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Abstract
The minimum directed feedback vertex set problem consists in finding the minimum set of vertices
that should be removed in order to make a directed graph acyclic. This is a well-known NP-hard
optimization problem with applications in various fields, such as VLSI chip design, bioinformatics
and transaction processing deadlock prevention and node-weighted network design. We show a
constant factor approximation for the directed feedback vertex set problem in graphs of bounded
genus.
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1 Introduction

In the directed feedback vertex set problem (DFVS), we are given a (node-weighted) directed
graph G = (V,E) with costs cv ∀v ∈ V and wish to find a minimum cost set X for which
G\X is acyclic. DFVS is one of Karp’s original 21 NP-hard problems [16]. The DFVS
problem has many applications including deadlock resolution [10], VLSI chip design [19] and
program verification [20].

A 2-approximation for (undirected) FVS is given in [2]. DFVS has a 2-approximation in
tournaments [21] and bipartite tournaments [24], is polynomial-time solvable on graphs of
bounded treewidth, has a 2.4-approximation in planar graphs [3] and has an O(logn log logn)-
approximation in general graphs [7]. DFVS does not have an O(1)-approximation under the
unique games conjecture [13]. The genus of a graph is the minimal integer g such that the
graph can be drawn without crossing itself on a sphere with g handles.

The following is the natural LP for DFVS and its dual, where C is the set of directed
cycles of our graph.

min cTx (PDFVS)
s.t. x(C) ≥ 1 ∀ C ∈ C (1)

x ≥ 0

max 1T y (DDF V S)

s.t.
∑

C∈C,v∈C

yC ≤ cv ∀v ∈ V (G)

y ≥ 0 .
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18:2 A Constant Factor Approximation for Directed Feedback Vertex Set

Given that constant approximations for DFVS exist for planar graphs, one naturally
wonders if DFVS admits constant approximations in bounded genus graphs. We answer this
question positively.

▶ Theorem 1. For any fixed genus g, there is a polynomial-time O(g)-approximation for
DFVS for graphs of genus g. Moreover, the algorithm returns a DFVS with cost O(g) times
the optimum solution to (PDFVS).

From the proof of Theorem 1, it is clear that the algorithm in Theorem 1 runs in time
O(g)poly(|V (G)|).

For uniform costs, the dual LP (DDF V S) is the natural LP of the dicycle packing problem.
The dicycle packing problem is the problem of finding the maximum number of vertex disjoint
dicycles of a graph. Schlomberg et al. [23] show that the LP gap of the natural LP for dicycle
packing is at most Ω( 1

g2 log g ) on any graph of genus g. Our result then also implies that the
minimum size of a DFVS is at most O(g3 log g) the size of a maximum dicycle packing.

1.1 Our techniques
Informally speaking, for a (directed) graph embedded on a surface where each directed cycle
bounds a region homeomorphic to the plane, one can apply the same primal-dual techniques
in [12, 3] to obtain a constant factor primal-dual approximation.

In the other case, our algorithm will use the natural LP for DFVS to look for a “separator”
[5, 8, 9] S ⊂ V of cost at most a constant times the optimal DFVS such that G\S is of
smaller genus. We obtain a directed cycle C, the removal of which results in a surface of one
smaller genus. Traversing along the dicycle, we may define a “left” and “right” side of the
dicycle. Like in [7], we solve the DFVS LP and use the LP values as distances.

If there is no short path leaving C from the left and entering C from the right and vice
versa then there is a small separator S such that each dicycle of G\S either does not use any
“left arc” that is, an arc coming in or leaving C from the left, or does not use any “right arc”
that is, an arc coming in or leaving C from the right. G with all left (resp. right) arcs deleted
is of genus at least one less so inductively we can solve within a constant factor DFVS on G
with all left (resp. right) arcs deleted. These two solutions together with S form a DFVS of
constant times more than the optimum. If such short paths exist but all starting points of
such paths and ending points of such paths are far apart the analysis is similar.

The final case is where there are short paths P1, P2 leaving C from the left and entering C
from the right (or vice versa) and the starting point of P2 is close to the endpoint of P1. We
show that P1 is “far” from P2 so to speak (we are using directed distances so this is not the
same as P2 being far from P1) and compute a suitable separator. We show that the resulting
strongly connected components are of smaller genus. We then combine approximations for
different components to give an approximation for the original graph.

The presentation in this paper is focused on demonstrating linear dependence on the
genus rather than optimizing the constant in Theorem 1.

2 Preliminaries

In our figures, we will use the representation of the torus by taking the unit square [0, 1]×[0, 1]
and identifying the two pairs of edges {0} × [0, 1], {1} × [0, 1] and [0, 1]× {0}, [0, 1]× {1},
that is, the point (0, p) is identified with (1, p) and the point (q, 0) is identified with the point
(q, 1).
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Throughout this paper, all surfaces are orientable and smooth and all curves are piece-
wise smooth. Distances on surfaces will refer to the geodesic (shortest path on the surface)
distance. It is well known (see for instance [22]) that a smooth orientable surface Q is
diffeomorphic to the g-genus torus for some g. For X ⊂ Q, denote cl(X) as the closure of X
in Q. We henceforth assume our surface is a g-genus torus for some g.

Let us call a cycle of G, or a closed curve C embedded on a surface Q facial if it bounds a
region inside(C) of the surface homeomorphic to the plane. If the genus of Q is greater than
0, call inside(C) the inside region of Q\C. For any set F ⊂ V , define GF to be the residual
graph, that is, the subgraph of G induced by those vertices that lie in a dicycle of G\F .

3 Hitting the facial cycles of a digraph

In general, given a (node-weighted) directed graph G = (V,E) with costs cv ∀v ∈ V a set
C of cycles of a digraph G, we define the C-hitting set problem as the problem of finding a
minimum cost set X such that X ∩ C ̸= ∅ ∀C ∈ C. In this section, we are concerned with
when C is the set of facial cycles of our graph.

Given a digraph G embedded on a surface Q, we show how to obtain an O(g)-
approximation for the problem of finding a minimal hitting set for the set of facial dicycles
of a graph embedded on any surface Q of genus g.

▶ Theorem 2. For a graph G embedded on a surface Q of genus g, there is a polynomial-time
O(g)-approximation for the problem of hitting facial dicycles of G. Moreover, the algorithm
returns a DFVS with cost O(g) times the optimum solution to (PDFVS) where C is the set of
facial dicycles.

Further, if G is embedded in a way such that there exist regions R1, R2 of Q homeomorphic
to the open disk, such that the inside region of any facial dicycle contains at least one of
R1, R2, then there is an algorithm that returns the optimum solution to (PDFVS) where C is
the set of facial dicycles.

Proof. We first show that DFVS has an O(g)-approximation. If C is a facial cycle bounding
a face of G, call C face minimal. Note that if G contains a facial cycle, then it must contain
a face minimal cycle by the following argument. Let C be a dicycle such that inside(C) is a
minimal (by containment) region of Q. Recall that we removed all vertices of G not lying
on a dicycle. In particular, any vertex w inside the region inside(C) must lie on a facial
dicycle Aw. Aw cannot be contained entirely in cl(inside(C)), as then the region Aw would
be strictly contained in inside(C). Thus, inside(Aw) intersects C and there is a dipath P

between two nodes u, v of C. If C is not a face, then either there is a vertex w inside the
region RC or there is an edge uv between two nodes u, v of C such that g(uv)\(g(v) ∪ g(u))
lies in RC . In either case, there is a dipath P between two nodes u, v of C then P together
with either the u-v or v-u dipath in C forms a cycle bounding a smaller region of Q, which
is a contradiction.

Our algorithm proceeds as follows. This is a primal-dual algorithm analogous to the
technique of [12] for DFVS in planar graphs. Given a feasible dual solution y to (DDF V S),
let the residual cost of node v ∈ V be cv −

∑
C∈C,v∈C yC . For Ŝ ⊂ V (G), recall GŜ denotes

the subgraph of G induced by those vertices which are in a dicycle of G\Ŝ.
Our primal-dual method begins with a trivial feasible dual solution y = 0, and the empty,

infeasible hitting set Ŝ = ∅.
While GŜ contains a facial cycle, increment the dual variables yC in PDFVS of face minimal

cycles C of G. When a node of G becomes tight add it to Ŝ. When GŜ contains no facial
cycles apply reverse deletion to Ŝ with respect to the facial cycles of GŜ , that is, we consider

APPROX/RANDOM 2024



18:4 A Constant Factor Approximation for Directed Feedback Vertex Set

Algorithm 3.1 MinWeightDirectedFVS (G, c).

Input : A digraph G = (V,E) with non-negative node-costs cv, for each v ∈ V .
Output : A Directed FVS S of G.

1 S = ∅
2 while GS contains a facial cycle do
3 Increment all dual variables yC for face minimal cycles of GS . Add all nodes that

became tight to S.
4 end while
5 Reverse-Deletion:
6 Let s1, s2, .., sl be nodes of S in the order they were added.
7 for t = l downto 1 do
8 if GS\{st} contains no facial cycle then
9 S ← S\{st}

10 end if
11 end for
12

13 return S

each node v of Ŝ in the order it was added and if G\(Ŝ\{v}) contains no facial cycles, delete
v from Ŝ. Denote by S̄ the set Ŝ at the end of the algorithm. In other words, we apply the
primal-dual method to solve the problem of hitting all facial dicycles of G.

Clearly, S̄ is a feasible hitting set for the set of facial dicycles of G, we claim it has cost
O(g)OPTLP . To do so we apply that standard analysis of primal-dual methods in [11, 12].

▶ Theorem 3 ([11]). Suppose S ⊂ V (G) and y is a solution to (DDF V S) output by our
primal-dual algorithm such that the following holds.
1. y is obtained starting with the initial feasible solution y := 0 and incrementing some set

of dual variables {yC : v ∈ Ct} uniformly and maintaining feasibility of y for iterations
t = 1, 2, .., l for some l ∈ N.

2. For each iteration t ∈ {1, 2, 3, .., l}, the set {yC : C ∈ Ct} of incremented dual variables
satisfies

∑
C∈Ct

|S ∩ C| ≤ β|Ct|.
3. ∀v ∈ S,

∑
C∈C v∈C yC = cv.

Then S has cost at most β
∑

C∈C yC , that is at most β times the LP value.

Using Theorem 3, it suffices to prove that during any iteration t, the face minimal cycles
Ct of GSt , where St is our current hitting set satisfies∑

C∈Ct

|S̄ ∩ C| ≤ O(g)|Ct|. (2)

Again we remove nodes of G that do not lie on any dicycle. Denote S̄t to be the nodes of
S̄ that intersect a cycle of Ct. So it suffices to show

∑
C∈Ct

|S̄t ∩ C| ≤ O(g)|Ct|.
The following definition of crossing cycles was elementary to the approach by Goemans

and Williamson [12].

▶ Definition 4. Fix an embedding of a planar graph. Two cycles C1, C2 cross if Ci contains
an edge intersecting the interior of the region bounded by C3−i, for i = 1, 2. That is, the
plane curve corresponding to the embedding of the edge in the plane intersects the interior of
the region of the plane bounded by C3−i. A set of cycles C is laminar if no two elements of C
cross.
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Denote C′ the set of facial cycles of C. For a node v ∈ S̄, call a cycle C ∈ C′ with
C ∩ S̄ = {v} a witness for v. Since we applied reverse deletion to S̄ at the end of the
algorithm, each node of S̄ has a witness in C′ which is a cycle of GS .

The following result about the structure of witness cycles was vital to the 3 and 2.4
approximations for DFVS in planar graphs by [12] and [3]. We observe that the proof in [12]
which involves iteratively applying an “uncrossing” procedure to two witness cycles that
cross yields the same result for facial cycles of graphs on surfaces.

▶ Lemma 5 ([12]). There exists a laminar family A ⊂ C′ of witness cycles in GSt̄ for S̄t.

The laminar family A can be represented by a forest where A1 is an ancestor of A2 if the
inside region of A1 contains the inside region of A2. Add a root node r to this forest, make
it the parent of every maximal node of the forest and call the resulting tree T .

We assign each cycle C of Ct to the smallest node of T containing C. Call the set of cycles
assigned to w ∈ T , Cw. We assign the nodes that w and the children of w are witnesses of to
w and call this set S̄w.

To bound
∑

C∈Ct
|S̄t ∩ C|, we define the following bipartite graph.

▶ Definition 6 ([12]). The debit graph for Ct and S is the bipartite graph DG = (R∪ S,E)
with edges ECt

= {(C, s) ∈ Ct × S | s ∈ C}.

Since each C ∈ Ct is incident to the vertices of S̄t on C, |S̄t ∩ C| is the degree of C in DG.
Summing this equality over each C ∈ Ct yields

∑
C∈Ct

|S̄ ∩ C| = E(DG). By placing the
node of the debit graph corresponding to C inside the inside region of C we can see that the
debit graph is also embedded on Q.

▶ Proposition 7 (Corollary of Euler’s formula for graphs of genus g). A (simple) bipartite
graph Ḡ with at least three vertices embedded on a surface of genus g satisfies

E(Ḡ) ≤ (2 + g)|V (Ḡ)| − 4

if G has two vertices then

E(Ḡ) ≤ (2 + g)|V (Ḡ)| − 3

Proof. Euler’s formula (for instance see [17]) for graphs embedded on a surface of genus
g yields 2 − 2g = |V (Ḡ)| − |E(Ḡ)| + |F (Ḡ)|. Following the same method as the proof of
Euler’s formula for bipartite planar graphs with at least 3 vertices, (for instance see Corollary
4.2.10 of [6]) we observe that each face of Ḡ having at least 4 edges means |F (Ḡ)| ≤ 1

2 ||.
Thus, for |V (Ḡ)| ≥ 3, |E(Ḡ)| ≤ 2|V (Ḡ)| − 4 + 4g ≤ (2 + g)|V (Ḡ)| − 4. If |V (Ḡ)| ≤ 2 then
|E(Ḡ)| ≤ 1 ≤ (2 + g)|V (Ḡ)| − 3. ◀

For a node w of T that is not a leaf or the root, the subgraph of DG induced by Cw ∪ S̄w is
embedded on Q and further |Cw ∪ S̄w| ≥ 3, thus by Proposition 7,

|E(DG(Cw∪ S̄w))| ≤ (2+g)|Cw|+(2+g)|S̄w|−4 = (2+g)|Cw|+(2+g)(degT (w)−1)−4. (3)

For a leaf v of T

|E(DG(Cv ∪ S̄v))| ≤ (2 + g)|Cv|+ 2|S̄v| − 3 = (2 + g)|Cv|+ 2(degT (v)− 1)− 3. (4)

For the root r of T

|E(DG(Cr ∪ S̄r))| ≤ (2 + g)|Cr|+ 2|S̄r| = (2 + g)|Cr|+ 2(degT (r)− 1). (5)

APPROX/RANDOM 2024



18:6 A Constant Factor Approximation for Directed Feedback Vertex Set

Summing these up we get

|E(DG)| =
∑

v∈T |E(DG(Cv ∪ S̄v))|
≤ (2 + g)|C|+

∑
v∈T (2 + g) degT (v)− 4|T |+ l + 4

≤ (2 + g)|C|+ 2((2 + g)|T | − 2)− 4|T |+ l + 4
≤ (2 + g)|C|+ 2g|T |+ l

≤ (3 + 3g)|C|

where l is the number of (non-root) leaves of T . Thus,
∑

C∈Ct
|S̄∩C| = |E(DG)| ≤ (3+3g)|C|.

This shows that S̄ has cost O(g)OPTLP and hence our algorithm returns a solution of
cost O(g)OPTLP .

Now let us show that in the case G is embedded in a way such that there exist regions
R1, R2 of Q homeomorphic to the open disk, such that the inside region of any facial dicycle
contains at least one of R1, R2, then Algorithm 3.1 is an 8- approximation.

The proof works exactly the same as the general case. The key here is to note that the
inside regions of face minimal dicycles do not intersect. Thus, R1 lies in the inside region
of at most one cycle in Ct. Likewise, R2 lies in the inside region of at most one cycle in
Ct. Since inside region of any facial dicycle contains at least one of R1, R2, |Ct| ≤ 2. Again
Lemma 5 holds. For a facial dicycle A, denote insideCt

(A) the set of cycles of Ct that lie in
the closure of the inside region of A.

▶ Lemma 8. There do not exist distinct A1, A2, A3 ∈ A such that insideCt
(A1) =

insideCt(A2) = insideCt(A3).

Proof. Suppose such A1, A2, A3 existed. Since they are laminar we may assume w.l.o.g that
A1 is contained in the closure of the inside region of A2 and A2 is contained in the closure of
the inside region of A3. Let vi be the hit node that Ai is the witness of. Note that v2 does
not lie on A1. Thus, as v2 lies outside inside(A1), it lies outside the closure cl(inside(A1)) of
inside(A1). So v2 lies in Q\ inside(A3). Thus, v2 does not lie on any cycle of insideCt

(A3).
Also v2 does not lie on A3. Thus, as v2 lies inside cl(inside(A3)), it lies inside inside(A3).
Thus, v2 does not lie on any cycle of Ct\ insideCt

(A3).
This implies that v2 does not lie on any cycle of Ct, which is a contradiction. ◀

This implies that |S̄t| = |A| ≤ 2(2|Ct|) ≤ 8. Thus,
∑

C∈Ct
|S̄t ∩ C| ≤ |S̄t||Ct| ≤ 8|Ct|. This

shows Algorithm 3.1 is an 8-approximation. ◀

4 Solving the case of no facial cycles

We now show the LP gap of the natural LP (PDFVS) for G has integrality gap O(g) in the
case G contains no facial cycles. This will allow us to derive an O(g)-approximation for the
general case by first using Theorem 2 to obtain a hitting set S for the set of facial cycles of
cost at most O(g)OPT and then obtaining a hitting set S̄ for the remaining dicycles.

▶ Lemma 9. Suppose G is a digraph embedded on a surface Q of some fixed genus g and
there is no facial dicycle of G. Then the LP gap of the natural LP (PDFVS) for G has
integrality gap O(g).

Proof. We prove the statement by induction on the genus g. The case g = 0 is trivial because
all cycles in planar graphs are facial. Suppose the statement is true for g = g′. Let Q be a
surface of genus g, Let G be a digraph embedded on Q.
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First, while the optimal solution x̄ to (PDFVS) has a vertex v with value x̄v ≥ 1
24 add v

to our temporary hitting set F . Formally initialize F = ∅. While the optimal solution x̄ to
(PDFVS) for GF contains a value x̄v which is 1

24 or more add v to F .
Let F denote the final set obtained. Let x̂ be an optimal extreme point solution for the

DFVS LP (PDFVS) for GF , so x̂v <
1

24 ∀v ∈ V (GF ). Standard results in iterative rounding,
see for instance page 14 of [18], show F has cost at most 24 times the optimal value of our LP.

We now seek to define (integral) distances on GF . By standard LP theory, x̂ has rational
coordinates. Let N ∈ Z>0 be such that Nx̂ and 1

12N are integral, call Nx̂v, the weight of v.
Define the weighted distance of path P = v0, v1, .., vl, ω(P ) to be ω(P ) :=

∑l−1
i=0 Nx̂vi

. For
a subgraph H of GF define the weighted distance d{ω,H}(u, v) from u to v the minimum
weight of a u-v path in H. Define dω := d{ω,G}. For U,W ⊂ V (G), define dω,H(U,W ) :=
minu∈U,w∈W dω(u,w). Define dω(U,W ) = dω,G(U,W ). Define the weighted distance of a
closed walk P ′ = v0, v1, .., vlv0, ω(P ′) to be ω(P ′) :=

∑l
i=0 Nx̂vi

. The results in this paper
could also be shown by instead defining the weight of each vertex to be x̂v and instead
defining the layers (see later) to be the vertices at distance a multiple of 1/N from a given
set of vertices. Since x̂ is feasible the following result holds.

▶ Proposition 10. The weighted distance of any (directed) closed walk P ′ is at least N .

Since x̂ is optimal, there exists a dicycle C1 := v1, v2, .., vl′ such that
∑

v∈C1 x̂v = 1. The
motivation of our definition of weighted distance comes from [7]. In [7], they also scale the
LP values of (PDFVS) so that the resulting values are integer. For any vertex v with x̂v = 0,
they “bypass” the vertex, that is, for each out neighbour u of v and in neighbour w of v,
they add the edge wu to the graph and when they have done this for all neighbours, they
delete v from the graph. For any vertex v with Nx̂v > 1‘ they replace v by a “chain” of
Nx̂v > 1‘ vertices v1 → v2 → .. → vNx̂v

, that is, for i = 1, 2, .., Nx̂v − 1, vivi+1 is an edge.
wv1 and vNx̂v

u are edges for each in neighbour w and out neighbour u. Call this graph H.
For any W ⊂ V (H) they define “layers” Li = {v ∈ H : dH(W, v) = i} the nodes at

distance i from W . They show that the cost of all layers L0, L1, ... is
∑

v∈V (G) Nx̂v. This is
very useful for us as we will use this to show that one layer in L1, ...Lm has cost at most
1
m

∑
v∈V Nx̂v. However, the bypassing operation and replacing a node with a chain operation

of [7] do not preserve the genus of the graph. We instead define the notion of weighted
distance dω. Denote the i-th layer from W as Li := {v ∈ V : i ≥ dω(W, v) > i− ω(v)} the
set of nodes for which the distance from W to v is at most i, but for which the distance
plus the weight of v is more than i. One can see that v lies in Nx̂v different Li, which is
analogous to how H defined in [7] contains Nx̂v copies of v each lying in different layers as
well. In particular, a node of weight 0 does not lie in any Li, which is analogous to how a
vertex of weight 0 is bypassed in [7].

Consider the embedding of C1 on our surface. Given a subgraph W of G, denote by g(W )
the subset of our surface occupied by a vertex or edge of W . We want to define a “small”
neighbourhood around g(C1), not containing any vertices outside C1, which we divide up
into “left” of g(C1) and “right” of g(C1), which we do using the following propositions. These
are slightly informal statements of the exact propositions we require, the precise statements
appear in Section 5.

▶ Proposition 11 (Informal statement of Proposition 23 and Proposition 24). Given a closed
continuous non-self-intersecting curve C ′ embedded on an orientable surface Q, we may
partition a small open neighbourhood about C into a “left” L and “right” R. For any curve
f : [0, 1]→ Q disjoint from C ′ except at f(1) the partition allows us to say that f “reaches”
C ′ from either the left or right.

APPROX/RANDOM 2024



18:8 A Constant Factor Approximation for Directed Feedback Vertex Set

h(0)

h(1)

Figure 1 L and R from Proposition 11 in yellow and red respectively curve C′ depicted in black.
The curve h leaving C′ from the left and entering from the right is depicted in dark green. The
closed curve formed by h and the subcurve of C′ between h(0) and h(1) depicted in light green
forms a non-facial closed curve.

▶ Proposition 12 (Informal statement of corollary of Proposition 26). Let C ′ be a non-facial
closed curve. If a curve h : [0, 1] → Q “leaves” C ′ at a point h(0) ∈ C ′ from the left and
reaches C ′ at a point h(1) ∈ C ′ from the right, then h([0, 1]) together with a subcurve of C ′

from h(0) to h(1) is a non-facial closed curve.

We defer the proofs of Proposition 11 and Proposition 12 for now. We apply Proposition 11
to g(C1). Let L,R be as in Proposition 11 so that each g(e) for e ∈ E(G)\E(C1) is disjoint
from at least one of L,R and for each e ∈ E(G\C1), g(e) is disjoint from both L,R. For
each arc uv of GF with exactly one endpoint v on C1, g(uv) can be parameterized by a
(continuous) curve f : [0, 1]→ g(uv) with f(0) = g(u), f(1) = g(v). If f reaches g(C1) from
the left we say that uv reaches C1 from the left, otherwise, we say uv reaches C1 from the
right.

Let u′
i,1, u

′
i,2, .., u

′
i,li

be the out neighbours of vi such that the edges u′
i,t′vi reach vi from

the left, that is, the arc obtained from reversing the arc viu
′
i,t′ of our graph reaches vi from the

left. Let w′
i,1, w

′
i,2, .., w

′
i,zi

be the in neighbours of vi such that the edges w′
i,t′vi reach vi from

the right. Subdivide each edge viu
′
i,t into a path viui,tu

′
i,t and each edge w′

j,t′vj into a path
w′

j,t′wj,t′vj and give the new vertices wj,t′ , ui,t infinite cost. There is a natural embedding
of our new graph on our surface by placing each ui,t where the midpoint of the curve
g(viu

′
i,t) was embedded and likewise for wj,t′ . By abuse of notation, we continue to call our

graph G and define x̂ui,t = x̂wj,t′ = 0 for all ui,t, wj,t′ . Denote U := ∪l′

i=1{ui,1, ui,2, .., ui,li}
and W := ∪l′

i=1{wi,1, wi,2, .., wi,zi
}. For X ⊂ [l′], denote UX := ∪i∈X{ui,1, ui,2, .., ui,li

},
VX = {vi : i ∈ X} and WX := ∪i∈X{wi,1, wi,2, .., wi,zi}.

Let τ− := {i ∈ [l′] : ∃wi,t′ ∈ W, ∃uj,t ∈ U : dω,GF \C1(uj,t, wi,t′) < 1
12N} the first

indices of the set of vertices of W of weighted distance at most 1
12N from U in GF \C1. Let

τ+ := {j ∈ [l′] : ∃uj,t ∈ U, ∃wi,t′ ∈W : dω,GF \C1(uj,t, wi,t′) < 1
12N} the first indices of the

set of vertices of U that can reach W in GF \C1 with a path of weighted distance at most
1

12N .

▷ Claim 13. If dω(Vτ− , Vτ+) > 1
12N , then we can find S ⊂ V , c(S) = O(1)OPTLP , where

OPTLP :=
∑

v∈V cvxv is the value of the optimal fractional solution, such that any strongly
connected component of GF \S does not contain a directed path from U to W in G\C1.
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Figure 2 Nodes of Uτ+ and Vτ− shown in blue.

If dω(Vτ− , Vτ+) ≤ 1
12N , then the LP gap of the natural LP (PDFVS) for GF has integrality

gap O(g).

Proof. Suppose dω,G\C1(Vτ− , Vτ+) > 1
12N . For i = 0, .., 1

12N let Si := {v ∈ V : i ≥
dω,GF \C1(U\Uτ+ , v) > i−ω(v)} denote the set of vertices of V that are at weighted distance
i from U\Uτ+ inGF \C1. (see Figure 2). Since dω,GF \C1(U\Uτ+ ,W ) > 1

12N , for i = 0, .., 1
12N ,

W ∩ Si = ∅ and W is not reachable from U\Uτ+ in (GF \C1)\Si for any i.
Since each v can lie in at most ω(v) Si,

∑ 1
12 N
i=0 c(Si) ≤ N · OPTLP . Let S′ be the

Si of minimum cost. For i = 0, .., 1
12N let Ti := {v ∈ V : i > dω,GF \C1(v,W\Wτ−) −

ω(v), dω,GF \C1(v,W\Wτ−) ≥ i}. Since for v ∈ U , dω,GF \C1(v,W\Wτ−) − ω(v) =
dω(v,W\Wτ−) > 1

12N , U ∩ Ti = ∅ for i = 0, .., 1
12N . Hence W\Wτ− is not reachable

from U in (GF \C1)\Ti for any i. Let T ′ be the Ti of minimum cost.
Finally, let Yi := {v ∈ V : i ≥ dω(Vτ− , v) > i − ω(v)} the set of vertices of weighted

distance i from Vτ− . By assumption dω(Vτ− , Vτ+) > 1
12N and hence Vτ+ is not reachable

from Vτ− in GF \Yi for any i = 1, 2, .., 1
12N . Let Y ′ be the Yi of minimum cost.

Let S := S′ ∪ T ′ ∪ Y ′. We claim no strongly connected component K ′ of GF \S contains
a directed path from U to W in GF \C1. Suppose for a contradiction that some strongly
connected component K ′ of GF \S contains a directed path from some ui,t ∈ U to some
wj,t′ ∈W .

If j /∈ τ−, then wj,t′ is not reachable from U in GF \S. If i /∈ τ+, then W is not reachable
from ui,t in GF \S. Thus, if either j /∈ τ− or i /∈ τ+ then there is no path from ui,t to wj,t′

in GF \S. Thus, j ∈ τ− and i ∈ τ+. As K ′ is strongly connected, this implies that GF \S
contains a path from Vτ− to Vτ+ , which is not possible.

Now suppose that dω(Vτ− , Vτ+) ≤ 1
12N . Let i ∈ τ− and j ∈ τ+ be such that dω(vi, vj) ≤

1
12N . Let P1, P2, P3 be ua,t-vi, uj,t′-vb and vi-vj paths of weight at most 1

12N , with the
second last vertices of P1, P2 being in W , for some a, b. Such paths exist as i ∈ τ− and j ∈ τ+.
If a = i, then P1viua,t is a cycle for which

∑
v∈P1viua,t

x̂v < 1 which is a contradiction. So
a ̸= i, likewise b ̸= j.

For i′, j′ ∈ {1, 2, .., l′}, let C1
(vi′ ,vj′ ) := vi′ , vi′+1, vi′+2, .., vj′−1vj′ (where vt = vt (mod l′))

denote the directed path in C1 from vi to vj . Note that dω(vi′ , vj′) = ω(C1
(vi′ ,vj′ )), for

otherwise there is a vi′-vj′ path P ′ of weight less than dω(vi′ , vj′). Then C1
(vj′ ,vi′ ) ∪ P

′ is
a directed closed walk of weight ω(C1) − ω(C1

(vi′ ,vj′ )) + dω(vi′ , vj′) < ω(C1). Noting that
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the weighted distance of a cycle is equal to N
∑

v∈C1 x̂v, we obtain N
∑

v∈C1
(v

j′ ,v
i′ )∪P ′ x̂v <

ω(C1) = N , from which it follows the sum of the x̂v values along the closed walk C1
(vj′ ,vi′ )∪P

′,∑
v∈C1

(v
j′ ,v

i′ )∪P ′ x̂v is strictly less than 1, which contradicts the feasibility of x̂.

We claim ω(C1
(va,vi)), ω(C1

(vj ,vb)) ≤
1

12N . Suppose for a contradiction that ω(C1
(va,vi)) >

1
12N . Since ω(C1) = N , this implies that ω(C1

(vi+1,va−1)) < N − 1
12N . Then the cycle

P1C
1
(vi,va)vaua,t satisfies

∑
v∈V (P1C1

(vi,va)vaua,t) x̂v < 1− 1
12 + 1

12 = 1 which is a contradiction.
Likewise, ω(vj , vb) ≤ 1

12N .
Let us show C1

(va,vi) ∩ C
1
(vj ,vb) = {vi} ∩ {vj}, that is the paths C1

(va,vi) and C1
(vj ,vb) are

disjoint except in the case i = j when their intersection is vi. First, let us address the case
i ≠ j. Suppose for a contradiction that C1

(va,vi) ∩ C
1
(vj ,vb) ̸= ∅. Let v ∈ C1

(va,vi) ∩ C
1
(vj ,vb).

Note v ̸= vi, vj for otherwise C1
(vj ,vi)P3 is a closed walk of weight less than N . Let Q1 be

a path from v to vi in C1
(va,vi) and Q2 a path from vj to v in C1

(vj ,vb). Then Q2Q1P3 is a
closed walk of weighted distance at most 1

4N which is a contradiction.
Now suppose that i = j. Suppose for a contradiction that C1

(va,vi) ∩ C
1
(vj ,vb) ̸= {vi}. Let

v ∈ (C1
(va,vi) ∩ C

1
(vj ,vb))\vi. Let Q1 be a path from v to vi in C1

(va,vi) and Q2 a path from vi

to v in C1
(vi,vb). Then Q1Q2 is a closed walk of weighted distance at most 1

6N , which is a
contradiction.

▷ Claim 14. dω(P2 ∪ C1
(vj+1,vb), P1 ∪ C1

(va,vi)) ≥
1
6N .

Proof. Suppose for a contradiction that dω(P2 ∪ C1
(vj+1,vb), P1 ∪ C1

(va,vi)) <
1
6N . Let s ∈

P2 ∪ C1
(vj+1,vb) and q ∈ P1 ∪ C1

(va,vi) be such that dω(s, q) < 1
6N . Let P ′

1 be the directed
path in P1 ∪C1

(va,vi) from q to vi. P ′
2 the directed path in P2 ∪C1

(vj ,vb) from vj to s and Q a
path of weight at most 1

6N from s to q. Then C̄ := vjP
′
2QP

′
1P3 is a closed walk such that∑

v∈C̄ x̂v < 1 which is a contradiction (see Figure 3).
Thus, dω(P2 ∪ C1

(vi,vb), P1 ∪ C1
(va,vi)) ≥

1
6N . Since dω(u, vi) ≤ 1

12N for any u ∈ C1
(va,vi),

dω(P2, C
1
(va,vi)) ≥

1
12N ◁

For i = 0, 1, .., 1
12N , define Ri := {v ∈ V : i ≥ dω(P2 ∪ C1

(vj+1,vb), v) > i − ω(v)}. Each
vertex v ∈ V lies in at most ω(v) Ri. Let R′ be the Ri of the smallest cost, so c(R′) ≤
12OPTLP . Since dω(P2 ∪ C1

(vj+1,vb), P1 ∪ C1
(va,vi)) ≥

1
12N , it follows that (P1 ∪ C1

(va,vi))\Ri

is not reachable from (P2 ∪ C1
(vj+1,vb))\Ri in G\Ri for any i. Thus, (P1 ∪ C1

(va,vi))\R′ is not
reachable from (P2 ∪ C1

(vj+1,vb))\R′ in G\R′.
Thus, any strongly connected component of G\R′ is either contained in GF \(P1∪C1

(va,vi))
or GF \(P2 ∪ C1

(vj+1,vb)). For i = 1, 2, .., 1
12N let K+

i := {v ∈ V : i ≥ dω(vj , v) > i− ω(v)}
be the vertices of weighted distance i from vj . Let K ′+ denote the K+

i of minimum cost.

▷ Claim 15. vj is not contained in a cycle in GF \(R′ ∪K ′+).

Proof. Suppose that there is a cycle a1, a2, .., apvja1 in GF \(R′ ∪K ′+). If dω(vj , ap) > 1
12N ,

then ap is not reachable from vj in GF \(R′ ∪K ′+). Thus, there is a path Pa of weighted
distance at most 1

12N from vj to ap. Then the closed walk vjpaapvj has weighted distance
at most ω(Pa) + ω(ap) ≤ 1

12N + 1
12N < N which is a contradiction. ◁

Recall that any dicycle of GF \R′ is contained in either GF \(P1 ∪ C1
(va,vi)) or GF \(P2 ∪

C1
(vj+1,vb)). Since vj is not contained in any dicycle of GF \(R′ ∪K ′+) it follows that any

dicycle of GF \(R′ ∪K ′+) is either contained in G\(P1 ∪C1
(va,vi)) or in G\(P2 ∪C1

(vj ,vb)). By
Proposition 12, g(P1 ∪ C1

(va,vi)) and g(P2 ∪ C1
(vj ,vb)) are nonfacial.
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Figure 3 On the left, there are u1,1-v2 and u2,1-v3 paths (green and blue vertices respectively) of
weight at most 1

12 N and s-q path of length at most 1
12 N . The red cycle would then have weight

at most N , which is a contradiction. On the right are the sets Ri, vertices at distance i from
P2 ∪ C1

(vj+1,vb).

▶ Definition 16 ([1, 14]). Given a simple closed curve f on a surface without boundary Q,
not dividing the surface into 2 regions, we say Q′ is obtained by doing surgery along f if Q′

is obtained as follows. “Thicken” f to obtain a cylinder and remove this cylinder from Q,
call this resulting surface Q′′. The boundary of Q′′ consists of 2 circles we “glue” two cones
N1, N2 along these circles and call this final surface Q′.

▶ Theorem 17 ([1] p.162). For a surface without boundary Q of genus g′, Q′ obtained by
Definition 16 is a surface without boundary of genus at most g′ − 1.

We apply the surgery of Definition 16 to g(P1 ∪ C1
(va,vi)) to obtain a surface Q′ of genus

one less than Q. Let N ′
1, N

′
2 denote the two cones glued to Q′. We also apply the surgery of

Definition 16 to g(P2 ∪ C1
(vj ,vb)) to obtain a surface Q̂ of genus one less than Q. Let N̂1, N̂2

denote the two cones glued to Q̂.

▶ Lemma 18. Let G be a graph embedded on a surface Q with no dicycles. Let h be a non-
facial curve of Q\G. Let Q′ be the surface obtained by applying the surgery of Definition 16
to with respect to the curve h and surface Q. There is a natural embedding of G on Q′ (by
leaving each node of G where it was in Q). Let N1, N2 denote the two cones glued to Q′

during the surgery process. Then each facial cycle of G with respect to its embedding in Q′

contains either N1 or N2 in its inside region.
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Proof. Let C be a facial cycle of GF \(P1 ∪ C1
(va,vi)) with respect to its embedding in Q′. If

neither of the cones N1, N2 are contained in the inside region of C, then C is a facial cycle
of G with respect to its embedding in Q, which is a contradiction. ◀

Thus, any facial cycle of GF \(P1 ∪ C1
(va,vi)) contains either N ′

1 or N ′
2 in its inside region.

Now let G1, G2, .., Gl be the strongly connected components of GF \(R′ ∪K ′+). Since any
closed walk of of GF \(R′∪K ′+) is either contained in G\(P1∪C1

(va,vi)) or in G\(P2∪C1
(vj ,vb))

each strongly connected component is either contained in G\(P1 ∪ C1
(va,vi)) or in G\(P2 ∪

C1
(vj ,vb)). If Gi is contained in G\(P1 ∪ C1

(va,vi)), then there is a natural embedding of Gi in
Q′ (obtained by leaving all nodes and edges where they are in the surgery for Definition 16).
Likewise, if Gi is contained in G\(P1∪C1

(va,vi)), then there is a natural embedding of Gi in Q̂.
Thus, for any Gi contained in G\(P1 ∪ C1

(va,vi)) by Theorem 2, there is an 8-approximation
for the problem of hitting the facial cycles of Gi (with respect to the natural embedding in
Q′). Likewise, for any Gi contained in G\(P2 ∪ C1

(vj ,vb)) there is an 8-approximation for the
problem of hitting the facial cycles of Gi. Let Zi be a solution for the problem of hitting
facial cycles of Gi of cost at most 8OPTLP (Gi) as guaranteed by Theorem 2.

Then each Gi\Zi is embedded in a surface of smaller genus with no facial cycles.
By induction, there are solutions Ai to Gi\Zi of cost cg−1OPTLP (Gi\Zi), where cg is the

integrality gap of the DFVS LP for graphs of genus g.
Define x̂Gi\Zi ∈ RV (Gi\Zi) as x̂Gi(v) = x̂v, where x̂ is as in the proof of Lemma 9.

Since graphs Gi are vertex disjoint, Gi\Zi are vertex disjoint, so
∑l

i=1 OPTLP (Gi) ≤∑l
i=1

∑
v∈V (Gi) x̂

G
i (v) ≤

∑
v∈V (G) x̂ = OPTLP (G). Now F ∪R′ ∪K ′+ ∪ (∪l

i=1Ai)∪ (∪l
i=1Zi)

is a DFVS of cost (O(1)+cg−1)OPTLP (G) = (O(1)+O(g−1))OPTLP (G) = (O(g))OPTLP (G).
◁

Note that the argument in Claim 13 is symmetric with respect to left and right and we
may swap right and left to get the following result. Let b′

i,1, b
′
i,2, .., b

′
i,l′

i
be the in neighbours of

vi such that each edge b′
i,tvi reaches vi from the left and d′

i,1, d
′
i,2, .., d

′
i,t′

i
be the out neighbours

of vi such that the edge d′
i,t′vi reaches vi from the right. Subdivide each edge b′

j,t′vj into a
path b′

j,t′bj,t′vj and each edge vid
′
i,t into a path vidi,td

′
i,t and give the new vertices dj,t′ , bi,t

infinite cost. There is a natural embedding of our new graph on our surface by placing each
bi,t where the midpoint of the curve g(vib

′
j,t′) was embedded and likewise for dj,t′ . By abuse

of notation, we continue to call our graph G and define x̂bi,t = x̂dj,t′ = 0 for all bi,t, dj,t′ .
Denote B := ∪l′

i=1{bi,1, bi,2, .., bi,l′
i
}, D = ∪l′

i=1{d′
i,1, d

′
i,2, .., d

′
i,t′

i
}. Let κ− : {i ∈ [l′] :

∃bi,t′ ∈ D, ∃dj,t ∈ U : dω,GF \C1(dj,t, bi,t′) < 1
12N} the first indices of the set of vertices

of B of weighted distance at most 1
12N from D in GF \C1. Let κ+ := {j ∈ [l′] : ∃dj,t ∈

U, ∃bi,t′ ∈W : dω,GF \C1(dj,t, bi,t′) < 1
12N} the first indices of the set of vertices of D that

can reach B with a path of weighted distance at most 1
12N in GF \C1. Similarly to how we

proved Claim 13, we can show the following:

▷ Claim 19. If dω(Vκ− , Vκ+) > 1
12N , then we can find T ⊂ V , c(T ) = O(1)OPTLP , (recall

OPTLP :=
∑

v∈V cvxv is the value of the optimal fractional solution), such that any strongly
connected component of GF \T does not contain a directed path from D to B in G\C1.

If dω(Vκ− , Vκ+) ≤ 1
12N , then the LP gap of the natural LP (PDFVS) for G has integrality

gap O(1).

We now construct a DFVS of cost at most O(g)OPTLP . If either dω(Vκ− , Vκ+) ≤ 1
12N

or dω(Vτ− , Vτ+) ≤ 1
12N . Then Claim 13 or Claim 19 respectively shows that that the LP

gap of the natural LP (PDFVS) for G has integrality gap O(g).
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Now assume both dω(Vτ− , Vτ+), dω(Vκ− , Vκ+) > 1
12N . Then by Claim 13 and Claim 19,

there are sets S, T such that any strongly connected component of GF \(S ∪ T ) does not
contain a path from U to W or a path from D to B in GF \C1.

For any digraph H define un(H) to be the underlying (undirected) graph of H. Let K
be any strongly connected component of GF \(S ∪ T ). We will prove un(K) does not contain
any path from U ∪B to W ∪D in un(K)\C1.

▶ Proposition 20. If there is a (undirected) path P = ui,tq1, q2, .., qt from some ui,t ∈ U (resp
ui,t ∈ D) in un(K)\C1, then there is a directed path from U (resp D) to qj in GF \(S∪T ∪C1)
for any j = 1, 2, .., t.

If there is a (undirected) path P = q1, q2, .., qtwi,t from some wi,t ∈W (resp bi,t ∈ B) in
un(K)\C1, then there is a directed path from qj to W (resp B) in GF \(S ∪ T ∪C1) for any
j = 1, 2, .., t.

Proof. Let P = ui,rq1, q2, .., qt be a path in un(K)\C1 from some ui,r ∈ U (resp ui,r ∈ D).
We prove by induction t′ on that there is a directed path from U to qj in GF \(S ∪ T ∪ C1)
for any j = 1, 2, .., t′. The case t′ = 1 is clear as each ui,r ∈ U (resp ui,r ∈ D) only has out
neighbours so the undirected edge {ui,r, q1} in un(K) is directed from ui,r to q1.

Now assume the statement true for t′ = t′′. For t′ = t′′ + 1, if the undirected edge
{qt′ , qt′+1} is directed from qt′ to qt′+1, then there is a directed path from ui,r to qt′+1 in
GF \(S ∪ T ∪ C1).

Otherwise {qt′ , qt′+1} is directed from qt′+1 to qt′ . By strong connectedness of K, there
is a directed path P ′ from qt′ to qt′+1 in K\(S ∪ T ). If P ′ does not intersect C then there is
a directed path from ui,r to qt′+1 in GF \(S ∪T ∪C1). So, assume P ′ intersects W or B. Let
P ′′ denote the subpath of P ′ from qt′ to when P ′ first intersects U or B. By construction
P ′′ lies in GF \(S ∪ T ∪ C1). As ui,r lies in U (resp D) P ′′ does not intersect W (resp. B),
as then we would have a U -W (resp. D-B) path in GF \(S ∪ T ∪ C1). Thus, P ′′ is a qt′-B
(resp. qt′-W ) path. Consider the subpath Q of the reversal of P ′ starting from qt′+1 to
when the reversal of P ′ first intersects D or U . Let rev(Q) denote the reversal of Q. Note
rev(Q) lies in GF \(S ∪ T ∪ C1). If the starting vertex of rev(Q) is in D (resp. U), then
rev(Q) ∪ {qt′+1qt′} ∪ P ′′ is a D-B (resp. U -W ) path in GF \(S ∪ T ∪ C1). This contradicts
Claim 19. Thus, the starting vertex of of rev(Q) is in U (resp. D). This implies there is a
path from U (resp. D) to qt′+1 completing the induction. The proof of the second part is
similar. ◀

▶ Proposition 21. There is no (undirected) path from W ∪D to U ∪B in un(K)\C1.

Proof. If we have a U -W path P = ui,tq1, q2, .., qtwj,t′ in un(K)\C1, then by Proposition 20,
there are directed U -q1 and q1-W paths P1 and P2 in un(K)\C1. Then P1 ∪ P2 is a directed
U -W path in K\C1 which contradicts Claim 19. Thus, we do not have a U -W path P =
ui,tq1, q2, .., qtwj,t′ in K\C1. Likewise, we do not have a D-B path P = ui,tq1, q2, .., qtwj,t′

in K\C1.
Suppose we have a U -D path P = ui,tq1, q2, .., qtdj,t′ in un(K)\C1. By Proposition 20,

there are directed U -q1 and D-q1 paths P1 and P2 in K\C1. Recall U has no in-neighbours
of in G\C1, so the edge {ui,t, q1} in K is directed from ui,t to q1. By 2 connectedness of K,
there is a path P3 from q1 to ui,t. The only in-neighbours of ui,t are in C1, thus P3 intersects
W ∪B. Let P ′

3 be the subpath of P3 from q1 to when it the path first intersects W ∪B. If the
endpoint of P ′

3 is in W , then P1 ∪ P ′
3 is a U -W path in K\C1. Otherwise, if the endpoint of

P ′
3 is in B, then P2 ∪ P ′

3 is a D-B path in K\C1. Either way this contradicts Claim 19. ◀
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▶ Proposition 22 ([15, 25]). Suppose G is a graph embedded on a surface Q. Let C be a
cycle of G that does not divide Q into two separate regions such that there is no edge between
vertices of C that is not part of C. Define a “left” and “right” as in Proposition 11. Let
L̂, R̂ denote the neighbours of C that are “left” or “right” of C. Suppose each connected
component of G\C only contains nodes of L̂ or R̂ but not both. There is a non-facial closed
curve h in Q\G.

Applying Proposition 21, we get that GF satisfies Proposition 22 with respect to C1.
Thus, there is a non-facial closed curve h in Q\GF . We apply the surgery of Definition 16
with respect to the closed curve h and surface Q to obtain a surface Q′ of lower genus. Let
G1, G2, ., Gl be the strongly connected components of GF \(S ∪ T ), so each Gi is embeddable
on Q′. By Lemma 18 each facial dicycle of Gi contains one of the cones of Q′. Hence there
is an algorithm that returns a hitting set Zi to the set of facial cycles of Gi of cost at most
8OPTLP (Gi). By induction, there are solutions Ai to Gi\Zi of cost cg−1OPTLP (Gi), where cg

is the integrality gap of the DFVS LP for graphs of genus g. Define x̂G
i ∈ RV (Gi) as x̂G

i (v) = x̂v,
where x̂ is as in the proof of Lemma 9. Since graphs Gi are vertex disjoint,

∑l
i=1 OPTLP (Gi) ≤∑l

i=1
∑

v∈V (Gi) x̂
G
i (v) ≤

∑
v∈V (G) x̂ = OPTLP (G). Then S∪T ∪F ∪ (∪l

i=1Ai)∪ (∪l
i=1Zi) is a

DFVS of cost (O(1)+cg−1)OPTLP (G) = (O(1)+O(g−1))OPTLP (G) = (O(g))OPTLP (G). ◀

As observed in [7], (PDFVS) can be solved in polynomial-time via the ellipsoid method.
Hence Lemma 9 yields a polynomial time O(g)-approximation algorithm for DFVS in graphs
of genus g with no facial cycle.

5 Statement and proofs of topological results we use

First let us prove Proposition 22.

Proof. Suppose each connected component of G\C only contains nodes of L̂ or R̂ but not
both. Let GL and GR be the unions of the components of G− C that only contain nodes
fromL̂ and R̂ respectively. Assume that Q\G contains no non-facial curve h.

Case 1: At least one of GL or GR is empty.
Suppose, without loss of generality, that GL is empty. Consider the face of G that contains

C and intersects the left of C. But, C is not contractible (else it would separate the surface
Q into two components). Hence, a small leftward shift of C which will lie in the face f will
produce a non-facial curve h.

Case 2: Both GL and GR are nonempty.
We claim that if a face contains vertices of GL, GR and of C then there is a non-facial

curve in Q\G. Let f be such a face of degree d. Let ∂f = v0 · · · vd−1 be the boundary
cycle of f , where i ∈ Z/dZ. Without loss of generality, assume that v0 ∈ L̂ and for some q
v1, v2, .., vq ∈ C, and vq+1 ∈ R̂. There is are points pl on the edge v0v1 in the interior of L
and pR on the edge vqvq+r in the interior of R. Let h : [0, 1]→ Q be a non-self-intersecting
curve in f from pR to pL. Let rL, rR > 0 be such that BQ(pl, rL) ⊂ L, BQ(pR, rR) ⊂ R. Let
hL, hR be non-self-intersecting curves in BQ(pl, rL) and BQ(pR, rR) from pl to v1 and pR to
vq respectively not intersecting h. Then h∪hL ∪hR satisfies the conditions of Proposition 12.
Thus, h ∪ hL ∪ hR ∪ g(plv0, v1, ..., vq+1pR) does not bound a region of the closure of f . As
this curve lies in the closure of f , this implies that f is not homeomorphic to an open disk.
By the classification theorem for orientable surfaces (see for instance page 87 of [17] ), cl(f)
is homeomorphic to a m-torus Tm with a finite number of open disks removed. Since f is
not homeomorphic to an open disk, f contains a non-facial closed curve h in its interior.
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If there is a face f of G whose boundary contains vertices of GL and of GR (but not of
C), then as there is no edge between GL and GR, the boundary of f is not connected and so
f is not homeomorphic to an open disk. Just as before this implies f contains a non-facial
closed curve h.

Now, consider the subsets QL and QR of Q obtained by taking the union of all the
vertices, edges and faces induced by GL ∪ C and GR ∪ C, respectively. By assumption 3,
every component of G− C is in GL or GR, so every vertex and edge of G belongs to QL or
QR. By the subcases eliminated above under Case 2, every face of G also belongs to QL or
QR (but not both). Then, Q = QL ∪QR = (QL − C) ⊔ (QR − C) ⊔ C. This means that C
separates Q into two components, which contradicts assumption 1. ◀

It is well known (see for instance [1] page 15) that smooth surfaces Q have the property
that for each v ∈ Q there is an open ball BQ(v, r0) of some small radius r0 > 0 in Q and a
diffeomorphism ψ from BQ(v, r0) to the open disk BR2(0, r0) of radius r0 about the origin in
the two-dimensional plane such that ψ(v) = (0, 0) and ψ preserves distances from v, that is
distQ(v, x) = ∥ψ(v)−ψ(x)∥, where distQ(v, x) is the geodesic distance from v to x in Q. For
p ∈ Q, r > 0, denote by B(p, r) the open ball of radius r about p. We now formally state
and prove what Proposition 11 and Proposition 12 informally say.

▶ Proposition 23. Given a closed continuous non-self-intersecting curve C ′ embedded on an
orientable surface Q. There exist some radius r > 0 and disjoint subsets L,R “on each side”
of C ′ such that the set {B(v, r) : v ∈ C ′} (where B(v, r) is the open ball around v of radius
r in Q) is contained in the union L ∪R ∪ C ′, and for each v ∈ C ′, r′ ≤ r, L ∩B(v, r′) and
R ∩B(v, r′) are the two connected components of B(v, r′)\C ′. There is a diffeomorphism ϕ

from L∪C ′∪R to a connected open neighbourhood of C ′×{0} in C ′×R and small q > 0 with
C ′× (−q, 0) ⊂ ϕ(L) ⊂ C ′× (−∞, 0), C ′× (0, q) ⊂ ϕ(R) ⊂ C ′× (0,∞) and ϕ(C ′) = C ′×{0}.
Further for any (piecewise smooth) curve f : [0, 1]→ Q such that f(x) /∈ C ′ for any x ∈ [0, 1),
f(1) ∈ C ′ satisfies that for some β ∈ (0, 1), either f((β, 1)) ∈ L, that is the curve “reaches C
from the left” L or f((β, 1)) ∈ R, that is the curve “reaches C ′ from the right” R.

▶ Proposition 24. For a finite set of curves f1, f2, f3, ..fl′ , h1, h2, .., ht′ : [0, 1] → Q such
that for each i, fi(x) /∈ C ′ for any x ∈ [0, 1) and hi(x) /∈ C ′ for any x ∈ [0, 1] we may
choose L,R, r above so that each curve fi([0, 1)) is disjoint from at least one of L,R and
each curve hi([0, 1]) is disjoint from both L,R. We refer to L and R as the left and right of
C ′ respectively.

Further, there are curves fL : [0, 1] → L, fR : [0, 1] → R which are homotopic to C ′.
Informally speaking, these are obtained by “slightly shifting” f “left” and “right” respectively.

▶ Proposition 25. Lastly let h : [0, 1]→ Q be any curve that reaches C ′ from the right at a
point c2 = h(1) on C ′, leaves C ′ from the left at c1 = h(0), that is the curve ψ̄(t) = h(1− t)
reaches C ′ at c1 from the left and h is otherwise disjoint from C ′. Assume c1 ̸= c2 and let
C ′

c1,c2
be a subcurve of C ′ with endpoints c1 and c2. Then there is a curve ĥ : [0, 2] → Q

that reaches C ′ from the right at c1 = ĥ(1) and leaves C ′ at a point c1 = ĥ(0) ĥ is otherwise
disjoint from C ′, and a there is a homeomorphism of Q that maps ĥ to the concatenation of
h and C ′

c1,c2
.

▶ Proposition 26. Let Q be an orientable surface and ϕ : [0, 1] → Q a closed curve not
dividing Q into 2 regions with disjoint subsets L,R “on each side” of ϕ as in Proposition 23.
Let c1, c2 ∈ [0, 1), with c2 ≥ c1. Suppose that ϕ1 : [0, 1] → Q is a curve with ϕ1(0) =
ϕ(c1) ϕ1(1) = ϕ(c2), ϕ1((0, 1)) is disjoint from ϕ([0, 1]) and the curve ϕ1([0, 0.5]) approaches
ϕ([0, 1]) from the left L and ϕ1([0.5, 1]) approaches ϕ([0, 1]) from the right R.
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Then the curve ϕ2 : [0, 1]→ Q, ϕ2(x) = ϕ(c2−x) if x ≤ c2−c1 and ϕ2(x) = ϕ1( 1
c2−c1

(x−
c2 + c1)) for x > c2 − c1, that is the curve obtained by joining the portion of ϕ from c1 to c2
to ϕ1([0, 1]) does not divide Q into 2 regions.

Proof. We prove Proposition 23, Proposition 24, and Proposition 25. We use the following
corollary of the tubular neighbourhood theorem (see for instance [4]).

▶ Proposition 27 (corollary of tubular neighbourhood theorem [4]). Given a curve C ′ embedded
in a surface Q there is an open neighbourhood U of C and an open set V in C ′ ×R such that
there is a diffeomorphism ϕ : U → V with ϕ(C ′) = C ′ × {0}.

Let w : [0, 1] → C ′ with w(0) = w(1), w(0.5) = c2 be a parameterization of C ′. We
define distance on C ′ × R by dist((a1, b1), (a2, b2)) := (distQ(a1, a2)2 + |b1 − b2|2) 1

2 , where
distQ(a1, a2) is the geodesic distance between a1 and a2 in Q. For each v ∈ C ′ let qv be the
minimum of 1 and sup{q′ : B(v, q′) ⊂ V }. qv is continuous in v and qv > 0 ∀v ∈ C ′. By
compactness of C ′, q := minv∈C′ qv exists and is positive. Now define L′ = ϕ−1(C ′× (−q, 0)),
R′ = ϕ−1(C ′ × (0, q).

Define U ′ = L′ ∪ C ′ ∪ R′. Let f : [0, 1] → Q be a curve with f(x) /∈ C ′ for any
x ∈ [0, 1). By continuity of f there is some β ∈ (0, 1) for which f((β, 1]) ⊂ U ′. We claim
f((β, 1)) ⊂ L′ or f((β, 1]) ⊂ R′. If ϕ(f((β, 1))) contains a point in C ′×(−∞, 0) and a point in
ϕ−1(C ′×(0,∞) then by continuity ϕ(f((β, 1))) contains a point in C ′×{0} and hence f((β, 1))
contains a point in C ′ which is a contradiction. Thus, either ϕ(f((β, 1))) ⊂ C ′ × (−∞, 0)
or ϕ(f((β, 1))) ⊂ C ′ × (0,∞). If ϕ(f((β, 1))) ⊂ C ′ × (−∞, 0), then f((β, 1)) ⊂ L′. If
ϕ(f((β, 1))) ⊂ C ′ × (0,∞), then f((β, 1)) ⊂ R′.

For each fi there exists βi for which f((βi, 1]) ∈ L′ or f((βi, 1]) ∈ R′. For
each x ∈ C ′ define r′

x to be the supremum of all radius r′′
x for which the ball

B(x, r′′
x) of radius r′′

x is entirely contained in U ′ and for which B(x, r′′
x) is disjoint from

f1([0, β1)), f2([0, βs)), f3([0, β3)), ..fl′([0, βl)), h1([0, 1]), h2([0, 1]), .., ht′([0, 1]). If the su-
premum does not exist, set r′

x =∞. Define rx = min{1, r′
x}. Again rx > 0 for all x ∈ C ′ and

is continuous in x. Since C ′ is a compact set, r := minx∈C′ rx exists and is positive. Note each
curve fi([0, 1)) is disjoint from at least one of L′ ∩ {B(x, r) : x ∈ C}, R′ ∩ {B(x, r) : x ∈ C}
and each curve hi([0, 1]) is disjoint from both L′ ∩ {B(x, r) : x ∈ C}, R′ ∩ {B(x, r) : x ∈ C}.

Let us show that by making r smaller if necessary B(v, r)\C ′ contains two connected
components.

▶ Proposition 28. Given a (piece-wise smooth non-self-intersecting) curve f : [0, 1]→ R2 with
t0 ∈ (0, 1) there exists r > 0 for which B(f(t0), r)\f([0, 1]) contains exactly two components.

Proof. Let [t0, t1] be an interval in which f is smooth.
Let f(t) = f(t0)+(t−t0)∇f(t0)+g(t−t0). By smoothness of f , ∇g(t−t0) is bounded for

t ∈ [t0, t1] and g(t−t0) = o(t−t0). Differentiating ∥f(t)−f(t0)∥2 = ∥(t−t0)∇f(t0)+g(t−t0)∥2

we obtain

d

dt
∥f(t)− f(t0)∥2 = 2(∇f(t0) +∇g(t− t0))t((t− t0)∇f(t0) + g(t− t0))

= 2(∇f(t0) + o(1))t((t− t0)∇f(t0) + o(t− t0))
= 2(∇f(t0) + o(1))t(t− t0)∇f(t0) + o(t− t0)

For t close enough to t0 the last line is positive. This implies that for some t2 > t0,
∥f(t) − f(t0)∥2 is increasing on [t0, t2]. Likewise, for some t3 < t0, ∥f(t) − f(t0)∥2 is
decreasing on [t3, t0].
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Let r > 0 be such that ∥f(t0)− f(t)∥ ≥ 2r for all t ∈ [0, 1]\ frac([t3, t2]), where frac(x) is
the fractional part of x. Then ∥f(t0)−f(t2)∥, ∥f(t0)−f(t3)∥ ≥ 2r. Then since ∥f(t0)−f(t)∥
is increasing on [t0, t2] there is exactly one t4 ∈ [t0, t2] with ∥f(t0)− f(t4)∥ = r. Likewise,
there is exactly one t5 ∈ [t3, t0] with ∥f(t0)−f(t5)∥ = r. So f([t5, t4]) forms a simple curve in
the closed ball B̄(f(t0), r) with endpoints on the boundary and f((t5, t4)) lying in the interior.
It follows from the Jordan curve theorem that B(f(t0), r)\f([0, 1]) = B(f(t0), r)\f((t5, t4))
contains exactly two connected components. ◀

Let v ∈ C ′. For small enough r0, B(v, r0) is diffeomorphic to the open disk B(0, r0) in R2 via
some diffeomorphism ψ with ψ(v) = (0, 0). Let w be a paramaterization of C ′ with w(0.5) = v.
Let t1 := inf{t : w([t, 0.5]) ⊂ B(v, r0)} and t2 := sup{t : w([0.5, t]) ⊂ B(v, r0)} that is [t1, t2]
is a maximal interval for which w([t1, t2]) ⊂ B(v, r0) by continuity t1 < 0.5 < t2. Choose
r1 > 0 less than the distance from v to C ′\w((t1, t2)) and r1 < distQ(v, w(t1)),distQ(v, w(t2)).
From the previous proposition there exists r2 > 0 such that BR2(ψ(v), r2)\ψ(w([t1, t2]))
contains exactly two connected components. By making r smaller than r1 and r2 if necessary
we get that for any 0 < r̂ ≤ r, BR2(ψ(v), r̂)\ψ(C ′) contains exactly two connected components.
Thus, B(v, r̂)\C ′ contains exactly two connected components.

Define L = L′∩{B(x, r) : x ∈ C}, R = R′∩{B(x, r) : x ∈ C}. Each curve f : [0, 1]→ Q

with f(x) /∈ C ′ for any x ∈ [0, 1) satisfies f((β, 1)) ⊂ L or f((β, 1]) ⊂ R. Each curve fi([0, 1))
is disjoint from at least one of L,R and each curve hi([0, 1]) is disjoint from both L,R.

Since ϕ(v) = {v}×{0}, ϕ(B(v, r̂)) intersects both {v}× (−∞, 0) and {v}× (0,∞). Recall
B(v, r̂) ⊂ L∪R∪C ′, so B(v, r̂) intersects both L and R. Since there is no path from L to R
in L∪R∪C ′ one component of B(v, r̂)\C ′ is contained in L and the other is contained in R.

For each v ∈ C ′ let yv be the supremum of {y′
v ≥ 0 : {v} × (−y′

v, y
′
v) ⊂ ϕ(B(v, r))}.

Again yv is positive and continuous in v so y := minv∈C′ yv exists and is positive. Then
C ′× (−y, 0) ⊂ ϕ(L) and C ′× (0, y) ⊂ ϕ(R). Define the curves fL, fR to be parameterizations
of ϕ−1(C ′ × {−y

2 }) and ϕ−1(C ′ × {y
2}) respectively.

Lastly given a curve h : [0, 1] → Q be any curve that reaches C ′ from the right at a
point c2 = h(1) on C ′, leaves C ′ from the left at c1 = h(0) and C ′

c1,c2
be a subcurve of C ′

with endpoints c1 and c2. Let j : [0, 1]→ C ′
c1,c2

be a parameterization of C ′
c1,c2

and denote
j̄ : [0, 2]→ Q by j̄(t) = h(t) for t ∈ [0, 1] and j̄(t) = j(t− 1) for t > 1. Informally speaking,
we “slightly shift” all points in L ∪ C ′ ∪R to the right while keeping h([0, 1]) ∩ L to the left
of C ′. Let ϕ(x) = (ϕ1(x), ϕ2(x)), ϕ−1(x) = (ϕ−1

1 (x), ϕ−1
2 (x)).

Let γ : C ′ → (−y, 0) be any continuous function such that γ(c2) = 0 and for any t ∈ [0, 1]
for which ϕ(h(t)) ∈ C ′ × (−y, 0), (ϕ(h(t))2) < γ(ϕ(h(t))1) < 0. Informally γ is a curve lying
to the right of ϕ(h([0, 1])) ∩ C ′ × (−y, 0) and to the left of [0, 1] × {0}. Such γ exists for
instance define −γ(t) to be half of the minimum of the distance from the point (t, 0) to
ϕ(h([0, 1])) ∩ C ′ × (−y, 0) and y.

Define γ̄ : C ′ × (−y, y) → C ′ × (−y, y) as follows. For (a, b) ∈ C ′ × (−y, y) if b < γ(a)
4

define γ̄(a, b) = (a, b). If γ(a)
4 ≤ b < 0, define γ̄(a, b) = (a, γ(a)

4 +2(b− γ(a)
4 )). If 0 ≤ b ≤ −γ(a)

2 ,
define γ̄(a, b) = (a, −γ(a)

4 + b
2 ). If b ≥ −γ(a)

2 γ̄(a, b) = (a, b). Informally, γ̄ shifts C ′ × (−y, y)
to the right while keeping ϕ(h([0, 1])) ∩ C ′ × (−y, 0) left of C ′ × {0}.

Define γ̂ : Q → Q by γ by γ̂(v) = v if v /∈ ϕ−1(C ′ × (−y, y)) and γ̂(v) = ϕ−1γ̄(ϕ(v)) if
v ∈ ϕ−1(C ′×(−y, y)). Note γ̂ is a homeomorphism from ϕ−1(C ′×(−y, y)) to ϕ−1(C ′×(−y, y))
and from Q\ϕ−1(C ′ × (−y, y)) to Q\ϕ−1(C ′ × (−y, y)). Further, γ̂ agrees on the boundary
of ϕ−1(C ′ × (−y, y)) and Q\ϕ−1(C ′ × (−y, y)), that is for sequence {ai}∞

i=1 converging to a
boundary point a of ϕ−1(C ′ × (−y, y)) (resp Q\ϕ−1(C ′ × (−y, y))) the sequence {γ̂(ai)}∞

i=1
converges to γ̂(a). Thus, γ̂ is a homeomorphism on Q, in fact, it turns out to be a continuous
deformation.
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Define ĥ : [0, 2]→ Q by ĥ(t) = γ̂(j̄(t)). Then γ̂ is a homeomorphism mapping ĥ([0, 2]) to
j̄([0, 2]). ◀

The actual statement of the tubular neighbourhood theorem involves first defining the
normal fibre Nx as the quotient TxQ/TxC where TxQ and TxC are the tangent plane and
tangent to the curve C at x and the normal bundle NX as {(x, v) : x ∈ C v ∈ Nx}.

▶ Theorem 29 (tubular neighbourhood theorem). There are open sets U in Q containing C
and V in NX such that there is a diffeomorphism γ : U → V .

Let us quickly show how the version of the tubular neighbourhood theorem in Proposition 27
follows from the tubular neighbourhood theorem.

By orientability each point x ∈ Q has a normal vector n(x) and n is continuous. We
may parameterize C ′ with a function ψ : [0, β]→ C ′ with derivative ψ′(x) = 1 for some β.
Define v(x) to be of unit norm and positively orthogonal to n(x), ϕ′(x) that is n(x)tv(x) =
(ϕ′(x))tv(x) = 0 and

[
n(x) ψ′(x) v(x)

]
has determinant 1. By the inverse function

theorem, v(x) is continuous. n(x), ψ′(x), v(x) is a basis for R3 known as the Darboux
frame. Since v(x) is orthogonal to n(x) it lies in the tangent plant TxQ since v(x) is
orthogonal to ϕ′(x), v(x), ϕ′(x) is a basis for TxQ. Thus, Nx = TxQ/TxC is diffeomorphic
to {av(x) : a ∈ R} which is diffeomorphic to R. Thus, NX is diffeomorphic to C ′ × R.

To prove Proposition 26, we first prove the following special case.

▶ Proposition 30. Let Q be an orientable surface and ϕ : [0, 1] → Q a closed curve not
dividing Q into 2 regions with disjoint subsets L,R “on each side” of ϕ as in Proposition 23.
Let c ∈ [0, 1), with c2 ≥ c1. Suppose that ϕ1 : [0, 1]→ Q is a curve with ϕ1(0) = ϕ(c) ϕ1(1) =
ϕ(c), ϕ((0, 1)) is disjoint from ϕ([0, 1]) and the curve ϕ1([0, 0.5]) approaches ϕ([0, 1]) from
the left L and ϕ1([0.5, 1]) approaches ϕ([0, 1]) from the right R.

Then ϕ1 does not divide Q into 2 regions.

Proof. Suppose for a contradiction that ϕ1 divides Q into 2 regions. It’s a well-known result
that one of the regions Q1 must be homeomorphic to an open disk. Let Q2 be the other
region.

There exists a small radius r1 for which the ball B(ϕ(c), r) of radius r1 about ϕ(c) such
that B(ϕ(c), r1) is homeomorphic to an open disk. Let r be as in Proposition 23 and define
r2 = min{r, r1}.

▶ Definition 31. Given 2 curves f1, f2 : [0, 1]→ Q on a surface Q, with f1(0.5) = f2(0.5)
and f1(x) ̸= f2(y) ∀x, y ∈ ([0, 1]\{0.5}), that is they intersect only at f1(0, 5), we say that
f1 crosses f2 at f1(0.5) if there exists r0 > 0 such that for all r ≤ r0 such that f2 intersects
both regions of B(f1(0.5), r)\f1([0, 1]), where B(p, r) is the open ball around p of radius r.

▶ Lemma 32. For two curves f1, f2 on a surface Q and p a point on both curves, f1 crosses
f2 at p if and only if f2 crosses f1 at p.

Proof. Let f1(b1) = p = f2(b2). Let L1, R1 and r1 (resp L2, R2 and r2) be the left, right and
radius respectively for f1 (resp. f2 ) as guaranteed by Proposition 23. Define r = min{r1, r2}.

▷ Claim 33. f1 crosses f2 at p if and only if for all r ≥ r0 > 0 none of L1 ∩ B(p, r0),
R1 ∩B(p, r0), L2 ∩B(p, r0), R2 ∩B(p, r0) is contained in another.
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Proof. Suppose that f1 crosses f2. Let r ≥ r0 > 0. Let tL, tR ∈ R be such that f2(tL) ∈
L1∩B(p, r0), f2(tR) ∈ R1∩B(p, r0). Since R1∩B(p, r0), L1∩B(p, r0) are open, there exists
rL, rR be such that B(f2(tL), rL) ⊂ L1 ∩B(p, r0) and B(f2(tR), rR) ⊂ R1 ∩B(p, r0). Since
B(f2(tL), rL) ∩ L2, B(f2(tL), rL) ∩ R2, B(f2(tR), rR) ∩ L2, B(f2(tR), rR) ∩ R2 ̸= ∅, none of
L1 ∩B(p, r0), R1 ∩B(p, r0), L2 ∩B(p, r0), R2 ∩B(p, r0) is contained in another.

Conversely, suppose that for any 0 < r0 ≤ r none of L1 ∩ B(p, r0), R1 ∩ B(p, r0),
L2 ∩B(p, r0), R2 ∩B(p, r0) is contained in another. Then for any 0 < r0 ≤ r, if f2 does not
intersect L1 ∩B(p, r0), then L1 ∩B(p, r0) is connected in B(p, r0)\f2, that is L1 ∩B(p, r0)
is contained in one of the two components L2 ∩B(p, r0), R2 ∩B(p, r0) of B(p, r0)\f2. Hence
f2 intersects L1 ∩B(p, r0), likewise f2 intersects R1 ∩B(p, r0). Hence f2 crosses f1. ◁

From the previous claim it’s clear that crossing is a symmetric relation. ◀

Define ϕ2(x) = ϕ(frac(x− 0.5 + c)), where frac(x) = x− ⌊x⌋ is the fractional value of x
and ϕ3(x) = ϕ1(frac(x− 0.5)), that is, ϕ2, ϕ3 are reparameterized versions of ϕ and ϕ1. For
some 0 < β1 < β2 < 1 ϕ1(x) ∈ L for x ∈ (0, β1) and ϕ1(x) ∈ R for x ∈ (β2, 1).

Define β′
1 = min{β1, 0.5} + 0.5 β′

2 = max{β2, 0.5}. Then ϕ3((0.5, β′
1)) ⊂ L and

ϕ3((β′
2, 0.5)) ⊂ R. Since L ∪ R covers B̄(ϕ(c), r)\ϕ([0, 1]), this implies that ϕ3 crosses

ϕ2.
By Lemma 32 ϕ2 crosses ϕ3. Let Lϕ3 , Rϕ3 be the left and right of ϕ3 as in Proposition 23.

Since Lϕ3 , Rϕ3 are connected, Lϕ3 , Rϕ3 belong to different regions of Q\ϕ3. Since ϕ2 crosses
ϕ3, there exists t0 for which ϕ(t0) ∈ Q1 and t1 for which ϕ(t1) ∈ Q2. Let t2 = inf{a ∈ [0, 1] :
∃b ∈ (a, 1] s.t. ϕ((a, b)) ⊂ Q1}, t3 = sup{b ∈ [t2, 1] : s.t.ϕ((t2, b)) ⊂ Q1}, that is [t2, t3] is a
maximal interval for which ϕ([t2, t3]) ⊂ Q1. It follows ϕ(t2), ϕ(t3) lie on the boundary of Q1,
that is on ϕ1. This implies t2, t3 ∈ {0, 1}. Since t2 < t3 t2 = 0 and t3 = 1. This implies that
ϕ([0, 1])) lies in Q1 ∪ {ϕ(0)} contradicting that there exists t1 for which ϕ(t1) ∈ Q2. ◀

Proof. (of Proposition 26) Let f : [0, 1]→ C ′ be a parameterization of C ′ and let c = f−1(c1).
Note that by Proposition 25 the curve ϕ2 is homeomorphic to a curve ϕ3 that enters ϕ from
the right and leaves ϕ from the left at the same point f(c). By Proposition 30, ϕ3 does not
divide Q into 2 regions. Thus, ϕ2 does not divide Q into 2 regions. ◀
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