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Abstract
We generalize the classical nuts and bolts problem to a setting where the input is a collection of n

nuts and m bolts, and there is no promise of any matching pairs. It is not allowed to compare a nut
directly with a nut or a bolt directly with a bolt, and the goal is to perform the fewest nut-bolt
comparisons to discover the partial order between the nuts and bolts. We term this problem bipartite
sorting.

We show that instances of bipartite sorting of the same size exhibit a wide range of complexity,
and propose to perform a fine-grained analysis for this problem. We rule out straightforward
notions of instance-optimality as being too stringent, and adopt a neighborhood-based definition.
Our definition may be of independent interest as a unifying lens for instance-optimal algorithms
for other static problems existing in literature. This includes problems like sorting (Estivill-Castro
and Woods, ACM Comput. Surv. 1992), convex hull (Afshani, Barbay and Chan, JACM 2017),
adaptive joins (Demaine, López-Ortiz and Munro, SODA 2000), and the recent concept of universal
optimality for graphs (Haeupler, Hladík, Rozhoň, Tarjan and Tětek, 2023).

As our main result on bipartite sorting, we give a randomized algorithm that is within a factor of
O(log3(n + m)) of being instance-optimal w.h.p., with respect to the neighborhood-based definition.

As our second contribution, we generalize bipartite sorting to DAG sorting, when the underlying
DAG is not necessarily bipartite. As an unexpected consequence of a simple algorithm for DAG
sorting, we rule out a potential lower bound on the widely-studied problem of sorting with priced
information, posed by (Charikar, Fagin, Guruswami, Kleinberg, Raghavan and Sahai, STOC 2000).
In this problem, comparing keys i and j has a known cost cij ∈ R+ ∪ {∞}, and the goal is to sort
the keys in an instance-optimal way, by keeping the total cost of an algorithm as close as possible
to

∑n−1
i=1 cx(i)x(i+1). Here x(1) < · · · < x(n) is the sorted order. While several special cases of cost

functions have received a lot of attention in the community, no progress on the general version
with arbitrary costs has been reported so far. One reason for this lack of progress seems to be a
widely-cited Ω(n) lower bound on the competitive ratio for finding the maximum. This Ω(n) lower
bound by (Gupta and Kumar, FOCS 2000) uses costs in {0, 1, n, ∞}, and although not extended to
sorting, this barrier seems to have stalled any progress on the general cost case.

We rule out such a potential lower bound by showing the existence of an algorithm with a
Õ(n3/4) competitive ratio for the {0, 1, n, ∞} cost version. This generalizes the setting of generalized
sorting proposed by (Huang, Kannan and Khanna, FOCS 2011), where the costs are either 1 or
infinity, and the cost of the cheapest proof is always n − 1.
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1 Introduction

The classic nuts-and-bolts problem, originally mentioned as an exercise in [27], asks: a
disorganized carpenter has n nuts and n bolts, and there is (perfect) matching bolt for every
nut. The only allowed comparison is between a nut and a bolt, and the result of such a
comparison is either <, = or >. The goal is to find the matching without comparing two
nuts or two bolts to each other. A simple Quicksort type algorithm can be shown to solve
this problem in optimal O(n log n) comparisons with high probability: Pick a random nut,
compare to all bolts, find the matching bolt, and compare that bolt to all nuts. The problem
is now partitioned into two subproblems with the match at the boundary; recurse. In a
later work [3], Alon, Blum, Fiat, Kannan, Naor and Ostrovsky developed a deterministic
Quicksort-type algorithm that uses expanders and performs O(n polylog n) comparisons.
This was later improved to an optimal O(n log n) comparisons by Komlós, Ma, Szémeredi [24],
by performing substantial modifications on AKS sorting.

Our starting point is a remark by Komlós, Ma and Szémeredi: “In particular, the fact
that we can sort the nuts and bolts at all relies on the fact that there is a match between
them.” Indeed, if there is no matching (all comparisons come out < or >), one realizes
that the above randomized Quicksort based algorithm fails, as there is no partitioning into
subproblems. The only case where sorting without a matching is possible is when nuts and
bolts alternate in the final sorted order. Call this the perfectly interleaved case. Komlós,
Ma and Szémeredi observed (in a private communication with Aumann) that their AKS
sorting-based algorithm sorts the nuts and bolts using O(n log n) comparisons in this setting1.
However, a general instance may not be perfectly interleaved, and this setting was left open.

Generalized Nuts and Bolts. We focus on the problem alluded to by Komlós, Ma, and
Szémeredi: what if the carpenter is completely disorganized, and has an unequal collection
of nuts and bolts, without any matching pairs2? That is, assume the carpenter has a set R

of n nuts and a set B of m bolts, and is only allowed to compare a nut to a bolt, and the
result is either <, or >. Unless m = n and we are in the perfectly interleaved case, sorting
R ∪ B is not possible: there could be two (or more) nuts (resp. bolts) that compare the
same way to all the bolts (resp. nuts). A natural goal for the carpenter now is to “sort
as much as you can”, i.e., partition the set of nuts R into subsets R1, R2, . . . such that for
any r, r′ ∈ Ri and any b ∈ B, r and r′ have the same order with b (either both are smaller,
or both are larger), and vice-versa (see figure 1). We term this generalization of nuts and
bolts as bipartite sorting: given the complete bipartite graph G = (R ∪B, E), the goal is to
discover the orientation3 on all the edges in E by querying as few of them as possible.

The need for fine-grained analysis. If all nuts are smaller than all bolts, it is clear that
nm comparisons are needed by any algorithm, and obviously this number of comparisons
suffices for any instance. Recall that the perfectly interleaved case can be solved (in fact

1 For a simple randomized algorithm that does the same, see Appendix A.1 of full version [15].
2 It can be observed that having some matchings in the input only makes it easier to solve.
3 An edge e = (u, v) in G is oriented as u⃗v if u < v in the underlying DAG.
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Figure 1 An example output to an instance of the bipartite sorting problem. Continuous runs of
incomparable nuts and bolts are called “stripes”.

completely sorted) much faster with only O(n log n) comparisons. Assuming for simplicity
that m = Θ(n), the inherent complexities of instances range in [Õ(n), Ω(n2)]. Is there a
way to define instance-optimality for bipartite sorting that captures its variety of underlying
instances, and is there a good instance-optimal algorithm?

It is worthwhile to imagine the DAGs for the above two instances: if all nuts are smaller
than all bolts, the DAG G⃗ = (V = R ∪ B, E⃗) will have all edges oriented from R to B,
whereas the DAG in the perfectly interleaved case will be the transitive closure of the oriented
edges in the directed Hamiltonian path corresponding to the sorted order of the nuts and
the bolts. A transitive reduction of a DAG is the fewest number of oriented edges that by
transitivity imply all other orientations. For the first instance, the transitive reduction has
size nm, whereas for the second case, it has size n− 1, and therefore if we ignore logO(1) n

factors, for both instances, the sizes of their transitive reductions matches their complexity.
This immediately suggests a parametrization similar to an output-sensitive setting: the
number of comparisons of a good algorithm should be close to (say, within log factors of) the
size of the transitive reduction of the underlying DAG.

However, the following instance dashes all hopes of an algorithm that performs only
roughly as many queries as there are edges in the transitive reduction: n − 1 nuts are all
smaller than a special bolt b, which is smaller than a special nut r, which is smaller than all
other n − 1 bolts. We call this the “one-inversion” instance. Even though the transitive
reduction here has size 2n−1, any algorithm must perform n2 comparisons to find the hidden
special pair (r, b). Thus the gap between the transitive reduction and the inherent complexity
of this instance is Ω(n), which is as large as the gap between the complexity of any two
instances. Observe that the DAG for this instance is in some sense just “one-flip-away” from
the all-nuts-smaller-than-all-bolts DAG, a phenomenon that will be important later. Given
that the transitive reduction fails to capture the instances, we ask:

Is there another meaningful way to define instance-optimality for bipartite sorting that
captures its variety of underlying instances, and is there a good instance-optimal algorithm?

2 Our Results and Technical Overview

In this paper, we answer the above question in the affirmative, and in the process of doing so,
make unexpected progress on a widely-studied problem called generalized sorting (Huang,
Kannan and Khanna [20]), which in turn is a special case of the sorting with priced information
problem introduced by Charikar et al. [8]. We explain this connection first before stating
our results.

DAG Sorting. One can generalize bipartite sorting to DAG sorting where the set of allowed
comparisons is represented by an arbitrary (not necessarily bipartite) graph G = (V, E). The
goal is still to discover all orientations in the underlying DAG G⃗ = (V, E⃗) or equivalently, its
transitive reduction, by querying as few edges of G as possible, where a query of an edge
(u, v) ∈ E returns < or >. Edges not present in E cannot be queried.

APPROX/RANDOM 2024
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Arbitrary f(x1, · · · , xn) with Priced Information [8]

Searching, Other Problems
[23, 11, 26]

[25, 5]

DAG Sorting,
Arbitrary Costs, HA×

Sorting with Priced
Information[8], HA!

Sorting with costs
{0, 1, n,∞} HA!

Generalized Sorting[20],
Costs ∈ {1,∞}, HA!

Bipartite
Sorting,

HA×

Bichromatic [8]
Sorting [16], HA!

Unit-Cost Sorting

Structured Costs
Sorting[17], HA!

Perfectly
Interleaved, HA!

Not Perfectly
Interleaved, HA×

Nuts and Bolts[24, 3]

DAG Sorting,
Costs {0, 1,∞}

HA×

Finding Maximum
Arbitrary Costs [8, 17]

Finding Maximum
Costs {0, 1, n,∞}[8, 17]

�
�Ω

O

InversionSort

Figure 2 The landscape of sorting with priced information. Solid arrows go from a problem to its
special case. HA!indicates that the Hamiltonian path is assumed to exist and HA× indicates that
a Hamiltonian path may not exist. Problems shaded in gray are introduced or studied in this paper
for the first time. Dotted arrows highlight our results, arrows with O show algorithms carrying over
from one problem to another, and�Ω show lower bounds not carrying over.

It turns out that under the promise that G⃗ = (V, E⃗) has a directed Hamiltonian path,
DAG sorting is exactly equivalent to generalized sorting. Thus both bipartite sorting4 and
generalized sorting can be viewed as special cases of DAG sorting. In fact, one can go a step
further and assign non-negative costs to the edges in E in DAG sorting, and now ask for
algorithms that find the transitive reduction with the cheapest cost. If the underlying DAG
has a Hamiltonian path, this is exactly the problem of sorting with priced information.

4 And by transitivity, sorting nuts and bolts when perfectly interleaved, matching nuts and bolts, and
classical sorting.
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2.1 Bipartite Sorting
As our main result, we define a meaningful notion of instance optimality for bipartite sorting,
and give an algorithm that is instance optimal up to a factor of O(log3(n)). We found this
(definition, algorithm) result surprising because it shows that in some sense, the “one-flip”
phenomenon (recall the “one-inversion” instance) mentioned in the introduction is the only
obstruction to achieving (almost) instance optimality. We believe our definition may be of
independent interest as it unifies several previously-studied notions of instance optimality.

2.1.1 Defining Instance-Optimality
The transitive reduction of G⃗, denoted as T⃗ , can be thought of as the “cheapest proof” of
the underlying DAG being G⃗. Such a comparison to the cheapest proof has historically
been very useful in defining instance optimality. Indeed, for the problems of generalized
sorting and sorting with priced information, when the transitive reduction equals the directed
Hamiltonian path, the cost of this directed Hamiltonian path is the measure of instance-
optimality (and the factor by which an algorithm exceeds it is called competitive ratio in
the original work by Charikar et al.[8]). The cheapest proof appears again in the work by
Demaine, López-Ortiz and Munro [10]], who study the problems of comparison-based set
unions, intersections and differences. However in our setting, as the one-inversion instance
shows, the size of the transitive reduction |T⃗ | is too strong a benchmark to compare the
performance of an algorithm to.

An important work on instance optimality deviating from a comparison to cheapest
proof is by [Afshani, Barbay and Chan,[1]] which studies instance optimal algorithms for
the convex hull problem. This was also adopted by [Cardinal, Dallant and Iacono [6]], who
studied bichromatic rectangular visibility. When x is an input sequence of points, [1] and [6]
define OPT (x) to be the runtime of an algorithm that is order-oblivious, i.e., OPT’s code can
depend on the set of elements in x, but not on their order. The fact that some restriction on
OPT is needed (at least for static problems) follows because comparing the runtime of an
algorithm A on an input x to an algorithm (OPT) that is “tailor-made” for an input x is too
strong: if OPT’s code can depend on x, OPT (x) can be very small compared to A(x). In
the convex hull problem OPT (x) would just be O(n) as OPT only needs to read the input5,
and for DAG/bipartite sorting if OPT knows the underlying DAG G⃗ then (since we only
count query complexity) OPT equals zero!

We posit a “neighborhood-based” approach to defining notions of instance optimality. In
a nutshell, we observe that most definitions for instance optimality boil down to choosing the
“right” neighborhood. The smaller the neighborhood is, the stronger the notion of instance-
optimality, and the harder it is to attain. If the neighborhood is the set of all instances,
we are back to worst-case analysis. Thus the art is in choosing the smallest meaningful
neighborhood that still allows for instance optimal algorithms. This general step-by-step
process of increasing the neighborhood until one sees hope for instance-optimality reveals
quite a bit about the fine-grained nature of a problem. Perhaps this way of looking at
instance-optimality was already known, but since we have not seen it in print, we show (see
Appendix C of the full version of this paper [15]) how most of the existing works on instance-

5 [Afshani, Barbay and Chan [1]] state: “For example, consider the 2D convex hull problem, which has
Θ(n log n) worst-case complexity in the algebraic computation tree model: for every input sequence of
n points, one can easily design an algorithm A (with its code depending on the input sequence) that
runs in O(n) time on that particular sequence, thus ruling out the existence of an instance-optimal
algorithm.”

APPROX/RANDOM 2024
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optimality, ranging from the classical works on adaptive sorting and presortedness [13], to
later works by Demaine et al. [10] and Afshani et al.[1], and including the very recent work
on universal optimality [18], all agree with this paradigm.

We define a neighborhood of the underlying DAG G⃗, denoted as N (G⃗). See Definition 8
for a precise definition but intuitively, this is the set of all DAGs that are either isomorphic,
or “one-flip” away from G⃗. Define the runtime TA(G⃗) of a randomized algorithm A on an
instance G⃗ as its expected comparison-cost on instance G⃗. Let C(G⃗) be the set of randomized
(Las Vegas) algorithms that are correct for all instances in N (G⃗). Now define

OPT(G⃗) = inf
A∈C(G⃗)

max
G⃗′∈N (G⃗)

TA(G⃗′).

For α ≥ 1, we say an algorithm A is α-instance optimal if for every instance G⃗, TA(G⃗) ≤
α OPT(G⃗). Does there exist an algorithm achieving α = O(1), or α = logO(1) n?

2.1.2 InversionSort: An Almost Instance Optimal Algorithm
The algorithm we investigate for bipartite sorting is a variant of an algorithm InversionSort
that was recently presented by us (Goswami and Jacob [16]) for the version when there is
a sorted order on the nuts and bolts, and nuts can be compared to nuts (at a cost α > 1)
and bolts can be compared to bolts (at a cost β > 1). In bipartite sorting, two nuts (or two
bolts) cannot be compared to each other, i.e., α = β =∞, but due to the similarity to the
previous algorithm we call the algorithm for bipartite sorting InversionSort too. Note that in
[16] the previous algorithm was compared to the cost of the Hamiltonian, whereas now not
only may the Hamiltonian cease to exist, its natural counterpart (the transitive reduction) is
a weak lower bound.

As a first try, let us see what goes wrong when we apply the simple randomized QuickSort
algorithm for nuts and bolts to bipartite sorting. We pick a random nut r and use it to
pivot the bolts obtaining two sets B<r and B>r. Since no match was obtained, in the
alternating step we can select a random bolt b, say from B>r, and pivot the nuts, obtaining
R<b (containing r) and R>b. Instead of the two perfectly-partitioned subproblems obtained
in nuts and bolts, we unfortunately now have three subproblems: (R<b, B<r), (R<b, B>r),
and (R>b, B>r).

If the nuts and bolts were perfectly interleaved, we show (see Appendix A.1 of the full
version of this paper [15]) that a BFS-style Quicksort algorithm that we call BackboneSort
sorts using O(n log n) comparisons. BackboneSort works in a sequence of alternating phases,
a nut-phase and a bolt-phase. In a nut phase it tries to refine the nut subproblems and
makes progress over the three subproblems above in a round-robin fashion: for example,
to make progress in (R<b, B<r), it would select a random bolt in B<r and pivot R<b, and
vice-versa in a bolt-phase.

Unfortunately, in a general instance of bipartite sorting the nuts and bolts are not perfectly
interleaved everywhere, and it turns out that BackboneSort can perform badly (see Theorem
29 of full version [15]). The reason for this behavior arises from selecting a “random” pivot
in the subproblem: for the perfectly interleaved instance, its sub-instances are also perfectly
interleaved (in particular all three subproblems (R<b, B<r), (R<b, B>r), and (R>b, B>r) can
be shown to be roughly a constant fraction of the original problem with good probability) ,
and then such a random pivot is guaranteed to be good, just like in randomized Quicksort.
However, if the underlying instance is lop-sided (think of many nuts in R<b sandwiched
between two bolts in B<r), a random bolt is not a good pivot. To add to this complication,
an instance may be lop-sided in one region and perfectly interleaved in another, and an
instance-optimal algorithm should ideally be able to detect such a situation.
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InversionSort proceeds similarly to BackboneSort, but instead of selecting random pivots,
it performs a random comparison: when trying to make progress in (R<b, B<r), it will look
for “inversions”, defined as a pair (r, b) ∈ R<b ×B<r such that b < r. When it finds such a
pair, it uses them as pivots. The intuition is that regions having “easy” subinstances (like
perfectly interleaved ones) will resolve fast, whereas those that are lop-sided, like all nuts
less than all bolts, will take longer, but this is a necessary task in this sub-region.

The following theorem quantifies the performance of InversionSort. Here, N = n + m and
Definition 8 is our precise definition of instance optimality, sketched in the previous section.

▶ Theorem 1 (Instance Optimality of InversionSort). There exists a constant c > 0, such that
for every instance I, the cost of InversionSort on I is, with probability at least 1− 1/N , at
most c(log N)3 OPT(I), where OPT(I) is as in Definition 8.

Thus InversionSort is O(log3 N)-instance optimal, with respect to a natural notion of
instance-optimality that accounts for the one-flip neighborhood of the underlying DAG. We
conjecture that InversionSort is actually O(1)-instance optimal with this notion6.

2.2 Unexpected Result: Generalized Sorting and Sorting with Priced
Information

While Theorem 1 gives an algorithm for bipartite sorting that is instance-optimal, what can
we say for DAG sorting? Unfortunately proving a polylog-instance optimality guarantee
seems out of reach for now. The reason is that even the “sortable” case of DAG sorting, where
the DAG has a directed Hamiltonian path, has a current best bound of Õ(n1.5) comparisons,
or in other words, is a factor Õ(

√
n) away from the Hamiltonian cost (which is n− 1). This

results from an interesting randomized algorithm by Huang, Kannan and Khanna [20] that
uses the work by Kahn and Linial [22] on balancing extensions via the Brunn-Minkowski
theorem.

For a DAG that is not sortable, we extend the algorithm of Huang, Kannan and Khanna
to give an algorithm that performs Õ(min(wn1.5, n2)) comparisons and outputs the transitive
reduction of G⃗ (see Theorem 20). Here w denotes the width of the DAG, which is the size
of its largest antichain (a set of incomparable elements). We now point out an unexpected
consequence of this result.

The problem of sorting with priced information introduced by Charikar, Fagin, Guruswami,
Kleinberg, Raghavan and Sahai, [8], is a generalization of the classical, unit-cost, comparison-
based sorting, defined as follows. The input is a weighted undirected graph G on n vertices,
with the cost cij ∈ R≥0 on the edge eij indicating the cost to compare keys (represented by
vertices) vi and vj . As before, edges not in G have cost ∞ and cannot be queried, and a
query on an edge eij reveals if vi < vj (indicated as e⃗ij) or vi > vj (indicated as e⃗ji).

Since the hidden Hamiltonian path H is the cheapest proof, its cost which equals∑n−1
i=1 cx(i)x(i+1) is a lower bound. Here x(1) < · · · < x(n) is the sorted order. [8] propose

finding algorithms that come as close to the cost of H as possible. The competitive ratio is
defined as the ratio of the cost of the algorithm to the cost of H, and the goal is to find an
algorithm with small competitive ratio.

Several special cases of cost functions have been studied, but for arbitrary costs, almost
nothing is known about the above problem. Note that the Õ(n1.5) result by Huang, Kannan
and Khanna [20] works when all costs are either 1 or ∞. What about the version with

6 As evidence, we prove in Theorem 28 in Appendix A.2 of full version [15] that InversionSort solves the
perfectly interleaved instance in an optimal O(n log n) comparisons.

APPROX/RANDOM 2024
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arbitrary costs? Many works state that the general-cost version is “arbitrarily bad” (Huang,
Kannan and Khanna [20]), “bleak” or “hopeless” (Gupta and Kumar [17]). The only evidence
for this is an Ω(n) lower bound on the competitive ratio of any algorithm that finds the
maximum. There is an example where the costs are either 0, 1, n or ∞, and one can show
that any algorithm that finds the maximum element m must have cost Ω(n) times that of the
cheapest proof (of m being the maximum) (Charikar et al. [8], Hartline et al. [19], Gupta
and Kumar [17]). While it certainly provided intuition, the Ω(n) lower bound for maximum
(with costs in {0, 1, n,∞}) was never extended to sorting.

This makes the {0, 1, n,∞} version interesting due to three reasons:
do instances in this cost regime contain an Ω(n) lower bound for sorting too?
it is the natural step-up from generalized sorting with costs in {1,∞}, and
this is the first instance with forbidden comparisons that requires an instance-specific
analysis for the competitive ratio. For generalized sorting and for stochastic sorting7, the
cost of the Hamiltonian is always n−1, so one only has to bound the cost of an algorithm,
without worrying about the underlying instance. However, when costs are in {0, 1, n,∞}
the cost of the Hamiltonian can range from 0 to n(n − 1), and so an algorithm must
adapt to the underlying instance.

Our second theorem addresses this cost version of sorting with priced information, showing
that it cannot be the {0, 1, n,∞} version that makes sorting hopeless!

▶ Theorem 2. Consider the problem of sorting when every comparison has a cost in
{0, 1, F,∞}, for any F ≥ n3/4. There exists a polynomial time randomized algorithm whose
competitive ratio is Õ(n3/4), with high probability.

The main ingredient in the proof of this theorem is the aforementioned Õ(min(wn1.5, n2))
comparisons algorithm for DAG sorting. Even though DAG sorting does not promise a
Hamiltonian, it turns out to be useful because it can be used as a subroutine in a “greedy”
algorithm for the {0, 1, n,∞} cost version: obtain with cheapest cost the partial DAG formed
by all costs 0 and 1 comparisons.

Organization. We state our problems precisely in Section 3. This is followed by our result on
bipartite sorting (Theorem 1) in Section 4, and our result on sorting with priced information
(Theorem 2) in Section 5.

3 Problem Definitions

We formally define the problem of bipartite sorting first, and then the problems of DAG
sorting and sorting with priced information. We invite the reader to see Figure 2 for the
landscape of these problems, their relations to each other, and how our results fit in this
landscape.

▶ Definition 3 (Bipartite Sorting). Input: A complete bipartite undirected graph G of unit
costs on V = R∪B. Only edges in G can be queried (at unit cost), and querying an undirected
edge (u, v) has one of two outcomes, u < v (implying u⃗v ∈ G⃗) or u > v (implying v⃗u ∈ G⃗).
N := |V |.

7 Also initiated by Huang, Kannan and Khanna [20], this is the version where the input graph G is
random
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The instance of bipartite sorting is defined by a partition of R (reds) and B (blues) into
stripes (S1, · · · , Sk) (Figure 1), i.e., by the relative order8 between the reds and the blues.
Note that Sis are unordered sets. The DAG G⃗ has, for all 1 ≤ i ≤ k − 1, an edge from every
element in Si to every element of the other color greater than it, i.e., to every element in
∪ℓ≥0Si+(2ℓ+1).
Output: The sequence of stripes (S1, · · · , Sk) (see figure 1). Equivalently, the transitive
reduction of G⃗.

DAG Sorting. Let P denote a partial order on a set of n elements, and let P⃗ denote the
transitively closed DAG on V = {v1, · · · , vn} indicating all order relations in P . That is, the
vertex vi is identified with element i, the edge −→eij between vertices i and j exists if vi < vj ,
the edge ←−eij exists if vi > vj , and no edge between vi and vj exists if elements i and j are
incomparable. For convenience, let P denote the set of (undirected) edges in P⃗ without their
directions. Let w denote the width of P⃗ .

▶ Definition 4 (Implied and essential edge, transitive reduction [2]). Given a DAG G⃗ = (V, E⃗),
an edge (u, v) ∈ E⃗ is implied, if there is a directed path in G⃗ from u to v. Otherwise, (u, v)
is essential. The set of essential edges is called the transitive reduction of G⃗.

Note that for every implied edge (u, v) ∈ E⃗, there is a directed u to v path of essential edges
in G⃗. It turns out that the transitive reduction of a DAG is unique [2]. Let T⃗ denote the
transitive reduction of P⃗ . Let T denote the undirected version of T⃗ .

▶ Definition 5 (DAG Sorting, arbitrary costs). Input: An undirected graph G = (V, E ⊂ P )
with costs cij ∈ R≥0 on edges. An oracle that answers, given an undirected edge eij of G, its
orientation in P⃗ .

Promise: T ⊂ E. That is, the queryable edges contain the edges of the transitive reduction.
Output: T⃗ .
Cost of an algorithm A: The total cost of the edges queried by A on the instance P⃗ . This

will be denoted by cost(A, G⃗), where G⃗ is the directed version of G (also referred to as the
instance from now on), and contains all the information about P⃗ .

When cij = 1 for all i, j, we call the problem simply DAG Sorting.

We will only care about the query cost of the algorithm, and while there may be a compact
representation of T⃗ , we ask the algorithm to output T⃗ in its entirety for simplicity.

DAG sorting generalizes sorting with priced information, which we describe next. This
problem was introduced by [8] in the broader context of querying with priced information,
where one wants to compute a function f of n inputs, and querying an input has a certain
cost associated to it. The competitive ratio is defined as the (worst case) ratio of the cost of
the query strategy to the cost of the cheapest proof of f . This work initiated a multitude
of papers on priced information, studying problems like learning with attribute costs [23],
stochastic boolean function evaluation [11], searching on trees [26, 25], and priced information
in external memory [5].

▶ Definition 6 (Sorting with Priced Information [8]). Sorting with priced information is a
special case of DAG sorting, when the partial order P is a total order. In this case, P⃗ is a
tournament and therefore P is a complete graph. T⃗ is simply a directed Hamiltonian path

8 S1 is the set of all sources in the DAG G⃗; since red and blue elements can be compared with unit-cost,
S1 must necessarily be of one color. Si can be iteratively defined as the set of sources in G⃗ after all
stripes 1 to i − 1 have been deleted.
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H in P⃗ . The input G is any graph on n vertices containing the edges of H without their
directions, and the output is H. The total cost of the edges queried by an algorithm A on the
instance G⃗ will be denoted by cost(A, G⃗).

Competitive ratio for sorting with priced information. The competitive ratio of A (as
defined in [8]) is ρ(A, n) = maxG⃗ cost(A, G⃗)/cost(H), where the maximum is taken over all
instances G⃗ of n vertices with a total order. The goal is to find sorting algorithms with
small competitive ratio. Here cost(H) is considered as a proxy for the complexity of the
instance G⃗, as it is the cheapest proof. It certainly is a valid lower bound, for the edges on
the Hamiltonian must be queried by any algorithm.
For example, when G is the complete unit-cost graph, MergeSort or QuickSort achieve a
competitive ratio of Θ(log n) (the latter w.h.p. if randomized). Similarly, when G is unit-cost
but not complete, the Õ(n1.5) cost algorithm algorithm by Huang, Kannan and Khanna [20]
has a competitive ratio of Õ(

√
n). As mentioned, very little is known about the case when G

has arbitrary costs.
We end with the remark that DAG sorting is closely related to a line of work initiated by

Faigle and Turán,[14] called sorting a partial ordered set, or identifying a poset. This was
followed up by several works such as [9] and [12]. For a survey on this line of work that also
includes generalized sorting, we refer the reader to [7].

4 Results on Bipartite Sorting

This section is divided into three subsections. In Section 4.1 we formally state our definition
of instance-optimality. In Section 4.2 we derive some lower bounds on OPT stemming from
the definition of instance-optimality. Finally, in Section 4.3 we define InversionSort, and
prove that it comes close to achieving instance-optimality (Theorem 1) by charging the
comparisons performed by InversionSort to the derived lower bounds.

4.1 Defining Instance-Optimality
As mentioned in the introduction, the following instance of bipartite sorting shows that
comparing the cost of an algorithm to the transitive reduction is hopeless.

▶ Definition 7 (One-inversion Instance). Let G = (R, B, E) be the undirected complete
bipartite graph on |R| = |B| = n/2. Pick an arbitrary r ∈ R, b ∈ B, let R−r = R \ {r} and
B−b = B \ {b}. Define a DAG G⃗ via its transitive reduction as follows.

TR(G⃗) = {x⃗b : x ∈ R−r} ∪ {b⃗r} ∪ {r⃗y : y ∈ B−b}.

The transitive reduction has size O(n), but any algorithm must spend Ω(n2) comparisons
to identify r and b. Thus the “cheapest proof” is too strong a benchmark. We now present
our neighborhood-based approach for bipartite sorting. This approach is general, and in
the Appendix C of the full version [15], we show how this neighborhood-based approach
fits several works on instance-optimal algorithms for static problems, namely the works on
adaptive sorting [13], on set intersection, union and difference [10], and the recent work on
universal optimality [18].

We start with small neighborhoods and gradually increase them until there is no imme-
diate obstruction to instance-optimality. Define NA(G⃗) as the set of DAGs (Automorphic)
isomorphic to G⃗ if all edges in G⃗ are unit-cost, and cost-isomorphic9 otherwise. Next, define

9 Meaning there exists an isomorphism btween the DAGs that preserves the costs.
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the runtime of an algorithm on an instance G⃗ as its maximum comparison-cost on any
instance in NA(G⃗). Define OPTA(G⃗) as the smallest comparison-cost of any algorithm.

For unit-cost sorting, G⃗ is a complete DAG, and |NA(G⃗)| = n!. It is easily seen that
now OPT (G⃗) = Ω(n log n), and the unnecessary log n gap arising from comparing to the
cheapest proof vanishes. This is also consistent with the fact that any O(n log n) algorithm
that ignores the sequence of keys and only treats them as a set is O(1) instance optimal in
the order-oblivious setting.10

Moving on to the case when G⃗ is not complete, we see that the above definition is not
sufficient by the following observation. Consider the case when G⃗ is a complete bipartite
graph, with all edges going in the same direction, i.e., from one partition R to the other
B. Now |NA(G⃗)| = 1, and any algorithm that knows that it is operating on G⃗ has zero
comparison cost11. However, any instance-unaware algorithm needs Ω(|R||B|) comparisons
to verify that the instance is indeed G⃗. This suggests that we need a larger neighborhood
than just NA(G⃗).

Let E⃗ denote the set of edges in the transitive reduction of G⃗, also called essential
edges (Definition 4). Define NE(G⃗) as the set of DAGs that differ from G⃗ in exactly
one essential edge being flipped, and any other changes it may imply. Again, define the
runtime of an algorithm on an instance G⃗ as its maximum comparison-cost on any instance
in NE(G⃗), and define OPTA(G⃗) as the smallest comparison-cost of any algorithm. It is
straightforward now to observe that if G⃗ is sortable, OPT (S) ≥ cost(H) and if G⃗ is not
sortable, OPT (S) ≥ cost(TR(G⃗)). Thus, we recover both definitions of competitive ratio by
considering this one-flip neighborhood.

The algorithms we consider here are randomized, and we hence want a definition of
instance optimality that allows for randomization. The notion of “instance optimal in the
random-order setting” of [1], based on Yao’s principle, compares implicitly to the optimal
expected running time of a correct randomized algorithm (Las Vegas style). Our following
definition does this directly:

▶ Definition 8 (α-Instance Optimality). Let N (G⃗) = NE(G⃗) ∪NA(G⃗). Define the runtime
TA(G⃗) of a randomized algorithm A on an instance G⃗ as its expected comparison-cost on
instance G⃗. Let C(G⃗) be the set of randomized (Las Vegas) algorithms that are correct for all
instances in N (G⃗). Define OPT(G⃗) = infA∈C(G⃗) maxG⃗′∈N (G⃗) TA(G⃗′). For some α ≥ 1, an
algorithm A is called α-instance optimal if for every instance G⃗, TA(G⃗) ≤ α OPT(G⃗).

4.2 Lower Bounds on OPT
We first refine our notion of instance-optimality to make it more amenable to deriving lower
bounds.

▶ Definition 9 (Instance Optimality Distribution). Let C′(G⃗) be the set of deterministic
algorithms that are correct for all instances in N (G⃗). Let D(G⃗) be the uniform distribution
over NA(G⃗). Define OPT(G⃗) = infA∈C′(G⃗) EG⃗′∼D(G⃗)TA(G⃗′).

An application of Yao’s principle [28] shows that for any G⃗: OPTD(G⃗) ≤ OPT(G⃗). Note
that the optimal algorithm is allowed to depend on I. We remark that while the following
lower bounds would be easy to prove for algorithms unaware of I using adversary arguments,
we prove this for OPT (Definition 9), which requires some extra care.

10 All algorithms that exploit certain presortedness in the input necessarily exploit the input sequence of
keys. This corresponds to a smaller neighborhood than the n! size automorphism neighborhood.

11 Recall that we do not charge to write down the transitive reduction which has size O(|R||B|), only the
query cost.
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▶ Lemma 10 (Transitive Reduction or Verification lower bound). Let I be an instance of
bipartite sorting, let K ⊂ E⃗I be its transitive reduction, and define CV = |K|. Then, any
algorithm that is correct for all inputs from N (I) must perform at least CV comparisons.

Proof. Assume there exists an algorithm A that is correct for all instances in N (I) simultan-
eously that performs at most CV − 1 comparisons on input I. This means that there must
exist an edge e on the transitive reduction that is not verified by A. As A is deterministic, it
would report I as output even when the input had e flipped because all other edges have the
same direction as in I, as we will argue now: If this (non-flipped) edge is between two stripes
of size one, the two endpoints merge into two other stripes, but no edges changes direction.
If this edge is between two stripes and both of them have size at least 2, then we create
one additional inversion without changing other directions. If one stripe has size one and
the other has size at least two, one element is moved from the size-at-least-two stripe to a
neighboring stripe. Again, no bichromatic edges (implied or not) change their direction. ◀

While the above lower bound is natural as it is the cheapest proof, Definition 9 now allows
for the following lower bound that captures the complexity of instances where transitive
reduction is too weak a measure (recall the instance in Definition 7).

▶ Lemma 11 (Inversion finding lower bound). Let I be an instance of bipartite sorting with
n ≥ 2 red and m ≥ 2 blue elements, where not all comparisons come out the same, and define

CI = nm

min(|{(r, b) ∈ R×B | r < b}|, |{(r, b) ∈ R×B | r > b}|) .

Under the distribution of Definition 9, any deterministic algorithm A that does at most CI/2
comparisons must fail with probability (at least) 1/8.

Proof. Let D be the uniform distribution over NA(I). Remember that NA(I) contains all
instances where the stripes are internally arbitrarily permuted. Observe |NA(I)| ≥ 4 by
the bounds on n and m. W.l.o.g., assume |{(r, b) ∈ R × B | r < b}| < |{(r, b) ∈ R × B |
b < r}|, i.e., the usual outcome of a comparison is b < r and the inversion is r < b. Let
p = 1/CI = |{(r, b) ∈ R×B | r < b}|/nm ≤ 1/2 be the probability that a randomly chosen
pair of elements is an inversion. By Yaos principle, let A be a deterministic algorithm and
think of it as a decision tree T where nodes are red-blue comparisons and non-inversion go
to the left, inversions go to the right. Each leaf of the tree is marked with an output (that
declares which instance was represented by the input), or a failure output.

Claim. Let vk be the node v that is reached by k comparisons returning “non-inversion”
(i.e. the leftmost node of T at depth k). When input is drawn from D, the node vk is reached
with probability at least 1− kp.

Proof of Claim. An input reaches vk if k (potentially dependent) random experiments all
came out as “non-inversion”, each having a probability 1− p. The claim follows from a union
bound over the fail events. ◁

From the claim it follows that if vk is a leaf for k ≤ CI/2, the algorithm must fail with
probability at least 1/4: Then kp ≤ CI/2 · 1/CI = 1/2 and 1 − kp ≥ 1/2, so half of the
inputs reach vk. Because there are at least four inputs, at least two reach vk, but it can only
be labeled with one, the other(s), which stand for at least 1/4 of the inputs in NA(I), make
the algorithm fail. ◀
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Finally, we will need to combine various lower bounds from different subproblems. Let
I be an instance and (S1, · · · , Sk) its stripes (see Figure 1). Consider pairs of indices
(a1, b1), · · · , (aℓ, bℓ), where for all 1 ≤ j ≤ ℓ, aj and bj both belong to {1, · · · , k}, and
aj < bj < aj+1 < bj+1 for all j < ℓ. For 1 ≤ j ≤ ℓ define the subinstance Ij by the subgraph
of G⃗I on the vertices Vj =

⋃bj

i=aj
Si.

▶ Lemma 12 (Decomposition into Lower Bounds for Subproblems). For 1 ≤ j ≤ ℓ, let Ij be a
subinstances of I as above. Then OPTD(I) ≥

∑ℓ
j=1 OPTD(Ij).

Proof. As we are working with Definition 9, we first have to check that an algorithm that is
correct on N (I) is actually correct on each N (Ij). To this end observe that every edge flip
in Ij is also an edge flip in I, and that any permutation of the labels/names in Ij is also a
permutation in I.

Run the algorithm A on an instance I ′ drawn from D(I), and let X be the random
variable describing the number of comparisons of A. Define the random variables Xj to be
the number of comparisons between vertices in subproblem I ′

j . Then
∑

Xj ≤ X.
Let’s conceptually draw I ′ from D(I) by first finding a position in the input list (name)

for all vertices not in Ij and finally draw names for the vertices in Ij . Now we can think of A

as deterministic algorithm for Ij by considering all comparisons not in Ij as fixed, and we
get E[Xj ] ≥ OPTD(Ij). The statement of the lemma follows by linearity of expectation. ◀

4.3 InversionSort and its O(log3 n) instance-optimal guarantee
A generic state of InversionSort will be defined using a backbone, which is a sequence of
elements of alternating colors, called representatives or pivots. Each representative will be
assigned a bucket, which is a set of elements of the same color that lie between the two
neighboring representatives of the other color on the backbone.

InversionSort makes progress from one state to the next by performing three steps: a)
finding an inversion (which is defined soon) between neighboring representatives on the
backbone, b) inserting this inversion on the backbone, and c) pivoting with these two elements,
thereby refining the buckets.

4.3.1 Description of InversionSort

▶ Definition 13 (Backbone, Representatives, and Buckets). The backbone consists
of a totally ordered, alternating list of representatives (u0, u1, u2, . . . , u2k, u2k+1) =
(r0, b1, r2, . . . , r2k, b2k+1), where r2i ∈ R and b2j+1 ∈ B with ri < bi+1 and bi < ri+1.
Here, r0 is an artificial red element that is smaller than all elements, and the last ele-
ment b2k+1 is an artificial blue element that is larger than all elements. The represent-
atives define the buckets (X0, X1, X2, . . . , X2k, X2k+1) = (R0, B1, R2, . . . , R2k, B2k+1) by
Ri = {x ∈ R | bi−1 < x < bi+1} \ {ri} and Bi = {x ∈ B | ri−1 < x < ri+1} \ {bi}. Here, as
a convention, the representative is not included in the bucket. Again, R0 = {x ∈ R | x < b1}
and B2k+1 = {x ∈ B | r2k < x} are special cases.

▶ Definition 14 (active subproblems and buckets). As long InversionSort did not create a
certificate that there are no further inversions between xi and xi+1, the subproblem defined
by the buckets Xi and Xi+1 is called active, and so are Xi and Xi+1.

Our previous work [16] now defines an inversion, which gives the algorithm its name.
Consider adjacent representatives ui and ui+1, their corresponding adjacent buckets Xi and
Xi+1, and a bichromatic pair (x, y) of elements x ∈ Xi and y ∈ Xi+1. Observe that x and
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Algorithm 1 Algorithm InversionSort.

Require: elements R red, B blue
create trivial backbone B from R and B, see Definition 13
η ← 0
while there is an active subproblem (see Definition 14) in B do

η ← η + 1
for each active (see Definition 14) bucket s do

Sample one element xs

for each active subproblem between buckets s (left), and q (right) do
Test for inversion between xs and xq

for each active subproblem Xi, Xi+1 where η - mark (age) > |Xi||Xi+1| do
do all comparisons between Xi and Xi+1
update the backbone and certificates accordingly
the subproblem is finished, i.e. no longer active

for each found inversion do
update the backbone, including splitting buckets and resampling pivots
mark new subproblems with round η as age

y are not ordered by transitivity of the backbone. Because x and y are of different color,
they can be compared. If y < x, the pair is called an inversion. This allows one to extend
the backbone: we get ui < y < x < ui+1, which is a chain of actual comparisons between
elements of alternating color.
The only way to find an inversion in a bipartite setting (this is where the bichromatic setting
is different) is to uniformly at random, from all pairs in Xi and Xi+1, pick x and y. If the
fraction of inversions is p, then the probability of finding an inversion is p and the expected
number of trials to find one is 1/p.

InversionSort starts by (trivially) having the backbone consist only of the artificial
smallest red element r0 and largest blue element b1, and R0 = R and B1 = B. For a given
backbone (u0, u1, u2, . . . , u2k, u2k+1) = (r0, b1, r2, . . . , r2k, b2k+1), InversionSort first, for each
pair Xi, Xi+1 of adjacent buckets that have not yet found an inversion or a proof that there
is no further inversion (i.e., reached the adjacent-stripe verification bound), in a round-robin
manner, does one round of inversion-searching by randomly comparing pairs of elements in
adjacent buckets. If this leads to an inversion, the inverted pair is saved and the algorithm
moves to the next pair of adjacent buckets. At the end of the round, all identified inversions
are considered and used to extend the backbone. Then InversionSort splits existing buckets
by pivoting with new elements on the backbone. Because there is at most one pair of
inversions between each two neighboring representatives on the backbone, each element is
compared to at most two new representatives in each round.

This reestablishes the backbone and creates some new pairs of neighboring buckets, for
which InversionSort initializes the inversion finding procedures. The algorithm stops once all
neighboring pairs of buckets are shown to not have an inversion, i.e., the comparisons in the
verification bound between neighboring stripes have been performed.

Analysis. [16] visualizes a run of InversionSort as a ternary (refinement) tree, where nodes
correspond to subproblems. For an internal node v, there is a corresponding subinterval on
the backbone defined by two consecutive pivots, say a blue pivot followed by a red pivot,
bv < rv. If InversionSort finds an inversion y < x (x is blue and y is red) between bv and rv,
then v has three children with the respective pivots (bv, y), (y, x), (x, rv).
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The random nature of the inversion searching of InversionSort, is made precise in Lemma 11
in [16]. However, a stronger version of this lemma applies for bipartite setting with the same
proof.

▶ Lemma 15 (Randomness in Inversion Finding, Stronger Version of [16, Lemma 11, p11]). At
any stage of the InversionSort, consider a successful inversion finding procedure, which finds
an inversion y < x between representatives ui < y < x < ui+1. Say, w.l.o.g., that ui is red
and ui+1 is blue, and hence x is red and y is blue.
1. for any y ∈ Xi+1, conditioned on y being in the inversion, x is uniformly distributed

among all the red elements in Ry = {x ∈ Xi | y < x < ui+1}, an.
2. for any x ∈ Xi, conditioned on x being in the inversion, y is uniformly distributed in

Bx = {y ∈ Xi+1 | ui < y < x}.

This gives a bound on the height of the tree.

▶ Lemma 16 (Height of the refinement tree [16, Theorem 5, p11]). Let T be the refinement tree
of running InversionSort on an instance I with N = n + m elements. With high probability
in N , the height of T is O(log N).

Handling Overlaps. Because of the overlapping nature of the problem, InversionSort cannot
easily focus on elements between neighboring representatives. For example, for the child
indicated by pivots (y, x), instead of only getting the reds and blues that actually lie in this
range as input, InversionSort instead has to also work with the red elements contained in
(bv, y) and the blue elements inside (x, rv). This “spill-in” from the neighboring subintervals
on the backbone needs to be analyzed.

As is argued in [16], the cost of bichromatic inversion search procedure of InversionSort is
justified by the subinstance (part of the Hamiltonian) between the neighboring elements on
the backbone. In Section 4.3.2, we will analyse this in the bipartite setting using the notion
of instance optimality. However, if the spill-in for this subproblem is too large, inversion
search is too costly. Hence, [16] identify subproblems that do not have too much spill-in
from their neighbors, and call these subproblems unaffected. Inversion search in unaffected
subproblems can be charged to their subinstance. More precisely, [16] show that at any
time, with high probability, at least roughly a 1/(log N)2 fraction of all current problems are
unaffected. Accounting over the whole tree, including the pivoting, introduces another log N

factor corresponding to the depth of the tree.

4.3.2 Putting everything together: Proof of Theorem 1
We now complete the proof of our main result for bipartite sorting, restated here for
convenience.

▶ Theorem 1 (Instance Optimality of InversionSort). There exists a constant c > 0, such that
for every instance I, the cost of InversionSort on I is, with probability at least 1− 1/N , at
most c(log N)3 OPT(I), where OPT(I) is as in Definition 8.

We will show how to charge the comparisons performed by InversionSort to the lower
bounds presented in Section 4.2. First, Lemma 15 and Lemma 16 imply that the refinement
tree height h = O(log n) and hence the pivoting cost is O(n log n). Second, the considerations
about unaffected subproblems remains valid, there are at most O(log2 n) affected subproblems
per unaffected subproblem. The inversion searching cost in each unaffected subproblem is
justified by Lemma 11 if an inversion is found, otherwise by Lemma 10. Adding the extra
O(logN ) factor (height of the tree), the next lemma completes the proof of Theorem 1.
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▶ Lemma 17. Let T be the refinement tree of height h for a run of InversionSort on
instance I, and let VT be the set of nodes of T . Then∑

v∈VT

OPT (Iv) ≤ 2h OPT(I)

Proof. It suffices to show that for each level L of T the inequality
∑

v∈L OPT (Iv) ≤ 2 OPT(I)
holds. Note that the subinstances Iv of the same polarity in any L do not share vertices.
Hence the decomposition Lemma 12 is applicable and the lemma follows because there are
two polarities. ◀

5 Result on Sorting with Priced Information: Lower bound does not
extend

Recall that there exists an instance demonstrating the lower bound of Ω(n) on the competitive
ratio of any algorithm that finds the maximum of a set of n elements. Announced in the
original paper by Charikar et al.[8], this was spelled out one year later by Gupta and
Kumar [17]]. The instance is simple to describe (see Appendix B of the full version [15]), and
all comparisons in it have costs in {0, 1, n,∞}. Although this example was never formally
stated for sorting, its discovery seems to have dampened efforts to study (either better
algorithms, or lower bounds for) the general version of sorting with priced information in the
past 20 years.

In this section, we prove Theorem 2, that shows that the Ω(n) lower bound for maximum
with costs in {0, 1, n,∞} cannot extend to sorting.

▶ Theorem 2. Consider the problem of sorting when every comparison has a cost in
{0, 1, F,∞}, for any F ≥ n3/4. There exists a polynomial time randomized algorithm whose
competitive ratio is Õ(n3/4), with high probability.

While counterintuitive at a first glance (after all, the cost to sort is at least the cost to
find the maximum), the simple explanation is that the cheapest proof for sorting is also more
expensive than that of the maximum. This opens up the problem of arbitrary-cost sorting
once again - is there a Ω(n) lower bound for sorting with arbitrary costs, or can our Õ(n3/4)
algorithm be extended to an o(n) competitive algorithm for arbitrary costs?

Theorem 2 is achieved by first developing an algorithm for DAG sorting. Why consider
the case of an unsortable DAG, when the DAG we have is sortable? Here is the reasoning.
If we consider greedy algorithms for sorting with priced information, it is natural to try to
discover as much of G⃗ as possible with low-cost edges12. However, note that the sub-DAG
G⃗≤w consisting of edges with cost at most w in G⃗ may not be sortable, which is exactly the
problem of DAG sorting.

We set up some notation first. Given an undirected complete graph G with costs in
{0, 1, F,∞}, let G⃗ denote the underlying DAG that contains a directed Hamiltonian path.
Define G⃗0 as the DAG obtained by revealing all cost 0 edges, observe that it may not have

12We remark that some time after we first uploaded a version of Theorem 2 to Arxiv, a preprint by
[Jiang, Wang, Zhang and Zhang, Arxiv [21]] was uploaded, where the authors also use an algorithm for
DAG sorting (they call it GPSC) parameterized by w and extend our Õ(n3/4) algorithm to obtain a
Õ(n1−1/2W ) competitive algorithm for sorting with priced comparisons with at most W distinct costs.
For our setting when W = 4 they re-derive our result separately as their main theorem would give a
n7/8-competitive ratio.
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a Hamiltonian path, and let w0 be the width of G⃗0. Similarly, denote by G⃗01 the DAG
obtained by revealing all cost 0 and 1 edges; G⃗01 may not have a Hamiltonian path either,
and let w01 be the width of G⃗01. Finally, let k1 and kF be the number of cost 1 and cost F

edges on the Hamiltonian path in G⃗.

5.1 Algorithm details
The following is our proposed algorithm for the 0, 1, F,∞ cost version of sorting with priced
information. Below, we will abbreviate the algorithm by Huang, Kannan and Khanna [20]
for the 1,∞ setting, by HKK.

Algorithm 2 Algorithm for 0, 1, F, ∞ cost.

Require: undirected graph G = (V, E, c) with costs c(e) ∈ {0, 1, F,∞}
Ensure: the total order (directed Hamiltonian)

Probe all cost zero edges
Run the following 4 algorithms in parallel, performing one comparison from each. If any
of them discover the Hamiltonian, report the edges in the Hamiltonian path, and abort
the other algorithms

◦ Set F =∞. Run the HKK algorithm on the cost 1 edges, starting from G⃗0
◦ Set F = 1. Run the HKK algorithm on the cost 1 edges, starting from G⃗0
◦ Run Algorithm 3 on the cost 1 edges, starting from G⃗0
◦ Find the 0-1 DAG using Theorem 20, use Algorithm 3 with cost F edges on it.

The running time of the final algorithm will then be a minimum of four running times.
We briefly explain the first two algorithms, and then explain in detail the last two. Recall
that HKK algorithm runs when costs are 1 or ∞. On an input with costs in {0, 1, F,∞},
the first algorithm pretends that cost F edges are forbidden too, i.e., F =∞, and probes
whatever edges HKK would have probed from the cost 1 edges. Clearly, this will not find the
Hamiltonian if it contains cost F edges, as they aren’t queried. However, in the case that
the Hamiltonian does not contain cost F edges, it will sort the input, and stops. The second
algorithm does the opposite: it does not differentiate between cost F and cost 1 edges, and
probes them if they would have been probed by the HKK algorithm. If run for long enough,
this will find the Hamiltonian, and is stopped once it does so.

5.1.1 Algorithm 3 : Hamiltonian By Predecessors
The third algorithm in Algorithm 2 is Algorithm 3, which is also used as the second half
of the fourth algorithm in Algorithm 2. This algorithm finds a Hamiltonian path in a
partially revealed DAG. It utilizes Lemma 18, that generalizes binary search to searching for
predecessors of a vertex in a DAG of width w. For two DAGs D′ and D on the same set of
vertices, we will write D′ ⊂ D if all the directed edges in D′ are also contained in D.

▶ Lemma 18 (Hamiltonian by predecessor search). Let D′ ⊂ D be two DAGs on the vertex set
V and assume that D contains a Hamiltonian path. Assume that the Hamiltonian path in D

contains a set S⃗ of k edges that are not in D′, and let S be the undirected version of S⃗. Let
E be a set of edges that can be queried and assume S ⊂ E. Let w be the width of D′. Then,
k + 1 ≥ w and the Hamiltonian in D can be found with O(wk log n) queries on edges in E.

Below is the pseudocode for Algorithm 3. It uses in turn a predecessor searching subroutine
that is captured by the following simple lemma. Lemma 18.
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▶ Lemma 19 (Predecessor search in DAG). Given a DAG D′ = (V, E′) of width w, and a
vertex v ∈ V , |V | = n, let D be the DAG obtained by extending D′ by probing all edges
involving v. Define Pv = {u | (u, v) is in the transitive reduction of D}. There exists an
algorithm that computes Pv with O(w log n) queries, and runs in O(n2) time.

Proof. Observe that any chain in D′ can contain at most one element of Pv, and hence
|Pv| ≤ w. Indeed, we can run one binary search on each of the w chains in D′, leading to at
most w candidate predecessors. The number of queries is easily seen to be O(w log n) after
computing an optimal partitioning into chains in polynomial time. ◀

Proof of Lemma 18. By Dilworth’s Theorem, D′ can be partitioned into w chains. To
show k + 1 ≥ w, assume otherwise, w > k + 1, and let A be k + 2 non-comparable vertices
in D′. By the pigeonhole principle, there must be two vertices of A in the same of the k + 1
stretches of cost 0 edges on the Hamiltonian, a contradiction to them being incomparable.

To prove that Algorithm 3 performs at most O(kw log n) queries, observe that adding
edges to D′ does not increase its width. In the while loop, as long as D′ is not the Hamiltonian
path, let S be the first layer of a BFS traversal of the transitive reduction of D′ with |S| ≥ 2,
and observe that S is an antichain and hence |S| ≤ w. All vertices of S but one have their
incoming edge on the directed Hamiltonian not yet revealed / queried: Assume there are two
vertices b ̸= d ∈ S and their predecessors a ≺ b and c ≺ d are both already in D. Then, b and
d are not sources in D, and hence S must be the set of successors of a vertex v. Additionally,
there is only a single source s in D, and the set {x | x < v} forms a chain in the transitive
reduction of D starting in s. This means w ≤ a < b and w ≤ c < d contradicting them being
different.

By the above arguments, D contains the Hamiltonian with only k − |S|+ 1 unrevealed
edges missing. We used O(|S|w log n) queries to reduce the number of unrevealed edges by
|S| − 1 for |S| ≥ 2, hence each search creating a missing edge of the Hamiltonian, and this
search must justify at most one additional such search. Hence, the total number of queries
to arrive at the Hamiltonian is O(wk log n).

Binary searching for a vertex v into one of the w chains takes O(log n) probes, and in
O(w log n) probes one is sure to have at least discovered one edge from the Hamiltonian,
namely the incoming edge to v. This can then be repeated k times, revealing the Hamiltonian.

Algorithm 3 Hamiltonian By Predecessors.

Require: undirected G = (V, E) defining which comparisons are allowed
Require: DAG D of already probed edges (initially the cost 0 edges)
Ensure: The updated D contains a directed Hamiltonian

create (and maintain) a chain decomposition C of the transitive reduction of D

while D has width w >1, i.e. is not the intended result do
if The transitive reduction of D has several sources then

Let S be the set of these sources
else

Let v be the lowest vertex with more than 1 successors
Let S be the set of successors of v

for each u in S do
Find all predecessors of u in D (Lemma 19), adding answers to D

\\ there are at most w such predecessors
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5.1.2 The fourth algorithm in Algorithm 2
We will develop another algorithm, that proceeds in two steps: a) compute only the 0-1
DAG, G⃗01, and b) find the cost F edges (kF -many of them) on the Hamiltonian path. Step
b) is performed using Algorithm 3. If kF = 0, step a) recovers the complete Hamiltonian
path. Before we state the DAG sorting algorithm for step a), we note that it only needs to
output the transitive reduction of G⃗01.

▶ Theorem 20. There is a poly-time randomized algorithm that w.h.p. solves DAG sorting
for an instance G⃗ with edge costs in {0, 1,∞}, using O(min(wn3/2 log n, n2)) comparisons,
where w is the width of G⃗.

We defer the proof of Theorem 20 for now and analyze our algorithm assuming it.

5.2 Analysis of Algorithm 2
▶ Lemma 21. Algorithm 2 incurs the following costs{

O(min(n1.5 log n , w0k1 log n)) if kF = 0
O(min(Fn1.5 log n , w01n1.5 log n + Fw01kF log n)) if kF > 0

Proof. If kF = 0, the first algorithm that ignores cost F edges by setting F =∞ never probes
a cost F edge, and finishes in O(n1.5 log n) comparisons (this is the cost of the algorithm
by Huang, Kannan and Khanna [20]). Since the DAG formed by cost 0 edges has width
w0 and kF = 0, w0 ≤ k1 + 1. The third step running Algorithm 3 finishes after at most
O(w0k1 log n) comparisons, by Lemma 18.

If kF > 0, the first term comes from running HKK after setting F = 1: the true cost
of probing an edge is at most a factor F larger. Finally, step 4 of Algorithm 2 runs the
algorithm in Theorem 20 first, incurring at most w01n1.5 log n many comparisons. With the
0-1 DAG obtained using Theorem 20, Algorithm 3 now inserts at most kF many edges in
the Hamiltonian, probing at most w01 log n many edges for each. Every probe costs F , for a
total of w01n1.5 log n + Fw01kF log n. ◀

5.2.1 Proof of Õ(n3/4) competitive ratio of Algorithm 2
We claim that the competitive ratio is always bounded by O(n3/4 log n). Observe that the
cost of the Hamiltonian is k1 + FkF . If k1 = kF = 0, the Hamiltonian has a cost of 0 and
our algorithm finds it at cost 0. From now on, we assume not both of k1 and kF are 0.

Consider the case kF = 0 first. Note that this implies that the width w01 of G⃗01 is 1.
First consider the subcase when w0 ≤ n3/4. In this case, the competitive ratio is bounded
above by O(w0k1 log n)/k1 = O(w0 log n) ≤ O(n3/4 log n). In the subcase when w0 > n3/4,
observe that this implies that k1 ≥ n3/4 which implies that the competitive ratio is bounded
above by O(n1.5 log n)/k1 ≤ O(n3/4 log n).

Next, consider the case kF ≥ 1, and the cost of the Hamiltonian is at least FkF . Since
w01 ≤ kF + 1, the cost of the algorithm is at most O(w01n1.5 log n + Fw01kF log n) <

O(kF n1.5 log n + Fw01kF log n), and dividing by FKF (the lower bound on the cost of
the Hamiltonian), we get a competitive ratio of at most O((n1.5/F + w01) log n). Since
F ≥ n3/4, this ratio is O(n3/4 log n) as long as w01 ≤ n3/4. Else if w01 > n3/4, we observe
that kF ≥ n3/4, and then the Fn1.5 log n query cost gives us a competitive ratio of at most
Fn1.5 log n/FkF ≤ n3/4 log n. Thus Theorem 2 is proved. ◀
It remains to prove Theorem 20, which is the topic of the next subsection.
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5.3 Proof of Theorem 20

First, observe that if the width of G⃗ is at least
√

n/4, the statement of Theorem 20 is easy
to achieve by probing all edges. Hence, let us assume the width is at most

√
n/4. We will

show that there is an algorithm that computes G⃗01 with cost at most O(w01n1.5 log n). This
algorithm will only probe cost 0 and 1 edges, and will be a generalization of the algorithm
in [20]. Note that while the algorithm in [20] works on a cost {1,∞} setting under the
promise of a Hamiltonian path in the true graph, our algorithm finds the transitive reduction
of the DAG G⃗01 of width w01. We first address the challenges posed in extending the work
by Huang Kannan and Khanna [20].

Challenges in extending the results of Huang, Kannan and Khanna [20]. At a high level,
the algorithm in [20] alternates between three ways of making progress:

1. Finding and probing balanced edges, defined as those that reduce the number of possible
linear extensions of the current DAG by a 1− (1/(e

√
n))) factor. Finding such edges requires

approximating the average rank of vertices under all possible linear extensions at all stages
of the algorithm.

2. After estimating the indegree of vertices upto an additive error of Õ(
√

n) by an Õ(n1.5)
sampling procedure, the algorithm probes free edges, defined as the set of edges (u, v) where
the average rank of u is smaller than the average rank of v, and v has most Õ(

√
n) unprobed

incoming edges. Free edges that are balanced again reduce the number of linear extensions
by a constant factor. Otherwise, they can contribute at most Õ(n1.5) to the total cost.

3. Binary Search - When there are no free edges, there must exist a set of
√

n vertices with
known total order (Lemma 3.5 in [20]). The other vertices can perform binary search into
these

√
n vertices at a cost of O(n log n), and doing so removes these

√
n vertices from the

picture. The total cost of binary search is therefore Õ(n1.5).
The third step of the algorithm is the step that guarantees a reduction in the problem size.

However,the third step of this algorithm no longer works for DAG sorting: the existence
of a set of

√
n vertices with known total order crucially relies upon the existence of the

Hamiltonian path.

Proof of Theorem 20. All of the definitions, algorithms, and accounting to estimate the
in-degree of a vertex in [20] remain valid and unchanged. Observe that any topological sorting
of the underlying directed graph, together with the undirected graph, reveal the directed
graph. Define the average rank of a vertex as the average rank over all linear extensions
of the true underlying directed graph. The following result implies that the average rank r

on a path in (the transitive reduction of) a DAG is increasing by at least one per edge.

▶ Lemma 22. Let D = (V, E) be a DAG and r : V → Q≥0 be the average rank. Then for
(u, v) ∈ E we have r(u) + 1 ≤ r(v).

Proof. Let Π be the set of all linear extensions that are compatible with D, such
that r(x)|Π| =

∑
π∈Π π(x). Then |Π|(r(v)− r(u)) =

∑
π∈Π π(v)− π(u) ≥ |Π| · 1. ◀
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▶ Definition 23 (Convex vertex subset). In a DAG G = (V, E), a subset of vertices S ⊆ V is
convex if for every pair of vertices u, v ∈ S, every vertex w on any directed path from u to v

in G is also in S.13

Hence, considering a subset of the vertices by an upper and a lower bound on the average
rank, leads to a convex subset. Next, a vertex is live if there is an unprobed edge incident
to it, otherwise it is exhausted. The assumed graph is the same directed graph as in [20].
An active vertex is one that has at most 4

√
n log n unprobed in-edges in the assumed graph.

A free edge is an unprobed edge (u, v) where the endpoint v is active. The proof of the
next lemma is identical to that in [20].

▶ Lemma 24 (Generalization of Lemma 3.5 in [20]). The
√

n live vertices with smallest
average rank are all active.

▶ Lemma 25 (Generalization of Lemma 3.6 in [20]). If there are no free edges, and the width
of the underlying G⃗ is at most

√
n/4, then there exists a set S of at least (3/4)

√
n live vertices

with known partial order who form a DAG of width at most
√

n/4.

Proof. Consider the set S of at most
√

n live vertices with smallest average rank. More
precisely, we chose the largest upper bound on the average rank such that |S| ≤

√
n. By

Lemma 22, at most
√

n/4 vertices can have the same average rank, such that |S| ≥ 3/4
√

n.
By Lemma 24, all vertices of S are active. Let u, v ∈ S be a pair of vertices that have a
directed path P from u to v in G⃗. Then, all of this path P is in S, and all live vertices of P

are in S. Hence, because there are no free edges, and all vertices of P not in S are exhausted,
all edges of P must be probed. Hence, S is convex. The statement on the width follows
from a chain decomposition of G⃗ remaining a chain decomposition for a convex subset of
vertices. ◀

Note that Lemma 25 does not imply that the algorithm can, or should, identify precisely
this set S defined in the proof. Hence, the algorithm is going to approximate the smallest
width subset of at least 3/4

√
n vertices among the live vertices. More precisely, starting from

an empty S, it is going to iteratively find the longest (outside S) chain among the live vertices
(also using edges that are implied by transitivity via edges in S). It stops once S contains
at least 3/4

√
n vertices, and uses it as the DAG of small width in the setting of Lemma 19,

and determine for every remaining live vertex its predecessors in S, with O(w log n) queries
each, compared to the O(log n) queries if there is a Hamiltonian. Hence, the total number of
queries increases from O(n3/2 log n) to O(wn3/2 log n), as claimed in Theorem 20, completing
the proof.
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