
Online Time-Windows TSP with Predictions
Shuchi Chawla #

University of Texas at Austin, United States

Dimitris Christou #

University of Texas at Austin, United States

Abstract
In the Time-Windows TSP (TW-TSP) we are given requests at different locations on a network;
each request is endowed with a reward and an interval of time; the goal is to find a tour that
visits as much reward as possible during the corresponding time window. For the online version of
this problem, where each request is revealed at the start of its time window, no finite competitive
ratio can be obtained. We consider a version of the problem where the algorithm is presented with
predictions of where and when the online requests will appear, without any knowledge of the quality
of this side information.

Vehicle routing problems such as the TW-TSP can be very sensitive to errors or changes in the
input due to the hard time-window constraints, and it is unclear whether imperfect predictions can
be used to obtain a finite competitive ratio. We show that good performance can be achieved by
explicitly building slack into the solution. Our main result is an online algorithm that achieves a
competitive ratio logarithmic in the diameter of the underlying network, matching the performance of
the best offline algorithm to within factors that depend on the quality of the provided predictions. The
competitive ratio degrades smoothly as a function of the quality and we show that this dependence
is tight within constant factors.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Travelling Salesman Problem, Predictions, Learning-Augmented Algorithms,
Approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.2

Category APPROX

Related Version Due to space limitations, some proofs are deferred to the full version of this paper.
Full Version: https://arxiv.org/abs/2304.01958 [13]

Funding Shuchi Chawla: This work was funded in part by NSF award CCF-2217069.

1 Introduction

Many optimization problems exhibit a large gap in how well they can be optimized offline
versus when their input arrives in online fashion. In order to obtain meaningful algorithmic
results in the online setting, a natural direction of investigation is to consider “beyond
worst case” models that either limit the power of the adversary or increase the power of the
algorithm. A recent line of work in this direction has considered the use of predictions in
bridging the offline versus online gap. Predictions in this context are simply side information
about the input that an online algorithm can use for its decision making; the true input is
still adversarially chosen and arrives online. The goal is to show that on the one hand, if
the predictions are aligned with the input, the algorithm performs nearly as well as in the
offline setting (a property known as consistency); and on the other hand, if the predictions
are completely unrelated to the input, the algorithm nevertheless performs nearly as well as
the best online algorithm (a.k.a. robustness). Put simply, good predictions should help, but
bad predictions should not hurt, and ideally we should reap the benefits without any upfront
knowledge about the quality of the predictions.

© Shuchi Chawla and Dimitris Christou;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 2; pp. 2:1–2:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shuchi@cs.utexas.edu
https://orcid.org/0000-0001-5583-2320
mailto:christou@cs.utexas.edu
https://orcid.org/0009-0007-6935-5677
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.2
https://arxiv.org/abs/2304.01958
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Online Time-Windows TSP with Predictions

Predictions have been shown to effectively bypass lower bounds for a variety of different
online decision-making problems including, for example, caching [30, 31, 25], scheduling [12,
24, 3], online graph algorithms [4], load balancing [27, 28], online set cover [6], matching
problems [17], k-means [19], secretary problems [1, 18], network design [20, 33, 9] and more.1

In this paper, we consider a problem whose objective function value is highly sensitive
to changes in the input, presenting a significant challenge for the predictions setting. In
the Traveling Salesman Problem with Time Windows (TW-TSP for short), we are given
a sequence of service requests at different locations on a weighted undirected graph. Each
request is endowed with a reward as well as a time window within which it should be serviced.
The goal of the algorithm is to produce a path that maximizes the total reward of the requests
visited within their respective time windows. In the online setting, the requests arrive one at
a time at the start of their respective time windows, and the algorithm must construct a
path incrementally without knowing the locations or time windows of future requests.

Vehicle routing problems such as the TW-TSP that involve hard constraints on the lengths
of subpaths (e.g. the time at which a location is visited) are generally more challenging than
their length-minimization counterparts. In particular, a small bad decision at the beginning
of the algorithm, such as taking a slightly suboptimal path to the first request, can completely
obliterate the performance of the algorithm by forcing it to miss out on all future reward.
In the offline setting, this means that the approximation algorithm has to carefully counter
any routing inefficiency in some segments by intentionally skipping reachable value in other
segments. In the online setting, this means that no sublinear competitive ratio is possible.

Given the sensitivity of the TW-TSP objective to small routing inefficiencies, is it possible
to design meaningful online algorithms for this problem using imperfect predictions?

We consider a model where the algorithm is provided with a predicted sequence of requests
at the beginning, each equipped with a predicted location and a predicted time window. The
true sequence of requests is revealed over time as before. Of course if the predicted sequence
is identical to the true request sequence, the algorithm can match the performance of the
best offline algorithm. But what if the predictions are slightly off? Could these small errors
cause large losses for the online algorithm? Can the algorithm tolerate large deviations?

Our main result is an online algorithm for the TW-TSP based on predictions whose
performance degrades smoothly as a function of the errors in prediction. We obtain this
result by explicitly building slack into our solution and benchmark. In a slight departure
from previous work on TW-TSP, we require the server to spend one unit of idle “service time”
at each served request. We show that this is necessary to obtain a sublinear approximation
even with predictions (Theorem 9). (However, in the absence of predictions, the setting
with service times continues to admit a linear lower bound on the competitive ratio; See
Theorem 8.) We then use service times judiciously in planning a route and accounting for
delays caused by prediction errors.

There are two primary sources of error in predictions: (1) the predicted locations of
requests may be far from the true locations; and, (2) the predicted time windows may be
different from the true time windows. The competitive ratio of our algorithm depends linearly
on each of these components, taking the maximum error over each predicted request and
normalizing appropriately.2 This dependence is tight to within constant factors. Besides this

1 A comprehensive compendium of literature on the topic can be found at [29].
2 Formally, the competitive ratio depends linearly on the ratio of the maximum location error of any

predicted request to the minimum service time, as well as the ratio of the maximum time window error
to the minimum time window length.

S. Chawla and D. Christou 2:3

dependence on the prediction error, the competitive ratio depends logarithmically on the
diameter of the underlying network, matching the performance of the best known offline
algorithm for TW-TSP.

Although our competitive ratio is stated in terms of the maximum location or time
window errors, where the maximum is taken over all requests in the instance, our algorithm
performs well even when some of the errors are large and most errors are small. In particular,
our algorithm’s performance is simultaneously competitive against the maximum achievable
reward over any subset of requests, scaled down by the maximum prediction error over
that subset. (See “Extensions” in Section 3 for a formal statement.) In this respect, our
guarantees fall within the framework of metric error with outliers proposed by [4]. On the
other hand, when all or most requests are predicted poorly, our algorithm also inevitably
performs poorly as it inherits lower bounds from fully online instances.

Importantly, our algorithm requires little to no information about how the predictions
match up against the true requests. For the purpose of analysis, we measure the error
in predictions with respect to some underlying matching between the predicted and true
requests – the error parameters are then defined in terms of the maximum mismatch between
any predicted request and its matched true request. This matching is never revealed to
the algorithm and in fact the performance of the algorithm depends on the quality of the
best possible matching between the predicted and true requests. The only information the
algorithm requires about the quality of the predictions is the location error – the maximum
distance between any prediction and its matched true request. Even for this parameter, an
upper bound suffices (and at a small further loss, a guess suffices).

Our overall approach has several components. The first of these is to construct an instance
of the TW-TSP over predicted requests that requires the server to spend some idle time at
each request as a “service delay”. We then extend offline TW-TSP algorithms to this service
delay setting, obtaining a logarithmic in diameter approximation. We then follow and adapt
this offline solution in the online setting. Every time the offline solution services a predicted
request, we match this request to a previously revealed true request, take a detour from the
computed path to visit and service the true request, and then resume the precomputed path.
Altogether this provides the desired competitive ratio.

Our results further generalize to a setting where predictions are coarse in that each single
predicted location captures multiple potential true requests that are nearby. We show that
with prediction errors defined appropriately, we can again achieve a competitive ratio for
this “many to one matching” setting that is logarithmic in the diameter of the graph and
polynomial in the prediction error.

Finally, our algorithm and analysis incorporates error in estimating rewards of requests
in a straightforward manner achieving the optimal dependence on this third source of error.

Further related work
Using predictions in the context of online algorithm design was first proposed by [30] for
the well-studied caching problem. Since that work, the literature on online algorithm design
with predictions has grown rapidly. We point the interested reader to a compendium at [29]
for further references.

Metric error with outliers

Azar et al. [4] initiated the study of predictions in the context of online graph optimization
problems, and proposed a framework for quantifying errors in predictions, called metric error
with outliers, that we adapt. The idea behind this framework is to capture two sources of

APPROX/RANDOM 2024

2:4 Online Time-Windows TSP with Predictions

error: (1) Some true requests may not be captured by predictions and some predictions may
not correspond to any true requests; (2) For requests that are captured by predictions, the
predictions may not be fully faithful or accurate. The key observation is that it is possible
to design algorithms with performance that depends on these two sources of error without
explicit upfront knowledge of the (partial) correspondence between predicted and true requests.

In this work, we focus mostly on the second source of error, which we further subdivided
into three kinds of error in order to obtain a finer understanding of the relationship between
the competitive ratio and different kinds of error. As in the work of Azar et al. [4], we assume
that the correspondence between predicted and true requests is never explicitly revealed to
the algorithm. The performance of the algorithm nevertheless depends on the error of the
best matching between predicted and true requests. In Section 3 we describe how the first
source of error in Azar et al.’s framework can also be incorporated into our bounds.

TSP with predictions

Recently a few papers [10, 23, 22] have considered the online TSP and related routing
problems with predictions. The input to the online TSP is similar to ours: requests arrive
over time in a graph, and a tour must visit each request after its arrival time. However,
the objective is different. In our setting, requests also have deadlines, and the algorithm
cannot necessarily visit all requests. The goal therefore is to visit as many as possible. In
the online TSP, there are no deadlines, and so the objective is to visit all requests as quickly
as possible, or in other words to minimize the makespan. This makespan minimization
objective is typically much easier than the deadline setting, as evidenced by constant factor
approximations for it in the offline, online, and predictions settings, as opposed to logarithmic
or worse approximations for the latter problem.

The algorithmic idea of precomputing an offline path based on the predictions and then
adapting it to the online input has also been used in [10, 23]. The main challenge in the
setting that our works considers, is that due to the existence of deadlines, our algorithm
needs to be careful on how it adapts its path, as taking a large detour could result in entirely
missing the time-windows of future (unrevealed) requests. We circumvent this issue by
introducing appropriately large idle times on the predicted requests that our offline solution
visits.

TW-TSP without predictions

The (offline) TW-TSP problem has a rich literature and has been studied for over 20 years.
The problem is known to be NP-hard even for special cases, e.g. on the line [32], and when
all requests have the same release times and deadlines (a.k.a. Orienteering) [11]. Orienteering
admits constant factor approximations [11, 7, 14], and even a PTAS when requests lie in
a fixed dimensional Euclidean space [2, 16]. For general time windows, constant factor
approximations are only known for certain special cases: e.g. constant number of distinct
time windows [15]; and on line graphs [32, 26, 8, 21]. For general graphs and time-windows,
the best approximations known are logarithmic in input parameters [7, 14].

To the best of our knowledge, the online setting for TW-TSP has only been considered
by Azar and Vardi [5]. Azar and Vardi assume that service times are non-zero and present
competitive algorithms under the assumption that the smallest time window length Lmin
is comparable to the diameter D of the graph, as no sublinear competitive ratio can be
achieved if Lmin < D/2. We are able to beat this lower bound by relying on predictions.

S. Chawla and D. Christou 2:5

Organization of the paper
We formally define the problem and our error model in Section 2. Section 3 describes our
results and provides an outline for our analysis. All of our main results are covered in that
section. Proofs of these results can be found in subsequent sections. In particular, Sections 4,
5, and 6 fill in the details of our upper bound, and Section 7 proves the stated lower bounds.
Proofs omitted from the main body of this paper can be found in the appendix of the full
version [13].

2 Definitions

2.1 The Traveling Salesman Problem with Time-Windows
An instance of the TW-TSP consists of a network G and a (finite) sequence of service requests
I. Here, G = (V, E, ℓ) is an undirected network with edge lengths {ℓe}e∈E . Extending the
notion of distance to all vertex pairs in G, we define ℓ(u, v) for u, v ∈ V to be the length of
the shortest path from u to v. We assume without loss of generality that G is connected
and that the edge lengths ℓe are integers. A service request σ = (vσ, rσ, dσ, πσ) consists of a
vertex vσ ∈ V at which the request arrives, a release time rσ ∈ Z+, a deadline dσ ∈ Z+ with
dσ > rσ, and a reward πσ ∈ Z+. We use Σ ⊆ V × Z+ × Z+ × Z+ to denote the set of all
possible client requests and I ⊂ Σ to denote the set of requests received by the algorithm.

The solution to TW-TSP is a continuous walk on G that is allowed to remain idle on the
vertices of the graph.3 Formally, the walk starts from some vertex at time t = 0; at every
time-step that it occupies a vertex u ∈ V , it can either remain idle on u for some number
of time-steps or it can move to some v ∈ V by spending time t = ℓ(u,v); we comment that
while the path is mid-transition, no more decisions can be made. Notice that this creates
a notion of a discrete time-horizon that will be important towards formalizing the online
variant of the problem.

We use W(G) to denote the set of all walks on G. Given a request σ ∈ Σ, we say that
a walk W covers it if W remains idle on vertex vσ for at least one time-step,4 starting on
some step τ ∈ [rσ, dσ − 1]. For a sequence of requests I ⊂ Σ, we use Cov(W, I) ⊆ I to denote
the set of requests in I that are covered by W . Then, the reward obtained by walk W is
denoted by Rew(W, I) :=

∑
σ∈Cov(W,I) πσ. The objective of TW-TSP is to compute a walk

W ∈ W(G) of maximum reward. We denote this by OPT(G, I) := maxW ∈W(G) [Rew(W, I)].

2.2 The offline, online, and predictions settings
We assume that the network G is known to the algorithm upfront in all of the settings we
consider. In the offline version of the problem, the sequence of requests I is given to the
algorithm in advance. In the online version, requests σ ∈ I arrive in an online fashion;
specifically, each request σ ∈ I is revealed to the algorithm at its release time rσ.

In the predictions setting, the true sequence of requests I arrives online, as in the online
setting. However, the algorithm is also provided with a predicted sequence I ′ ⊂ Σ in advance,
where every request σ′ ∈ I ′ is endowed with a location, a time window, and a reward. The

3 To keep our exposition simple, we do not specify a starting location for the walk. However, all of our
algorithms can be adapted without loss to the case where a starting location is fixed, as described
towards the end of Section 3.

4 As we mentioned in the introduction, this requirement of a minimal one-unit service time is necessary
in order to achieve any sublinear approximation for the online TW-TSP even with predictions. See
Theorem 9 in Section 7.

APPROX/RANDOM 2024

2:6 Online Time-Windows TSP with Predictions

quality of predictions is expressed in terms of their closeness to true requests. To this end,
we define three notions of mismatch or error. For a true request σ and predicted request σ′,
the location error, time windows error, and reward error are defined as:

LocErr(σ, σ′) := ℓ(vσ, vσ′)
TWErr(σ, σ′) := max{|rσ − rσ′ |, |dσ − dσ′ |}
RewErr(σ, σ′) := max{πσ/πσ′ , πσ′/πσ}

We extend these definitions to the entire sequences I and I ′ through an underlying (but
unknown to the algorithm) matching between the requests in the two lists:

▶ Definition 1. Given two request sequences I, I ′ ⊂ Σ with |I| = |I ′| and a perfect matching
M : I 7→ I ′, we define the location, time window, and reward errors for the matching M as:

ΛM := max
σ∈I

LocErr(σ, M(σ))

τM := max
σ∈I

TWErr(σ, M(σ))

ρM := max
σ∈I

RewErr(σ, M(σ))

We use n = |V | to denote the number of vertices in G, D to denote the diameter of
the graph, and Lmin and Lmax to denote the size of the smallest and largest time windows
respectively (of a true or predicted request) in the given instance; that is, we denote
Lmin = minσ∈I∪I′ |dσ − rσ| and Lmax = maxσ∈I∪I′ |dσ − rσ|. The competitive ratios of the
algorithms we develop depend on these parameters.

Knowns and unknowns

We denote an instance of the TW-TSP with predictions by (G, I, I ′, M). All components of
the instance are chosen adversarially. As mentioned earlier, the network G and the predicted
sequence I ′ are provided to the algorithm at the start. The sequence I arrives online. We
assume that the algorithm receives no direct information about the matching M , but is
provided with an upper bound on the error ΛM . We will also assume that the algorithm
knows the parameter Lmin, although this is without loss of generality as the parameter can
be inferred within constant factor accuracy from the predictions.5

2.3 The TW-TSP with service times
At a high level our algorithm has two components: an offline component that computes a
high-reward walk over the predicted locations of requests, and an online component that
largely follows this walk but takes “detours” to cover the arriving true sequence of requests.
In particular, as the algorithm follows the offline walk, for each predicted location it visits
where a “close by” true request is available, the algorithm takes a “detour” to this true
request, returns back to the predicted location, and resumes the remainder of the walk. In
order to incorporate the time spent taking these detours in our computation of the offline
walk, we require the walk to spend some “service time” at each predicted location it covers.
Accordingly, we define a generalization of the TW-TSP:

5 In particular, assuming τM ≤ Lmin/2, which is necessary for our results to hold, the time window of
any true request can be no shorter than half the smallest time window of any predicted request.

S. Chawla and D. Christou 2:7

▶ Definition 2. The TW-TSP with Service Times (TW-TSP-S) takes as input a network G,
a sequence of service requests I, and a service time S ∈ Z+, and returns a walk W ∈ W(G).
We say that W covers a request σ ∈ I, denoted σ ∈ Cov(W, I, S), if it remains idle on vertex
vσ for at least S time steps, starting at some step t ∈ [rσ, dσ − S]. We define the reward of
W as Rew(W, I, S) :=

∑
σ∈Cov(W,I,S) πσ. The optimal value of the instance is given by:

OPT(G, I, S) := max
W ∈W(G)

[Rew(W, I, S)].

Note that the original version of TW-TSP as defined previously simply corresponds
to the special case of TW-TSP-S with service time S = 1, and in particular, we have
Rew(W, I) = Rew(W, I, 1), and OPT(G, I) = OPT(G, I, 1).

3 Our results and an outline of our approach

Our main result is as follows.

▶ Theorem 3. Given any instance (G, I, I ′, M) of the TW-TSP with predictions whose errors
satisfy τM ≤ Lmin/2 and ΛM ≤ (Lmin− 1)/4, there exists a polynomial-time online algorithm
that takes the tuple (G, I ′, ΛM) as offline input and I as online input, and constructs a walk
W ∈ W(G) such that

E[Rew(W, I)] ≥ 1
O(ΛM · ρ2

M · log min(D, Lmax)) ·OPT(G, I).

As mentioned previously, our algorithm consists of two components. The offline component
constructs a potential walk in the network with the help of the predicted requests. Then an
online component adapts this walk to cover true requests that arrive one at a time. We break
up the design and analysis of our algorithm into four steps. The first two steps relate the
offline instance we solve to the hindsight optimal solution for the online instance. The third
step then applies an offline approximation to the predicted instance with appropriate service
times. The final step deals with the online adaptation of the walk to the arriving requests.

The following four lemmas capture the four steps. First, we show (Section 4) that
introducing a service time of S hurts the optimal value by at most a factor of 2S − 1. As
we prove in Lemma 14 of Section 4, this dependency on S is tight. Observe that we require
S ≤ Lmin, as for any tour to feasibly cover a request, the service time for that request must
fit within its time window.

▶ Lemma 4. For any instance (G, I) of the TW-TSP with service times, and any integer
S ≤ Lmin, we have

OPT(G, I, S) ≥ 1
2S − 1 ·OPT(G, I, 1).

Our second step (also in Section 4) relates the value of the optimal solution over the true
requests I to the optimum over the predicted sequence I ′. In both cases, we impose some
service time requirements. Note that this argument needs to account for the discrepancy in
locations, time windows, as well as the rewards of the true and predicted requests.

▶ Lemma 5. Let (G, I, I ′, M) be an instance of the TW-TSP with predictions, where ΛM ,
ρM , and τM denote the maximum location, reward, and time window errors of the instance
respectively. Define S := 4ΛM + 1 and S′ := 2ΛM + 1. Then, if τM ≤ Lmin/2 and
ΛM ≤ (Lmin − 1)/4, we have

OPT(G, I ′, S′) ≥ 1
3ρM

·OPT(G, I, S).

APPROX/RANDOM 2024

2:8 Online Time-Windows TSP with Predictions

Our third step (Section 5) captures the offline component of our algorithm: computing
an approximately optimal walk over the predicted requests with the specified service times.
For this we leverage previous work on the TW-TSP without service times and show how to
adapt it to capture the service time requirement.

▶ Lemma 6. Given any instance (G, I ′, S′) of the TW-TSP with service times, there exists
a polynomial time algorithm that returns a walk W ∈ W(G) with reward

Rew(W, I ′, S′) = 1
O (log min(D, Lmax)) ·OPT(G, I ′, S′).

Finally, the fourth component (Section 6) addresses the online part of our algorithm.
Given a walk computed over the predicted request sequence, it solves an appropriate online
matching problem to construct detours to capture true requests. As in Lemma 5, this part
again needs to account for the discrepancy in locations, time windows, as well as the rewards
of the true and predicted requests.

▶ Lemma 7. Given an instance (G, I, I ′, M) of the TW-TSP with predictions satisfying
τM ≤ Lmin/2 and ΛM ≤ (Lmin − 1)/4; a walk W ′ ∈ W(G); and any integer S′ ≥ 2ΛM + 1,
there exists an online algorithm (Algorithm 1) that returns a walk W ∈ W(G) with expected
reward

E [Rew(W, I, 1)] ≥ 1
6ρM

· Rew(W ′, I ′, S′).

Theorem 3 follows immediately by putting Lemmas 4, 5, 6 and 7 together.

Lower bounds and tightness of our results
We show that the online TW-TSP does not admit sublinear competitive algorithms in the
absence of predictions if Lmin < D, even with non-zero service times. Furthermore, if the
service times are all 0, no sublinear competitive ratio is possible even using predictions that
are accurate in all respects except the request location. Therefore, in order to achieve a
nontrivial competitive ratio, it is necessary to use predictions as well as to impose non-zero
service times on the optimum. The proofs are presented in Section 7.

▶ Theorem 8. The competitive ratio of any randomized online algorithm for Online TW-TSP
on instances with Lmin ≤ D and all service times equal to 1 is at most 1/n.

▶ Theorem 9. For any S > 0, there exists an instance (G, I, I ′, M) of the TW-TSP with
predictions and service times 0, satisfying τM = 0, ρM = 1, and ΛM = S, such that any
randomized online algorithm taking the tuple (G, I ′, ΛM) as offline input and I as online
input achieves a reward no larger than O(1/n) · OPT(G, I, 0). Here n is the number of
vertices in G.

As mentioned earlier, the best known approximation factor for the offline TW-TSP
is O(log Lmax) (which we show can be improved slightly to O(log min(D, Lmax))). We
inherit this logarithmic dependence on D and Lmax in the predictions setting. Furthermore,
any improvements to the offline approximation would immediately carry through into our
competitive ratio as well. In particular, given an offline TW-TSP algorithm that achieves a
competitive ratio of α(D, Lmax), we obtain an online algorithm that achieves a competitive
ratio of O(ΛM · ρ2

M · α(D, Lmax)).
The dependence of our bound on ρM can easily be seen to be tight – consider a star

graph with requests on leaves, and edge lengths and time windows defined in such a manner
that any feasible walk can cover at most one request. Then an uncertainty of a factor of

S. Chawla and D. Christou 2:9

ρM in the predicted rewards can force any online algorithm to obtain an Ω(ρ2
M) competitive

ratio even if the predictions are otherwise perfect. Finally, we show in Section 7.2 that the
dependence of our competitive ratio on ΛM is also tight:

▶ Theorem 10. For any S > 0, there exists an instance (G, I, I ′, M) of the TW-TSP with
predictions satisfying τM = 0, ρM = 1, and ΛM = S such that the competitive ratio of any
randomized online algorithm taking the tuple (G, I ′, ΛM) as offline input and I as online
input asymptotically approaches 1/(S + 1).

Extensions and generalizations

We now describe some ways in which we can weaken the assumptions in Theorem 3 while
maintaining its competitive ratio guarantee:

Lack of knowledge of ΛM . Our algorithm continues to work as intended if it is
provided with an upper bound on ΛM rather than the exact value of the parameter, with
the performance of the algorithm degrading linearly with the upper bound, as in the
theorem above. One such upper bound is simply Lmin/4. Moreover, by guessing ΛM

within a factor of 2 in the range [0, Lmin/4], we can obtain the claimed approximation
with a further loss of O(log Lmin). Thus, our algorithm can achieve non-trivial guarantees
that scale with the location error even in settings where no information is given about
any of the prediction errors ΛM , τM , ρM .

Assumptions on τM and ΛM . It is easy to see that it is necessary to assume
ΛM ≤ Lmin to obtain a nontrivial competitive ratio, as predictions with a location error
larger than the time window size are of no value to the online algorithm. On the other
hand, assuming τM ≤ Lmin is not necessary. We can accommodate larger time window
errors by following one out of roughly τM /Lmin different time shifts of the offline walk.
This worsens our approximation factor by an additional factor of τM /Lmin. In particular,
this algorithm achieves a competitive ratio of O(ΛM · ρ2

M · τM /Lmin · log min(D, Lmax)).

Random rewards. Our results also hold in the case of random rewards. Specifically,
consider a setting where the rewards {πσ}σ∈I are drawn from some joint (not necessarily
product) distribution D over RI

+. In that case, we define Rew(W, I) :=
∑

σ∈Cov(W,I) E[πσ],
and OPT(G, I) as the maximum reward obtained by any walk W ∈ W(G).6 Finally, we
define RewErr(σ, σ′) as the mismatch between π′

σ and E[πσ]. Our analysis provides the
same approximation as before in this setting. See the full version for a formal proof.

▶ Corollary 11. Given an instance (G, I, I ′, M) of the TW-TSP with predictions where
requests have randomly drawn rewards, and predictions errors satisfy that τM ≤ Lmin/2
and also ΛM ≤ (Lmin−1)/4, there exists a polynomial-time online algorithm that takes the
tuple (G, I ′, ΛM) as offline input and I as online input, and constructs a walk W ∈ W(G)
such that

E[Rew(W, I)] ≥ 1
O(ΛM · ρ2

M · log min(D, Lmax)) ·OPT(G, I)

6 Note that we do not allow the optimal walk to adapt to instantiations of rewards. Adaptive walks
cannot be competed against in an online setting even with predictions.

APPROX/RANDOM 2024

2:10 Online Time-Windows TSP with Predictions

Rooted instances. Next, we consider the case where a starting vertex v0 is also specified,
and the solution space W(G) includes all walks on G that start on vertex v0 at t = 0.
We can easily see that this setting is essentially equivalent to its unrooted counterpart,
under the extra assumption that each request σ = (vσ, rσ, dσ, πσ) satisfies the conditions
ℓ(v0, vσ) ≤ rσ. This is a reasonable assumption as no algorithm can visit a request σ

before time ℓ(v0, vσ) anyway. Clearly, for any rooted instance (G, I, v0), the unrooted
optimal OPT(G, I) is an upper bound on the rooted optimal OPT(G, I, v0). On the other
hand, the unrooted path computed by our algorithm can be transformed to a path of
same reward rooted at v0 by going directly from v0 to the predicted request serviced first,
as this distance is at most equal to the request’s release time.

Partial matching. Next we consider the case where not all true requests are captured
by the predicted requests and, on the flip side, where some predicted requests do not
correspond to true requests at all. Following the framework of [4], we consider partial
matchings between I and I ′, and define ∆M

1 to be the total reward of all true requests
that are unmatched, and ∆M

2 to be the total predicted reward of predicted requests that
are unmatched. Then, it is easy to see that our analysis goes through for the subsets of I

and I ′ that are matched to each other, costing us an additive amount of no more than
∆M

1 + ∆M
2 . See the full version for a formal proof.

▶ Corollary 12. Given an instance (G, I, I ′) of the TW-TSP with predictions, let M be any
(incomplete) matching between I and I ′, and let the error parameters ΛM , ρM , τM , ∆M

1 ,

and ∆M
2 be defined as above. Then, there exists an online algorithm that takes (G, I ′, ΛM)

as offline input and I as online input, and returns a walk W ∈ W(G) such that

E [Rew(W, I)] ≥ Ω
(

1
ΛM · ρ2

M · log min(D, Lmax)

)
·
(
OPT(G, I)−∆M

1
)
− ∆M

2
ρM

.

Many to one matching. Consider a setting where predictions are coarse in that each
single predicted location captures multiple potential true requests. We can model such a
setting within our predictions framework and obtain almost the same guarantee as in
Theorem 3. In particular, for this setting, let M be a many-to-one matching from I to I ′.
We define the location error of a predicted request σ′ ∈ I ′ as the length of the shortest
path that starts at σ′, visits all of the locations of the true requests that are preimages of
σ′ in M , spending one unit of time at each, and returns back to σ′. Observe that this
location error is the length of the optimal solution to an orienteering problem rooted at σ′.
Correspondingly, we want the reward associated with σ′ to capture the total reward of all
the true requests matched to σ′, and define its reward error accordingly. Finally, the time
window error is defined as before, as a maximum over all pairs σ and σ′ that are matched
to each other. Our algorithm for the setting of Theorem 3 constructs a matching between
I ′ and I in an online fashion. For this one to many setting, we solve instances of the
orienteering problem rooted at each predicted request we visit. The performance of the
algorithm accordingly worsens by a small constant factor and we achieve a competitive
ratio of O(ΛM ρ2

M log min(D, Lmax)) as before. Due to space limitations, the details of
the proof are omitted from this version. See Section 8 of the full version [13] for further
details.
▶ Theorem 13. Given an instance (G, I, I ′, M) of the TW-TSP with predictions where
M is a many-to-one matching with errors as defined above, and satisfying τM ≤ Lmin/2
and ΛM ≤ Lmin/2, there exists a polynomial-time online algorithm that takes the tuple
(G, I ′, ΛM) as offline input and I as online input, and constructs a walk W ∈ W(G) such
that

E[Rew(W, I)] ≥ 1
O(ΛM · ρ2

M · log min(D, Lmax)) ·OPT(G, I).

S. Chawla and D. Christou 2:11

4 Relating the Optima

In this section we provide the proofs of Lemmas 4 and 5 that relate the optima over the
true and the predicted request sequences, using service times as a mechanism to capture the
prediction errors. We begin by proving that a service time of S can hurt the optimal by at
most a factor of 2S − 1.

▶ Lemma 4. For any instance (G, I) of the TW-TSP with service times, and any integer
S ≤ Lmin, we have

OPT(G, I, S) ≥ 1
2S − 1 ·OPT(G, I, 1).

Proof. Let W ∈ W(G) be the walk that achieves the optimum OPT(G, I, 1), and let the
requests in I that are covered by W be denoted as σi = (vi, ri, di, πi) and ordered in the
sequence in which they are covered by W . The lemma follows directly from the simple
observation that if we don’t service the (S − 1)-requests prior and after some request σi,
then we can save enough time to service σi for S time-steps within its time window.

Formally, if ti ∈ [ri, di − 1] is the step at which W begins servicing request σi, then by
skipping the idle times on the (S − 1)-previous and next requests we can remain idle on vi

from step ti− (S − 1) until step ti + S (since W already remained idle on vi for 1 step) while
still being able to keep up with walk W . Since S ≤ Lmin, it is easy to verify that at least S

of these time-steps are going to fall in the time-window [ri, di].
We now partition the requests σi = (vi, ri, di, πi) into 2S− 1 sub-sequences, each of which

starts at some request i ∈ [S], and covers the requests σi, σi+(2S−1), σi+2(2S−1), and so forth.
Each such sequence can be covered with a walk, with idle times built in as above, so as to be
feasible for the instance (G, I, S). Clearly, one of these walks obtains a reward of at least
OPT(G, I, 1)/(2S − 1), completing the proof. ◀

In the appendix of the full version, we show that the above lemma obtains a tight gap
between the optima at different service times.

▶ Lemma 14. For any pair of integers (L, S) such that L ≥ 2S− 2 ≥ 1, there exists a rooted
instance (G, I) of the TW-TSP with service costs such that Lmin = L and

OPT(G, I, S) = 1
2S − 1 ·OPT(G, I, 1).

Next, we provide the proof of Lemma 5 that relates the optima between the predicted
and true request sequences, by appropriately addressing all three possible types of prediction
errors.

▶ Lemma 5. Let (G, I, I ′, M) be an instance of the TW-TSP with predictions, where ΛM ,
ρM , and τM denote the maximum location, reward, and time window errors of the instance
respectively. Define S := 4ΛM + 1 and S′ := 2ΛM + 1. Then, if τM ≤ Lmin/2 and
ΛM ≤ (Lmin − 1)/4, we have

OPT(G, I ′, S′) ≥ 1
3ρM

·OPT(G, I, S).

Proof. Let W be the walk that achieves the optimum OPT(G, I, S), and let the requests
in I covered by W be denoted as σi = (vi, ri, di, πi) and ordered in the sequence in which
they are visited by W . Let σ′

i = (v′
i, r′

i, d′
i, π′

i) denote the predicted request matched to σi,
that is, σ′

i = M(σi). Observe that the total reward of all requests {σ′
i} corresponding to

σi ∈ Cov(W, I, S) is at least Rew(W, I, S)/ρM .

APPROX/RANDOM 2024

2:12 Online Time-Windows TSP with Predictions

We will consider a walk W ′ in G defined as follows. The walk W ′ follows W , visiting
the requests σi in sequence. As soon as W starts servicing σi, W ′ takes a detour to
visit σ′

i; remains idle at σ′
i for S′ time steps; returns back to σi; remains idle at σi for

S−2ℓ(vi, v′
i)−S′ ≥ 0 time steps; and then resumes the walk W . Observe that W ′ is identical

to W outside of the detours it takes to visit the σ′
i’s.

Our goal is to feasibly capture all of the reward contained in the σ′
is. The problem is

that the walk W ′ may miss some of this reward due to the mismatch in the time windows of
the true and predicted requests. To this end, we will consider two variations of the walk W ′.
Let K := Lmin/2 ≥ τM . The walk W ′

1 is identical to W ′ except that it starts K steps after
W ′ starts, and accordingly visits every location exactly K steps after W ′ visits it. The walk
W ′

2 is identical to W ′ except that it starts K steps before W ′ starts,7 and accordingly visits
every location exactly K steps before W ′ visits it.

Now consider some σ′
i corresponding to a request σi covered by W in the instance (G, I, S).

We claim that at least one of the walks W ′, W ′
1, and W ′

2 covers σ′
i in (G, I ′, S′). Let t be

the time at which W ′ arrives at v′
i; recall that W ′ remains at the node until at least t + S′.

Note that t ≥ ri and t + S′ ≤ di due to σi ∈ Cov(W, I, S).
First, suppose that r′

i ≤ t and d′
i ≥ t + S′, then σ′ is covered by W ′ in (G, I ′, S′). Next

suppose that r′
i > t. Then, W ′

1 arrives at v′
i at time t + K ≥ ri + K ≥ ri + τM ≥ r′

i. On
the other hand, it remains at v′

i until time t + K + S′ < r′
i + K + S′ ≤ r′

i + Lmin ≤ d′
i.

Therefore, σ′
i is covered by W ′

1. Finally, suppose that d′
i < t + S′. Then, W ′

2 arrives at v′
i at

time t−K > d′
i − S′ −K ≥ d′

i − Lmin ≥ r′
i. On the other hand, it remains at v′

i until time
t−K + S′ ≤ di −K ≤ di − τM ≤ d′

i. Therefore, σ′
i is covered by W ′

2.
We get that at least one of W ′, W ′

1, or W ′
2 obtains at least a 1/3ρM fraction of

OPT(G, I, S), where the factor of ρM is lost due to the mismatch in the predicted rewards.
The lemma follows directly from this. ◀

5 The offline approximation

In this section, we design an O(log min(D, Lmax)) deterministic and polynomial-time ap-
proximation algorithm for the TW-TSP with service times, providing the proof of Lemma 6.
Our proof relies on a series of reductions between different offline problems, applications of
existing algorithms as well as the design of novel algorithmic components. We break up our
argument into a series of lemmas. Due to space limitations, all the proofs are moved to the
appendix of the full version [13].

1. First, we designing an O(log min(D, Lmax)) approximation algorithm for TW-TSP
(without service times). Since the work of [14] already provides a O(log Lmax) ap-
proximation for the setting with integer time-windows (see Lemma 5.3 of [14]), it suffices
to prove the following:
▶ Lemma 15. Given an instance of the TW-TSP (without service times) with Lmin ≥ 4D,
there exists a polynomial time algorithm that achieves an O(1) approximation.
Our proof relies on the observation that when time-windows are sufficiently large compared
to the diameter of the graph, the problem essentially reduces to an instance of the
well-studied Orienteering problem, for which constant approximation algorithms are

7 To be precise, this walk starts at the location where W ′ is at at step K.

S. Chawla and D. Christou 2:13

known. We comment that similar ideas have been used in [5]. Then, it is straight-
forward to combine this algorithm together with the algorithm of [14] to acquire an
O(log min(Lmax, D)) approximation of TW-TSP.
▶ Lemma 16. There exists an O(log min(D, Lmax)) approximation algorithm for the
TW-TSP problem.

2. Next, we design a simple approximation-preserving reduction from TW-TSP with service
times to TW-TSP (without service times). The main idea behind this reduction is to
treat service times as edge lengths in an augmented graph whose diameter is roughly
D + S. For instances with S ≤ D, this increase becomes negligible and thus by combining
our reduction with Lemma 16, we immediately get the following:
▶ Lemma 17. Given an instance (G, I, S) of the TW-TSP with service times such that
S ≤ D, there exists a polynomial time algorithm that achieves an O(log min(D, Lmax))
approximation.

3. Finally, we handle the case of large service times, specifically S ≥ D. In that case, it
turns out that we can reduce the instance to one over a uniform complete graph. Then,
the TW-TSP-S essentially becomes equivalent to the well-studied Job Scheduling problem,
for which constant approximations are known.
▶ Lemma 18. Given an instance (G, I, S) of the TW-TSP with service costs such that
S ≤ D, there exists a polynomial time algorithm that achieves an O(1) approximation.

The proof of Lemma 6 follows immediately from Lemma 17 and Lemma 18. We comment that
any improvement in the best known approximation algorithm for TW-TSP will immediately
imply an improvement for all the results that this work presents. Lemma 18 essentially
enables us to assume that in all instances of interest, S ≤ D. Under this assumption,
our reduction used in the proof of Lemma 17 essentially states that TW-TSP-S becomes
equivalent to TW-TSP in graphs of diameter O(D) and maximum window size O(Lmax).
As an immediate corollary, given an offline TW-TSP algorithm that achieves a competitive
ratio of α(D, Lmax), we immediately obtain an offline O(α(D, Lmax)) approximation for
TW-TSP-S, that can be used in order to substitute Lemma 6 in our analysis and improve
the competitive ratio of Theorem 3.

6 The online algorithm

In this section we present an online algorithm that takes as input a pre-computed walk over
the predicted request sequence and solves an appropriate online matching problem in order
to construct detours that capture true requests, while taking into account the possible errors
in the predictions. The formal guarantee of our algorithm is given in Lemma 7, which we
restate for the reader’s convenience:

▶ Lemma 7. Given an instance (G, I, I ′, M) of the TW-TSP with predictions satisfying
τM ≤ Lmin/2 and ΛM ≤ (Lmin − 1)/4; a walk W ′ ∈ W(G); and any integer S′ ≥ 2ΛM + 1,
there exists an online algorithm (Algorithm 1) that returns a walk W ∈ W(G) with expected
reward

E [Rew(W, I, 1)] ≥ 1
6ρM

· Rew(W ′, I ′, S′).

APPROX/RANDOM 2024

2:14 Online Time-Windows TSP with Predictions

We begin by establishing some notation. Let W ′ ∈ W(G) be any walk that services some
predicted requests in I ′ with a service time of S′. We use σ′

i = (v′
i, r′

i, d′
i, π′

i) to denote the
predicted requests in I ′ that are covered by W ′, ordered in the sequence in which they are
visited by W ′. Likewise, we use σi = (vi, ri, di, πi) ∈ I to denote the true request matched
to the prediction σ′

i, that is, σ′
i = M(σi).

At a high level, our algorithm follows the walk W ′, but when it reaches a predicted
request σ′

i, it considers taking a detour to service a true request that is available at that
point of time. To this end, we define the set of “reachable” true requests as follows.

▶ Definition 19. Given a partial walk W that is at request σ′
i ∈ I ′ at time t, we define the

set of reachable requests Ri(W, t) to be the set of all σ ∈ I such that:
1. rσ ≤ t ≤ dσ − ℓ(v′

i, vσ)− 1, and
2. 2ℓ(v′

i, vσ) + 1 ≤ S′.

Our algorithm considers all of the reachable requests that have not been covered by the
walk as yet, chooses the one with the highest reward, and takes a detour to visit and cover
the request, before returning to σ′

i and resuming the walk. In order to deal with time window
errors, our algorithm starts the walk a little early, or on time, or a little late, as in the proof
of Lemma 5. The algorithm is described below formally.

Algorithm 1 Online algorithm for TSP-TW with predictions.
Offline input: Graph G, predicted requests I ′, walk W ′ ∈ W(G), service times S′.
Online input: True requests I.
Output: Walk W ∈ W(G).

1: Let K = Lmin/2. Select ϵ uniformly at random from {−1, 0, 1}.
2: Define the set of covered requests C = ∅.
3: for i← 1 to |Cov(W ′, I ′, S′)| do
4: Let t′

i denote the time at which W ′ visits σ′
i.

5: Set ti ← t′
i + ϵK.

6: Visit v′
i at time ti.

7: Construct the set Ri(W, ti) of requests in I reachable at time ti.
8: if Ri(W, ti) \ C = ∅ then
9: Do nothing.

10: else
11: Let σ̂ be the highest reward request in Ri(W, ti) \ C.
12: Visit vσ̂; spend one unit of idle time at vσ̂; return to v′

i.
13: Set C ← C ∪ {σ̂}.

We begin our analysis by noting that the walk W constructed by the algorithm is always
able to visit the vertices v′

i corresponding to requests σ′
i ∈ Cov(W ′, I ′, S′) feasibly at the

desired times ti. This is because, by construction, the length of the detours that the walk
W takes in Step 12 is always at most S′ – the amount of idle time W ′ spends at v′

i – by
virtue of the fact that σ̂ ∈ Ri(W, ti) and therefore, 2ℓ(v′

i, vσ̂) + 1 ≤ S′. Therefore, all of the
requests σ̂ visited in Step 12 are indeed visited by the walk W .

We now relate the total reward covered by W to the reward contained in the true
requests σi corresponding to σ′

i ∈ Cov(W ′, I ′, S′). To do so, we first note that with constant
probability each such request is reachable by W .

▷ Claim 20. For each i, σi ∈ Ri(W, ti) with probability at least 1/3.

S. Chawla and D. Christou 2:15

Proof. Recall that by definition we have σ′
i = M(σi) and so, 2ℓ(v′

i, vi) + 1 ≤ 2ΛM + 1 ≤ S′.
So the request σ always satisfies the second requirement in the definition of the reachable
set Ri(W, ti). Let us now consider the first requirement and recall that ti = t′

i + ϵK where
ϵ ∈ {−1, 0, 1}. We will now argue that ti ∈ [ri, di − 1− ℓ(v′

i, vi)] for at least one of the three
choices of ϵ. The claim then follows from the uniformly random choice of ϵ.
1. If t′

i ∈ [ri, di − 1− ℓ(v′
i, vi)], then the claim holds for ϵ = 0 and ti = t′

i.

2. Suppose that t′
i < ri. Then, for ϵ = 1 we have that ti = t′

i + K ≥ r′
i + τM ≥ ri, and also

ti = t′
i + K < ri + K < di−Lmin + Lmin/2 and thus ti = t′

i + K ≤ di− 1− ℓ(v′
i, vi) since

ℓ(v′
i, vi) ≤ ΛM ≤ Lmin/2. Thus, in this case we have ti = t′

i + K ∈ [ri, di − 1− ℓ(v′
i, vi)]

with the choice of ϵ = 1.

3. Finally, suppose that t′
i > di − 1− ℓ(v′

i, vi). Then, for ϵ = −1 we have that ti = t′
i −K ≤

d′
i−S′−τM ≤ di−S′ and thus t′

i−K ≤ di−1−ℓ(v′
i, vi) since S′ ≥ 2ΛM +1 ≥ ℓ(v′

i, vi)+1.
Also, ti = t′

i −K > di − 1 − ℓ(vi, v′
i) − Lmin/2 > ri + Lmin/2 − ℓ(vi, v′

i) − 1 and thus
t′
i −K ≥ ri, since ℓ(vi, v′

i) ≤ ΛM ≤ Lmin/2. Thus, in this case we have obtained that
ti = t′

i −K ∈ [ri, di − 1− ℓ(v′
i, vi)] with the choice of ϵ = −1. ◁

We are now ready to prove Lemma 7 via a matching-type argument. To account for the
reward covered by the walk W constructed by the algorithm, we will employ a standard
charging scheme. Every time the algorithm takes a detour to cover some true request σ̂ from
a predicted request σ′

i in Step 12, we will credit half of the earned reward πσ̂ to σ̂ itself, and
half of the reward to the request σi. Formally, let Cr(σ) denote the total credit received by
σ ∈ I. Then during Step 12 we will increment both Cr(σ̂) and Cr(σi) by πσ̂/2.

Now consider some σi ∈ I corresponding to σ′
i ∈ Cov(W ′, I ′, S′). By Claim 20, this

request is in Ri(W, ti) with probability at least 1/3. If at time ti, the request has already
been covered by W , then we get Cr(σi) ≥ πi/2. Otherwise, we pick a σ̂ ∈ Ri(W, ti) with
πσ̂ ≥ πi, and therefore, once again we get Cr(σi) ≥ πi/2.

Putting everything together, we get

E[Rew(W, I, S)] = E
[∑

σ∈I

Cr(σ)
]
≥

∑
i:σ′

i
∈Cov(W ′,I′,S′)

E
[πi

2 1[σi ∈ Ri(W, ti)]
]

≥ 1
3 ·

∑
i:σ′

i
∈Cov(W ′,I′,S′)

πi

2

≥ 1
6 ·

1
ρM
·

∑
i:σ′

i
∈Cov(W ′,I′,S′)

π′
i

= 1
6ρM

· Rew(W ′, I ′, S′)

This completes the proof of the lemma.

7 Lower bounds

In this section, we present lower bounds that complement our results. First, we will motivate
the need for predictions in Section 7.1. Then, in Section 7.2 we will show that the competitive
ratio of TW-TSP with predictions must scale linearly with the error in locations. Finally, in
Section 7.3 we argue the need for non-zero service times in the definition of TW-TSP with
predictions.

APPROX/RANDOM 2024

2:16 Online Time-Windows TSP with Predictions

7.1 Lower bounds for online TW-TSP without predictions

We argue that Online TW-TSP does not admit any reasonable competitive ratio in the
absence of predictions. In the case of deterministic algorithms where their entire behavior
is predictable, simple instances with only 2 vertices and appropriately small time-windows
suffice to argue that no bounded guarantee for the approximation ratio is achievable.

▶ Lemma 21. The competitive ratio of any deterministic online algorithm for Online
TW-TSP on instances with Lmin ≤ D is unbounded.

Proof. Let Det be any deterministic algorithm and let G be the line graph with just two
vertices v1, v2 connected via an edge of length D. Since Det is deterministic, we can assume
knowledge of its position at any step t as soon as we have specified all requests with release
time ≤ t. We will now construct a request sequence I that uses the information.

For the first D time-steps, we don’t release any request. Then, at t = D, let vD ∈ {v1, v2}
be the position that Det’s walk is currently at and likewise let v′

D be the other vertex of
G. We construct the first request to be σ = (v′

D, D, D + L, 1) for any L ≤ D. Clearly, Det
cannot service this request as even for L = D it arrives on v′

D at deadline and cannot service
it for one step. Then, we don’t release any new request for the next 2D steps, and at t = 3D

we repeat the same process, by requesting the vertex that Det doesn’t currently occupy.
Likewise, we repeat the same process at t = 5D, t = 7D etc. Independently of the size of our
request sequence, the total reward collected by Det is 0.

On the other hand, it is not hard to see that if our request sequence I has N requests in
total, then OPT(G, I, 1) = N . This is due to the fact that requests are spaced 2D-steps from
each other, and thus an optimal offline algorithm that had knowledge of the entire sequence
in advance would always be able to arrive at each request on time, servicing it within its
respective time-window. ◀

For randomized algorithms, a slight improvement can be achieved. In particular, the
randomized algorithm that picks a vertex uniformly at random and then remains idle on it
for the entire sequence achieves a competitive ratio of 1/n. It turns out that this is actually
the best possible ratio that a randomized algorithm can achieve on Online TW-TSP:

▶ Theorem 8. The competitive ratio of any randomized online algorithm for Online TW-TSP
on instances with Lmin ≤ D is at most 1/n.

Proof. Let G(V, E, ℓ) be the uniform complete graph of n = |V | vertices, where all edges have
a length of D. Fix any integer N and let vertices v1, v2, . . . , vN ∈ V be drawn independently
and uniformly at random. Next, we fix any window length L ≤ D and consider the (random)
request sequence on these vertices I = {σi}N

i=1 for σi = (vi, (2i−1)D, (2i−1)D +L, 1). From
Yao’s mininmax principle, a lower bound on the (expected) competitive ratio of deterministic
algorithms on this randomized instance will imply the same lower bound for randomized
algorithms.

Since the time-windows are spaced 2D-away from each other, it is not hard to see that
for any realization of I, OPT(G, I, 1) = N . On the other hand, since D ≥ L, we get that the
only way to service a request is to be on its corresponding vertex on release time. Since the
vertices are random, for any deterministic algorithm this happens with probability precisely
1/n, and thus the expected reward of any deterministic algorithm on this instance is N/n,
proving the claim. ◀

S. Chawla and D. Christou 2:17

7.2 Tight dependence on location error

In this section we show that a linear dependency on the location error is unavoidable for any
randomized online algorithm for the TW-TSP with predictions, even assuming exponential
computational power. In other words, we formally prove Theorem 10, which we re-state for
the reader’s convenience:

▶ Theorem 10. For any S > 0, there exists an instance (G, I, I ′, M) of the TW-TSP with
predictions satisfying τM = 0, ρM = 1, and ΛM = S such that the competitive ratio of any
randomized online algorithm taking the tuple (G, I ′, ΛM) as offline input and I as online
input asymptotically approaches 1/(S + 1).

Proof. Fix any S > 0 and let K, C and N be integer parameters that will be specified later.
We construct a graph G = ∪N−1

i=0 Gi that consists of N copies G0, . . . , GN−1 of the complete
graph on C vertices with all edge lengths equal to S, arranged in a way so that each vertex
in Gi connects to each vertex in Gi+1 with an edge of length KS. A pictorial example for
small values of C and N is shown in Figure 1.

Figure 1 An example of G for C = 3 and N = 4. Black edges have a length of S and red edges
have a length of KS.

Next, we select independently and uniformly at random one vertex vi from each sub-
graph Gi and construct the (randomized) request sequence I = {σi}N−1

i=0 where we denote
σi = (vi, ri, ri + KS, 1) for ri = i · (KS + 1). As for the predictions, we simply construct a
second instance I ′ in the same manner and offer it as an offline prediction for I. Observe that
for all possible constructions of I and I ′ it holds that there exists a matching M between
them with τM = 0, ρM = 1 and ΛM = S, namely the matching that pairs together vertices
from the same sub-graphs. This prediction provides no information to the algorithm other
than the fact that the (true) instance I was constructed via the above randomized approach.
Also, notice that the location error ΛM can be arbitrarily small compared to the window
length L = KS by choosing appropriately large K.

It is easy to see that for all possible realizations of I it holds that OPT(G, I, 1) = N .
Indeed, consider the walk that starts from the (random) vertex v0, remains idle for 1 step and
then visits vertex v1, remains idle for one step, visits v2, etc. Such a walk would visit each
vertex vi at step t = i ·KS + i = ri and thus would service all the requests in I, achieving
a total reward of N . Next, we will show that the expected reward of any deterministic
algorithm on the random sequence I approaches N/S. Using Yao’s minimax principle, this
will immediately translate to a lower bound that approaches 1/S for randomized algorithms,
completing the proof of the theorem.

APPROX/RANDOM 2024

2:18 Online Time-Windows TSP with Predictions

Fix any deterministic algorithm for TW-TSP with predictions on instance (G, I, I ′, M).
Note that since the predictions I ′ supply zero information, it suffices to analyze the algorithm
as a deterministic online algorithm for Online TW-TSP on instance I. The key observation
is that due to the fact that both the time windows of the requests and the edges that connect
different sub-graphs have a length of KS, it is impossible for the algorithm to know on what
vertex vi of subgraph Gi the request is going to arrive before visiting some possibly different
vertex of the same subgraph. In particular, if the algorithm is in subgraph Gj for j < i at
time ri, then it cannot reach vertex vi before the time window of request i ends. Thus, in
order for any deterministic algorithm to serve the request on sub-graph Gi, it first has to
visit some vertex v′

i of Gi. If it so happens that v′
i = vi then it can immediately service the

request, otherwise it has to travel a distance of S in order to reach vi.
We partition the set of requests into two sets N+ and N− based on whether the determ-

inistic algorithm happens to arrive on the correct vertex of the sub-graph or not. All the
requests in N+ can be serviced without any extra delay, exactly as done by the optimal walk.
On the other hand, servicing a request in N− requires the algorithm to spend an extra time
of S in order to transition to the right vertex. Since the time-windows have a length of KS,
this can be done at most K times before the algorithm runs out of slack to spare. When this
happens, the algorithm would have to skip the next S requests in order to recover enough
slack to fix its next mistake.

Formally, consider the last request in N− that the algorithm feasibly serves, call it l.
Let A be the number of requests in N− the algorithm serves through extra delay prior to l,
and let B be the number of requests the algorithm skips in N+ or N− prior to l. Then in
order for the algorithm to have reached l before its time window ends, it must be the case
that the total extra delay incurred by the algorithm, namely AS −B, is no more than KS.
Rearranging we get:

A(S + 1)− (A + B) ≤ KS, or, A ≤ A + B

S + 1 + KS

S + 1 <
N

S + 1 + K

Thus, we get that the total expected reward gathered by the algorithm is at most

E[|N+|] + A + 1 ≤ E[|N+|] + N

S + 1 + K + 1

Finally, using the fact that E[|N+|] = N/C, we get that the competitive ratio of any
deterministic algorithm on the random instance I is at most

1
C

+ K + 1
N

+ 1
S + 1

Choosing N >> K and C sufficiently large, we can make this competitive ratio asymptotically
approach 1/(S + 1) as desired. ◀

7.3 Comparing the optimal with and without service times
As we saw in Lemma 4, the gap between OPT(G, I, 1) and OPT(G, I, S) depends linearly on
the service time S. In this section, we study the gap between OPT(G, I, 1) and OPT(G, I, 0),
showing that there exists a much sharper separation between them.

▶ Theorem 22. For any integers L and D, L ≤ D, there exists an offline instance (G, I) of
the TW-TSP where D is the diameter of the network and every request has a time window
length equal to L, such that OPT(G, I, 1) ≤ L

D+1 ·OPT(G, I, 0).

S. Chawla and D. Christou 2:19

Proof. Consider the line graph G with vertices v0 through vD connected sequentially via
edges of length 1. Clearly, the diameter of G is D. Next, consider the sequence of (D + 1)-
requests I = {σi}D

i=0 where σi = (vi, i, L + i, 1). Observe that OPT(G, I, 0) = D + 1 as
simply following the walk from v0 to vD will cover all the requests if the service costs are 0.

On the other hand, it is not very hard to see that OPT(G, I, 1) = L. First, observe that
without loss we can assume that the optimal walk starts on v0. If not, let σi be the first
request served by the optimal. Since σi cannot be served prior to step ri = i, we could
instead start at v0 and take i steps in order to reach vi and then follow the original walk,
achieving precisely the same reward.

Our argument is completed by the simple observation that any walk that starts from v0
and has served x requests with service cost 1 cannot visit vertex vj prior to step j + x. Thus,
as soon as x becomes L all the future time-windows will be missed. ◀

Theorem 22 states that OPT(G, I, 0) is a much stronger benchmark than OPT(G, I, 1).
However, it doesn’t exclude the possibility of designing an algorithm that is competitive
against this stronger benchmark OPT(G, I, 0). We will next show that no randomized online
algorithm with predictions can obtain a better than linear competitive ratio against this
benchmark. Intuitively, requiring the algorithm to spend non-zero time at each request
also allows the algorithm to recover from possible mistakes due to the prediction errors by
skipping requests that the optimum services with a delay of 1. A similar approach is not
possible in the 0 service time setting.

▶ Theorem 9. For any S > 0, there exists an instance (G, I, I ′, M) of the TW-TSP with
predictions and service times 0, satisfying τM = 0, ρM = 1, and ΛM = S, such that any
randomized online algorithm taking the tuple (G, I ′, ΛM) as offline input and I as online
input achieves a reward no larger than O(1/n) · OPT(G, I, 0). Here n is the number of
vertices in G.

Proof. We construct the same graph G = ∪N−1
i=0 Gi as in Theorem 10, that consists of N

copies of the complete graph with edge lengths S, connected sequentially with edges of length
KS (see Figure 1). As for the request sequence, we once again select independently and
uniformly at random one vertex vi from each sub-graph Gi and construct the (randomized)
request sequence I = {σi}N−1

i=0 where σi = (vi, iKS, (i + 1)KS − 1, 1); notice that release
times are slightly different from Theorem 10 to account for the absence of service costs.

For the predictions, we simply construct a second instance I ′ in the same manner and
offer it as an offline prediction for I. By matching the requests on the same sub-graph
together, we get τM = 0, ρM = 1 and ΛM = S. As it clearly holds that OPT(G, I, 0) = N

for any realization of I, to prove our theorem it suffices to argue that any deterministic
algorithm for TW-TSP with predictions on instance (G, I, I ′, M) gets an expected reward of
O(N/n) and apply Yao’s minimax principle. Furthermore, since the prediction I ′ does not
provide any information on I, it suffices to bound the reward of deterministic algorithms for
Online TW-TSP on (online) instance I.

Fix any deterministic algorithm for Online TW-TSP on instance I. Observe that since
edges between different sub-graphs have a length of KS and time-windows have a length of
KS − 1, it is impossible for the algorithm to service some request σi unless at t = ri it is
already in some vertex of sub-graph Gi. For the same reason, it is not possible to service any
request σj after servicing some other request σi with i > j. Finally, since all requests can
be reached by their release time if the algorithm starts from a vertex in G0, we can assume
without loss that this is indeed the case.

APPROX/RANDOM 2024

2:20 Online Time-Windows TSP with Predictions

We partition our set of N requests into two sets N+ and N− based on whether the
deterministic algorithm happens to arrive on the correct vertex of the sub-graph before the
request’s release time or not. From the random construction of our instance, we have that
E[|N+|] ≤ N/C. For requests in N−, if the algorithm wishes to service them it has to take
a detour of length S in order to reach the correct vertex. Our proof relies on the fact that
after servicing K requests in N−, the algorithm can no longer service any other request. To
see this, let vj be the K-th request in N− that was serviced by the deterministic algorithm.
As we can already established, any request vi with i < j can no longer be serviced. On
the other hand, since without loss the algorithm starts at a vertex of G0, just reaching a
vertex in Gi while taking K detours of length S requires at least iKS + K > di time-steps.
Putting everything together, we get that the expected reward of the algorithm is at most
N/C + K = O(N/n) by setting K = O(1) and N = 2K, since n = NC. ◀

References
1 Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online

matching problems with machine learned advice. In Annual Conference on Neural Information
Processing Systems (NeurIPS), 2020.

2 Esther M. Arkin, Joseph B. M. Mitchell, and Giri Narasimhan. Resource-constrained geometric
network optimization. In Symposium on Computational Geometry (SoCG), 1998.

3 Yossi Azar, Stefano Leonardi, and Noam Touitou. Flow time scheduling with uncertain
processing time. In Symposium on the Theory of Computing (STOC), 2021.

4 Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Online graph algorithms with predictions.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021.

5 Yossi Azar and Adi Vardi. TSP with time windows and service time. CoRR, abs/1501.06158,
2015. arXiv:1501.06158.

6 Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning
augmented algorithms. In Annual Conference on Neural Information Processing Systems
(NeurIPS), 2020.

7 Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Approximation algorithms
for deadline-TSP and vehicle routing with time-windows. In Symposium on the Theory of
Computing (STOC), 2004.

8 Reuven Bar-Yehuda, Guy Even, and Shimon Shahar. On approximating a geometric prize-
collecting traveling salesman problem with time windows. J. Algorithms, 55:76–92, 2005.

9 Magnus Berg, Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. Online minimum spanning
trees with weight predictions. In Workshop on Algorithms and Data Structures, 2023.

10 Giulia Bernardini, Alexander Lindermayr, Alberto Marchetti-Spaccamela, Nicole Megow, Leen
Stougie, and Michelle Sweering. A universal error measure for input predictions applied to
online graph problems. In Annual Conference on Neural Information Processing Systems
(NeurIPS), 2022.

11 Avrim Blum, Shuchi Chawla, David Karger, Terran Lane, and Maria Minkoff. Approximation
algorithms for orienteering and discounted-reward TSP. In Foundations of Computer Science
(FOCS), 2003.

12 Niv Buchbinder, Yaron Fairstein, Konstantina Mellou, Ishai Menache, and Joseph (Seffi)
Naor. Online virtual machine allocation with lifetime and load predictions. In International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), 2021.

13 Shuchi Chawla and Dimitris Christou. Online TSP with predictions. CoRR, abs/2304.01958,
2024. arXiv:2304.01958.

14 Chandra Chekuri, Nitish Korula, and Martin Pál. Improved algorithms for orienteering and
related problems. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

https://arxiv.org/abs/1501.06158
https://arxiv.org/abs/2304.01958

S. Chawla and D. Christou 2:21

15 Chandra Chekuri and Amit Kumar. Maximum coverage problem with group budget con-
straints and applications. In International Workshop on Approximation, Randomization, and
Combinatorial Optimization (APPROX), 2004.

16 Ke Chen and Sariel Har-Peled. The orienteering problem in the plane revisited. In Symposium
on Computational Geometry (SoCG), 2006.

17 Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii.
Faster matchings via learned duals. In Annual Conference on Neural Information Processing
Systems (NeurIPS), 2021.

18 Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with
advice. In ACM Conference on Economics and Computation (EC), 2021. doi:10.1145/
3465456.3467623.

19 Jon C. Ergun, Zhili Feng, Sandeep Silwal, David Woodruff, and Samson Zhou. Learning-
augmented k-means clustering. In International Conference on Learning Representations
(ICLR), 2022.

20 Thomas Wilhelm Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schloter. Learning-
augmented query policies for minimum spanning tree with uncertainty. In Embedded Systems
and Applications (ESA), 2022.

21 Jie Gao, Su Jia, Joseph S. B. Mitchell, and Lu Zhao. Approximation algorithms for time-
window TSP and prize collecting TSP problems. In Workshop on the Algorithmic Foundations
of Robotics (WAFR), 2016.

22 Themis Gouleakis, Konstantinos Lakis, and Golnoosh Shahkarami. Learning-augmented
algorithms for online TSP on the line. CoRR, abs/2206.00655, 2022. arXiv:2206.00655.

23 Hsiao-Yu Hu, Hao-Ting Wei, Meng-Hsi Li, Kai-Min Chung, and Chung-Shou Liao. Online
TSP with predictions. CoRR, abs/2206.15364, 2022. arXiv:2206.15364.

24 Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Non-clairvoyant
scheduling with predictions. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2021.

25 Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. Online algorithms for weighted paging
with predictions. In International Colloquium on Automata, Languages, and Programming
(ICALP), 2020.

26 Yoshiyuki Karuno and Hiroshi Nagamochi. 2-approximation algorithms for the multi-vehicle
scheduling problem on a path with release and handling times. Discret. Appl. Math., 129:433–
447, 2003.

27 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
2020.

28 Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and instance-
robust predictions for online matching, flows and load balancing. In European Symposium on
Algorithms (ESA), 2021.

29 Alexander Lindermayr and Nicole Megow. Algorithms with predictions. URL: https://
algorithms-with-predictions.github.io/.

30 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
J. ACM, 68(4):24:1–24:25, 2021.

31 Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2020.

32 John N. Tsitsiklis. Special cases of traveling salesman and repairman problems with time
windows. Networks, 22(3):263–282, 1992.

33 Chenyang Xu and Benjamin Moseley. Learning-augmented algorithms for online steiner tree.
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 36:8744–8752, 2022.

APPROX/RANDOM 2024

https://doi.org/10.1145/3465456.3467623
https://doi.org/10.1145/3465456.3467623
https://arxiv.org/abs/2206.00655
https://arxiv.org/abs/2206.15364
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/

	1 Introduction
	2 Definitions
	2.1 The Traveling Salesman Problem with Time-Windows
	2.2 The offline, online, and predictions settings
	2.3 The TW-TSP with service times

	3 Our results and an outline of our approach
	4 Relating the Optima
	5 The offline approximation
	6 The online algorithm
	7 Lower bounds
	7.1 Lower bounds for online TW-TSP without predictions
	7.2 Tight dependence on location error
	7.3 Comparing the optimal with and without service times

