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Abstract
We consider the correlated knapsack orienteering (CorrKO) problem: we are given a travel budget
B, processing-time budget W , finite metric space (V, d) with root ρ ∈ V , where each vertex is
associated with a job with possibly correlated random size and random reward that become known
only when the job completes. Random variables are independent across different vertices. The goal
is to compute a ρ-rooted path of length at most B, in a possibly adaptive fashion, that maximizes
the reward collected from jobs that processed by time W . To our knowledge, CorrKO has not been
considered before, though prior work has considered the uncorrelated problem, stochastic knapsack
orienteering, and correlated orienteering, which features only one budget constraint on the sum of
travel-time and processing-times.

Gupta et al. [19] showed that the uncorrelated version of this problem has a constant-factor
adaptivity gap. We show that, perhaps surprisingly and in stark contrast to the uncorrelated
problem, the adaptivity gap of CorrKO is is at least Ω

(
max{

√
log B,

√
log log W }

)
. Complementing

this result, we devise non-adaptive algorithms that obtain: (a) O(log log W )-approximation in quasi-
polytime; and (b) O(log W )-approximation in polytime. This also establishes that the adaptivity
gap for CorrKO is at most O(log log W ). We obtain similar guarantees for CorrKO with cancellations,
wherein a job can be cancelled before its completion time, foregoing its reward. We show that an
α-approximation for CorrKO implies an O(α)-approximation for CorrKO with cancellations.

We also consider the special case of CorrKO where job sizes are weighted Bernoulli distributions,
and more generally where the distributions are supported on at most two points (2CorrKO). Although
weighted Bernoulli distributions suffice to yield an Ω(

√
log log B) adaptivity-gap lower bound for

(uncorrelated) stochastic orienteering, we show that they are easy instances for CorrKO. We develop
non-adaptive algorithms that achieve O(1)-approximation, in polytime for weighted Bernoulli distri-
butions, and in (n+log B)O(log W )-time for 2CorrKO. (Thus, our adaptivity-gap lower-bound example,
which uses distributions of support-size 3, is tight in terms of support-size of the distributions.)

Finally, we leverage our techniques to provide a quasi-polynomial time O(log log B) approximation
algorithm for correlated orienteering improving upon the approximation guarantee in [2].
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1 Introduction

The orienteering problem, first introduced by [16], is a fundamental and widely-studied vehicle-
routing problem (VRP). The input to the problem consists of a length/travel bound B, finite
metric space (V, d) representing travel times, root vertex ρ ∈ V , and non-negative rewards
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29:2 Approximation Algorithms for Correlated Knapsack Orienteering

associated with the vertices. The goal is to compute a path rooted at ρ of length at most B

that collects maximum reward. Orienteering often arises as a subroutine in devising algorithms
for other more complex VRPs, both in approximation algorithms [4, 12, 6, 22, 13, 14, 1],
as also in computational methods, where it arises as the pricing problem when using a
branch-cut-and-price method on a set-covering/configuration LP.

Gupta et al. [19] introduced the following stochastic version of orienteering to model
settings where one must spend some uncertain amount of time processing a visited node
in order to collect its reward. Formally, each vertex corresponds to a job with a random,
possibly correlated, processing time and reward, drawn from a given probability distribution.
Random variables corresponding to different vertices are independent. The reward and
processing time of a job become known only when the job is fully processed. The goal is to
devise an algorithm, also called policy, that visits a sequence of vertices (starting at ρ) in a
possibly adaptive fashion that maximizes the expected total reward collected, subject to the
constraint that the total time expended in traveling and processing jobs is at most B. Jobs
cannot be preempted, and only jobs completed by the time-horizon B yield reward. This is
the correlated orienteering (CorrO) problem. We refer to the special case where rewards and
sizes are independent, simply as stochastic orienteering; due to independence, one can move
to deterministic rewards by replacing the random rewards with their expectations.

A related problem, and the focus of this paper, is correlated knapsack orienteering
(CorrKO), wherein there are two separate budgets: B for the (deterministic) travel time, and
W for the total time spent in processing jobs. Again, we refer to the uncorrelated problem as
stochastic knapsack orienteering. Correlated knapsack orienteering can be motivated from a
similar perspective as CorrO. Indeed, it is quite natural to decouple the “apples and oranges”
entities of travel time and processing time when these may represent disparate resources; e.g.,
travel time may represent latency of access of jobs in a distributed network, and processing
time may present CPU time.

In general, a policy may be adaptive and choose the next vertex to visit based on the
(size, reward) realizations of the vertices previously visited; unless otherwise stated, the
approximation ratio is always measured relative to the maximum reward OPT that can be
achieved by an adaptive policy. On the other hand, a non-adaptive policy fixes beforehand
the sequence of vertices to visit, and only the stopping-point (when the time-horizon B is
exceeded) depends on the (size, reward) realizations. While adaptive policies may collect
much greater reward, non-adaptive policies are usually easier to implement, specify, and
analyze, by virtue of the fact that they admit a much-more compact description compared
to the decision tree associated with an adaptive policy whose description may require space
that is exponential in the input size. Consequently, much work in stochastic optimization has
focused on developing good non-adaptive policies and obtaining bounds on the adaptivity
gap, which is the supremum, over all problem instances, of OPT/(maximum reward achieved
by a non-adaptive policy); see e.g., [9, 17, 11, 18, 19, 7, 20].

Prior work has studied stochastic orienteering, CorrO, and stochastic knapsack orien-
teering, and our current knowledge for these problems can be summarized as follows. (1)
The adaptivity gap for stochastic orienteering is O(log log B) [19] and Ω(

√
log log B) [2], and

there is a non-adaptive algorithm that achieves and O(1)-approximation with respect to the
non-adaptive optimum [19], and hence obtains an O(log log B)-approximation; the approach
leading to the latter result also yields an O(1)-approximation for stochastic knapsack orien-
teering. (2) The adaptivity gap for CorrO is also O(log log B) [2], but this is established non-
constructively; algorithmically, we can obtain O(α log B)-approximation in polytime [19] and
O

(
α · log2 log B

log log log B

)
in quasi-polytime [2], where α is the approximation ratio for deadline-TSP.
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To our knowledge, there is no prior work on CorrKO. As noted above, (uncorrelated)
stochastic knapsack orienteering and CorrO admit quite different guarantees, and this raises
the natural question: where does CorrKO stand in terms of difficulty relative to these two
problems? Is it more difficult than the uncorrelated problem? How does it compare in
difficulty relative to CorrO?

Our contributions
We initiate a study of correlated knapsack orienteering, and obtain results that, in particular,
shed light on these questions. Our chief contributions are as follows.
1. Adaptivity gap and approximation algorithms. Somewhat surprisingly, and in

stark contrast with (uncorrelated) stochastic knapsack orienteering, we prove that the
adaptivity gap for CorrKO is not a constant, showing that the correlated problem is strictly
harder than the uncorrelated problem.
▶ Theorem 1.1 (see Section 3). The adaptivity gap for CorrKO is
Ω

(
max{

√
log B,

√
log log W}

)
, where B is the travel budget and W is the processing-time

budget.
Complementing this, we develop various non-adaptive approximation algorithms for
CorrKO. Our main algorithmic result is a quasi-polytime O(log log W )-approximation
algorithm for CorrKO, which thus shows that the adaptivity gap is O(log log W ).
▶ Theorem 1.2. There are non-adaptive algorithms for CorrKO with the following
guarantees:
(a) O(log log W )-approximation in time (n + log B)O(log W log log W ) (Section 4.1);
(b) O(log W )-approximation in polynomial time (Section 4.2).
By leveraging the approach leading to Theorem 1a, we also obtain the following guarantee
for correlated orienteering, which improves upon the approximation guarantee in [2] (that
also runs in quasi-polytime) by an O

( log log B
log log log B

)
-factor.

▶ Theorem 1.3. Given an α-approximation algorithm for deadline TSP with running
time T , we can obtain a non-adaptive O(α log log B)-approximation algorithm for CorrO
with running time (n + log B)O(log B log log B) · T . Using the algorithm for deadline TSP
in [15], we obtain an O(log log B)-approximation in quasi-polytime.

2. CorrKO with 2-point distributions. Our adaptivity-gap lower bound uses distributions
of support-size 3, whereas the Ω(

√
log log B) adaptivity-gap lower-bound example for

stochastic orienteering in [2] considers weighted Bernoulli size distributions. In Section 5,
we investigate CorrKO from a fine-grained-complexity perspective to understand this
discrepancy. In contrast with stochastic orienteering, we show that when all distributions
are supported on at most 2 points – we call this 2CorrKO– the adaptivity gap becomes
O(1) (Theorem 5.3), and we can obtain a non-adaptive O(1)-approximation in time
(n + log B)O(log W ) (Theorem 5.4). Moreover, for weighted Bernoulli size distributions,
we obtain a polytime non-adaptive O(1)-approximation (Theorem 5.5). Our key insight
here lies in identifying a novel deterministic problem, that we call orienteering with
knapsack deadlines (OrientKD), which we show is equivalent to 2CorrKO, up constant
factors. In OrientKD, in addition to orienteering, each vertex v has a weight and knapsack
deadline, and an orienteering-solution P is feasible, if for every v ∈ P , the total weight of
all nodes on P up to (and including) v is at most its knapsack deadline. For instance,
in a setting where jobs distributed over a network have to be processed on a single
machine, travel times could represent the latency involved in accessing a job, and the
knapsack deadlines would capture completion-time deadlines on the machine. We obtain

APPROX/RANDOM 2024



29:4 Approximation Algorithms for Correlated Knapsack Orienteering

the above approximation guarantee for OrientKD (Theorem 5.1), and hence obtain the
same guarantee (up to constant factors) for 2CorrKO.
These results show that our adaptivity-gap example is tight in terms of the support-size:
any such lower-bound example must involve some distribution of support-size at least 3.

3. CorrKO with cancellations. In this version (see Section 6), we can cancel or discard
the current vertex v at any time-step prior to its completion, foregoing its reward, and
we are not allowed to return to v. We obtain the same approximation guarantees for this
problem as for CorrKO: i.e., quasi-polytime O(log log W )-approximation, and polytime
O(log W )-approximation. En route, we obtain an O(1)-approximation for the special case
where we obtain non-zero rewards only when jobs instantiate to size at most W/2.

Our results paint a nuanced picture of the complexity of CorrKO vis-a-vis CorrO and stochastic
knapsack orienteering. While CorrKO is harder than stochastic knapsack orienteering, our
algorithmic results suggest that it is easier than CorrO. We obtain similar approximation fac-
tors for both problems in quasi-polytime, but in polytime, we obtain O(log W )-approximation
for CorrKO, while the current-best polytime factor for CorrO is O(log n log B); also, with
weighted Bernoulli distributions, CorrKO is provably easier than CorrO.

Technical overview. We now highlight the key technical ideas underlying our results. Let
OPT be the optimal reward for CorrKO. Let Sv denote the random size of vertex v. For an
integer j ≥ 0, let Xj

v := min{Sv, 2j} and µj
v = E

[
Xj

v

]
. The significance of these quantities

is that if µj(Pρ,v − v) ≤ c · 2j , where P is a rooted path, v ∈ P , and Pρ,v is the ρ ⇝ v

portion of P , then a random subpath P ′′ of P where we retain each u ∈ P independently
with probability 1

2c satisfies Pr[v ∈ P ′′ and is processed by time 2j ] ≥ 1
4c ; this indicates that

πv(2j), which is the expected reward of v if its processing starts by time 2j , can serve as a
good proxy for the expected reward obtained from v.

Algorithms for CorrKO and CorrO. Our quasi-polytime O(log log W )-approximation for
CorrKO builds upon a structural result for CorrO shown by [2]. They show that one can
extract a suitable rooted path Q∗ from the decision tree representing an optimal adaptive
policy and suitable nodes φ−1 = ρ, φ0, φ1, . . . , φk on Q∗, where k ≤ log W , such that (roughly
speaking): (a) the prefix property µj(Q∗

ρ,φj
− φj) ≤ O(K) · 2j holds for every j = 0, . . . , k,

and (b)
∑k

j=0
∑

v∈Q∗
φj−1,φj

πv(2j) = Ω(OPT), where K = O(log log W ) (see Theorem 7.1).
So if we could find this path Q∗, then using the sampling idea described above, one can easily
obtain an O(K)-approximation. For CorrO, Bansal and Nagarajan [2] “guess” the portal
nodes φ0, . . . , φk and write a configuration LP to find suitable paths between every pair of
consecutive portal nodes. They use randomized rounding to round a fractional solution,
which incurs a log k

log log k -factor violation of the prefix property due to Chernoff bounds, since
for each j, µj(Q∗

ρ,φj
−φj) can be written as a sum of O(K) · 2j-bounded independent random

variables. When one combines this with the node-sampling step, one therefore incurs an
O

(
K · log k

log log k

)
-factor loss relative to the value of the LP solution.

For CorrKO (and CorrO), we proceed similarly, but we guess many more portal vertices. We
split each Q∗

φj−1,φj
into O(K) segments having µj-weight at most 2j , and guess the end-points

of all such segments (see Theorems 4.1, 4.2). We then again set up a configuration LP and use
randomized rounding; however, we can now ensure that the prefix property holds with O(1)
violation, since we can decompose µj(Q∗

ρ,φj
− φj) into a sum of 2j-bounded random variables

corresponding to the µj-weight of each random segment. Thus, an application of Chernoff
bounds and the union bound only incurs an O(1)-factor violation of the prefix property,
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since K = Ω(log k); therefore, we lose only an O(K)-factor compared to the value of the LP
solution. This idea extends to CorrO. The only essential difference between CorrKO and CorrO
comes from how well we can solve the corresponding configuration LP; for CorrKO, we can
obtain an O(1)-approximation to the LP-optimum using an O(1)-approximation algorithm
for knapsack orienteering (see below), but for CorrO, we obtain an O(α)-approximate LP
solution given an α-approximation for deadline TSP.

The O(log W )-approximation for CorrKO proceeds by relating the problem to knapsack
orienteering (KnapOrient), which is orienteering with an additional total-node-weight budget
constraint. For each index j = 0, 1, . . . , log W , we use the portion of the optimal adaptive-
policy tree corresponding to nodes processed at some point in [2j , 2j+1), to extract a good
fractional solution to an LP-relaxation (KO-LP) for KnapOrient, where we exploit the LP-
relaxation for orienteering [14]. This translation is easy because one can naturally interpret
the LP variables as corresponding to certain probabilities obtained from an adaptive policy.

We remark that one can combine the LP-relaxations for orienteering [14] and the correlated
knapsack problem [18], which is the special case where all nodes are co-located, to obtain
an LP for CorrKO. However, the chief impediment in rounding an LP solution is that the
rounding algorithms for orienteering and correlated knapsack may give rise to incompatible
orderings. Rounding the orienteering-portion of the LP solution yields a node sequence, and
we need to stick with a subsequence of this to satisfy the travel-budget constraint. However,
forcing one to consider items in a prescribed order for correlated knapsack can drastically
reduce the reward obtained, because jobs that instantiate to large sizes (i.e., > W/2) may
need to be processed in a different incompatible order; see Appendix A. This tension is real,
as evidenced by our adaptivity-gap lower bound, and seems challenging to deal with.

2CorrKO. The chief insight here is that the problematic case where we obtain reward
only from large-size instantiations becomes quite structured in two ways. (1) There is no
adaptivity gap, since only the path in the adaptive-policy tree corresponding to small-size (i.e.,
≤ W/2) instantiations can yield non-zero reward. (2) Given (1), one can infer that the reward
obtained from a vertex v is a function of the total small size, and total large-size-instantiation
probablity of vertices visited up to v. This allows one to define an instance of orienteering
with knapsack deadlines (OrientKD) to capture the stochastic problem.

CorrKO with cancellations. The algorithm for CorrKO with cancellations considers two
cases. For large-size instantiations, it is not hard to argue that cancellations do not help (as
with correlated knapsack [18]). For small-size instantiations, we formulate an LP by combining
the LPs for orienteering [14] and correlated knapsack with cancellations [18]. We show that
from an LP solution, one can define a suitable KnapOrient-instance and extract a good LP
solution for this KnapOrient-instance. The KnapOrient-instance is defined in such a way that
feasible solutions to this instance can be mapped to fractional solutions to the correlated-
knapsack LP. So we can first round the solution to obtain an integral KnapOrient-solution Q,
and then utilize the LP-rounding algorithm in [18] for correlated knapsack with cancellations
to process vertices, with cancellations, in the order they appear on Q. It is crucial here that
the algorithm in [18] for small-size instantiations has the flexibility that one can specify a
prescribed order for considering vertices (unlike in CorrKO with large-size instantiations).

Related work
As mentioned earlier, orienteering is a fundamental problem in combinatorial optimization
that finds various applications. Blum et al. [5] devised the first constant-factor approximation
algorithm for orienteering, and the current best approximation factor is (2 + ϵ) for any
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ϵ > 0 [8]. Friggstad and Swamy [14] gave the first LP-based O(1)-approximation algorithm.
Their LP plays an important role for obtaining some of our results. Deadline TSP, also
known as deadline orienteering, is a generalization of orienteering, where nodes now have
deadlines, and a path P is feasible if, for every v ∈ P , its travel time along P is at most its
deadline; the goal is again to compute a maximum-reward feasible path. Both orienteering
and deadline TSP can be considered in the rooted, or point-to-point (P2P) setting, where both
the start and end nodes of the path are specified. Deadline TSP admits a polytime O(log n)-
approximation [1] and an O(1)-approximation in time nO(log(maximum deadline)) [15]. Friggstad
and Swamy [15] also consider the more general monotone-reward TSP, wherein the the
reward of a node v having travel time t is given by rewdv(t), where rewd(.) is a non-increasing
function. They showed that this problem is essentially equivalent to deadline TSP.

The literature on stochastic optimization problems is rich, and we discuss below only the
work that is most relevant to our work.

Stochastic knapsack problems. Stochastic orienteering and CorrKO generalize respec-
tively stochastic knapsack, which was studied in the seminal work of [9], and correlated
knapsack [18, 21], which correspond to the special case where all nodes are co-located (i.e.,
the travel budget is irrelevant). The state-of-the-art for stochastic knapsack is a (2 + ϵ)-
approximation [3]. Gupta et al. [18] obtained the first constant-factor approximation for
correlated knapsack, and the constant was improved to (2 + ϵ) by Ma [21].
Stochastic VRPs. We have already mentioned the works of Gupta et al. [19] and [2] that
consider (uncorrelated) stochastic orienteering and correlated orienteering. A minimization
version of stochastic orienteering, called stochastic k-TSP was considered by [11, 20], where
instead of a travel budget, we want to collect a reward of at least k, and seek to minimize the
expected travel time. Ene et al. [11] gave an adaptive O(log k)-approximation algorithm
for this problem, and Jiang et al. [20] obtained a non-adaptive O(1)-approximation.
The special case where all nodes are co-located is called stochastic knapsack cover for
which [10] obtained a (2 + ϵ)-approximation.
Multi-armed bandits with metric switching costs. A related problem to CorrKO is
the multi-armed bandit problem with metric switching costs, considered by Guha and
Munagala [17], which can be viewed as a setting where each vertex corresponds to a
Markov chain (i.e., arm) with known transition probabilities and rewards. Guha and
Munagala consider this setting under a crucial martingale assumption, which does not
hold for CorrO or CorrKO, with separate budgets for the travel-cost and the number of
arm-pulls, as in CorrKO. In their setting, one can also abandon a vertex and possibly
return to this vertex at a later time. They devise an O(1)-approximation algorithm for this
problem that is a hybrid between adaptive and non-adaptive policies: it non-adaptively
specifies the sequence of arms to visit, but adaptively decides when an arm should be
abandoned. They use an elegant Lagrangian-relaxation idea to reduce the problem to
orienteering; this Lagrangian-relaxation idea was also later used in [19].

2 Preliminaries and notation

For an integer n ≥ 0, we use [n] to denote {1, . . . , n}, where [0] := ∅, and JnK to denote
{0} ∪ [n]. For any universe U , set S ⊆ U and element e ∈ U , we sometimes use S − e and
S + e to denote S \ {e} and S ∪ {e} respectively.

The problems we consider involve a metric space (V, d) and root ρ ∈ V . The metric
d : V × V 7→ Z≥0 is symmetric and captures travel times between vertices; by scaling we may
assume that these are integers. Let n = |V | and ∆ be the diameter of the metric space. For
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a set S of edges of the underlying complete graph (V, E), we use d(S) to denote
∑

e∈S d(e).
Similarly, for any f ∈ RV and U ⊆ V , f(U) denotes

∑
v∈U fv. We say that a path P in G is

rooted if it begins at ρ. We always think of the nodes on a rooted path P as being ordered in
increasing order of their distance from ρ along the path. For any u, w ∈ P , we say u ≺P w to
denote that u comes before w on P , and u ⪯P w means that u = w or u ≺P w; we omit the
subscript P when P is clear from the context. We will interchangeably think of a path as an
edge-set, or a sequence of nodes; the meaning will be clear from the context. For any path
P and nodes a, b ∈ P , we use Pa,b to denote the a-b portion of P . For a path P starting at
node r, and a node v ∈ P , we define the travel time of v as d(Pr,v).

Deterministic max-reward vehicle routing. The following three vehicle routing problems
(VRPs) play a prominent role in the study of stochastic orienteering. All three problems
fall in the genre of max-reward VRPs, wherein we have nonnegative node rewards {πv}v∈V ,
and we need to select some vertices and find a suitable path visiting these vertices, so as to
maximize the reward obtained. The differences in the problems lie in which paths are allowed,
and the definition of the reward collected by a path. The problems below can be considered
in the rooted setting, where we have a root ρ and the feasible paths form a subset of rooted
paths, or in the point-to-point (P2P) setting, where both a start-node a and end-node b are
specified, and the feasible paths are a subset of a-b paths.

Orienteering. We have a budget B, and feasible paths (in the rooted and P2P versions)
are those with length at most B; we collect the reward of all nodes on a feasible path.
Deadline TSP, also called deadline orienteering. Here nodes have deadlines {Dv}v∈V .
A path P with the appropriate end-points is feasible if the travel time of each node in P

is at most its deadline. So in the rooted case, a rooted path P is feasible if d(Pρ,v) ≤ Dv

for all v ∈ P ; in the P2P-case, an a-b path P is feasible if d(Pa,v) ≤ Dv for all v ∈ P . We
collect the reward of all nodes on a feasible path. (Equivalently, one can say that the
feasible paths are all paths with the prescribed end-points, and we collect the reward
from all nodes on the path that are visited by their deadlines.)
Observe that orienteering is the special case where the deadline of each node is the length
bound B. Also, the rooted and P2P versions of deadline TSP are equivalent [14].
Monotone-reward TSP. This is a generalization of deadline TSP, where each node
v has a non-increasing reward-function πv : Z+ 7→ R+, where πv(t) gives the reward
obtained from v if v is visited at time t. Every path P with the appropriate end-points is
feasible, and the reward of P is given by

∑
v∈P πv(travel time of v) =

∑
v∈P πv

(
d(Pr,v)

)
,

where r is the start node of P .
Friggstad and Swamy [14] showed that monotone-reward TSP can be reduced to deadline
TSP losing a (1 + ϵ)-factor, for an ϵ > 0. Monotone-reward TSP will play a key role in
the algorithm for correlated orienteering.

Stochastic orienteering problems. In the correlated knapsack orienteering (CorrKO) prob-
lem, each vertex v ∈ V is associated with an stochastic job with a random processing time
or size Sv ∈ Z≥0 and a possibly correlated random reward Rv ∈ R≥0. We use the terms
processing time and size interchangeably. These random variables are independent across
different vertices, and their distributions are specified in the input. We are given a length or
travel-time budget B, and a processing-time budget W . A solution, or policy, for CorrKO
visits a sequence of (distinct) vertices starting from the root ρ, in a possibly adaptive fashion,
without exceeding the travel-time and processing-time budgets. More precisely, when a
vertex v is visited, it’s corresponding job is processed non-preemptively, and we get to know

APPROX/RANDOM 2024
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the processing time and reward of the job only upon its completion; the completion time of
job v is the total processing time of all jobs up to and including v. So if the adaptive policy
visits vertices v0 := ρ, . . . , vℓ = u in that order, then it must be that the total travel-time∑ℓ

i=1 d(vi−1, vi) to get to u is at most B, and the total processing time of (the jobs associated
with) v1, . . . , vℓ−1 is at most W . We collect the rewards of v1, . . . , vℓ−1, and we collect u’s
reward if its completion time is at most W . The goal is to maximize the expected total
reward collected. For notational convenience, we also assign a deterministic value of 0 to the
reward and processing time of ρ.

In the correlated orienteering (CorrO) problem, the setup is almost the same as in CorrKO,
except that there is only one budget B, which is the budget for the sum of the travel
times and processing times. (That is, we have one notion of time, which advances due to
both travel and the processing of jobs.) So if an adaptive policy for CorrO visits vertices
v0 := ρ, . . . , vℓ = u in that order, then we must have

∑ℓ
i=1 d(vi−1, vi) +

∑ℓ−1
i=1 Svi ≤ B; that

is, the completion time of each vi for i = 1, . . . , ℓ − 1, as also the time when we reach vℓ,
taking into account both travel time and processing time, should be at most B. We collect
rewards from v1 . . . , vℓ−1, and we collect u’s reward if

∑ℓ
i=1 d(vi−1, vi) +

∑ℓ
i=1 Svi

≤ B.
Any adaptive policy for CorrKO or CorrO can be represented by a decision tree T rooted

at ρ, whose nodes are labeled by vertices of V , and the branches of a node labeled v ∈ V

correspond to the different size and reward instantiations of v, with each branch specifying
the next node to visit under the corresponding instantiation.

A nonadaptive policy (for CorrKO or CorrO) fixes a priori the sequence of vertices to
potentially visit, without looking at the size and reward instantiations. The adaptivity gap for
an instance is the ratio (optimal expected reward collected by an adaptive policy)/(optimal
reward collected by a nonadaptive policy), and the adaptivity gap for a problem is the
supremum over all instances of the adaptivity gap for the instance.

Deterministic knapsack-constrained vehicle routing. Algorithms for stochastic orienteering
problems frequently utilize knapsack-constrained variants of deterministic VRPs, wherein we
seek a feasible solution to the VRP satisfying an additional knapsack constraint on the total
vertex-weight of the path. More precisely, suppose we have an underlying “base” max-reward
VRP, specified by a collection I of feasible paths along with nonnegative vertex-rewards
{πv}v∈V , where the goal is to find a maximum-reward path in I. In the knapsack-constrained
version of this VRP, we also have a knapsack constraint specified by nonnegative knapsack
weights {wtv}v∈V and knapsack budget W , which restricts the set of feasible solutions to
Iknap := {τ ∈ I :

∑
v∈τ wtv ≤ W}; the goal is to find a maximum-reward path in Iknap, i.e.,

a maximum-reward path in I satisfying the knapsack constraint. When the base VRP is:
(i) orienteering, the knapsack-constrained version is knapsack orienteering (KnapOrient); (ii)
deadline-TSP, the knapsack-constrained version is knapsack deadline orienteering (KnapDO).
KnapOrient and KnapDO were considered by [19, 2] in the context of stochastic orienteering.
We say that the base-VRP is a rooted-VRP, if all paths in I start at the same vertex, and it
is a P2P-VRP, if all paths in I have the same start and end nodes.

We give a general reduction (Theorem 2.1) showing if the base-VRP is a rooted-VRP
or P2P-VRP, and satisfies a certain subpath-closure property, then an α-approximation for
the VRP can be used as a black-box to obtain an (α + 2)-approximation for the knapsack-
constrained VRP. Let τ be a path with ends a, b ∈ V , which we will view as a sequence of
nodes. By a P2P-subpath of τ , we mean any a-b path whose node-sequence is a subsequence
of τ ; by a rooted-subpath of τ , we mean any path starting at a whose node-sequence is a
subsequence of τ . (Note that any subsequence of τ yields a path, since we are working with
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a complete graph.) The subpath-closure property requires that for every path τ ∈ I: (a) for
rooted-VRP, every rooted-subpath τ ′ of τ is also in I, (b) for P2P-VRP, every P2P-subpath
τ ′ of τ is also in I. Most max-reward VRPs – e.g., orienteering, deadline TSP – satisfy the
subpath-closure property. (Also, note that if a VRP satisfies the subpath-closure property,
then so does the knapsack-constrained VRP.)

The above reduction is based on a Lagrangian-relaxation idea that was also used by [19],
specifically to obtain approximation algorithms for KnapOrient and KnapDO. However,
their approach results in a constant-factor blowup -in the approximation ratio (factor 2 for
KnapOrient, and factor 4 for KnapDO1 when going from the VRP to the knapsack-constrained
VRP; our general reduction yields a better factor, in a somewhat simpler fashion.

▶ Theorem 2.1. Consider a max-reward rooted-VRP or P2P-VRP, specified by a set I of
feasible solutions satisfying the subpath-closure property. For any ϵ > 0, an α-approximation
algorithm A (where α ≥ 1) for the VRP can be used to obtain an (α + 2)(1 + ϵ)-approximation
for the knapsack-constrained VRP by making O

( log n
ϵ

)
calls to A.

▶ Corollary 2.2. There are algorithms with the following guarantees.
(a) (4 + ϵ)-approximation, for any ϵ > 0, for rooted- and P2P- knapsack orienteering;
(b) O(log n)-approximation for the rooted and P2P versions of knapsack deadline orienteering,

and knapsack monotone-reward TSP;
(c) O(1)-approximation in O

(
nlog n∆)

time, for the rooted and P2P versions of knapsack
deadline orienteering, and knapsack monotone-reward TSP.

LP-relative guarantee for KnapOrient. For rooted KnapOrient, we can utilize Theorem 2.1
to obtain an LP-relative approximation guarantee. This will be useful in devising algorithms
for CorrKO. Consider the following LP-relaxation for rooted KnapOrient along the lines of
an LP-relaxation for rooted orienteering in [14]. Let ρ be the root node for the KnapOrient
instance. We bidirect the edges of the complete graph on V to obtain the arc-set A.

max
∑

u,v∈V

zv
u · πu (KO-LP)

s.t. xv
(
δin(u)

)
≥ xv

(
δout(u)

)
∀u ∈ V − ρ, v ∈ V (O1)

xv
(
δin(S)

)
≥ zv

u ∀v ∈ V, S ⊆ V − ρ, u ∈ S (O2)
zv

u = 0 ∀u, v ∈ V : dρ,u > dρ,v (O3)∑
a∈A

da · xv
a ≤ Bzv

v , xv
(
δout(ρ)

)
= zv

v ∀v ∈ V (O4)

x, z ≥ 0

∑
v∈V

zv
v = 1 (O5)

∑
u,v∈V

zv
u · wtu ≤ W. (KN)

The xv
a and zv

u variables encode the arcs included, and vertices visited, respectively by the
KnapOrient-path, provided that v is the node visited that is furthest from ρ, i.e., v maximizes
d(ρ, u) among all nodes u on the path: constraints (O3) enforce this semantics; in an integer
solution, these variables will be 0 if v is not the furthest visited node from ρ. Constraints

1 [19] do not explicitly state a result for KnapDO, and instead embed this result within their algorithm
for correlated orienteering. We can infer this factor by tracing through their algorithm and analysis.
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(O1) and (O2) encode that the ρ ⇝ u-connectivity is zv
u, and together with (O4) encode

that {xv
a} is a ρ-preflow of value zv

v satisfying the length budget. Constraint (O5) enforces
that overall x is a ρ-preflow of value 1. Constraints (O1)–(O5) are from the LP for rooted
orienteering in [14]; (KN) is the new constraint encoding the knapsack budget.

▶ Theorem 2.3. We can obtain a KnapOrient-solution that obtains reward at least
OPTKO-LP/5.

3 An adaptivity-gap lower bound for CorrKO

We now show that the adaptivity gap for CorrKO is Ω
(
max{

√
log B,

√
log log W}

)
, thereby

proving Theorem 1.1. We consider the following instance of correlated knapsack orienteering
that has a similar spirit as the adaptivity-gap example in [2] for (uncorrelated) stochastic
orienteering. The metric is a tree-metric induced by a complete binary tree T on a vertex
set V , with root r ∈ V and H ≥ 4 levels, where the distances decrease geometrically as we
move away from r. To conform to our notation, we include a separate dummy node ρ that
serves as the root for CorrKO, with distance 0 to r; but when we say root below, we always
mean the root r of the tree T . The knapsack budget is W := 22H+1 and the length/travel
budget is B := 2H−1 − 1. For a node v ∈ V , we use: lev(v) to denote the level of v, path(v)
to denote the unique r ⇝ v-path in T , and par(v) to denote the parent of v if v ̸= r. The
root r is at level H and each leaf node is at level 1; for a non-leaf node v at level ℓ, the
distance between v and its children is 2ℓ−2. For a rooted path P in T we say that a node
v ∈ P is a right-branching (resp. left-branching) node if the node succeeding v on P is its
right-child (resp. left-child). We denote by rt(P ) and left(P ), the right-branching nodes
and left-branching nodes of P , respectively. For notational convenience, we assume that the
end-node of P other than r is a left-branching node; if P = r, then we say that r ∈ left(P ).
The (correlated) (size, reward) distribution of node v is supported on three points:(

S(3)
v , R(3)

v ) = (0, 0),
(
S(2)

v , R(2)
v

)
=

(
22lev(v)

·
∏

w∈rt(path(v))

22lev(w)
, 0

)
(
S(1)

v , R(1)
v

)
=

(
W −

∑
w∈rt(path(v))

S(2)
w ,

(
1 − 1√

H

)|rt(path(v))|
)

and we have Pr[Sv = S
(3)
v ] = 1 − 1√

H
− 1

H , Pr[Sv = S
(2)
v ] = 1√

H
, Pr[Sv = S

(1)
v ] = 1

H ; see
Fig. 1. Observe that S

(2)
v ≤

(
22lev(v)+1)

/2 ≤ W/2, and S
(1)
v > W/2 for every node v.

Importantly, note that any policy for this instance can obtain positive reward from at
most one item. This is because for any v ∈ V , S

(1)
v > W/2. Therefore we can assume that

any policy terminates upon observing a size S
(1)
v for any visited vertex v. The binary tree is

built so that a certain adaptive policy (see the proof of Theorem 3.1) can always reach a
leaf-node if no positive reward has been collected in previous levels. The construction of the
tree prevents any path from going upward from a node to its parent, as this will cause the
length budget to run out. But more importantly, the instance is set up to preclude a policy
from going to a left child of a node v if its instantiated size is S

(2)
v in the sense that if this

happens then one cannot collect positive reward from this point on (Lemma 3.4).
The adaptivity-gap lower bound immediately follows from Theorems 3.1 and 3.2, since

H = Ω(log B) and H = Ω(log log W ) for the above CorrKO instance.

▶ Theorem 3.1. There is an adaptive policy for the above CorrKO instance that obtains Ω(1)
expected reward.
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ρ

r

v1

v2

v3
...

...
...

...
...

...
...

...

(
22H

, 0
)

(
2(2H +2H−1), 0

)
(

2(2H +2H−2), 0
)

(
2(2H +2H−2+2H−3), 0

)

(W , 1)

(
W − 22H

, 1 − 1√
H

)
(

W − 22H

, 1 − 1√
H

)
(

W − 22H

− 2(2H +2H−2),
(

1 − 1√
H

)2
)

Level

H

H − 1

H − 2

H − 3
...

Figure 1 The (S(2)
v , R

(2)
v ), (S(1)

v , R
(1)
v ) pairs are shown respectively on the left and right of each

highlighted vertex in the tree.

▶ Theorem 3.2. Any nonadaptive policy for the above CorrKO instance obtains expected
reward at most 2√

H
.

Proof of Theorem 3.1. Consider the following adaptive policy A: the policy moves to node
r from ρ, and then proceeds as follows. Let v be the current node visited, which is r initially.
If v is a leaf, then the policy ends after the instantiation of v. Otherwise, the next node
visited by A is: the left child of v, if Sv = S

(3)
v , and the right child of v if Sv = S

(2)
v ; if

Sv = S
(1)
v , then A stops and does not visit any other nodes.

Let P ∗ denote the (random) path traversed by A, which we may view as a rooted path
in T . Let vlast be the last vertex visited by A, i.e., vlast is the end-node of P ∗ other than r

and P ∗ = path(vlast).

▷ Claim 3.3. We have d(P ∗) ≤ B and S(P ∗) :=
∑

v∈P ∗ Sv ≤ W with probability 1.

We argue that the expected reward collected by P ∗ is at least 1−e−1

4 . Let R = R(P ∗) :=∑
v∈P ∗ Rv denote the reward obtained by P ∗. Note that vlast is the only vertex from which

P ∗ can collect positive reward. So E
[
R

]
= Pr

[
Svlast = S

(1)
vlast

]
· E

[
R

(1)
vlast

]
. Observe that if

Svlast ̸= S
(1)
vlast , then vlast is a leaf node, and hence the event {Svlast ̸= S

(1)
vlast} occurs precisely

when A visits H vertices, one on each level of T , and none of them instantiate to size S
(1)
v .

Since vertex sizes are independent across different vertices, we have Pr
[
Svlast ̸= S

(1)
vlast

]
=(

1 − 1
H

)H ≤ e−1, and so E
[
R

]
≥ (1 − e−1)E

[
R

(1)
vlast

]
.

We have R
(1)
vlast =

(
1 − 1√

H

)|rt(P ∗)|, and since
(
1 − 1√

H

)x is a convex function, we obtain

that E
[
R

(1)
vlast

]
≥

(
1 − 1√

H

)E[
|rt(P ∗)|

]
. Observe that v ∈ P ∗ gets included in rt(P ∗) precisely

when Sv instantiates to S
(2)
v , which happens with probability 1√

H
. So we can upper bound

E
[
|rt(P ∗)|

]
by H · 1√

H
=

√
H. It follows that E

[
R

(1)
vlast

]
≥

(
1 − 1√

H

)√
H ≥ 1

4 , where the last
inequality uses the fact that 1 − x ≥ 4−x for x ≤ 0.5. ◀

Proof of Theorem 3.2. Let σ be some non-adaptive policy, which we may again view as a
rooted path in T , since we can always move first to r. We may assume that σ visits vertices
in decreasing order of their levels, since any backtracking from a node v to its ancestor would
cause one to exceed the travel budget. We say that an execution of σ “cheats” if, for some
visited node v, Sv instantiates to S

(2)
v , and σ proceeds to visit a vertex in the subtree of T

rooted at the left-child of v.
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▶ Lemma 3.4. σ does not collect any positive reward after cheating.

Proof. Suppose σ cheats at some vertex u. Let v be any node in the tree rooted at the
left-child of u. The residual knapsack budget after visiting u is at most W − S

(2)
u . It suffices

to show that S
(1)
v > W −S

(2)
u . Since S

(1)
v = W −

∑
w∈rt(path(v)) S

(2)
w , this amounts to showing

that S
(2)
u >

∑
w∈A S

(2)
w , where A = rt(path(v)). We argue that S

(2)
w < S

(2)
u for every w ∈ A,

and the S
(2)
w ’s are distinct for w ∈ A. This, coupled with the fact that S

(2)
u and the S

(2)
w ’s

are all powers of 2, implies the above inequality.
Recall that for a node z, we have S

(2)
z = 22lev(z) ·

∏
w∈rt(path(z)) 22lev(w) . Let A =

{a1, a2, . . . , a|A|}, where the nodes are ordered in increasing order of their distance from r.
Then, for any i ≥ 2, we have S

(2)
ai = 22lev(ai) ·S(2)

ai−1 , showing that each S
(2)
ai is a distinct power of

2, and S
(2)
ai increases with i. Note that u /∈ rt(path(v)) and rt(path(u)) ⊆ A. So for z = a|A|, we

have S
(2)
z =

∏
w∈A−rt(path(u)) 22lev(w) ·

∏
w∈rt(path(u)) 22lev(w) and

∏
w∈A−rt(path(u)) 22lev(w)

< 22lev(u) .
It follows that S

(2)
z < S

(2)
u . ◀

Recall that we view σ also as a rooted path in T . We can show that the total expected
reward obtained from rt(σ) and left(σ) are both at most 1√

H
, which completes the proof. For

the latter bound, we utilize the fact that, due to Lemma 3.4, we can collect positive reward
from a node v only if Sw = S

(3)
w for every w ∈ left(path(v)) − v. ◀

4 Approximation algorithms for CorrKO

We now devise non-adaptive approximation algorithms for CorrKO. In Section 4.1, we
develop an O(log log W )-approximation algorithm with (n+log B)O(log W log log W ) (i.e., quasi-
polynomial) running time, which will prove Theorem 1a, and in Section 4.2, we obtain a
polytime O(log W )-approximation algorithm, thereby proving Theorem 1b.

4.1 Quasi-polytime O(log log W )-approximation algorithm
There are two chief components underlying our algorithm. First, we isolate a key structural
result (Theorems 4.1 and 4.2) showing that from an optimal adaptive policy, one can extract
a suitable path Q∗ and certain “portal” vertices on this path, such that the subpaths of
Q∗ between these portal vertices satisfy various nice properties. Second, we exploit this
structural result algorithmically as follows. The structural result allows us to reduce the
problem, at the expense of an O(log log W )-factor loss, to that of finding the portal vertices,
and suitable paths between these portal vertices that satisfy certain knapsack constraints on
the total expected truncated size E

[
min{Sv, 2j}

]
of nodes on these paths. We “guess” (i.e.,

enumerate over all possible choices of) these portal vertices and some auxiliary information,
and set up a configuration LP (CKO-P) to find paths between these portal vertices. This
configuration LP can be solved near-optimally, and we show that a fractional solution can be
rounded incurring only an O(1)-factor loss in the objective and in the constraints. Finally,
we argue that this leads to an O(log log W )-approximation non-adaptive policy.

Our approach is similar in spirit to the one in [2] for CorrO, and in Section 7, we show
that our approach also yields an O(log log B)-approximation for CorrO, which improves
upon the guarantee in [2] by an O

( log log B
log log log B

)
-factor. While we borrow various ingredients

from [2], the key difference between our approach and theirs is that we extract much more
information from the adaptive policy in terms of so-called portal vertices, which enables us
to round an underlying configuration LP incurring only a constant-factor violation in the
knapsack constraints; in contrast, this step in [2] incurs an O

( log log B
log log log B

)
-factor violation of

the constraints, and this savings is the source of our improved guarantee.
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Structural results. Recall that, for a path P and nodes a, b ∈ P , we use Pa,b to denote
the a-b portion of P . If P is a u-v path, its regret is dreg(P ) := d(P ) − d(u, v), and the
two-point regret of P with respect to a node a ∈ P is dreg(P, a) := d(P ) − d(u, a) − d(a, v) =
dreg(Pu,a) + dreg(Pa,v). For an index j ∈ {0, 1, . . . , L := ⌈log W ⌉}, recall that we define
Xj

v := min{Sv, 2j} and µj
v := E

[
Xj

v

]
. For any vertex v ∈ V , let πv(t) := E

[
Rv · 1Sv≤W −t

]
=∑W −t

t′=0 Pr[Sv = t′] · E
[
Rv | Sv = t′] denote the expected reward obtained from v if its

processing starts at time t. Note that πv(t) = 0 for any t > W . Also, note that πρ(t) = 0
for all t. We may assume that πv(0) ≤ OPT/4 for every v ∈ V , as otherwise, we can obtain
Ω(OPT ) reward by going to a single node.

Throughout, let K = 3 log(6 log W ) + 12, L = ⌈log W ⌉, N1 = 2(K + 1). Define φ−1 := ρ.

▶ Theorem 4.1. There exists a rooted path Q∗ with d(Q∗) ≤ B, vertices φ0 ⪯ φ1 ⪯ . . . ⪯ φk

on Q∗ for some k ≤ L, and, for each j ∈ JkK, a vertex-set Porj ⊆ Q∗
φj−1,φj

containing nodes
φj−1, φj, with |Porj | ≤ N1, whose vertices are ordered by the order they appear on Q∗,
satisfying the following properties.
(a)

∑k
j=0

∑
v∈Q∗

φj−1,φj
−φj

πv(2j − 1) ≥ OPT/4.
(b) µj(Q∗

ρ,φj
− φj) ≤ (K + 1)2j for all j ∈ JkK.

(c) For every j ∈ JkK and consecutive nodes a, b ∈ Porj, we have µj(Q∗
a,b − b) ≤ 2j.

As mentioned earlier, in our quasi-polytime algorithm, we utilize Theorem 4.1 to construct
a good rooted path, by using enumeration to guess

⋃
j Porj , and an LP to then obtain suitable

paths between consecutive nodes of
⋃

j Porj . In order to ensure that the total path length is
at most the travel budget B, we will also need to obtain some information about the lengths
d(Q∗

a,b) for consecutive nodes a, b in
⋃

j Porj . Naively guessing these lengths would yield
incur a large BO(LN1)-factor in the running time; to do better, and reduce the dependence to
(log B)O(LN1), we instead guess the two-point regret of each Q∗

a,b with respect to a “mid-point”
node, within a factor of 2, which suffices (see Fig. 2). We refine Theorem 4.1 to incorporate
these estimates as follows.

▶ Theorem 4.2 (Main structural result). Let the node-sequence φ0, . . . , φk, where k ≤ L,
and for each j ∈ JkK, the ordered node sequence Porj of at most N1 nodes, be as given by
Theorem 4.1. Define Por :=

⋃k
j=0 Porj, which we call “portal nodes”, where the ordering of

nodes in Por is Por0, Por1, . . . , Pork; for a ∈ Por, a ̸= φk, let next(a) be the next node in Por
after a. For each a ∈ Por − φk, there exists an a-next(a) path Q∗

a,next(a), auxiliary node ma,
and integer γa ≥ 0, such that the following properties hold.
(P1) (Distance) d(Q∗

a,b) ≤ Da := 2γa − 1 + d(a, ma) + d(ma, b) for every pair of consecutive
nodes a, b ∈ Por.

(P2) (Total-length)
∑

a∈Por−φk
Da ≤ B.

(P3) (Reward)
∑k

j=0
∑

a∈Porj−φj

∑
v∈Q∗

a,next(a)−next(a) πv(2j − 1) ≥ OPT/8.

(P4) (Prefix-size)
∑j

h=0
∑

a∈Porh−φh
µj

(
Q∗

a,next(a) − next(a)
)

≤ (K + 1)2j for all j ∈ JkK.
(P5) (Size) µj(Q∗

a,b − b) ≤ 2j for every j ∈ JkK and pair of consecutive nodes a, b ∈ Porj.

Configuration LP and non-adaptive algorithm. Now assume that we have found, by
enumeration, nodes φ0, . . . , φk, where k ≤ L, ordered node-sets Porj for j ∈ JkK, and length
bounds Da for every pair of consecutive nodes a, b ∈ Por :=

⋃k
j=0 Porj , as stipulated by

Theorem 4.2. (We also need to enumerate for {ma, γa}a∈Por−φk
; we do not use these quantities

directly, but these are used to specify the Da length bounds.) That is, these objects are
compatible with suitable Q∗

a,b paths such that P1–P5 hold. Clearly, this enumeration takes
(n log B)O(N1L) = (n log B)O(log W log log W ) time, which is the source of the running time in
Theorem 1a.

APPROX/RANDOM 2024



29:14 Approximation Algorithms for Correlated Knapsack Orienteering

φ−1 = ρ φ0 φ1 φ2 φ3

· · ·
φj−1 φj

· · ·
a next(a)

Q∗
a,next(a)

µj
(
Q∗

a,next(a) − next(a)
)

≤ 2j

maa next(a)

µj
(

Q∗
ρ,φj

− φj

)
≤ (K + 1)2j

Figure 2 Portal nodes Por and paths between portal nodes. The solid nodes depict Porj .

We formulate a configuration LP to find a-b paths, for every pair of consecutive nodes
a, b ∈ Por, satisfying properties P1, P3–P5. To this end, fix some j ∈ JkK and a ∈ Porj − φj ,
and let b = next(a). The valid a-b paths (i.e., the configurations) are the solutions to the
following (deterministic) point-to-point knapsack orienteering (KnapOrient) problem: the
end-nodes are a, b, the length budget is Da, the knapsack weights are µj

v for all v ∈ V − b

and µj
b = 0, and the knapsack-budget is 2j . Let Ia denote the set of all feasible solutions to

this KnapOrient instance.
The configuration LP has variables xa

τ , for every a ∈ Por − φk and τ ∈ Ia, indicating the
a-next(a) paths that are chosen.

max
k∑

j=0

∑
a∈Porj−φj

∑
τ∈Ia

xa
τ ·

( ∑
v∈τ−next(a)

πv(2j − 1)
)

(CKO-P)

s.t.
∑

τ∈Ia

xa
τ = 1 ∀a ∈ Por − φk (1)

∑
a∈Por−φk

∑
τ∈Ia:v∈τ−next(a)

xa
τ ≤ 1 ∀v ∈ V (2)

j∑
h=0

∑
a∈Porh−φh

∑
τ∈Ia

xa
τ · µj

(
τ − next(a)

)
≤ (K + 1)2j ∀j ∈ JkK (3)

x ≥ 0.

Constraints (1) encodes that we select an a-b path for every consecutive pair of nodes
a, b ∈ Por, and constraints (2) ensure that each node v lies on at most one of these a-b
paths; constraint (3) encodes the (Prefix-size) property P4. (Note that if φh−1 = φh, then
Porh = {φh}, so we do not have any term for index h in the objective function, and on the
LHS of (3).)

To gain some intuition, notice that Theorem 4.2 shows that there is a feasible integral
solution to (CKO-P) of objective value at least OPT/8: we set xa

τ = 1 for τ = Q∗
a,next(a) for

every a ∈ Por − φk. Properties P1 and P5 show that Q∗
a,next(a) ∈ Ia; property P4 shows that

(3) holds, and P3 shows that the objective value is at least OPT/8.
We can solve (CKO-P) approximately, given an approximation algorithm for KnapOrient,

since this can be used to obtain an approximate separation oracle for the dual of (CKO-P).
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▷ Claim 4.3. The optimal value of (CKO-P), OPTCKO-P, is at least OPT/8.

▶ Lemma 4.4. Given an α-approximation algorithm for KnapOrient, we can compute in
polytime a solution x to (CKO-P) of objective value at least OPTCKO-P/α.

We use randomized rounding to round the solution x obtained by Lemma 4.4, and
Chernoff bounds yield that this only incurs an O(1)-factor loss in the objective, and in the
violation of constraints (3); here is where we crucially exploit property P5. We then obtain
an O(K)-approximate non-adaptive policy for CorrKO from the rounded solution.

Algorithm CSKO-Alg. // Rounding (x, y) and obtaining a non-adaptive policy

1 Independently, for each a ∈ Por − φk, letting b = next(a), do the following: pick an
a-b path by choosing τ ∈ Ia with probability xa

τ /2, and choosing the “direct” path
a, b with the remaining probability 0.5; let Pa,b denote the path picked.

2 If for any j ∈ JkK, we have
∑j

h=0
∑

a∈Porh−φh
µj

(
Pa,next(a) − next(a)

)
> 5(K + 1)2j ,

then return the empty policy that does not visit any node.
3 Consider the concatenated sequence of nodes {Pa,next(a)}a∈Por−φk

(where Por is
ordered as in Theorem 4.2). If a non-portal node is repeated in this sequence, then
shortcut the Pa,next(a) paths so as to retain only the first occurrence of each node.
Let P ′

a,next(a) denote the shortcut version of Pa,next(a) (which is still an a-next(a)
path). Let P ′ be the rooted path given by the node-sequence {P ′

a,next(a)}a∈Por−φk
,

where we retain only one copy of each portal node.
4 Sample each v ∈ P ′ − ρ independently with probability 1

10(K+1) to obtain the rooted
path, P ′′. return the non-adaptive policy P ′′.

Analysis overview. The key observation is that since for any j ∈ JkK, any h ≤ j,
any a ∈ Porh − φh, and any τ ∈ Ia, we have µj

(
τ − next(a)

)
≤ 2j , we obtain that∑j

h=0
∑

a∈Porh−φh
µj

(
Pa,next(a)−next(a)

)
is the sum of a collection of independent 2j-bounded

random variables,2 whose expectation is O
(
(K +1) ·2j

)
, due to constraint (3). It follows from

Chernoff bounds that the probability that this sum exceeds 5(K + 1)2j , for any fixed index j,
is exp −Ω(K), and so by a union bound, step 2 succeeds with high probability (Lemma 4.5).

To bound the reward obtained, consider a node v and index j ∈ JkK, and define yj
v :=∑

a∈Porj−φj

∑
τ∈Ia:v∈τ−next(a) xa

τ . (Note that
∑k

h=0 yh
v ≤ 1.) We say that v is “visited by

segment j” if v ̸= φj and v ∈
⋃

a∈Porj−φj
Pa,next(a); we say that v is “retained by segment j”

if v ̸= φj and v remains on
⋃

a∈Porj−φj
P ′

a,next(a) after the shortcutting in step 3. Note that
the latter events are disjoint, for different js. (Note that for a portal node in Porj − φj , both
events happen with probability 1.) Clearly, v is retained by segment j only if it is visited by
segment j. For convenience of analysis, we will view step 3 as being executed even if step 2
fails, so we can talk about the event “v retained by segment j” regardless of the outcome
of step 2. It is not hard to argue that Pr[v is retained by segment j] = Ω(yj

v), but we need
some care to show that this holds even when we condition on the event that step 2 succeeds,
as subtle dependencies between events arise here. Nevertheless, we show that this indeed
holds (Lemma 4.6).

2 This the key difference from [2]. They guess only the φj nodes, and so in their case, the corresponding
sum gets decomposed into the sum of (K + 1)2j-bounded random variables, and so an application of
Chernoff bounds incurs an additional log k

log log k = log log W
log log log W -factor.
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Finally, given that step 2 succeeds and the rounded path P ′ satisfies (3) with O
(
(K +1)2j

)
on the RHS, due to the random sampling in step 4, we can argue that, for any node v retained
by segment j, the non-adaptive policy processes v by time 2j − 1 with probability 1

O(K)

(Lemma 4.7). Thus, the expected reward of the non-adaptive policy is 1
O(K) ·

∑k
j=0

∑
v∈V yv

j ·
πv(2j − 1) ≥ OPT

O(K) .
For an index j ∈ JkK, let Bj be the event that

∑j
h=0

∑
a∈Porh−φj

µj
(
Pa,next(a) −next(a)

)
>

5(K + 1)2j . So B :=
∨k

j=0 Bj is the event that step 2 fails; let Bc denote the complement of
B. Recall that K = 3 log log(6W ) + 12.

▶ Lemma 4.5. Pr[Bj ] ≤ e−(K+1) for all j ∈ JkK. Hence, Pr[B] ≤ 1/ poly(log W ).

▶ Lemma 4.6. For any node v ∈ V and any j ∈ JkK, we have
Pr[{v is retained by segment j} ∧ Bc] ≥ yj

v

16 .

▶ Lemma 4.7. Consider any node v ∈ V − φk. Suppose that v is retained by segment j

in step 3. Then Pr[non-adaptive policy P ′′ processes v by time 2j − 1] ≥ 1
20(K+1) , where the

probability is over both the random sampling in step 4 and the random execution of P ′′.

Proof of Theorem 1a. Combining Lemmas 4.6 and 4.7, and since for any v ∈ V − φk, the
events “v is retained by segment j” are disjoint across different js, the expected reward

obtained from a node v is at least
∑k

j=0
πv(2j−1)yj

v

320(K+1) . So the total expected reward obtained
by P ′′ is at least 1

320(K+1) ·
(
objective value of x

)
= OPT/O(K).

The running time is polynomial in the time needed to enumerate the quantities in
Theorem 4.2, which is poly

(
(n log B)O(log W log log W )) = O

(
(n + log B)O(log W log log W )). ◀

4.2 Polynomial-time O(log W )-approximation algorithm

The polytime algorithm also proceeds by gleaning some structural insights from an optimal
adaptive policy that enable one to reduce the problem to rooted knapsack orienteering, losing
an O(log W )-factor. Recall that L = ⌈log W ⌉.

▶ Theorem 4.8. There exists an index j ∈ JLK such that, for the KnapOrient-instance with
start node ρ, travel budget B, knapsack budget 2j+1, knapsack weights {µj

v}v∈V , and rewards
{πv(2j − 1)}v∈V , the optimal value of the LP-relaxation (KO-LP), is at least OPT/(L + 1).

Proof of Theorem 1b. Theorem 4.8 leads to the following simple algorithm. For the index
j in the theorem statement, we solve (KO-LP) and round it to an integer solution P losing
a factor of 5 (see Theorem 2.3). We sample each non-root node in P independently with
probability 1

4 , and return the resulting rooted path P ′′. To analyze this, for any v ∈ P , we
have that the probability that the non-adaptive policy P ′′ processes v by time 2j − 1 is at
least 1

8 . The claim follows because Pr
[∑

w≺P ′′ v Sw ≥ 2j
]

= Pr
[∑

w≺P ′′ v Xj
w ≥ 2j

]
, which is

at most

E
[∑

w≺P ′′ v Xj
w

]
2j

= 1
4 ·

E
[∑

w≺P v Xj
w

]
2j

≤ 1
4 ·

∑
w∈P µj

w

2j
≤ 1

2 .

The probability of the stated event is therefore at least Pr[v ∈ P ′′]/2 ≥ 1/8. Therefore, the
expected reward obtained is at least 1

8 ·
∑

v∈P πv(2j − 1) ≥ OPT
L+1 · 1

5 · 1
8 = OPT/O(L). ◀
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5 Refined approximation guarantees and hardness results for CorrKO

In this section, we perform a fine-grained-complexity study of CorrKO. Motivated by the
fact that our adaptivity-gap lower bound for CorrKO utilizes distributions of support-size
3, whereas the adaptivity-gap lower-bound example for stochastic orienteering [2] considers
weighted Bernoulli distributions, we investigate the complexity of CorrKO when we have
distributions supported on at most 2 points – we call this special case 2CorrKO– as also the
further special case where the vertex-size distributions are weighted Bernoulli distributions.

In stark contrast with stochastic orienteering, we show that the adaptivity gap is a
constant for 2CorrKO. Moreover, we obtain non-adaptive O(1)-approximation algorithms
that run in polynomial time for weighted Bernoulli distributions (Theorem 5.5), and in time
(n + log B)O(log W ) for general 2CorrKO (Theorem 5.4).

The chief insight underlying the above results is that one can isolate a novel deterministic
VRP, that we call orienteering with knapsack deadlines (OrientKD), that governs the complex-
ity of 2CorrKO. In OrientKD, we are given an (rooted or P2P) orienteering instance, along
with nonnegative knapsack weights {wtv}v∈V and knapsack deadlines {KDv}. A path P with
start node a is feasible, if it is feasible for the orienteering instance, and

∑
u∈Pa,v

wtu ≤ KDv

for every node v ∈ P ; the goal is to find a feasible path P that obtains the maximum reward.
For this problem, we obtain the following approximation results.

▶ Theorem 5.1. We can obtain the following approximation guarantees for OrientKD:
(a) O(1)-approximation in (n + log B)O(log W ) time;
(b) polytime O

(
log( maxv KDv

KDmin
)
)
-approximation, where KDmin is the minimum non-zero knap-

sack deadline.

We show that, up to constant factors, OrientKD is equivalent to 2CorrKO in terms of
approximability (Theorem 5.4). The O(1)-approximation for 2CorrKO, and the polytime
O(1)-approximation for weighted Bernoulli distributions both fall out as direct consequences
of this equivalence: the former, because we can devise an (n + log B)O(log W )-time O(1)-
approximation for OrientKD (Theorem 5.1); the latter, because the OrientKD instance that
one needs to solve for weighted Bernoulli distributions is in fact a KnapOrient instance.
Another corollary is a hardness result for CorrKO showing that an α-approximation for
CorrKO relative to the non-adaptive optimum implies an O(α)-approximation for OrientKD
(Theorem 5.6); this follows because such an approximation guarantee for CorrKO implies an
O(α)-approximation for 2CorrKO (since the adaptivity gap for 2CorrKO is O(1)).

Difficult instances of CorrKO. We begin by distilling the key source of difficulty for CorrKO
(Lemma 5.2). This will prove to be useful when we study 2CorrKO, as it will allow us to
focus on the core of the problem. We define the size instantiation Sv of a vertex v to be
large if Sv > W/2, and small otherwise. We argue that the difficulty of CorrKO stems from
instances where most of the optimal reward comes from vertices that instantiate to a large
size with small probability.

To make this precise, we introduce some notation. For a vertex v, we can split its reward
Rv as Rv = Rv

>W/2 + Rv
≤W/2, where Rv

>W/2 := Rv1Sv>W/2 and Rv
≤W/2 := Rv1Sv≤W/2.

We can consider the modified CorrKO instances I>W/2 and I≤W/2, where the rewards are
given by {Rv

>W/2}v∈V and {Rv
≤W/2}v∈V respectively; so in I>W/2, we only collect non-

zero reward from large instantiations, and in I≤W/2, we only collect non-zero reward from
small instantiations. For p ∈ [0, 1], define I>W/2(p) to be the instance with vertex set
V (p) := {v ∈ V : Pr[Sv > W/2] ≤ p} (note that ρ ∈ V (p)). Thus, in instance I>W/2(p), we
only consider vertices that instantiate to a large size with probability at most p (i.e., small
probability), and collect reward only from large instantiations.
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▶ Lemma 5.2. Suppose we have an α-approximation algorithm for CorrKO instances of
the form I>W/2(0.5). Then, we can obtain an

(
α + O(1)

)
-approximation algorithm for all

CorrKO instances.

Proof. A CorrKO instance I can be decomposed into three instances, I1 = I≤W/2, I2 =
I>W/2(0.5), and I3 with vertex set V3 := {v ∈ V : Pr[Sv > W/2] > 0.5} and rewards
{Rv

>W/2}v∈V3 . Any vertex v yields positive reward in at most one of these 3 instances for
any size instantiation, and so OPT = OPT (I) ≤ OPT (I1) + OPT (I2) + OPT (I3).

We can obtain non-adaptive polices that yield approximation guarantees of β1 = O(1),
β3 = O(1) for I1 and I3 respectively. Any adaptive policy for I3 can collect positive reward
from at most one vertex, which is the first vertex that instantiates to a large size; after this
the policy may as well stop. The expected number of nodes visited by an adaptive policy is at
most

∑
i≥1 2−(i−1) ≤ 4, so simply visiting the node in V3 with largest expected reward, yields

an O(1)-approximation to OPT(I3). For I1, one can argue that an O(1)-approximation
follows by solving the KnapOrient instance with rewards {E

[
Rv

≤W/2]
}v∈V , travel budget B,

knapsack weights {E
[
min{Sv, W}

]
}v∈V , and knapsack budget 2W .

Let β2 = α. Consider now the algorithm that With probability βj

β1+β2+β3
, runs the

corresponding algorithm for instance Ij , for j = 1, 2, 3. The expected reward obtained via
this is at least

∑3
j=1

βj

β1+β2+β3
· OPT(Ij)

βj
≥ OPT

β1+β2+β3
= OPT

α+O(1) . ◀

5.1 2CorrKO: CorrKO with distributions of support-size at most 2

Recall that 2CorrKO denotes the special case of CorrKO where, for each vertex v, the
distribution of Sv is supported on at most 2 values, denoted S

(1)
v , S

(2)
v with S

(1)
v ≥ S

(2)
v .

By Lemma 5.2, to obtain an O(1)-approximation for 2CorrKO, it suffices to consider the
instance I2 = I>W/2(0.5), and we focus on such instances in the sequel. To keep notation
simple, we continue to use V to denote the vertex set of I2. Then we may assume that
the (size, reward) distribution for each v ∈ V is (S(1)

v , Rv) with probability pv, and (S(2)
v , 0)

with probability 1 − pv, where (i) S
(1)
v > W/2 ≥ S

(2)
v and (ii) pv ≤ 0.5. Property (i) holds

because if S
(1)
v ≤ W/2, then v yields 0 reward for I2, so may be discarded; if S

(2)
v > W/2,

then Pr[Sv > W/2] = 1, which means that v would not be considered for I2. Given (i) the
reward when the size is S

(2)
v must be 0, and (ii) holds because pv = Pr[Sv > W/2]. We first

argue that the adaptivity gap for such instances is 1.

▶ Theorem 5.3. The adaptivity gap for 2CorrKO (instances of the form I>W/2(0.5)) is 1.

Proof. Let T be the decision tree of an optimal adaptive policy. Consider the (rooted) path
σ of T corresponding to the S

(2)
v size instantiations. Then T cannot collect any reward

outside of σ, since the residual knapsack budget when we reach any node v ∈ T \ σ is less
than W/2. So the non-adaptive policy represented by σ has the same expected reward
as T . ◀

We now show that the resulting 2CorrKO problem is equivalent to OrientKD, up to constant-
factor approximation losses. By “equivalent”, we always mean equivalent up a multiplicative
O(1) factor. We actually show that 2CorrKO is equivalent to another problem, knapsack ori-
enteering with knapsack deadlines (KnapOrientKD), which is the knapsack-constrained version
of OrientKD; by Theorem 2.1, OrientKD and its knapsack-constrained version KnapOrientKD
are equivalent, so this implies that 2CorrKO and OrientKD are equivalent.
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▶ Theorem 5.4. Given an α-approximation algorithm for one of the problems, KnapOrientKD
or 2CorrKO, one can obtain an O(α)-approximation algorithm for the other. Hence, the prob-
lems 2CorrKO and OrientKD are equivalent. This implies an O(1)-approximation algorithm
for 2CorrKO with running time (n + log B)O(log W ).

The approximation guarantee above follows from the guarantee for OrientKD stated in
Theorem 5.1. We briefly sketch how to reduce 2CorrKO to KnapOrientKD. By essentially
“inverting” this reduction, we obtain the opposite reduction, from KnapOrientKD to 2CorrKO.

Let I be a 2CorrKO instance. By Theorem 5.3, we can focus on non-adaptive policies for
I. Let τ be a ρ-rooted path representing a non-adaptive policy. It is not hard to show that
the expected reward from a node v ∈ τ is pvRv

∏
w≺τ v(1 − pw) if

∑
w≺τ v S

(2)
w ≤ W − S

(1)
v ,

and is 0 otherwise. Also, one can argue that the total expected reward from nodes v ∈ τ

with
∑

w≺τ v pw > 1 is a small fraction of OPT (I). This motivates the following reduction to
KnapOrientKD. We set rewards {πvRv}v∈V . The constraint

∑
w≺τ v S

(2)
w ≤ W − S

(1)
v can be

encoded by a knapsack deadline, by considering knapsack weights {S
(2)
w }w∈V and knapsack

deadlines {W − S
(1)
w + S

(2)
w }w∈V . The additional knapsack constraint will encode that the

total pw-weight of the path should be at most 1, so that the expected reward obtained for I
from each vertex v on the KnapOrientKD-solution is Ω(pvRv).

For weighted Bernoulli size distributions, which is the special case of 2CorrKO where
S

(2)
v = 0 for all v ∈ V , the above reduction actually crates a KnapOrient instance, since

the knapsack-deadlines are trivially satisfied by any rooted path. Since we have a polytime
O(1)-approximation for KnapOrient, we obtain the following.

▶ Theorem 5.5 (Weighted Bernoulli size distributions). There is a polytime O(1)-approximation
for CorrKO with weighted Bernoulli size distributions.

As noted earlier, combining the equivalence of 2CorrKO and OrientKD, and the O(1)
adaptivity gap for 2CorrKO, yields the following hardness result.

▶ Theorem 5.6 (Hardness of approximating the non-adaptive optimum). Given an α-approxi-
mation algorithm for CorrKO with respect to the non-adaptive optimum, we can obtain an
O(α)-approximation algorithm for OrientKD.

6 CorrKO with cancellations

In CorrKO with cancellations (CorrKO-Cancel), the input is the same as in CorrKO, but we
are now allowed to cancel the processing of the current vertex v at any (integer) timestep
before its size and reward get fully realized; if v is cancelled, then no reward is collected
from v and we cannot process v again. As with CorrKO, we only collect reward from vertices
that complete by the processing-time horizon W . Gupta et al. [18] showed that even for
correlated knapsack (which is the special case of CorrKO where all vertices are co-located),
the optimal reward when we allow cancellations can be substantially larger than the optimal
reward without cancellations, so we need to develop new algorithms to handle cancellations.

We obtain the same guarantees for CorrKO-Cancel as for CorrKO: that is, O(log log W )-
approximation in (n + log B)O(log W log log W ) time, and a polytime O(log W )-approximation.

We proceed as follows. Recall that for a vertex v, we define Rv
>W/2 := Rv1Sv>W/2 and

Rv
≤W/2 := Rv1Sv≤W/2. Let I>W/2 and I≤W/2 denote the CorrKO-Cancel instances where

the rewards are given by {Rv
>W/2}v∈V and {Rv

≤W/2}v∈V respectively. As observed by [18],
cancellations do not help for the instance I>W/2, i.e., the optimal reward is the same both
with and without cancellations. This is because if a policy cancels a vertex v after it has
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run for some t ≤ W/2 time steps, we can modify the policy to not process v at all, without
decreasing the reward accrued from subsequently-processed vertices; if v is cancelled after it
has run for more than W/2 time steps, then both with and without cancellation, the policy
cannot collect any further reward.

We show that we can obtain an O(1)-approximation for I≤W/2. With probability 0.5
each, we can work on the instance I≤W/2, where we utilize this O(1)-approximation, or the
instance I>W/2, where we utilize the approximation results for CorrKO. So this yields: an
O(log log W )-approximation in quasi-polytime, and a polytime O(log W )-approximation.

So we focus on obtaining an O(1)-approximation for CorrKO-Cancel instances of the form
I≤W/2. Our approach is based on LP-rounding, by combining the LP-rounding approaches
for orienteering in [14] and the correlated knapsack problem with cancellations in [18]. We
combine the LP-relaxations for these two problems to obtain the following LP, whose optimal
value yields an upper bound on the optimal reward. We use Ru(t) to denote the reward Ru

when the size Su is t; this is 0 if Pr[Su = t] = 0. Note that Ru(t) = 0 for all t > W/2, since
we are considering I≤W/2.

max
∑
u∈V

W/2∑
t=1

zu,t · Pr[Su = t | Su ≥ t] · Ru(t) (CKOC-LP)

s.t. (O1) – (O5)∑
v∈V

zv
u = zu,0 ∀u ∈ V (4)

zu,t = su,t + zu,t+1 ∀u ∈ V, t ∈ JW K (CK1)
su,t ≥ Pr[Su = t | Su ≥ t] · zu,t ∀u ∈ V, t ∈ JW K (CK2)∑

u∈V

W∑
t=0

t · su,t ≤ W (CK3)

x, z, s ≥ 0.

The xv
a and zv

u variables, and constraints (O1)–(O5) are from the LP for rooted orienteering
(and also present in LP (KO-LP) for KnapOrient). They encode the arcs included, and
vertices visited, respectively by the rooted path, provided that v is the furthest node from ρ

that is visited. Constraints (O1)–(O5) are valid because any rooted path Q, corresponding
to an execution of an adaptive policy, satisfies these constraints, where the superscript v in
the non-zero variables is the furthest node from ρ on Q.

The zu,t and su,t variables, constraints (CK1)–(CK3), and the objective function are from
the LP in [18] for correlated knapsack with cancellations. For any vertex u and t ≥ 0, variable
zu

t encodes that u is processed for a least t time units, and su,t encodes that u is processed
for exactly t time units. Thus, variable zu,0 encodes that u is visited, and constraint (4)
links the orienteering and correlated knapsack LPs. Gupta et al. [18] show (see Theorem 3.1
in [18]) that constraints (CK1)–(CK3) are valid for correlated knapsack with cancellations,
and that the objective function provides an upper bound on the expected reward obtained.

We remark that [18] showed that one can replace (CK1)–(CK3) with a polynomial-size
formulation losing an O(1)-factor, which applies here as well.

We round an optimal solution (x, z, s) to (CKOC-LP) in two phases. We first extract a
suitable knapsack orienteering instance from the LP solution, and use Theorem 2.3 to obtain
a good rooted path Q for this KnapOrient instance. Now, we select a subsequence of Q to visit
by solving a correlated knapsack with cancellations problem involving only vertices in Q. The
KnapOrient-instance is set up so that from (x, z, s), one can extract a good LP solution to the
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correlated knapsack problem restricted to vertices in Q. We utilize the LP-rounding result
in [18] to round this solution to obtain a CorrKO-Cancel solution that visits the vertices in Q

in order, potentially cancelling some vertices along the way. Thus, we obtain a non-adaptive
policy for CorrKO-Cancel. In the second phase, we crucially leverage an important aspect of
the LP-rounding algorithm in [18] for correlated knapsack with cancellations, namely that it
is order oblivious: it’s guarantee does not depend on the order in which the vertices (i.e.,
items in correlated knapsack) are considered. This flexibility allows us to consider vertices
in Q in the order they are visited, and thereby ensure that the travel-budget constraint is
satisfied. (We remark that for the correlated knapsack without cancellations, we do not have
this flexibility, when considering large instantiations; see Appendix A. This lack of flexibility
is the main obstacle in obtaining a good solution from large instantiations in CorrKO.)

7 O(log log B)-approximation for CorrO

Our approach in Section 4 for CorrKO can be utilized to yield the guarantees mentioned
in Theorem 1.3: that is, an O(α log log B)-approximation algorithm for CorrO in time
(n + log B)O(log B log log B) · T , where T is the running time of the given α-approximation
algorithm for deadline TSP. The algorithm in [15] for deadline TSP translates to an O(1)-
approximation in nO(log B) time, so this implies an O(log log B)-approximation for CorrO in
quasi-polytime. We also simplify the exposition significantly by making use of monotone-
reward TSP [15] as a subroutine.

Let K = 3 log(6 log B) + 12, L = ⌈log B⌉, N1 = 2(K + 1). Define φ−1 := ρ, and
πv(t) := E

[
Rv · 1Sv≤B−t

]
=

∑B−t
t′=0 Pr[Sv = t′] · E

[
Rv | Sv = t′]. Let OPTCorrO denote the

optimal reward for the CorrO instance. We may assume that πv(dρ,v) ≤ OPTCorrO/4 for
every v ∈ V , as otherwise, we can obtain Ω(OPTCorrO) reward by going to a single node.
The algorithm in [2] is based on the following structural result, which we have paraphrased
(and corrected slightly) to conform to our notation.

▶ Lemma 7.1 (Lemma 3.6 in [2]). There exists a rooted path P with d(P ) ≤ B, and vertices
φ0 ⪯ φ1 ⪯ . . . ⪯ φk on P for some k ≤ L, such that:
(a)

∑k
j=0

∑
v∈Pφj−1,φj

−φj
πv

(
d(Pρ,v + 2j − 1)

)
≥ OPTCorrO/4; and

(b) µj(Pρ,φj
− φj) ≤ (K + 1)2j for all j ∈ JkK.

We refine this by subdividing each Pφj−1,φj subpath into at most 2(K + 1) segments each
of µj-weight at most 2j , and by guessing the two-point regrets of these segments, to obtain a
structural result analogous to Theorem 4.2.

▶ Theorem 7.2 (Structural result for CorrO). Let the rooted path P and node-sequence
φ0, . . . , φk, where k ≤ L, be as in Lemma 7.1. For each j ∈ JkK, there is a vertex-set
Porj ⊆ Pφj−1,φj

containing φj−1, φj , with |Porj | ≤ N1, whose nodes are ordered by the order
they appear on P , and for every node a ∈

(⋃k
j=0 Porj

)
− φk, there is a path Q

a, node ma,
integer γa ≥ 0, satisfying the following properties. For a, b ∈ Por :=

⋃k
j=0 Porj , let next(a) be

the next node in Por after a, for a ̸= φk; let b ≺ a if b comes before a in Por.
(C1) (Distance) d(Qa) ≤ Da := 2γa − 1 + d(a, ma) + d

(
ma, next(a)

)
for every a ∈ Por − φk.

(C2) (Total-length)
∑

a∈Por−φk
Da ≤ B.

(C3) (Reward)
∑K

j=0
∑

a∈Porj−φj

∑
v∈Q

a−next(a) πv

(∑
b≺a Db + d(Qa

a,v) + 2j − 1
)

≥
OPTCorrO/8.

(C4) (Prefix-size)
∑j

h=0
∑

a∈Porh−φh
µj

(
Q

a − next(a)
)

≤ (K + 1)2j for all j ∈ JkK.
(C5) (Size) µj

(
Q

a − next(a)
)

≤ 2j for every j ∈ JkK and every a ∈ Porj − φj.
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We now exploit this structural result in much the same way as in Section 4.1 by setting up
a configuration LP to find the Q

a-paths. Note that only the (Reward) property C3 is different
from the (Reward) property in Theorem 4.2 for CorrKO, and correspondingly, we now exploit
monotone-reward TSP to capture the reward of an Q

a path. Assume that we have found
the “portal nodes” Por and length bounds Da for all a ∈ Por − φk satisfying Theorem 7.2.
To capture the reward obtained from an a-next(a) path, the configurations Ia for a node
a ∈ Por − φk will now consist of feasible solutions to P2P knapsack monotone-reward TSP,
which is the knapsack-constrained version of P2P-monotone-reward TSP: they are simply all
a-next(a) paths τ with µj

(
τ −next(a)

)
≤ 2j . The length budget Da will be captured implicitly,

by defining the reward function of a node v ≠ next(a) to be πv

(∑
b≺a Db + d(τa,v) + 2j − 1

)
if d(τa,v) ≤ Da − d(v, next(a)) and 0 otherwise, which is a non-increasing function of d(τa,v);
for v = next(a), the reward function is defined to be identically 0. For notational convenience,
define πa,j(τ) to be the total reward obtained from nodes in τ under the above rewards.

The configuration LP for CorrO now has the same constraints as (CKO-P), but the
objective function changes to max

∑k
j=0

∑
a∈Porj−φj

∑
τ∈Ia

xa
τ · πa,j(τ). Let (CO-P) denote

this LP, and OPTCO-P denote its optimal value.
We now have OPTCO-P ≥ OPTCorrO/8, and one can argue that an α-approximation

algorithm for deadline TSP (and hence, monotone-reward TSP [15]) can be used to obtain
a (CO-P)-solution x of value at least OPTCO-P/O(α). The LP-rounding algorithm and
conversion to a non-adaptive policy are exactly as in Algorithm CSKO-Alg. The analysis
is similar, but we now analyze the reward on a path-by-path basis, considering the reward
obtained from paths τ ∈ Ia, for each a ∈ Por − φk. We can again argue that step 2 succeeds
with high probability, and moreover that the expected reward obtained is large conditioned
on this. Hence, we obtain an O(K) approximation.
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A Adversarial orderings can be arbitrarily bad for correlated knapsack

Consider an instance of correlated stochastic knapsack on the set of items [n] with budget
W > 2n+1. Let Si and Ri denote respectively the random size and random reward of i,
which follows the following distribution.

(Si, Ri) =
{(

S
(1)
i := W − 2n−i + 1, R

(1)
i := 1

)
with probability 1

n(
S

(2)
i := 2n−i, R

(2)
i := 0

)
with probability 1 − 1

n .

At most one item can obtain positive reward since W/2 < W − 2n−i+1 + 1 for all i ∈ [n].
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Suppose that we are forced to process the items in the ordering 1, . . . , n deciding at
each step whether we attempt to insert the current item into the knapsack or abandon it
forever. Let j be the first item that we choose to insert into the knapsack. It instantiates to
size 2n−j with probability 1 − 1/n. If this happens we get zero total reward: the residual
budget becomes W − 2n−j , which is less than the S

(1)
i -sizes of items j + 1, . . . , n (which

yield positive reward). Therefore, by processing the items in this ordering the expected
reward is at most 1/n. But suppose we process the items in the reverse order n, . . . , 1. If
we attempt to insert items n, n − 1, . . . , j and get zero reward from all of them, the residual
budget is W −

∑n
k=j 2n−k = W − 2n−j+1 + 1 > S

(1)
j−1, which means that item j − 1 can be

inserted and would yield reward 1 with probability 1
n . Thus, the probability that no item

gives positive reward is (1 − 1/n)n ≤ e−1 and the expected reward we obtain in this case is
at least (1 − e−1). This is Ω(n) times larger than the expected reward that can be obtained
by any policy that is forced to process items in the order 1, . . . , n.
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