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Abstract
Estimating the size of the union of a stream of sets S1, S2, . . . , SM where each set is a subset of a
known universe Ω is a fundamental problem in data streaming. This problem naturally generalizes
the well-studied F0 estimation problem in the streaming literature, where each set contains a
single element from the universe. We consider the general case when the sets Si can be succinctly
represented and allow efficient membership, cardinality, and sampling queries (called a Delphic
family of sets). A notable example in this framework is the Klee’s Measure Problem (KMP), where
every set Si is an axis-parallel rectangle in d-dimensional spaces (Ω “ r∆s

d where r∆s :“ t1, . . . , ∆u

and ∆ P N). Recently, Meel, Chakraborty, and Vinodchandran (PODS-21, PODS-22) designed a
streaming algorithm for pϵ, δq-estimation of the size of the union of set streams over Delphic family
with space and update time complexity O

´

log3 |Ω|

ε2 ¨ log 1
δ

¯

and rO
´

log4 |Ω|

ε2 ¨ log 1
δ

¯

, respectively.
This work presents a new, sampling-based algorithm for estimating the size of the union of

Delphic sets that has space and update time complexity rO
´

log2 |Ω|

ε2 ¨ log 1
δ

¯

. This improves the space
complexity bound by a log |Ω| factor and update time complexity bound by a log2

|Ω| factor.
A critical question is whether quadratic dependence of log |Ω| on space and update time com-

plexities is necessary. Specifically, can we design a streaming algorithm for estimating the size of
the union of sets over Delphic family with space and complexity linear in log |Ω| and update time
polyplog |Ω|q? While this appears technically challenging, we show that establishing a lower bound
of ωplog |Ω|q with polyplog |Ω|q update time is beyond the reach of current techniques. Specifically,
we show that under certain hard-to-prove computational complexity hypothesis, there is a streaming
algorithm for the problem with optimal space complexity Oplog |Ω|q and update time polyplogp|Ω|qq.
Thus, establishing a space lower bound of ωplog |Ω|q will lead to break-through complexity class
separation results.
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1 Introduction

The past three decades bear witness to significant developments in the field of data streaming.
The widespread adoption of computing systems has led to the era of big data, wherein the
ubiquity of sensors has allowed the collection of a large amount of data. Consequently, the
data streaming model and the design of algorithms that balance time and space efficiency in
this model are of significant interest to theoreticians and practitioners alike.

In this paper, we focus on one of the fundamental problems in data streaming: Given
a stream of sets S1, S2, . . . SM where each Si is a subset of a universe Ω, output an pε, δq-
estimate (see the Definition 5) of the size of the union of the sets, that is, |

Ť

i Si|. Note that
when sets are singletons, the problem boils down to the estimation of the zeroth frequency
moment (F0) of the stream of items and is well-studied in streaming literature. In particular, a
long line of work culminated in the development of algorithms for F0-estimation with optimal
space complexity Oplog |Ω| ` 1

ε2 q and Op1q update time complexity [16] (for a constant error
probability δ). In this work, we will focus on the Delphic family of sets which is a general
framework for computational problems over abstract sets.

▶ Definition 1 (Delphic family). Let Ω be a discrete universe. A set S Ď Ω belongs to a
Delphic family1 if the following queries can be done in Oplog |Ω|q time: (1) Membership:
Given any x P Ω check if x P S, (2) Cardinality: Determine the size of S, that is |S|, (3)
Sampling: Draw a uniform random sample from S.

The notion of the Delphic family is general enough to capture several well-known problems,
such as Klee’s Measure Problem (KMP) [23, 25], test coverage estimation, and DNF counting.
For example, the streaming version of Klee’s Measure Problem (KMP) refers to the case
where the sets in a stream are represented by an axis-parallel rectangle in r∆sd where ∆
is a natural number. KMP is a naturally occurring and fundamental topic that has been
extensively researched in computational geometry [4, 6, 8, 10, 9, 12, 14, 17, 21]. While
Delphic Sets was coined in [19], the notion has been implicit in prior work stretching to the
early 1980’s. We are interested in designing streaming algorithms for estimating the size of
the union of sets over a Delphic family. We also call this problem F0 estimation problem
over Delphic sets.

▶ Problem 2. Given a stream S “ xS1, S2, . . . , SM y wherein each Si Ď Ω belongs to a

Delphic family, and 0 ă ε ă 1 output an pε, 1{3q2 approximation of F0pSq :“
ˇ

ˇ

ˇ

ˇ

M
Ť

i“1
Si

ˇ

ˇ

ˇ

ˇ

.

1 As observed in [18], every Delphic set can be represented by a circuit of size Oplog |Ω| log log |Ω|q.
2 c is pε, 1{3q approximation of F0pSq if PrrF0pSqp1 ´ εq ď c ď F0pSqp1 ` εqs ě 2{3. Note that the choice

of 1{3 is arbitrary. The probability 1{3 can be boosted to an arbitrary δ by using standard boosting
technique.
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26:2 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

Table 1 In the table n :“ log |Ω|, m :“ log M and c :“ Op1q. The Big-Oh notation (O) in the
above comparison table shows only dependency on n and m and hides the polyp1{ε, 1{δq factors on
ε and δ.

Comparison of Complexity Bounds with Previous Works

Algorithm Technique Type Set Type Space Complexity Update Time

[22] Hashing based KMP d “ 1 Opε´2
¨ nq Opnq

[25] Hashing based KMP d ě 2 Opε´1
¨ d ¨ nq

c Opnd
q

[19] Sampling based Delphic Opε2
¨ m ¨ nq Opε2

¨ log m ¨m2
¨nq

[18] Sampling based Delphic Opε´2
¨ n3

q Opε´2
¨ n4

q

This Paper Sampling based Delphic Opε´2
¨ n2

q Opε´2
¨ n2

q

The design goal is to optimize the algorithm’s update time and space complexity, wherein
the update time complexity refers to the amount of time spent processing an item (a set in
our case) of the stream.

1.1 Prior Work and Technical Challenges

Since the work of Alon, Matias, and Szegedy [1], streaming algorithms gained considerable
interest from algorithm design community. However, the problem of estimating distinct
elements in a stream of items has been investigated prior to the work of [1]. In particular,
the seminal work of Flajolet and Martin [11] pioneered a sketching-based framework for
streaming algorithms for the case wherein every element of the stream is a singleton. The
sketching-based techniques crucially rely on the use of pairwise independent hash functions.
In the early 2000s, the sketching-based approach emerged as a principal technical tool in
the design of streaming algorithms. Particularly for F0 estimation of single-item streams, a
series of hash-function-based algorithms led to the development of both space-efficient and
update-time optimal algorithms [16, 5].

F0 estimation over set streams has garnered interest from researchers due to the natural
extension from singletons to sets. Notably, Pavan and Tirthapura [22] and Sun and Poon [24]
explored range-efficient F0 estimation, which addresses a specific case of the KMP in one
dimension. For the broader KMP, Tirthapura and Woodruff [25] developed an algorithm
with optimal space complexity. However, the update time for their algorithm was Op|Ω|q,
which is exponential in terms of set representation. Subsequently, Pavan, Vinodchandran,
Bhattacharyya, and Meel [23] proposed an alternative technique, yet it similarly faced an
update time complexity of Op|Ω|q.

All the above-mentioned algorithms employed hash function based approaches and failed
to yield an algorithm with update time complexity polynomial in representation of sets for
the general case of Delphic sets. The primary technical barrier to such approaches arises from
the fact that sketching-based techniques crucially rely on checking whether for a function h,
randomly chosen from a pairwise independent hash family, there exists an element x P Si

such that hpxq “ 0. Nevertheless, whether a pairwise independent hash family exists that
supports such checking in time polyplog |Ω|q is unknown.

In [19], the authors introduced a sampling-based technique for F0 estimation that eschews
traditional hash functions. Their method involves maintaining a bucket X , where each stream
element is selected independently with probability p. To handle element repetitions, new
elements from a set Si replace those in X , with all elements in Si sampled independently
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at the same probability p. To manage the bucket’s size, elements are discarded with a
probability of 1{2 once a threshold based on ε´1 is reached, halving p simultaneously. This
approach yields a space complexity of Õ

´

log |Ω|¨log M
ε2

¯

, with a logarithmic dependence on the
stream size M . In a subsequent work [18], the authors modified this approach by allowing
p to vary, not just decrease. Each tuple in X then included the element and its sampling
probability at arrival. This adjustment removed the dependency on M , leading to space
complexity of Õ

´

log3
|Ω|

ε2

¯

and update time complexity of Õ
´

log4
|Ω|

ε2

¯

. This contrasts with
the optimal algorithm for singleton sets Si by Kane, Nelson, and Woodruff, which has a
space complexity of Oplog |Ω| ` 1

ε2 q.
The above-mentioned line of research leads to the following significant open question:

Can we design algorithm for F0 estimation over Delphic sets with space complexity
Oplog |Ω|q and update-time complexity polyplog |Ω|q (ignoring dependency on ε and δ)?

Remark: We note that if we have no restriction on the update time complexity, then the
problem over Delphic sets reduces to F0 estimation of singleton streams: when a set Si

arrives, we can cycle through all elements in the universe Ω and use membership testing
only to stream elements of Si. This leads to an algorithm with optimal space complexity of
O
`

logp|Ω|q ` ε´2˘ but with update time that depends linearly on |Ω|. An asymptotic lower
bound of Ω

`

logp|Ω|q ` ε´2˘ is known for the space complexity [15, 1].
It is worth observing that if we were to follow the approach suggested in [19, 18], then

ensuring that the value of p at least 1
ε2¨F0pSq

with sufficiently high probability does entail the
space complexity of Õp

log3
|Ω|

ε2 q. Therefore, an improvement in space complexity must require
a new approach.

1.2 Our Results
As our first contribution, we report progress towards the above question. In particular, we
establish the following:

▶ Theorem 3 (Main Theorem). There is a streaming algorithm that given a stream S “

xS1, S2, . . . , SM y wherein each Si belongs to Delphic family, and 0 ă ε ă 1 outputs an

pε, 1{3q-estimation of
ˇ

ˇ

ˇ

ˇ

ŤM
i“1 Si

ˇ

ˇ

ˇ

ˇ

with space complexity O
´

log2
|Ω|

ε2 ¨ log 1
ε

¯

and update time

complexity O
´

log2
|Ω|

ε2 ¨ log3 1
ε

¯

.

The above theorem improves the space complexity by a factor of log |Ω| and the update
time complexity by a factor of log2

|Ω|. We note that for special cases such as KMP, we
can bring the update time complexity factor of log3 1

ε to log 1
ε , resulting in update time

complexity of O
´

d2 log2 ∆
ε2 ¨ log 1

ε

¯

where Ω “ r∆sd.
Theorem 3 leads to the natural question of whether further improvement is possible

towards solving the open question of designing a streaming algorithm for F0 estimation over
Delphic sets with space complexity O plog |Ω|q (ignoring the dependence on ε and δ) and
update time complexity significantly smaller than |Ω|. This seems hard and will require
new techniques: since storing a single element takes Oplog |Ω|q space implies that one can
only store a constant number of elements at any point of time. This appears to be a major
technical restriction for sampling-based approaches like our algorithm in Theorem 3 and
we even conjecture that ωplog |Ω|q space is required if we restrict the update time to be
polyplog |Ω|q. Unfortunately, establishing such a lower bound has a major computational

APPROX/RANDOM 2024



26:4 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

complexity bottleneck. In particular, we show that establishing a lower bound on space
other than the lower bound known for computing F0 for singleton streams will lead to major
separation result in computational complexity.

NTISP(poly,LINSPACE) is the class of language accepted by non-deterministic Turning
machines in polynomial time and linear space simultaneously. Likely, DTISP(poly,LINSPACE)
is the class of languages accepted by deterministic Turing machines in polynomial time and
linear space simultaneously. Whether or not NTISP(poly, LINSPACE) = DTISP(poly,
LINSPACE) is an open problem in complexity theory. If NTISP(poly,LINSPACE) =
DTISP(poly,LINSPACE) then P=NP. The other implication is yet to be discovered. However,
separating NTISP(poly, LINSPACE) from DTISP(poly,LINSPACE) is a hard open question.
The best-known lower bound for time-space complexity classes is that SAT (which is in
NTISP(poly,LINSPACE)) cannot be solved in DTISP(n1.8, opnq) [26]. Any improvement on
this will be a major result in complexity theory. We show the following:

▶ Theorem 4. There is a streaming algorithm, DelphicWithNP, that given, a stream S “

xS1, ¨ ¨ ¨ , SM y, where each set Si Ď Ω is a member of a Delphic family, 0 ă ε, and an oracle
access to a language belonging to NTISP(poly,LINSPACE), computes a pε, 1{3q-approximation
of F0pSq. Moreover, DelphicWithNP has the following properties:
(1) it takes Oplog |Ω| ¨ ε´2q space and polyplog |Ω|, 1

ε q update time,
(2) the queries it makes to the oracle are of size Oplog |Ω| ¨ ε´2q .

Thus, if NTISP(poly,LINSPACE) = DTISP(poly,LINSPACE), there is an algorithm
(without oracle calls) for pε, 1{3q-estimation of F0 of a set stream over Delphic family with
Oplog |Ω| ¨ ε´2q space and polyplog |Ω|, 1{εq update time.

Thus, for constant ε, we get a space optimal algorithm for estimating F0 over Delphic set
streams as log |Ω| space is required even in the singleton case. In fact, the above theorem is
true for a very relaxed version of Delphic sets where we only require one of the conditions
for membership in Delphic sets to be decided in time linear in the representation of the set.
Theorem 4 implies that establishing a space lower bound of ωplog |Ω|q for estimating F0pSq

of Delphic set streams with polyplog |Ω|q will lead to proving NTISP(poly,LINSPACE) ‰

DTISP(poly,LINSPACE), thus resolving a significant lower bound in complexity theory.
Our work leaves a tantalizing open question:

What is the optimal space complexity for F0 estimation of set streams over
Delphic family with polyplog |Ω|q update time complexity?

1.3 Technical Overview
Key Ideas for Theorem 3
The high-level idea is to maintain a bucket for every level k P t1, . . . , log |Ω|u such that the
bucket, X pkq, at level k consists of elements from

Ť

i Si that were independently selected with
a probability of 2´k. To handle repetitions, i.e., when a new set Si arrives, we remove all the
elements of X pkq that are present in Si. This process ensures that the event of an element s

being in X pkq at the end of the stream depends only on whether s was independently chosen
from the set Si, where Si is the last set containing s, and there is no Sj with j ą i such that
s P Sj .

To bound the space complexity, we establish a threshold, denoted by thresh, limiting
the maximum size of the bucket. Whenever |X pkq| “ thresh, no additional elements can
be added to X pkq (i.e., we must wait until some elements are removed from X pkq). We set
thresh :“ O

` 1
ε2

˘

. Note that storing any element requires Oplog |Ω|q space, and thus storing
thresh log |Ω| elements necessitates O

´

log2
|Ω|

ε2

¯

space.
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The key technical insight from [19] is that if thresh “ O
´

log M
ε2

¯

, it can be demonstrated
that, with sufficiently high probability and for k ą logpF0pSqq, X pkq would not be full (i.e.,
|X pkq| ă thresh) at all times. Furthermore, in [18], it was observed that thresh “ O

´

log |Ω|

ε2

¯

,
then it can be demonstrated that, with sufficiently high probability and for k ą logpF0pSqq,
X pkq would not be full (i.e., |X pkq| ă thresh) when an element s P

Ť

i Si appears for the last
time in a stream.

The major technical advancement in our analysis hinges on a crucial observation: while
it is plausible for X pkq to be full when an element s makes its final appearance in the stream,
the resulting relative error of our estimator |X pkq| ¨ 2k remains manageable even when k

is approximately logarithmic in the order of magnitude of the size of the stream, that is
k „ logpF0pSqq. The ensuing technical analysis is complex due to its dependence on a
meticulous formulation of significant events and the construction of a sum of products of
random variables. We introduce two sets of random variables, denoted as X

pkq

i,r and Y
pkq

i,r .
The random variable X

pkq

i,r indicates whether an element is sampled from the j-th set Sj

in the stream. The random variables Y
pkq

i,r indicate whether a set of sampled elements is
included in the buckets. We then define a series of random variables Z

pkq
r , dependent on

the aforementioned random variables X
pkq

i,r and Y
pkq

i,r . To leverage concentration inequalities
effectively, we maintain a collection of O

`

1{ε2˘ buckets at each level k. Additionally, we set
the size of each bucket to be O plogp1{εqq. At the end of the stream, for each level k, we
calculate the average number of elements in the buckets at that level, denoted as Z

pkq.
Finally, it is important to note that our technical analysis only ensures that the relative

error is small for k « logpF0pSqq. Since F0pSq is unknown a priori, we must identify a method
to choose an optimal k˚ for returning the final estimate Z

pk˚
q

¨ 2k˚ . A key observation is
that Z

pkq is less than 1 for k ąą logpF0pSqq. Therefore, finding the largest k for which Z
pkq

exceeds 1 should suffice.

Key Ideas for Theorem 4
The main idea is to adapt one of the standard hashing-based algorithms (e.g., Gibbons and
Tirthapura’s algorithm) for F0 estimation for singleton streams that takes O

`

log |Ω| ¨ 1
ε2

˘

space. The algorithm starts with picking a hash function h from a pairwise independent
family and keeps a bucket X which is initially set to empty and has a capacity of O

` 1
ε2

˘

. The
computational challenge is to implement the update step. For this, when a new set S comes,
we need to add all elements x P S so that the first m bits of hpxq are all 0s for a variable m

that the algorithm keeps. If the addition of these elements makes the bucket X overflow,
m is incremented and deletes all elements X with m ` 1st bit of hash value is non-zero.
The main computational challenge is to implement this step. However, we show how this
step can be implemented by making linear size queries to disjoint union of two languages
in NTISP(poly,LINSPACE). Thus if NTISP(poly,LINSPACE) = DTISP(poly,LINSPACE),
then queries to this language can be simulated in space Oplog |Ω| ¨ 1

ε2 q and update time
polyplog |Ω|, ε´1q.

1.4 Paper Organization
The remainder of this paper is structured as follows. Section 2 introduces key notations and
fundamental concepts. In Section 3, we present our primary Algorithm 2 for Delphic sets
with WOR sampling, along with its correctness analysis. Subsequently, in subsection 3.2, we

APPROX/RANDOM 2024



26:6 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

present the algorithm for the general Delphic set. Section 4 contains the proof of Theorem 4.
The appendix is divided as follows: Section A presents the concentration bounds used in
the correctness analysis; Section B provides the missing proofs for Proposition 15; Section
C details the algorithm for KMP along with its correctness analysis; and finally, Section D
offers some basic probability results.

2 Preliminaries

2.1 F0-Estimator and Klee’s Measure Problem
For a stream of sets, S :“ xS1, S2, . . . , SM y where each set in the stream is a subset of Ω,
recall that we denote by F0pSq the size of the union of the sets: F0pSq “

ˇ

ˇ

ˇ

ŤM
j“1 Sj

ˇ

ˇ

ˇ

▶ Definition 5. A random variable X is an pε, δq-approximation of c if Prrp1 ´ εqc ď X ď

p1 ` εqcs ě p1 ´ δq. We also simply write the event p1 ´ εqc ď X ď p1 ` εqc as X “ p1 ˘ εqc

(or X ‰ p1 ˘ εqc to denote the complement event).

Finally an F0-estimator is a streaming algorithm that on input ε, δ P p0, 1q and access to
a stream of set S :“ xS1, S2, . . . , SM y outputs an pε, δq approximation of F0pSq.

There are two main complexity measures that we are interested about an F0-estimator -
space complexity and update time complexity. The space complexity is the amount of work
space needed by the algorithm. The update time complexity is the amount of time spent by
the algorithm for processing a single set in the stream. The goal is to design an F0-estimator
while trying to minimize both the space complexity and the update time complexity of the
algorithm.

The notion of Delphic sets captures several well-known problems, such as Klee’s Measure
Problem, which we define below.

Let ∆ be a natural number, consider the following set r∆s “ t1, 2, . . . , ∆u. A d-dimensional
axis-aligned rectangle r over r∆sd is a subset of r∆sd, succinctly represented by the tuple
pa1, b1, ¨ ¨ ¨ ad, bdq, and contains all the tuples tpx1, . . . , xdqu where ai ď xi ď bi and xi P r∆s.
Formally, we write r “ tpx1, x2, . . . , xdq : ai ď xi ď bi, xi P r∆s for all i P rdsu

▶ Definition 6 (Klee’s Measure Problem (KMP) in Streaming Setting). Given a stream R
of size M such that R “ xr1, r2, ¨ ¨ ¨ rM y, where each item ri is a d-dimensional rectangle,
compute a pε, δq-approximation of

ˇ

ˇ

ˇ

ŤM
i“1 ri

ˇ

ˇ

ˇ
.

Note that KMP is a special case of Problem 2 since set of d-dimensional axis-aligned rectangles
over r∆sd forms a Delphic family.

2.2 Notations
For any positive integer k, we write rks “ t1, 2, . . . , ku. In the rest of this paper, we will
assume that S :“ xS1, S2, . . . , SM y is a stream of sets, where each set is a subset of universe
Ω, i.e., Sj Ď Ω for all j P rM s. We denote by sj :“ |S1| ` ¨ ¨ ¨ ` |Sj | for all j P rM s and
s0 :“ 0. We write s :“ sM to denote the total number of elements counting with repetition
that appeared in the stream S. For j P rM s, let Ij “ tsj´1 ` 1, sj´1 ` 2, . . . , sju, the set Ij

denotes the indices of elements in the set Sj . Note that Ij ’s are disjoint and
M
Ť

j“1
Ij “ rss.

Clearly, for every i P rss, we can assign a streaming-index j :“ jpiq (which is unique) such
that i P Ij .
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Although, total order of the elements on Ω is not needed for our algorithms, we will assume
an ordering of the elements of Ω; this will help us in the presentation of the correctness proofs
of the algorithm. We can open the set stream into element streams and write a sequence
xx1, . . . , xsy, where Sj “ txi : i P Iju, xsj´1`1 ă ¨ ¨ ¨ ă xsj @j P rM s. For any k P r|Sj |s we
will denote by Sjrks to the element xsj´1`k.

At any point, say after the sets S1, . . . , Sj have arrived in the stream and for any element
x in the stream xx1, . . . , xsj

y, that is, the stream we have seen till now, we will be interested
in the last time the element appeared in the stream. The set of indices in rsj´1s that contains
the last appearance of any element is called the set of final indices with respect to jth set Sj

and is denoted by Fj .
More formally, let j P rM s be a stream index. We call i ď sj´1 a final index with respect

to jth set Sj if xi R txi`1, . . . , xsj
u. Let

Fj “ ti ď sj´1 : i is a final indices w.r.t. jth set Sju.

When j “ 1, the set F1 “ H.
Now we make the following simple but valuable observations:

▶ Observation 7.
1. For all j P rM s, (i) Fj and Ij are disjoint i.e., Fj X Ij “ H and (ii) txi : i P Fju is

disjoint from Sj.
2. txi : i P Fju \ Sj Ď S. The equality occurs for j “ M , i.e., txi : i P Fu “ S where

F “ FM \ IM . Note, |F | “ F0pSq.
3. For all j P rM ´ 1s, Fj`1 Ď Fj \ Ij.

2.3 Delphic Family with WOR Sampling
The definition of Delphic Sets (Definition 1) allows one to draw a uniform random sample
from a Delphic Set S. However, if one needs to uniformly draw a set of k distinct samples
from S, the only option is to draw independent samples from S until one gets k distinct
samples. One can use the coupon collector theorem to ensure that with high probability, one
has to draw at most Opk log kq samples. Nevertheless, this “high probability” statement may
not be sufficient if one has to repeat this process multiple times - a slightly more involved
calculation may be necessary.

One way of dealing with this issue is assuming one is allowed to draw samples “without
replacement (WOR)”. Formally, we define a Delphic family with WOR sampling as follows:

▶ Definition 8 (Delphic family with WOR sampling). A set S Ď Ω belongs to the Delphic
family with WOR sampling if the following queries can be done:
(1) know the size of the set S, in Oplog |Ω|q time
(2) given any x check if x P S, in Oplog |Ω|q time
(3) for any k ď |S|, we can draw in Opk log |Ω|q time a uniformly random subset S of size k.

Note that, in contrast to Definition 8, the original Delphic family (Definition 1) can be
called “Delphic family with WR sampling”, where WR stands for “with replacement”.

2.4 Random Processes and Distributions
We will be drawing samples according to different distributions. All the distributions are
standard in the literature. The following are the distributions we will be using in this paper.
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▶ Definition 9 (Binomial Distribution). Given any n P N and any p P r0, 1s the Binomial
Distribution over the set of integers t0, 1, 2, . . . , nu is denoted as Binpn, pq where probability
of a number 0 ď k ď n is

`

n
k

˘

pkp1 ´ pqn´k.

▶ Definition 10 (Bernoulli Process). Given any finite set S and any p P r0, 1s, a Bernoulli
sample of probability p for the set S is denoted as BerpS, pq such that every element x P S is
picked with probability p. If X denotes the sampled subset of S with probability p then for
any set T Ď S, PrpX “ T q “ p|T |p1 ´ pq|S|´|T |.

By abuse of notation, we will use Berppq to denote the distribution over t0, 1u where
the probability of 1 is p. So, the Bernoulli process is nothing but independent copies of the
Bernoulli distribution where 1 (or 0) represents that the element is picked (or not picked
respectively).

Clearly, if X „ BerpS, pq then |X| „ Binp|S|, pq. We now describe how to sample the
Bernoulli process. We first sample d „ Binp|S|, pq, then we sample d many elements, denoted
as T , in a without replacement (WOR) manner. Then, T „ BerpS, pq. One can sample
WOR through with replacement (WR) sampling (this is well-known as the coupon collection
problem). We have the following lemma using the coupon collector theorem (see Appendix D).

▶ Lemma 11. WRSamplepS, r, tq (Algorithm 1) outputs a subset L of the set S with the
following guarantee

With probability ě

´

1 ´ r
t

r log r `1
¯

the algorithm outputs a set of size r distinct samples,
each drawn uniformly from the set S.
With the remaining probability at most r

t
r log r `1 the algorithm outputs an empty set.

The maximum number of samples drawn from S is t.

Algorithm 1 WRSamplepS, r, tq.

1: Input Set S t, r P N
2: Initialize L “ H;
3: for 1 ď i ď t do
4: if |L| ă r then
5: Draw a random sample x from S (with replacement)
6: if x R L then L “ L Y txu

7: if |L| ‰ r then L “ H

8: Output L

3 F0-Estimator for Delphic sets

In this section, we prove Theorem 3. We prove it in two steps. In Section 3.1, we present
Algorithm 2 and prove that it is an F0-estimator for Delphic Sets with WOR sampling. Then,
in Section 3.2, we show how the Algorithm 2 can be modified to obtain an F0-estimator for
general Delphic Sets and hence prove Theorem 3.

3.1 Handling Delphic Sets with WOR sampling
In this section, we will prove the following theorem:
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▶ Theorem 12. If S is a stream of Delphic Sets with WOR sampling, then the Algorithm 2
is an pε, 1{3q-F0-estimator. Also, the space and update time complexity of Algorithm 2 is
O
´

log2
|Ω|

ε2 ¨ log ε´1
¯

.

Before we present the proof of the correctness of the algorithm and the analysis of its
complexities (in Section 3.1.1 and Section 3.1.2 respectively), we will give a brief description
of the algorithm.

Description of the Algorithm

Let 0 ă ε ď 1{2, and we set thresh :“ max
␣

18, rlog 2
ε s
(

and Reps “ 90{ε2. We will now give
an efficient F0-estimator for Delphic sets. At each level k, where k P t1, . . . , log |Ω|u, there is
a collection of Reps many buckets X pkq

r with r P t1, . . . , Repsu. Each bucket X pkq
r can contain

at most thresh many samples from the universe rns. At the beginning of the algorithm, all
the Reps many buckets in each level k is an empty set. Let the input stream S of Delphic
sets be the following: S :“ xS1, . . . , SM y, where Sj Ď Ω for all j P rM s. Note that we want

to estimate the size of the set S “
M
Ť

j“1
Sj . Suppose that our algorithm has already processed

the S1, . . . , Si from the stream and the buckets X pkq
r in each level k contains a sample of

elements from the set S. Now, our algorithm receives a new set Si`1 over the data stream.
Our algorithm will perform the following steps to process the new set Si`1:
Step 1: For each buckets X pkq

r , where k P rlog |Ω|s and r P rRepss, we will first begin by
removing all the elements in X pkq

r that are also present in the new set Si`1, see lines
6 to 9 from the Algorithm 2. Observe that the time complexity for this step will be
O
`

Reps thresh log2
|Ω|

˘

Step 2: Ideally, we would like to add an element from Si`1 independently with probability
2´k to each bucket X pkq

r , but this may not be possible as the size of each bucket is
thresh. To work around this problem, for each k P rlog |Ω|s and r P rRepss, we will first
sample d

pkq
r „ Binp|Si`1|, 2´kq. By slight abuse of notation, we will denote by |X pkq

r |

the current size of the bucket X pkq
r . If d

pkq
r ě thresh ´ |X pkq

r | then we will keep X pkq
r

unchanged. Otherwise, as Si`1 is a Delphic set with WOR sampling, we will sample
without replacement d

pkq
r many samples from Si`1 and add them to X pkq

r . See lines 10
to 13 from the Algorithm 2.

Once we have processed the whole stream S “ xS1, . . . , SM y, for all k P rlog |Ω|s, we will
calculate the average size Z

pkq of the buckets in each level k, (See lines 14 to 15 from
Algorithm 2) that is,

Z
pkq

“
1

Reps

Reps
ÿ

r“1
|X pkq

r |

Once all the averages have been computed for each level k P rlog |Ω|s the algorithm computes
the maximum k, let us call it k˚ for which Z

pk˚
q

ě 1. Finally, the algorithm outputs 2k˚

¨Z
k˚

.
See lines 16 to 17 from Algorithm 2.

3.1.1 Correctness of Algorithm 2 for Delphic Sets with WOR sampling
If we replace the lines 10-13 in Algorithm 2 by the following lines, then it is easy to see that
it functionally behaves identically.
10: Draw d

pkq
r from Binp|Sj |, 1{2kq
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Algorithm 2 [F0-Estimator for Delphic Sets with WOR sampling.]

1: Input Stream “ xS1, S2, . . . , SM y, ε, δ

2: Initialize
3: p Ð 1; thresh Ð maxtrlog 2{εs, 18u; Reps Ð r90{ε2s;
4: for (1 ď k ď log |Ω|) and (1 ď r ď Reps) do
5: X pkq

r Ð H;

Streaming Phase:
6: for j “ 1 to M do.
7: for (1 ď k ď log |Ω|) and (1 ď r ď Reps). do
8: for all s P X pkq

r do
9: if s P Si then remove s from X pkq

r

10: Draw d
pkq
r from Binp|Sj |, 1{2kq

11: if |X pkq
r | ` d

pkq
r ď thresh then

12: Lpkq
r is a set of d

pkq
r samples drawn from Sj WOR

13: X pkq
r “ X pkq

r Y Lpkq
r

Post-Streaming Phase:
14: for 1 ď k ď log |Ω| do.
15: Z

pkq
“ 1

Reps
řReps

r“1 |X pkq
r |

16: k˚ “ maxtk P rlog ns : Z
pkq

ě 1u

17: Output Z
pk˚

q
¨ 2k˚

11: Lpkq
r is a set of d

pkq
r samples drawn Sj WOR

12: if |X pkq
r | ` d

pkq
r ď thresh then

13: X pkq
r “ X pkq

r Y Lpkq
r

Note that the differences between the above lines and the lines in the Algorithm 2 is that
in the Algorithm 2 we do not sample the set Lpkq

r unless we are sure that we will use the
set Lpkq

r , that is the condition |X pkq
r | ` d

pkq
r ď thresh is satisfied. We do this in the actual

algorithm (more like a “lazy sampling”) to have better control on the worst-case update time
complexity. But, for the presentation of the proof of correctness of the theorem it is useful
to use the above three lines (instead of lines 10-13 in Algorithm 2) where we first sample
Lpkq

r and then decide whether to use it.
Let us consider the jth round of the streaming phase of the algorithm. That is when the

set Sj arrives in the stream. By the construction of the set Lpkq
r it follows that all elements

of Sj ’s are chosen in Lpkq
r independently with probability 2´k. For the sake of presentation,

let Lpkq

j,r denote the set Lpkq
r during the jth round of the streaming phase of the algorithm

3. Recall that the elements in the set Sj , that is, the elements xsj´1`1, . . . , xsj
and for any

i P rsjs we denote by jpiq the stream index such that i P tsjpiq´1 ` 1, . . . , sjpiqu (refer to the
notations in the Section 2.2). For any i P rsjs let us denote by X

pkq

i,r the random variable
that takes value 1 if xi is included in Lpkq

jpiq,r and 0 otherwise, that is, the element xi is in the
set Lpkq

r during the jth round of the streaming phase of the algorithm. Clearly, for any i, r, k

X
pkq

i,r
i.i.d.
„ Berp2´kq.

3 We ignore the streaming index j in the Algorithm 2 as we use the same state to update the random set
over different indices j.
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However, the random set is actually included in X pkq
r provided |X pkq

r | ` d
pkq
r ď thresh. To

indicate whether an element is actually included in X pkq
r we define the random variable Y

pkq

i,r ,
for any i P rsjs. We define the random variable Y

pkq

i,r as Y
pkq

i,r “ 1 if |X pkq
r | ` d

pkq
r ď thresh, 0

otherwise (i.e., xi is eventually included in X pkq
r if X

pkq

i,r Y
pkq

i,r “ 1).
Formally, the random variable Y

pkq

i,r can be defined recursively. First we note that since
in lines 8-9 (of Algorithm 2) we remove all the elements in X pkq

r that are in Sj , so at that
time (after line 9)

X pkq
r Ď

´

Y
j´1
k“1Sk

¯

zSj “ txi : i P Fju.

Thus the size of X pkq
r after line 9 is

ř

aPFj
X

pkq
a,r Y

pkq
a,r . Thus,

Y
pkq

i,r “

$

’

&

’

%

0 if
ÿ

aPFjpiq

Xpkq
a,r Y pkq

a,r `
ÿ

aPIjpiq

Xpkq
a,r ą thresh

1 otherwise.

Now, in the post-streaming phase, we set

Zpkq
r “

ÿ

iPF
X

pkq

i,r Y
pkq

i,r , @r P rRepss, Z
pkq

“
Z

pkq

1 ` ¨ ¨ ¨ ` Z
pkq

Reps
Reps .

Note that F denote the set of all final indices of the elements of S. Thus, Z
pkq
r ’s are the

sizes of the sets X pkq
r after processing the stream. Moreover, these are independent for all r

and k.

▶ Lemma 13. For any k such that thresh ě 6c where c :“ F0pSq

2k .

cp1 ´ 2´threshq ď EpZpkq
r q ď c (1)

VarpZpkq
r q ď cp1 ` 2´threshcq. (2)

Proof. The upper bound of expectation directly follows from the linearity of expectation.
For the lower bound, we first note that

PrpY pkq

i,r “ 0 | X
pkq

i,r “ 1q ď Pr

¨

˝

ÿ

aPFj

Xpkq
a,r Y pkq

a,r `
ÿ

aPIj

Xpkq
a,r ě thresh ` 1

ˇ

ˇ

ˇ

ˇ

ˇ

X
pkq

i,r “ 1

˛

‚

ď PrpBinpF0pSq ´ 1, pq ě threshq ď 2´thresh.

Note that the last inequality follows from Lemma 20. Thus, ExpX
pkq

i,r Y
pkq

i,r q “ PrpXpkq

i,r “

1, Y
pkq

i,r “ 1q ě pp1 ´ 2´threshq for all i. Hence, the lower bound is established by linearity of
expectation. To bound the variance, we first bound the second moment:

ExppZpkq
r q2q “ ExpZpkq

r q `
ÿ

i‰j

ExpX
pkq

i,r Y
pkq

i,r X
pkq

j,r Y
pkq

j,r q ď ExpZpkq
r q ` F0pSq2p2.

Hence we obtain,

VarpZpkq
r q ď ExpZpkq

r qp1 ´ ExpZpkq
r q ` F0pSq2p2

ď c
`

1 ´
`

1 ´ 2´thresh˘ c
˘

` c2 ď c ` c22´thresh ◀
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Before we complete the proof of the correctness of our Algorithm 2, we first state a core
result based on bucket-load random variables (defined below) that would be used.
▶ Definition 14 (Bucket-load). A pc, αq-bucket-load is a nonnegative random variable Z such
that the first and second moments of Z satisfy the following relations:

cp1 ´ αq ď ExpZq ď c AND VarpZq ď c ` αc2.

From Lemma 13 we note that for any k with thresh ě 6F0pSq{2k, Z
pkq
r ’s are pc, αq-

bucket-load random variables for c “ F0pSq{2k and α “ 2´thresh ď mintε{2, 2´18u. Due to
independence of the random variables Z

pkq

1 , . . . , Z
pkq

Reps, the random variable Z
pkq has mean

approximately c and variance Opc{Repsq. Thus, for an appropriately large Reps, we can apply
Chebyshev’s inequality to show that Z

pkq is indeed very close to c with high probability. The
following proposition makes this intuition formal. Let k0 be the unique negative power of 2
such that

3
4 ă c0 “

F0pSq

2k0
ď

3
2 (3)

▶ Proposition 15. Let Reps “ r90{ε2s and let k0 be the number defined in Equation 3. For
every k ě k0 ´ 1, let Z

pkq

1 , . . . , Z
pkq

Reps be the Reps many independent pF0pSq{2k, ε{2q-bucket
load random variables. Then,
1. Z

pk0q and Z
pk0´1q are pε, 1{24q-approximation of c0 and 2c0 respectively. Hence, 2k0 ¨Z

pk0q

and 2k0´1 ¨ Z
pk0´1q are pε, 1{24q-approximations of F0pSq.

2. PrpZpk0´1q
ă 1q `

ř

iě1 PrpZpk0`iq
ě 1q ď 1{4.

We postpone the proof of Proposition 15 to the Appendix B.
Item 2 of the Proposition 15 proves that k˚ P tk0, k0 ´ 1u with probability at least 3/4

(where k˚ is defined in line 16). The first part proves that Z
pk0q

¨ 2k0 and Z
pk0´1q

¨ 2k0´1

are pε, 1{24q-approximations of F0pSq. Hence, we observe that Z
pk˚

q2k˚ is an pε, 1{3q-
approximation of F0pSq (as this can fail either when k˚ R tk0, k0 ´ 1u, or Z

pk0q
¨ 2k0 or

Z
pk0´1q

¨ 2k0´1 fails to approximate F0pSq, the probability of any one of these can happen
with probability at most 1{3). This proves that the Algorithm 2 is an F0-estimator for
Delphic Sets with WOR sampling.

3.1.2 Complexity of the Algorithm 2
The space complexity and the update time complexity are clear from the pseudo-code of the
algorithm. The size of X pkq

r is upper bounded by thresh. And since r ranges from 1 to Reps
and k ranges from 1 to log |Ω|, so the maximum number of elements of Ω stored is O

´

log |Ω|

ε2

¯

.
Nevertheless to store an element of Ω, one needs Oplog |Ω|q bits. So the total space required
is O

´

log2
|Ω|

ε2 ¨ log ε´1
¯

. The additional space required for bookkeeping is Oplog |Ω|q.
By the definition of Delphic Sets with WOR sampling, knowing the size of a set Sj and

checking if an element is in Sj can be done in Oplog |Ω|q time. So the for any j, r and k the
lines 8 to 9 can be done is at most Op|X pkq

r | logp|Ω|qq “ Opthresh logp|Ω|qq step. The number
of samples drawn from any set Sj (in line 12 is at most thresh. So the time taken in line 12
is also Opthresh logp|Ω|qq. We should note here that we assume line 10 that is drawing a
sample from Binp|Sj |, 1{2kq can be done in order Opthresh logp|Ω|qq steps, since |Sj | ď |Ω|

and k ď log |Ω|. We have to do these steps for all k and r. Thus in total the update time
complexity is Opthresh logp|Ω|q ¨ plog |Ω|q ¨ Repsq “ O

´

log2
|Ω|

ε2 ¨ log ε´1
¯

.
Thus, we have the Theorem 12.
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3.2 F0- Estimator for General Delphic Sets
Algorithm 2 in line 12 uses the ability to sample from the sets in the stream with WOR
sampling. This property is not available in general Delphic Sets. However, with a little
modification to Algorithm 2, we can also have an F0-estimator for general Delphic Sets,
which is what Theorem 3 states.

Proof of Theorem 3. To have an F0-estimator for general Delphic sets, we need to make
two important changes to Algorithm 2. Firstly, we set the thresh to be maxtrlog 4{εs, 18u

(instead of maxtrlog 2{εs, 18u). Secondly, we change the line 12 to the following:
12: Lpkq

r “ WRSamplepS, d
pkq
r , d

pkq
r log d

pkq
r logp 4

ε qq

While in Algorithm 2 in line 12 the set |Lpkq
r | “ d

pkq
r with probability 1, in the modified

algorithm this is not the case. In other words, if we try to prove the correctness of the
modified algorithm in the same line as the proof of Algorithm 2 we note that the random
variable Y

pkq

i,r takes value slightly differently.
The random variable Y

pkq

i,r can take value 1 for two possible cases.
1. Due to the overflow of the bucket, which can now happen with probability at most

2´thresh ď ε{4 (This is due to the modified setting of thresh so that 2´thresh ď ε{4).
2. Due to WRSample returning an empty set. By Lemma 11 and by the setting of the inputs

of WRSample this can happen also with probability at most ε{4.

Thus we can prove a lemma corresponding to Lemma 13 and hence, Z
pkq
r is pc, αq-bucket-

load where α “ mint2´18, ε{2u. Now, we can apply our core Proposition 15 to conclude the
correctness of the algorithm.

It is easy to see that the space and time complexity of the modified algorithm is
O
´

log2
|Ω|

ε2 ¨ log ε´1
¯

and O
´

log2
|Ω|

ε2 ¨ log3 ε´1
¯

respectively. ◀

4 Space Optimal Algorithm with an Oracle in NTISP(poly,
LINSPACE)

In this section, we give a sketch of the proof of Theorem 4. We will implement the F0-
estimation algorithm by Gibbons and Tirthapura [13] for singleton streams as described
in [2]. The proof that the algorithm gives the correct estimation follows from their proof and
is hence omitted. The algorithm picks a random hash function h from a pairwise-independent
family and keeps a bucket X of hash values of a subset of elements in the stream and a
number z of leading zeros of all the elements in the bucket. The size of the bucket is bounded
by Op 1

ε2 q. When a new item x comes, if the number of leading zeros of hpxq ě z, the
algorithm updates the bucket to X Y thpxqu. If the bucket overflows, then z is updated to
z ` 1, and all elements from X with leading zeros ď z are removed. At the end of the stream,
the algorithm outputs |X | ¨ 2z as the estimate. In adapting their algorithm for the case of
set streams, the computational challenge is implementing the update. The central intuition
is that this can be accomplished by querying a language in NTISP(poly,LINSPACE) with
query size Oplog |Ω| ¨ 1

ε2 q. Thus if NTISP(poly,LINSPACE) =DTISP(poly,LINSPACE), then
queries to the language can be simulated in space Oplog |Ω| ¨ 1

ε2 q and time polyplog |Ω|, ε´1q.
We will use n to denote log |Ω|, the length of the representation of any element in the

universe Ω. For any binary string y, Zeropyq denotes the number of leading zeros of y. We
will use the standard Toeplitz family of pairwise-independent hash functions denoted by
HTeoppn, kq (see Appendix D for details). Let h be a hash function. For every m P t1, . . . nu,

APPROX/RANDOM 2024



26:14 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

the mth prefix-slice of h, denoted hm, is a map from t0, 1un to t0, 1um, where hmpyq is the
first m bits of hpyq. If h is from HTeoppn, kq, both h and hm are efficiently computable and
take linear space to represent.

For a member S Ď Ω of the Delphic set, we will assume a representation of size Op|Ω|q

and denote it by rS . This is required for computational purposes, and all the Delphic families
discussed in earlier works have such representations (e.g., rectangles in KMP). We use the
notation x P rS to mean x P S. Note that since S is a Delphic set, membership can be
checked in time and space linear in the representation.

Oracle Languages
We will define two languages, L and Lpref , and show that they are in NTISP(poly,LINSPACE).
We use these languages to implement Gibbons and Tirthapura algorithms. The first language,
L, checks whether the bucket overflows by adding new elements from the current set S with
the current value of the leading zeros count.

L “txrS , h, X , ℓ, m, 1ℓ log ny | Dx1 ă x2 ă . . . ă xk such that xi P rS

& @iphmpxiq “ 0mq & |thpx1q, . . . , hpxkqu Y X | ą ℓu.

The following language is (close to) the prefix language of L that can be used to construct
witnesses x1, . . . , xk P rS if adding new elements does not result in an overflow of X .

Lpref “
␣

xrS , h, X , ℓ, m, 1ℓ¨log n, i, jy | Dx1 ă x2 ă . . . ă xk such that
xi P rS & @iphmpxiq “ 0mq& |thpx1q, . . . , hpxkqu Y X | ď ℓ & ith bit of xj is 1

(

.

To implement the algorithm, we must update X with new elements from S (represented
by rS), the current set in the stream. For this, the algorithm uses a subroutine Construct
that in turn uses Lpref to search for a set of ď l the elements xis in S so that hmpxiq “ 0m.
We will ensure that we will use Construct only when we are guaranteed that adding the hash
values on these elements will not make X overflow. For this, we will use membership in L.
The Algorithm 3 is described below. Theorem 4 follows from Claim 16, Claim 17, and the
guarantee of Gibbons and Tirthapura’s algorithm.

Algorithm 3 DelphicWithNPpS, ε).

1: h
R

ÐÝ HTeoppn, nq

2: X Ð ϕ, Const Ð 100
ε2 , m Ð 0

3: while not End-of-Stream do
4: On item rS

5: while
@

rS , h, X , Const, m, 1Const¨log n
D

R L do
6: Remove all ys from X for which Zeropyq “ m

7: m Ð m ` 1
8: X Ð X Y ConstructpxrS , h, X , Const, 1Const¨log nyq

9: Output |X |2m

▷ Claim 16. Both L and Lpref are in NTISP(poly,LINSPACE).

Proof. We show membership of L in NTISP(poly,LINSPACE). The proof of membership
of Lpref is similar. Consider the following non-deterministic machine ML. ML on input
txrS , h, X , 1ℓ, my first guesses a number 1 ď k ď l and x1 ă x2 ă . . . ă xk in Ω. Then it
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verifies the following: (1) @i xi P rS , (2) @i hmpxiq “ 0m, (3) |thpx1q, . . . , hpxkqu Y X | ą ℓ.
The input size is Op|X | ` ℓ ¨ log nq. Since all the steps: guessing and verification (1), (2), and
(3), can be done in time polynomial in the input length, ML runs in polynomial time. The
critical observation is that ML can write down all the guesses in space linear in the input (at
most l xis from Ω that takes Opℓ log nq bits to store). Thus, the overall space used is linear
in the input length. ◁

Let k be the maximum value of |thpx1q, . . . , hpxtqu Y X | so that the following property
P holds:
1. Dx1 ă x2 ă . . . ă xt such that xi P rS

2. @iphmpxiq “ 0mq.

▷ Claim 17. There is a deterministic algorithm Construct, takes xrS , h, X , Const, 1Const¨log ny

as input and L and Lpref as oracles and if k ď Const, it returns a set thpx1q, . . . , hpxkqu (if
non-empty) so that @iphmpxiq “ 0mq and xi P rS . Construct runs in time polynomial and
space linear in the input length and makes only queries that are linear in the input length.

Proof (Sketch). Construct first queries L to check k ą Const. If k ą Const, it rejects.
Otherwise, it first finds k and uses k log n queries to Lpref to construct all xis in S with the
property P . The complexity bounds are clear from the language’s description and definition.

◁

5 Conclusion

In this paper, we present a new elegant algorithm that improves both the space and update
time complexities for the computation of the size of the union of Delphic sets. The space
and time complexities of our algorithm are rO

´

log2
p|Ω|q ¨

logp1{δq

ε2

¯

. To complement our
algorithm, we also show that, given access to NTISP(poly, LINSPACE) oracle, there exists a
hashing based algorithm for approximating the size of the union of Delphic sets with space
complexity O

`

logp|Ω|q ¨ ε´2 ¨ δ´1˘ and poly
`

logp|Ω|q, ε´1, log 1
δ

˘

update time complexity.
Note Ω plogp|Ω|qq lower bound for our problem follows directly from the lower bound of
F0-estimation problem, but the above result implies that if the complexity of our problem is
ω plogp|Ω|qq, then we should not expect this to be proved soon.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

2 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In Proc. of RANDOM, pages 1–10, 2002. doi:10.1007/
3-540-45726-7_1.

3 Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Phys.
Rev. E, 71:036113, March 2005. doi:10.1103/PhysRevE.71.036113.

4 Jon Louis Bentley. Algorithms for klee’s rectangle problems. Technical report, Technical
Report, Computer, 1977.

5 Jaroslaw Blasiok. Optimal streaming and tracking distinct elements with high probability. In
Proc. of SODA, 2018. doi:10.1137/1.9781611975031.156.

6 Karl Bringmann and Tobias Friedrich. Approximating the volume of unions and intersections
of high-dimensional geometric objects. Comput. Geom., 43(6-7):601–610, 2010. doi:10.1016/
j.comgeo.2010.03.004.

APPROX/RANDOM 2024

https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1103/PhysRevE.71.036113
https://doi.org/10.1137/1.9781611975031.156
https://doi.org/10.1016/j.comgeo.2010.03.004
https://doi.org/10.1016/j.comgeo.2010.03.004


26:16 Improved Streaming Algorithm for the Klee’s Measure Problem and Generalizations

7 Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst.
Sci., 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

8 Timothy M. Chan. A (slightly) faster algorithm for klee’s measure problem. Comput. Geom.,
43(3):243–250, 2010. doi:10.1016/j.comgeo.2009.01.007.

9 Eric Y Chen and Timothy M Chan. Space-efficient algorithms for klee’s measure problem.
algorithms, 3(5):6, 2005.

10 Bogdan S. Chlebus. On the klee’s measure problem in small dimensions. In Branislav
Rovan, editor, SOFSEM ’98: Theory and Practice of Informatics, 25th Conference on Current
Trends in Theory and Practice of Informatics, Jasná, volume 1521, pages 304–311, 1998.
doi:10.1007/3-540-49477-4_22.

11 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applic-
ations. J. Comput. Syst. Sci., 31(2):182–209, 1985. doi:10.1016/0022-0000(85)90041-8.

12 Michael L Fredman and Bruce Weide. On the complexity of computing the measure of
Ť

[ai,
bi]. Communications of the ACM, 21(7):540–544, 1978.

13 E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games: A Guide to
Current Research. Lecture Notes in Computer Science 2500. Springer, 2002.

14 Joachim Gudmundsson and Rasmus Pagh. Range-efficient consistent sampling and locality-
sensitive hashing for polygons. In 28th International Symposium on Algorithms and Computa-
tion, ISAAC, volume 92 of LIPIcs, pages 42:1–42:13, 2017. doi:10.4230/LIPIcs.ISAAC.2017.
42.

15 Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements problem.
In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003,
Cambridge, MA, USA, Proceedings, pages 283–288. IEEE Computer Society, 2003. doi:
10.1109/SFCS.2003.1238202.

16 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS, pages 41–52, 2010. doi:
10.1145/1807085.1807094.

17 Victor Klee. Can the measure of be computed in less than o (n log n) steps? The American
Mathematical Monthly, 84(4):284–285, 1977.

18 Kuldeep S. Meel, Sourav Chakraborty, and N. V. Vinodchandran. Estimation of the size of
union of delphic sets: Achieving independence from stream size. In Leonid Libkin and Pablo
Barceló, editors, PODS, pages 41–52. ACM, 2022. doi:10.1145/3517804.3526222.

19 Kuldeep S. Meel, N. V. Vinodchandran, and Sourav Chakraborty. Estimating the size of union
of sets in streaming models. In Proc. of PODS, pages 126–137, 2021. doi:10.1145/3452021.
3458333.

20 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and Probab-
ilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, USA, 2nd
edition, 2017.

21 Mark H Overmars and Chee-Keng Yap. New upper bounds in klee’s measure problem. SIAM
Journal on Computing, 20(6):1034–1045, 1991. doi:10.1137/0220065.

22 A. Pavan and Srikanta Tirthapura. Range-efficient counting of distinct elements in a massive
data stream. SIAM J. Comput., 37(2):359–379, 2007. doi:10.1137/050643672.

23 Aduri Pavan, N. V. Vinodchandran, Arnab Bhattacharya, and Kuldeep S. Meel. Model
counting meets f0 estimation. In PODS’21: Proceedings of the 40th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, pages 299–311. ACM, 2021. doi:
10.1145/3452021.3458311.

24 He Sun and Chung Keung Poon. Two improved range-efficient algorithms for f0 estimation.
Theor. Comput. Sci., 410(11):1073–1080, 2009. doi:10.1016/j.tcs.2008.10.031.

25 Srikanta Tirthapura and David P. Woodruff. Rectangle-efficient aggregation in spatial data
streams. In Proc. of PODS, pages 283–294. ACM, 2012. doi:10.1145/2213556.2213595.

26 Richard Ryan Williams. Time-space tradeoffs for counting np solutions modulo integers. compu-
tational complexity, 17:179–219, 2007. URL: https://api.semanticscholar.org/CorpusID:
8815358.

https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/j.comgeo.2009.01.007
https://doi.org/10.1007/3-540-49477-4_22
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.4230/LIPIcs.ISAAC.2017.42
https://doi.org/10.4230/LIPIcs.ISAAC.2017.42
https://doi.org/10.1109/SFCS.2003.1238202
https://doi.org/10.1109/SFCS.2003.1238202
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.1145/3517804.3526222
https://doi.org/10.1145/3452021.3458333
https://doi.org/10.1145/3452021.3458333
https://doi.org/10.1137/0220065
https://doi.org/10.1137/050643672
https://doi.org/10.1145/3452021.3458311
https://doi.org/10.1145/3452021.3458311
https://doi.org/10.1016/j.tcs.2008.10.031
https://doi.org/10.1145/2213556.2213595
https://api.semanticscholar.org/CorpusID:8815358
https://api.semanticscholar.org/CorpusID:8815358


M.Nandi, N. V. Vinodchandran, A. Ghosh, K. S. Meel, S. Pal, and S. Chakraborty 26:17

A Concentration Bounds

▶ Lemma 18. Let Z be a random variable with cp1 ´ ε{2q ď ExpZq ď c for some c ą 0 and
0 ď ε ă 1. Then,

PrpZ ‰ p1 ˘ εqcq ď
4 VarpZq

c2ε2 .

Note that the lower tail event Z ď c´cε implies Z ´ExpZq ď cε{2. Thus, |Z ´c| ą cε implies
that |Z ´ ExpZq| ą cε{2. Thus, the above result follows from the Chebyshev’s inequality.
The following lemma directly follows from Chebyshev’s inequality.

▶ Lemma 19.
1. Let Z be a random variable with ExpZq ě µ. Then,

PrpZ ď µ ´ tq ď
VarpZq

t2 .

2. Let Z be a random variable with ExpZq ď µ. Then,

PrpZ ě µ ` tq ď
VarpZq

t2 .

We will also need the following Chernoff bound.

▶ Lemma 20 (See Theorem 4.4 from [20]). Suppose T „ Binpn, pq and L ě 6np then

PrpT ě Lq ď 2´L.

B Proof of Proposition 15

We first observe the simple properties of the first and second moments of averages of the
independent bucket-loads.

▶ Lemma 21. Let c0 and k0 be defined as in Equation 3. Then,
c0p1 ´ ε{2q ď EpZ

pk0q
q ď c0,

VarpZpk0q
q ď V0 :“ c0 ` c2

02´18

Reps ď 1
80 .

VarpZpk0´1q
q ď V´1 :“ 2c0 ` 4c2

0ε{8
Reps ď 2V0 ď 1

40 .
For all i ě 1,

VarpZpk0`iq
q ď Vi :“ 2´i ¨ c0 ` 2´2ic2

0ε{2
Reps ď V0{2i

The above follows directly from Lemma 13 along with the choice of Reps “ 99{ε2 and
ε ď 0.5. Now, by using Lemma 18,

PrpZpk0q
‰ p1 ˘ εqc0q ď

4VarpZpk0q
q

c2
0ε2 ď

2
ε2Reps p

2
c0

` εq ď
p8{3q ` 2ε

ε2Reps ď 1{24.

The last inequality follows from the choice of Reps “ 90{ε2 and we assume that ε ď 0.5.
So, Z

pk0q is an pε, 1{24q-approximation of c0. Similarly, by using Lemma 18, Z
pk0´1q is an

pε, 1{24q-approximation of 2c0. This completes the proof of Item 1 in Proposition 15.

Now we prove the Item 2 of Proposition 15.

APPROX/RANDOM 2024
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We start by bounding PrpZpk0´1q
ă 1q. Note that EpZ

pk0´1q
q ě 2c0p1 ´ 2´threshq ě

3{2 ˆ p1 ´ 2´18q ě 3{2 ´ β, where β is a negligible real number such that 3{219 ď β ď 2´17.
Now it is easy to see that there exists some α P R with 2´16 ď α ď 2´15 and α2 ` 4α ă 1
such that 1

2`α ď 1{2 ´ β. By using Lemma 19,

PrpZpk0´1q
ă 1q ď p2 ` αq2 VarpZpk0´1q

q “ p4 ` 4α ` α2q V´1 ď 5V´1 “ 10V0 (4)

Now let us bound PrpZpk0`iq
ě 1q for every i ě 1. Note that EpZ

pk0`1q
q ď c0{2 ď 3{4.

So, by Lemma 19 we obtain

Pr
´

Z
pk0`1q

ě 1
¯

ď 16V1 “ 8V0 (5)

Note that for i ě 2 we have EpZ
pk0`iq

q ď c0{2i ď 1{2. Applying Lemma 19 working out
in detail we obtain,

Pr
´

Z
pk0`iq

ą 1
¯

ď 4Var
´

Z
pk0`iq

¯

ď 2´i`2V0

Thus using the infinite geometric sum we obtain
ÿ

iě2
PrpZpk0`iq

ě 1q ď 2V0 (6)

Hence from the inequalities 5 and 6 we obtain
ÿ

iě1
PrpZpk0`iq

ě 1q ď 10V0 (7)

Finally, combining the inequalities 4 and 7 we conclude

PrpZpk0´1q
ă 1q `

ÿ

iě1
PrpZpk0`iq

ě 1q ď 1{4

This completes the proof of Item 2 of Proposition 15. ◀

C Further Improvements for Klee’s Measure Problem

Recall, every d-dimensional rectangle is a Delphic set with Ω “ r∆sd. Therefore, Theorem 3
provides an algorithm that has space complexity O

´

d2 log2 ∆
ε2 ¨ log ε´1

¯

and has update time

complexity O
´

d2 log2 ∆
ε2 ¨ log3 ε´1

¯

for Klee’s Measure Problem. We now discuss how we can
further improve the dependence on ε. The key idea behind such an improvement is to observe
that we can avoid the overhead due to WOR by by replacing with sampling from Geometric
distribution. Such a replacement is possible only because there exists a total ordering for all
the elements in Ω “ r∆sd such that we can access i-th element in time logp|Ω|q. Interestingly,
all the known classes of Delphic sets satisfy the above property and therefore, we formalize
such a family below:

▶ Definition 22. A set S Ď Ω belongs to Ordered Delphic family if there exists a total
ordering ĺ for all the elements in the Ω and the following queries can be done in Oplog |Ω|q

time.
1. Know the size of the set S,
2. For any 1 ď i ď |S| the ith element of the set S can be obtained,
3. Given any x check if x P S.
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In Section 2.4 we discussed how one can sample a Bernoulli process from a Delphic Set by
using the coupon collector theorem. There is an alternate way to sample a Bernoulli process
if the set is a Ordered Delphic Set. The set L returned by the algorithm SamplepS, pq follows
BerpS, pq. Since there is an order to the elements in a Ordered Delphic set, the process is
basically same as sampling a Bernoulli process from r|S|s. This is a well known result in
probability theory and details can be found in [3].

Algorithm 4 GeometricSamplepn, pq.

1: Input Set n p P r0, 1s.
2: Initialize L “ H; t “ 0
3: for t ď |S| do
4: Sample g from Geoppq

5: t “ t ` g

6: if t ď n then L “ L Y ttu

7: Output L

▶ Lemma 23. The subroutine GeometricSamplepn, pq outputs a subset of rns according to
the Bernoulli process. More precisely, if we set Ij “ 1 if i P L, 0 otherwise then I1, . . . , In

follow identically and independently distributed to Berppq.

Using the subroutine GeometricSample we can now present the improved algorithm
(Algorithm 5) for the Ordered Delphic Sets.

Algorithm 5 [F0-Estimator for Ordered Delphic Sets.]

1: Input Stream “ xS1, S2, . . . , SM y, ε, δ

2: Initialize
3: p Ð 1; thresh Ð maxtrlog 2{εs, 18u; Reps Ð r90{ε2s;
4: for (1 ď k ď log n) and (1 ď r ď Reps) do
5: X pkq

r Ð H;

Streaming Phase:
6: for j “ 1 to M do
7: for (1 ď k ď log n) and (1 ď r ď Reps) do
8: for all s P X pkq

r do
9: if s P Si then remove s from X pkq

r

10: Draw D
pkq
r from GeometricSamplep|Sj |, 1{2kq

11: if |X pkq
r | ` |D

pkq
r | ď thresh then

12: Lpkq
r “ tSjrℓs | ℓ P D

pkq
r u

13: X pkq
r “ X pkq

r Y Lpkq
r

Post-Streaming Phase:
14: for 1 ď k ď log n do
15: z̄pkq “ 1

Reps
řReps

r“1 |X pkq
r |

16: k˚ “ maxtk P rlog ns : z̄pkq ě 1u

17: Output z̄pk˚
q 92k˚

Algorithm 5 is the streaming algorithm for the Ordered Delphic Sets. For proving the
correctness of Algorithm 5, we have the following theorem:

APPROX/RANDOM 2024
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▶ Theorem 24 (correctness theorem of Algorithm 5). If S is a stream of Ordered Delphic Set
the Algorithm 5 is an pε, 1{3q-F0-estimator. Also, the space and update time complexity of
Algorithm 5 is O

´

log2
|Ω|

ε2 ¨ log ε´1
¯

.

Proof of Theorem 24. Note that, the only difference between Algorithm 5 and Algorithm 2
is in lines 10, 11 and 12. Also note that the Algorithm 5 behaves identically if lines 10 to
13 is replaced by
10: Draw D

pkq
r from GeometricSamplep|Sj |, 1{2kq

11: Lpkq
r “ tSjrℓs | ℓ P D

pkq
r u

12: if |X pkq
r | ` |D

pkq
r | ď thresh then

13: X pkq
r “ X pkq

r Y Lpkq
r

By Lemma 23 the size of D
pkq
r is distributed according to the binomial distribution

Binp|Sk|, 1{2kq, that is the distribution of d
pkq
r in Algorithm 2 is same as the distribution of

|D
pkq
r | in Algorithm 5. Thus, L

pkq
r is distributed according to BerpSj , 1{2kq which is also the

same distribution if |D
pkq
r | samples are drawn from Sj using WOR sampling.

Thus the correctness of the Algorithm 5 follows from the correctness of Algorithm 2. The
complexities of Algorithm 5 is also identical to that of Algorithm 2. ◀

Recall that every d-dimensional rectangle can be viewed as an Ordered Delphic set,
therefore, Theorem 24 implies the following result in the context of Klee’s Measure Problem.

▶ Corollary 25 (Improved Algorithm for KMP). There is a streaming algorithm for the Klee’s
Measure Problem with space and update time complexity O

´

d2 log2 ∆
ε2 ¨ log 1

ε

¯

.

D Basic Probability Results

▶ Definition 26 (Geometric Distribution). Given any p P p0, 1s the Geometric Distribution
over the set of positive integers t1, 2, 3, . . .u is denoted as Geoppq where probability of a positive
integer k is p1 ´ pqk´1p.

▶ Theorem 27 (Coupon Collection Problem). Given access to uniform random samples from
a set T and a number r ď |T |, let Wr be a random variable that stand for the number of
independent uniform random samples from T needed before we get r distinct samples from T .
Then Pr pWr ą βr log rq ď r´β`1.

▶ Remark 28 (Pairwise Independent Hash Function). We will use pairwise independent hash
functions. For an integer n, k and Hpn, kq fi th : t0, 1un Ñ t0, 1uku be a family of hash
functions mapping t0, 1un to t0, 1uk. We use h

R
ÐÝ Hpn, kq to denote the probability space

obtained by choosing a function h uniformly at random from Hpn, kq. A family of hash
functions Hpn, kq is 2´wise independent if @α1, α2 P t0, 1uk, distinct x1, x2, P t0, 1un, h

R
ÐÝ

Hpn, kq, Prrphpx1q “ α1q ^ phpx2q “ α2qs “ 1
22k . Several families of 2-wise independent hash

functions are known. We will use HTeoppn, kq, which is known to be 2-wise independent [7].
The family is defined as follows: HTeoppn, kq fi th : t0, 1un Ñ t0, 1uku is the family of
functions of the form hpxq “ Ax ` b with A P Fkˆn

2 and b P Fkˆ1
2 where A is a uniformly

randomly chosen Toeplitz matrix of size k ˆ n while b is uniformly randomly matrix of size
k ˆ 1. It is worth noticing that HTeop can be represented with Θpnq-bits and hash value of
any element x P t0, 1un can be computed in Opnkq time.
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