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Abstract
We consider the Max Unique Coverage problem, including applications to the data stream model.
The input is a universe of n elements, a collection of m subsets of this universe, and a cardinality
constraint, k. The goal is to select a subcollection of at most k sets that maximizes unique coverage,
i.e, the number of elements contained in exactly one of the selected sets. The Max Unique Coverage
problem has applications in wireless networks, radio broadcast, and envy-free pricing.

Our first main result is a fixed-parameter tractable approximation scheme (FPT-AS) for Max
Unique Coverage, parameterized by k and the maximum element frequency, r, which can be
implemented on a data stream. Our FPT-AS finds a (1 − ε)-approximation while maintaining a
kernel of size Õ(kr/ε), which can be combined with subsampling to use Õ(k2r/ε3) space overall.
This significantly improves on the previous-best FPT-AS with the same approximation, but a kernel
of size Õ(k2r/ε2). In order to achieve our first result, we show upper bounds on the ratio of a
collection’s coverage to the unique coverage of a maximizing subcollection; this is by constructing
explicit algorithms that find a subcollection with unique coverage at least a logarithmic ratio of the
collection’s coverage. We complement our algorithms with our second main result, showing that
Ω(m/k2) space is necessary to achieve a (1.5 + o(1))/(ln k − 1)-approximation in the data stream.
This dramatically improves the previous-best lower bound showing that Ω(m/k2) is necessary to
achieve better than a e−1+1/k-approximation.
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25:2 Maximum Unique Coverage on Streams

1 Introduction

We study the Max Unique Coverage problem, where we are given a universe of n elements,
a collection of m subsets of the universe, and an integer k ∈ {1, . . . ,m}. The goal is to select
a collection of at most k subsets that maximizes the number of elements covered by exactly
one set in the collection. This problem is a natural variant of the classic Max Coverage
problem, where the goal is to select a collection of k subsets that maximizes the number of
elements covered by at least one set in the collection.

A weighted version of Max Unique Coverage was first formally studied by Demaine et
al. [9]. In their motivating scenario, a number of wireless base stations, each with an associated
cost, must be placed to maximize the number of mobile clients served. However, due to
interference, if covered by more than one base station, a client receives bad service. Demaine
et al. point out further applications to radio broadcast and envy-free pricing. They then
showed an offline polynomial-time Ω(1/ logm)-approximation algorithm for their problem,
which easily translates to a Ω(1/ log k)-approximation for our problem.1 Under various
complexity assumptions, they showed (semi-)logarithmic inapproximability for polynomial-
time algorithms; Guruswami and Lee [11] later proved nearly logarithmic inapproximability,
assuming NP does not admit quasipolynomial-time algorithms.

Streaming. Our work emphasizes solving Max Unique Coverage approximately in the
data stream model. All previous works, except McGregor et al. [15], only consider this
problem in the offline model. In the data stream model, we focus on set-streaming: each
set in the stream is fully specified before the next; this setting is assumed in related works
[18, 2, 22, 16, 15]. We also constrain the space, measured in bits, to be o(mn), i.e., sublinear
in both the number of sets, m, and the size of the universe, n. Thus, we define the Max
Unique Coverage problem to include the cardinality constraint, k. Previous works often
formulate this problem without a cardinality constraint, simply referring to it as the “Unique
Coverage” problem; this is equivalent to our formulation when k = m.

We are particularly interested in Max Unique Coverage when parameterized by k

and the maximum frequency, r, defined as the maximum number of sets that an element
belongs to; we also consider the maximum set size d to a lesser extent. This parameterization
has received considerable attention in studying fixed-parameter tractable approximation
schemes (FPT-AS) for classic coverage problems [21, 4, 20, 14, 15, 13, 19], but not as much
for the Max Unique Coverage problem [15]. Note that an FPT exact algorithm for this
parameterization is unlikely to exist because, when r = 2, Max Unique Coverage is
equivalent to Capacitated Max Cut, which was shown by Misra et al. [17] to be W[1]-hard
when parameterized by the capacity constraint.2

A central idea in achieving both FPT space and running time bounds is kernelization. We
transform a problem instance, I, into a smaller problem instance, I ′, called the (approximate)
kernel, such that |I ′| ≤ g(γ), where g is a computable function in terms of problem
parameters γ, while I ′ (approximately) preserves the optimal solution value of I; a good
solution can be found by brute-force search within I ′. Consistent with other works [8, 7, 6, 15],
we further require an FPT streaming algorithm to use g(γ) polylog |I| space.

1 This is by assuming that all sets have unit cost and that the budget is k.
2 Although Misra et al. [17] prove W[1]-hardness for Budgeted Max Cut when parameterized by the

budget, their hardness proof only requires each vertex (corresponding to a set in our formulation) to
have unit cost.
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1.1 Our Contributions
Our first main result is an FPT-AS for Max Unique Coverage with strong space, running
time, and approximation bounds, that is applicable to the data stream model. A crucial
step in achieving such bounds is showing improved upper bounds on a key parameter of
a collection C. The unique coverage ratio is the ratio between the coverage of C and the
maximum unique coverage over all subcollections Q ⊆ C. We let ϕ denote an upper bound
on the unique coverage ratio: we define performance bounds of our FPT-AS in terms of ϕ.

Main Result 1: FPT Approximation Scheme. We propose the FPT-AS UniqueTopSets,
parameterized by the cardinality constraint, k, and the maximum frequency, r, which can be
easily implemented in the data stream model. It achieves a (1− ε)-approximation using a
kernel of size ⌈kr(ϕ+ 1)/ε⌉. We formally present this algorithm in Theorem 3.6.

UniqueTopSets is a refined version of the FPT-AS in Theorem 12 of McGregor et
al. [15], in that our algorithm achieves a (1− ε) rather than a (1/2− ε)-approximation using
only an extra logarithmic factor of (ϕ+ 1) in the kernel size. Further, our algorithm improves
on the FPT-AS in Theorem 10 of McGregor et al. [15] by saving a factor of O(k/ε) in the
kernel size, and therefore a factor of [O(k/ε)]k in the running time, while achieving the same
approximation factor. See Table 1 for a comparison of our FPT-AS with others.

Table 1 Comparison of FPT-AS for Max Unique Coverage, parameterized by cardinality
constraint, k, and maximum frequency, r. Note that the running time of each algorithm below is
implied by its kernel size. Each finds a solution of size at most k by brute-force search in the kernel.
Below, we can assign ϕ = min(ln k + 1, 2 ln r + o(log r), 2 ln d + o(log d)).

Reference Approx. Kernel Size

[15, Theorem 10] 1 − ε O
(
k2r log m/ε2)

[15, Theorem 12] 1/2 − ε ⌈kr/ε⌉

Ours, Theorem 3.6 (UniqueTopSets) 1 − ε ⌈kr(ϕ + 1)/ε⌉

Unique Coverage Algorithms. In order to show good values for ϕ, we propose a number
of offline polynomial-time algorithms that, given an arbitrary C, explicitly return a B ⊆ C
whose unique coverage is at least a logarithmic ratio of C’s coverage. We refer to them as
unique coverage algorithms; in fact, they can be thought as approximation algorithms for the
unconstrained Unique Coverage problem on an input instance of C.

Our three offline polynomial-time algorithms, UniqueGreedy, UniqueGreedyFreq,
and UniqueGreedySize, each take a collection of sets, C, and return a collection, B ⊆ C,
whose unique coverage is at least a 1/(ln ℓ+ 1), 1/(2 ln r + o(log r)), and 1/(2 ln d+ o(log d))
proportion of C’s coverage respectively; in this context, ℓ = |C|, r is the maximum frequency in
C, and d is the maximum set size in C. We formally present these algorithms in Theorem 4.1,
Theorem 4.4, and in Theorem 4.8, respectively. See Table 2 for a comparison of our algorithms
with those of Demaine et al. [9] along with their implied bounds, ϕ, albeit weaker than ours.

APPROX/RANDOM 2024
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Table 2 Polynomial-time algorithms for Max Unique Coverage. Compared to others, our
methods imply constant-factor improvements in the unique coverage ratio bound, ϕ.

Parameter Reference (Implied) ϕ

ℓ = collection size
[9, Theorem 4.1] 10.66 ln(ℓ + 1)

Ours, Theorem 4.1
(UniqueGreedy) ln ℓ + 1

r = maximum frequency
in a collection

[9, Theorem 4.1] 10.66 ln(r + 1)

Ours, Theorem 4.4
(UniqueGreedyFreq) 2 ln r + o(log r)

d = maximum set size
in a collection

[9, Theorem 4.2] 21.32 ln(d + 1)

Ours, Theorem 4.8
(UniqueGreedySize) 2 ln d + o(log d)

Implication for FPT Approximation Scheme. The bound on the unique coverage ratio, ϕ,
affects the kernel size and therefore the brute-force running time of UniqueTopSets. In
particular, when r = Ω(

√
k), the bound of ϕ implied by UniqueGreedy is 10.66 times

smaller than implied by Demaine et al. [9]; whereas when r = o(
√
k), the bound of ϕ implied

by UniqueGreedyFreq is almost 5.33 smaller than implied by Demaine et al. This means,
by using our implied bounds rather than those implied by Demaine et al., we save a factor of
10.66k in UniqueTopSets’s running-time when r = Ω(

√
k), and a factor of almost 5.33k

when r = o(
√
k).

Improvements in Polynomial-Time Approximation. As a separate contribution, each of
our three unique coverage algorithms finds a logarithmic approximation to Max Unique
Coverage, both offline and in the data stream. We first find a solution C to Max Coverage in
polynomial time, and then run one of our above algorithms on C to return the subcollection
B ⊆ C. For this purpose, our algorithms UniqueGreedy, UniqueGreedyFreq, and
UniqueGreedySize improve the approximation factor due to Demaine et al. [9] by a factor
of 10.66, 5.33, and 10.66, respectively. Following the above approach, we propose a single-pass
streaming algorithm for Max Unique Coverage that achieves a (1/(2ϕ)−ε)-approximation
using Õ(k2/ε3) space, where we can assign ϕ = min(ln k+ 1, 2 ln r+ o(log r), 2 ln d+ o(log d)).
We formally state this in Theorem 3.8.

Main Result 2: Streaming Lower Bound. Our second main result is a significantly improved
streaming lower bound for Max Unique Coverage. In the data stream model, we prove
that any randomized algorithm that achieves a (1.5+o(1))/(ln k−1)-approximation for Max
Unique Coverage w.h.p. requires Ω(m/k2) space. We formally state this in Theorem 5.1.
Our lower bound improves on the lower bound by McGregor et al. [15], which shows a similar
result, but achieves w.h.p. a e−1+1/k ≥ 1/e-approximation. Interestingly, our approximation
threshold is close to 3 times larger than the approximation (in terms of k) achieved by our
Õ(k2/ε3) space algorithm in Theorem 3.8, indicating that a dramatic increase in space is
needed to bridge this approximation gap.
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Table 3 Comparison of space lower bounds for Max Unique Coverage in the data stream.
Note that the lower bound by Assadi [1] was shown for Max Coverage with constant k = 2, but it
is not difficult to adapt it for Max Unique Coverage because, in the hard instance constructed
for the lower bound, the unique coverage of any pair of sets behaves similarly to its coverage.

Reference Approx. Space LB

[1, Theorem 4] 1 − ε Ω
(
m/ε2)

[15, Theorem 16] 1/e Ω
(
m/k2)

Ours, Theorem 5.1 (1.5 + o(1))/(ln k − 1) Ω
(
m/k2)

1.2 Technical Overview

FPT Approximation Scheme. UniqueTopSets refines the technique used in the FPT-AS
for Max Unique Coverage in Theorem 12 of McGregor et al. [15], which is to construct
an approximate kernel by storing a number of the largest sets by individual size, and then
to find a subcollection of the kernel with maximum unique coverage by brute-force search.
Similar techniques have been used in FPT-AS approaches for Max Vertex Cover [14, 13]
and Max Coverage [21, 20, 15, 19]. Our novelty is providing a stronger analysis of the
approximation factor preserved by the kernel, allowing us to achieve a (1− ε)-approximation
while only increasing the kernel size by a logarithmic factor in k, r, or d.

Unique Coverage Algorithms. All of our unique coverage algorithms are combinatorial in
design. Our first two, UniqueGreedy and UniqueGreedyFreq, are novel algorithms
that each, in some sense, use a greedy approach, noting that UniqueGreedy is used as
subroutine of UniqueGreedyFreq. Our third algorithm, UniqueGreedySize, is easily
derived by combining UniqueGreedyFreq with the approach by Demaine et al. [9] for
sets with maximum cost d (maximum size in our case).

Streaming Lower Bound. Our streaming lower bound relies on a novel reduction from
k-player Set Disjointness in the one-way communication model to Max Unique Coverage
in the data stream. In the hard instance of Max Unique Coverage thus constructed,
either all collections of ℓ ≤ k sets have a unique coverage of ak2(1.5 + o(1)) w.h.p. or
there exists a single collection of k sets whose unique coverage is at least ak2(ln k − 1),
where a = Ω(k logm). By a standard argument, we show that distinguishing between these
instances of Max Unique Coverage with a streaming algorithm is as hard as solving Set
Disjointness, implying the required space lower bound.

1.3 Paper Structure

After preliminaries in Section 2, Section 3 presents our FPT-AS UniqueTopSets and a
polynomial-time algorithm, both applicable to the data stream. In Section 4, we present our
component algorithms for bounding the unique coverage ratio. In Section 5, we present a
space lower bound for achieving a (1.5 + o(1))/(ln k − 1)-approximation for Max Unique
Coverage. We conclude in Section 7. Claims whose proofs are found in the full version of
this paper are marked thus: (*).

APPROX/RANDOM 2024
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2 Preliminaries

Notation. For convenience, we hence let [n] denote the set of integers {1, 2, . . . , n}. Likewise,
U = [n] denotes a universe of n elements, while V denotes a collection of m subsets of U .

Given a collection C of sets, the unique cover of C is the subset of the universe covered
by exactly one set in C, formally, ψ̃(C) := (

⋃
S∈C S) \ (

⋃
S ̸=T∈C S ∩ T ), and the unique

coverage of C is |ψ̃(C)|. For convenience, the cover of C is the union of the sets in C, formally
ψ(C) :=

⋃
S∈C S, and the coverage of C is |ψ(C)|. Further, the non-unique cover of C is the

subset of the universe covered by at least two sets from C, formally ψ≥2(C) =
⋃
S ̸=T∈C S ∩ T

– or equivalently ψ≥2(C) = ψ(C) \ ψ̃(C) – and the non-unique coverage of C is |ψ≥2(C)|. The
maximum unique coverage of C is the largest unique coverage of a subcollection of C. The
unique coverage ratio of C is the ratio between its coverage and maximum unique coverage.
In other words, if Q is the subcollection of C that has maximum unique coverage, then the
unique coverage ratio of C is |ψ(C)|/|ψ̃(Q)|.

Given an element x ∈ U and a collection C of sets, the frequency of x in C is defined as
freqC(x) := |{S ∈ C : x ∈ S}|, i.e., the number of sets in C that contain x; and the maximum
frequency is defined as r := maxx∈U freqC(x). Also, the maximum set size is defined as
d := maxS∈C |S|. We often use r and d to refer to the maximum frequency and set size,
respectively, in C = V unless stated otherwise. Note that r ≤ |C| holds for every C. We let
Hz :=

∑z
t=1 1/t denote the zth harmonic number, a term that appears several times.

Formal Problem Definition. An instance of Max Unique Coverage consists of an element
universe U , a collection V of m subsets of U , and an integer k ∈ [m]; when the context
is clear, we represent an instance with just V for simplicity. The goal of Max Unique
Coverage is to return a subcollection B ⊆ V (more precisely, a collection of IDs of sets),
with |B| ≤ k, that maximizes |ψ̃(B)|. We let O denote an optimal solution to this Max
Unique Coverage problem, and OPT := |ψ̃(O)| as the maximum unique coverage.

Subsampling for the Data Stream Model. The universe subsampling technique has
been widely successful in the development of streaming algorithms for coverage problems
[10, 12, 3, 16]. In this work, we follow the approach of McGregor and Vu [16], and sample
the universe so that each set has size O(k logm/ε2). We assume that k ∈ o(mn), and also
that k is known prior to reading the stream. The main result is given in the following lemma,
with a proof sketch of the subsampling approach in Section 6.

▶ Lemma 2.1 (Subsampling Approach [15]). Let ε ∈ (0, 1) be the subsampling error parameter.
Given an instance of Max Unique Coverage and an α-approximation streaming algorithm,
we can run the algorithm on ⌈log2 n⌉ parallel subsampled instances and select one of them
such that the algorithm’s solution corresponds to a (α− 2ε)-approximation for the original
instance with probability 1 − 1/poly(m). Moreover, if the streaming algorithm stores at
most s sets in every subsampled instance, then the total space complexity of the subsampling
approach is bounded by ⌈log2 n⌉ · s ·O

(
k logm logn/ε2).

3 Streaming FPT-AS and Polynomial-Time Algorithms

In Section 3.1, we prove a kernelization lemma. Then, we use it to obtain an FPT-AS and a
parameterized streaming algorithm in Section 3.2. Finally, we show how to use a bound on
the unique coverage ratio to obtain a polynomial-time streaming algorithm in Section 3.3.
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3.1 Kernelization Lemma
Our Kernelization Lemma below, as well as its proof, is a refinement of Lemma 11 by
McGregor et al. [15]. We first provide some intuition on why our kernel preserves a (1− ε)-
approximation for Max Unique Coverage.

Intuition of Kernelization Lemma. For convenience, let ε′ be an intermediate error para-
meter and define the kernel A as the collection of the ⌈kr/ε′⌉ largest sets in instance V by
individual size. Given the optimal solution for Max Unique Coverage, O, let Oin and Oout

be the collections of optimal sets found and not found in A respectively.
One main step in proving our Kernelization Lemma is showing that, in expectation,

a collection of |Oout| sets sampled without replacement from A, denoted by Z, can be
appended to Oin with little overlap in their unique covers. In particular, we can prove that
E[|ψ̃(Oin ∪ Z)|] ≥ (1− ε′)|ψ̃(O)| − ε′|ψ(O)|.

However, due to the ε′|ψ(O)| term, this is not enough to achieve the required approx-
imation factor. This term reflects the fact that, even if the unique cover of Oin has little
overlap with the unique cover of Z, the entire cover of Oin could be more extensive and,
thus, overlap significantly with the unique cover of Z. To address this, in Claim 3.4, we
show ϕ|ψ̃(O)| ≥ |ψ(O)|, where ϕ upper bounds the unique coverage ratio. Substituting
this into the lower bound for E[|ψ̃(Oin ∪ Z)|], and assigning ε′ = ε/(ϕ + 1), we obtain
E[|ψ̃(Oin∪Z)|] ≥ (1−ε)|ψ̃(O)|, implying the existence of a (1−ε)-approximate subcollection
of A. Lastly, the final kernel size of |A| = ⌈kr(ϕ+ 1)/ε⌉ follows from the assignment of ε′.

▶ Lemma 3.1 (Kernelization Lemma). Suppose that every collection of sets has unique
coverage ratio at most ϕ. Let V denote a collection of sets. Then, for every ε ∈ (0, 1), the
subcollection, A, of the ⌈kr(ϕ+ 1)/ε⌉-largest sets of V (by size) contains a subcollection of
at most k sets with unique coverage at least (1− ε)OPT.

Proof. Assume that |V| ≥ ⌈kr(ϕ+ 1)/ε⌉: otherwise, A would contain every set in V and so
would trivially have O as a subcollection. Let Oin = O ∩A and Oout = O \ A. Let Z be a
uniform random sample of |Oout| sets chosen from A without replacement. The main goal is
to prove Claim 3.5, below. Since Oin and Z are subsets of A, this implies the existence of
subcollection B ⊆ A as required by the lemma.

We start with the following lower bound on the expected unique coverage of Oin ∪ Z, as
shown in inequality (1) below. Then we lower bound each of the RHS terms separately and
simplify afterwards. By definition,

|ψ̃(Oin ∪ Z)| ≥ |ψ̃(Oin)|+ |ψ̃(Z)| − (|ψ̃(Oin) ∩ ψ(Z)|+ |ψ(Oin) ∩ ψ̃(Z)|) ,
hence, by linearity of expectation,

E[|ψ̃(Oin ∪ Z)|] ≥ |ψ̃(Oin)|+ E[|ψ̃(Z)|]− E[|ψ̃(Oin) ∩ ψ(Z)|]− E[|ψ(Oin) ∩ ψ̃(Z)|] . (1)

Define an intermediate error parameter, ε′ = ε/(ϕ + 1), meaning |A| = ⌈kr/ε′⌉. The
probability of a set S ∈ A being selected in Z is p := |Oout|/|A| ≤ k/(kr/ε′) = ε′/r. Now
Claim 3.2, below, is easily derived from the proof of Lemma 11 in by McGregor et al. [15].

▷ Claim 3.2. It holds that E[|ψ̃(Z)|] ≥ (1− ε′)|ψ̃(Oout)| .

Proof. Quantity |ψ̃(Z)| can be lower bounded by summing, over every S ∈ Z, the number of
elements in S not contained in any other T ∈ Z \ {S}. From there, we prove inequality (3.2),
below. We let [E ] denote the indicator variable for event E .

APPROX/RANDOM 2024



25:8 Maximum Unique Coverage on Streams

|ψ̃(Z)| ≥
∑
S∈Z

|S| − ∑
T∈Z\{S}

|S ∩ T |

 , hence,

E[|ψ̃(Z)|]

≥ E

∑
S∈A

|S|[S ∈ Z]−
∑

T∈A\{S}

|S ∩ T |[S ∈ Z ∧ T ∈ Z]


≥
∑
S∈A

|S|p− ∑
T∈A\{S}

|S ∩ T |p2

 Pr[S ∈ Z ∧ T ∈ Z] ≤ p2

≥
∑
S∈A

(
|S|p− |S|p2(r − 1)

)
≥ p(1− pr)

∑
S∈A
|S|

each x ∈ S intersects
≤ r − 1 other sets

≥ p(1− ε′)
∑
S∈A
|S| p ≤ ε′

r

≥ p(1− ε′)|A|
∑
Y ∈Oout |Y |
|Oout|

for all S ∈ A and all
Y ∈ Oout : |S| ≥ |Y |

≥ p(1− ε′)|A| |ψ̃(Oout)|
|Oout|

subadditivity of ψ̃

= p(1− ε′) |ψ̃(Oout)|
p

= (1− ε′)|ψ̃(Oout)| . ◁

Claim 3.3 upper bounds the expected size of the overlap between ψ̃(Oin) and ψ(Z) and
the expected size of the overlap between ψ̃(Z) and ψ(Oin).

▷ Claim 3.3. E[|ψ̃(Oin) ∩ ψ(Z)|] ≤ ε′|ψ̃(Oin)| and E[|ψ(Oin) ∩ ψ̃(Z)|] ≤ ε′|ψ(Oin)|.

Proof. To prove the first inequality,

E[|ψ̃(Oin) ∩ ψ(Z)|] ≤
∑

x∈ψ̃(Oin)

∑
S∈A : x∈S

Pr[S ∈ Z] ≤
∑

x∈ψ̃(Oin)

rp ≤ ε′|ψ̃(Oin)| .

To prove the second inequality, it is clear that ψ̃(Z) ⊆ ψ(Z) for all Z, so we have E[|ψ(Oin)∩
ψ̃(Z)|] ≤ E[|ψ(Oin) ∩ ψ(Z)|]. Then substituting ψ(Oin) for ψ̃(Oin) in the argument for the
first inequality, we see that E[|ψ(Oin) ∩ ψ(Z)|] ≤ ε′|ψ(Oin)|. ◁

We now turn to a property of the optimal solution for Max Unique Coverage, O.

▷ Claim 3.4. ϕ|ψ̃(O)| ≥ |ψ(O)| .

Proof. Recall that we assumed that every collection of sets has unique coverage ratio at
most ϕ. In particular, O has a subcollection, Q, of at most k sets with ϕ|ψ̃(Q)| ≥ |ψ(O)|.
By optimality, O’s unique coverage is at least that of Q. Thus, we get the desired inequality.

◁

Starting from Ineq. (1), we can now lower bound E[|ψ̃(Oin ∪ Z)|], thus proving the lemma.

▷ Claim 3.5. We have the lower bound E[|ψ̃(Oin ∪ Z)|] ≥ (1− ε)|ψ̃(O)| .
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Proof.

E[|ψ̃(Oin ∪ Z)|]
≥ |ψ̃(Oin)|+ E[|ψ̃(Z)|]− E[|ψ̃(Oin) ∩ ψ(Z)|]− E[|ψ(Oin) ∩ ψ̃(Z)|] Ineq. (1)
≥ |ψ̃(Oin)|+ (1− ε′)|ψ̃(Oout)| − ε′|ψ̃(Oin)| − ε′|ψ(Oin)| Claims 3.2 and 3.3
= (1− ε′)

(
|ψ̃(Oin)|+ |ψ̃(Oout)|

)
− ε′|ψ(Oin)|

≥ (1− ε′)|ψ̃(O)| − ε′|ψ(Oin)| subadditivity of ψ̃
≥ (1− ε′)|ψ̃(O)| − ε′|ψ(O)| monotonicity of ψ
≥ (1− ε′)|ψ̃(O)| − ε′ϕ|ψ̃(O)| Claim 3.4
= (1− ε′ (1 + ϕ)) |ψ̃(O)|
= (1− ε)|ψ̃(O)| . ◁

◀

3.2 Applications of the Kernelization Lemma
We now apply the Kernelization Lemma to prove the following theorem.

▶ Theorem 3.6. Suppose that every collection of sets has unique coverage ratio at most ϕ.
Let V denote a collection of sets, k ≥ 2 denote the cardinality constraint, r ≥ 2 denote the
maximum frequency in V, and ε ∈ (0, 1) denote an error parameter. Then, there exists
1. an FPT-AS that finds a (1− ε)-approximation for Max Unique Coverage and has a

running time of (er(ϕ+ 1)/ε)k poly(m,n, 1/ε); and
2. a streaming algorithm that finds a (1− 3ε)-approximation for Max Unique Coverage

with probability 1− 1/poly(m) and uses Õ(ϕk2r/ε3) space.

Our algorithm, UniqueTopSets, takes a collection of sets V with maximum frequency
r ≥ 2, a cardinality constraint k, and an error parameter ε ∈ (0, 1), and returns a (1− ε)-
approximation for Max Unique Coverage. It also takes parameter ϕ, an upper bound
on the unique coverage ratio of every subcollection. UniqueTopSets first finds A, the
⌈kr(ϕ+ 1)/ε⌉-largest sets S ∈ V by size |S|. Then, it brute-forces over A, i.e., it finds the
subcollection of A containing at most k sets and has the maximum unique coverage.

FPT-AS. Let us first see how UniqueTopSets has the properties of the FPT-AS claimed
in Theorem 3.6. The Kernelization Lemma (Lemma 3.1) immediately implies that the
solution returned by UniqueTopSets is a (1− ε)-approximation. The running time bound
follows by bounding the number of subcollections of A containing at most k sets.

▶ Lemma 3.7. UniqueTopSets has running time in (er(ϕ+ 1)/ε)k poly(m,n, 1/ε).

Proof. UniqueTopSets considers every possible collection of ℓ ∈ [k] sets from A and
outputs the one with the best unique coverage. Below, the second inequality holds since
replacing ℓ with k makes each binomial coefficient larger, as ℓ ≤ k ≤ kr/2 due to r ≥ 2;
the equality holds since

(
z+1
k

)
=
(
z
k

)
(z + 1)/(z + 1− k); and the final inequality holds since(

z
k

)
≤ (ez/k)k. Thus, the running time is bounded as follows.

k∑
ℓ=1

(
|A|
ℓ

)
poly(m,n) ≤ poly(m,n)

k∑
ℓ=1

(kr(ϕ+1)
ε + 1
ℓ

)
≤ poly(m,n)k

(kr(ϕ+1)
ε + 1
k

)

= poly(m,n, 1/ε)
(kr(ϕ+1)

ε

k

)
≤ poly(m,n, 1/ε)

(
er(ϕ+ 1)

ε

)k
. ◀
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Streaming Algorithm. UniqueTopSets can also be run on a data stream using the
subsampling approach from Lemma 2.1. UniqueTopSets returns a (1−ε)-approximation in
each subsampled instance by Lemma 3.1, implying a (1− 3ε)-approximation for the original
instance, V, with probability 1− 1/ poly(m). Further, it stores |A| ≤ ⌈kr(ϕ+ 1)/ε⌉ sets in
each subsampled instance, implying an overall space complexity of ⌈log2 n⌉ · |A| · Õ(k/ε2) =
Õ(ϕk2r/ε3).

3.3 Polynomial-Time Streaming Algorithm
Here we present a single-pass streaming algorithm that returns a (1/(2ϕ)− ε)-approximation
for Max Unique Coverage, given a bound on the unique coverage ratio, ϕ. We present
the algorithm in Theorem 3.8 below.

In the theorem statement, we assume we can use an offline polynomial-time algorithm,
Alg, that takes a collection C and returns a subcollection B ⊆ C such that |ψ̃(B)| ≥ |ψ(C)|/ϕ
for a ratio ϕ depending on |C| ≤ k, the maximum frequency r, and the maximum set size d.
Alg can be substituted with a procedure that runs all of our unique coverage algorithms
from Section 4 on C and returns the solution with the best unique coverage.

▶ Theorem 3.8. Let V denote a data stream of m sets, k ≥ 2 denote a cardinality constraint,
r ≥ 2 denote the maximum frequency in V, d ≥ 2 denote the maximum set size in V, and
ε ∈ (0, 1) denote an error parameter. Further, assume we have a polynomial-time algorithm
Alg with unique coverage ratio ϕ depending on k, r, and d. Then we can find a (1/(2ϕ)−3ε)-
approximation for Max Unique Coverage with probability 1− 1/ poly(m), using one pass,
Õ(k2/ε3) space, and in polynomial-time.

Proof. We use the subsampling approach from Lemma 2.1. In each subsampled instance, we
use an existing polynomial-time streaming algorithm [16] to find a (1/2− ε)-approximation,
C, for Max Coverage in one pass while storing Õ(k/ε) sets; the sets in C must be stored
explicitly so that we can run Alg on C. Running Alg on C returns a B ⊆ C that is
a (1/(2ϕ) − ε)-approximation for the subsampled instance of Max Unique Coverage.
This implies a (1/(2ϕ) − 3ε)-approximation for the original instance, V, with probability
1− 1/poly(m). Further, explicitly storing Õ(k/ε) sets in each subsampled instance implies
an overall space complexity of ⌈log2 n⌉ · Õ(k/ε) · Õ(k/ε2) = Õ(k2/ε3). ◀

4 Algorithms for Bounding the Unique Coverage Ratio

We here present algorithms that run in polynomial time. Given a collection, C, each returns a
subcollection B ⊆ C such that B’s unique coverage is within a logarithmic ratio of C’s coverage.
We hence call this the unique coverage ratio of an algorithm. Our algorithms UniqueGreedy
(Section 4.1), UniqueGreedyFreq (Section 4.2), and UniqueGreedySize (Section 4.3)
have unique coverage ratios that are logarithmic in ℓ = |C|, r, and d, respectively.

4.1 UniqueGreedy
We present and analyze our algorithm UniqueGreedy, with pseudocode in Algorithm 1.
Its purpose is to take a collection C of ℓ sets and return a collection B ⊆ C whose unique
coverage is at least a 1/Hℓ factor of C’s coverage. We formally state this in Theorem 4.1.

UniqueGreedy Overview. UniqueGreedy first checks whether C’s unique coverage is at
least 1/Hℓ of its own coverage. If so, then it immediately returns C as the solution, which of
course occurs if ℓ = 1. If not, then the idea is to discard the set T ∈ C with the smallest
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contribution to C’s unique coverage. It follows that the total loss in coverage from C to
C \ {T} is only 1/ℓ of C’s unique coverage. Observe that T contributes at most 1/ℓ to C’s
unique coverage, and any elements in T that are also in C’s non-unique cover must remain
in C \ {T}’s cover. We then apply UniqueGreedy recursively, to C \ {T}. As we show in
Theorem 4.1, since the performance of UniqueGreedy relates unique coverage to coverage,
C \ {T} has sufficient coverage so that the recursive solution from UniqueGreedy(C \ {T})
has a unique coverage of at least 1/Hℓ of C’s coverage.

Algorithm 1 UniqueGreedy.

Input: C: collection of ℓ sets.
Output: B ⊆ C: subcollection satisfying |ψ̃(B)| ≥ |ψ(C)|/Hℓ.

1 if |ψ̃(C)| ≥ |ψ(C)|/Hℓ then
2 B ← C
3 else
4 T ← arg minS∈C |S ∩ ψ̃(C)|
5 B ← UniqueGreedy(C \ {T})
6 return B

▶ Theorem 4.1. Given a collection of ℓ sets, C, UniqueGreedy returns a collection B ⊆ C
satisfying

|ψ̃(B)| ≥ |ψ(C)|
Hℓ

. (2)

Proof. We prove Theorem 4.1 by induction on ℓ = |C|.

Base Case. If ℓ = 1, then |ψ̃(C)| = |ψ(C)| and B = C, so we are done.

Inductive Case. Consider the case ℓ ≥ 2, and assume that Theorem 4.1 holds for ℓ − 1.
Then one of two subcases must hold: (i) |ψ̃(C)| ≥ |ψ(C)|/Hℓ; or (ii) the negation, |ψ̃(C)| <
|ψ(C)|/Hℓ. In subcase (i), the Line 1 condition succeeds and UniqueGreedy returns the
subcollection B = C, which clearly satisfies Ineq. (2).

So, we focus on subcase (ii); since |ψ̃(C)| < |ψ(C)|/Hℓ, the Line 1 condition fails, thus
Line 5 assigns to B the solution from the recursive call on C \ {T}. Claim 4.3 lower bounds
the coverage of this subcollection, |ψ(C \ {T})|. Prior to that, we prove a handy claim.

▷ Claim 4.2. |ψ(C \ {T})| = |ψ≥2(C)|+ |ψ̃(C) \ T | .

Proof. Observe that ψ≥2(C) and ψ̃(C)\T are disjoint; so it suffices to show that ψ(C \{T}) =
ψ≥2(C) ∪ (ψ̃(C) \ T ). We first show that RHS is a subset of LHS. Each element covered at
least twice in C remains covered in C \ {T}; while each element uniquely covered in C that is
not in T remains covered in C \ {T}. Going the other way, consider an element that is in
neither ψ≥2(C) nor ψ̃(C) \T : then the only set it was in was T , and hence it is not in C \ {T}.

◁

▷ Claim 4.3. Subcollection C \ {T} satisfies

|ψ(C \ {T})| ≥
(

1− 1
ℓHℓ

)
|ψ(C)| .
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Proof. First, observe that the contribution of each S ∈ C to ψ̃(C), i.e., |S ∩ ψ̃(C)|, is disjoint
from the contributions of all other sets in C: each element in ψ̃(C) is covered by exactly one
set. Therefore, the set T = arg minS∈C |S ∩ ψ̃(C)| in Line 4 satisfies

|T ∩ ψ̃(C)| ≤ |ψ̃(C)|
ℓ

. (3)

With Claim 4.2, we now prove Claim 4.3.

|ψ(C \ {T})| = |ψ≥2(C)|+ |ψ̃(C) \ T |
= |ψ(C)| − |ψ̃(C)|+ |ψ̃(C)| − |T ∩ ψ̃(C)|
= |ψ(C)| − |T ∩ ψ̃(C)|

≥ |ψ(C)| − |ψ̃(C)|
ℓ

Ineq. (3)

> |ψ(C)| − |ψ(C)|
ℓHℓ

subcase (ii)

=
(

1− 1
ℓHℓ

)
|ψ(C)| . ◁

Recall that in subcase (ii), Line 5 assigns to B the solution from the recursive call
on C \ {T}. Since |C \ {T}| = ℓ − 1, we apply the inductive assumption to prove that B
satisfies Ineq. (2).

|ψ̃(B)| ≥ |ψ(C \ {T})|
Hℓ−1

inductive assumption

≥ 1
Hℓ−1

(
1− 1

ℓHℓ

)
|ψ(C)| Claim 4.3

= 1
Hℓ−1

ℓHℓ − 1
ℓHℓ

|ψ(C)|

= 1
Hℓ−1

Hℓ − 1
ℓ

Hℓ
|ψ(C)|

= |ψ(C)|
Hℓ

. Hℓ −
1
ℓ

= Hℓ−1, for ℓ ≥ 2

We have proven that B satisfies Ineq. (2) in the base case and the inductive case, proving
Theorem 4.1. ◀

4.2 UniqueGreedyFreq
In this section, we present and analyze our algorithm UniqueGreedyFreq, with pseudocode
in Algorithm 2. The purpose of this algorithm is to take a collection C with maximum
frequency r ≤ |C|, and an error parameter εr ∈ (0, 1), and return a collection B ⊆ C whose
unique coverage is at least a (1/H⌈r(r−1)/εr⌉ − εr) factor of C’s coverage. By an appropriate
choice of εr depending on r, this factor can be simplified to 1/(2 ln r + o(log r)).

UniqueGreedyFreq Overview. The idea of UniqueGreedyFreq is to group all of the
sets from C into ℓ̂ disjoint collections, G1, . . . ,Gℓ̂, so that the sets must be selected into the
solution B in these groups, i.e., for each i ∈ [ℓ̂], either all of the sets in Gi, or none of the sets
in Gi, must be selected into B. Then, letting Ĉ be the collection of the covers of G1, . . . ,Gℓ̂,
we can call UniqueGreedy on Ĉ to find a selection of these covers, namely B̂. The returned
solution, B, is constructed by merging each Gi whose cover was selected into B̂, which ensures
that the sets are selected in groups.
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It can be seen that, by calling UniqueGreedy on Ĉ and by Theorem 4.1, the unique
coverage of B̂ is at least 1/Hℓ̂ of Ĉ’s coverage, and therefore at least 1/Hℓ̂ of C’s coverage since
Ĉ and C have the same cover. The issue now is that sets from the same Gi can overlap after
being selected as a group into B, which would make B’s unique coverage smaller than B̂’s
unique coverage. This is addressed by setting the number of groups to be ℓ̂ = ⌈r(r − 1)/εr⌉,
and by the way UniqueGreedyFreq allocates the sets into these groups: it allocates each
S ∈ C to the group Gi whose unique coverage intersects the least with S. In this way, the
total unique coverage that is lost due to overlapping sets in the same Gi can be bounded
by εr|ψ(C)|. Thus, B’s unique coverage is at least (1/Hℓ̂ − εr) = (1/H⌈r(r−1)/εr⌉ − εr) of C’s
coverage. Details are given in the proof of Theorem 4.4.

Algorithm 2 UniqueGreedyFreq.

Input: C: collection with maximum frequency r ≥ 2, εr ∈ (0, 1): error parameter.
Output: B ⊆ C: collection satisfying |ψ̃(B)| ≥

(
1/H⌈r(r−1)/εr⌉ − εr

)
|ψ(C)|.

1 ℓ̂← ⌈r(r − 1)/εr⌉
2 for i ∈ [ℓ̂] do // Initialize empty groups
3 Gi ← ∅
4 for S ∈ C do // Allocate sets to groups
5 i← arg minj∈[ℓ̂] |ψ̃(Gj) ∩ S|
6 Gi ← Gi ∪ {S}
7 Ĉ ← {ψ(G1), . . . , ψ(Gℓ̂)} // Define collection of groups’ covers
8 B̂ ← UniqueGreedy(Ĉ)
9 B ← ∅

10 for ψ(Gi) ∈ B̂ do // Construct returned solution
11 B ← B ∪ Gi
12 return B

▶ Theorem 4.4. Given C with maximum frequency r ≥ 2, and error parameter εr ∈ (0, 1),
algorithm UniqueGreedyFreq returns a collection B ⊆ C satisfying

|ψ̃(B)| ≥
(

1
H⌈r(r−1)/εr⌉

− εr
)
|ψ(C)| . (4)

Moreover, setting εr = (9.27 ln r)−1(2 ln r + 2 ln ln r + 5.61)−1, we obtain

|ψ̃(B)| ≥
(

1− 1/(9.27 ln r)
2 ln r + 2 ln ln r + 5.61

)
|ψ(C)| ≥ 1

2 ln r + o(log r) |ψ(C)| . (5)

Proof. We first prove Ineq. (4), starting with the following claim.

▷ Claim 4.5. ψ̃(B) = ψ̃(B̂) \
⋃
i : ψ(Gi)∈B̂ ψ≥2(Gi).

Proof. Consider an element x that is in exactly one set in B. This means that x is in exactly
one set from exactly one group, say Gy, chosen in B. Focusing on B̂, element x is clearly
in ψ(Gy) only, but might occur more than once in Gy. Excluding elements that are in ψ≥2(Gi)
for every i, we thus have the claim statement. ◁

With Claim 4.5, we prove Claim 4.6.

▷ Claim 4.6. The solution B satisfies |ψ̃(B)| ≥ |ψ̃(B̂)| − εr|ψ(C)|.
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Proof. Given Claim 4.5, B satisfies Ineq. (6),

|ψ̃(B)| ≥ |ψ̃(B̂)| −
∑

i : ψ(Gi)∈B̂

|ψ≥2(Gi)|

≥ |ψ̃(B̂)| −
∑
i∈[ℓ̂]

|ψ≥2(Gi)| . (6)

We upper bound
∑
i∈[ℓ̂] |ψ≥2(Gi)| in Ineq. (6). Let St be the tth set allocated in the Line 4

loop, let Gi,0 = ∅, and let Gi,t be the subcollection Gi just after allocating St.
Upon inserting St into Gi, every element in ψ̃(Gi,t−1) that becomes non-uniquely covered is

accounted for by ψ̃(Gi,t−1)∩St. So it holds that |ψ≥2(Gi,t)|− |ψ≥2(Gi,t−1)| = |ψ̃(Gi,t−1)∩St|.
Thus, |ψ≥2(Gi)| can be expressed by Equation (7) below, observing that for St the relevant
difference term is zero.

|ψ≥2(Gi)| =
∑
St∈Gi

(|ψ≥2(Gi,t)| − |ψ≥2(Gi,t−1)|) telescoping series

=
∑
St∈Gi

|ψ̃(Gi,t−1) ∩ St| . (7)

For each i ∈ [ℓ̂] and each St ∈ Gi, we want to show an upper bound of |ψ̃(Gi,t−1) ∩ St| ≤
(r − 1)|St|/ℓ̂. To see this, since the maximum frequency is r, each element x ∈ St is covered
by at most r − 1 other sets, each possibly in a different group. Therefore, we have that∑

j∈[ℓ̂]

|ψ̃(Gj,t−1) ∩ {x}| ≤ r − 1 ,

∑
x∈St

∑
j∈[ℓ̂]

|ψ̃(Gj,t−1) ∩ {x}| ≤
∑
x∈St

(r − 1) ,

∑
j∈[ℓ̂]

|ψ̃(Gj,t−1) ∩ St| ≤ (r − 1)|St| .

Recall that St was allocated to the group Gi = arg minj∈[ℓ̂] |ψ̃(Gj,t−1) ∩ St| in Lines 5–6.
Therefore, by averaging on the above inequality, we have that for each i ∈ [ℓ̂] and each St
that ends up in Gi,

|ψ̃(Gi,t−1) ∩ St| ≤
r − 1
ℓ̂
|St| . (8)

Now we upper bound
∑
i∈[ℓ̂] |ψ≥2(Gi)|.∑

i∈[ℓ̂]

|ψ≥2(Gi)| =
∑
i∈[ℓ̂]

∑
St∈Gi

|ψ̃(Gi,t−1) ∩ St| Equation (7)

≤ r − 1
ℓ̂

∑
i∈[ℓ̂]

∑
St∈Gi

|St| Ineq. (8)

= r − 1
ℓ̂

∑
S∈C
|S| G1, . . . ,Gℓ̂ partitions C

≤ r − 1
ℓ̂

r|ψ(C)| for all x ∈ ψ(C) : freqC(x) ≤ r

= r(r − 1)
⌈r(r − 1)/εr⌉

|ψ(C)| value of ℓ̂ (Line 1)
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≤ r(r − 1)
r(r − 1)/εr

|ψ(C)|

≤ εr|ψ(C)| .

Applying the above upper bound to Ineq. (6) completes the proof of the claim. ◁

To prove Ineq. (4), it remains to lower bound |ψ̃(B̂)|, in the inequality of Claim 4.6, in
terms of |ψ(C)|. Below, |ψ(Ĉ)| = |ψ(C)| holds since every S ∈ C is allocated to some Gi ∈ Ĉ.

|ψ̃(B)| ≥ |ψ̃(B̂)| − εr|ψ(C)| Claim 4.6

≥ |ψ(Ĉ)|
Hℓ̂

− εr|ψ(C)| Line 8 and Theorem 4.1

= |ψ(Ĉ)|
H⌈r(r−1)/εr⌉

− εr|ψ(C)| value of ℓ̂ (Line 1)

= |ψ(C)|
H⌈r(r−1)/εr⌉

− εr|ψ(C)| |ψ(Ĉ)| = |ψ(C)|

=
(

1
H⌈r(r−1)/εr⌉

− εr
)
|ψ(C)| .

Ineq. (5). It remains to show that there exists a choice of εr that implies Ineq. (5).

▷ Claim 4.7 (*). Setting εr = (9.27 ln r)−1(2 ln r + 2 ln ln r + 5.61)−1 implies Ineq. (5).

This completes the proof of Theorem 4.4. ◀

4.3 UniqueGreedySize
In this section, we present UniqueGreedySize, with pseudocode in Algorithm 3, derived
by combining UniqueGreedyFreq with the approach in Theorem 4.2 of Demaine et al. [9].
The purpose of this algorithm is to take a collection, C, with maximum set size d, an error
parameter, εd ∈ (0, 1), and another error parameter, ε̂d ∈ (0, 1), and return a B ⊆ C whose
unique coverage is at least a logarithmic factor of C’s coverage, where the factor depends
on d, εd, and ε̂d. We state this formally in Theorem 4.8 and give the proof for completeness;
in fact, our proof slightly generalizes the proof of Theorem 4.2 of Demaine et al. [9], by
allowing an arbitrary εd rather than fixing εd = 1/2.

UniqueGreedySize Overview. UniqueGreedySize first modifies C into a “minimal” col-
lection by discarding each set T that uniquely covers no element. Then it checks if C’s
size is at least an εd factor of its own coverage. If so, then it assigns C to the solution
B. Otherwise, it constructs a sub-instance on those elements of frequency at most d and
calls UniqueGreedyFreq on the sub-instance with error ε̂d to get B̂. Returned solution B
comprises each set S ∈ C whose intersection with Û was selected into B̂.

▶ Theorem 4.8. Let C denote a collection of sets, d denote the maximum size of a set in C,
εd ∈ (0, 1) denote an error parameter, and ε̂d ∈ (0, 1) denote an error parameter passed to
UniqueGreedyFreq. Then UniqueGreedySize returns a collection B ⊆ C satisfying

|ψ̃(B)| ≥ min(εd, (1− εd)β(d, ε̂d))|ψ(C)| , (9)
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Algorithm 3 UniqueGreedySize.

Input: C: collection with maximum set size d, εd ∈ (0, 1): error parameter,
ε̂d ∈ (0, 1): error parameter used in UniqueGreedyFreq.

Output: B ⊆ C: subcollection satisfying |ψ̃(B)| ≥ min(εd, (1− εd)β(d, ε̂d))|ψ(C)|
where β(d, ε̂d) = 1/H⌈d(d−1)/ε̂d⌉ − ε̂d.

1 while T ← arg minS∈C |S ∩ ψ̃(C)| satisfies |T ∩ ψ̃(C)| = 0 do // Make C minimal
2 C ← C \ {T}
3 if |C| ≥ εd|ψ(C)| then
4 B ← C
5 else // Define instance on elements with freq.≤ d
6 Û ← {x ∈ ψ(C) : freqC(x) ≤ d}
7 Ĉ ← {S ∩ Û : S ∈ C}
8 B̂ ← UniqueGreedyFreq(Ĉ, ε̂d)
9 B ← ∅

10 for S ∩ Û ∈ B̂ do // Construct returned solution
11 B ← B ∪ {S}
12 return B

where β(d, ε̂d) = 1/(H⌈d(d−1)/ε̂d⌉)− ε̂d denotes the unique coverage ratio of UniqueGreedy-
Freq. Moreover, by assigning εd = (1/β(d, ε̂d)+1)−1, ε̂d = (c1 ln d)−1(2 ln d+2 ln ln d+c2)−1,
and appropriate constants to c1 and c2, we derive from Ineq. (9) the simpler inequality below.

|ψ̃(B)| ≥ 1
2 ln d+ o(log d) |ψ(C)| . (10)

Proof. We begin by proving Ineq. (9). Discarding sets from C that uniquely cover no elements,
as in Lines 1–2, does not affect ψ(C). So assume that C is minimal, i.e., every S ∈ C uniquely
covers at least one element. This means that |ψ̃(C)| ≥ |C|.

Now one of two cases must hold: (i) |C| ≥ εd|ψ(C)|; or (ii) |C| < εd|ψ(C)|. The final ratio
in Ineq. (9) is the minimum ratio achieved out of these two cases.

In case (i), UniqueGreedySize returns the solution B = C, by the success of the
condition in Line 3. Further, |ψ̃(B)| = |ψ̃(C)| ≥ |C| ≥ εd|ψ(C)| holds by the minimality of C.
Thus, B satisfies Ineq. (9) in case (i).

In case (ii), we show that the set Û of elements x ∈ ψ(C) with freqC(x) ≤ d, as in Line 6,
satisfies |Û | ≥ (1− εd)|ψ(C)|. We have

|U \ Û | < 1
d

∑
S∈C
|S| for all x ∈ U \ Û : freqC(x) > d

≤ |C| max. set size is d
< εd|ψ(C)| , case (ii)

|Û | > (1− εd)|ψ(C)| .

By the Line 7 definition, ψ(Ĉ) = Û , so |ψ(Ĉ)| ≥ (1 − εd)|ψ(C)|. Therefore, calling
UniqueGreedyFreq on Ĉ with maximum frequency d and error ε̂d, as in Line 8, gives
a collection B̂ satisfying |ψ̃(B̂)| ≥ β(d, ε̂d)|ψ(Ĉ)| ≥ β(d, ε̂d)(1 − εd)|ψ(C)|. Likewise, by
definition, in Lines 9–11, |ψ̃(B)| ≥ |ψ̃(B̂)|. Thus, B satisfies Ineq. (9) in case (2), proving
Theorem 4.8.
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Ineq. (10). We first maximize min(εd, (1− εd)β(d, ε̂d)) with respect to εd by setting the
two arguments as equal; this makes the RHS of Ineq. (9) equal to εd = (1/β(d, ε̂d) + 1)−1.
Then, by assigning ε̂d = (c1 ln d)−1(2 ln d+ 2 ln ln d+ c2)−1 and appropriate constants to c1
and c2, UniqueGreedyFreq’s unique coverage ratio satisfies β(d, ε̂d) ≥ 1/(2 ln d+ o(log d))
as in Theorem 4.4. Further substituting this into the RHS of Ineq. (9) proves Ineq. (10).
This completes the proof of Theorem 4.8. ◀

5 Space Lower Bound for a (1.5 + o(1))/(ln k − 1)-Approximation

In this section, we prove the following theorem:

▶ Theorem 5.1. Let e2.5 ≤ k ≤ m, a = k lnm+ ln(k/0.05), and assume the universe size to
be n = k(k − 1)

∑k
t=1 ⌈a/t⌉. Then every constant-pass randomized streaming algorithm for

Max Unique Coverage that, with probability at least 0.95, has an approximation factor of
(3/2 + 3/

√
2k)/(Hk − 1), requires Ω(m/k2) space.

5.1 High-Level Ideas of the Reduction
Similar to other approaches [16, 15], we prove our space lower bound by reducing the
problem of k-player Set Disjointness (with the unique intersection promise) in the one-way
communication model, denoted by Disj, to Max Unique Coverage in the stream model.

Set Disjointness in the One-Way Communication Model. In the one-way communication
model, players must take turns in some fixed order to send a message to the player next in
order, i.e., the jth player can only send a message to the (j + 1)th player. There can be p ≥ 1
rounds of communication, where a single round is completed once every player has taken
their turn. The last player can send a message back to the 1st player at the end of a round if
there is a next round.

In an instance of Disj, each player j ∈ [k] is given a set of integers Dj ⊆ [m]. Moreover,
it is promised that only two kinds of instances can occur:

NO instance. All sets Dj are pairwise disjoint.
YES instance. There is a unique integer i∗ ∈ [m] such that, for all j ∈ [k], i∗ ∈ Dj .

The goal then is for the kth player (in the final round) to correctly answer, with probability
at least 0.9, whether the given sets form a YES or NO instance.

The communication complexity of Disj in the p-round one-way communication model is
Ω(m/k), even for randomized protocols and even when the players can use public random-
ness [5]. Thus, as there are ≤ pk messages, every (randomized) protocol for Disj must have
at least one message of size Ω(m/(pk2)) in the worst case.

Reduction Overview. Given an instance of Disj, the main goal of the reduction, with
parameter a, is for the players to construct an instance of Max Unique Coverage in a
stream such that if they were given a NO instance of Disj, the optimal unique coverage is less
than ak2(1.5+o(1)) (with high probability); whereas if the players were given a YES instance
of Disj, the optimal unique coverage is at least ak2(Hk−1). The ratio of these optimal unique
coverages is less than (1.5 + o(1))/(Hk − 1), so the players can use a (1.5 + o(1))/(Hk − 1)-
approximation streaming algorithm on the Max Unique Coverage instance to distinguish
between a NO and YES instance. By a standard argument, this implies a protocol for Disj
which involves each player sending the memory of the streaming algorithm in a message to
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the next player. A constant-pass O(s)-space streaming algorithm implies a protocol with a
maximum message size of O(s) in constant rounds of communication where each pass of the
streaming algorithm takes one round. Thus, a (1.5 +o(1))/(Hk−1)-approximation streaming
algorithm for Max Unique Coverage requires Ω(m/k2) space.

Intuition of Max Unique Coverage Construction. Here, we give the intuition for construct-
ing the streaming instance of Max Unique Coverage that achieves the optimal unique
coverages above, with details in the proof of Theorem 5.1.

Let the universe of the Max Unique Coverage instance be U = U1 ∪ · · · ∪ Uk, where
U1, . . . , Uk are k disjoint sub-universes such that |Ut| = k(k− 1)⌈a/t⌉ (for a sufficiently large
a as in Theorem 5.1). Then, for each i ∈ [m], each player j constructs Sij ⊆ U such that
Si1, . . . , S

i
k satisfy the following properties:

1. Each set Sij covers t/k proportion of Ut for all t.
2. For each t ∈ [k], the sets Si1, . . . , Sik partition a proportion, qt ∈ [0, 1], of Ut while having a

common intersection in the remaining (1− qt) proportion of Ut. I.e., sets with identical i
form a “sunflower”, with their overlap concentrated in the sunflower’s “kernel”.

3. The choice of elements to be covered by Sij are independent and uniform random with
respect to i ∈ [m].

The above construction ensures that (with high probability) every collection of ℓ ∈ [k]
sets, Si1j1

, . . . , Siℓjℓ
, with distinct i1, . . . , iℓ has a unique coverage less than ak2(1.5+o(1)) (with

high probability); whereas a collection of ℓ = k sets with identical i1, . . . , iℓ has a unique
coverage of at least ak2(Hk − 1). Observe that k ≥ e2.5 ensures that Hk − 1 > 1.5 + o(1).

Finally, to construct the streaming instance of Max Unique Coverage, each player j
inserts Sij into the stream iff i ∈ Dj . This means that, given a NO instance, every set Sij in
the stream has a distinct i; whereas given a YES instance, there exists a collection of ℓ = k

sets in the stream all indexed by i∗, the unique integer contained in all D1, . . . , Dk. This
results in the optimal unique coverages for the NO and YES instances as required.

5.2 Proof of Theorem 5.1
We show a reduction from Disj to Max Unique Coverage. Assume without loss of
generality that the sets Dj are padded so that |D1∪ · · ·∪Dk| ≥ m/4 ≥ m/k2 holds for k ≥ 2.

Construction of Max Unique Coverage Instance. First, the players define the Max
Unique Coverage universe as U = U1 ∪ · · · ∪ Uk, where U1, . . . , Uk are k disjoint sub-
universes such that |Ut| = k(k−1)⌈a/t⌉. Observe that, as per the assumption in Theorem 5.1,
we have n = |U | =

∑k
t=1 |Ut| = k(k − 1)

∑k
t=1 ⌈a/t⌉.

The players now construct the Max Unique Coverage sets so that they satisfy the
properties given in the overview. For each i ∈ [m] and t ∈ [k], the players define Ũ it ⊆ Ut as
an independent and uniformly chosen random subset of size qt = (k − t)/(k − 1) proportion
of Ut; they then independently and uniformly-at-random partition Ũ it into k equally sized
sets, P it,1, . . . , P it,k; the players agree on all of these choices using public randomness. For
example, the players obtain a common random permutation of Ut and pick the corresponding
parts in order. Note that Ũ it can be divided into k equal sets since |Ũ it |/k is an integer, viz.

|Ũ it |
k

= qt|Ut|
k

= (k − t)k(k − 1)
k(k − 1)

⌈a
t

⌉
= (k − t)

⌈a
t

⌉
.
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Then, for each i ∈ [m], each player j defines their set Sij such that, for each t ∈ [k], it covers
the jth set in the partition of Ũ it , namely P it,j ; and it covers all of Ut \ Ũ it . More precisely,

Sij =
k⋃
t=1

[
P it,j ∪ (Ut \ Ũ it )

]
.

Observe Claim 5.2, which we use in Claim 5.4 later.

▷ Claim 5.2. For each i ∈ [m], j ∈ [k], and t ∈ [k], Sij covers t/k proportion of Ut.

Proof. The proportion of Ut that Sij covers is |Sij ∩Ut|/|Ut|, which we prove to be t/k below.

|Sij ∩ Ut|
|Ut|

=
|P it,j |
|Ut|

+ |Ut \ Ũ
i
t |

|Ut|
= |Ũ it |
k|Ut|

+ |Ut \ Ũ
i
t |

|Ut|
= qt
k

+ 1− qt

= k − t
k(k − 1) + 1− k − t

k − 1 = k − t
k(k − 1) + t− 1

k − 1

= k − t+ kt− k
k(k − 1) = kt− t

k(k − 1) = t(k − 1)
k(k − 1) = t

k
. ◁

To complete the construction, each player j inserts set Sij into the stream iff i ∈ Dj .
There are Θ(m) sets inserted into the stream since m/4 ≤ |D1 ∪ · · · ∪Dk| ≤ m.

Upper Bound on Optimal Unique Coverage in a NO Instance. Next, we prove Lemma 5.3,
which implies the required upper bound on the optimal unique coverage in a NO instance.
We say that a collection Ldi = {Si1j1

, . . . , Siℓjℓ
} with distinct i1, . . . , iℓ is a player-distinct

collection; we also say that Ldi is feasible if it contains at most k sets. Note that in the Max
Unique Coverage instance generated from a NO instance of Disj, every feasible solution
is a player-distinct collection. Thus, it suffices to upper bound the unique coverage of every
feasible player-distinct collection.

▶ Lemma 5.3. With probability at least 0.95, every feasible player-distinct collection Ldi
satisfies |ψ̃(Ldi)| < ak2(3/2 + 3/

√
2k).

Proof. First, we upper bound E[|ψ̃(Ldi)∩Ut|] for every feasible player-distinct collection, Ldi,
and for every sub-universe Ut (Claim 5.4), then we use Hoeffding’s inequality to prove an
upper bound on |ψ̃(Ldi) ∩ Ut| that with high probability, holds simultaneously for every Ldi
and Ut (Claim 5.5). Summing the bound in Claim 5.5 over all k sub-universes suffices.

For a feasible player-distinct collection Ldi, let Xx,Ldi be the random variable such that
Xx,Ldi = 1 if element x ∈ ψ̃(Ldi), and Xx,Ldi = 0 otherwise. This means that for each
sub-universe Ut, we have

|ψ̃(Ldi) ∩ Ut| =
∑
x∈Ut

Xx,Ldi ; and so |ψ̃(Ldi)| =
k∑
t=1

∑
x∈Ut

Xx,Ldi . (11)

▷ Claim 5.4 (*). For each feasible player-distinct Ldi of ℓ ∈ [k] sets and each sub-universe
Ut, it holds that E

[
|ψ̃(Ldi) ∩ Ut|

]
≤ k(a+ t)ℓ (1− t/k)ℓ−1.

▷ Claim 5.5 (*). With probability at least 0.95, for every feasible player-distinct Ldi of
ℓ ∈ [k] sets and every sub-universe Ut, it holds that

|ψ̃(Ldi) ∩ Ut| < k(a+ t)ℓ
(

1− t

k

)ℓ−1
+ k(a+ t)

(2t)1/2 .
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Finally, summing the inequality of Claim 5.5 over the k sub-universes gives an upper
bound on |ψ̃(Ldi)| that holds simultaneously for every feasible player-distinct collection Ldi
with high probability. We finalize the proof of Lemma 5.3 in Claim 5.6.

▷ Claim 5.6 (*). With probability at least 0.95, |ψ̃(Ldi)| < ak2
(

3/2 + 3/
√

2k
)

. ◀

Lower Bound on Optimal Unique Coverage in a YES Instance. Lemma 5.7 supports the
required lower bound on the optimal unique coverage in a YES instance.

▶ Lemma 5.7. For all i, collection Lid = {Si1, . . . , Sik} satisfies |ψ̃(Lid)| ≥ ak2(Hk − 1).

Proof. For each t ∈ [k], Lid uniquely covers |Ũ it | by construction. Below, the inequality
holds since |Ut| = k(k − 1)⌈a/t⌉ ≥ ak(k − 1)/t.

|ψ̃(Lid)| =
k∑
t=1
|Ũ it | =

k∑
t=1

qt|Ut| ≥
k∑
t=1

k − t
k − 1

ak(k − 1)
t

=
k∑
t=1

k − t
t

ak

= ak

k∑
t=1

(
k

t
− 1
)

= ak

(
k

k∑
t=1

1
t
− k

)
= ak2 (Hk − 1) . ◀

To conclude, when the players reduce from a NO instance of Disj, with probability at
least 0.95, the optimal unique coverage is less than ak2(3/2 + 3/

√
2k), since the streamed

sets are player distinct and by Lemma 5.3; whereas when they reduce from a YES instance,
the optimal unique coverage is at least ak2(Hk − 1) since the sets Si∗1 , . . . , S

i∗

k are in the
stream and by Lemma 5.7. The required optimal unique coverage in a NO instance fails with
probability at most 0.05. Let α = (3/2 + 3/

√
2k)/(Hk − 1). Given a randomized O(s)-space

α-approximation streaming algorithm with failure probability at most 0.05, the players can
run this algorithm on the Max Unique Coverage instance to distinguish between a NO
or YES instance with failure probability at most 0.1. This implies a protocol for Disj with
maximum message size O(s). Thus, a constant-pass randomized α-approximation streaming
algorithm with success probability at least 0.95 requires Ω(m/k2) space.

6 Subsampling for the Data Stream

Here we outline the subsampling approach from [15]. Given a data stream instance of Max
Unique Coverage, it is possible to construct a number of subsampled instances by sampling
the universe U at varying rates. By running an algorithm on these subsampled instances in
parallel, we lose only a small error in approximation w.h.p. while only needing to store sets
of size O(k logm/ε2). We summarize the overall approach in Lemma 2.1 and give a proof
sketch.

Proof Sketch of Lemma 2.1. Given an instance of Max Unique Coverage with universe
U and collection o sets V, let v be a guess of the optimal solution value; each subsampled
instance corresponds to some value of v (we calculate these guesses shortly). Let h : U →
{0, 1} be a hash function that is Ω(k logm/ε2)-wise independent such that

Pr[h(x) = 1] = p = ck logm
ε2v

,

where c is a sufficiently large constant. Let U ′ = {x ∈ U : h(x) = 1} be the subsampled
universe, S′ = S ∩ U ′, V ′ = {S′ : S ∈ V} be the subsampled subsets, and OPT′ be the
optimal unique coverage in the subsampled instance. Further, let B′ be a solution from V ′
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and B be the corresponding solution from the original collection V. Then Lemma 6.1 below
(a restatement of [15, Lemma 23]) shows that, in a subsampled instance where v ≤ OPT,
w.h.p., the loss in approximation is at most 2ε.

▶ Lemma 6.1 ([15], Lemma 23). If v ≤ OPT, then with probability at least 1− 1/poly(m),
we have that

(1 + ε)pOPT ≥ OPT′ ≥ (1− ε)pOPT .

Furthermore, for some α ∈ (0, 1), if B′ ⊆ V ′ satisfies |ψ̃(B′)| ≥ α(1 − ε)pOPT, then
|ψ̃(B)| ≥ (α− 2ε)OPT.

We guess v = 2i for each i ∈ [⌈log2 n⌉] and construct a subsampled instance for each v in
parallel. Then, in the particular subsampled instance where OPT/2 ≤ v ≤ OPT, Lemma 6.1
implies the following upper bound on every set size |S′| with probability 1− 1/ poly(m).

|S′| ≤ OPT′ ≤ (1+ε)pOPT = (1+ε)ck logm
ε2v

OPT ≤ (1+ε)2ck logm
ε2 = O

(
k logm
ε2

)
.

To ensure that we only ever store sets of size O(k logm/ε2), we terminate every subsampled
instance that contains a set S′ with |S′| > (2ck logm/ε2)(1 + ε). W.h.p., this does not
terminate the subsampled instance where OPT/2 ≤ v ≤ OPT by the above upper bound on
|S′| for every S′ in this particular instance.

This means that, out of the nonterminated subsampled instances, we should select the one
with the smallest v and return the corresponding solution, giving an (α− 2ε)-approximation
for the original instance w.h.p. (this works even if the smallest nonterminated guess satisfies
v < OPT/2 since Lemma 6.1 holds for all v ≤ OPT).

The overall space complexity, ⌈log2 n⌉ · s ·O(k logm logn/ε2), follows from the number
of guesses of v and, for each guess, the algorithm storing at most s sets of size O(k logm/ε2)
and using O(logn) bits to store each element. ◀

7 Conclusions

We are pleased to present a suite of algorithms, and a streaming lower bound, for Max
Unique Coverage. The component algorithms that build a solution to Max Unique
Coverage from a solution to Max Coverage serve to support a fixed-parameter tractable
approximation scheme (FPT-AS). The lower bound shows that Ω(m/k2) space is required
even to get within a (1.5 + o(1))/(ln k − 1) factor of optimal.

A plasuible future direction would be to reduce, or indeed eliminate, the role of the upper
bound on the unique coverage ratio, ϕ, in the kernel size in a FPT-AS. This would match
the kernel size used in existing FPT-ASs for Max Coverage, but may not be possible due
to the inherent hardness of Max Unique Coverage. Another direction would be proving a
streaming lower bound with a tighter approximation threshold. This may require a reduction
from a different communication problem, rather than the renowned k-player Set Disjointess.
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