, however, without changing their argument,
the same is true for any arbitrary matching M.
We now prove the main technical lemma, which shows that H ∪ U is (2/3 − ϵ)-refolding
approximate.

▶ Lemma 4.13. Let G be a (possibly non-bipartite) weighted graph with weights in [W ].
Let ϵ > 0, λ ≤ ϵ

512 , β ≥ 144
λ2 log(2W/λ). Let GS ⊆ G be any subgraph of G. Consider the

unfolded graph ϕ(G). Let H be a subgraph of ϕ(G) with bounded edge-degree β, and let U be
the set of all edges in ϕ(GS) \H that are (ϕ(GS), H, β, λ)-underfull. Then µw(R(H ∪ U)) ≥
(2/3− ϵ)µw(GS).
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Proof. Let δ = λ
2 . Fix a maximum-weight matching M∗ of GS , and let G̃ = G̃(M∗, H) be

the bipartite subgraph obtained from Lemma 4.11. Consider the subgraph ϕ(G̃) ⊆ ϕ(G). Let
H̃ := H∩ϕ(G̃) be the restriction of H to ϕ(G̃), and let Ũ := U∩ϕ(M∗) be the restriction of U

to the matching ϕ(M∗). Note that Ũ is a matching. By Lemma 4.11, we have ϕ(M∗) ⊆ ϕ(G̃),
and therefore H̃ ∪ Ũ ⊆ ϕ(G̃). Therefore, we may now apply Lemma 2.3 to the bipartite
graph G̃ and the subgraph H̃ ∪ Ũ of ϕ(G̃).

µw(R(H ∪ U)) ≥ µw(R(H̃ ∪ Ũ)), since H ∪ U ⊇ H̃ ∪ Ũ

≥ µ(H̃ ∪ Ũ), by Lemma 2.3.
(3)

Furthermore, recalling that M∗ is a maximum weight matching in GS , we have

µw(GS) = w(M∗) = |ϕ(M∗)| ≤ µ(H̃ ∪ ϕ(M∗)). (4)

We will show that µ(H̃ ∪ Ũ) ≥ ( 2
3 − ϵ)µ(H̃ ∪ ϕ(M∗)). To this end, we will show that H̃ ∪ Ũ

is an EDCS of H̃ ∪ ϕ(M∗).

▷ Claim 4.14. H̃ ∪ Ũ is a (β′, λ′)-EDCS of H̃ ∪ ϕ(M∗) for β′ = β
2 + βλ + 2, λ′ = 8λ.

Proof. Let us start by showing property P1 in Definition 2.6. First note that for all
(u, v) ∈ H̃ ∪ Ũ , it holds that degH(u) + degH(v) ≤ β. Indeed, if (u, v) ∈ H̃, then (u, v) ∈ H,
so degH(u) + degH(v) ≤ β since H is bounded edge-degree β. If instead (u, v) ∈ Ũ , then
(u, v) ∈ U , so degH(u) + degH(v) ≤ (1 − λ)β, since all elements of U are (ϕ(G), H, β, λ)-
underfull. Therefore, for all (u, v) ∈ H̃ ∪ Ũ , it holds that

deg
H̃∪Ũ

(u) + deg
H̃∪Ũ

(v) ≤ deg
H̃

(u) + deg
H̃

(v) + deg
Ũ

(u) + deg
Ũ

(v)

≤ degH(u) + degH(v)
2 + 2δβ + deg

Ũ
(u) + deg

Ũ
(v)

≤ β

2 + βλ + deg
Ũ

(u) + deg
Ũ

(v)

≤ β

2 + βλ + 2

= β′.

The second inequality follows by Lemma 4.11, and the third inequality follows since δ = λ
2 .

We now show property P2 in Definition 2.6: If (u, v) ∈ (H̃ ∪ ϕ(M∗)) \ (H̃ ∪ Ũ), then
(u, v) ∈ ϕ(M∗) \ U , and in particular degH(u) + degH(v) > (1 − λ)β (by definition of U).
Thus,

deg
H̃∪Ũ

(u) + deg
H̃∪Ũ

(v) ≥ deg
H̃

(u) + deg
H̃

(v)

≥ degH(u) + degH(v)
2 − 2δβ, by Lemma 4.11

≥ β(1− λ)
2 − βλ, since δ = λ

2

≥
(

β

2 + λβ + 2
)

(1− 8λ)

= β′(1− λ′).

The last inequality follows from simple algebraic manipulations, using the fact that λβ ≥ 2.
◁



D. Hashemi and W. Wrzos-Kaminska 16:17

By the choice of parameters, we have λ′ ≤ ϵ
64 and β′ ≥ 8λ′−2 log(1/λ′), so Claim 4.14

together with Theorem 2.7 yields µ(H̃ ∪ Ũ) ≥ (2/3− ϵ)µ(H̃ ∪ϕ(M∗)). Combining everything,
we get

µw(R(H ∪ U)) ≥ µ(H̃ ∪ Ũ), by Equation 3

≥ (2/3− ϵ)µ(H̃ ∪ ϕ(M∗))
≥ (2/3− ϵ)µw(GS), by Equation 4. ◀

Finally, we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We apply the reduction in Theorem 4.2 to Algorithm 1. By Propos-
ition 4.4, Algorithm 1 computes a (2/3 − ϵ)-approximate maximum cardinality matching
using space O(n log n poly(b/ϵ)) in the b-batch random-order stream model. It remains to
show that if the input graph is of the form ϕ(G) for some weighted graph G with batches
B = {ϕ(e) : e ∈ G}, then H ∪U is (2/3− ϵ)-refolding approximate. Let Glate ⊆ G denote the
weighted edges corresponding to Blate. An application of the Chernoff bound for negatively as-
sociated random variables (Theorem 3.6) shows that Pr[µw(Glate) ≥ (1−2ϵ)µw(G)] ≥ 1−n−5

(the argument is similar to Lemma 4.8). Applying Lemma 4.13 to the graph G and the
subgraph GS := Glate yields

µw(R(H ∪ U)) ≥ (2/3− ϵ)µw(Glate), by Lemma 4.13
≥ (1− 2ϵ)(2/3− ϵ)µw(G)
≥ (2/3− 3ϵ)µw(G),

as required. Re-scaling ϵ and applying Theorem 4.2 yields the result. ◀

5 5/6-Approximation in the Robust Communication Model

In this section, we prove Theorem 1.2 and Theorem 1.3. By applying the results from the
previous section, we can generalize the protocol of Azarmehr and Behnezhad [20] to the
weighted case. By the reduction in Theorem 4.1, we can assume that the edge weights take
integral values in [W ], for a large constant W . We will now describe the protocol for the
two-party model.

Let ϵ > 0 be the final parameter we are aiming for, and let

λ = ϵ

2048 , β = 144λ−4 log(2W/λ).

Let EA denote the set of edges assigned to Alice and EB the set of edges assigned to
Bob. Alice simulates a random-order stream. She unfolds the edges and runs Algorithm
1 on the corresponding unweighted W -batch random-order stream. That way, she obtains
a set H ⊆ ϕ(EA) with bounded edge degree β and a set UA ⊆ ϕ(EA) consisting of all
(ϕ(EA \ Eearly), H, β, λ)-underfull edges, where Eearly ⊆ EA denotes the first ϵ

W m weighted
edges in her simulated stream. She communicates R(H ∪ UA) to Bob. Bob outputs the
maximum weight matching in R(H ∪ UA) ∪ EB . See Algorithm 2 for a formal description.

The protocol for k parties is similar, only that now all of the first k − 1 parties should
simulate a random-order stream (we describe the protocol more formally in the proof of
Theorem 1.3).

Assume that each edge is assigned to Bob with probability p ≤ 1
2 (this will make the

analysis applicable to the k-party setting). Let UB be the set of all (ϕ(EB), H, β, λ)-underfull
edges, i.e. the set of underfull edges assigned to Bob. Let U := UA ∪UB denote the set of all
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Algorithm 2 Robust Communication Protocol for Weighted Graphs.

1. Alice simulates a random-order stream
by ordering the edges in EA uniformly at random.

2. Alice obtains H ∪ UA ⊆ ϕ(EA) by running Algorithm 1
on input ϕ(EA) with batches B = {ϕ(e) : e ∈ EA}.
She communicates R(H ∪ UA) to Bob.

3. Bob outputs the maximum weight matching in R(H ∪ UA) ∪ EB .

underfull edges. We will define an auxiliary fractional matching x on R(H ∪ U) of weight at
least (2/3− ϵ)µw(G). We will then extend it to a fractional matching y on EB ∪R(H ∪UA),
and show that due to the additional edges in EB, the fractional matching y has weight at
least (5/6− ϵ)µw(G).

Let Elate := E \Eearly. Fix a maximum weight matching M∗ in Elate. Define a fractional
matching x on R(H ∪ U) as follows:

Start with H1 = H and U1 = U .
For i = 1, . . . , λβ :

Let Mi be a maximum weight matching in R(Hi ∪ Ui).
Let Hi+1 = Hi \ ϕ(Mi \M∗) and Ui+1 = Ui \ ϕ(Mi \M∗).

For every edge e, let xe = |{i:e∈Mi}|
λβ .

In other words, we start with H ∪ U , and then in each iteration, we find a maximum weight
matching Mi in the refolding, and remove the edges in ϕ(Mi \M∗) from H ∪ U .

▶ Remark 5.1. Note that this is a valid fractional matching, since

xu =
∑
e∋u

xe =
∑
e∋u

|{i : e ∈Mi}|
λβ

=
∑

i

|{e ∋ u : e ∈Mi}|
λβ

≤ 1.

Furthermore, note that xe ≤ 1
λβ whenever e /∈M∗. This is because, if e ∈Mi \M∗ for

some i, then e /∈ R(Hj ∪ Uj) for all j > i.

▶ Lemma 5.2. It holds that
∑

e wexe ≥ ( 2
3 − ϵ)µw(Elate).

Proof. For each i, let Gi := Elate \ (∪j<iMj \M∗). We will apply Lemma 4.13 to the graph
G\ (∪j<iMj \M∗) and subgraph GS = Gi. Recall that we obtain Hi+1 from Hi by removing
the edges in ϕ(Mi \M∗). Since ϕ(Mi \M∗) is a matching, the degree of each edge in ϕ(G)
will decrease by at most two in each iteration. Therefore, Ui contains all the edges in Gi \Hi

that have Hi degree less than (1− λ)β − 2(i− 1) ≥ (1− 3λ)β. By Lemma 4.13, we get

w(Mi) = µw (R(Hi ∪ Ui)) ≥
(

2
3 − ϵ

)
µw(Gi). (5)

Also, Gi is constructed so that it always contains M∗, so

µw(Gi) ≥ w(M∗) = µw(Elate). (6)
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Combining, we obtain∑
e∈R(H∪U)

wexe =
∑

e∈R(H∪U)

we
|{i : e ∈Mi}|

λβ

= 1
λβ

∑
i

∑
e∈R(H∪U)

we1{e ∈Mi}

= 1
λβ

∑
i

w(Mi)

≥ 1
λβ

∑
i

(
2
3 − ϵ

)
µw(Gi). by Equation 5

≥
(

2
3 − ϵ

)
µw(Elate), by Equation 6. ◀

Recall that the set of edges that Bob has access to is EB ∪R(H ∪ U). We need to show
that µw(EB ∪ R(H ∪ U)) ≥ ( 5

6 − ϵ)µw(G). We will do this by extending the fractional
matching x on R(H ∪U) to a fractional matching y on EB ∪R(H ∪U). In order to describe
y, we will condition on the set of early edges Eearly, thereby fixing R(H ∪ U) and x. For
each edge e ∈ Elate, we have

Pr[e ∈ EB |e ∈ Elate] = Pr[e ∈ EB ∧ e ∈ Elate]
Pr[e ∈ Elate] = p

1− ϵ/W
.

and

Pr[e ∈ EA|e ∈ Elate] = 1− p

1− ϵ/W
.

Recall that M∗ is a fixed maximum weight matching in Elate. Let Min := M∗ ∩R(H ∪ U)
and let Mout := M∗ \ R(H ∪ U). After drawing EB , define a random matching M ′ ⊆M∗ as
follows:

Include each edge e ∈Min independently with probability p.
Include each edge e ∈Mout ∩ EB independently with probability 1− ϵ/W.

Conditioned on Eearly, each edge in Mout ends up in M ′ independently with probability
(1− ϵ/W ) · p

1−ϵ/W = p. Each edge in Min also ends up in M ′ independently with probability
p, so overall each edge in M∗ ends up in M ′ independently with probability p.

For any edge e /∈M∗, let pe denote the probability that e is not adjacent to any edge in
M ′. In other words,

pe =
{

(1− p) if e has exactly one endpoint matched by M∗,
(1− p)2 if both of the endpoints of e are matched by M∗.

We can now define ŷ on EB ∪R(H ∪ U).

ŷe =


1 if e ∈M ′,

xe if e ∈M∗ \M ′,

0 if e /∈M∗ and e is adjacent to at least one edge of M ′

(1− p) xe

pe
if e /∈M∗ and e is not adjacent to M ′.

Finally, we scale down ŷ and zero out some of the entries in order to obtain a valid fractional
matching y.

y(u,v) =
{

0 if ŷu/(1 + ϵ) > 1 or ŷv/(1 + ϵ) > 1
ŷ(u,v)
1+ϵ otherwise.
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▶ Lemma 5.3. It holds that

E

[∑
e∈E

weye

]
≥

(
2
3 + p

3 − 4ϵ

)
µw(G).

The proof is similar to Lemma 4.6 in [20], and is included in the full version of the paper.
Next, we round y to an integral matching.

▶ Lemma 5.4. There exists a matching of weight at least (1−3ϵ)
∑

e∈E weye in EB ∪R(H ∪
UA).

The proof is similar to Lemma 4.7 in [20] and is included in the full version of the paper.
Finally, we show that we have a large matching with high probability, and not just in
expectation.

▶ Lemma 5.5. With probability at least 1− n−5, there exists a matching of weight at least( 2
3 + p

3 −O(ϵ)
)

µw(G) in EB ∪R(H ∪ UA).

The proof is similar to Lemma 5.2 in [20], and is included in the full version of the paper.
We now complete the proofs of Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. Suppose that the edge weights are in [W ]. By Proposition 4.4,
Protocol 2 uses O(n log n poly(W/ϵ)) words of communication with high probability. By
Lemma 5.5, the protocol achieves a ( 2

3 + p
3 −O(ϵ))-approximation with high probability. So

by Theorem 4.1, there exists a protocol that achieves a ( 2
3 + p

3 −O(ϵ))(1− ϵ)-approximation
using space O(n log n log R) when the edge weights are in R+. Letting p = 1

2 and re-scaling
ϵ proves the theorem. ◀

Proof of Theorem 1.3. Suppose that the edge weights are in [W ]. We need to adjust the
protocol to the k-party model. The first party simulates the start of a random-order stream
by selecting an ordering of their edges uniformly at random. They unfold the edges and run
Algorithm 1 on the corresponding unweighted W -batch random-order stream. They pass
the memory state of the algorithm to the next party. Each of the next k − 2 parties will
continue to simulate the random-order stream that way. The (k − 1)st party communicates
R(H ∪ U) to the last party, where H ∪ U is the unweighted graph computed by Algorithm 1
on the unfolded W -batch stream. Finally, the last party will output the maximum weight
matching in the graph consisting of all edges to which they have access. That way, we can set
p = 1

k and treat the first k− 1 parties as Alice and the last party as Bob. By Proposition 4.4,
the protocol uses O(n log n poly(W/ϵ)) words of communication with high probability. By
Lemma 5.5, the protocol achieves a ( 2

3 + p
3 −O(ϵ))-approximation with high probability. So

by Theorem 4.1, there exists a protocol that achieves a ( 2
3 + p

3 −O(ϵ))(1− ϵ)-approximation
using space O(n log n log R) when the weights are in R+. Re-scaling ϵ proves the theorem. ◀
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