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—— Abstract

We consider minimum time multicasting problems in directed and undirected graphs: given a root
node and a subset of ¢ terminal nodes, multicasting seeks to find the minimum number of rounds

within which all terminals can be informed with a message originating at the root. In each round,
the telephone model we study allows the information to move via a matching from the informed
nodes to the uninformed nodes.

Since minimum time multicasting in digraphs is poorly understood compared to the undirected
variant, we study an intermediate problem in undirected graphs that specifies a target k < ¢, and
requires the only k of the terminals be informed in the minimum number of rounds. For this problem,
we improve implications of prior results and obtain an O(tl/ 3) multiplicative approximation. For the
directed version, we obtain an additive O(kl/ 2) approximation algorithm (with a poly-logarithmic
multiplicative factor). Our algorithms are based on reductions to the related problems of finding
k-trees of minimum poise (sum of maximum degree and diameter) and applying a combination of
greedy network decomposition techniques and set covering under partition matroid constraints.
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1 Introduction

We study an information spreading problem that captures applications in distributed com-
puting [16] and keeping distributed copies of databases synchronized [2]. A given graph
models a synchronous network of processors that exchange information in rounds. There
are several models describing how information may be exchanged between processors in the
graph. In this work, we focus on the classic Telephone Model [8]: during a round, each vertex
that knows the message can send the message to at most one of its neighbors.

In the Minimum Time Telephone Multicast (MTM) problem, we are given a network,
modeled by a directed or undirected graph G(V, E), a root vertex r that knows a message, and
a set S of terminals. The message must be transmitted from r to .S under the telephone model.
In every round, there is a set of vertices K C V' that know the message (initially K = {r}),
and the communication in a given round is described by a matching {(k1,v1),..., (k¢,ve)}
between some pairs of vertices k; € K and v; ¢ K for which k;v; € E. In the directed setting,
edge k;v; must be directed from k; to v;. Following this round, all of the matched vertices
{v;} are added to K. When S = V this problem is called The Minimum Time Broadcast
(MTB) problem.
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The best-known approximation ratio for the MTM problem on an undirected graph is
O(logt/loglogt) [5], where t = |S|. In [4], it is shown that unless P = NP, the MTB
problem admits no 3 — e approximation for any constant e. For directed graphs, the Minimum
Time Broadcast problem admits an O(logn) approximation [4] in an n-node graph. The
same paper shows that unless P = Quasi(P) the problem admits no better than Q(y/logn)
approximation.

However, for the directed case the multicast problem seems harder to approximate. The
best-known approximation ratio for this problem is an additive O(v/f) guarantee (with
poly-logarithmic multiplicative factor) [3]. This leaves a wide gap between the current best
approximation algorithms for undirected versus directed multicast problems. In this work, we
make progress toward closing that gap by studying an intermediate problem, the Minimum
Time Telephone k-Multicast problem (k-MTM), defined below.

Input: A directed or undirected graph G(V, E) with root r, a collection of terminals
S C V and a number k£ < |S].

Required: Send the message originating at r to any k terminals of S in the telephone
model in a minimum number of rounds.

In terms of approximability, the undirected k-MTM problem lies between the undirected and
directed MTM problems. Specifically, in [11] it is shown® that a p-approximation for directed
MTM implies an O(polylog k)-approximation for undirected k-MTM, while it is immediate
that any approximation for undirected k-MTM gives the same factor approximation for
undirected MTM.

On the other hand, the directed version of the k-MTM problem generalizes all of the
aforementioned problems.

Applications. Broadcast and multicast problems find numerous applications in distributed
settings. For example, in the Network Aggregation problem, each user sends its data to a
chosen central vertex r. This is equivalent to broadcasting in the local model for distributed
computation (see [9]). Broadcasting is also crucial in Sensor Networks [13]. Another
application is ensuring that the maximum information delay in vector clocks problems is
minimized [12, 17].

One application of multicasting is to keep information across copies of replicated databases
consistent, by broadcasting from the changed copy to the others [7, 14, 15]. If we are given a
large set of ¢ terminals of which we only want to keep replicated copies in some k of them,
finding the best k£ to minimize the maximum synchronization time among these termiunals
corresponds to the k-MTM problem.

Minimum Poise Trees. Any telephone multicast schedule defines a tree rooted at r, spanning
all terminals. The parent of a vertex u # r is defined to be the unique vertex that sends the
message to u. Let T™* be the tree defined by the optimal schedule. The height of T (the
largest distance in T* from the root) is denoted by D*. The largest out-degree? in T* is
denoted by B*. The poise of T* is defined as p* = B*+ D* [18]. Denote by OPT the number
of rounds used by the optimal schedule. Since at every round, each informed vertex can send

E [11] deals with the degree-bounded versions of these problems, but their proof works as well for poise

problems. See below for the connection between poise and k-MTM.
2 For simplicity, we say degree instead of out-degree for the rest of the paper when discussing directed
graphs.
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the message to at most one neighbor, OPT > B* and OPT > D*. Hence, in general we
have OPT > »"/2. A partial converse is shown in [18]. A p approximation for the Minimum
Poise Steiner Tree implies an O(logt) - p/loglogt approximation for the MTM problem.

Following [18], approximating the k-MTM problem is equivalent (up to logarithmic factors
in k) to approximating the following Minimum Poise Steiner k-Tree problem:

Input: A directed or undirected graph G(V, E) with root r, a collection S C V of
terminals, and a number k.

Required: A k-tree rooted at r, namely a tree T"(V, E) containing paths from r to k of
the terminals, with minimum poise.

In [11], they show that the approximability of minimum degree Steiner k-tree reduces to
minimum degree group Steiner tree (which is a special case of minimum degree directed Steiner
tree). Their reduction immediately extends to the minimum poise versions of these problems.
Hence, the approximability of the undirected Minimum Poise Steiner k-Tree problem lies
between the undirected Minimum Poise Steiner Tree problem and the directed Minimum
Poise Steiner Tree problem (up to log k factors). This implies the aforementioned analogous
statement about the relationship between undirected k-MTM and the undirected /directed
MTM problems.

We focus on approximating these poise problems.

» Definition 1.1. A O(f(k))-additive approzimation for the Minimum Poise Steiner k-Tree

problem returns a tree T with k terminals, with mazimum degree® O(B*) + O(f(k)) and
height O(D*).

1.1 Our results

We give an O(v/k)-additive approximation for the directed versions.

» Theorem 1.2. Minimum Poise Steiner k-tree problem on directed graphs admits a poly-
nomial time O(k;l/Q)—additive approximation. This implies the same approzimation for the
Minimum Time Telephone k-multicast problem.

The second part of the statement follows from [18].

In [10], a multiplicative O(v/k)-approximation is given for the directed Min-Max Degree
k-Tree problem, which asks to find a tree spanning k& terminals while minimizing the maximum
degree. Their algorithm iteratively finds trees containing vk - B* terminals, and uses flows
to connect them to the root. Our directed result is more general than that of [10] in that it
can handle both degree bounds and height bounds. Moreover, our approximation for degree
is stronger, since we get an additive O(\/E) approximation. Therefore, it may be better
than the approximation of [10] in the case that B* is large. Our approximation ratio for the
diameter is constant.

Our result is also more general than the O(y/t)-additive approximation for directed MTM
of [3], as it handles the k-tree version of the problem, and recovers the same O(+/t)-additive
approximation in the case k =t (up to logarithmic factors). In [3], the so-called multiple
set-cover problem is used, a variant of set cover, while our result uses max coverage subject
to a matroid constraint.

3 The O notation hides poly-logarithmic factors in &
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For undirected graphs, we give an O(tl/ 3) approximation, which is a better ratio in the
worst case if k is close to t. This represents progress toward closing the gap between the
approximability of undirected and directed MTM, since in [11] it is shown that the undirected
k-MTM problem lies between undirected and directed MTM in terms of approximability.

» Theorem 1.3. The Minimum Poise Steiner k-tree problem on undirected graphs admits
a polynomial time O(t1/3) approrimation, and therefore the Minimum Time Telephone
k-multicast problem admits the same approrimation.

The O(Vk) additive ratio can be as bad as (/) multiplicative ratio, if B* is constant
and k = Q(t). Therefore, in the worst case, an O(t'/?) approximation is a better ratio. In
addition, if B* = o(t'/%) and k = Q(t), the multiplicative ratio gives a better additive ratio.

1.2 Technical Overview

For the directed case, our techniques are based on [3]. However, our problem is harder
since it is not clear which k terminals to choose. An important difference is that we use
an approximation algorithm for maximizing set coverage (a submodular function) under
matroid constraints [1]. The multiplicative approximation for the undirected case builds on
this, and requires several graph decomposition techniques to be carefully combined.

For both results, we denote the maximum degree as B* and height as D* of an optimal
minimum poise tree T*. It can be assumed that D* and B* are known by trying all
possibilities, as there are only polynomially many. Moreover, since D* is known, all vertices
of distance greater than D* from the root may be removed.

Directed Min-Poise Steiner k-Tree. In order to get an O(v/'k) additive approximation for
the directed min-poise Steiner k-tree problem, we employ a greedy strategy. We iteratively
find a collection of vertex-disjoint trees, each covering (i.e., containing) exactly Vk terminals
and of height at most D*, until no more can be found. We call these good trees.

In the case that at least v/k many good trees are found, an additive O(\/E)-approximation
follows by taking any vk of the good trees along with shortest paths from the root r to the
roots of each of these trees. This yields a subgraph (not necessarily a tree, since the shortest
paths may not be disjoint from the good trees) with maximum out-degree at most 2V,
and radius (maximum distance from r) at most 2 - D*. Moreover, the subgraph contains
k terminals. Now the non-disjointness may be overcome by returning a shortest path tree
spanning this subgraph. This gives the desired approximation.

In the other case that fewer than vk good trees are found, we may still connect them to
the root via shortest paths. This gives a subgraph of low poise, but does not yet cover k
terminals. If k1 < k terminals are covered, we must determine how to cover k — kq additional
terminals without inducing high degree or height.

This is the main technical contribution of the directed result: we can recast the covering
of k — k1 additional terminals as a set cover instance, and the desired poise guarantees can
be obtained by imposing a partition matroid constraint on the sets in the instance. Then,
an algorithm for approximating submodular function maximization subject to a matroid
constraint [1] is applied. To the authors’ knowledge, partition matroid constrained set
coverage has not previously been used for multicasting problems.

Partition Matroid Set Coverage Procedure. Suppose we are given a partition of the graph
into AUC =V with r € A, such that all of A is reachable with low poise and contains k;
terminals. We want to cover at least k — ky terminals in C with low poise, and we know that
there exists a tree T™ rooted at r which does so.
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Say that a node ¢ € C' covers all the terminals in C' that it can reach within distance D*.

In this way, we define a set cover instance over the ground set of terminals in C' in which
each set is identified by an edge (a,c) between a node a € A and a node ¢ € C. The set
corresponding to (a,c) contains all terminals covered by c. Defining the sets this way allows
us to enforce degree constraints on the nodes in A, since the sets can be partitioned by their
member in A. That is, we form a partition with the parts X (a) = {(a,c) : c € C,ac € E} for
each a € A. We now impose the constraint that at most B* sets may be chosen from any
part X (a), reflecting the desired degree constraint. A partition matroid captures choosing
at most a certain number of elements from each part of a partitioned set. Hence we have
described a set cover instance with a partition matroid constraint and a coverage requirement
of k — k‘l .

The problem of selecting sets to maximize the number of terminals covered subject to
the matroid constraint is a special case of submodular function maximization subject to a
matroid constraint. Moreover, T provides a certificate that there exists a collection of sets
satisfying the matroid constraint and covering at least k — k; terminals in C'. Hence, we may
apply the (1 — 1)-approximation for this problem [1] (the simple greedy strategy giving a
-approximation [6] would also suffice here) to find a collection of sets satisfying the matroid
constraint and covering at least (1 — 1) (k — k;) terminals in C.

Given the choice of sets (a,c) by the algorithm, we identify a set of edges that may be
added to extend our subgraph to cover these terminals. These newly covered terminals are
then removed, and the process repeated. In each round, we can cover a constant fraction
of the desired number of terminals, so we need only O(log k) rounds. Moreover, any given
round induces additional degree of only B* on nodes in A. The degree induced on nodes in
C' depends on the size of the parts X (a), and this can be bounded in our applications (e.g.,
by vk in the directed setting described above, since the greedy strategy ensures that all
nodes in ¢ can reach at most v/k terminals within distance D*). Finally, the distance from
the root of any node added is O(D*), so in total the poise of the subgraph remains low. In
the end, we again output a shortest path tree spanning this subgraph.

Improvement in Undirected Graphs. In the undirected setting, the result can be improved
by taking advantage of the fact that if a good (low-poise) tree covering many terminals is
found, then we need only cover any node in that tree in order to cover all of those terminals
with low poise (as opposed to the directed case where we would have to cover the root of
that tree). Essentially, we may contract the tree and treat the contracted node as containing
many terminals.

Specifically, we will maintain a set R of nodes that we have covered so far with low poise
(by contracting, we can think of this simply as the root r). We first group the terminals
in the remaining graph C = V '\ R as before by greedily finding disjoint trees of low poise,
now each containing '/ terminals, called small trees. Note that some terminals may not
lie in any small tree. If the algorithm finds fewer than t'/3 small trees, then the same
matroid-constrained covering procedure from above can be applied to immediately get an
additive O(t'/?)-approximation.

On the other hand, if there are many small trees, we show that progress can be made by
either covering or discarding a large number of terminals at once. If we are able to aggregate
t1/3 small trees into a single tree within a distance D*, we have covered t2/3 terminals
and hence made sufficient progress in coverage: we can repeat this at most t'/3 times to
finish, inducing at most ¢'/3 degree at the root to reach these trees. However, we may have
the additional complexity of the optimal tree containing terminals that are not in one of
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these small trees we computed in C. We handle this case by using the matroid-constrained
coverage procedure to extract as many terminals as any optimal solution might cover from
the small trees while staying within the degree and height bounds, and then discarding all
the terminals from all of the unused small trees. Since the number of small trees (each with
t1/3 terminals) is Q(t!/3), this allows us to bound the number of such discarding iterations
by O(t'/ 3). In summary, we employ O(tl/ 3) iterations of either covering or discarding ¢2/3
terminals in the algorithm leading to the claimed O(t'/3) multiplicative guarantee. Over
the course of these iterations, the total degree accumulated by any node will be at most
O(t'/3) - B* (Note this guarantee is now multiplicative, since a node can gain O(B*) degree
in each of the t'/3 covering iterations).

Finally, we remark that the improved guarantee in this setting is in terms of ¢, the total
number of terminals, rather than k. This is because our algorithm relies on removing a large
number of terminals from the entire set of ¢ terminals, without necessarily covering all of
them.

2 Preliminaries

Let dist(u,v) denote the number of edges in the shortest path from u to v in G. We denote
by G[U] the graph induced by U, and by distgu)(u,v) the distance from u to v in the graph
G[U]. Recall that we denote the minimum poise tree by 7%, its maximum degree by B*, and
its height by D*.

» Assumption 2.1. Removing vertices of distance more than D* from the root r in G does
not change the optimal solution. Hence, we will assume for the rest of the paper that G only
contains vertices of distance at most D* from r.

» Remark 2.2. For the rest of the paper, we assume that quantities such as vk are integral.
Making the algorithm precise requires using f\/ﬂ However, the changes are minimal and
elementary.

For simplicity, we assume that every terminal has in-degree 1 and out-degree 0, by
attaching new terminal vertices to every terminal (this only increases the poise by at most
an additive constant). For undirected graphs, we assume that terminals have degree 1.
Therefore, removing terminals can’t turn a connected graph into a disconnected graph.

The input for the Set Cover problem is a universe U and a collection S of sets S; C U.
We say that a set S; covers all the elements that belong to this set. The goal is to find a a
sub-collection of sets 8’ C S of minimum size that covers all elements, namely, | J s,es' i =U.
The Set Coverage problem under matroid constraints has the input of Set Cover, and in
addition, a matroid M defined over the sets 8. The goal is to select an independent set
Z in the Matroid so that |(Jg <7 S| is maximum. A partition matroid instance divides S
into pairwise disjoint collections of sets &;, whose union is all of §. For every collection
S;, there is a bound p; on the number of sets that can be selected from &;. A collection of
sets containing at most p; sets from each &; is precisely an independent set in the partition
matroid. The goal is to find an independent set in the partition matroid that covers the
largest number of elements. This problem is a special case of maximizing a submodular
function under matroid constraints. The greedy algorithm achieves a 1/2-approximation for
this problem [6], and is sufficient for our purposes. It is also known that the problem admits
a polynomial time 1 — /e-approximation [1], which may be used for improved constants.
The procedure of [1] is one of the main tools in our algorithm. We called this procedure the
Matroid procedure.
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3 The Partition Matroid Cover Algorithm

In the next two sections, our algorithms for both the directed and undirected cases define a
disjoint partition of the graph vertices into AU C = V. The root r always belongs to A, and
we will ensure that all of A can be covered by a low poise tree rooted at r. In this section,
we discuss how to cover sufficiently many terminals from C' with low poise by connecting
them to the root through A. We do this by defining an instance of the Set Coverage problem
under a partition matroid constraint?.

» Definition 3.1. Define a Set Coverage instance as follows.
The items are SN C (the terminals in C).
The sets (also called pairs) are S = {(a,c) | a € A,c € C, and ac € E} where (a,c)
covers a terminal t € SN C if distgo(c,t) < D*.

The partition matroid is defined as follows.

» Definition 3.2. S is partitioned into collections
X(a) ={(a,c) | c € C and ac € E}
for every a € A. The bound on the number of sets to be chosen from X (a) is B*.

By definition, the partition is disjoint and therefore, we have a valid partition matroid. Recall
that » € A. See Algorithm 1 for a description of the Procedure PMCover.

Algorithm 1 PMCover.

input :Graph G(V, E) with terminals S and V partitioned into AU C, and a
number k.
output: A collection of pairs of the form (a,c) with a € A and ¢ € C.

E 0,8+ 8SnC.

while £ > 0 do

3 Define the partition matroid Set Coverage instance from A, C, S’ as above with
sets 8’ and apply Procedure Matroid of [1] to find an independent set of
approximately maximum coverage. Let Z be the independent set it returns.

4 | £+ EUT.

Decrease k by the number of terminals covered by Z.

N =

Remove the terminals covered by Z from S’.

7 return &'.

Analysis

We will show that for every a € A, | X (a) N E’| < O(logk) - B*. This will be used to argue
that if (a,c) € €', we later may make a the parent of ¢ in the tree we build without incurring
high degree.

4 Note that the parameter k represents the remaining number of terminals we need to cover. Given a
partition A, C' we will assume that all terminals in A have been spanned, and thus we need to cover k
terminals in C. That is, if A has k1 terminals for some k1 < k, we will set k <+ k — k1. Note that we
are guaranteed that C NT™ contains at least k — k1 terminals supplying a feasible solution.

21:7
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» Definition 3.3. Define a mapping from terminals in T* N C to S’ as follows. For a
terminal t, let a = a; be the vertex a € A that is an ancestor of t in T* and among them
distr«(a,t) is minimum. This vertex is well defined since r € A is the root of T*. Let ¢ = ¢4
be the child of a in T* that is an ancestor of t. Define f(t) = (a,c).

> Claim 3.4. There exists an independent set Z* in the partition matroid that covers at
least k terminals in C'N S.

Proof. We show that every terminal in ¢ € T* N C' is covered by some set. Let a = a; and
let ¢ = ¢;. Since a has minimum distance to ¢ from all vertices in A, the path from ¢ to ¢
belongs to G[C]. The number of edges in the path between ¢ and ¢ is at most D* — 1. This
implies that the set (a,c) covers t. Create a set T = {f(t) | t € T* N SN C}. We note that
f(@®) = f(¥') = (a,c) may hold for two different terminals, but Z* includes every such pair
(a,c) once (namely, Z* is a set and not a multiset). For any a € A, the number of different
pairs of the form (a,c1), (a,c2),... in Z* can’t be more than B*, because every such pair
increases a’s degree in T* by 1. Thus, Z* is independent in the partition matroid. Since all
terminals in T* N C' are covered, k terminals are covered. <

> Claim 3.5. Procedure PMCover returns a collection of pairs £ so that for every a € A,
X(a)NE = O(logk) - B* and £ covers k terminals. Thus if in some tree, vertex a € A is
made the parent of all ¢ for which (a,c) € €', the degree of a will be bounded by O(log k) - B*.

Proof. Since Procedure Matroid returns an independent set in the partition matroid, at
every iteration we have | X (a) NZ| < B*. Claim 3.4 and the guarantee of Procedure Matroid
by [1] imply that (1 — 1/e)k terminals are covered. Let ko, < k be the original number of
terminals to be covered and k. the number of terminals to be covered in a given iteration.
Then in the next iteration,

kn,
knew — knew - (1 - l/e)knew - eeW .
Therefore, after i iterations, ko /e’ terminals remain to be covered. Hence, the number of
iterations is O(log k). The claim follows. <

4  Approximating the poise for directed graphs

Our algorithm maintains a set A (initialized with the root r) containing the terminals covered
with low poise so far, and C = V' \ A. Consider a set C' and the graph G[C] induced by C.

» Definition 4.1. Denote by T'(c) the coverage tree of ¢ in G[C] formed by taking a shortest
path from c to every terminal within distance D*. A wvertex ¢ € C is called p-good (with
respect to C) if there are at least p terminals in T(c). A p-good tree is a tree rooted at some
¢ (not necessarily T'(c)) with exactly p terminals and height at most D*.

By assumption, the out-degree of terminals is 0. Therefore all terminals are leaves. Since we
may discard non-terminal leaves, a p-good trees contains exactly V'k leaf terminals.

» Definition 4.2. A set C of vertices, is a p-packing if there is no p-good vertez in C.

» Definition 4.3. Let {T;} be a collection of vertex disjoint trees and let A be the set of
vertices in | J; T;. Let C =V — A. Then A,C is a p-additive partition if:

1. The trees T; are p-good with respect to V, and are all vertez-disjoint.

2. There are at most p trees T;.

3. C is a p-packing.
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Let g; be the root of T;. Intuitively, since there are at most p trees T;, we can add a
shortest path P; from the root r to each ¢;, giving a tree rooted at r with low poise covering
terminals in A. In addition, since C is a p-packing, at least k (meaning the number of
remaining terminals to cover after covering those in A) of C’s terminals can be covered with
some collection of low poise trees. In particular, since every ¢ € C' is not p-good, all of the
coverage trees T'(c) have max degree at most p.

The algorithm attempts to find a p-additive partition. It greedily finds p-good trees, and
removes them until the set C' that remains is a p-packing. Then the procedure PMCover can
be used to connect the low poise trees covering A and C. However, there may be too many
p-good trees in A for (A,C) to be a p-additive partition. In this case, it simply connects
the root to any p of the trees T;. By choosing p = vk, this ensures enough terminals are
covered. See Algorithm 2 for a precise description of the Procedure Directed.

Algorithm 2 Directed.

input :Graph G(V, E) with terminals S, and a number k.
output : A Steiner k-tree of G.
1 Set p = Vk.
/* Greedy Packing */
Let A={r},and C =V — {r}.
while C' is not a p-packing do
L Find a p-good tree T in G[C].

oo WN

Remove the vertices of T' from C and add them to A.

(=)

Let {T;} denote the set of p-good trees found.

/* Many Trees x/

7 if the number of p-good trees found is at least p, then

Choose any p of the trees {T;} in A, and form the subgraph H C G by including
the root r, the chosen trees, and a shortest path from 7 to the root ¢; of each
chosen tree T;.

9 return a shortest path tree of H rooted at r.
/* Few Trees */
10 else
11 The number of p-good trees found is at most p, so (A, C) is a p-additive partition.

Apply the Procedure Complete on (A4, C), and return the resulting tree.

In the case that a p-additive partition (A4, C) is found, we use the Procedure Complete,
described in Algorithm 3. See Figure 1 for a depiction of the algorithm at this step.

Analysis

For a directed tree, T, let deg(v) be the (out-)degree of the vertex in T. Now say that we
run step Greedy Packing of Directed with p = V/k.

> Claim 4.4. If Procedure Directed finds at least p p-good trees, then step Many Trees of
Procedure Directed returns a tree with at least k terminals, maximum degree O(\/E)7 and
height O(D*)

Proof. Since each tree T} is vVk-good, it contains vk terminals. Hence, the graph H contains
at least k terminals, each of which can be reached by a path from the root. So the returned
shortest path tree of H has at least k terminals, as desired
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Algorithm 3 Complete.

input :Graph G(V, FE) with terminals S, a p-additive partition (A4,C), and a
number k.
output : A Steiner k-tree of G.

1 Apply the procedure PMCover with partition (4,C) to get &’

2 Let £ ={ac: (a,c) € €'}, the set of arcs corresponding to sets in &£’

3 Form the graph He on vertex set C'U {r'}, where r is a new node. For each ¢ € C
appearing in some ac € £, include in H¢ the arc (7, ¢) and the coverage tree T'(c).
Take a shortest path tree on Hg rooted at 7/, and let T be all of the edges from
this tree in G[C].

4 Form the subgraph H C G by including the root 7, each p-good tree T; from A and a
shortest path from r to its root ¢;, the edges from £, and the edges from T¢.

5 return a shortest path tree of H rooted at r.

<Vk

Figure 1 A depiction of the algorithm in the case that a p-additive partition is found. The set A
includes the root r and all v/k-good trees found, while C' contains the remaining vertices. Terminals
are depicted in blue. Short paths from r to the roots of the good trees are added (in red). Since C
is a \/E—packing, each vertex ¢ € C can reach less than vk terminals within distance D*. Hence,
we can run the PMCover procedure, with each iteration enforcing a degree constraint of B* on each
node in A, as shown.

To bound the degrees in the returned tree, we just bound the degrees in H. The good
trees T} are disjoint, and each have maximum degree at most k. Moreover, there are vk of
them, so there are only vk shortest paths to their roots. Therefore, the degree contributed
to any node v € H is at most vk from the T}, and at most 1 for each shortest path, for
a total of degy(v) < 2vk. Finally, each tree T; in H has height at most D*, while each
shortest path from the root to some ¢; has length at most D* (by Assumption 2.1), so the
returned shortest path tree has height at most 2 - D*. <
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> Claim 4.5. If Procedure Directed finds less than p p-good trees, then Procedure Complete
finds a tree rooted at 7 with maximum degree O(log k) - B* + O(Vk), and height O(D*) that
that contains at least k terminals of C'N S.

Proof. First, observe that H contains all terminals in A, as well as those terminals in C
covered by procedure PMCover. In particular, by Claim 3.5, H contains at least k terminals,
so the returned shortest path tree does as well.

Now we bound the degrees of nodes in the returned tree. The T; making up A are disjoint
Vk-good trees each having maximum degree at most vk. And there are less than vk of
them, so we add at most vk shortest paths to their roots ¢;. Hence, for each node v € A, the
contribution to the degree degy (v) is at most vk from the T}, at most 1 for each shortest
path, plus the contribution from €. By Claim 3.5, the edges of € increase the degree of
vertices in A by O(logk) - B*, so in total degy (v) < O(logk) - B* + 2v/k for each v € A.

All other vertices in H lie in C, and so their degree comes only from the vk shortest paths
(contributing at most 1 each), and the edges from T¢. Every coverage tree T'(c) has depth at
most D* by definition. In particular, for any vertex ¢ € C', we must have degs, (c) < VEk,
since otherwise the subtree of T rooted at ¢ has more than vk leaves, which can all be
assumed to be terminals. But this means that ¢ has more than p = vk terminals in C' of
distance at most D*, contradicting that ¢ is not p-good. Hence, degy(c) < 2Vk for every
ceC.

Finally, the height of the output tree is at most 3 - D* 4+ 1, because we get height D*,
from the trees T;, height D* from the shortest paths, height D* from T, and an additional
edge from &. <

Therefore, in either case we return a tree with at least k& terminals with maximum degree
O(log k) - B* + O(Vk) and height O(D*). This implies Theorem 1.2.

The following corollary is useful as it applies in case that the Greedy Packing step of
Procedure Directed finds a p-additive partition (i.e., step Few Trees is executed) with some
p that may be smaller than v/k.

» Corollary 4.6. If Procedure Directed finds a p-additive partition A,C, then there exists

polynomial time p-additive approzimation for the corresponding min poise k-tree problem.

5 The undirected case

In this section, we provide our O(tl/ 3)-approximation algorithm for the Minimum Time
Telephone k-multicast problem on undirected graphs with ¢ terminals, proving Theorem 1.3.

Preliminaries. We assume (for convenience) that the root r is a non-leaf node in 7*. Recall
that we assume that all terminals have degree 1. We can now assume that after rooting 7
at r, the set of leaves in T and the set of terminals in 7™ is the same set. Also recall that

the height of the tree T rooted at r is at most D*, since the diameter of T is at most D*.

Algorithm outline. The idea in the undirected case is that if a low-poise tree covering many
terminals is found, then we need only cover any node in that tree in order to cover all of
those terminals with low poise (as opposed to the directed case where we would have to cover
the root of that tree). Essentially, we may contract the tree and treat the contracted node as
containing many terminals.

Specifically, we will maintain a set R of nodes we have covered with low poise (by
contracting, we can think of this simply as the root r). We first partition the remaining
graph C'=V \ R as before by greedily finding small trees.
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» Definition 5.1. We say that a tree is small size if it contains exactly t'/° terminals. We
say that a tree is large if it contains exactly t*/% terminals

If this procedure succeeds in finding a t'/3-additive partition, then we are done by
Corollary 4.6. On the other hand, if we fail, we contract these small trees and show how to
cover a sufficiently large number of them by either finding a single large tree reaching '/ of
these small trees, or by applying the procedure PMCover. In either case, we may then remove
all of the terminals from these small trees, contract the newly covered nodes into R, and
iterate the entire process to cover the remaining terminals. In each iteration, we show the
total number of terminals discarded is large, so there cannot be too many iterations, and
hence not too much additional degree is incurred.

We first give a simple algorithm, Procedure Small, that finds trees {7;} each with exactly
t1/3 terminals (leaves).

Algorithm 4 Small.

input :Graph G(V, E) with t terminals S, and a number k.
output : A collection of subtrees {7}}, each with exactly ¢'/% terminals, or a Steiner
k-tree.

1 Apply step Greedy Packing from Procedure Directed on G with p = /3. Denote
the resulting trees as {T;}.

2 If the procedure succeeds in finding a t'/3-additive partition, apply Procedure
Complete on A, C, and return the resulting tree.

3 Else, return {T;}

In case that step Greedy Packing from Procedure Directed finds a t'/3-additive partition
A, C, we are guaranteed a t'/3-additive ratio from Corollary 4.6. Hence, from now on we
assume that step Greedy Packing from Procedure Directed gives more than ¢'/% small
trees T;.

We will proceed to contract each of these small trees into super-terminals. The trees T;
that we compute, are built by step Greedy Packing from Procedure Directed with p = t1/3.
Hence, they have exactly t!/3 terminals/leaves. We contract the terminals of every T;
into a single super-terminal ¢;. Denote by S(T;) the terminals contained in T; (i.e., those
corresponding to ¢;). As mentioned in the outline, we have the possibility that the terminals
of an optimal tree may only intersect with a few of these super-terminals. We capture this in
the following definitions.

» Definition 5.2. We say that ¢; is a true terminal if S(T;) NT* # 0.
» Definition 5.3. Denote by k' the number of terminals in ((J; T;) N T*. Let pu = [k'/t/3].

From the definitions, we can see that T* overlaps with at least p true terminals.

In the graph where the small trees have been contracted to super-terminals, we will
attempt to find a t'/3-packing of these super-terminals. For this, we generalize the definition
of a t'/3-packing in the set C' with respect to the super-terminals.

» Definition 5.4. We say that ¢ € C is a t'/3-good vertex with respect to the super-terminals
{q;} if there are at least t'/® terminals q; of distance at most D* from c, in G[C]. If there
are no t'/3-good vertices in C, C is called a t'/3-packing with respect to {¢;}- If C isa
t1/3 packing, then R, C is called a t'/*-additive partition with respect to {q:}.
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We can now describe the details of the rest of the undirected algorithm. Specifically, if
Procedure Small fails to find a t!'/3-additive partition, then there are two possibilities. Either
C=V\Risa t'/3 packing with respect to the g;, or otherwise there is a t'/3-good vertex
in C.

If C is a t'/3-packing we apply Procedure PMCover on R,C with terminals {¢;} since
R,C is a t'/3-additive partition. The goal is covering u super-terminals. We know that T°*
covers at least p true terminals g;, so these can be reached with height D* and maximum
degree B*. Therefore, our Procedure PMCover covers at least pu super-terminals. Note that
the number of original terminals we actually cover is - t*/3 > k’. This follows because each
q; represents a tree T; that contains t1/3 terminals. We now discard all the terminals of Uz T;.
Since the number of T} is at least t'/3, the total number of discarded terminals is 2/3.

The other case is that C is not a t!/3-packing with respect to {¢;}. Let v € C be a
t1/3-good vertex and let Q, be the corresponding tree. Note that Q, is a large tree since
it spans t'/3 of the ¢;, each representing ¢t'/% terminals. We connect 7 to Q, via a shortest
path P from r to Q,, and contract » U P U @, into r. Then we discard the terminals of @Q,,.
Since Q, is a large tree, the number of terminals discarded is t2/3.

In summary, in both cases t2/3 terminals are discarded. Therefore the number of iterations
in our algorithm is at most /3.

The degree of vertices in R increases by O(logk) - B* every time PMCover is applied.

Alternatively, a large tree @, is created and we only need a path P from r to Q,. This
increases the degree of some vertices in R by exactly 2. This gives a total degree of 2 - t1/3
because of the bound on the number of iterations.

The main procedure

Here we describe the precise algorithm for the undirected problem, Procedure Undirected
in Algorithm 5.

Analysis

> Claim 5.5. T contains at least p true terminals.

Proof. If the number of true terminals is at most p — 1, the number of terminals in | J, T; is
at most (u — 1) -t'/3 < k' and this is a contradiction. <

> Claim 5.6. The number of iterations in Procedure Undirected is at most /3.

Proof. If a tree @, is found, then it is a large tree hence it contains at least t2/3 terminals.

These terminals are discarded in the iteration. Else, the terminals of S N |J,; T; are discarded
and this, again, this removes #/3 terminals, since we have at least t'/3 different small 7}’s
(because procedure Small failed). Since in either case t>/% terminals are discarded and the
total number of terminals is ¢, the number of iterations is at most ¢'/3. <

> Claim 5.7. Let v be a vertex so that v € R. A single iteration of Procedure Undirected
increases v’s degree by at most 2 - t'/3 4 2. Moreover, if v’s degree increases, v is contracted
into r in that iteration.

Proof. The degree of a vertex increases only if it belongs to a large tree @, (or its path P
from ), or it belongs to the subgraph @ computed by Procedure PMCover. In the first case,
the degree increases by at most ¢'/3 from any one of the T}’s in Q,,, at most ¢'/3 more for the
paths from v to these T;’s, and at most 2 more for the path P from r to @Q,, for a total of at
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Algorithm 5 Undirected.
input :Graph G(V, E) with ¢ terminals S, and a number k.
output : A Steiner k-tree

1 R« {r}, 8"« S.

2 while £ > 0 do

3 Apply Procedure Small with p=¢'/3 on C =V \ R. If it succeeds, return the
resulting tree.
4 If Small fails, contract the terminals from each T; in the resulting packing into a
corresponding super-terminal ¢;.
5 if C =V \ R is not a t*/3-packing with respect to {¢;} then
6 Find a large tree @, inside G[C].
7 Compute a shortest path P from r to Q.
8 R+ RUPUQ,.
9 Remove from S’ all the terminals of @, and update k.
10 else // C=V\R is a t'/*-packing.
11
12 Apply Procedure PMCover with A = R and C' =V — R with the goal of
covering super-terminals.
13 Let € be the edges corresponding to the returned sets (a,c) € €', and T¢ the
shortest path tree on the corresponding trees T'(c) (as in line 3 of Complete).
Write Q = EUTe.
14 R+ RUQ.
15 Remove from S’ all the terminals | J; 7; and update k.

16 return the tree induced by R

most 2-t'/3 4+ 2. In the second case, the degree increases by at most t!/3 from T and 1 from
&, by an identical argument to Claim 4.5 (the proof of correctness of Procedure Complete).
In both cases, the vertex is immediately contracted into 7. <

> Claim 5.8. At every iteration, the degree of vertices in R is increased by at most
O(logk) - B*.

Proof. If a large tree @, is found, a shortest path from r to @, is computed. This increases
the degree of any vertex by at most 2. Otherwise, Procedure PMCover is applied. This
increases the degree of vertices of R by O(logk) - B*. The claim follows. <

> Claim 5.9. The returned tree contains k terminals, has maximum degree O(t'/3) - B* and
diameter O(D*)

Proof. By Claim 5.7, an iteration of Procedure Undirected increases the degree of a vertex
v & R by at most O(t'/3), any v whose degree increases immediately joins R. Now we bound
the degree added to a vertex in R. By Claim 5.8 at every iteration the degree of v € R can
increase by O(log k) - B*. By Claim 5.6, the number of iterations of Procedure Undirected
is is bounded by t'/3. Therefore the total degree of a vertex is at most

O(tY?) + O(log k) - B* - t'/3 = O(log k) - t*/% - B*.

In addition, the diameter of every @, or @ found, is O(D*). The distance of r to any @ or
Q, is at most D* as well. This assures that the diameter is O(D*).
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Finally, we argue that k terminals are covered. Fix a particular iteration of the algorithm.

If Procedure Small succeeds in finding a t!'/3-additive partition, then we immediately cover
the remaining number of terminals necessary by applying the Procedure Complete. Otherwise,
we argue that among the terminals discarded in this iteration, the algorithm covers at least
as many as T* covers. Indeed, if C' is not a t'/3-packing with respect to {¢;}, then all
terminals discarded are covered. On the other hand, if C is a t'/3-packing, then by applying
Procedure PMCover, Claim 5.5 ensures that at least p super-terminals are covered. Hence at
least 11 - t'/3 > k/ terminals are covered, which is precisely the number of terminals covered
by T among those discarded. <

Using [18] we get the following corollary that proves Theorem 1.3.

» Corollary 5.10. The Minimum Time Telephone k-Multicast problem on undirected graphs
admits a polynomial time, O(t1/3)—appmximation algorithm.
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