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Abstract
We study the two-sided stable matching problem with one-sided uncertainty for two sets of agents A

and B, with equal cardinality. Initially, the preference lists of the agents in A are given but the
preferences of the agents in B are unknown. An algorithm can make queries to reveal information
about the preferences of the agents in B. We examine three query models: comparison queries,
interviews, and set queries. Using competitive analysis, our aim is to design algorithms that minimize
the number of queries required to solve the problem of finding a stable matching or verifying that a
given matching is stable (or stable and optimal for the agents of one side). We present various upper
and lower bounds on the best possible competitive ratio as well as results regarding the complexity
of the offline problem of determining the optimal query set given full information.
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1 Introduction

In the classical two-sided stable matching problem, we are given two disjoint sets A and B

of agents (often referred to as men and women) of equal cardinality n. Each agent has
a complete preference list over the agents of the other set. The task is to find a stable
matching, i.e., a one-to-one allocation in which no two agents prefer to be matched to
each other rather than to their current matching partners. This problem has applications
in numerous allocation markets, e.g., university admission, residency markets, distributed
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internet services, etc. Since its introduction by Gale and Shapley [13] this problem has been
widely studied in different variants from both practical and theoretical perspectives; we refer
to the books [15, 31, 25].

While the majority of the literature assumes full information about the preference lists,
this may not be realistic in large matching markets. It might be impractical or too costly and
not even necessary to gather the complete preferences. Hence, different models for uncertainty
in the preferences have received attention in the past decade [1, 2, 6, 7, 9, 17, 16, 29, 30]. Many
of these works rely on probabilistic models and guarantees. This may not be appropriate for
applications in which no (correct) distributional information is available, e.g. in one-time
markets. Further, one might ask for guaranteed properties such as stability and optimality
instead of probabilistic ones.

A different way of handling uncertainty in the preferences is to allow an algorithm to make
queries to learn about the unknown preferences. Various types of queries (in terms of both
input and output) are conceivable, with one example being interview queries [6, 7, 29, 30].
Here one asks for a query sequence where a query corresponds to an interview between two
potential matching partners and the outcome is the placement of the interview partners in
each other’s preference list among all other candidates that she has interviewed so far. Hence,
if an agent has several such interviews then she finds out her preference order over all these
candidates.

In this paper we investigate various query models for stable matching problems with
one-sided uncertainty in the preferences. We assume that initially only the preference lists of
one side, A, are known but the preference lists of the other side, B, are unknown. Applications
include allocations between groups of different seniority or when preferences shall be kept
private; see also [17, 16, 18]. For illustration consider, e.g., pairing new staff with mentors or
new PhD students with supervisors as part of the onboarding. New staff can be asked to
provide a full preference list of mentors based on information about the available mentors
that can be made accessible with little effort, while requiring mentors to rank potential
mentees might be considered too burdensome for senior staff due to other significant time
commitments.

We consider three types of queries to gain information about the preferences, namely
(i) comparison queries that reveal for an agent b ∈ B and a pair of agents from A which
one b prefers, (ii) set queries that reveal for an agent b ∈ B and a subset S ⊆ A the agent
in S that b prefers most, and (iii) interview queries.

We study basic problems regarding stability and optimality of matchings using these query
models. A stable matching is called A-optimal (resp. B-optimal) if no agent in A (resp. B)
prefers a different stable matching over the current one. To our knowledge, most existing
related work considers worst-case bounds on the absolute number of queries necessary to solve
the respective problem; see Further Related Work below for a discussion. For many instances,
however, executing such a worst-case number of queries might not be necessary. To also
optimize the number of queries on these instances, we analyze our algorithms using competitive
analysis. We say that an algorithm that makes queries until it can output a provably correct
answer, e.g., a stable and A-optimal matching, is ρ-competitive (or ρ-query-competitive) if it
makes at most ρ times as many queries as the minimum possible number of queries that also
output a provably correct answer for the given instance. Note that this answer may differ
from that of the algorithm, e.g., a different stable matching. In this paper, we design upper
and lower bounds on the competitive ratios for the above mentioned problems and query
models. Our results illustrate that worst-case instances regarding the competitive ratio are
very different from the worst-case instances regarding the absolute number of queries. Thus,
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our lower bounds on the competitive ratio use different instances and our algorithms are
designed to optimize on different instances. Indeed, worst-case instances for the absolute
number of queries turn out to be “easy” for competitive analysis as the optimal solution we
compare against is very large.

Query-competitive algorithms are often associated with the field of “explorable uncer-
tainty”. Most previous work considers queries revealing an originally uncertain value [4, 8,
10, 19, 20, 22, 26, 11], while in this work we query a preference.

Our Contribution. We study the stable matching problem with one-sided uncertainty in the
preference lists and give the following main results. Note that we assume that the preferences
of the B side are unknown, and |A| = |B| = n. We remark that our technically most involved
main results are lower bounds on the competitive ratio and hardness results, so the results
only get stronger by making these assumptions.

In Section 3 we focus on comparison queries. Firstly, we ask the question of how to verify
that a given matching is stable. We show that the problem can be solved with a 1-competitive
algorithm. Then we ask how to find a stable matching under one-sided uncertainty. We
give a 1-competitive algorithm that finds a stable matching and, moreover, the solution is
provably A-optimal. Essentially, we employ the well-known deferred acceptance algorithm,
first analyzed by Gale and Shapley [13], and compare its number of queries carefully with
the number of queries that any algorithm needs to verify a stable matching.

A substantially more challenging task is to find a B-optimal stable matching. Note that
a trivial competitive ratio is O(n2 log n), as it is possible to obtain the full preferences of
each of the n elements in B using O(n log n) queries, and the optimum total number of
queries is at least 1. One of our main contributions is a tight bound of O(n). To that end,
we first show that every algorithm for verifying that a given matching is B-optimal and
stable requires Ω(n) queries. Then we give an O(n)-competitive algorithm for the problem
of finding one. This is best possible up to constant factors, which we prove with a matching
lower bound that also holds for verifying that a given matching is stable and B-optimal, even
for randomized algorithms.

We complement these results by showing that the offline problem of determining the
optimal number of queries for finding the B-optimal stable matching is NP-hard, and we give
an O(log n log log n)-approximation algorithm. Here, the offline version of a problem is to
compute, given full information about the preferences of all agents, a smallest set of queries
with the property that an algorithm making exactly those queries has sufficient information
to solve the problem with one-sided uncertainty.

Section 4 discusses interview queries. We show that the bounds on the competitive
ratio and hardness results for comparison queries translate to interview queries. We remark
that some of these results for interview queries, e.g., a 1-competitive algorithm for finding
an A-optimal stable matching, were already proven by Rastegari et al. [30] and discuss
differences to their results in the corresponding section. Interestingly, we can use essentially
the same techniques as for the comparison model. This may seem surprising, especially for
the lower bounds, as interview queries seem to be more powerful. For instance, n interviews
are sufficient to determine the precise preference order of an agent b ∈ B, while we need
Ω(n log n) comparison queries to determine b’s preference order. On the other hand, an
instance that can be solved with a single comparison query requires two interviews. In
general, we can simulate a comparison query by using two interview queries.

In Section 5 we discuss the set query model. While some bounds remain the same as in
the other models, e.g., 1-competitiveness for verifying the stability of a given matching, we
show that some bounds change drastically. For example, we give an O(log n)-competitive
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algorithm for verifying that a given matching is B-optimal, which is in contrast to the
lower bound of Ω(n) in the other query models. It remains open whether O(1)-competitive
algorithms exist for the problems of finding a stable matching or verifying a B-optimal
matching with set queries.

Further Related Work. In classical work on stable matching with queries, the preferences on
both sides can only be accessed via queries, with a query usually either asking for the ith entry
in a preference list or for the rank of a specific element within a preference list (cf. e.g. [27]).
Note that two rank queries are sufficient to simulate a comparison query, but up to n− 1
comparison queries are needed to obtain the information of a single rank query. Thus, existing
lower bounds on the necessary number of rank queries in these query models translate to
our setting (up to a constant factor), but upper bounds do not necessarily translate. Ng
and Hirschberg [27] showed that Θ(n2) such queries are necessary to find or verify a stable
matching in the worst case. The lower bound of Ω(n2) translates to any type of queries
with boolean answers, including comparison queries [14]. Further work on interview queries
includes empirical results [6, 7] and complexity results [29] on several decision problems
under partial uncertainty. We discuss the latter in Section 4.

Our setting of one-sided uncertainty and querying uncertain preferences is also related to
existing work on online algorithms for eliciting partial preferences [21, 28, 24]. These works
also consider a setting where the preferences of agents in one of the sets are uncertain but can
be determined by using different types of queries. In particular, [28] also considers the set
query model. The main difference to our work is that these papers assume that the elements
of one set do not have any preferences at all. As a consequence, they do not consider stability
at all and instead aim at computing pareto-optimal or rank-maximal matchings.

2 Preliminaries

An instance of the two-sided stable matching problem consists of two disjoint sets A and B of
size |A| = |B| = n and complete preference lists: The preference list for each agent a ∈ A

is a total order ≺a of B, the preference list of each agent b ∈ B is a total order ≺b of A.
Here, a1 ≺b a2 means that b prefers a1 to a2. A matching is a bijection from A to B. For
a matching M , we denote the element of B that is matched to a ∈ A by M(a), and the
element of A that is matched to b ∈ B by M(b).

Given a matching M , a pair (a, b) ∈ A×B is a blocking pair in M if a is not matched
to b in M , a prefers b to M(a), and b prefers a to M(b). A matching M is called a stable
matching if there is no blocking pair in M .

In their influential paper, Gale and Shapley [13] showed that a stable matching always
exists, and the deferred acceptance algorithm computes one in O(n2) time. In this algorithm,
one group (A or B) proposes matches and the other decides whether to accept or reject each
proposal. The algorithm produces a stable matching that is best possible for the group X

that proposes (we say X-optimal) and worst possible for the other group: Each element of
the group that proposes gets matched to the highest-preference element to which it can be
matched in any stable matching, and each element of the other group gets matched to the
lowest-preference element to which it can be matched in any stable matching.

In this paper, we consider the setting of one-sided uncertainty, where initially only the
preference lists of all agents in A are known, but the preference lists of b ∈ B are unknown.
An algorithm can make queries to learn about the preferences of b ∈ B. We distinguish the
following types of queries:
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Comparison queries: For agents b ∈ B and a1, a2 ∈ A, the query prefer(b, a1, a2) returns a1
if b prefers a1 to a2 and a2 otherwise. These queries can also be seen as Boolean queries
that return true iff b prefers a1 to a2.
Set queries: For agents b ∈ B and any subset S ⊆ A, the query top(b, S) returns b’s most
preferred element of S.
Interview queries: For agents b ∈ B and a ∈ A, an interview query intq(b, a) reveals the
total order of the subset {a}∪Pb defined by ≺b, where Pb is the set of all elements a′ ∈ A

for which a query intq(b, a′) has already been executed before the query intq(b, a).

A stable matching instance with one-sided uncertainty is given by two sets A and B of
size n and, for each agent a ∈ A, a total order ≺a of the agents in B. The preferences
of the agents in B are initially unknown. For a given stable matching instance with one-
sided uncertainty, we consider the following problems: finding a stable matching, finding
an A-optimal stable matching, and finding a B-optimal stable matching. For a given stable
matching instance with one-sided uncertainty and a matching M , we consider the following
problems: verifying that M is stable, verifying that M is stable and A-optimal, and verifying
that M is stable and B-optimal. All problems can be considered for each query model. For
the verification problems, we consider the competitive ratio only for inputs where M is
indeed a stable (and A- or B-optimal) matching. If this is not the case, the algorithm must
detect this, but we do not compare the number of queries it makes to the optimum. This is
because any algorithm may be required to make up to Ω(n2) comparison or interview queries
to detect a blocking pair, while the optimum can prove its existence with a constant number
of queries.

It is easy to see that for the optimum, the problem of verifying that a given matching M

is stable and A-optimal (B-optimal) is the same as that of finding the A-optimal (B-optimal)
stable matching. This implies that any lower bound on the number of queries required to
verify that M is stable and A-optimal (B-optimal) also applies to the problem of finding the
A-optimal (B-optimal) stable matching.

An important concept is the notion of rotations, which can be defined as follows (cf. [25]):
Let a stable matching M be given. For an agent ai ∈ A, let sA(ai) denote the most-preferred
element bj on ai’s preference list such that bj prefers ai to her current partner M(bj). Note
that sA(ai) must be lower than M(ai) in ai’s preference list as otherwise (ai, sA(ai)) would be
a blocking pair. Let nextA(ai) = M(sA(ai)). Then a rotation (exposed) in M is a sequence
(ai0 , bj0), . . . , (air−1 , bjr−1) of pairs such that, for each k (0 ≤ k ≤ r − 1), (aik

, bjk
) ∈M and

aik+1 = nextA(aik
), where addition is modulo r. The rotation can be viewed as an alternating

cycle consisting of the matched edges (aik
, bik

) and the unmatched edges (aik
, bik+1) (for

0 ≤ k ≤ r−1). We refer to an edge (a, sA(a)) as a rotation edge or r-edge as it can potentially
be part of a rotation. Note that every vertex a ∈ A is incident with at most one r-edge.

Given a rotation R in a stable matching M , we can construct a stable matching M ′

from M by removing all edges that are part of R and M and adding all r-edges that are
part of R. We refer to this as applying a rotation. Observe that no agent in B is worse off in
M ′ than in M , and some agents in B prefer M ′ to M . The following has been shown.

▶ Lemma 1 (Lemma 2.5.3 in Gusfield and Irving [15]). If M is any stable matching other
than the B-optimal stable matching, then there is at least one rotation exposed in M .

3 Stable Matching with Comparison Queries

In this section, we consider the comparison query model. We first discuss our results on the
problems of verifying that a given matching is stable and finding an A-optimal matching,
before moving on to our main results regarding the competitive ratio for finding/verifying a
B-optimal matching.

APPROX/RANDOM 2024
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3.1 Verifying That a Given Matching Is Stable

We consider the verification problem where we are given a matching M and our task is to
verify that M is indeed stable. As argued in the previous section, we only care about the
competitive ratio if the given matching M is indeed stable.

The following auxiliary lemma shows that exploiting transitivity cannot reduce the number
of comparison queries to an agent b ∈ B if one needs to find out the preference relationship
of k agents from A to one particular agent from A in b’s preference list.

▶ Lemma 2. Consider two agents a ∈ A, b ∈ B and assume that there are k agents
a1, . . . , ak ∈ A\{a} for each of which we want to know whether b prefers that agent to a or not.
Then exactly k comparison queries to b are necessary and sufficient to obtain this knowledge.

Proof. The k queries prefer(b, a, ai) for i = 1, . . . , k are clearly sufficient. Assume that k′

queries to b, for some k′ < k, are sufficient to obtain the desired information. Consider the
auxiliary graph H with vertex set VH = A and an edge {a′, a′′} for each of those k′ queries
prefer(b, a′, a′′). As the set A′ = {a, a1, a2, . . . , ak} has k + 1 vertices and H has fewer than k

edges, the set A′ intersects at least two different connected components of H. Let aj , for some
1 ≤ j ≤ k, be a vertex that does not lie in the same component as a. Then the k′ queries do
not show whether b prefers aj to a or not, which contradicts k′ queries being sufficient. ◀

If an algorithm obtains for agents x and y with y ̸= M(x) the information that M(x) ≺x y

(either via a direct query or via transitivity), we say that the algorithm relates y to M(x)
for x. By Lemma 2, if the optimum relates k different elements to M(x) for x, it needs to
make k queries to x. A pair (x, y) with y ̸= M(x) such that the optimum relates y to M(x)
for x is called a relationship pair (for x). Lemma 2 implies the following.

▶ Corollary 3. The total number of relationship pairs (for all agents x) is a lower bound on
the number of comparison queries the optimum makes.

▶ Theorem 4. Given a stable matching instance with one-sided uncertainty and a stable
matching M , there is a 1-competitive algorithm that uses

∑
a∈A |{b ∈ B | b ≺a M(a)}|

queries for verifying that M is stable in the comparison query model.

Proof. Since the preferences of agents on the A-side are not uncertain, for each (a, b) /∈M ,
we already know whether M(a) ≺a b. If M(a) ≺a b, then we do not have to execute any
queries to show that (a, b) /∈M is not a blocking pair. Otherwise, every feasible query set
has to prove M(b) ≺b a. Therefore, for each element b ∈ B, there is a uniquely determined
number nb of elements of A that any solution (including the optimum) must relate to M(b)
for b. Let K =

∑
b∈B nb be the resulting number of relationship pairs.

Our algorithm simply queries prefer(b, M(b), a) for every pair (a, b) /∈ M for which
b ≺a M(a). These are exactly K queries. As the total number of relationship pairs is K, the
optimum must also make K queries (Corollary 3). Hence, our algorithm is 1-competitive. ◀

The proof of Theorem 4 implies that the stable matching that maximizes the number of
queries that are required to prove stability is the B-optimal matching.

▶ Corollary 5. The number of comparison queries needed to verify that the B-optimal
matching is stable is maxM stable

∑
a∈A |{b ∈ B | b ≺a M(a)}|.
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3.2 Finding an A-Optimal Stable Matching
We obtain the following positive result by adapting the classical deferred acceptance algo-
rithm [13] with A making the proposals.

▶ Theorem 6. For a given stable matching instance with one-sided uncertainty, there is a
1-competitive algorithm for finding a stable matching in the comparison query model. The
algorithm actually finds an A-optimal stable matching.

Proof. We utilize the classical deferred acceptance algorithm [13] where A makes the pro-
posals, and we assume the reader’s familiarity with it. An unmatched agent a ∈ A makes
a proposal to their preferred agent b ∈ B by whom it has never been rejected. If b is
unmatched, then b accepts the proposal and a and b get matched. If b is currently matched
to some a′ ∈ A, the algorithm makes a query prefer(b, a, a′). If the query result is that b

prefers a to a′, then b accepts a’s proposal and becomes matched to a while a′ becomes
unmatched. Otherwise, b rejects the proposal and remains matched to a′. The algorithm
terminates if all agents in A are matched or if every unmatched agent in A has been declined
by all agents in B.

We show that this algorithm makes the minimum possible number of comparison queries.
We execute the deferred acceptance algorithm with A as the proposers, so it produces an

A-optimal stable matching. Consider an arbitrary agent b ∈ B. Assume that b gets matched
to a ∈ A in the stable matching. Let Ab = {a, a1, a2, . . . , akb

} (for some 0 ≤ kb < n) be
the set of agents of A that proposed to b during the execution of the algorithm. Note that
|Ab| = kb + 1 and the algorithm has executed kb queries to b, each for two agents of Ab (the
first agent of A that proposed to b did not require a query). Observe that each of a1, . . . , akb

gets matched with an agent of B that they rank strictly lower than b in the final matching.
We claim that no stable matching can be identified without making at least kb queries

to b. Let M ′ be an arbitrary stable matching. Note that b rates M ′(b) at least as highly as a,
because M is the worst possible matching for B. Furthermore, for each ai with 1 ≤ i ≤ kb,
we have that ai rates b strictly higher than M ′(ai) because M is A-optimal and ai rates
M(ai) strictly lower than b. Thus, for none of the pairs (ai, b) for 1 ≤ i ≤ kb to be a blocking
pair, the queries of any optimal query set must establish that b rates M ′(b) more highly than
every ai for 1 ≤ i ≤ kb. This can only be achieved with at least kb queries.

The same argument applies to each b ∈ B, so we have that both the optimal number of
queries and the number of queries made by the algorithm are equal to

∑
b∈B kb. ◀

The proof of Theorem 6 implies that, for the A-optimal stable matching M , the optimal
number of queries to prove that M is stable equals the optimal number of queries to prove
that M is stable and A-optimal. Hence, proving optimality comes in this case for free.

3.3 Finding a B-Optimal Stable Matching
The problem of finding a B-optimal stable matching is substantially more challenging. While
there still exists a 1-competitive algorithm in special cases, e.g., when all A-side preference
lists are equivalent (see the full version [3]), this is not the case for arbitrary instances.

We first describe an algorithm that is O(n)-competitive. Complementing this result, we
then show that every (randomized) online algorithm has competitive ratio at least Ω(n) for
finding a B-optimal stable matching. Finally, we show that the offline problem of determining
the optimal number of queries for computing a B-optimal stable matching is NP-hard and
give an O(log n log log n)-approximation.

APPROX/RANDOM 2024
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3.3.1 Algorithm for Computing a B-Optimal Stable Matching
We first consider the problem of verifying that a given stable B-optimal matching is indeed
stable and B-optimal. An algorithm for this problem needs to prove that M has no blocking
pair and that no alternating cycle with respect to M is a rotation. For each potential blocking
pair (a, b) that cannot be ruled out because of a’s preferences, such an algorithm has to prove
that it is not a blocking pair using a suitable query to b as discussed in Section 3.1.

The more involved part is proving that M is B-optimal. By Lemma 1, M is B-optimal
if and only if it does not expose a rotation. Based on the known A-side preferences, each
edge (a, b) with M(a) ≺a b could potentially be an r-edge. Thus, each cycle that alternates
between such edges and edges in M could potentially be a rotation. An algorithm that proves
B-optimality has to prove for each such alternating cycle that at least one non-matching
edge (a, b) on that cycle is not an r-edge. By definition, there are two possible ways to prove
that an edge (a, b) with M(a) ≺a b is not an r-edge:
1. Query b and find out that b prefers M(b) to a. Then, b cannot be sA(a) as b does not

prefer a to M(b).
2. Query one b′ with M(a) ≺a b′ ≺a b and find out that b′ prefers a to M(b′). Then, b

cannot be the most-preferred element in a’s list that prefers a to her current partner, as
b′ has that property and is preferred over b.

Corollary 5 gives the optimal number of queries to prove that the matching M is stable,
which is a lower bound on the optimal number of queries necessary to prove that M is
stable and B-optimal. Let Q(M) denote this number. However, there exist instances where
Q(M) = 0 and QB(M) > 0 for the optimal number QB(M) of queries to prove that M

is stable and B-optimal. Consider an instance where all elements of A have distinct first
choices and let M denote the matching that matches all elements of A to their respective
first choice. Then, there is a realization of B-side preference lists such that the matching
M is also B-optimal. For this realization we have Q(M) = 0 and QB(M) > 0. This implies
that the lower bound of Corollary 5 is not strong enough for analyzing algorithms that verify
B-optimality as we cannot prove that such an algorithm makes at most c ·Q(M) queries.
We give another lower bound on the optimal number of queries.

▶ Lemma 7. The optimal number of queries for verifying (and thus also for finding) the
B-optimal stable matching is at least n− 1 for every instance of the stable matching problem
with one-sided uncertainty.

Proof. Let M be the B-optimal stable matching for the given instance. For a ∈ A, call a
query an a-query if it reveals for some b ∈ B with b ̸= M(a) whether b prefers a to her current
partner or not. We claim that an optimal algorithm needs to make at least one a-query for
every a ∈ A with at most a single exception. Assume for a contradiction that the optimal
algorithm makes neither an a-query nor an a′-query for two distinct elements a, a′ ∈ A. If a

prefers M(a) over M(a′) and a′ prefers M(a′) over M(a), then it is impossible to exclude
the possibility that (a, M(a)), (a′, M(a′)) is a rotation exposed in M , because the only way
to prove that (a, M(a′)) is not an r-edge is via an a-query, and similarly for (a′, M(a)). If a

prefers M(a′) over M(a), then an a-query to M(a′) is necessary to exclude that (a, M(a′)) is
a blocking pair. If a′ prefers M(a) over M(a′), then an a′-query to M(a) is necessary for the
analogous reason. Hence, the claim holds. We note that the n− 1 queries whose existence is
asserted by the claim are distinct: A query to some b ∈ B cannot be an a-query and at the
same time an a′-query for some a′ ̸= a, as the query prefer(b, a, a′) cannot yield previously
unknown information about how both a and a′ compare to M(b) in b’s preference list. ◀
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Algorithm 1 Algorithm to find the B-optimal stable matching using comparison queries.

Input: Instance of the stable matching problem with one-sided uncertainty.
1 M ← A-optimal matching computed using Theorem 6 ;
2 N ← {a ∈ A |M(a) is last in ≺a} ; /* Elements without r-edge */
3 ∀a ∈ A \N : p(a)← first element in ≺a after M(a);
4 ∀a ∈ A \N : r(a)← ⊤ ; /* known r-edges or ⊤ if r-edge still unknown */
5 foreach a ∈ A \N do
6 repeat
7 t← prefer(p(a), a, M(p(a))) ;
8 if t = M(p(a)) then
9 if p(a) is the last element of ≺a then N ← N ∪ {a} ;

10 else p(a)← direct successor of p(a) in ≺a ;
11 else
12 r(a)← p(a); /* r(a) and a form an r-edge */

13 until r(a) ̸= ⊤ or a ∈ N ;
14 if M exposes a rotation R then
15 M ← stable matching constructed from M by applying R;
16 N ← N ∪ {a ∈ A ∩R |M(a) is last in ≺a};
17 ∀a ∈ (A ∩R) \N : r(a)← ⊤ and p(a)← first element in ≺a after M(a);
18 ∀a ∈ (A \R) \N : p(a)← r(a) and r(a)← ⊤;
19 Jump to Line 5;
20 return M ;

Next, we give an O(n)-competitive algorithm for finding a B-optimal matching and
analyze it by exploiting the lower bounds on the optimal number of queries of Corollary 5
and Lemma 7. For pseudocode see Algorithm 1.

1. Find an A-optimal matching using the 1-competitive algorithm for A-optimal matchings.
2. Search for a rotation by asking, for every a ∈ A, the elements of B that are below M(a)

in a’s preference list in order of ≺a whether they prefer a to their current partner, until
either an r-edge is found or we know that a has no r-edge.

3. If a rotation R is found, apply that rotation. The agents a ∈ A ∩R then no longer have
a known r-edge as their previous r-edge is now their matching edge. However, the new
r-edge partner of such an agent must be further down the preference list of a than the
old one. The elements a ∈ A \ R that had an r-edge to an element b ∈ B ∩ R can no
longer be sure that their edge to b is an r-edge since b has a new matching partner M(b),
so b must be asked again whether it prefers the new partner over a when searching for
the new r-edge of a. The algorithm then repeats Step 2 but starts the search for the new
rotation edge of an agent a ∈ A at either the previous rotation edge (if a ∈ A \R) or at
the direct successor of the new M(a) in ≺a (if a ∈ A ∩R).

4. When a state is reached where it is known for every a ∈ A what its r-edge is (or that
it has no r-edge) but the r-edges do not form a rotation, the algorithm terminates and
outputs M .

▶ Theorem 8. Given a stable matching instance with one-sided uncertainty, the algorithm is
O(n)-competitive for finding a B-optimal stable matching using comparison queries.
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Proof. Let OPT denote the number of queries made by an optimal algorithm. Since finding
any stable matching can never require more queries than finding a B-optimal stable matching,
Theorem 6 implies that the algorithm makes at most OPT queries in the first step.

We analyze the queries executed after the first algorithm step. Call a query good if it is
the first query involving a specific combination of an agent a ∈ A and an agent p(a) ∈ B, i.e.,
the first query of form prefer(p(a), a, M(p(a))) for that specific combination of p(a) and a.
All other queries are bad. By definition of good queries, the algorithm makes at most n2 such
queries since this is the maximum number of good queries that can exist. Since OPT ≥ n− 1
(Lemma 7), the number of good queries is O(n) ·OPT.

Consider the bad queries and a fixed a ∈ A. In the second step of the algorithm, it
repeatedly executes queries of the form prefer(p(a), a, M(p(a))) with p(a) ∈ B to find out if
(a, p(a)) is an r-edge, starting with the direct successor p(a) of M(a) in ≺a. If (a, p(a)) is not
an r-edge, then the next query partner p(a) for a moves one spot down in the list ≺a. This
is repeated until the r-edge (a, r(a)) of a is found or we know that a does not have an r-edge.
Here, r(a) refers to the element that forms an r-edge with a.

If a does not have an r-edge, there will be no more queries for a again as all b ∈ B that
are lower than M(a) in the preference list of a prefer their current partner M(b) over a and
this partner will only improve during the execution of the algorithm. Otherwise, a will be
considered again in the second step of the algorithm only if a rotation was found in the third
step. If a is part of the rotation, then r(a) = p(a) will be the new matching partner of a and
p(a) will be moved one spot down in ≺a. Only if a is not part of the rotation, p(a) = r(a)
remains unchanged by definition of the third step. In conclusion, the next query partner
p(a) of a moves down one spot in ≺a after each query for a unless a rotation is found that
does not contain a. This means that a bad query for a can only occur as the first query for a

after a new rotation that does not involve a is found. Thus, each rotation can cause at most
|A| − 2 bad queries (at least two members of A must be involved in the rotation). Thus, the
number of bad queries is at most (n− 2) · nr for the number of applied rotations nr.

For each applied rotation, at least two agents of A get re-matched to agents of B that
are lower down on their preference lists than their previous matching partner. This increases
the lower bound on the optimal number of queries to show stability (cf. Corollary 5) by at
least 2. Thus, Corollary 5 implies OPT ≥ 2 · nr. We can conclude that the number of bad
queries is at most (n− 2) · nr ≤ O(n) ·OPT. ◀

3.3.2 Lower Bound for Computing a B-Optimal Matching
We give a lower bound of Ω(n) on the competitive ratio for finding a B-optimal stable matching
with comparison queries. This implies that the result of Theorem 8 is, asymptotically, best-
possible. Further, the lower bound also holds for verifying that a given matching is B-optimal.

▶ Theorem 9. In the comparison query model, every deterministic or randomized online
algorithm for finding a B-optimal stable matching in a stable matching instance with one-sided
uncertainty has competitive ratio Ω(n).

Proof. We show the statement for deterministic algorithms and refer to the full version [3]
for the extension to randomized ones. The proof of the randomized lower bound exploits
Yao’s principle [5, 32] and uses a randomized version of the instance we describe here to
show the statement. Consider the following instance (cf. Fig. 1) with two sets of agents
A = {a0, . . . , an−1} and B = {b0, . . . , bn−1}, and assume n/2 to be even. If this is not the
case, then the constant factor in the lower bound will be slightly worse.
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a0 b0

a1 b1

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

a7 b7

a8 b8

a9 b9

a10 b10

a11 b11

(b0, b6, b7, b8, b9, b10, b11, ∗)
(b1, b6, b7, b8, b9, b10, b11, ∗)
(b2, b6, b7, b8, b9, b10, b11, ∗)
(b3, b6, b7, b8, b9, b10, b11, ∗)
(b4, b6, b7, b8, b9, b10, b11, ∗)
(b5, b6, b7, b8, b9, b10, b11, ∗)
(b6, b11, ∗)
(b7, b11, ∗)
(b8, b11, ∗)
(b9, b11, ∗)
(b10, b11, ∗)
(b11, ∗)

(a1, a0, ∗)
(a0, a1, ∗)
(a3, a2, ∗)
(a2, a3, ∗)
(a5, a4, ∗)
(a4, a5, ∗)
(⋄, a6, a7, a8, a9, a10, a11, ⋄)
(⋄, a7, a8, a9, a10, a11, a6, ⋄)
(⋄, a8, a9, a10, a11, a6, a7, ⋄)
(⋄, a9, a10, a11, a6, a7, a8, ⋄)
(⋄, a10, a11, a6, a7, a8, a9, ⋄)
(⋄, a6, a7, a8, a9, a10, a11, ⋄)

Figure 1 Example of the lower bound construction for finding B-optimal matchings. The solid
edges represent the A-optimal matching M that needs to be shown to be also B-optimal using
queries. The dashed edges represent rotation edges. Each of the agents in {a0, a1, . . . , a5} also has a
rotation edge to some agent in {b6, b7, b8, b9, b10, b11} that is not shown. An asterisk (∗) indicates
that the remaining agents are placed in arbitrary order in the preference list. A diamond (⋄) indicates
that the adversary decides in response to the queries made by the algorithm which of the agents in
{a0, a1, . . . , a5} are placed at the front of the preference list and which at the back.

We partition A into three subsets A1 = {a0, . . . , a n
2 −1}, A2 = {a n

2
, . . . , an−2} and

A3 = {an−1}, and B into two subsets, B1 = {b0, . . . , b n
2 −1} and B2 = B \B1.

In the following, we first define the known A-side preferences and the adversarial strategy.
Then we give bounds on the optimal number of queries and the number of queries made by
any deterministic algorithm.

A-side preferences. Consider the following preference lists for A. For an agent ai ∈ A1,
the preference list consists of three parts, P (ai) = P1(ai)P2(ai)P3(ai). The first part of the
list is the corresponding ith agent of B, i.e., P1(ai) = (bi). The second part consists of the n

2
agents of set B2 in increasing order, i.e., P2(ai) = (b n

2
, b n

2 +1, . . . , bn−2, bn−1). The last part
P3(ai) consists of the agents of B1 \ {bi} in an arbitrary order.

For an agent ai ∈ A2, the preference list starts with agent bi, followed by the last agent
bn−1 and finally an arbitrary order of the remaining agents in group B. For the single agent
an−1 in set A3, the preference list starts with agent bn−1 followed by an arbitrary order of
the remaining agents of set B.

Adversarial strategy. The preference lists of the agents in set B are unknown. The instance
has the A-optimal matching M = {(ai, bi) | 0 ≤ i < n}. The adversary will ensure that this
matching is also B-optimal. Since each ai is matched with its top choice, proving stability
does not require any queries. To prove B-optimality of M , the executed queries must prove
that there is no rotation.

The adversary will ensure that M can be shown to be a B-optimal matching with O(n)
queries while any deterministic algorithm is forced to make Ω(n2) queries.

To achieve this, the adversary sets the preferences of the agents of B1 independent of the
algorithm’s actions as follows. For each odd i ∈ {1, 3, 5, . . . , (n/2)− 1}, we let the preference
list of bi start with ai−1 followed by ai and finally all remaining agents in A in an arbitrary
order. The preference list of bi−1 starts with ai followed by ai−1 and then the remaining
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agents in A in an arbitrary order. Using these preferences, the sequences (ai−1, bi−1), (ai, bi)
are potential rotations. To prove that such a sequence is not a rotation, an algorithm has to
show that either (ai−1, bi) or (ai, bi−1) is not an r-edge. The only way of showing this is to
prove that either ai−1 or ai instead has an r-edge to some agent of B2.

Consider any deterministic algorithm. The adversary selects the preferences of the agents
in B2 in such a way that the following properties hold:
(P1) Agent an−1 has no r-edge. Note that, by the definition of the preferences of B1 above,

an−1 already cannot have a rotation edge to an agent of B1.
(P2) Each agent in A2 has an r-edge to bn−1.
(P3) Each agent ai in A1 has an r-edge to some agent bt(i) of B2. The choice of that agent

bt(i) depends on the queries made by the algorithm.

The properties (P1)–(P3) ensure that there is no rotation, as the alternating path starting
at any a ∈ A \ {an−1} with the r-edge of that agent ends at an−1, which has no r-edge.

Let t(i) denote the index of the agent bt(i) of B2 to which ai ∈ A1 has an r-edge. This
index is determined by the adversary in response to the queries made by the algorithm.
Concretely, the adversary lets t(i) be the index of the last agent bj ∈ B2 for which the
algorithm makes a query of the form prefer(bj , ai, ∗), where we use prefer(bj , ai, ∗) as a short-
hand to refer to queries prefer(bj , ai, ai′) or prefer(bj , ai′ , ai) for some i′. If the algorithm
doesn’t make queries of this form for all bj ∈ B2, then let t(i) be an arbitrary j such that the
algorithm does not make a query of this form for bj ∈ B2. The adversary sets the preferences
of the agents in B2 in such a way that bt(i) prefers ai to her partner at(i) in the A-optimal
matching M while all other bj ∈ B2 prefer their partner in the A-optimal matching aj to ai.
For example, if the algorithm was to make queries prefer(bj , ai, aj) for all bj ∈ B2 (which it
might do in order to check whether ai has an r-edge to one of these agents), the adversary
would answer false to the first n

2 − 1 such queries and true to the final one.
To achieve the properties (P1)–(P3), the adversary sets the preferences of each agent bj

of B2 as follows:
bj prefers ai ∈ A1 to aj if and only if j = t(i).
If j ̸= n− 1, bj prefers aj to aj′ for all j′ ̸= j, aj′ ∈ A2.
If j = n− 1, bj prefers aj′ to aj for all j′ ̸= j, aj′ ∈ A2.

This can be done by letting the preference list of bj contain first the agents ai ∈ A1 with
j = t(i) in some order, then the agents of A2 in some order (only ensuring for bj that aj

comes first among the agents of A2 if j ̸= n− 1 and that aj comes last among the agents of
A2 if j = n− 1), and finally the agents ai ∈ A1 with j ̸= t(i) in some order.

Upper bound on the optimal query cost. An optimal solution for the instance can prove
that matching M is B-optimal by verifying that the properties (P1)–(P3) indeed hold by
using at most n− 1 + n

2 − 1 + n
2 = 2n− 2 queries as follows:

The n− 1 queries prefer(bi, an−1, ai) = false for i ≤ n− 2 show that an−1 has no r-edge.
Each of the n

2 − 1 queries prefer(bn−1, a n
2 +i, an−1) = true for 0 ≤ i ≤ n

2 − 2 shows that
a n

2 +i has an r-edge to bn−1. This is because each agent of A2 has bn−1 in its preference
list directly after its current matching partner. So if bn−1 prefers an agent of A2 over its
current partner an−1, then this directly gives us an r-edge.
Each of the n

2 queries prefer(bt(i), ai, at(i)) = true for 0 ≤ i ≤ n
2 − 1 shows that ai has a

rotation edge to some agent in B2. Based on the result of such a query, ai must have an
r-edge to either bt(i) or to some other agent of B2 that is higher up in ai’s preference list.
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Lower bound on the algorithm’s query cost. We provide to the algorithm the information
that an−1 has no r-edge, that each agent of A2 has an r-edge to bn−1, and we reveal the full
preference lists of all agents in B1. Clearly, this extra information can only reduce the number
of queries a deterministic algorithm may need as it could simply ignore the information.

For each agent ai ∈ A1, the algorithm will either make queries of the form prefer(bj , ai, ∗)
for all bj ∈ B2 or not. Call ai resolved in the former case and unresolved otherwise. For any
resolved agent, the algorithm may have determined that it has an r-edge to an agent of B2
and hence cannot be part of a rotation. For the unresolved agents, the algorithm cannot
know whether they have an r-edge to an agent in B2.

As argued above, for each odd i ∈ {1, 3, 5, . . . , n
2 −1}, the algorithm has to resolve either ai

or ai−1 to prove that (ai, bi), (ai−1, bi−1) is not a rotation. Thus, it must resolve at least n/4
agents. For each resolved agent, the algorithm has made queries of the form prefer(bj , ai, ∗)
for each bj ∈ B2. This totals to at least n

4 ·
n
2 ·

1
2 = n2

16 ∈ Ω(n2) queries. Note that we
divide n

4 ·
n
2 by two as a single query prefer(bj , ai, ai′) is of the form prefer(bj , ai, ∗) and also

prefer(bj , ai′ , ∗). ◀

3.3.3 Offline Results for Computing B-Optimal Stable Matchings
We show NP-hardness for the offline problem of verifying a given matching M to be stable
and B-optimal. Recall that in the offline problem we assume full knowledge of the B-side
preferences but still want to compute a query set of minimum size that a third party without
knowledge of the B-side preferences could use to verify the B-optimality of M .

▶ Theorem 10. The offline problem of computing an optimal set of comparison queries
for finding (or verifying) the B-optimal stable matching in a stable matching instance with
one-sided uncertainty is NP-hard.

Proof. We give a reduction from the NP-hard Minimum Feedback Arc Set (FAS) problem.
Given a directed graph G = (V, E), a feedback arc set is a subset of edges E′ ⊆ E which, if
removed from G, leaves the remaining graph acyclic. The FAS problem is to decide for a
given directed graph and some k ∈ Z+, whether there is a feedback arc set E′ with |E′| ≤ k.

Given an instance of FAS with G = (V, E) and some k, we construct a stable matching
instance with one-sided uncertainty as follows. For each node v of G, introduce an agent
v in A and an agent v′ in B. Let N+(v) denote the set of out-neighbors of v in G, and
d+(v) = |N+(v)|. The preference list of v is such that it ends with v′ followed by all u′ for
u ∈ N+(v). All other w′ in B come before v′. Thus, the elements of B \{u′ | u ∈ N+(v)} are
the most preferred partners of v, followed by v′ and finally the elements of {u′ | u ∈ N+(v)}.
Let M be the matching that matches v to v′, for all v. The preference lists of b ∈ B are
such that M is the B-optimal stable matching: Every v′ has v as top preference, and the
remaining agents of A follow in arbitrary order. By selecting the matching M this way, we
have that, for every v ∈ A, all edges to elements of {u′ | u ∈ N+(v)} are potential r-edges.
To prove that such an edge (v, u′) is not an r-edge, an algorithm has to compare u and v

from the perspective of u′ to prove that u′ prefers M(u′) = u over v.
The number of queries Q(M) needed to verify the stability of M is determined by M

and is polynomial-time computable by using Theorem 4. To prove B-optimality of M , we
need to show that there is no rotation (Lemma 1). Indeed, there is a query strategy with k

queries for verifying that there is no rotation if and only if there is a feedback arc set in G of
size k. To see this, observe that every directed cycle in G corresponds to a potential rotation
in the matching instance, and every query that excludes one of the edges of the potential
rotation from being an r-edge corresponds to the removal of the corresponding arc in G.
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Note that, for the constructed instance, all queries to verify the stability of M obtain
information of the form M(b) ≺b a for a ∈ A and b ∈ B with b ≺a M(a). On the other
hand, all queries that help to verify the absence of a rotation obtain information of the form
M(b) ≺b a for a ∈ A and b ∈ B with M(a) ≺a b. As these are disjoint query sets, we can
conclude that there is a query strategy that proves M to be stable and B-optimal with at
most Q(M) + k queries if and only if there is a feedback arc set in G of size at most k. ◀

We also prove the following approximation for the offline problem by exploiting an
O(log n log log n)-approximation for weighted feedback arc set by Even et al. [12].

▶ Theorem 11. The offline problem of computing an optimal set of comparison queries for
finding the B-optimal stable matching in a stable matching instance with one-sided uncertainty
can be approximated within ratio O(log n log log n).

Proof. Let M be the B-optimal matching. We give an algorithm that verifies M to be
stable and B-optimal by executing at most O(log n log log n) ·OPT queries, where OPT is
the optimal number of queries for the same instance. First, the algorithm proves that M is
stable using Theorem 4. This leads to at most OPT queries.

After that, the algorithm has to prove B-optimality. First, for every a ∈ A that has an
r-edge to an agent r(a) ∈ B, the algorithm queries prefer(r(a), a, M(r(a))). Since (a, r(a))
is an r-edge, this query must return that r(a) prefers a over M(r(a)). This leads to at most
n ≤ OPT + 1 queries (n ≤ OPT + 1 holds by Lemma 7). Note that, for an a ∈ A with an
r-edge, the query prefer(r(a), a, M(r(a))) proves that a has an r-edge but is not necessarily
sufficient to prove that (a, r(a)) is indeed the r-edge of a. If there is an agent b ∈ B with
M(a) ≺a b ≺a r(a) for which we have not yet verified whether b prefers a over M(b), then
(a, b) could also still be the r-edge of a. We call such pairs (a, b) potential r-edges and let P

denote the set of these edges.
It remains to consider the graph G defined by the matching edges, the r-edges R, and all

potential r-edges P . If G has no cycle alternating between edges in M and edges in P ∪R,
then we have shown that M does not expose a rotation and, thus, is B-optimal. Otherwise,
the algorithm has to execute queries prefer(b, a, M(b)) for edges (a, b) ∈ P to prove that they
are not actually r-edges until it becomes clear that M has no rotation.

To select the edges (a, b) ∈ P for which the algorithm executes such queries, we exploit
the O(log n log log n)-approximation for weighted feedback arc set by Even et al. [12]. To
this end, we create an instance of the weighted feedback arc set problem by considering the
vertices A ∪B, adding the edges M ∪R with weight ∞ each and adding the edges P with
weight 1 each. We orient all edges in M from the B-side vertex to the A-side vertex and all
edges in R ∪ P from the A-side vertex to the B-side vertex. The orientation ensures that
all cycles in the graph alternate between M -edges and R ∪ P -edges. Since the matching
M is B-optimal by assumption, there cannot be an alternating cycle using only edges in
M ∪R, so there must be a feedback arc set that only uses edges in P . The choice of the edge
weights ensures that every approximation algorithm for weighted feedback arc set finds such a
solution. We use the O(log n log log n)-approximation to find such a feedback arc set F ⊆ P .
Since removing F from the instance yields an acyclic graph, querying prefer(b, a, M(b))
for each (a, b) ∈ F proves that M does not expose a rotation. As the minimum weight
feedback arc set is the cheapest way to prove that M does not have a rotation, we have
|F | ≤ O(log n log log n) ·OPT, which implies the theorem. ◀
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4 Stable Matching with Interview Queries

In this section, we summarize our results for the interview query model. We refer to the
full version [3] for formal proofs. Most of our results and proofs are quite similar to their
counterparts for comparison queries. This might be surprising as interview and comparison
queries are, in a sense, incomparable: While interview queries allow us to more efficiently
determine full preference lists, a comparison between two agents can be done more efficiently
via a single comparison query. As we show the same (asymptotic) bounds on the competitive
ratio, the latter seems to be the deciding factor.

▶ Theorem 12. In the interview query model, the best possible (randomized) competitive ratio
for finding the B-optimal stable matching in an instance of stable matching with one-sided
uncertainty is in Θ(n).

For the offline problem of verifying a given B-optimal stable matching with interview
queries, Rastegari et al. [30] show NP-hardness in a setting with partial uncertainty on both
sides. As their proof exploits the possibility of giving partial information as part of the input,
it does not directly translate to our setting with one-sided uncertainty.

▶ Theorem 13. The offline problem of computing an optimal set of interview queries for
finding the B-optimal stable matching in a stable matching instance with one-sided uncertainty
is NP-hard.

A 1-competitive algorithm for finding a stable matching and veryfing a given stable
matching with interview queries is implied by the results and arguments from [30] for a more
general uncertainty setting.

5 Stable Matching with Set Queries

We consider the stable matching problem with one-sided uncertainty and set queries. Note
that set queries are a natural generalization of comparison queries. For verifying any B-
optimal matching, we show that the optimal number of set queries is at least n− 1. We also
observe that there is an algorithm that makes at most n2 queries for finding the B-optimal
matching (or an A-optimal matching if we want to), as one can sort all preference lists
using n2 set queries. This implies an O(n)-competitive algorithm for finding the B-optimal
matching. For the subproblem of verifying that a given matching is B-optimal, we give
an O(log n)-competitive algorithm by exploiting the additional power of set queries in an
involved binary search algorithm. If we only have to verify stability for a given matching, we
give a 1-competitive algorithm. Furthermore, we show that the offline problem of verifying
that a given matching does not have a rotation is NP-hard.

5.1 Verifying That a Given Matching Is Stable
We start by characterizing the optimal number of queries (and query strategy) to verify that
a given matching M is stable. The main difference to the comparison model is that, for a
fixed b ∈ B, a single query top(b, {a | b ≺a M(a)} ∪ {M(b)}) is sufficient to prove that b is
not part of any blocking pair.

▶ Theorem 14. Consider a stable matching instance with one-sided uncertainty and a
stable matching M . The minimum number of set queries to verify that M is stable is
|{b ∈ B | ∃a ∈ A : b ≺a M(a)}| ≤ n. Further, there is a 1-competitive algorithm to verify
that M is stable.
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Proof. Consider an arbitrary b ∈ B. Let Z(b) = {a ∈ A | b ≺a M(a)}, i.e., Z(b) contains
all a ∈ A that could potentially form a blocking pair with b. Thus, M can only be stable if
M(b) ≺b a holds for all b ∈ B and a ∈ Z(b). If Z(b) ̸= ∅, at least one query to b is necessary,
and the query top(b, Z(b) ∪ {M(b)}) with answer M(b) reveals all the required information
to prove that b is not part of any blocking pair. Thus, the minimum number of queries to
confirm that M is stable is |{b ∈ B | ∃a ∈ A : b ≺a M(a)}| as claimed. Furthermore, the
algorithm that queries top(b, Z(b)∪{M(b)}) for all b ∈ B with Z(b) ̸= ∅ is 1-competitive. ◀

5.2 Verifying That a Given Matching Is Stable and B-Optimal
For the problem of confirming that a given matching is B-optimal by using set queries, we
show that every algorithm needs to execute at least n− 1 queries. This is analogous to the
setting with comparison queries and uses a similar proof as Lemma 7. It implies that finding
a B-optimal matching also requires at least n− 1 queries.

▶ Lemma 15. Consider an arbitrary stable matching instance with one-sided uncertainty
and the B-optimal matching M . Every algorithm needs at least n− 1 set queries to verify
that M is indeed stable and B-optimal.

Proof. For each b ∈ B, let Z(b) = {a ∈ A | b ≺a M(a)} and let S = {b ∈ B | Z(b) ̸= ∅}. By
the proof of Theorem 14, every algorithm needs to execute at least one query of the form
top(b, X) with X ⊆ A for all b ∈ S and this query has to return M(b) as the top choice.
Since verifying B-optimality includes proving stability, this leads to at least |S| queries.

Consider an arbitrary algorithm that verifies M to be B-optimal and let A1 ⊆ A denote
the agents of A that are returned as the top choice by some query of the algorithm. Then
|S| ≤ |A1| and {a ∈ A | ∃b ∈ S : M(b) = a} ⊆ A1 by the argumentation above.

If |A1| ≥ n − 1, then the statement follows immediately, so assume |A1| < n − 1 and
let A2 = A \ A1. Since |A1| < n− 1, the set A2 has at least two distinct members a1 and
a2. Furthermore, we must have M(a1), M(a2) /∈ S as observed above. By definition of
S, we have M(a1) ≺a1 M(a2) and M(a2) ≺a2 M(a1). This means that (a1, M(a2)) and
(a2, M(a1)), based on the initially given information, could potentially be rotation edges.
Thus, (a1, M(a1)), (a2, M(a2)) could potentially be a rotation and the algorithm has to
prove that this is not the case by showing that one of (a1, M(a2)) and (a2, M(a1)) is not an
r-edge. To prove that (a1, M(a2)) is not an r-edge, one has to either verify a2 ≺M(a2) a1 or
a1 ≺b M(b) for some b ∈ B with M(a1) ≺a1 b ≺a1 M(a2). However, this requires at least
one query that returns either a1 or a2 as the top choice, and there is a symmetric argument
for proving that (a2, M(a1)) is not an r-edge. Since a1 and a2 are never returned as the
top choice by a query of the algorithm, this is a contradiction to the assumption that the
algorithm verifies that M is B-optimal. ◀

In contrast to the comparison model, there exists an offline algorithm that asymptotically
matches the lower bound of Lemma 15.

▶ Theorem 16. There exists a polynomial-time offline algorithm that, given an instance of
stable matching with one-sided uncertainty and the B-optimal matching M , verifies that M

is indeed stable and B-optimal by executing O(n) set queries.

Proof. By the proof of Theorem 14, an algorithm can prove M to be stable by executing at
most n set queries, so it remains to prove that M is B-optimal by executing at most O(n)
set queries.
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We do so by proving that M does not contain a rotation. First, for each b ∈ B, we
compute the set P (b) = {a ∈ A |M(a) ≺a b and M(b) ≺b a}. Each tuple (b, a) with b ∈ B

and a ∈ P (b) could be a rotation edge based on ≺a but is not a rotation edge as M(b) ≺b a.
An algorithm can prove that none of these edge are actually rotation edges by executing a
query top(b, P (b) ∪ {M(b)}) for each b ∈ B. This leads to n additional queries.

If an a ∈ A does not have a rotation edge, then the previous queries prove that this is the
case. Consider an a ∈ A that has a rotation edge. Then the second endpoint of that edge
is the agent b ∈ B of highest preference according to ≺a among those agents that satisfy
M(a) ≺a b and a ≺b M(b). Let b be that endpoint. To prove that (a, b) is indeed a rotation
edge, an algorithm has to verify a ≺b M(b) and M(b′) ≺b′ a for all b′ with M(a) ≺a b′ ≺a b.
The latter has already been verified by the previous n queries and the former can be proven
by an additional query top(b, {a, M(b)}). Doing this for every a ∈ A that has a rotation edge
leads to at most n further queries.

Executing these queries yields, for each a ∈ A, either the rotation edge of a or a proof
that a does not have a rotation edge. Thus, it gives sufficient information to show that M

does not have a rotation and is B-optimal. ◀

Next, we give an online algorithm that decides whether a given matching M is B-optimal
by executing at most O(n log n) set queries. In combination with Lemma 15, this yields an
O(log n)-competitive algorithm for verifying that a given matching is B-optimal with set
queries.

▶ Theorem 17. There is an algorithm that decides if a given matching M in a stable matching
instance with one-sided uncertainty is stable and B-optimal with O(n log n) set queries.

Proof. First, we can use Theorem 14 and execute O(n) queries to decide whether M is
stable. If M turns out not to be stable, then we are done. Otherwise, we have to decide
whether M is B-optimal by using at most O(n log n) set queries. We do so by giving an
algorithm that, for each a ∈ A, either finds the rotation edge of a or proves that a does not
have a rotation edge. After executing that algorithm we clearly have sufficient information
to decide whether M exposes a rotation and, thus, whether it is B-optimal.

For each a ∈ A, we use R(a) to refer to the set of agents that could potentially form a
rotation edge with a. Initially, we set R(a) = {b ∈ B |M(a) ≺a b} as all agents with a lower
priority than M(a) can potentially form a rotation edge with a based on the initially given
information. During the course of our algorithm, we will update the set R(a) such that it
always only contains the agents of B that, based on the information obtained by all previous
queries, could still form a rotation edge with a. In particular, if we obtain the information
that M(b) ≺b a for some b ∈ R(a), then (a, b) clearly cannot be a rotation edge and we
can update R(a) = R(a) \ {b}. Similarly, if we obtain the information that a ≺b M(b) for
some b ∈ R(a), then the agents b′ ∈ R(a) with b ≺a b′ cannot form a rotation edge with a

anymore and we can update R(a) = R(a) \ {b′ ∈ R(a) | b ≺a b′}. Given the current list R(a)
of potential rotation edge partners, we use R̄(a) to refer to the

⌈
|R(a)|

2

⌉
agents of R(a) with

the highest priority in R(a) according to ≺a.
Our algorithm, cf. Algorithm 2, proceeds in iterations that each execute at most O(n)

set queries. Let Ri(a), a ∈ A, denote the current sets of potential rotation edges at the
beginning of iteration i and let R̄i(a) be as defined above. We define our algorithm in a way
such that each iteration i decides for each a ∈ A whether it has a rotation edge to an agent of
R̄i(a) or not. Then, |Ri+1(a)| ≤ |Ri(a)|+1

2 holds for each a ∈ A with |Ri(a)| > 1 as we either
get Ri+1(a) ⊆ R̄i(a) or Ri+1 ⊆ Ri(a) \ R̄i(a). Furthermore, if |Ri(a)| = 1, then iteration i

either identifies the rotation edge of a or proves that it does not have one. This means that

APPROX/RANDOM 2024



17:18 Competitive Query Minimization for Stable Matching with One-Sided Uncertainty

Algorithm 2 Algorithm to decide whether a given matching is B-optimal using set queries.

Input: Stable matching instance with one-sided uncertainty and a matching M .
1 Decide whether M is stable using Theorem 14. If M is not stable, terminate;
2 R(a)← {b ∈ B |M(a) ≺a b} for all a ∈ A;
3 while We did not decide yet whether M is B-optimal do
4 U ← {a ∈ A | |R̄(a)| ≥ 1};
5 for b ∈ B do
6 Ub ← {a ∈ U | b ∈ R̄(a)};
7 repeat
8 t← top(b, Ub ∪ {M(b)});
9 if t = M(b) then R(a)← R(a) \ b for all a ∈ Ub; Ub ← ∅; ;

10 else
11 U ← U \ {t}; Ub ← Ub \ {t};
12 R(t)← R(t) \ {b′ ∈ R(t) | b ≺t b′};

13 until Ub = ∅;

after at most O(log n) such iterations, for each a ∈ A, we either found the rotation edge of a

or verified that it does not have one. Since each iteration executes O(n) set queries, we get
an algorithm that executes O(n log n) set queries and decides whether M is B-optimal.

It remains to show that each iteration i indeed executes O(n) set queries and decides,
for each a ∈ A, whether a has a rotation edge to some agent of R̄i(a). Lines 4 to 13 of
Algorithm 2 show the pseudocode for such an iteration. In each iteration i, the algorithm
considers the set U = {a ∈ A | |Ri(a)| ≥ 1}, i.e., the subset of A for which we do not yet
know whether it has a rotation edge to some agent of R̄i(a). Then, the algorithm iterates
through the agents b of B and considers the set Ub = {a ∈ U | b ∈ R̄i(a)}. Note that, for
each a ∈ Ub, it holds that if a ≺b M(b), then a has a rotation edge to some agent of R̄i(a)
(not necessarily to b). The algorithm executes the query top(b, Ub ∪ {M(b)}). If this query
returns M(b), then we know for sure that b does not have a rotation edge to any agent of Ub

and we can discard b for the rest of the iteration and also remove b from the current R(a) of
all a ∈ Ub. On the other hand, if the query returns a ̸= M(b), then we know that a has a
rotation edge to some agent of R̄i(a) and we do not need to consider a for the rest of the
iteration anymore. Thus, after each query within the iteration we discard an agent of either
A or B, which means that the iteration terminates after at most 2n queries. At the end of
the iteration, we know for each a ∈ A whether it has a rotation edge to some b ∈ R̄i(a). ◀

For the offline problem, we show that computing the query set of minimum size that
verifies that a given matching does not have a rotation is NP-hard. However, in the instances
constructed by the reduction, verifying that the given matching does not have a rotation
and is stable is trivial as we will discuss after the proof. This means that the following result
does not imply NP-hardness for the offline variant of finding the B-optimal matching with
set queries.

▶ Theorem 18. In the set query model, the offline problem of computing an optimal set of
queries for verifying that a given B-optimal stable matching M for a stable matching instance
with one-sided uncertainty does not have a rotation is NP-hard.

Proof. We show the statement by reduction from the NP-hard feedback vertex set problem [23].
In this problem, we are given a directed graph G = (V, E) and a parameter k ∈ N. The goal
is to decide whether there exists a subset F ⊆ V with |F | ≤ k such that deleting F from G

yields an acyclic graph.
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We construct an instance of the stable matching problem with one-sided uncertainty and
a matching M as follows:
1. For each v ∈ V , we add an agent av to set A and a matching partner M(av) to set B.
2. For each v ∈ V and u ∈ V \ {v}, we set M(av) ≺av M(au) if (v, u) ∈ E and M(au) ≺av

M(av) otherwise.
3. For each v ∈ V and u ∈ V \ {v}, we set av ≺M(v) au.

Based on the A-side preferences, each (av, M(au)) with (v, u) ∈ E could be an r-edge
and each (av, M(au)) with (v, u) /∈ E is not an r-edge. Consider the directed graph
G′ = (A ∪ B, E′) with E′ = {(M(av), av) | v ∈ V } ∪ {(av, M(au)) | (v, u) ∈ E)}. Then,
based on the A-side preferences, each cycle in G′ could be a rotation. Furthermore, if we
contract the edges {(M(av), av) | v ∈ V }, we arrive at the given graph G.

Assume that there is a set F ⊆ V with |F | ≤ k such that deleting F from G yields an
acyclic graph. Consider the queries top(M(av), A) for all v ∈ F . By the third step of the
reduction, these queries prove that the agents M(av) with v ∈ F are not part of any rotation.
This also means that the agents av with v ∈ F cannot be part of a rotation. Thus, the only
edges that can still be part of a rotation are the matching edges (M(av), av) with v /∈ F and
the edges (av, M(au)) with (v, u) ∈ E but v, u /∈ F . If we consider the graph induced by
these remaining edges and contract the matching edges, we arrive at the subgraph G[V \ F ]
of the given feedback vertex set instance. Since this graph by assumption does not contain a
cycle, this implies that executing the queries proves that the constructed instance has no
rotation.

Consider a query strategy that proves the constructed instance to not have a rotation
by using at most k queries. Let A′ ⊆ A denote the set of all agents that are returned as
the top choice by at least one of those queries. Then, by construction, the alternative query
strategy that queries top(M(av), A) for each av ∈ A′ must also be feasible and uses at most
k queries. This alternative strategy proves that there exists no rotation by proving that no
av ∈ A′ is part of any rotation. Thus, removing all vertices av and M(av) with av ∈ A′ from
the graph G′ as defined above yields a graph without cycles. This also implies that removing
F = {v ∈ V | av ∈ A′} from G yields a graph without cycles. Thus, F with |F | ≤ k is
feasible for the given feedback vertex set instance. ◀

In the instances constructed within the proof, querying top(M(av), A) for between n− 1
and n agents av ∈ A proves that the given matching is stable and B-optimal. If n− 1 queries
suffice, then this is optimal by Lemma 15. Otherwise, n queries are optimal. We can decide
whether n − 1 queries suffice via enumeration over which agent M(av) does not receive a
query top(M(av), A). Thus, the NP-hardness for proving that no rotation exists does not
directly translate to the offline problem of proving that a given matching has no rotation
and is stable.

6 Open Problems

While we understand the comparison model quite rigorously, it remains open in the set query
model what best possible competitive ratio can be achieved for finding a (A- or B-optimal)
stable matching. Further, it would be interesting to investigate the two-sided stable matching
problem with uncertainty in the preference lists on both sides. For verifying the stability
of a given matching in this case, we give a best possible 2-competitive algorithm in the full
version [3]. All other questions regarding finding a stable or stable and optimal matching
remain open under two-sided uncertainty. It would also be interesting to investigate a
generalized set query model in which a query to a set S ⊆ A for a b ∈ B reveals the top-k
partners of b, that is, the k partners in S that b prefers most.
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