
Online k-Median with Consistent Clusters
Benjamin Moseley #

Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA

Heather Newman #

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA

Kirk Pruhs #

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA

Abstract
We consider the problem in which n points arrive online over time, and upon arrival must be
irrevocably assigned to one of k clusters where the objective is the standard k-median objective.
Lower-bound instances show that for this problem no online algorithm can achieve a competitive
ratio bounded by any function of n. Thus we turn to a beyond worst-case analysis approach, namely
we assume that the online algorithm is a priori provided with a predicted budget B that is an upper
bound to the optimal objective value (e.g., obtained from past instances). Our main result is an
online algorithm whose competitive ratio (measured against B) is solely a function of k. We also
give a lower bound showing that the competitive ratio of every algorithm must depend on k.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases k-median, online algorithms, learning-augmented algorithms, beyond worst-
case analysis

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.20

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2303.15379 [20]

Funding Benjamin Moseley: Supported in part by a Google Research Award, an Inform Research
Award, a Carnegie Bosch Junior Faculty Chair, and NSF grants CCF-2121744 and CCF-1845146.
Heather Newman: Supported in part by a Google Research Award, an Inform Research Award, a
Carnegie Bosch Junior Faculty Chair, and NSF grants CCF-2121744 and CCF-1845146.
Kirk Pruhs: Supported by NSF grants CCF-1907673, CCF-2036077, CCF-2209654 and an IBM
Faculty Award.

1 Introduction

Clustering problems, such as k-means clustering and k-median clustering, are a classic
genre of learning / data mining problems [5]. Typically the input consists of a collec-
tion X = {x1, . . . , xn} of points in some metric space M (typically ℜd with the 1-norm
or 2-norm) and a positive integer k. Typically k is a small constant [2, 5]. The out-
put for a center-based clustering problem is a collection c1, . . . , ck of k points from
X, called centers, that succinctly summarize the data points. The implicit cluster Ci

corresponding to the center ci is the collection of points in X whose closest center is ci,
that is Ci = {xj | arg minh∈[k] d(xj , ch) = i}, where d(·, ·) is the distance function for
the metric space. The output for a cluster-based clustering problem is a partition
C1, . . . Ck of X into k parts, called clusters. The implicit center of each cluster Ci is then
ci = arg minxh∈Ci

∑
xj∈Ci

d(xh, xj). For both center-based clustering and cluster-based
clustering, the objective is to minimize the cost of the clustering. This paper considers the
k-median objective which is the aggregate distance from each point to the center of its cluster,
that is

∑k
i=1

∑
xj∈Ci

d(xj , ci).
© Benjamin Moseley, Heather Newman, and Kirk Pruhs;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 20; pp. 20:1–20:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:moseleyb@andrew.cmu.edu
https://orcid.org/0000-0001-8162-017X
mailto:hanewman@andrew.cmu.edu
https://orcid.org/0009-0006-6393-3707
mailto:kirk@cs.pitt.edu
https://orcid.org/0000-0001-5680-1753
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.20
https://arxiv.org/abs/2303.15379
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Online k-Median with Consistent Clusters

Here we consider applications where the data points in X arrive online over time. In an
online center-based clustering problem, the online algorithm maintains a collection
of centers. In a online cluster-based clustering problem, the online algorithm needs
to assign the data points to a cluster when they arrive, that is each point xj needs to be
assigned a label ℓj ∈ [k] when xj arrives. In either case, these choices should (ideally) be
irrevocable.

An application of online clustering given by [16] is the task of clustering news articles
that arrive online, e.g., at Yahoo news or Google news. We refer to these outlets as the
news providers. The news provider selects some (approximately) fixed number k of articles
to feature on the news homepage, and has a “view complete coverage” link next to each
article to see all the news stories on this topic. The problem of selecting the best k articles
that summarize all current news articles is better modeled as a center-based clustering. The
problem of partitioning all news articles into clusters of similar articles is better modeled as
a cluster-based clustering. Other applications can be found in [17, 14], but we will the news
story clustering application as our running canonical example.

A line of research [12, 11, 14, 17] within online clustering goes by moniker of consistent
clustering. Research on consistent clustering studies the tradeoffs between the following
objectives:

Maximizing the Quality of the Clustering: One seeks a clustering of small cost.
The most common metric to measure the quality of a solution is the ratio of the cost of
this solution to cost of the optimal solution. The most common metric to measure the
quality of an online algorithm is the competitive ratio, which is the maximum (over all
inputs) of the ratio of the cost of the online algorithm’s solution to the optimal cost.
Maximizing Consistency: Ideally one would like the centers in a center-based problem,
or the clusters (labels of points) in a cluster-based problem, to be consistent over time.
That is, they should change as little as possible. E.g., the news provider does not want
the clusters to completely change every time a new news article is written.

1.1 Prior Work on Consistent Clustering

k-median clustering is NP-hard, but constant-factor approximation algorithms are known [9,
13, 1, 15, 6].

All prior algorithmic research on consistent clustering that we are aware of [12, 11, 14, 17, 4]
is center-based. That is, the online algorithm explicitly maintains a collection of centers, and
the clustering is implicit; each point is associated with the closest center, but there are no
restrictions on how often points’ associated centers can change.

In the first paper in this line of research, Liberty et al. [17] gave a lower bound that
showed that one cannot simultaneously have both high quality and maximum consistency.
That is, they showed that if a center cannot be changed once it is established, then there is no
algorithm whose competitive ratio can be bounded by any function of n and k. Thus various
“beyond worst-case analysis” (see [21]) approaches have been used in the literature to attempt
to circumvent the obstacle presented by this lower bound. One approach is to use bi-criteria
analysis or resource augmentation analysis. This analysis allows the online algorithm to use
more than k centers, and then compares the cost of the algorithm’s clustering to the optimal
one using k centers [17]. A second approach is to allow the algorithm recourse, which in this
setting means allowing the algorithm to change the centers (or clusters) a small number of
times [14, 11, 12].

B. Moseley, H. Newman, and K. Pruhs 20:3

Resource Augmentation. Liberty et al. [17] give a randomized algorithm for k-means
clustering and analyzes this algorithm using resource augmentation analysis. They show that
the expected number of clusters/centers used by their algorithm is O(k log n log(n∆)) and at
all times the expected cost of the clustering using these centers is at most O(log n) times the
optimal cost using k clusters. Here ∆ is the aspect ratio of the data points, which is the ratio
between the distance between the furthest pair of points and the distance between the closest
pair of points. The algorithm leverages a randomized online algorithm for facility location
of Meyerson [18] to decide whether to create a new center at a newly arriving data point.
Once a center is established, it is maintained throughout the course of the algorithm. Finally,
they give a randomized algorithm that requires a priori knowledge of n and a lower bound
on the optimal with k centers, and that maintains a collection of O(k log n log α) centers in
expectation that has expected cost O(1) times the optimal cost with k centers. Here α is the
ratio between the actual optimal cost with k centers and the lower bound provided a priori
to the algorithm.

Recourse. Lattanzi and Vassilvitskii [14] give a randomized algorithm for k-median cluster-
ing that uses recourse. It maintains the invariant that the cost of the current centers is always
O(1)-competitive with the optimal clustering of the data points seen to date. To maintain this
invariant, the expected number of cluster center changes used is O(k2 log4(n∆)). They show
a similar lower bound, that is they show that every algorithm requires Ω(k logc

∆
k) center

changes to maintain O(c)-competitiveness. Further, they show that it possible to maintain
O(1)-competitiveness with O(k log2(n∆)) center changes, but this is given as an existential
result. In a follow-up paper, Fichtenberger et al. [11] gave a randomized algorithm that is
O(1)-competitive with O(k polylog(n∆)) cluster center changes. In both papers, the result
of Meyerson [18] is again a key subroutine. The results of Lattanzi and Vassilvitskii [14] were
extended to k-median clustering with outliers (so one could opt to not cluster a pre-specified
number of points) by Guo et al. [12]. Lattanzi and Vassilvitskii [14] also observe that for
k-center clustering an algorithm of Charikar et al. [8] yields an O(1)-competitive clustering
with O(k log(n∆)) center changes.

While not directly germane to the work in this paper, there is also research on online
clustering in the streaming setting, where the emphasis is more on the algorithm using a
small amount of memory, or quickly responding to the arrival of a new data point (e.g.
[7, 10, 3]).

1.2 Our Contribution

Our research investigates consistent clustering for cluster-based problems (recall that all the
past algorithmic consistent clustering publications that we are aware of focus on center-based
clustering). We are interested in applications where the focus is on explicitly maintaining
consistent clusters (and not necessarily on maintaining consistent centers). The application
where Google or Yahoo news is trying to maintain collections of similar news articles is an
example of such an application. Note that even the algorithms from [17] that are perfectly
consistent from a center perspective, in that once a center is established it persists until
the end of the algorithm, are not necessarily consistent from a cluster perspective in that a
data point could change clusters every time a new center is established. All one can say (at
least naively) about the cluster consistency of the algorithms from [17] is that no data point
changes clusters more than O(k log n log(n∆)) times.

APPROX/RANDOM 2024

20:4 Online k-Median with Consistent Clusters

▶ Problem 1 ((Online) cluster-based clustering). The points X = {x1, . . . , xn} from a metric
space arrive online in this (adversarial) order. Each point must be given an irrevocable label
from {1, . . . , k} (i.e., irrevocably assigned a cluster) upon arrival. (The number of points n

is not known.) The goal is to minimize the k-median objective.

Beyond Worst-Case Model. We first observe that the lower bound from [17] extends to
the cluster-based setting, so no online algorithm can achieve a competitive ratio bounded
by any function of n. Thus we turn to a learning-augmented approach, namely we assume
that the algorithm is provided a priori with an estimated upper bound B on the cost OPT
of the final optimal clustering; recourse and resource augmentation are not allowed. This
approach is both natural and appealing, as the a priori information provided to the algorithm
is minimal. Moreover, it finds motivation in the Google/Yahoo news application, where
presumably the final objective values for prior instances could be used as a basis to obtain a
reasonable estimate for B. Thus we then seek algorithms that will maintain a clustering of
low cost relative to B (not the current optimal cost for the points that have arrived to date).
We say an algorithm is c-competitive with respect to B if the algorithm’s cost is at most
c · B on instances where the optimal cost is at most B (after all points have arrived).

We first show that any deterministic algorithm must have dependence on k in the
competitive ratio. The proof is deferred to the full version.

▶ Proposition 1. Any deterministic algorithm for cluster-based clustering is Ω(k)-competitive
with respect to B.

In almost all applications, k is a small constant [2, 5]. Thus, we ask if an algorithm can
have performance only depending on k and not on the large parameters ∆ and n.

Does there exist an online algorithm for Problem 1 that, given a priori knowledge of an
upper bound B on OPT, achieves competitiveness independent of n and ∆?

1.3 Results
Our main question is whether there exists an algorithm with competitiveness depending only
on k (and not n or ∆). We answer this constructively:

▶ Theorem 2. There is a poly-time algorithm for cluster-based clustering that is O(k53k)-
competitive with respect to B.

Intuitively, our algorithm uses the value of B to determine a scale for which costs are
cheap (namely that are small relative to B) and which are expensive (namely that are large
relative to B). Thus, one upshot of our results is that this minimal scaling information is
all that the online algorithm needs to overcome the strong lower bound. Moreover, existing
algorithms/subroutines in the recourse and resource augmentation settings do not seem
to translate to guarantees in our setting. Thus, our setting requires novel techniques and
structural insights, which we turn to next.

2 Technical Overview

As our algorithm is fairly detailed, we begin with a technical overview to build the case for
our design decisions.

To understand the motivation for the learning-augmented approach, let us consider the
lower bound instance from [17]. It is sufficient to assume k = 2. The first point x1 arrives
and is assigned some irrevocable label. Then assume the second data point x2 arrives a unit

B. Moseley, H. Newman, and K. Pruhs 20:5

distance from x1. If the online algorithm assigns x2 the same label as x1, then the cost of
the algorithm’s clustering is 1, and the optimal cost is 0 (which is the cost if each of these
data points were given a different label). This results in the algorithm having unbounded
competitiveness. In contrast, if the algorithm gave x2 a different label from x1 then the third
data point x3 could arrive very far away. In which case, the algorithm’s clustering would
necessarily have very high cost (as x3’s label would have to be either the same as x1’s or the
same as x2’s). However, the optimal clustering would have cost 1 (by giving x1 and x2 the
same label and giving x3 the remaining label). Again, this results in competitiveness that
can only be bounded by ∆ (which may be much larger than n or k).

Intuitively, the dilemma faced by the algorithm when x2 arrives is that it does not know
whether the distance between x1 and x2 is small or large. Equipped with an estimate of the
optimal cost B, the algorithm could resolve the dilemma in this case by giving x2 a different
label than x1 if their distance is larger than B and the same label otherwise.

2.1 Properties of competitive algorithms

To better understand our algorithm design it is useful to understand some instances that
illustrate some properties that a competitive algorithm must have.

A simple first observation is that any reasonably competitive algorithm can never use
t + 1 labels if it is the case that the points to date could be clustered with cost at most B

using at most t labels. If the algorithm ever allowed this to happen, it could be that the next
k − t data points could arrive very far from the previous data points, and very far from each
other. Thus after these data points arrive, the algorithm’s cost would increase by an amount
depending on the diameter of the metric space, while there would still be a clustering of cost
at most B, since the clustering that used t labels could be extended with no additional cost
by giving each of the new k − t data points a new label.

Natural greedy algorithm fails. In light of this last observation, a natural greedy algorithm
would maintain the invariant that the number of labels it uses is always equal to the minimum
number of labels necessary for a clustering of cost at most B, and then give each new data
point the label that minimizes the increase in cost. To see why such an algorithm (and other
similar algorithms) can have unbounded cost even when k = 2, and the metric space is the
real line, consider the following instance (see Figure 1). Let α be an arbitrarily large positive
integer. We construct an example in which the budget B = 2. The first point arrives at
location −2. Say the algorithm gives this point the label blue. The next point arrives at
location 1. Now, we know that any offline clustering with cost at most 2 must use at least 2
clusters. So the greedy algorithm would give this new point a second label, say green, as
that would minimize the increase in the objective. Then a total of α additional points arrive
at location 1. The algorithm labels these points green. Then α points arrive at the origin 0.
It is still the case that only 2 clusters are required in order to have cost at most 2, since we
may place the points at location −2 and the origin in one cluster, and the points at location
1 in the other cluster. However the algorithm would assign each point arriving at the origin
the label green, since this increases the objective by at most 1 while assigning such a point
the label blue increases the objective by 2. Yet, this results in a solution for the algorithm in
which the contribution of green points towards the objective is α.

APPROX/RANDOM 2024

20:6 Online k-Median with Consistent Clusters

Figure 1 An example in which the natural greedy algorithm fails.

Upon reflection of this lower bound instance for the natural greedy algorithm, there
appear to us to be two natural hypotheses as to the “mistake” that this algorithm is making,
and correspondingly two natural paths towards a remedy:

One hypothesis is that greedy assignment is a mistake, and then the natural remedy is
some label assignment rule more sophisticated than greedy.
Another is that the algorithm was too hasty in using a new label. Thus the natural
remedy would be to delay using a new label until it is more clear as to a region where
arriving data points should be given this new label. Note in the example in Figure 1 that
if the algorithm had waited until some reasonable number of data points had arrived at
the origin before using the second label, then the algorithm might have been able to see
that the right choice was to give the remaining points arriving at the origin the second
label of green.

2.2 Techniques
Here we primarily adopt the second remedy/approach (while also considering an alternate
greedy assignment policy). To apply this remedy we must address the following:

Under what conditions can the algorithm justify the use of an additional label, increasing
from t − 1 labels to t labels?
When this can be justified, how should we modify our prior partition of space into t − 1
parts to a partition into t parts? We would like to greedily assign each point to its
“closest” part.

Well-separated points. At a high level our answer to the first question is that we do not use
t labels until there exist t well-separated points xα(1), . . . , xα(t). We will say that a collection
of points xα(1), . . . , xα(t) from a collection S of points is β-well-separated with respect
to wS (for some β > 0) if for all i, j ∈ [t], i ̸= j

min{wS(xα(i)), wS(xα(j))} · d(xα(i), xα(j)) ≥ β · B (⋆)

Here wS(xh) is what we call the natural weight of point xh in S, which is the maximum
number of points in S whose distances to xh sum to at most 2B:

wS(xh) := max{|S′| : S′ ⊆ S,
∑
s∈S′

d(s, xh) ≤ 2B}.

The condition (⋆) states that every pair of these t points is far apart – according to a weighted
notion of distance. In turn, the weights used in this notion of distance are the so-called
natural weight of each point, which captures the density of its nearby points. Intuitively, if
we have t well-separated points, then not only must any near-optimal solution use t labels,
but such a solution cannot combine the points near xα(i) and the points near xα(j) into a
single cluster.

Pivots. The algorithm is divided into at most k phases. For each phase t, the algorithm
maintains a collection of points p1, . . . , pt from the online stream X which we call pivots. The
pivots p1, . . . , pt stay fixed during phase t. The key property they should satisfy is that they

B. Moseley, H. Newman, and K. Pruhs 20:7

are well-separated with respect to the points seen so far. Between phases, we increase the
number of pivots, thus allowing the algorithm to use more labels. The pivot pi is associated
with the label i. Thus, during phase t, there are t clusters (i.e., t labels in use). When a new
point arrives, it is assigned the label i of the pivot pi nearest to it (so we maintain a greedy
labelling rule). Importantly, though, the location of the pivot pi for label i may change over
time. Roughly speaking, this occurs when there is a better representative for cluster i.

Pivots vs. centers. While one might reasonably think that the pivots are intuitively
(low-cost) centers for the clusters, this intuition is only partially correct. Part of the subtlety
of the algorithm design is that there are in fact scenarios where some pivots are poor centers
for the corresponding clusters, but still good representatives for making cluster assignment
decisions. What is critical is that the pivots are located so as to guarantee that using
greedy assignment in the future results in a relatively low cost assignment; so pivots serve
to recruit points to the right clusters. Our algorithm evinces a distinction between a good
representative for a cluster in the long-term (a pivot) and a good center at a single moment.

Invariants. In order for our cost analysis to be tractable, the algorithm should maintain
the following invariants:

Each pivot pi is located in a region where it would not be too costly to assign points
arriving there the label i.
The pivots p1, . . . , pt for phase t are well-separated (for some appropriate choice of β)
during phase t.1

There is no other point that is well-separated from the pivots during a phase. (Otherwise,
this indicates that another label can and should be in use.)
The locations of the pivots should not move very often.

Note that some of these invariants can intuitively be in opposition to each other, which
requires that the algorithm design be a bit detailed, as there are several different cases where
maintaining this invariant requires different updates to the pivots. We now give an overview
of how the algorithm maintains these invariants, highlighting representative cases.

2.3 Preliminaries

Assumptions. We state our results assuming B = OPT, but all still hold by replacing OPT
with B.

Terminology. Recall from above the natural weights wS(·). We will always take S to be
some prefix of the online stream X. Note wS(p) can only increase over time as S enlarges.

Other terms related to well-separation are: A pair of points xi, xj are β-attached with
respect to wS if min{wS(xi), wS(xj)} · d(xi, xj) < β · B, i.e., the well-separated condition
does not hold for this pair. A useful way of viewing attachment is that we may move a
certain number of points lying near xαj

to xαi
at bounded cost (but perhaps not in the

reverse direction). We say p is β-well-separated from a set of points {xα(1), . . . , xα(m)}
with respect to wS if min{wS(p), wS(xα(i))} · d(p, xα(i)) ≥ β · B, ∀i ∈ [m].

1 β must be initialized sufficiently large and also decrease as the number of pivots increases.

APPROX/RANDOM 2024

20:8 Online k-Median with Consistent Clusters

Figure notation. In all figures below, dashed lines indicate well-separation. Solid lines
indicate attachment; where included, arrows on solid lines specify the direction of attachment,
i.e., point from smaller to larger natural weights (see previous paragraph). Colors except
black correspond to cluster labels. Small circles drawn near a larger circle indicate the points
attaining the natural weight of the larger point (the maximizing set S′ in the definition of
wS).

2.4 Subroutines
There are two subroutines used to enlarge the set of pivots from phase t to phase t + 1, the
Add Operation and the Exchange Operation. There are subtleties to the execution of
these operations that require we also keep track of good centers for the clusters built so far,
called estimated centers.

Estimated Centers. As the pivots are not necessarily good centers (for example, pivot p1
at location −2 as the points arrive at location 1 in Figure 1), the algorithm also maintains a
collection c1, . . . , cT of estimated centers for the T labels2 that have been used to date. The
estimated centers are updated at the end of some phases, and satisfy the invariant that cj

is a center for label j’s current cluster with bounded cost. Consider Figure 2. At the start
of phase T , cold

j is the estimated center for points in cluster j. Points arriving in phase T

that are closer to pj than to other pivots are given label j (by our greedy assignment rule).
However, these new points may be concentrated around, for instance, y2, so that pj is not
actually a good center for cluster j at the end of phase T (even though it is fine for labelling
purposes).

Figure 2 Updating the estimated centers at the end of a phase.

Thus, when it comes time to reset the pivots at the end of phase T , we might need to
move pj to the new estimated center y2 = cnew

j or to a nearby point. So, estimated centers
are not only used in the cost analysis, but critically are used algorithmically to update the
locations of pivots. The computation of the estimated centers will involve running an offline
approximation algorithm on the points seen to date.

Add Operation. An Add Operation is applicable when there is a point xα that is well-
separated from the current pivots. Intuitively, this means a new label (cluster) can be
justified, but the implementation requires the consideration of several possible scenarios. In
the simplest scenario xα is near a cluster of new points that are all far from previous points,
and the pivot pt+1 for the new label (t + 1) is set to xα. In some scenarios an old pivot pi

(i ≤ t) is set to xα and pt+1 is set to pi (so the new pivot location inherits the old label i and
an old pivot location gets the new label t + 1). Intuitively, this occurs when the estimated

2 We use T instead of t here to distinguish that this subroutine is only executed at the end of certain
phases; see Section 3.

B. Moseley, H. Newman, and K. Pruhs 20:9

center ci for cluster i is at or near the location of xα. See Figure 3 (left); take i = 2, t = 4,
and xα = c2. Finally, there are scenarios where xα is close to two different clusters; in this
case xα is never made a pivot and instead two pivots are added at the estimated centers of
these clusters (so we skip straight to phase t + 2). See Figure 3 (right). One must show that
this move maintains the well-separation invariant.

Figure 3 Two cases of the Add Operation.

Exchange Operation. An Exchange Operation is applicable when there are two points xα

and xγ near a pivot pj that are well-separated from each other and the other pivots (besides
pj). See Figure 4 (left); take j = 3. So intuitively the cluster of points labeled j appear to
be splitting into two clusters. In the simplest scenario the location of pivot pj is set to the
location of one of xα or xγ , and the location of the new pivot pt+1 is set to the other. See
Figure 4 (right); set j = 3, t = 4.

Figure 4 A case of the Exchange Operation.

This scenario occurs in the instance depicted in Figure 1. The first pivot p1 is initially
set to location −2. The points arriving at location 1 would all be assigned the label 1 (blue)
as there is no point well-separated from p1 (the points located at 1 are not separated from p1
because the points at p1 can be cheaply moved to location 1). When enough points have
arrived at the origin, then the points xα = 0 and at xγ = 1 are near p1 (because the point at
p1 can be cheaply moved to either xα or xγ), but are well-separated from each other and the
pivots other than p1. Thus our algorithm would locate p1 at 1 and p2 at the origin. While
this gives intuition, there are other more subtle scenarios.

3 Algorithm Description

The algorithm sees an online sequence X = {x1, x2, . . . xn} of points. Let Xi = {x1, x2, . . . xi}.
Let wi be shorthand for wXi . During any phase t, the algorithm maintains:

a collection of previously arriving points p1, . . . , pt that have been designated as pivots,
where t is the number of labels used by the algorithm to date and pivot pj is associated
with label j,
a separation parameter βt = 8 · 3k−t+2, and
a collection of previously arriving points c1, . . . , cs (s ≤ t) that have been designated as
estimated centers.

Phase t is the set of time steps when there are t pivots. Phase 1 is initialized as follows:
the first point x1 is given the label 1, the first pivot p1 is set to x1, and the collection of
estimated centers is empty. Let T be the current phase. The algorithm handles the arrival

APPROX/RANDOM 2024

20:10 Online k-Median with Consistent Clusters

of each subsequent point xi as follows. It checks whether there is an applicable Add or
Exchange Operation, both of which will increase the number of pivots. If so, phase T ends.
First estimated centers c1, . . . , cT are computed, and then, using these, the algorithm carries
out consecutive Add and Exchange Operations (giving preference to Add Operations for
technical reasons) until there are none left. With each operation, the phase increases and
the pivots are reset. Call the last phase in this sequence of consecutive operations T +. (Note
that T + ≥ T + 1.) The point xi is the first point labelled during phase T + (it is not labelled
during phase T). In summary:
1. If there is an applicable Add or Exchange Operation upon the arrival of xi then compute

new Estimated Centers c1, . . . cT .
a. Repeat while there is an applicable Add Operation or Exchange Operation.

i. If there is an applicable Add Operation then apply an arbitrary applicable one.
ii. Else apply an arbitrary applicable Exchange Operation.

2. Give xi label j, where pj is the nearest pivot (among p1, . . . , pT +) to xi

We then repeat the above steps upon the arrival of xi+1. Note that if there is t such that
T < t < T +, then no points are labelled during phase t. We call such phases t during which
no points are labelled intermediate. During each other phase, at least one point is labelled,
and we call such phases non-intermediate. So for a non-intermediate phase T , T + is the
first non-intermediate phase after T , and we will also use T − to refer to the last intermediate
phase before T . We now describe the three subroutines.

3.1 The Estimated Center Subroutine
This subroutine computes T new estimated centers c1, . . . , cT from pivots p1, . . . pT , the
points Xi−1 that have arrived before xi, and estimated centers c1, . . . cT − .

Choose y1, . . . , yk ∈ Xi−1 to be an (offline) optimal collection of k centers3 for the points
in Xi−1. For each offline optimal center yh, h ∈ [k], define p(yh) to be the pivot with the
minimum weighted distance to yh, that is,

p(yh) = arg min
pj

(min{wi−1(pj), wi−1(yh)} · d(pj , yh)) (†)

Say that yh is assigned to pj if p(yh) = pj . For each pivot pj , we define the set δ(pj) to
contain a subset of the offline optimal centers that are assigned to pj , and possibly cj as well;
the points in δ(pj) are “close” to pj in some sense. In particular, yh ∈ δ(pj) if p(yh) = pj and
wi−1(yh) > wi−1(p(yh)). Also, cj is in δ(pj) if wi−1(cj) > wi−1(pj) and cj is βt+1-attached
to pj w.r.t. wi−1.

As an example, see Figure 2. Here, δ(pj) = {y1, y2}, so cj (denoted cold
j) is not in δ(pj),

because the arrow from cold
j to pj (representing attachment) points in the wrong direction.

For each j ∈ [T], we now define the new estimated center cj : If wi−1(pj) ≥
maxp∈δ(pj) wi−1(p) then cj = pj , else

cj = arg max
p∈δ(pj)

wi−1(p) (‡)

So in Figure 2, cj is updated to y2 (denoted cnew
j), because y2 has the largest weight in δ(pj).

Intuitively, this means that cnew
j is now a better center for cluster j than, say, cold

j .

3 To run in poly-time, replace with any constant approximation algorithm. This algorithm’s cost will
change by a constant factor.

B. Moseley, H. Newman, and K. Pruhs 20:11

3.2 The Add Operation Subroutine
Let t ≥ T be the number of pivots when an Add Operation is called (during an execution
of (i) above). The Add Operation applies if there is a point xα ∈ Xi such that xα is
βt+1-well-separated from the current pivots p1, . . . , pt with respect to the weights wi. (E.g.,
Figure 3, left, with t = 4.) The Add Operation depends on xα, Xi, the current pivots
p1, . . . , pt, and estimated centers c1, . . . , cT . In most cases, the Add Operation adds xα to
the set of pivots, and changes the location of up to two previous pivots (Figure 3).

Define wt := wi−1 if t = T and wt := wi if t > T .4
1. If there is an estimated center cj that is βt+1-well-separated from p1, . . . , pt w.r.t. wi

then set pt+1 = pj and set pj = cj . (Figure 3, left)
2. Else if it is the case that for every estimated center cj that is βt+2-attached to xα w.r.t.

wi it is also the case that wt(cj) < wt(pj), then set pt+1 = xα.
3. Else if there exists a unique estimated center cj is βt+2-attached to xα w.r.t. wi and

wt(cj) ≥ wt(pj) then set pt+1 = pj and pj = xα.
4. Else Let cf and cg be estimated centers such that each is βt+2-attached to xα w.r.t. wi,

wt(cf) ≥ wt(pf), and wt(cg) ≥ wt(pg). Set pt+1 = pf , pt+2 = pg, pf = cf , and pg = cg.
(Figure 3, right)

Note in the last case that we skip to phase t + 2.

3.3 The Exchange Operation Subroutine
The Exchange Operation subroutine is applicable if there exists two points xα and xγ in Xi,
and a pivot pj such that:

xα and xγ are each βt+1-attached to pj w.r.t. wi,
wi(pj) ≤ wi(xα),
wi(pj) ≤ wi(xγ), and
The collection of the t + 1 points, consisting of xα, xγ , and the pivots other than pj , are
βt+1-well-separated w.r.t. wi. (E.g., Figure 4, left, with t = 4.)

The Exchange Operation depends on xα, xγ , Xi, the current pivots p1, . . . , pt, and estimated
centers c1, . . . , cT . In most cases, the Exchange Operation adds xα and xγ to and deletes pj

from the set of pivots, and possibly changes the location of one previous pivot.

1. If j > T then set pj = xα and pt+1 = xγ .
2. Else if wi(cj) < wi(pj) then set pj = xα and pt+1 = xγ .
3. Else if cj is βt+2-attached to xα w.r.t. wi then set pj = xα and pt+1 = xγ . (Figure 4,

right)
4. Else if cj is βt+2-attached to xγ w.r.t. wi then set pj = xγ and pt+1 = xα.
5. Else set pt+1 = xα, pt+2 = xγ , and pj = cj .

4 Algorithm Invariants and Analysis

In this section, we state the key technical lemmas. We defer full proofs to the Appendix.

▶ Theorem 3. The algorithm uses at most k labels.

▶ Theorem 4. The algorithm’s cost is O(k5 · 3k · OPT).

4 We are overloading subscripts here for ease. We could instead write vt, but we retain w to recall weights.

APPROX/RANDOM 2024

20:12 Online k-Median with Consistent Clusters

4.1 Notation
pt

1, . . . , pt
t denote the pivots for labels 1 through t, respectively, during phase t.

wt are the natural weights at the end of phase t.
X(t) is the set of points assigned a label before or during phase t.
For j ∈ [t], Ct

j is the set of points labelled j in phases 1 through t.
For j ∈ [T], cT

j is the estimated center (‡) computed at end of non-intermediate phase T .
yT

1 , . . . , yT
k are the offline optimal centers computed at the end of phase T in The Estimated

Center Subroutine.
PT = {pT

1 , . . . , pT
T , yT

1 , . . . , yT
k }

cost(S; c) =
∑

p∈S d(p, c) for S ⊆ X and c ∈ X.

4.2 Invariants
In the next two lemmas, we show that our algorithm maintains two key invariants. The full
proofs are deferred to the full version, although we give a proof sketch of Lemma 5 in the
appendix.

▶ Lemma 5. Let t ∈ [k]. The algorithm maintains the invariant that pt
1, . . . , pt

t are βt-well-
separated w.r.t. the natural weights at the start of phase t (and after).

Lemma 5 directly implies Theorem 3 once we show that there can be no more than k

well-separated points in X and note that we have set β1 sufficiently large.
Next is a key technical lemma. It states that the estimated center cT −

j for the points
given label j before phase T is close, in a weighted sense, to the pivot for label j in phase
T . This is key to showing that points in cluster j that are labelled before phase T can be
combined with those that are labelled during phase T at bounded cost. This lemma is in
tension with the prior one because a pivot must be placed in a location where it is both
well-separated from other pivots and is close to previously arriving points in its cluster.

▶ Lemma 6. Let T be a non-intermediate phase and let j ∈ [T]. If T > 1, at least one of
the following holds:
(a) wT −(cT −

j) ≤ wT (pT
j) and wT −(cT −

j) · d(cT −

j , pT
j) ≤ βT −(T − T −) · OPT.

(b) cT −

j is βT +1-attached to pT
j w.r.t. wT .

5 Bounding Cost

We show by induction that the estimated center cT
j is good for all points given label j by

the end of phase T . Taking T to be the last phase gives our main result. We follow Figure
5. By definition of attached, a certain number of points sitting at the head (equal to the
head’s natural weight) of an arc can be moved to the tail at bounded cost. First we address
the cost of CT −

1 , the points given label 1 before phase T . We inductively assume these can
be moved to cT −

1 at bounded cost. From there, we need to move them to cT
1 at bounded

cost. This can be done by showing that (1)|CT −

1 | is a bounded factor away from the natural
weight of cT −

1 (Lemma 8), and (2) cT
1 is “close” to pT

1 (Lemma 8). Together these imply that
we can move the points in CT −

1 along the arc from cT −

1 to pT
1 at bounded cost.

Next we show that the points given label 1 during phase T , call them C1, can also
be moved to cT

1 at bounded cost. This is where we use the set of offline optimal centers
yT

1 , . . . , yT
k computed during the Estimated Centers Subroutine. Importantly, since during a

phase every point is attached to at least one pivot (otherwise we execute an Add Operation

B. Moseley, H. Newman, and K. Pruhs 20:13

and leave the phase), each offline center yT
i is attached to a pivot. We partition the points in

C1 based on which center yT
i they are assigned to in the offline optimal solution. The set

of points in C1 that are assigned to centers attached to the pivot for label 1, pT
1 , is called

Snear,1. In Figure 5, these are points assigned to yT
1 and yT

2 . One can show, using that
during a phase no Exchange Operation occurs, that these can be moved to cT

1 at bounded
cost. The set of points that are assigned to centers that are attached to a pivot for a different
label, say label 2, is called Sfar,1. These points are misclassified in the sense that the online
and offline algorithms classify them differently. However, we show their cost is still controlled.
Specifically, the well-separated invariant implies that (1) these points can be moved to pT

1 at
bounded cost, and (2) the number of them is a bounded factor away from the natural weight
of pT

1 (Lemma 7). These two properties imply we can move the points in Sfar,1 to pT
1 , and

then to cT
1 , at bounded cost.

Figure 5 The points given label 1 (blue) before or during phase T are partitioned as in the text.

▶ Lemma 7. Let T be a non-intermediate phase. For any j ∈ [T], let Cj be the points
given label j during phase T , i.e., Cj = CT

j \ CT −

j . Define Sji to be be the set of elements
in Cj assigned to yi in the clustering of X(T) \ X(T −) induced by PT . Define Sfar,j =⋃

i:p(yi)̸=pT
j

Sji. Then
1. cost(Sfar,j ; pT

j) ≤ k · (βT +1 + 2) · OPT, and
2. |Sfar,j | ≤ k · wT (pT

j), where wT denotes the natural weights at the end of phase T .

▶ Lemma 8. Let T be a non-intermediate phase and j ∈ [T]. Let wT (cT
j) be the natural

weight of cT
j at the end of phase T and CT

j be the set of points in cluster j by the end of
phase T . Then |CT

j | ≤ (2k + 1) · T · wT (cT
j).

The final lemma below shows that the cost of our algorithm’s solution at the end of phase
T is bounded against OPT. Taking T to be the last phase gives Theorem 4.

▶ Lemma 9. Let T be a non-intermediate phase and j ∈ [T]. Then cost(CT
j) is bounded

against center cT
j , i.e.,

∑
x∈CT

j
d(x, cT

j) ≤ g(T, k) · OPT, where

g(T, k) = T · g(k) and g(k) = β1(2k3 + 3k2 + 5k + 1) + 2k + 4.

6 Conclusion

This paper gives the first online algorithm for cluster-based k-median clustering, with
competitive ratio independent of n and ∆, that does not recluster or use additional centers.
We take a learning-augmented approach, assuming minimal a priori information in the form
of an upper bound B on the optimal cost. Prior to this work, it was not known that any
algorithm could have bounded worst-case guarantees. Interestingly, we remark that if the
algorithm does not know B and reclustering is allowed, our results imply an algorithm that
maintains a solution competitive against the optimal solution on the points that have arrived
so far. Reclustering an O(log(n∆)) number of times, the algorithm is always O(1)-competitive
when k is a constant at each point in time. This matches the number of reclusterings used in
prior work for the consistent center case.

APPROX/RANDOM 2024

20:14 Online k-Median with Consistent Clusters

References
1 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and

Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal of Computing, 33(3):544–562, 2004.

2 Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii.
Scalable k-means++. Proc. VLDB Endow., 5(7):622–633, 2012.

3 Robi Bhattacharjee, Jacob Imola, Michal Moshkovitz, and Sanjoy Dasgupta. Online k-means
clustering on arbitrary data streams. In International Conference on Algorithmic Learning
Theory, pages 204–236. PMLR, 2023.

4 Robi Bhattacharjee and Michal Moshkovitz. No-substitution k-means clustering with ad-
versarial order. In Algorithmic Learning Theory, pages 345–366. PMLR, 2021.

5 Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, Berlin,
Heidelberg, 2006.

6 Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median and positive correlation in budgeted optimization.
ACM Transactions on Algorithms, 13(2):23:1–23:31, 2017.

7 T-H. Hubert Chan, Arnaud Guerqin, and Mauro Sozio. Fully dynamic k-center clustering. In
World Wide Web Conference, pages 579–587, 2018.

8 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. SIAM Journal of Computing, 33(6):1417–1440, 2004.

9 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. Journal of Computer and Systems
Sciences, 65(1):129–149, 2002.

10 Vincent Cohen-Addad, Niklas Hjuler, Nikos Parotsidis, David Saulpic, and Chris Schwiegel-
shohn. Fully dynamic consistent facility location. In Conference on Neural Information
Processing Systems, pages 3250–3260, 2019.

11 Hendrik Fichtenberger, Silvio Lattanzi, Ashkan Norouzi-Fard, and Ola Svensson. Consistent
k-clustering for general metrics. In ACM-SIAM Symposium on Discrete Algorithms, 2021.

12 Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi Xian. Consistent k-median: Simpler,
better and robust. In International Conference on Artificial Intelligence and Statistics, volume
130, pages 1135–1143, 2021.

13 K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and lagrangian relaxation. Journal of the
ACM, 48(2):274–296, 2001.

14 Silvio Lattanzi and Sergei Vassilvitskii. Consistent k-clustering. In Doina Precup and Yee Whye
Teh, editors, International Conference on Machine Learning, pages 1975–1984, 2017.

15 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM Journal
of Computing, 45(2):530–547, 2016.

16 Edo Liberty, Ram Sriharsha, and Maxim Sviridenko. k-means clustering. talk slides.
17 Edo Liberty, Ram Sriharsha, and Maxim Sviridenko. An algorithm for online k-means

clustering. In Workshop on Algorithm Engineering and Experiments, pages 81–89, 2016.
18 A. Meyerson. Online facility location. In IEEE Symposium on Foundations of Computer

Science, pages 426–431, 2001.
19 Adam Meyerson, Liadan O’Callaghan, and Serge Plotkin. A k-median algorithm with running

time independent of data size. Machine Learning, 56(1):61–87, 2004.
20 Benjamin Moseley, Heather Newman, and Kirk Pruhs. Online k-median with consistent

clusters. arXiv preprint, 2023. arXiv:2303.15379.
21 Tim Roughgarden. Beyond the Worst-Case Analysis of Algorithms. Cambridge University

Press, 2021.

https://arxiv.org/abs/2303.15379

B. Moseley, H. Newman, and K. Pruhs 20:15

The Appendix is organized as follows. In Appendix A, we introduce some additional
terminology and notation. In Appendix B, we introduce a few propositions that will be
useful for proving the main lemmas. In Appendix C, we prove Lemma 5, the well-separation
invariant; this is a rather involved proof, so we include both a proof sketch with the high-level
ideas, and defer the full proof to the full version. Then, in Appendix D, we show how Lemma
5 swiftly implies Theorem 3. In the remaining appendices, we prove the lemmas in Section 5.
The last lemma, Lemma 9, directly implies Theorem 4.

A Terminology

Throughout this appendix, we take B = OPT for simplicity. Our results still hold as long as
B ≥ OPT. Below is some additional terminology used in the proofs.

Let yT
1 , . . . , yT

k be the optimal collection of k centers computed at the end of phase T in
The Estimated Center Subroutine. Let PT = {pT

1 , . . . , pT
T , yT

1 , . . . , yT
k } and call this set

the offline centers for phase T . When the context is clear, we may omit the superscript
T in yT

i .
The attachment digraph D(T) is a bipartite digraph with vertex set PT , plus {cT −

j |
j ≤ T −} if T > 1, partitioned as ({pT

1 , . . . , pT
T }, {y1, . . . , yk, cT −

1 , . . . , cT −

T −}). There is a
directed arc (yi, p(yi)) if wT (yi) ≤ wT (p(yi)) and a directed arc (yi, p(yi)) otherwise. If
cT −

j and pT
j are βT +1-attached w.r.t. wT , add the arc (cT −

j , pT
j) if wT (cT −

j) ≤ w(pT
j) and

the arc (pT
j , cT −

j) otherwise. δ+(pT
j) and δ−(pT

j) denote the out- and in-degree of pT
j . See

Figure 6.

Figure 6 The attachment digraph D(T). Arrows represent attached pairs, and arrows point from
smaller to larger natural weights. So we may move a certain number of points near the head, to the
tail at bounded cost.

B Helper Propositions

In this section, we present a few short propositions that will be useful in the remaining proofs.
All excluded proofs are deferred to the full version.

The following fact justifies that the offline optimal centers yT
1 , . . . , yT

k have cost at most
2OPT on the points that arrive during phase T . This is used at various points in the analysis.

▶ Fact 10 (Fact 2.1 in [19]). Let N be a set of points, with S ⊆ N . Let k be an integer with
0 ≤ k ≤ n. Let K ⊆ S be the k-element subset of S minimizing

∑
x∈S d(x, K) where d(·, ·) is

the distance function on N , and d(x, K) denotes minm∈K d(x, m). Then if K ′ is a k-element
subset of N ,

∑
x∈S d(x, K) ≤ 2

∑
x∈S d(x, K ′).

The following proposition is a weighted version of the triangle inequality.

▶ Proposition 11. Let x, y, p be three points in some set S, and let w : S → Z+ be a weight
function on S. Assume that β, βx, βy, B > 0. Suppose that w(x) ≤ w(p) and that x and y are
β-well-separated w.r.t. w. If x and p are βx-attached w.r.t. w, and y and p are βy-attached
w.r.t. w, then β < βx + βy.

APPROX/RANDOM 2024

20:16 Online k-Median with Consistent Clusters

Next, we show that a point set cannot contain more than k pairwise β-well-separated
points for β a sufficiently large constant. This allows us to bound the number of labels used.

▶ Proposition 12. Let X be a set of points whose optimal k-median cost using k centers is
OPT. Let {x1, . . . , xl} be a set of points in X, and let wX denote their natural weights in X.
Let β > 8. If {x1, . . . , xl} is β-well-separated w.r.t. wX , then l ≤ k.

The next two propositions will be used to aid the proofs of Lemmas 5 and 6. Recall that
for each non-intermediate phase T , we defined a set of offline centers PT that has cost at
most 2OPT on X(T) (Appendix A and Fact 10). In order to compare the (low-cost) offline
clustering induced by PT to our online algorithm’s clustering, we relate the offline set of
centers PT (which we know have bounded cost on X(T)) to the pivots in phase T (which are
used to make the greedy online choices) in the next proposition.

▶ Proposition 13. Let PT = {pT
1 , . . . , pT

T , y1, . . . , yk} be as in Appendix A. Then yi and p(yi)
are βT +1-attached w.r.t. the natural weights wT at the end of phase T .

Each attached pair in Proposition 13 is encoded in the digraph D(T) by a directed arc.
So, we can now think of this directed arc as representing the direction in which we could
move a certain number of points sitting near one endpoint to the other at bounded cost.

Next we show that the estimated center for a cluster at the end of a phase is attached
to the pivot for that cluster in that phase. Thus, while the pivot itself may not be a good
center for the cluster, the pivot is close to the estimated center (in at least one direction, in
a weighted sense).

▶ Proposition 14. The estimated center cT
j is βT +1-attached to pT

j w.r.t. the natural weights
wT at the end of phase T . Further, wT (cT

j) ≥ wT (pT
j), with equality if and only if cT

j = pT
j .

C Proof of Lemma 5

As the proof of Lemma 5 is a rather involved double induction, we provide a proof sketch
which pulls out the hard cases. In the full version, we give the full proof.

Proof sketch of Lemma 5. The proof is by induction. However, we need to couple the
induction with a statement about the relative position of the estimated center for a cluster
(which stays fixed between intermediate phases) to that cluster’s pivot, which may change
often as we consecutively reset the pivots between intermediate phases. Roughly, we prove
below that if the estimated center for cluster j has not separated entirely from the present
set of pivots, then it must be close (in a weighted sense) to the present pivot for label j.

▷ Claim 1. Let wi−1, wi, and wt be as Section 3.2. For each j ∈ [T] and t ∈ [T, T +] such
that pt

1, · · · , pt
t are defined,5

pt
1, . . . , pt

t are βt-well-separated w.r.t. wt. (♢)

Moreover, at least one of the following properties holds:
(a) cT

j is βt+1-well-separated from pt
1, . . . , pt

t w.r.t. wi.
(b) cT

j is βt+1-attached to pt
j w.r.t. wt.

(c) cT
j is f(t, T)-attached to pt

j w.r.t. wt and wt(cT
j) < wt(pt

j), where f(t, T) = βT · (t − T).

5 Recall in Case 4 of the Add Operation and Case 5 of the Exchange Operation, we go directly from t to
t + 2 pivots, skipping phase t + 1.

B. Moseley, H. Newman, and K. Pruhs 20:17

Figure 7 Cases (i) –(iii) in the proof sketch of Lemma 5. Dashed lines indicate well-separation
and solid lines indicate attachment, labelled with the appropriate parameters. Arrows go from
smaller to larger natural weights.

For the proof sketch we focus on Case 4 of the Add Operation, which will give a flavor
of the arguments. This is a concerning case a priori; for, if we were to add xα to the set of
pivots as in Cases 2 and 3, it is ambiguous as to whether xα should be associated with label
f or g, as both cT

f and cT
g are close to xα. We maneuver around the issue by making cT

f and
cT

g new pivots and excluding xα. However, it is not immediately clear that such a step will
preserve the desired invariants. To give intuition, we suppress the separation parameters and
the precise weights used, though emphasize both are brittle (e.g., the arguments rely heavily
on βt decreasing with t. The directions of attachment between points (arrows in Figure 7)
are also crucial. We will also see why we need to couple the induction with (a) –(c).

To prove the inductive step for (♢) when Case 4 of the Add Operation is performed, we
need to show (i) cT

f and cT
g are well-separated, (ii), WLOG, cT

f is well-separated from pt
f , and

(iii), WLOG, cf is well-separated from pt
l , l ̸= f . See Figure 7. When we say “close” or “far”

below, we always mean in a weighted sense. For (i), because pT
f is close to cT

f (Proposition
14) and likewise for pT

g , cT
g , then cT

f and cT
g cannot be close, since this would violate that pT

f

and pT
g are (inductively) far. To prove (ii), note xα is far from pt

f by assumption of the Add
Operation, and cT

f is close to xα by assumption of Case 4, so pt
f and cT

f must be far. Finally
for (iii), one can (inductively) deduce that (b) must hold when j = f , so cT

f and pt
f are close;

but, since pt
f and pt

l are (inductively) far, ct
f and pt

l must be far.
Proving the inductive step for (a) –(c) involves detailed casework. The Add and Exchange

Operations are engineered so that, loosely speaking, an estimated center is either attached
to the corresponding present pivot, or else breaks off to form its own pivot. A main subtlety
is the direction and strength of attachment, e.g., property (c). Another is the sequence of
operations, specifically, the Add Operation taking precedence over the Exchange Operation.

◀

D Proof of Theorem 3

Proof of Theorem 3. The number of labels used by the algorithm is the number of pivots
in the last phase. By Lemma 5, we maintain the invariant that pivots pt

1, . . . , pt
t are βt-well-

separated w.r.t. the natural weights at every time step in phase t. Suppose to the contrary
that the final number of pivots is strictly more than k. Then at some point there are t = k +1
or t = k + 2 pivots6 that are βt-well-separated w.r.t. the natural weights throughout phase t.
But βk+2 = 8, and it is impossible for k + 2 points to be 8-well-separated, by Proposition 12.
We conclude the final number of pivots is at most k. ◀

6 The algorithm may skip a phase, hence we consider both cases.

APPROX/RANDOM 2024

20:18 Online k-Median with Consistent Clusters

E Proof of Lemma 7

Proof of Lemma 7. WLOG, let j = T . For c ∈ PT , let m(c) be the number of points
assigned to c in the clustering of X(T) \ X(T −) induced by the centers PT , i.e., in this
clustering every point is assigned to the nearest point in PT . For shorthand, let w denote
the natural weights wT of points at the end of phase T .

▶ Observation 2. For c ∈ PT , w(c) ≥ m(c).

This follows from the definition of w(c) and the fact that there are m(c) points whose
movement cost to c is at most 2OPT, by construction of PT .

▶ Observation 3. If (p(yi), yi) is a directed edge in D(T), then w(p(yi)) ·d(p(yi), yi) < βT +1 ·
OPT. Likewise, if (yi, p(yi)) is a directed edge in D(T), then w(yi) ·d(p(yi), yi) < βT +1 ·OPT.

This follows from the definition of D(T) and Proposition 13.
Call the points in Sfar,T far points. In the claims below, we show that the far points

can be moved to pT
T at bounded cost (Claims 1 and 2), and that there are not too many far

points relative to the weight of pT
T (Claim 3). In turn, we will be able to charge the cost of

the far points to pT
T .

▷ Claim 1. Let p(yi) ̸= pT
T . Suppose w(yi) > w(p(yi)). Then cost(ST i; pT

T) ≤
(βT +1 + 2)OPT.

Proof. WLOG, let p(yi) = pT
1 . We consider two cases.

▶ Case 1. |ST i| ≥ w(pT
1). We will show this case cannot happen.

We know that w(yi) ≥ m(yi) ≥ |ST i| ≥ w(pT
1), and by Observation 3, that

w(pT
1) · d(pT

1 , yi) < βT +1 · OPT. By Proposition 11, this implies w(pT
1) · d(yi, pT

T) ≥ 2βT +1 ·
OPT.

Since |ST i| ≥ w(pT
1), there exists S′

T i ⊆ ST i such that |S′
T i| = w(pT

1). In turn,
cost(S′

T i; pT
1) ≤ cost(S′

T i; yi) + w(pT
1) · d(yi, pT

1) < (βT +1 + 2) · OPT, since PT is a clus-
tering with cost at most 2OPT. On the other hand,

cost(S′
T i; pT

T) ≥
∑

p∈S′
T i

d(yi, pT
T)−

∑
p∈S′

T i

d(p, yi) = w(pT
1)·d(yi, pT

T)−
∑

p∈S′
T i

d(p, yi) ≥ (2βT +1−2)OPT.

Since βT +1 ≥ 4, βT +1 + 2 ≤ 2βT +1 − 2, so cost(S′
T i; pT

1) < cost(S′
T i; pT

T), which violates
that T = arg minj∈[T] d(p, pT

j) for all p ∈ S′
T i ⊆ CT .

▶ Case 2. |ST i| ≤ wt(pT
1).

In this case, we know that since w(pT
1) ·d(yi, pT

1) < βT +1 ·OPT, we also have |ST i| ·d(yi, pT
1) <

βT +1 · OPT. By the triangle inequality,

cost(ST i; pT
1) ≤ cost(ST i; yi) + |ST i| · d(yi, pT

1) ≤ 2OPT + βT +1 · OPT.

Since cost(ST i; pT
T) ≤ cost(ST i; pT

1) by the greedy procedure, this proves Claim 1. ◁

▷ Claim 2. Let p(yi) ̸= pT
T . Suppose that w(yi) ≤ w(p(yi)). Then cost(ST i; pT

T) ≤
(βT +1 + 1)OPT.

Proof. WLOG, let p(yi) = pT
1 . By Observation 3, w(yi) · d(yi, pT

1) < βT +1 · OPT. Further,
|ST i| ≤ m(yi) ≤ w(yi), so |ST i| · d(yi, pT

1) < βT +1 · OPT. So:

cost(ST i; pT
T) ≤ cost(ST i; pT

1) ≤ cost(ST i; yi) + |ST i| · d(yi, pT
1) ≤ 2OPT + βT +1 · OPT. ◁

B. Moseley, H. Newman, and K. Pruhs 20:19

▷ Claim 3. Let p(yi) ̸= pT
T . Then |ST i| ≤ w(pT

T).

Proof. As before, assume WLOG that p(yi) = pT
1 .

▶ Case 1. w(yi) > w(pT
1).

We know from the proof of Claim 1, Case 1 that this implies |ST i| < w(pT
1). We have

|ST i| · d(pT
T , yi) =

∑
p∈ST i

d(yi, pT
T) ≤

∑
p∈ST i

d(p, pT
T) +

∑
p∈ST i

d(p, yi)

≤ (βT +1 + 2)OPT + 2OPT (Claim 1)
≤ 2βT +1 · OPT ≤ w(pT

T) · d(pT
T , yi)

where in the last line we have applied Proposition 11, using that w(yi) > w(pT
1), Observation

3, and pT
1 and pT

T are βT -well-separated w.r.t. w. Finally, dividing both ends of the chain of
inequalities by d(pT

T , yj) gives |ST j | ≤ w(pT
T), as desired.

▶ Case 2. w(yi) ≤ w(pT
1).

Consider when w(pT
T) ≥ w(yi). Then w(pT

T) ≥ w(yi) ≥ m(yi) ≥ |ST i|, so the claim follows.
So the last case to consider is when w(pT

T) < w(yi). It suffices to show that w(pT
T) ·

d(pT
T , yi) ≥ 2βT +1 · OPT; then, we can just apply the argument in Case 1. Suppose to the

contrary that w(pT
T) · d(pT

T , yi) < 2βT +1 · OPT. Then

βT · OPT ≤ w(pT
T) · d(pT

T , pT
1) ≤ w(pT

T) · d(pT
T , yi) + w(pT

T) · d(yi, pT
1)

≤ 2βT +1 · OPT + w(pT
T) · d(yi, pT

1)
< 2βt+1 · OPT + w(yi) · d(yi, pT

1)
< 2βT +1 · OPT + βT +1 · OPT = βT · OPT

where the second-to-last line follows from Observation 3. The left-hand and right-hand sides
give a contradiction, concluding the proof of the case and the claim. ◁

▷ Claim 4. cost(Sfar,T ; pT
T) ≤ k · (βT +1 + 2)OPT and |Sfar,T | ≤ k · w(pT

T).

Proof. By Claims 1 and 2,

cost(Sfar,T ; pT
T) =

∑
i:p(yi)̸=pT

T

cost(ST i; pT
T) ≤ k · (βT +1 + 2)OPT

By Claim 3,

|Sfar,T | =
∑

i:p(yi)̸=pT
T

|ST i| ≤ k · w(pT
T). ◁

This concludes the proof of the claim, thus also of the lemma. ◀

F Proof of Lemma 8

Proof of Lemma 8. As in Lemma 7, let Cj = CT
j \ CT −

j and let Sji be the set of elements
in Cj assigned to yi in the clustering of X(T) \ X(T −) induced by PT . Let Sfar,j =⋃

i:p(yi)̸=pT
j

Sji, Snear,j =
⋃

i:p(yi)=pT
j

Sji, and Sj be the elements in Cj that are assigned to
pT

j in the clustering of X(T) \ X(T −) induced by PT .

APPROX/RANDOM 2024

20:20 Online k-Median with Consistent Clusters

The proof is by induction. We have that

|CT
j | = |CT −

j | + |Cj | = |CT −

j | + |Sfar,j | + |Snear,j | + |Sj | (1)

(Note we use that there are no points in Cj that are assigned to pT
j′ , j′ ̸= j, in the offline

clustering induced by PT , due to the greedy labelling rule. This is true as long as in the
offline clustering induced by PT we break ties consistent with how the online algorithm
breaks ties.)

First, we bound the last three terms. Let wt denote the natural weights at the end of
phase t.

|Sfar,j | ≤ k · wT (pT
j) ≤ k · wT (cT

j) (2)

where the first inequality follows from Lemma 7 and the second inequality follows from the
definition (‡) of estimated center. Next,

|Snear,j | =
∑

i:p(yi)=pT
j

|Sji| ≤
∑

i:p(yi)=pT
j

wT (yi) ≤ k · wT (cT
j) (3)

where the second inequality follows from the definition of wT . The third inequality follows
from the definitions of attachment digraph and estimated center: If yi ∈ δ−(pT

j), then
wT (yi) ≤ wT (pT

j) by construction of the attachment digraph D(T). Otherwise, yi ∈ δ+(pT
j),

so by (‡), wT (cT
j) ≥ wT (yi). Finally,

|Sj | ≤ wT (pT
j) ≤ wT (cT

j) (4)

where the first inequality is by the definition of wT and the second inequality from (‡).
For simplicity, let h(t, k) = (2k + 1)t. Now we need to bound |CT −

j | in terms of wT (cT
j).

If j ̸∈ [T −], then |CT −

j | = 0. So assume j ∈ [T −]. Inductively, we have that

|CT −

j | ≤ h(T −, k) · wT −
(cT −

j).

We will prove that

|CT −

j | ≤ h(T −, k) · wT (cT
j). (5)

There are two cases to consider.

▶ Case 1. (a) holds in Lemma 6.

|CT −

j | ≤ h(T −, k) · wT −
(cT −

j) ≤ h(T −, k) · wT (pT
j) ≤ h(T −, k) · wT (cT

j).

▶ Case 2. (b) holds in Lemma 6.

This means that cT −

j is βT +1-attached to pT
j w.r.t. wT . If wT (cT −

j) ≤ wT (pT
j), then

wT (cT −

j) ≤ wT (cT
j). Otherwise, wT (cT −

j) > wT (pT
j), so cT −

j ∈ δ+(pT
j). By (‡), wT (cT −

j) ≤
wT (cT

j). In both cases we have wT (cT −

j) ≤ wT (cT
j), so building from the inductive assumption,

|CT −

j | ≤ h(T −, k) · wT −
(cT −

j) ≤ h(T −, k) · wT (cT −

j) ≤ h(T −, k) · wT (cT
j)

which concludes the case. Putting equations (1), (2), (3), (4), (5) together gives

|CT
j | ≤

(
h(T −, k) + 2k + 1

)
· wT (cT

j) ≤ h(T, k) · wT (cT
j) = (2k + 1) · T · wT (cT

j)

as desired. ◀

B. Moseley, H. Newman, and K. Pruhs 20:21

G Proof of Lemma 9

Proof of Lemma 9. The proof is by induction. Let Cj , Sji, and Sfar,j be as in Lemma 7.
Define Snear,j =

⋃
i:p(yi)=pT

j
Sji and Sj to be the elements in Cj that are assigned to pT

j in
the clustering of X(T) \ X(T −) induced by PT . Let wt denote the natural weights at the
end of phase t. First we need the following key claim.

▷ Claim 1. For any x, y ∈ δ+(pT
j) ∪ δ−(pT

j) ∪ {pT
j }, x and y are 2βT +1-attached w.r.t. wT .

Proof of Claim 1. If x or y is pT
j , then the claim automatically holds by Proposition 13. There

are two other cases. The first case is, WLOG, x ∈ δ−(pT
j). Regardless of whether y is

in δ−(pT
j) or δ+(pT

j), the claim holds by Propositions 13 and 11. The second case is that
x, y ∈ δ+(pT

j). We prove the stronger statement that x and y are βT +1-attached w.r.t. wT .
Suppose to the contrary that x and y are βT +1-well-separated. We claim that this implies

{pT
1 , . . . , pT

T } ∪ {x, y} \ {pT
j } (6)

is βT +1-well-separated w.r.t. wT ; this would give a contradiction, since if an Exchange
Operation were available, it would have been executed. Now suppose that (6) does not hold.
Then WLOG pT

j′ and x are βT +1-attached w.r.t. wT , for some j′ ≠ j. Since x ∈ δ+(pT
j)

and since x and pT
j are βT +1-attached w.r.t. wT , by Proposition 11, pT

j and pT
j′ are 2βT +1-

attached w.r.t. wT . This contradicts that pT
j and pT

j′ are βT -well-separated w.r.t. wT , since
2βT +1 < βT . This concludes the proof of the case and the claim. ◁

To bound the cost contribution of CT −

j , we case on which statement holds in Lemma 6.

▶ Case 1. cT −

j is βT +1-attached to pT
j w.r.t. wT (i.e., (b) holds in Lemma 6).

Since in Case 1, cT −

j is βT +1-attached to pT
j w.r.t. wT , cT −

j ∈ δ+(pT
j) ∪ δ−(pT

j). Also, cT
j

by definition is in δ+(pT
j) ∪ {pT

j }. So by Claim 1, cT −

j is 2βT +1-attached to cT
j w.r.t. wT .

Using this, we bound cost(CT −

j ; cT
j):

cost(CT −

j ; cT
j) ≤ cost(CT −

j ; cT −

j) + |CT −

j | · d(cT −

j , cT
j)

≤ g(T −, k) · OPT + |CT −

j | · d(cT −

j , cT
j)

≤ g(T −, k) · OPT + (2k + 1) · T − · wT −
(cT −

j) · d(cT −

j , cT
j)

≤ g(T −, k) · OPT + (2k + 1) · T − · wT (cT −

j) · d(cT −

j , cT
j)

≤ g(T −, k) · OPT + (2k + 1) · T − · 2βT +1 · OPT (7)

where the third inequality is due to Lemma 8.

▶ Case 2. (b) does not hold in Lemma 6, so (a) holds, i.e., wT −(cT −

j) ≤ wT (pT
j) and

wT −(cT −

j) · d(cT −

j , pT
j) ≤ βT −(T − T −) · OPT.

We bound cost(CT −

j ; cT
j):

cost(CT −

j ; cT
j) ≤ cost(CT −

j ; cT −

j) + |CT −

j | · d(cT −

j , cT
j)

≤ g(T −, k) · OPT + |CT −

j | · d(cT −

j , pT
j) + |CT −

j | · d(pT
j , cT

j) (8)

and now we use the assumptions of the case to continue bounding from (8):

|CT −

j | · d(cT −

j , pT
j) ≤ (2k + 1) · T − · wT −

(cT −

j) · d(cT −

j , pT
j)

≤ (2k + 1) · T − · βT −(T − T −) · OPT (9)

APPROX/RANDOM 2024

20:22 Online k-Median with Consistent Clusters

where the first inequality is due to Lemma 8. Next,

|CT −

j | · d(pT
j , cT

j) ≤ (2k + 1)T − · wT −
(cT −

j) · d(pT
j , cT

j) ≤ (2k + 1)T − · wT (pT
j) · d(pT

j , cT
j)

≤ (2k + 1)T − · βT +1 · OPT (10)

where the first inequality is due to Lemma 8 and the last inequality is due to Proposition 14.
So combining (8), (9), (10) gives

cost(CT −

j ; cT
j) ≤ g(T −, k) · OPT + (2k + 1) · T − · (βT −(T − T −) + βT +1) · OPT. (11)

Now we have bounds (7) and (11) for cost(CT −

j ; cT
j). Recall that CT

j = CT −

j ∪ Sfar,j ∪
Snear,j ∪ Sj . The following bounds will hold regardless of whether we are in Case 1 or 2. We
have

cost(Sj ; cT
j) ≤ cost(Sj ; pT

j)+ |Sj | ·d(pT
j , cT

j) ≤ 2OPT+wT (pT
j) ·d(pT

j , cT
j) ≤ (2+βT +1)OPT

(12)

cost(Snear,j ; cT
j) =

∑
i:p(yi)=pT

j

cost(Sji; cT
j) ≤

∑
i:p(yi)=pT

j

∑
p∈Sji

d(p, cT
j)

≤ 2OPT +
∑

i:p(yi)=pT
j

wT (yi) · d(yi, cT
j) ≤ (2kβT +1 + 2)OPT (13)

where we have used Claim 1 and that |Sji| ≤ wT (yi). Finally, by Lemma 7,

cost(Sfar,j ; cT
j) ≤ cost(Sfar,j ; pT

j) + |Sfar,j | · d(pT
j , cT

j) ≤ k(2βT +1 + 2)OPT (14)

Combining (12), (13), (14) with (7) or (11) gives the sought bound:

cost(CT
j ; cT

j) ≤ [g(T −, k) + g(k)]OPT ≤ g(T, k) · OPT. ◀

	1 Introduction
	1.1 Prior Work on Consistent Clustering
	1.2 Our Contribution
	1.3 Results

	2 Technical Overview
	2.1 Properties of competitive algorithms
	2.2 Techniques
	2.3 Preliminaries
	2.4 Subroutines

	3 Algorithm Description
	3.1 The Estimated Center Subroutine
	3.2 The Add Operation Subroutine
	3.3 The Exchange Operation Subroutine

	4 Algorithm Invariants and Analysis
	4.1 Notation
	4.2 Invariants

	5 Bounding Cost
	6 Conclusion
	A Terminology
	B Helper Propositions
	C Proof of Lemma 5
	D Proof of Theorem 3
	E Proof of Lemma 7
	F Proof of Lemma 8
	G Proof of Lemma 9

