
More Basis Reduction for Linear Codes: Backward
Reduction, BKZ, Slide Reduction, and More
Surendra Ghentiyala #

Cornell University, Ithaca, NY, USA

Noah Stephens-Davidowitz #

Cornell University, Ithaca, NY, USA

Abstract
We expand on recent exciting work of Debris-Alazard, Ducas, and van Woerden [Transactions on
Information Theory, 2022], which introduced the notion of basis reduction for codes, in analogy
with the extremely successful paradigm of basis reduction for lattices. We generalize DDvW’s LLL
algorithm and size-reduction algorithm from codes over F2 to codes over Fq, and we further develop
the theory of proper bases. We then show how to instantiate for codes the BKZ and slide-reduction
algorithms, which are the two most important generalizations of the LLL algorithm for lattices.

Perhaps most importantly, we show a new and very efficient basis-reduction algorithm for codes,
called full backward reduction. This algorithm is quite specific to codes and seems to have no
analogue in the lattice setting. We prove that this algorithm finds vectors as short as LLL does in
the worst case (i.e., within the Griesmer bound) and does so in less time. We also provide both
heuristic and empirical evidence that it outperforms LLL in practice, and we give a variant of the
algorithm that provably outperforms LLL (in some sense) for random codes.

Finally, we explore the promise and limitations of basis reduction for codes. In particular, we
show upper and lower bounds on how “good” of a basis a code can have, and we show two additional
illustrative algorithms that demonstrate some of the promise and the limitations of basis reduction
for codes.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Linear Codes, Basis Reduction

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.19

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2408.08507 [21]

Funding Surendra Ghentiyala: This work is supported in part by the NSF under Grants Nos. CCF-
2122230 and CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google.
Noah Stephens-Davidowitz: This work is supported in part by the NSF under Grants Nos. CCF-
2122230 and CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google.
Some of this work was completed while the author was visiting the National University of Singapore
and the Centre for Quantum Technologies

1 Introduction

1.1 Codes and lattices
A linear code C ⊆ Fn

q is a subspace of the vector space Fn
q over the finite field Fq, i.e., it is the

set of all Fq-linear combinations of a linearly independent list of vectors B := (b1; . . . ; bk),

C := C(B) := {z1b1 + · · ·+ zkbk : zi ∈ Fq} .

We call b1, . . . , bk a basis for the code and k the dimension of the code. We are interested in
the geometry of the code induced by the Hamming weight |c| for c ∈ Fn

q , which is simply
the number of coordinates of c that are non-zero. For example, it is natural to ask about a

© Surendra Ghentiyala and Noah Stephens-Davidowitz;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 19; pp. 19:1–19:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sg974@cornell.edu
mailto:noahsd@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.19
https://arxiv.org/abs/2408.08507
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 More Basis Reduction for Linear Codes

code’s minimum distance, which is the minimal Hamming weight of a non-zero codeword,
i.e.,

dmin(C) := min
c∈C ̸=0

|c| .

At a high level, there are two fundamental computational problems associated with linear
codes. In the first, the goal is to find a short non-zero codeword – i.e., given a basis for
a code C, the goal is to find a non-zero codeword c ∈ C̸=0 with relatively small Hamming
weight |c|. In the second, the goal is to find a codeword that is close to some target vector
t ∈ Fn

q – i.e., given a basis for a code C and a target vector t ∈ Fn
q , the goal is to find a

codeword c ∈ C such that |c− t| is relatively small. (Here, we are being deliberately vague
about what we mean by “relatively small.”)

We now describe another class of mathematical objects, which are also ubiquitous in
computer science. Notice the striking similarity between the two descriptions.

A lattice L ⊂ Qn is the set of all integer linear combinations of linearly independent basis
vectors A := (a1; . . . ; ak) ∈ Qn, i.e.,

L := L(A) := {z1a1 + · · ·+ zkak : zi ∈ Z} .

We are interested in the geometry of the lattice induced by the Euclidean norm ∥a∥ :=
(a2

1 + · · · + a2
n)1/2. In particular, it is natural to ask about a lattice’s minimum distance,

which is simply the minimal Euclidean norm of a non-zero lattice vector, i.e.,

λ1(L) := min
y∈L ̸=0

∥y∥ .

At a high level, there are two fundamental computational problems associated with
lattices. In the first, the goal is to find a short non-zero lattice vector – i.e., given a basis
for a lattice L, the goal is to find a non-zero lattice vector y ∈ L ̸=0 with relatively small
Euclidean norm ∥y∥. In the second, the goal is to find a lattice vector that is close to some
target vector t ∈ Qn – i.e., given a basis for a lattice L and a target vector t ∈ Zn, the goal
is to find a lattice vector y ∈ L such that ∥y − t∥ is relatively small. (Again, we are being
deliberately vague here.)

Clearly, there is a strong analogy between linear codes and lattices, where to move from
codes to lattices, one more-or-less just replaces a finite field Fq with the integers Z and the
Hamming weight | · | with the Euclidean norm ∥·∥. It is therefore no surprise that this analogy
extends to many applications. For example, lattices and codes are both used for decoding
noisy channels. They are both used for cryptography (see, e.g., [26, 3, 5, 23, 7, 30]; in fact,
both are used specifically for post-quantum cryptography). And, many complexity-theoretic
hardness results were proven simultaneously or nearly simultaneously for coding problems
and for lattice problems, often with similar or even identical techniques.1

1.2 Basis reduction for lattices
However, the analogy between lattices and codes has been much less fruitful for algorithms.
Of course, there are many algorithmic techniques for finding short or close codewords and
many algorithmic techniques for finding short or close lattice vectors. But, in many parameter
regimes of interest, the best algorithms for lattices are quite different from the best algorithms
for codes.

1 For example, similar results that came in separate works in the two settings include [15] and [14], [4]
and [33], [27] and [19], [13, 2] and [32], etc. Works that simultaneously published the same results in
the two settings include [9] and [18].

S. Ghentiyala and N. Stephens-Davidowitz 19:3

In the present work, we are interested in basis reduction, a ubiquitous algorithmic
framework in the lattice literature. At a very high level, given a basis A := (a1; . . . ; ak)
for a lattice L, basis reduction algorithms work by attempting to find a “good” basis
of L (and in particular, a basis whose first vector a1 is short) by repeatedly making
“local changes” to the basis. Specifically, such algorithms manipulate the Gram-Schmidt
vectors ã1 := a1, ã2 := π⊥

{a1}(a2), . . . , ãk := π⊥
{a1,...,ak−1}(ak). Here, π⊥

{a1,...,ai−1} represents
orthogonal projection onto the subspace orthogonal to a1, . . . , ai−1. Notice that we can view
the Gram-Schmidt vector ãi as a lattice vector in the lower-dimensional lattice generated
by the projected block A[i,j] := π⊥

{a1,...,ai−1}(ai; . . . ; aj). Basis reduction algorithms work by
making many “local changes” to A, i.e., changes to the block A[i,j] that leave the lattice
L(A[i,j]) unchanged. The goal is to use such local changes to make earlier Gram-Schmidt
vectors shorter. (In particular, ã1 = a1 is a non-zero lattice vector. So, if we can make the
first Gram-Schmidt vector short, then we will have found a short non-zero lattice vector.)
One accomplishes this, e.g., by finding a short non-zero vector y in L(A[i,j]) and essentially
replacing the first vector in the block with this vector y. (Here, we are ignoring how exactly
one does this replacement.)

This paradigm was introduced in the celebrated work of Lenstra, Lenstra, and Lovász [25],
which described the polynomial-time LLL algorithm. Specifically, (ignoring important details
that are not relevant to the present work) the LLL algorithm works by repeatedly replacing
Gram-Schmidt vectors ãi with a shortest non-zero vector in the lattice generated by the
dimension-two block A[i,i+1]. The LLL algorithm itself has innumerable applications. (See,
e.g., [29].) Furthermore, generalizations of LLL yield the most efficient algorithms for finding
short non-zero lattice vectors in a wide range of parameter regimes, including those relevant
to cryptography.

Specifically, the Block-Korkine-Zolotarev basis-reduction algorithm (BKZ), originally
due to Schnorr [31], is a generalization of the LLL algorithm that works with larger blocks.
It works by repeatedly modifying blocks A[i,i+β−1] of a lattice basis A := (a1; . . . ; ak) in
order to ensure that the Gram-Schmidt vector ãi is a shortest non-zero vector in the lattice
generated by the block. Here, the parameter β ≥ 2 is called the block size, and the case
β = 2 corresponds to the LLL algorithm (ignoring some technical details). Larger block size
β yields better bases consisting of shorter lattice vectors. But, to run the algorithm with
block size β, we must find shortest non-zero vectors in a β-dimensional lattice, which requires
running time 2O(β) with the best-known algorithms [6, 1, 12]. So, BKZ yields a tradeoff
between the quality of the output basis and the running time of the algorithm. (Alternatively,
one can view BKZ as a reduction from an approximate lattice problem in high dimensions to
an exact lattice problem in lower dimensions, with the approximation factor depending on
how much lower the resulting dimension is.)

BKZ is the fastest known algorithm in practice for the problems relevant to cryptography.
However, BKZ is notoriously difficult to understand. Indeed, we still do not have a proof
that the BKZ algorithm makes at most polynomially many calls to its β-dimensional oracle,
nor do we have a tight bound on the quality of the bases output by BKZ, despite much effort.
(See, e.g., [34]. However, for both the running time and the output quality of the basis, we
now have a very good heuristic understanding [16, 11].)

Gama and Nguyen’s slide-reduction algorithm is an elegant alternative to BKZ that is
far easier to analyze [20]. In particular, it outputs a basis whose quality (e.g., the length
of the first vector) essentially matches our heuristic understanding of the behavior of BKZ,
and it provably does so with polynomially many calls to a β-dimensional oracle for finding
a shortest non-zero lattice vector. Indeed, for a wide range of parameters (including those
relevant to cryptography), [20] yields the fastest algorithm with proven correctness for finding
short non-zero lattice vectors.

APPROX/RANDOM 2024

19:4 More Basis Reduction for Linear Codes

Dual reduction, and some foreshadowing

One of the key ideas used in Gama and Nguyen’s slide-reduction algorithm (as well as in
other work, such as [28]) is the notion of a dual-reduced block A[i,j]. The motivation behind
dual-reduced blocks starts with the observation that the product ∥ãi∥ · · · ∥ãj∥ does not
change if the lattice L(A[i,j]) is not changed. Formally, this quantity is the determinant of
the lattice L(A[i,j]), which is a lattice invariant. So, while it is perhaps more natural to
think of basis reduction in terms of making earlier Gram-Schmidt vectors in a block shorter,
with the ultimate goal of making a1 short, one can more-or-less equivalently think of basis
reduction in terms of making later Gram-Schmidt vectors longer.

One therefore defines a dual-reduced block as a block A[i,j] such that the last Gram-
Schmidt vector ãj is as long as it can be without changing the associated lattice L(A[i,j]).
When β := j − i + 1 > 2, a dual-reduced block is not the same as a block whose first
Gram-Schmidt vector is as short as possible. However, there is still some pleasing symmetry
here. In particular, it is not hard to show that the last Gram-Schmidt vector ãj corresponds
precisely to a non-zero (primitive) vector in the dual lattice of L(A[i,j]) with length 1/∥ãj∥.
This of course explains the terminology. It also means that making the last Gram-Schmidt
vector ãj as long as possible corresponds to finding a shortest non-zero vector in the dual
of L(A[i,j]), while making the first Gram-Schmidt vector ãi as short as possible of course
corresponds to finding a shortest non-zero vector in L(A[i,j]) itself. Either way, this amounts
to finding a shortest non-zero vector in a β-dimensional lattice, which takes time that is
exponential in the block size β.

1.3 Basis reduction for codes!
As far as the authors are aware, until very recently there was no work attempting to use
the ideas from basis reduction in the setting of linear codes. This changed with the recent
exciting work of Debris-Alazard, Ducas, and van Woerden, who in particular showed a simple
and elegant analogue of the LLL algorithm for codes [17].

Debris-Alazard, Ducas, and van Woerden provide a “dictionary” ([17, Table 1]) for
translating important concepts in basis reduction from the setting of lattices to the setting
of codes, and it is the starting point of our work. Below, we describe some of the dictionary
from [17], as well as some of the barriers that one encounters when attempting to make basis
reduction work for codes.

1.3.1 Projection, epipodal vectors, and proper bases
Recall that when one performs basis reduction on lattices, one works with the Gram-Schmidt
vectors ãi := π⊥

{a1,...,ai−1}(ai) and the projected blocks A[i,j] := π⊥
{a1,...,ai−1}(ai; . . . ; aj),

i.e., the orthogonal projection of ai, . . . , aj onto the subspace {a1, . . . , ai−1}⊥ orthogonal to
a1, . . . , ai−1.

So, if we wish to adapt basis reduction to the setting of linear codes (and we do!), it is
natural to first ask what the analogue of projection is in the setting of codes. [17] gave a
very nice answer to this question.2 In particular, for a vector x = (x1, . . . , xn) ∈ Fn

q we call
the set of indices i such that xi is non-zero the support of x, i.e.,

2 [17] formally worked with the case q = 2 everywhere. Rather than specialize our discussion here to
F2, we will largely ignore this distinction in this part of the introduction. While the more general
definitions that we provide here for arbitrary Fq are new to the present work, when generalizing to Fq is
straightforward, we will not emphasize this in the introduction.

S. Ghentiyala and N. Stephens-Davidowitz 19:5

Supp(x) := {i ∈ [n] : xi ̸= 0} .

Then, [17] define z := π⊥
{x1,...,xℓ}(y) as follows. If i ∈

⋃
j Supp(xj), then zi = 0. Otherwise,

zi = yi. In other words, the projection simply “zeros out the coordinates in the supports
of the xj .” This notion of projection shares many (but certainly not all) of the features of
orthogonal projection in Rn, e.g., it is a linear contraction mapping that is idempotent.

Armed with this notion of projection, [17] then defined the epipodal vectors associated
with a basis b1, . . . , bn as b+

1 := b1, b+
2 := π⊥

{b1}(b2), . . . , b+
n := π⊥

{b1,...,bn−1}(bn), in analogy
with the Gram-Schmidt vectors. In this work, we go a bit further and define

B[i,j] := π⊥
{b1,...,bi−1}(bi; . . . ; bj) ,

in analogy with the notation in the literature on lattice basis reduction.
Here, [17] already encounters a bit of a roadblock. Namely, the epipodal vectors b+

i can
be zero! E.g., if b1 = (1, 1, . . . , 1) is the all-ones vector, then b+

i will be zero for all i > 1!3
This is rather troublesome and could lead to many issues down the road. For example, we
might even encounter entire blocks B[i,j] that are zero! Fortunately, [17] shows how to get
around this issue by defining proper bases, which are simply bases for which all the epipodal
vectors are non-zero. They then observe that proper bases exist and are easy to compute.
(In Section 4, we further develop the theory of proper bases.) So, this particular roadblock
is manageable, but it already illustrates that the analogy between projection over Fn

q and
projection over Rn is rather brittle.

The LLL algorithm for codes then follows elegantly from these definitions. In particular, a
basis B = (b1; . . . ; bk) is LLL-reduced if it is proper and if b+

i is a shortest non-zero codeword
in the dimension-two code generated by B[i,i+1] for all i = 1, . . . , k − 1. [17] then show
a simple algorithm that computes an LLL-reduced basis in polynomial time. Specifically,
the algorithm repeatedly makes simple local changes to any block B[i,i+1] for which this
condition is not satisfied until the basis is reduced.

In some ways, this new coding-theoretic algorithm is even more natural and elegant than
the original LLL algorithm for lattices. For example, the original LLL algorithm had to
worry about numerical blowup of the basis entries. And, the original LLL algorithm seems
to require an additional slack factor δ in order to avoid the situation in which the algorithm
makes a large number of minuscule changes to the basis. Both of these issues do not arise
over finite fields, where all vectors considered by the algorithm have entries in Fq and integer
lengths between 1 and n.

1.3.2 What’s a good basis and what is it good for?
Given the incredible importance of the LLL algorithm for lattices, it is a major achievement
just to show that one can make sense of the notion of “LLL for codes.” But, once [17] have
defined an LLL-reduced basis for codes and shown how to compute one efficiently, an obvious
next question emerges: what can one do with such a basis?

In the case of lattices, the LLL algorithm is useful for many things, but primarily for the
two most important computational lattice problems: finding short non-zero lattice vectors and
finding close lattice vectors to a target. In particular, the first vector a1 of an LLL-reduced
basis is guaranteed to ∥a1∥ ≤ 2k−1λ1(L). This has proven to be incredibly useful, despite
the apparently large approximation factor.

3 Of course, similar issues do not occur over Rn, because if a1, . . . , ak ∈ Rn are linearly independent,
then π⊥

a1,...,ak−1 (ak) cannot be zero.

APPROX/RANDOM 2024

19:6 More Basis Reduction for Linear Codes

For codes over F2, [17] show that the same is true, namely that if B = (b1; . . . ; bk) is an
LLL-reduced basis for C ⊆ Fn

2 , then |b1| ≤ 2k−1dmin(C). They prove this by showing that
if b+

i has minimal length among the non-zero codewords in C(B[i,i+1]), then |b+
i | ≤ 2|b+

i+1|.
It follows in particular that |b1| = |b+

1 | ≤ 2i−1|b+
i | for all i. One can easily see that

dmin(C) ≥ mini |b+
i |, from which one immediately concludes that |b+

1 | ≤ 2k−1dmin(C). A
simple generalization of this argument shows that over Fq, we have |b+

1 | ≤ qk−1dmin(C). (We
prove something more general and slightly stronger in the full version [21].)

However, notice that all codewords have length at most n and dmin(C) is always at least
1. Therefore, an approximation factor of qk−1 is non-trivial only if n > qk−1. Otherwise,
literally any non-zero codeword has length less than qk−1dmin(C)! On the other hand, if
n > qk−1, then we can anyway find an exact shortest vector in time roughly qkn ≲ n2

by simply enumerating all codewords. (The typical parameter regime of interest is when
n = O(k).)

In some sense, the issue here is that the space Fn
q that codes live in is too “cramped.”

While lattices are infinite sets that live in a space Qn with arbitrarily long and arbitrarily
short non-zero vectors, codes are finite sets that live in a space Fn

q in which all non-zero
vectors have integer lengths between 1 and n. So, while for lattices, any approximation factor
between one and, say, 2k is very interesting, for codes the region of interest is simply more
narrow.

[17] go on to observe that because |b+
i+1| is an integer, for codes over F2 an LLL-reduced

basis must actually satisfy

|b+
i+1| ≥

⌈
|b+

i |
2

⌉
.

With this slightly stronger inequality together with the fact that
∑
|b+

i | ≤ n, they are able
to show that b1 of an LLL-reduced basis will meet the Griesmer bound [22],

k∑
i=1

⌈
|b1|
2i−1

⌉
≤ n , (1)

which is non-trivial. E.g., as long as k ≥ log n, it follows that

|b1| −
⌈log |b1|⌉

2 ≤ n− k

2 + 1 (2)

(We generalize this in the full version [21]to show that the appropriate generalization of
LLL-reduced bases to codes over Fq also meet the q-ary Griesmer bound.)

1.3.2.1 Finding close codewords and size reduction

For lattices, Babai also showed how to use an LLL-reduced basis to efficiently find close
lattice vectors to a given target vector [10], and like the LLL algorithm itself, Babai’s
algorithm too has innumerable applications. More generally, Babai’s algorithm tends to
obtain closer lattice vectors if given a “better” basis, in a certain precise sense. [17] showed
an analogous “size-reduction” algorithm that finds close codewords to a given target vector,
with better performance given a “better” basis. Here, the notion of “better” is a bit subtle,
but essentially a basis is “better” if the epipodal vectors tend to have similar lengths. (Notice
that

∑
i |b

+
i | = |Supp(C)|, so we cannot hope for all of the epipodal vectors to be short.)

The resulting size-reduction algorithm finds relatively close codewords remarkably quickly.
(Indeed, in nearly linear time.) Furthermore, [17] showed how to use their size-reduction
algorithm combined with techniques from information set decoding to speed up some

S. Ghentiyala and N. Stephens-Davidowitz 19:7

information set decoding algorithms for finding short codewords or close codewords to a
target, without significantly affecting the quality of the output. For this, their key observation
was the fact that typically most epipodal vectors actually have length one (particularly the
later epipodal vectors, as one would expect given that later epipodal vectors by definition
have more coordinates “zeroed out” by projection orthogonal to the earlier basis vectors)
and that their size-reduction algorithm derives most of its advantage from how it treats the
epipodal vectors with length greater than one. They therefore essentially run information set
decoding on the code projected onto the support of the epipodal vectors with length one and
then “lift” the result to a close codeword using their size-reduction algorithm.

They call the resulting algorithm Lee-Brickell-Babai because it is a hybrid of Babai-style
size reduction and the Lee-Brickell algorithm [24]. The running time of this hybrid algorithm
is dominated by the cost of running information set decoding on a code with dimension
k − k1, where

k1 := |{i : |b+
i | > 1}|

is the number of epipodal vectors that do not have length 1. Indeed, the (heuristic) running
time of this algorithm is better than Lee-Brickell by a factor that is exponential in k1, so
that even a small difference in k1 can make a large difference in the running time. They
then show that LLL-reduced bases have k1 ≳ log n (for random codes) and show that this
reduction in dimension can offer significant savings in the running time of information set
decoding.

Indeed, though the details are not yet public, the current record in the coding problem
challenges [8] was obtained by Ducas and Stevens, apparently using such techniques.

1.4 Our contribution
In this work, we continue the study of basis reduction for codes, expanding on and generalizing
the results of [17] in many ways, and beginning to uncover a rich landscape of algorithms.

1.4.1 Expanding on the work of [17]
1.4.1.1 Generalization to Fq

Our first set of (perhaps relatively minor) contributions are generalizations of many of the
ideas in [17] from F2 to Fq, a direction proposed in that work. In fact, they quite accurately
anticipated this direction. So, we quote directly from [17, Section 1.3]:

In principle, the definitions, theorems and algorithms of this article should be gen-
eralizable to codes over Fq endowed with the Hamming metric. . . Some algorithms
may see their complexity grow by a factor Θ(q), meaning that the algorithms remains
polynomial-time only for q = nO(1). It is natural to hope that such a generalised
LLL would still match [the] Griesmer bound for q > 2. However, we expect that
the analysis of the fundamental domain [which is necessary for understanding size
reduction]. . . would become significantly harder to carry out.

In Section 3, we generalize from F2 to Fq the definitions of projection, epipodal vectors,
and proper bases; the definition of an LLL-reduced bases and the LLL algorithm;4 and the
size-reduction algorithm and its associated fundamental domain. Some of this is admittedly

4 We actually describe the LLL algorithm as a special case of the more general algorithms that we describe
below. See the full version [21].

APPROX/RANDOM 2024

19:8 More Basis Reduction for Linear Codes

quite straightforward – e.g., given the definitions in [17] of projection, epipodal vectors,
and proper bases for codes over F2, the corresponding definitions for codes over Fq are
immediate (and we have already presented them in this introduction). And, the definition
of an LLL-reduced basis and of size reduction follow more-or-less immediately from these
definitions. In particular, we do in fact confirm that LLL over Fq achieves the Griesmer
bound.

As [17] anticipated, the most difficult challenge that we encounter here is in the analysis
of the fundamental domain that one obtains when one runs size reduction with a particular
basis B. We refer the reader to the full version [21]for the details.

(We do not encounter the running time issue described in the quote above – except for our
algorithm computing the number of vectors of a given length in F(B+). In particular, our
versions of the LLL algorithm and the size-reduction algorithm – and even our generalizations
like slide reduction – run in time that is proportional to a small polynomial in log q.)

Along the way, we make some modest improvements to the work of [17], even in the case
of F2. In particular, using more careful analysis, we shave a factor of roughly n from the
proven running time of LLL. (See the full version [21].)

1.4.1.2 More on the theory of proper bases

In order to develop the basis-reduction algorithms that we will describe next, we found that
it was first necessary to develop (in Section 4) some additional tools for understanding and
working with proper bases, which might be of independent interest. Specifically, we define the
concept of a primitive codeword, which is a non-zero codeword c such that Supp(c) does not
strictly contain the support of any other non-zero codeword. We then show that primitive
codewords are closely related to proper bases. For example, we show that c is the first vector
in some proper basis if and only if c is primitive, and that a basis is proper if and only if the
epipodal vectors are primitive vectors in their respective projections.

We find this perspective to be quite useful for thinking about proper bases and basis
reduction in general. In particular, we use this perspective to develop algorithms that perform
basic operations on proper bases, such as inserting a primitive codeword into the first entry
of a basis without affecting properness. The resulting algorithmic tools seems to be necessary
for the larger-block-size versions of basis reduction that we describe below, in which our
algorithms must make more complicated changes to a basis.

1.4.2 Backward reduction and redundant sets
Our next contribution is the notion of backward reduction, described in Section 5. Recall
that in the context of lattices, a key idea is the notion of a dual-reduced block A[i,j], in which
the last Gram-Schmidt vector ãj is as long possible, while keeping L(A[i,j]) fixed.

Backward-reduced blocks are what we call the analogous notion for codes. Specifically,
we say that a block B[i,j] is backward reduced if the last epipodal vector b+

j is as long as
possible, while keeping C(B[i,j]) fixed. Just like in the case of lattices, this idea is motivated
by an invariant. Here, the invariant is |b+

i |+ · · ·+ |b
+
j |, which is precisely the support of the

code C(B[i,j]). So, if one wishes to make earlier epipodal vectors shorter (and we do!), then
one will necessarily make later epipodal vectors longer, and vice versa. In particular, in the
case of LLL, when the block size β := j − i + 1 is equal to 2, there is no difference between
minimizing the length of the first epipodal vector and maximizing the length of the second
epipodal vector. So, if one wishes, one can describe the LLL algorithm in [17] as working by
repeatedly backward reducing blocks B[i,i+1].

S. Ghentiyala and N. Stephens-Davidowitz 19:9

The above definition of course leads naturally to two questions. First of all, how do we
produce a backward-reduced block (for block size larger than 2)? And, second, what can we
say about them? Specifically, what can we say about the length |b+

j | of the last epipodal
vector in a backward-reduced block B[i,j]?

One might get discouraged here, as one quickly discovers that long last epipodal vectors do
not correspond to short non-zero codewords in the dual code. So, the beautiful duality that
arises in the setting of lattices simply fails in our new context. (The only exception is that
last epipodal vectors with length exactly two correspond to dual vectors with length exactly
two.) This is why we use the terminology “backward reduced” rather than “dual reduced.”
One might fear that the absence of this correspondence would make backward-reduced blocks
very difficult to work with.

Instead, we show that long last epipodal vectors b+
j in a block B[i,j] have a simple

interpretation. They correspond precisely to large redundant sets of coordinates of the code
C(B[i,j]). In the special case when q = 2, a redundant set S ⊆ [n] of coordinates is simply a
set of coordinates in the support of the code such that for every a, b ∈ S and every codeword
c, ca = cb. For larger q, we instead have the guarantee that ca = zcb for fixed non-zero
scalar z ∈ F∗

q depending only on a and b. In particular, maximal redundant sets correspond
precisely to the non-zero coordinates in a last epipodal vector. (See Lemma 8.)

This characterization immediately yields an algorithm for backward reducing a block.
(See Algorithm 2.) In fact, finding a backward-reduced block boils down to finding a set of
most common elements in a list of at most n non-zero columns, each consisting of β := j−i+1
elements from Fq. One quite surprising consequence of this is that one can actually find
backward-reduced blocks efficiently, even for large β! (Compare this to the case of lattices,
where finding a dual-reduced block for large β is equivalent to the NP-hard problem of finding
a shortest non-zero vector in a lattice of dimension β.)

Furthermore, this simple combinatorial characterization of backward-reduced blocks
makes it quite easy to prove a simple tight lower bound on the length of b+

j in a backward-
reduced block B[i,j]. (See the full version [21].) Indeed, such a proof follows immediately
from the pigeonhole principle. This makes backward-reduced blocks quite easy to analyze.
In contrast, as we will see below, forward-reduced blocks, in which the first epipodal vector
b+

i is as short as possible, are rather difficult to analyze for β > 2.

1.4.3 Fully backward-reduced bases

With this new characterization of backward-reduced blocks and the realization that we can
backward reduce a block quite efficiently, we go on to define the notion of a fully backward-
reduced basis. We say that a basis is fully backward reduced if all of the prefixes B[1,j] are
backward reduced for all 1 ≤ j ≤ k.5 In fact, we are slightly more general than this, and
consider bases that satisfy this requirement for all j up to some threshold τ ≤ k.

We show that a fully backward-reduced basis achieves the Griesmer bound (Equation (1)
for q = 2), just like an LLL-reduced basis. This is actually unsurprising, since it is not
difficult to see that when the threshold τ = k is maximal, a fully backward-reduced basis is
also LLL reduced. However, even when τ = logq n, we still show that a backward-reduced
basis achieves the Griesmer bound. (See Theorem 16.)

5 Notice that this implies that B[i,j] is also backward reduced for any 1 ≤ i < j. So, such bases really are
fully backward reduced.

APPROX/RANDOM 2024

19:10 More Basis Reduction for Linear Codes

We then show a very simple and very efficient algorithm for computing fully backward-
reduced bases. In particular, if the algorithm is given as input a proper basis, then it will
convert it into a fully backward-reduced basis up to threshold τ in time O(τ2n polylog(n, q)).
Notice that this is extremely efficient when τ ≤ poly(logq n).6 Indeed, for most parameters
of interest, this running time is in fact less than the time O(nk log q) needed simply to read
the input basis B ∈ Fk×n

q . (Of course, this is possible because the algorithm only looks at
the first τ rows of the input basis.) So, if one already has a proper basis, one can convert it
into a fully backward-reduced basis nearly for free.7

In contrast, the LLL algorithm runs in time O(kn2 log2 q). One can perform a similar
“threshold” trick and run the LLL algorithm only on the first τ basis vectors for τ = ⌈logq n⌉
(which would still imply that |b1| must be bounded by the Griesmer bound). But, this would
still yield a running time of Ω(τn2 log2 q) in the worst case. The speedup that we achieve
from fully backward reduction comes from the combination of this threshold trick together
with the fact that fully backward reduction runs in time proportional to τ2n, rather than
τn2.

Furthermore, we show empirically that the resulting algorithm tends to produce better
bases than LLL in practice. (See the full version [21].)

(It seems unlikely that any similar algorithm exists for lattices for two reasons. First, in
the setting of lattices, computing a dual-reduced basis for large block sizes is computationally
infeasible. Second, while for codes it is not unreasonable to look for a short non-zero codeword
in the subcode generated by the first τ basis vectors, for lattices the lattice generated by the
first k − 1 basis vectors often contains no shorter non-zero vectors than the basis vectors
themselves, even when the full lattice contains much shorter vectors.)

1.4.3.1 Heuristic analysis of full backward reduction

We also provide heuristic analysis of full backward reduction, providing a compelling heuristic
explanation for why its performance in practice seems to be much better than what worst-case
analysis suggests. In particular, recall that we essentially characterize the length of the last
epipodal vector of a backward-reduced block B[i,j] in terms of the maximal number of times
that a column in B[i,j] repeats. We then naturally use the pigeonhole principle to argue that
for suitable parameters there must be a column that repeats many times.

E.g., for q = 2, there must be at least one repeated non-zero column if the number of
non-zero columns s is larger than the number of possible non-zero columns 2β − 1, where
β := j − i + 1 is the length of a column. This analysis is of course tight in the worst case.
However, in the average case, we know from the birthday paradox that we should expect to
see a repeated column even if s is roughly 2β/2, rather than 2β .

So, under the (mild but unproven) heuristic that the blocks B[1,j] in a fully backward-
reduced basis behave like a random matrices for all j (in terms of the number of redundant
coordinates), it is easy to see that k1 ≳ 2 logq n, which is significantly better than what LLL
achieves (both in the worst case and empirically).

This heuristic argument is backed up by experiments. (See the full version [21].) We
also show (in the full the version [21]) a less natural variant of this algorithm that provably
achieves k1 ≳ 2 logq n when its input is a random matrix. This variant works by carefully

6 We argue (in the full version [21]) that there is not much point in taking τ significantly greater than
log2

q(n).
7 Computing a proper basis seems to require time O(nk2 log2 q) (without using fast matrix multiplication

algorithms), but in many contexts the input basis is in systematic form and is therefore proper.

S. Ghentiyala and N. Stephens-Davidowitz 19:11

“choosing which coordinates to look at” for each block, in order to maintain independence.
We view this as an additional heuristic explanation for full backward reduction’s practical
performance, since one expects an algorithm that “looks at all coordinates” to do better
than one that does not.

This result about k1 for backward-reduced bases also compares favorably with the study
of the LLL algorithm in [17]. In particular, in [17], they proved that LLL achieves k1 ≳ log n

for a random code for q = 2, but in their experiments they observed that LLL combined with
a preprocessing step called EpiSort actually seems to achieve k1 ≈ c log n for some constant
1 < c ≤ 2. However, the behavior of LLL and EpiSort seems to be much more subtle than
the behavior of full backwards reduction. We therefore still have no decent explanation (even
a heuristic one) for why LLL and EpiSort seem to achieve k1 ≈ c log n or for what the value
of this constant c actually is.

1.4.4 BKZ and slide reduction for codes
Our next set of contributions are adaptations of the celebrated BKZ and slide-reduction
algorithms to the setting of codes.

1.4.4.1 BKZ for codes

Our analogue of the BKZ algorithm for codes is quite natural.8 Specifically, our algorithm
works by repeatedly checking whether the epipodal vector b+

i is a shortest non-zero codeword
in the code generated by the block B[i,i+β−1]. If not, it updates the basis so that this is the
case (using the tools that we have developed to maintain properness). The algorithm does
this repeatedly until no further updates are possible. At least intuitively, a larger choice of β

here requires a slower algorithm because the resulting algorithm will have to find shortest
non-zero codewords in β-dimensional codes. But, larger β will result in a better basis.

As we mentioned above, in the setting of lattices, the BKZ algorithm is considered to be
the best performing basis-reduction algorithm in most parameter regimes, but it is notoriously
difficult to analyze. We encounter a roughly similar phenomenon in the setting of linear
codes. In particular, we run experiments that show that the algorithm performs quite well in
practice. (Though it requires significantly more running time than full backward reduction
to achieve a similar profile. See the full version [21].) However, we are unable to prove that
it terminates efficiently, except in the special case of β = 2, in which case we recover the LLL
algorithm of [17]. For β > 2, we offer only an extremely weak bound on the running time.
As in the case of lattices, the fundamental issue is that it is difficult to control the effect that
changing b+

i can have on the other epipodal vectors b+
i+1, . . . , b+

i+β−1 in the block.
Here, we encounter an additional issue as well. In the case of lattices, there is a relatively

simple tight bound on the minimum distance of the lattice generated by the block A[i,i+β−1]
to the lengths of the Gram-Schmidt vectors ∥ãi∥, . . . , ∥ãi+β−1∥ in the block. In particular,
Minkowski’s celebrated theorem tells us that λ1(L(A[i,i+β−1])) ≤ C

√
β(∥ãi∥ · · · ∥ãi+β−1∥)1/β

for some constant C > 0, and one applies this inequality repeatedly with different i to
understand the behavior of basis reduction for lattices.

8 We note that the name “BKZ algorithm for codes” is perhaps a bit misleading. In the case of lattices, the
BKZ algorithm is named after Korkine and Zolotarev due to their work on Korkine-Zolotarev-reduced
bases (which can be thought of as BKZ-reduced bases with maximal block size β = k, and is sometimes
also called a Hermite-Korkine-Zolotarev-reduced basis). A Block-Korkine-Zolotarev-reduced basis is
(unsurprisingly) a basis in which each block B[i,i+β−1] is a Korkine-Zolotarev-reduced basis. For codes,
the analogous notion of a Korkine-Zolotarev-reduced basis was called a Griesmer-reduced basis in [17].
So, we should perhaps call our notion “Block-Griesmer-reduced bases” and the associated algorithm
“the block-Griesmer algorithm.” However, the authors decided to use the term “BKZ” here in an attempt
to keep terminology more consistent between lattices and codes.

APPROX/RANDOM 2024

19:12 More Basis Reduction for Linear Codes

However, in the case of codes, there is no analogous simple tight bound on
dmin(C(B[i,i+β−1])) in terms of the lengths of the epipodal vectors |b+

i |, . . . , |b+
i+β−1|, except

in the special case when β = 2. Instead, there are many known incomparable upper bounds
on dmin in terms of the dimension β and the support size s := |b+

i |+ · · ·+ |bi+β−1| (and, of
course, the alphabet size q). Each of these bounds is tight or nearly tight for some support
sizes s (for fixed β) but rather loose in other regimes. The nature of our basis-reduction
algorithms is such that different blocks have very different support sizes s, so that we cannot
use a single simple bound that will be useful in all regimes. And, due to the relatively
“cramped” nature of Fn

q , applying loose bounds on dmin can easily yield trivial results, or
results that do offer no improvement over the β = 2 case. As a result, the bound that we
obtain on the length of b1 for a BKZ-reduced basis does not have a simple closed form.
(Since the special case of β = 2 yields a very simple tight bound dmin ≤ (1− 1/q)s, this is
not an issue in the analysis of the LLL algorithm in [17].)

In fact, we do not even know if the worst-case bound on |b1| for a BKZ-reduced basis is
efficiently computable, even if one knows the optimal minimum distance of β-dimensional
codes for all support sizes. However, we do show an efficiently computable bound that is
nearly as good. And, we show empirically that in practice it produces quite a good basis.
(See the full version [21].)

1.4.4.2 Slide reduction for codes

Given our difficulties analyzing the BKZ algorithm, it is natural to try to adapt Gama and
Nguyen’s slide-reduction algorithm [20] from lattices to codes. In particular, recall that in
the case of lattices, the slide-reduction algorithm has the benefit that (unlike BKZ) it is
relatively easy to prove that it terminates efficiently.

In fact, recall that the idea for backward-reduced bases was inspired by dual-reduced bases
for lattices, which are a key component of slide reduction. We therefore define slide-reduced
bases for codes by essentially just substituting backward-reduced blocks for dual-reduced
blocks in Gama and Nguyen’s definition for lattices. Our slide-reduction algorithm (i.e., an
algorithm that produces slide-reduced bases) follows similarly.

We then give a quite simple proof that this algorithm terminates efficiently. Indeed, our
proof is a direct translation of Gama and Nguyen’s elegant potential-based argument from
the case of lattices to the case of codes. (Gama and Nguyen’s proof is itself a clever variant
of the beautiful original proof for the case when β = 2 in [25].)

Finally, we give an efficiently computable upper bound on |b1| for a slide-reduced basis
in a similar spirit to our upper bound on BKZ. Here, we again benefit from our analysis of
backward-reduced blocks described above. Indeed, the behavior of the epipodal vectors in
our backward-reduced blocks is quite easy to analyze. However, our bound does not have a
simple closed form because the behavior of the forward-reduced blocks still depends on the
subtle relationship between the minimal distance of a code and the parameters n and k, as
we described in the context of BKZ above.

In our experiments (in the full version [21]), slide reduction is far faster than BKZ but
does not find bases that are as good.

1.4.5 Two illustrative algorithms
In the full version [21], we show yet two more basis-reduction algorithms for codes. We think
of the importance of these algorithms as being less about their actual usefulness and more
about what they show about the potential and limitations of basis reduction for codes. We
explain below.

S. Ghentiyala and N. Stephens-Davidowitz 19:13

1.4.5.1 One-block reduction

The one-block-reduction algorithm is quite simple. It finds a short non-zero codeword
in a code C generated by some basis B by first ensuring that B is proper, and then by
simply finding a shortest non-zero codeword in the subcode C(B[1,β]) generated by the
prefix basis B[1,β]. Notice that if β ≤ O(logq n), then this algorithm runs in polynomial
time. In particular, enumerating all codewords in the subcode can be done in time roughly
O(nqβ log q).

Furthermore, it is not hard to see that when β = ⌈logq n⌉, this simple algorithm actually
meets the Griesmer bound! (See the full version [21].) At a high level, this is because (1) the
worst case in the Griesmer bound has |b+

i | = 1 for all i ≥ β; and (2) the resulting bound is
certainly not better than the minimum distance of a code with dimension β and support size
n−(k−β). Here, the k−β term comes from the fact that Supp(B[1,β]) = n−|b+

β+1|−· · ·−|b
+
k |.

(Similar logic explains why full backward reduction achieves the Griesmer bound with
τ ≈ logq n.)

More generally, it seems unlikely that a basis-reduction algorithm will be able to find b1
that is shorter than what is achieved by this simple approach if we take β ≥ max{k∗

1 , β′},
where β′ is the size of the largest block in the basis reduction algorithm and k∗

1 is the maximal
index of an epipodal vector that has length larger than one. (In practice, k∗

1 is almost never
much larger than k1.) In particular, for a basis reduction algorithm to do better than this,
it must manage to produce a block B[1,β] that has minimum distance less than what one
would expect given its support size.

We therefore think of this algorithm as illustrating two points.
First, the existence of this algorithm further emphasizes the importance of the parameter

k∗
1 (and the closely related parameter k1) as a sort of “measure of non-triviality.” If an

algorithm achieves large k∗
1 , then the above argument becomes weaker, since we must take

β ≥ k∗
1 . Indeed, if β is significantly larger than 2 logq k, then the running time of one-block

reduction (if implemented by simple enumeration) becomes significantly slower.
Second, the existence of the one-block-reduction algorithm illustrates that we should be

careful not to judge basis-reduction algorithms entirely based on |b1|. We certainly think
that |b1| is an important measure of study, and indeed it is the main way that we analyze
the quality of our bases in this work. However, the fact that one-block-reduction exists shows
that this should not be viewed as the only purpose of a basis-reduction algorithm.

Of course, the algorithms that we have discussed thus far are in fact non-trivial, because
they (1) find short non-zero codewords faster than one-block reduction; and (2) find whole
reduced bases and not just a single short non-zero codeword. Such reduced bases have
already found exciting applications in [17] and [8], and we expect them to find more.

1.4.5.2 Approximate Griesmer reduction

Recall that [17] calls a basis B ∈ Fk×n
q Griesmer reduced if b+

i is a shortest non-zero
codeword in C(B[i,k]) for all i. And, notice that, if one is willing to spend the time to find
shortest non-zero codewords in codes with dimension at most k, then one can compute a
Griesmer-reduced basis iteratively, by first setting b1 to be a shortest non-zero codeword in
the whole code, then projecting orthogonal to b1 and building the rest of the basis recursively.
(Griesmer-reduced bases are the analogue of Korkine-Zolotarev bases for lattices. We discuss
Griesmer-reduced bases more below.)

Our approximate-Griesmer-reduction algorithm is a simple variant of this idea. In
particular, it is really a family of algorithms parameterized by a subprocedure that finds short
(but not necessarily shortest) non-zero codewords in a code. Given such a subprocedure, the

APPROX/RANDOM 2024

19:14 More Basis Reduction for Linear Codes

algorithm first finds a short non-zero codeword b1 in the input code C. It then projects the
code orthogonally to b1 and builds the rest of the basis recursively. (To make sure that we
end up with a proper basis, care must be taken to assure that b1 is primitive. We ignore this
in the introduction. See the full version [21].)

The running time of this algorithm and the quality of the basis produced of course depends
on the choice of subprocedure. Given the large number of algorithms for finding short non-
zero codewords with a large variety of performance guarantees for different parameters
(some heuristic and some proven), we do not attempt here to study this algorithm in full
generality. We instead simply instantiate it with the Lee-Brickell-Babai algorithm from [17]
(an algorithm which itself uses [17]’s LLL algorithm as a subroutine). Perhaps unsurprisingly,
we find that this produces significantly better basis profiles (e.g., smaller |b1| and larger k1
and k∗

1) than all of the algorithms that we designed here. The price for this is, of course,
that the subprocedure itself must run in enough time to find non-zero short codewords in
dimension k codes.

We view this algorithm as a proof of concept, showing that at least in principle one can
combine basis-reduction techniques with other algorithms for finding short codewords to
obtain bases with very good parameters. This meshes naturally with the Lee-Brickell-Babai
algorithm in [17], which shows how good bases can be combined with other algorithmic
techniques to find short non-zero codewords. Perhaps one can merge these techniques more
in order to show a way to use a good basis to find a better basis, which itself can be used to
find a better basis, etc?

1.4.6 On “the best possible bases”
Finally, in the full version [21], we prove bounds on “the best possible bases” in terms of
the parameters k1 and k∗

1 . Indeed, recall that the (heuristic) running time of [17]’s Lee-
Brickell-Babai algorithm beats Lee-Brickell by a factor that is exponential in k1. And, we
argued above that k∗

1 can be viewed as a measure of the “non-triviality” of a basis reduction
algorithm. So, it is natural to ask how large k1 and k∗

1 can be in principle.
In the full version [21], we show that any code over F2 has a basis with k∗

1 ≥ Ω(log k2),
even if the support size is as small as n = k +

√
k. For this, we use Griesmer-reduced

bases (not to be confused with the approximate-Griesmer-reduced bases described above;
note in particular that it is NP-hard to compute a Griesmer-reduced basis). Notice that
this is a factor of Ω(log k) better than the logarithmic k∗

1 achieved by all known efficient
basis-reduction algorithms.

Here, we use the parameter k∗
1 and not k1 because it is easy to see that in the worst

case a code can have arbitrarily large support but still have no proper basis with k1 > 1.9
Typically, of course, one expects k∗

1 and k1 to be very closely related, so that one can view
this as heuristic evidence that typical codes have bases with k1 ≥ Ω(log2 k).

In the full version [21], we argue under a mild heuristic assumption that any basis for a
random code over F2 has k1 ≤ k∗

1 ≤ O(log2 k), even if the support size n is a large polynomial
in the dimension k.

Taken together, these results suggest that the best possible bases that we should expect
to find in practice should have k1 ≈ k∗

1 = Θ(log2 k) for typical settings of parameters. Such
a basis would (heuristically) yield a savings of kΘ(log k) in [17]’s Lee-Brickell-Babai algorithm.
So, it would be very exciting to find an efficient algorithm that found such a basis.

9 For example, take that code Fk−1
2 ∪ (Fk−1

2 + c) where c := (1, 1, . . . , 1) ∈ Fn
2 . Any proper basis of this

code must have k − 1 vectors with length one and therefore must have k1 = 1.

S. Ghentiyala and N. Stephens-Davidowitz 19:15

On the other hand, our (heuristic) upper bound on k1 suggests a limitation of basis
reduction for codes. In particular, we should not expect any improvement better than kΘ(log k)

in Lee-Brickell-Babai. And, the upper bound also suggests that basis-reduction algorithms
are unlikely to outperform the simple one-block-reduction algorithm for block sizes larger
than Ω(log2 k).

2 Preliminaries

2.1 Some notation

Logarithms are base two unless otherwise specified, i.e., log(2x) = x. We write Im for the
m×m identity matrix.

If b1, . . . , bk ∈ Fn
q , then (b1, . . . , bk) ∈ Fn×k

q denotes the matrix where each bi is a column
and (b1; . . . ; bk) ∈ Fk×n

q denotes the matrix where each bi is row i of B.
We say that a matrix B ∈ Fk×n

q is in systematic form if A = (Ik, X)P , where P is a
permutation matrix (i.e., if k contains the columns eT

1 , . . . , eT
k).

For any basis B ∈ Fk×n
q and any subset S ⊆ [n] with |S| = k such that BS has full rank,

we call the process of replacing B by (B|S)−1 systematizing B with respect to S. When the
set S is not important, we simply call this systematizing B. This procedure is useful at least
in part because it results in a proper basis.

We define two notions of the support of a vector. Specifically, we write

Supp(x) := {i ∈ J1, nK : xi ̸= 0} ,

and similarly

»Supp(x)i :=
{

0 xi = 0
1 xi ̸= 0 .

We can also define the support of an [n, k]q code C by extending the definitions of Supp and
»Supp,

Supp(C) ≜
⋃
c∈C

Supp(c) # »Supp(C) =
∨
c∈C

»Supp(c) ,

and we define the support of a matrix B ∈ Fk×n
q as the support of the code generated by

the matrix.
If A ∈ Fm×n

q , B ∈ Fr×s
q , then the direct sum of A and B, denoted A⊕B ∈ F(m+r)×(n+s)

q ,
is

A⊕B =
(

A 0m×s

0n×r B

)
We will often use the following important property regarding matrix direct sums. If A ∈ Fm×n

q ,
B ∈ Fr×s

q , x ∈ Fn
q , y ∈ Fs

q, then

(A⊕B)
(

x

y

)
=

(
Ax

By

)
.

APPROX/RANDOM 2024

19:16 More Basis Reduction for Linear Codes

3 Generalizing epipodal vectors, size reduction, and the fundamental
domain to Fq

In this section, we generalize many of the fundamental concepts in [17] from codes over F2
to codes over Fq. Specifically, we generalize the notions of projection, epipodal matrices, and
the size-reduction algorithm. We then study the geometry of the fundamental domain that
one obtains by running the size-reduction algorithm on a given input basis.

Much of this generalization is straightforward (once one knows the theory developed
for F2 in [17]). So, one might read much of this section as essentially an extension of
the preliminaries. The most difficult part, in the full version [21], is the analysis of the
fundamental domain (which is not used in the rest of the paper).

3.1 Projection and epipodal vectors
The notions of projection and epipodal vectors extend naturally to Fq from the notions
outlined in [17]. However, to ensure that this work is as self-contained as possible, we will
now explicitly outline how some of those notions extend to Fq. Notice that these operations
are roughly analogous to orthogonal projection maps over Rn.

▶ Definition 1. If x1 = (x1,1, . . . , x1,n), . . . , xk = (xk,1, . . . , xk,n) ∈ Fn
q , the function

π{x1,...,xk} : Fn
q → Fn

q is defined as follows:

π{x1,...,xk}(y)i =
{

yi x1,i ̸= 0 ∨ · · · ∨ xk,i ̸= 0
0 otherwise.

We call this “projection onto the support of x1, . . . , xk.”

▶ Definition 2. If x1 = (x1,1, . . . , x1,n), . . . , xk = (xk,1, . . . , xk,n) ∈ Fn
q , the function

π⊥
{x1,...,xk} : Fn

q → Fn
q is defined as follows:

π⊥
{x1,...,xk}(y)i =

{
yi x1,i = 0 ∧ · · · ∧ xk,i = 0
0 otherwise.

We call this “projection orthogonal to x1, . . . , xk.”

We will often simply write πx to denote π{x} and π⊥
x to denote π⊥

{x}
We now define the epipodal matrix of a basis for a code, which is the analogue of the

Gram–Schmidt matrix.

▶ Definition 3. Let B = (b1; . . . ; bk) ∈ Fk×n
q be a matrix with elements from Fq. The ith

projection associated to the matrix B is defined as πi := π⊥
{b1,...,bi−1}, where π1 denotes the

identity.
The ith epipodal vector is defined as b+

i := πi(bi). The matrix B+ := (b+
1 ; . . . ; b+

k) ∈
Fk×n

q is called the epipodal matrix of B.

The following notation for a projected block will be helpful in defining our reduction
algorithms. (The same notation is used in the lattice literature.)

▶ Definition 4. For a basis B = (b1; . . . ; bk) ∈ Fk×n
q and i, j ∈ [1, k] where i ≤ j, we use the

notation B[i,j] as shorthand for (πi(bi); . . . ; πi(bj)). Furthermore, for i ∈ [1, k] and j > k,
we define B[i,j] = B[i,k] for all j > k.

We will often write ℓi to denote |b+
i | when the basis B = (b1; . . . ; bk) is clear from context.

S. Ghentiyala and N. Stephens-Davidowitz 19:17

3.1.1 Basic operations on blocks
See the full version [21].

3.2 Size reduction and its fundamental domain
See the full version [21].

4 Proper bases and primitivity

We will primarily be interested in bases that are proper in the sense that the epipodal vectors
should all be non-zero.

▶ Definition 5. A basis is said to be proper if all its epipodal vectors b+
i are non-zero.

[17] observed that, given an arbitrary basis B ∈ Fk×n
q for a code, we can efficiently compute

a proper basis B′ for the same code by systematizing B. In particular, let A ∈ Fk×k
q be an

invertible matrix formed from k columns of B (which must exist because B is a full-rank
matrix). Then, B′ := A−1B is a proper basis for the code generated by B. In particular,
every code has a proper basis. From this, we derive the following simple but useful fact.

See the full version [21].

5 Redundant sets of coordinates, the last epipodal vector, and
backward reduction

We are now ready to develop the theory behind backward-reduced bases. A backward-reduced
basis is one in which the last epipodal vector b+

k is as long as possible. In the context of
lattices, such bases are called dual-reduced bases and the maximal length of the last Gram-
Schmidt vector has a simple characterization in terms of λ1 of the dual lattice. For codes,
the maximal length of the last epipodal vector behaves rather differently, as we will explain
below. In particular, we will see how to find a backward-reduced basis quite efficiently. In
contrast, finding a dual-reduced basis is equivalent to finding a shortest non-zero vector in a
lattice and is therefore NP-hard.

On our way to defining backward reduction, we first define the notion of redundant
coordinates. Notice that we only consider coordinates in the support of C.

▶ Definition 6. For a code C ⊆ Fn
q , we say that a set S ⊆ [n] of coordinates is redundant

for C if S ⊆ Supp(C) and for every c ∈ C and all i, j ∈ S, ci = 0 if and only if cj = 0.

The following simple claim explains the name “redundant.” In particular, for any codeword
c ∈ C, if we know ci for some i ∈ S, then we also know cj for any j ∈ S.

▷ Claim 7. For a code C ⊆ Fn
q , a set S ⊆ Supp(C) is redundant for C if and only if for every

i, j ∈ S, there exists a non-zero scalar a ∈ F∗
q such that for all c ∈ C, cj = aci.

Furthermore, to determine whether S is a set of redundant coordinates, it suffices to
check whether the latter property holds for all c := bi in a basis (b1; . . . ; bk) of C.

Proof. See the full version [21]. ◁

Next, we show that redundancy is closely connected with the last epipodal vector in a
basis.

APPROX/RANDOM 2024

19:18 More Basis Reduction for Linear Codes

▶ Lemma 8. For a code C ⊆ Fn
q with dimension k and S ⊆ [n], there exists a basis

B := (b1; . . . ; bk) of C with S ⊆ Supp(b+
k) if and only if S is redundant.

Furthermore, if S is redundant, then there exists a proper basis with this property.

Proof. See the full version [21]. ◀

The above motivates the following definition.

▶ Definition 9. For a code C ⊆ Fn
q , the repetition number of C, written η(C), is the maximal

size of a redundant set S ⊆ Supp(C).

In particular, notice that by Lemma 8, η(C) is also the maximum of |b+
k | over all bases

(b1; . . . ; bk) and this maximum is achieved by a proper basis. The next lemma gives a lower
bound on η(C), therefore showing that codes with sufficiently large support and sufficiently
low rank must have bases whose last epipodal vector is long.

▶ Lemma 10. For any code C ⊆ Fn
q with dimension k,

η(C) ≥
⌈

q − 1
qk − 1 · |Supp(C)|

⌉
.

Proof. See the full version [21]. ◀

We present in Algorithm 1 a simple algorithm that finds the largest redundant set of
a code C. (The algorithm itself can be viewed as a constructive version of the proof of
Lemma 10.)

Algorithm 1 Max Redundant Set.

Input: A basis B = (b1; . . . ; bk) ∈ Fk×n
q for C

Output: A redundant set S for C with |S| = η(C)
for j ∈ [n] do

aj ← B−1
i,j , where i ∈ [k] is minimal such that Bi,j ̸= 0.

end
Find S ⊆ Supp(C) with maximal size such that for all j1, j2 ∈ S and all i,
aj1Bi,j1 = aj2Bi,j2 .

return S

▷ Claim 11. Algorithm 1 outputs a redundant set S for C with |S| = η(C). Furthermore,
Algorithm 1 runs in time O(kn log(q) log(qn)) (when implemented appropriately).

Proof. See the full version [21]. ◁

5.1 Backward reduction
We are now ready to present our definition of backward-reduced bases.

▶ Definition 12. Let B = (b1; . . . ; bk) ∈ Fk×n
q be a basis of a code C. We say that B is

backward reduced if it is proper and |b+
k | = η(C(B)).

Finally, we give an algorithm that finds a backward-reduced basis. See Algorithm 2.

▷ Claim 13. On input a proper basis B, Algorithm 2 correctly outputs an invertible
matrix A such that AB is backward reduced. Furthermore, Algorithm 2 runs in time
O(nk log(q) log(qn)).

Proof. See the full version [21]. ◁

S. Ghentiyala and N. Stephens-Davidowitz 19:19

Algorithm 2 Backward Reduction.

Input: A proper basis B = (b1; . . . ; bk) ∈ Fk×n
q for C

Output: An invertible matrix A ∈ Fk×k
q such that AB is backward reduced.

{j1, . . . , jt} ← MaxRedundantSet(B)
Let m be minimal such that Bm,j1 ̸= 0.
for i ∈ [m + 1, k] do

bi ← bi −B−1
m,j1

Bi,j1bm

end
(b1; . . . ; bk)← (b1; . . . ; bm−1; bm+1; . . . ; bk; bm)
return the matrix corresponding to the linear transformation done to B.

5.2 Full backward reduction
Since backward reduction can be done efficiently, it is natural to ask what happens when
we backward reduce many prefixes B[1,i] of a basis. We could simply do this for all i ∈ [k],
but it is natural to be slightly more fine-grained and instead only do this for i ≤ τ for some
threshold τ . In particular, since the last k− poly(log n) epipodal vectors tend to have length
one even in very good bases (see the full version [21]to understand why), it is natural to take
τ ≤ poly(log n) to be quite small, which leads to very efficient algorithms. This suggests the
following definition.

▶ Definition 14. For some threshold τ ≤ k, a basis B ∈ Fk×n
q is fully backward reduced up

to τ if it is proper and B[1,i] is backward reduced for all 1 ≤ i ≤ τ .

We now show how to easily and efficiently compute a fully backward-reduced basis, using
the backward-reduction algorithm (Algorithm 2) that we developed above. We present the
algorithm in Algorithm 3 and then prove its correctness and efficiency. Notice in particular
that the algorithm only changes each prefix B[1,i] (at most) once.

Algorithm 3 Full Backward Reduction.

Input: A proper basis B := (b1; . . . ; bk) ∈ Fk×n
q for a code C and a threshold

τ ∈ [1, k]
Output: A basis for C that is totally backward reduced up to τ .
for i = τ, . . . , 1 do

A← BackwardReduction(B[1,i])
B ← (A⊕ Ik−i)B

end
return B

▶ Theorem 15. On input a proper basis B := (b1; . . . ; bk) ∈ Fk×n
q for a code C and a

threshold τ ∈ [1, k], Algorithm 3 correctly outputs a basis B′ ∈ Fk×n
q for C that is fully

backward reduced up to τ . Furthermore, the algorithm runs in time O(τ2n log(q) log(qn)).

Proof. See the full version [21]. ◀

We next bound |b1| of a fully backward-reduced basis. In fact, when τ ≥ ⌈logq n⌉, this
bound matches the Griesmer bound. In fact, it is not hard to see that with τ = k, a fully
backward-reduced basis is in fact LLL-reduced as well. But, the below theorem shows that
we do not need to go all the way to τ = k to achieve the Griesmer bound. This is because in
the worst case, |b+

i | = 1 for all i ≥ logq n anyway.

APPROX/RANDOM 2024

19:20 More Basis Reduction for Linear Codes

▶ Theorem 16. For any positive integers k, n ≥ k, and τ ≤ k, a basis B ∈ Fk×n
q of a code

C that is fully backward reduced up to τ satisfies

τ∑
i=1

⌈
|b1|
qi−1

⌉
≤ n− k + τ .

Proof. See the full version [21]. ◀

5.3 Heuristic analysis suggesting better performance in practice
Recall that our analysis of backward-reduced bases in Section 5 relied crucially on the
repitition number η(C), which is the maximum over all bases of C of the last epipodal
vector. We showed that η(C) can be equivalently thought of as the maximal set of redundant
coordinates. E.g., when q = 2, η(C) is precisely the number of repeated columns in the basis
B for C.

Our analysis of fully backward-reduced bases then relies on the lower bound on η(C) in
Lemma 10. The proof of Lemma 10 simply applies the pigeonhole principle to the (normalized,
non-zero) columns of a basis B for C to argue that, if there are enough columns, then one of
them must be repeated many times. Of course, the pigeonhole principle is tight in general
and it is therefore easy to see that this argument is tight in the worst case.

However, in the average case, this argument is not tight. For example, if the number n of
(non-zero) columns in our basis B ∈ Fk×n

2 is smaller than the number of possible (non-zero)
columns 2k − 1, then it is certainly possible that no two columns will be identical. But, the
birthday paradox tells us that even with just n ≈ 2k/2, a random matrix B ∈ Fk×n

2 will
typically have a repeated column. More generally, if a code C is generated by a random
basis B ∈ Fk×n

q , then we expect to have η(C) > 1 with probability at least 1− 1/ poly(n),
provided that, say, n ≥ 10 log(n)qk/2, or equivalently, provided that

k ≤ 2(logq n− logq(10 log(n))) .

We could now make a heuristic assumption that amounts to saying that the prefixes
B[1,i] behave like random matrices with suitable parameters (in terms of the presence of
repeated non-zero columns). We could then use such a heuristic to show that we expect the
output of Algorithm 3 to achieve

k1 > (2− o(1)) logq n .

We choose instead to present in the full version [21]a variant of Algorithm 3 that provably
achieves the above. This variant is identical to Algorithm 3 except that instead of looking at all
of B[1,i] and choosing the largest set of redundant coordinates in order to properly backward
reduce B[1,i], the modified algorithm chooses the largest set of redundant coordinates from
some small subset of all of the coordinates. In other words, the modified algorithm ignores
information. Because the algorithm ignores this information, we are able to rigorously prove
that the algorithm achieves k1 ≳ 2 logq n when its input is a random matrix (by arguing that
at each step the algorithm has sufficiently many fresh independent random coordinates to
work with).

We think it is quite likely that Algorithm 3 performs better (and certainly not much
worse) than this information-ignoring variant. We therefore view this as strong heuristic
evidence that Algorithm 3 itself achieves k1 ≳ 2 logq n. (This heuristic is also confirmed by
experiment. See the full version [21].)

S. Ghentiyala and N. Stephens-Davidowitz 19:21

5.3.1 Backward reducing without all of the columns
See the full version [21].

References
1 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the

shortest vector problem in 2n time using discrete Gaussian sampling. In STOC, 2015.
2 Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH hardness of SVP. In STOC,

2018.
3 Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996.
4 Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for randomized reductions. In

STOC, 1998.
5 Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case

equivalence. In STOC, 1997.
6 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the Shortest Lattice

Vector Problem. In STOC, pages 601–610, 2001.
7 Michael Alekhnovich. More on average case vs approximation complexity. In FOCS, pages

298–307, 2003.
8 Nicolas Aragon, Julien Lavauzelle, and Matthieu Lequesne. decodingchallenge.org, 2019. URL:

http://decodingchallenge.org.
9 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The Hardness of Approximate

Optima in Lattices, Codes, and Systems of Linear Equations. J. Comput. Syst. Sci., 54(2):317–
331, 1997.

10 L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.

11 Shi Bai, Damien Stehlé, and Weiqiang Wen. Measuring, simulating and exploiting the head
concavity phenomenon in BKZ. In Asiacrypt, 2018.

12 Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In SODA, 2016.

13 Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the quantitative
hardness of CVP. In FOCS, 2017.

14 E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain
coding problems. IEEE Transactions on Information Theory, 24(3):384–386, 1978.

15 Peter van Emde Boas. Another NP-complete problem and the complexity of computing short
vectors in a lattice. Technical report, University of Amsterdam, 1981.

16 Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Asiacrypt,
2011.

17 Thomas Debris-Alazard, Léo Ducas, and Wessel P. J. van Woerden. An algorithmic reduction
theory for binary codes: LLL and more. IEEE Transactions on Information Theory, 68(5):3426–
3444, 2022. URL: https://eprint.iacr.org/2020/869.

18 Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within almost-
polynomial factors is NP-hard. Combinatorica, 23(2):205–243, 2003.

19 I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum distance of
a linear code. IEEE Transactions on Information Theory, 49(1):22–37, 2003.

20 Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within Mordell’s inequality.
In STOC, 2008.

21 Surendra Ghentiyala and Noah Stephens-Davidowitz. More basis reduction for linear codes:
backward reduction, BKZ, slide reduction, and more, 2024.

22 J. H. Griesmer. A bound for error-correcting codes. IBM Journal of Research and Development,
4(5):532–542, 1960.

23 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key
cryptosystem. In ANTS, pages 267–288, 1998.

APPROX/RANDOM 2024

http://decodingchallenge.org
https://eprint.iacr.org/2020/869

19:22 More Basis Reduction for Linear Codes

24 P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key cryptosys-
tem. In Eurocrypt, 1988.

25 Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534, December 1982.

26 Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report, Jet Propulsion Laboratory, 1978.

27 Daniele Micciancio. The Shortest Vector Problem is NP-hard to approximate to within some
constant. SIAM Journal on Computing, 30(6):2008–2035, 2001.

28 Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction. In
Eurocrypt, 2016. URL: http://eprint.iacr.org/2015/1123.

29 Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm: Survey and Applications.
Springer-Verlag, 2010.

30 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6):Art. 34, 40, 2009. doi:10.1145/1568318.1568324.

31 Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor.
Comput. Sci., 53(23):201–224, 1987.

32 Noah Stephens-Davidowitz and Vinod Vaikuntanathan. SETH-hardness of coding problems.
In FOCS, 2019.

33 Alexander Vardy. Algorithmic complexity in coding theory and the Minimum Distance
Problem. In STOC, 1997.

34 Michael Walter. Lattice blog reduction: The Simons Institute blog. https://blog.simons.
berkeley.edu/2020/04/lattice-blog-reduction-part-i-bkz/, 2020.

http://eprint.iacr.org/2015/1123
https://doi.org/10.1145/1568318.1568324
https://blog.simons.berkeley.edu/2020/04/lattice-blog-reduction-part-i-bkz/
https://blog.simons.berkeley.edu/2020/04/lattice-blog-reduction-part-i-bkz/

	1 Introduction
	1.1 Codes and lattices
	1.2 Basis reduction for lattices
	1.3 Basis reduction for codes!
	1.3.1 Projection, epipodal vectors, and proper bases
	1.3.2 What's a good basis and what is it good for?

	1.4 Our contribution
	1.4.1 Expanding on the work of DDvW22
	1.4.2 Backward reduction and redundant sets
	1.4.3 Fully backward-reduced bases
	1.4.4 BKZ and slide reduction for codes
	1.4.5 Two illustrative algorithms
	1.4.6 On ``the best possible bases''

	2 Preliminaries
	2.1 Some notation

	3 Generalizing epipodal vectors, size reduction, and the fundamental domain to Fq
	3.1 Projection and epipodal vectors
	3.1.1 Basic operations on blocks

	3.2 Size reduction and its fundamental domain

	4 Proper bases and primitivity
	5 Redundant sets of coordinates, the last epipodal vector, and backward reduction
	5.1 Backward reduction
	5.2 Full backward reduction
	5.3 Heuristic analysis suggesting better performance in practice
	5.3.1 Backward reducing without all of the columns

