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Abstract
We study the Maximum Independent Set (MIS) problem on general graphs within the framework of
learning-augmented algorithms. The MIS problem is known to be NP-hard and is also NP-hard to
approximate to within a factor of n1−δ for any δ > 0. We show that we can break this barrier in
the presence of an oracle obtained through predictions from a machine learning model that answers
vertex membership queries for a fixed MIS with probability 1/2 + ε. In the first setting we consider,
the oracle can be queried once per vertex to know if a vertex belongs to a fixed MIS, and the oracle
returns the correct answer with probability 1/2 + ε. Under this setting, we show an algorithm that
obtains an Õ(

√
∆/ε)1-approximation in O(m) time where ∆ is the maximum degree of the graph.

In the second setting, we allow multiple queries to the oracle for a vertex, each of which is correct
with probability 1/2 + ε. For this setting, we show an O(1)-approximation algorithm using O(n/ε2)
total queries and Õ(m) runtime. 2
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1 Introduction

We consider learning-augmented maximum independent set (MIS) in this paper. Given a
(unweighted, undirected) graph G = (V, E), an independent set is a set of vertices I ⊆ V ,
such that for any u, v ∈ I, (u, v) ̸∈ E, i.e., there is no edge between u and v. The maximum
independent set problem asks to find the independent set with the largest size in G.

1 Throughout we use Õ(·) to hide polylog (n) factors.
2 A full version appears on arxiv under the same title.
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Finding the maximum independent set is one of the classical NP-hard problems [42].
Furthermore, the seminal work of [36, 60] demonstrates the NP-hardness of approximating
the size of the MIS to within a factor of n1−δ for any δ > 0. In contrast, outputting
any single vertex gives an n-approximation trivially. [10] gave a non-trivial O(n/ log2 n)-
approximation to MIS and this was later improved by [29]. These results indicate that the
problem is quite hard in its general form and thus, many research efforts have been devoted to
approximation algorithms in special settings, e.g., planar graphs [3, 47], rectangle-intersection
graphs [16, 22, 32], and exponential-time algorithms [51, 31, 59, 12].

On the other hand, heuristic algorithms, despite their bad worst-case guarantees, often
exhibit commendable performance on real-world graphs [4, 24, 57]. For instance, the greedy
algorithm only offers an approximation guarantee of O(∆), where ∆ is the maximum degree
of G. However, it frequently yields satisfactory empirical results. The gap between the
worst-case hardness and practical efficiency motivates us to study the MIS problem through
the lens of beyond worst-case analysis [11, 52]. In particular, under the modern context, we
ask the question of finding the maximum independent set with learning-augmented oracles.

Learning-augmented algorithms

Learning-augmented algorithms, also known as algorithms with predictions, have attracted
considerable attention in recent years (see, e.g. [50, 38, 46, 21, 56, 7, 9, 1, 37, 13, 53], and
references therein). This paradigm of beyond worst-case analysis has been successful in
surmounting classical thresholds and bridging the gap between the worst-case hardness
and practical efficiency (see, e.g., [48], for an excellent summary). Typically, in learning-
augmented algorithms, we assume the access to an oracle that gives part of the “right answer”
to the problem, and fails with some small but non-negligible probability. Conceptually,
these algorithms aim to take advantage of modern machine learning models, which are fairly
accurate on predictive tasks yet make random mistakes in an inconsistent fashion. Learning-
augmented algorithms provide a great way to analyze algorithms beyond the worst case, and
these algorithms usually have immediate implications in practice (see the empirical results
in, e.g., [20, 38, 26, 56, 1]). Inspired by the recent work in utilizing machine learning-based
techniques for the maximum independent set [2, 49, 14], we consider the MIS problem
through the lens of learning-augmented algorithms.

The advantage of the learning-augmented algorithms has inspired a flurry of work that
studies graph problems within this framework [8, 30, 17, 18, 39, 5, 45, 6, 23, 33]. In a very
recent work, [23] considered the Max-cut problem, in which the oracle model is closely related
to our setting for the MIS problem. Under the Unique Game Conjecture (UCG), it is known
that getting anything better than α ≈ 0.878 approximation for max-cut is NP-hard ([43]).
In contrast, [23] showed that with a learning-augmented oracle, we could achieve better
approximation than the α threshold in polynomial time. In another closely related work,
[33] studied the more general constraint satisfaction problems (CSPs) trough the lens of the
learning-augmented algorithms. There, they obtain results for both the Max-cut and the
Max 2-Lin problem. Although [23, 33] defines more general learning-augmented oracles, they,
unfortunately, fall short of capturing the MIS-type of CSP problems, and their results do
not have direct implications on the MIS problem.

From the above discussion, we can see that a) studying the maximum independent set
problem in the framework of learning-augmented algorithms has great potential; and b) to
this end, the existing models and algorithms are not yet sufficient. In light of this, we ask
the following question:

Under the framework of learning-augmented algorithms, what efficient algorithms
can we get for the maximum independent set problem?
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1.1 Our models and contributions
In what follows, we will define the learning-augmented oracle model we consider and present
our main results.

Our oracle model

We consider the following natural learning-augmented oracle: for a fixed maximum independ-
ent set I∗, the oracle answers whether a vertex v ∈ I∗ correctly with probability 1/2 + ε,
and incorrectly with probability 1/2− ε. In addition, the randomness is independent across
the vertices. We denote by ORCG,I∗(v) the answer the oracle gives when queried for vertex v.

We study approximation algorithms for MIS with the learning-augmented oracle in two
settings: the persistent noise setting and the non-persistent noise setting. We discuss the
settings and the results, respectively, as follows.

The persistent noise setting. In the persistent noise setting, the randomness of ORCG,I∗

is drawn exactly once. Therefore, the answer for a vertex will remain the same no matter
how many times you query the oracle. Another way to think about this is that the
oracle can be queried at most once for a vertex. This setting is the most standard in the
learning-augmented literature, and graph problems are often studied under persistent
noise (see, e.g. [30, 17, 18, 58, 39, 5, 23, 33] and references therein). Our main result in
this setting is a randomized algorithm that with high probability3 achieves an Õ(

√
∆)

(multiplicative) approximation to the MIS in O(m) time (Theorem 1).
The non-persistent noise settings. In this setting, for each vertex v, we allow ORCG,I∗(v)
to use fresh randomness for different queries. If we are allowed to make O(n log n) queries
to the oracle in total, then we can trivially recover the entire set I∗ with high probability
by querying each vertex O(log n) times. The interesting case is when we are allowed to
make only O(n) queries, i.e., a number that is asymptotically the same as the persistent
noise setting. Although the non-persistent noise setting is less frequently studied in the
learning-augmented algorithm literature, it has recently sparked considerable interest in
various problems [34, 35, 44]. In Appendix B of the full version, we show that it is easy to
get an O(log n)-approximation with O(n) queries. Our main result considerably improved
on the approximation factor: we show that we can indeed obtain an O(1) approximation
with O(n) queries and Õ(m) runtime (Theorem 5).

Our results in the persistent noise setting hold assuming full independence, but it can be
easily extended to the setting where oracle queries are assumed to use k-wise independent
hash function for k = O(log n). Extending it to the pair-wise independent case is challenging
as the failure probabilities in the concentration bounds are not enough for the application of
a union bound.

1.2 Technical overview
The biggest challenge in leveraging the oracle information is distinguishing the case where
ORCG,I∗(v) is indeed correct. In what follows, we give a high-level overview of our techniques
describing how we can use the neighborhood information for this purpose. For the simplicity
of the discussion, we always assume ε = Θ(1) in the technical overview.

3 As standard in the literature, we use “with high probability” to denote a success probability of
1 − 1/poly(n).

APPROX/RANDOM 2024
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Persistent noise setting

A natural approach in this setting would be to figure out the conditions in which a “yes”
signal for a vertex v from the oracle implies v ∈ I∗, by aggregating signals from N(v).
However, such an idea is hard in the following sense. For a vertex v whose oracle query
ORCG,I∗(v) = 1, if there are many u ∈ N(v) such that ORCG,I∗(u) = 1, we can determine
that v should not be in the MIS. However, the converse is not true: if a vertex v is not
in I∗, it does not necessarily have many neighbors in I∗. As a result, simply aggregating
neighborhood information might not be enough to determine the membership of a vertex in
the MIS.

The key idea here is, instead of looking at the oracle answer for vertex v (ORCG,I∗(v)), we
look at what the oracle says for the neighborhood of the vertex v. This turns out to be a
good enough signal to eliminate vertices that have many edges to the MIS I∗. Specifically,
we can show that if v has Ω̃(

√
deg(v)) edges to I∗, then the oracle queries for N(v) contain

enough information to identify such a vertex v. Upon removal of such vertices, the remaining
vertices have a small degree (Õ(

√
∆)) to I∗, and a greedy independent set on the residual

vertices gives a good approximation.

Non-persistent noise setting

Our algorithm for this setting is a bit more nuanced as we aim to minimize the query
complexity to the oracle while aiming to achieve a good approximation. The starting point of
our algorithm is from the viewpoint of the classical pure exploration algorithms in multi-armed
bandits (MABs). If we ignore the nature of MIS in our oracle, we can reduce to the following
MABs problem: given n arms with mean rewards as either 2

3 or 1
3 , find all the arms with

mean reward 2
3 with O(n) arm pulls. It is well-known that one can find a single best arm

with high constant probability in O(n) queries. The question is, can we solve the problem by
resorting to purely MABs algorithms, and simply ignoring the nature of the MIS?

It turns out that the above plan is not generally feasible. In particular, we note that
returning the set of all arms with the higher reward is very similar to finding the top-k arms
in the MABs literature (see, e.g. [40, 41, 15, 19, 55]). In general, it would require Ω(n log k)
arm pulls to obtain top-k arms with high constant probability ([41, 55]). In Appendix C of
the full version, we provide lower bound results, showing that to find even O(1) fraction of
the high-reward arms in the instance distribution requires ω(n) queries. The lower bounds
teach us that to obtain the desired query efficiency and approximation guarantee, we have to
exploit the structure of the MIS.

To better understand the hardness and the insights of MABs algorithms on our problem,
let us look at the elimination-based algorithm as in the classical algorithm of [27, 28]. The
first idea we can try is to adapt the elimination algorithm to our problem. To this end, a
natural idea is to perform elimination based on whether the mean empirical reward of an
arm is more than 1

2 . More concretely, we maintain a pool Ĩ of surviving vertices and use sr

as the number of queries to each vertex in round r with s1 = O(1). In round r, we can query
ORCG,I∗(v) for sr time for each v ∈ Ĩ. We then eliminate all vertices v ∈ Ĩ whose number of
“yes” answers is less than sr/2, and recurse on the new Ĩ to round r + 1, for which we set
sr+1 = 1.5sr.

Since the probability for any v ̸∈ I∗ to survive decreases doubly-exponentially with the
number of rounds, we can show that all vertices v ̸∈ I∗ are eliminated after O(log log n) rounds,
and the total sample complexity on the non-MIS vertices is at most O(n). Furthermore, the
probability of losing any v ∈ I∗ decreases exponentially, we can argue that in the end, Ĩ
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contains at least Ω(1) fraction of the vertices in I∗. Unfortunately, due to this fact, for each
vertex v ∈ I∗ ∩ Ĩ, i.e., the vertices in the MIS that survive till the end, we need to pay for
2O(log log n) = polylog n on the sample complexity. Therefore, this pure exploration algorithm
only works when the size of I∗ is upper-bounded by n/polylog n, and its worst-case guarantee
is only a polylog n approximation.

Note that a polylog n approximation is far from what we want: after all, there is a trivial
algorithm that achieves O(log n) approximation with O(n) samples (see Appendix B of full
version for details). Nevertheless, the existence of such an algorithm teaches us that the
problematic case is when the MIS size is large and, in particular, comparable to the size of
the non-MIS vertices. As such, a natural idea is to design an algorithm that handles the
case when the numbers of the MIS and the non-MIS vertices are comparable, and fuse this
algorithm with the elimination-based MABs procedure we discussed above.

The above idea is quite close to the final strategy we adapt, albeit we proceed differently
for the roles of the two components. In particular, we use the pure exploration MABs
algorithm not to output a set with vertex set Ĩ ⊆ I∗, but to output a set of vertex set Ĩ

whose majority (but not necessarily all) of vertices are in I∗. To this end, we use a more
conservative elimination strategy than the ones in the line of [27, 28]: instead of increasing
the number of samples by a multiplicative factor, we increase the number of samples in each
round by an additive factor. In this way, we cannot guarantee that all the “wrong” arms
are eliminated; however, we can argue that, since the probability for the non-MIS vertices
to survive decreases exponentially, we have i). the number of samples used on the vertices
in I∗ is bounded by O(n) before the size of Ĩ \ I∗ reduces to the size of Ĩ ∩ I∗; and ii). the
number of vertices in Ĩ ∩ I∗ only decreases by a constant fraction. In this way, we can design
an efficient procedure that eliminates the “surplus” non-MIS vertices to always create cases
when the number of non-MIS vertices is smaller.

The final missing piece is the MIS algorithm that deals with the case when the number
of MIS vertices takes the majority of the vertex set. Our algorithm to handle this case is
to compute an approximate vertex cover of the graph and the remaining vertices will form
an approximate independent set. It is a well-known fact that if we compute a maximal
matching and take all their endpoints, it forms a 2-approximate vertex cover that covers
all edges in the graph. Furthermore, since the size of the non-MIS vertices is small, there
can be only a limited number of vertices v ∈ I∗ that can be counted in the vertex cover. As
such, we can simply remove these vertices from the graph. The rest of the graph would form
an independent set, and since we remove at most a constant fraction of vertices from I∗

throughout the two phases, we get an O(1) approximation.

2 Preliminaries

Notation

For a graph G = (V, E), we use deg(v) and N(v) for each vertex v ∈ V to denote the degree
and neighborhood of v, respectively. We use G[U ] for any set U of vertices to denote the
induced subgraph of G on U .

We let I∗ denote a fixed maximum independent set of the graph G. We let NI∗(v) = N(v)∩
I∗ be the set of neighbors of the vertex v in the independent set and let degI∗(v) := |NI∗(v)|
be its size. Furthermore, we let ÑI∗(v) be the set of neighbors of the vertex v that are
claimed to be in the independent set by the oracle and let d̃egI∗(v) be its size.

For the purpose of conciseness, we defer the technical preliminaries to Appendix A.

APPROX/RANDOM 2024
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3 An Algorithm in the Persistent Noise Setting

In this section we present an algorithm for the learning-augmented MIS problem with
persistent noise. Formally we prove the following

▶ Theorem 1. There exists a randomized algorithm that given
i) an input graph G = (V, E) with maximum degree ∆ and
ii) an MIS oracle ORCG,I∗ with persistent noise for an unknown maximum independent

set I∗,
in O(m) time outputs an independent set I such that |I| ⩾ ε

12 · (∆ ln n)−0.5 · |I∗| with high
probability.

We dedicate the remainder of this section to the proof of Theorem 1. We start with the
assumption that ε ⩽ 1/4 (we can do this for any constant > 0). This assumption is needed
for technical reasons. If ε > 1/4, then it is easy to simulate an oracle with ε = 1/4 by flipping
the oracle answer with probability p = ε−1/4

1/2+ε (p ⩾ 0 since ε > 1/4). If we do this then the
probability that the oracle gives the incorrect answer is (1/2− ε) + p · (1/2 + ε) = 1/4 which
is exactly what we wanted. Note that the final bound we get on the approximation factor
now changes by a factor of at most 2. This is because when ε > 1/4 we are replacing it with
an oracle for ε = 1/4 and the approximation factor linearly depends on ε.

The algorithm and analysis

We now state our algorithm.

Algorithm 1 An algorithm for MIS in persistent noise setting.

Input: A graph G = (V, E) with maximum degree ∆ that contains an unknown
maximum independent set I∗; an MIS oracle ORCG,I∗ in the persistent noise setting

Output: A set of vertices I such that I forms an independent set and
|I| ⩾ ε

3 · (∆ ln n)−0.5 · |I∗|.
Parameters: sv := (1/2− ε) deg(v) + 6

√
ln n · (1/2− ε)

√
deg(v) .

1. Calculate d̃egI∗(v) for all vertices v ∈ V .
2. Let L be the set of vertices where deg(v) ⩽ 36 ln n for v ∈ V .
3. Let S be the set of vertices where d̃egI∗(v) ⩽ sv for v ∈ V \ L.
4. Output the greedy MIS I on G[S ∪ L].

We first show that if v ∈ I∗, the number of “yes” answers in N(v) cannot be too high.

▷ Claim 2. If v ∈ I∗ \ L then with high probability, d̃egI∗(v) ⩽ (1/2− ε) deg(v) + 6
√

ln n ·
(1/2− ε)

√
deg(v).

Proof. If v ∈ I∗ then degI∗(v) = 0 which means that the expected size of d̃egI∗(v) is
(1/2 − ε) deg(v). Since we assume complete independence for the oracle we can use the
Chernoff bound to get concentration.

Let Xi = 1 if ith neighbor is claimed to be in I∗ by the oracle where i ∈ [deg(v)].
Observe that d̃egI∗(v) =

∑
i Xi is the number of neighbors that claim to be in I∗. We

know µ = E
[
d̃egI∗(v)

]
= (1/2− ε) deg(v). Using the Chernoff (Proposition 12) bound with

δv = 6
(

ln n
deg(v)

)0.5
⩽ 1:

Pr
(

d̃egI∗(v) > (1 + δv)µ
)
⩽ exp

(
−δ2

v · µ
3

)
⩽ n−3. (since ε ⩽ 1/4)

Notice that as deg(v) gets larger we get better concentration. ◁



V. Braverman, P. Dharangutte, V. Shah, and C. Wang 24:7

Note that Claim 2 does not rule out the case that a vertex v ∈ V \ I∗ and has very few
neighbors in I∗. Nevertheless, it tells us that if we simply eliminate the vertices that “block”
a large number of neighbors in I∗, we will not mistakenly drop vertices in I∗.

Next, we show that if a vertex v has many neighbors in I∗ i.e. degI∗(v) is large then
d̃egI∗(v) should also be large and hence we should be able to detect such a vertex v ̸∈ I∗.

▷ Claim 3. If v ̸∈ I∗ and degI∗(v) ⩾ (3/ε)
√

ln n
√

deg(v) then with high probability,
d̃egI∗(v) > (1/2− ε) deg(v) + 6

√
ln n · (1/2− ε)

√
deg(v).

Proof. If v ̸∈ I∗ and degI∗(v) = k then the expected size of d̃egI∗(v) is

µ = E
[
d̃egI∗(v)

]
= k(1/2 + ε) + (deg(v)− k)(1/2− ε) = (1/2− ε) deg(v) + 2εk.

We now use the Chernoff bound (Proposition 11) with t = εk to get concentration:

Pr
(

d̃egI∗(v) < µ− t
)
⩽ exp

(
−2t2/ deg(v)

)
= exp

(
−2ε2k2/ deg(v)

)
⩽ n−3. (using the lower bound on k)

Thus, with high probability we have:

d̃egI∗(v) ⩾ µ− εk

= (1/2− ε) deg(v) + εk

= (1/2− ε) deg(v) + 3
√

ln n
√

deg(v)

> (1/2− ε) deg(v) + 6
√

ln n · (1/2− ε)
√

deg(v) . ◁

We can conclude that the events in Claim 2 and Claim 3 happen with high probability
by a union bound over all vertices.

Finalizing the proof of Theorem 1. Calculating d̃egI∗(v) for all vertices v ∈ V and finding
set S takes O(m) time. The greedy MIS can also be computed in O(m) time.

We first condition on the events in Claim 2 and Claim 3 for all vertices (this happens
with high probability). Notice that for all vertices in v ∈ S we have d̃egI∗(v) ⩽ sv. By
Claim 2 all vertices in I∗ are in S. By Claim 3 we know that any non-MIS vertices v

that are in S have degI∗(v) ⩽ (3/ε)
√

ln n
√

deg(v) ⩽ (6/ε)
√

∆ ln n. Also, vertices in L have
degI∗(v) ⩽ deg(v) =

√
deg(v) ·

√
deg(v) ⩽

√
∆
√

36 ln n ⩽ (6/ε)
√

∆ ln n.
This means that when we run the greedy MIS algorithm and pick a non-MIS vertex,

we eliminate at most (6/ε)
√

∆ ln n vertices in I∗. Thus, we have |I| ⩾ ε
6 · (∆ ln n)−0.5 · |I∗|.

Finally, because of the assumption on ε (ε ⩽ 1/4), we lose a factor of at most 2 in the
approximation, giving us the final bound |I| ⩾ ε

12 · (∆ ln n)−0.5 · |I∗|. ◀

▶ Remark 4. We assume that we have complete independence between the oracle queries for
the vertices. But we can get essentially the same result (up to constants) when the oracle
answers the queries using a k-wise independent hash function instead of a completely random
function for k = O(log n).

This holds because we use Proposition 13 with k = O(log n) instead of the Chernoff
bound (Proposition 12). The min in the exponent always picks the second term because k is
large enough and so we get something very similar to the Chernoff bound in Proposition 12
where the exponent only differs by some constants. Thus, the approximation we get will be
a small constant factor worse but will remain the same asymptotically.

APPROX/RANDOM 2024
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4 An Algorithm in the Non-persistent Noise Setting

In this section, we consider algorithms in the non-persistent noise setting (MABs setting) of
the MIS oracle, i.e., the algorithm can access the learning-augmented MIS oracle with fresh
randomness for each query of a vertex v. The formal statement of our main result in this
setting is as follows.

▶ Theorem 5. There exists a randomized algorithm that given a parameter δ ∈ (0, 1) and
i) an input graph G = (V, E) with a maximum independent set I∗; and
ii) an MIS oracle ORCG,I∗ in the non-persistent noise setting,

with probability at least (1− δ), in O(m log n) time and 30n
ε2 · log 1

δ total queries to ORCG,I∗ ,
computes a set I such that |I| ⩾ 48

50 · |I
∗|.

We dedicate the remainder of this section to the proof of Theorem 5.

The algorithm

As we have discussed in our high-level overview, our algorithm proceeds in two phases. In the
first phase, our algorithm focuses on eliminating most of the vertices in the non-MIS vertex
set. Then, in the second phase, we show that a good approximation to vertex cover is enough
to get a good approximation to the independent set. We can easily find a 2-approximate
vertex cover in O(m) time by computing a maximal matching and picking all its endpoints.
The detailed description of the algorithm is as follows.

Algorithm 2 An algorithm for MIS in non-persistent noise setting.

Input: A graph G = (V, E) that contains an unknown maximum independent set I∗;
an MIS oracle ORCG,I∗ in the multi-armed bandit setting; a confidence parameter
δ ∈ (0, 1).

Output: A set of vertices I such that I forms an independent set and |I| = O(|I∗|).
Parameters: qr = 4

ε2 · (r + log 1
δ ).

Maintain a set of Vr with the initialization V0 ← V .
For r = 1 to ∞, do the following:

1. Elimination phase:
For each vertex v ∈ Vr−1:
a. Query v for qr times.
b. Remove v from Vr−1 if the number of 1 returned by ORCG,I∗(v)

(“yes” answers) is less than qr/2.
Let the updated vertex set be Vr, i.e., Vr is a subset of vertices of Vr−1 that
gets at least qr/2 “yes” answers from ORCG,I∗ (v).

2. Vertex Cover phase:
a. Compute a 2-approximate vertex cover Ur of the induced subgraph G[Vr].
b. Let Ir ← Vr \ Ur.

3. Maintain the set I with the maximum size among all Ir’s, i.e., let I ← Ir if Ir is
larger than I and keep I unchanged otherwise.

4. If the total number of ORCG,I∗ queries is more than 30 · n
ε2 · log 1

δ then terminate
and return the currently maintained I.

Note that since we do not necessarily know the actual size of I∗, we compute a vertex
cover after every elimination phase and simply output the independent set with the largest
size throughout the process.
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The analysis

We now proceed to the analysis of the algorithm. Before diving into the main lemmas, we
first show some straightforward technical claims that characterize the behavior of the MIS
and non-MIS vertices in the elimination phase. We first show that the probabilities of an
MIS vertex being eliminated and a non-MIS vertex surviving in round r are both small.

▷ Claim 6. The following statements are true:
1. Let v ∈ Vr−1 ∩ I∗; then, the probability that v is removed from Vr is at most 1

100 ·
δ

4r .
2. Let v ∈ Vr−1 \ I∗; then, the probability that v is not removed from Vr is at most 1

100 ·
δ

4r .

Proof. We prove this claim by applying the Chernoff bound in Proposition 11. For any vertex
v ∈ I∗, let the random variable Xi

v = 1 if the ith query for vertex v is a “yes” and Xi
v = 0

otherwise for i ∈ [qr]. Observe that Xv =
∑

i Xi
v is the number of “yes” answers returned by

ORCG,I∗(v) out of the qr queries. Clearly, we have that E [Xv] = (1/2 + ε) · qr, and Xv is a
summation of the independent indicator random variables so, we can apply Proposition 11
to show that

Pr
(

Xv <
qr

2

)
= Pr (Xv − E [Xv] ⩽ −ε · qr)

⩽ exp
(
−2 · ε2 · qr

)
(applying Proposition 11)

= exp
(
−8r − 8 log 1

δ

)
(by the definition of qr)

⩽ exp (−6) · exp (−2r) · exp
(
−8 log 1

δ

)
⩽

1
100 ·

δ

4r
.

Note that the vertices in v ∈ I∗ ∩Vr−1 are in I∗. Therefore, we can get the desired statement
for v ∈ I∗ ∩ Vr−1.

We can similarly define Yv for the number of “yes” answers returned by ORCG,I∗(v) with
qr queries for a vertex v ∈ V \ I∗. Here, we have that E [Yv] = (1/2− ε)qr. As such, we have
that

Pr
(

Yv ⩾
qr

2

)
= Pr (Yv − E [Yv] ⩾ ε · qr)

⩽ exp
(
−2 · ε2 · qr

)
(applying Proposition 11)

= exp
(
−8r − 8 log 1

δ

)
(by the definition of qr)

⩽ exp (−6) · exp (−2r) · exp
(
−8 log 1

δ

)
⩽

1
100 ·

δ

4r
.

This gives us the desired statement for v ∈ Vr−1 \ I∗ as well. ◁

We now prove the main technical lemma of our algorithm that helps eventually prove
Theorem 5. In what follows, we will denote the size of I∗ as αn for some α ∈ (0, 1). Our
main lemma for the elimination phase is as follows.

▶ Lemma 7. Let |I∗| = αn for some α ∈ (0, 1) and r̃ = 1 + log 1
α . With probability at least

1− δ, the following statements about Algorithm 2 are true:
I) The number of vertices in Vr̃ that are not in I∗ is at most αn/100, i,e,

|Vr̃ \ I∗| ⩽ αn

100 .
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II) The number of vertices in Vr̃ that are in I∗ is at least 49/50 · αn, i.e.,

|Vr̃ ∩ I∗| ⩾ 49
50 · αn.

III) The total number of ORCG,I∗ queries in the first r̃ rounds is at most 30n/ε2 · log 1/δ, i.e.,
r̃∑

r=1
|Vr−1| · qr ⩽ 30 · n

ε2 · log 1
δ

.

Note that in the above, |Vr−1| · qr is exactly the number of queries used in round r.

Proof. We prove the statements in order.
Proof of i). Note that by Claim 6, the probability that a vertex in V \ I∗ survives round r

is at most 1
100 ·

δ
4r . As such, we have that

E [|Vr̃ \ I∗|] =
∑

v∈Vr̃−1\I∗

Pr (v survives round r̃)

=
∑

v∈V \I∗

Pr (v survives all rounds till r̃)

=
∑

v∈V \I∗

r̃∏
i=1

Pr (v survives round i | v survives all rounds till i− 1)

(All rounds are independent)

⩽
∑

v∈V \I∗

r̃∏
i=1

δ

100 ·
1
4i

⩽ n ·
(

δ

100

)r̃

·
(

1
4

)(r̃
2)

⩽
δn

100 ·
(

1
4

)r̃

⩽
α · n · δ

400 . (using α ∈ (0, 1))

Therefore, by Markov inequality, we have

Pr
(
|Vr \ I∗| > αn

100

)
⩽

δ

4
as desired.
Proof of ii). By Claim 6, the probability that a vertex v is eliminated in round r is at most

δ
100 ·

1
4r . We analyze the number of vertices in I∗ that are eliminated by round r. We can

show that the expected value is

E [|I∗ \ Vr̃|] =
∑
v∈I∗

Pr (v is eliminated by round r̃)

⩽
∑
v∈I∗

r̃∑
i=1

Pr (v is eliminated in round i) (Union Bound)

⩽
∑
v∈I∗

r̃∑
i=1

δ

100 ·
1
4i

⩽ (αn) · δ

100 ·
1
3 . (Geometric Sum)
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Therefore, by a simple Markov bound, we have that

Pr
(
|I∗ \ Vr| >

αn

50

)
⩽

δ

6 .

Thus, with probability at least 1− δ/6 we have |I∗ ∩ Vr̃| ⩾ 49
50 · αn.

Proof of iii). Note that we are proving this bound holds even if we remove the termination
condition from the algorithm. This will show that we will reach round r̃ with high probability.
We first condition on the events in the proofs of i) and ii). Note that, unlike the standard
analysis of elimination-based algorithms, here, we cannot directly upper-bound the total
number of queries each round. Instead, we separately analyze the number of queries induced
by the vertices in I∗ and V \ I∗.

We first analyze the number of queries induced by the vertices in V \ I∗. Let us define
X¬I∗ as the total number of queries induced by the non-MIS vertices. Similarly, we can
define Xr

¬I∗ as the queries induced by the non-MIS vertices at round r. Thus, we have that

E [X¬I∗ ] =
∑

v∈V −I∗

r̃∑
i=1

Pr (v survives till round i) · qi

⩽ n

r̃∑
i=1

qi

i∏
j=1

Pr (v survives round j | v survives till round j − 1)

⩽ n

r̃∑
i=1

qi

i∏
j=1

δ

100 ·
1
4j

(Claim 6)

⩽ n

r̃∑
i=1

(
δ

100

)i

·
(

1
4

)(i
2)
· qi

= n

r̃∑
i=1

(
δ

100

)i

·
(

1
4

)(i
2)
· 4

ε2 · (i + log 1/δ)

⩽
4δn

100ε2

r̃∑
i=1

(
1
4

)i

· (i + log 1/δ) (Since δ ⩽ 1)

⩽
4δn

100ε2 (1 + log 1/δ) . (using properties of geometric sums)

Therefore, by Markov inequality, we can show that

Pr
(

X¬I∗ >
2n

5ε2 log 1/δ

)
⩽ δ/5.

We now analyze the queries induced by the vertices in I∗. Similar to the case of the
non-MIS analysis, let us define XI∗ as the total number of queries induced by the MIS
vertices. We will trivially upper bound XI∗ in the following way:

XI∗ ⩽ αn

r̃∑
i=1

qi

= αn

r̃∑
i=1

4
ε2 ·

(
i + log 1

δ

)
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⩽
4αn

ε2 ·
(

r̃2 + r̃ · log 1
δ

)
⩽

4αn

ε2 ·
(

1 + (log 1/α)2 + lg 1/α · (2 + log 1/δ) + log 1/δ
)

⩽
4n

ε2 · (5 + 2 log 1/δ) (using α · lg 1
α ⩽ 1 and α · lg2 1

α ⩽ 2 for any α ∈ (0, 1))

We can then add the number of queries used by X¬I∗ and XI∗ to get the desired sample
complexity bound of 30n

ε2 · log 1/δ.
Finally, we can apply a union bound over the failure probabilities of the events in the

proofs of i), ii), and ii) to argue that with probability at least 1− δ, all the statements hold.
Lemma 7 ◀

We now proceed to show the guarantee of the matching and MIS phase. Our main lemma
for this part is as follows.

▶ Lemma 8. Let Vr ⊆ V be any subset of vertices in Algorithm 2. Furthermore, assume
that the number of MIS vertices in Vr is at least 50 times the number of non-MIS vertices in
Vr, i.e.,

|Vr ∩ I∗| ⩾ 50 · |Vr \ I∗| .

Then, the set Ir returned by Algorithm 2 is a valid independent set, and we have

|Ir| ⩾
49
50 · |Vr ∩ I∗| .

Proof. Recall that we compute a 2-approximate vertex cover Ur in the vertex cover phase.
We know that the complement Ir ← Vr \ Ur is an independent set. This is because all edges
of the graph are incident on the vertex cover so the remaining vertices form an independent
set.

We know that Vr \ I∗ is a vertex cover since Vr ∩ I∗ is an independent set. Thus, we have

|Ir| = |Vr| − |Ur| (by definition)
⩾ |Vr ∩ I∗|+ |Vr \ I∗| − 2 |Vr \ I∗| (since Ur is a 2-approximation)

⩾ |Vr ∩ I∗| − 1
50 · |Vr ∩ I∗| (using the assumption)

= 49
50 · |Vr ∩ I∗|

Lemma 8 ◀

The final missing piece is the efficiency of the algorithm. We now prove that the algorithm
is efficient both in time and the number of ORCG,I∗ oracle queries.

▶ Lemma 9. Algorithm 2 runs in O(m log n) time and uses at most 30n
ε2 · log 1

δ queries on
ORCG,I∗ .

Proof. The query complexity is by the design of the algorithm as we terminate upon using
more than 30 · n

ε2 · log 1
δ queries.

For the running time, note that in each iteration of r, we only need to: i). take the
majority for all queried vertices, which can be maintained in O(n) time; and ii). compute a
greedy matching and remove the vertices, which takes O(m) time. By Lemma 7, the process
terminates in O(log 1

α ) = O(log n) time (α ⩾ 1
n since there has to be at least one vertex in

I∗). Therefore, the entire algorithm takes O(m log n) time in total. ◀
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Finalizing the proof of Theorem 5. The query efficiency is by the design of the algorithm,
and the running time simply follows from Lemma 9. For the approximation guarantee,
note that by Lemma 7, we will proceed to round r̃ = 10 log 1

α , at which point we will have
|Vr̃ ∩ I∗| ⩾ 49

50 · αn and |Vr ∩ I∗| ⩾ 50 · |Vr \ I∗|. Therefore, by Lemma 8, the returned Ir̃ is
of size at least

|Ir̃| ⩾
49
50 · |Vr̃ ∩ I∗| ⩾ 49

50 ·
49
50 · αn,

which gives us the desired 48/50 approximation. ◀

▶ Remark 10. We aim to get the O(1) approximation in our algorithm and analysis. However,
we remark that we can get both non-asymptotic and asymptotic trade-offs between the number
of queries and the approximation factor. For the non-asymptotic trade-off (i.e., using more
queries to get a better constant approximation), we can increase the leading constant on the
sample complexity, and obtain the approximation with a larger constant. For the asymptotic
trade-off, we can perform the simple trick by sampling k vertices uniformly at random and
running Algorithm 2 on the sampled vertices. This will give us an O( k

n )-approximation
algorithm with O( k

ε2 · log 1
δ ) queries as long as αk = Ω(log n).

5 Discussion and Open Problems

We discussed learning-augmented algorithms for the Maximum Independent Set problem in
this paper. Our main results include algorithms for both persistent and non-persistent noise
settings, demonstrating that a learning-augmented oracle could lead to MIS algorithms with
considerably better efficiency. There are several intriguing open problems following our work.

For the persistent noise setting, the main open question is whether we could beat the
Θ̃(
√

∆/ε) approximation bound with the same oracle. We do not have any lower bounds
for the persistent noise setting in this paper, and it is unclear what type of techniques
could be used to prove lower bounds for learning-augmented algorithms.
For the non-persistent noise setting, our algorithm matches the asymptotically optimal
approximation factor using O(n) queries. In Appendix C of full version, we also proved
that we cannot obtain the same results by only querying the oracle (and not looking into
the graph). An open problem here is that if we want to recover a 1− o(1) fraction of the
MIS vertices, how many queries do we need? We suspect there is a lower bound on the
number of queries (e.g., ω(n)), but it is not immediately clear how to prove it.
We can also ask about sublinear number of queries on the oracle ORCG,I∗ , i.e., if we
make o(n) queries on the oracle, what is the best we can do for both persistent and
non-persistent noise settings? Currently, our algorithms in both settings require Ω(n)
queries to the oracle.
Finally, for the practical aspect of the algorithms, we believe the oracles are possible
to implement in practice. For instance, if we have features on the nodes, it is possible
to use forward-pass graph convolution networks (GCNs), and simply run greedy in each
“cluster” of nodes whose final features are sufficiently similar. Exploring practical oracles
for this purpose would also be an interesting problem to resolve.
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A Technical Preliminaries

We use the following standard forms of Chernoff bound.

▶ Proposition 11 (Chernoff-Hoeffding bound). Let X1, . . . , Xm be m independent random
variables with support in [0, 1]. Define X :=

∑m
i=1 Xi. Then, for every t > 0,

Pr (X − E [X] ⩾ t) ⩽ exp
(
−2t2

m

)
Pr (X − E [X] ⩽ −t) ⩽ exp

(
−2t2

m

)
.

▶ Proposition 12 (Chernoff bound; c.f. [25]). Suppose X1, . . . , Xm are m independent random
variables with range [0, 1] each. Let X :=

∑m
i=1 Xi and µL ⩽ E [X] ⩽ µH . Then, for any

δ ∈ [0, 1],

Pr (X > (1 + δ) · µH) ⩽ exp
(
−δ2 · µH

3 + δ

)
and Pr (X < (1− δ) · µL) ⩽ exp

(
−δ2 · µL

2 + δ

)
.

We also consider limited independence hash functions. Roughly speaking, a k-wise
independent hash function behaves like a totally random function when considering at most
k elements. Formally, a family of hash functions H = {h : [n]→ [m]} is k-wise independent
if for any x1, x2, . . . , xk ∈ [n] and y1, y2, . . . , yk ∈ [m] the following holds:

Pr
h∈RH

(h(x1) = y1 ∧ h(x2) = y2 ∧ . . . ∧ h(xk) = yk) = m−k.

We shall use the following concentration result on an extension of Chernoff-Hoeffding bounds
for limited independence hash function.

▶ Proposition 13 ([54]). Suppose h is a k-wise independent hash function and X1, . . . , Xm

are m random variables in {0, 1} where Xi = 1 iff h(i) = 1. Let X :=
∑m

i=1 Xi. Then, for
any δ > 0,

Pr (|X − E [X]| ⩾ δ · E [X]) ⩽ exp
(
−min

{
k

2 ,
δ2

4 + 2δ
· E [X]

})
.
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