
Greedy Heuristics and Linear Relaxations for the
Random Hitting Set Problem
Gabriel Arpino #Ñ

University of Cambridge, UK

Daniil Dmitriev #Ñ

ETH Zürich and ETH AI Center, Switzerland

Nicolo Grometto #

Princeton University, USA

Abstract
Consider the Hitting Set problem where, for a given universe X = {1, . . . , n} and a collection of
subsets S1, . . . , Sm, one seeks to identify the smallest subset of X which has a nonempty intersection
with every element in the collection. We study a probabilistic formulation of this problem, where
the underlying subsets are formed by including each element of the universe independently with
probability p. We rigorously analyze integrality gaps between linear programming and integer
programming solutions to the problem. In particular, we prove the absence of an integrality gap
in the sparse regime mp ≲ log n and the presence of a non-vanishing integrality gap in the dense
regime mp ≫ log n. Moreover, for large enough values of n, we look at the performance of Lovász’s
celebrated Greedy algorithm [12] with respect to the chosen input distribution, and prove that it finds
optimal solutions up to multiplicative constants. This highlights separation of Greedy performance
between average-case and worst-case settings.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Theory
of computation → Approximation algorithms analysis; Theory of computation → Randomness,
geometry and discrete structures

Keywords and phrases Hitting Set, Random Hypergraph, Integrality Gap, Greedy Algorithm

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.30

Category APPROX

Related Version Extended Version: https://arxiv.org/abs/2305.05565 [1]

Acknowledgements The authors thank Dylan J. Altschuler, Afonso S. Bandeira, Raphaël Barboni,
and Anastasia Kireeva for helpful discussions. DD is supported by ETH AI Center doctoral fellowship
and ETH Foundations of Data Science initiative. GA is supported by the Cambridge Trust. NG is
grateful for the funding received from Elizaveta Rebrova.

1 Introduction

Hitting Set is a classical problem in combinatorial optimization which, for a given ground
set X := {1, ..., n} of elements and a collection C := {S1, ...,Sm} of subsets of X , asks
to identify the smallest set S ⊆ X that intersects every subset in C. Hitting Set arises
naturally from the study of Minimum Vertex Covers on Hypergraphs (MVCH), upon viewing
hyperedges as subsets and vertices as elements of the ground set. This is also known as the Set
Cover problem [14], which has a rich history in worst-case computational complexity theory,
including appearing as one of Karp’s 21 NP-complete problems. An important question
regards the behaviour of natural random instances of Hitting Set where each element of
the ground set is independently assigned to any subset with probability p, motivated, among
others, by applications such as group testing [10]. A classical theorem of Lovász [12] gives

© Gabriel Arpino, Daniil Dmitriev, and Nicolo Grometto;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 30; pp. 30:1–30:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ga442@cam.ac.uk
https://gabrielarpino.github.io/
https://orcid.org/0000-0001-5974-7035
mailto:daniil.dmitriev@ai.ethz.ch
https://daniildmitriev.github.io/
https://orcid.org/0000-0002-3241-5599
mailto:ng1069@princeton.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.30
https://arxiv.org/abs/2305.05565
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

an upper bound on the integrality gap in this problem which grows with the degree of the
underlying hypergraph, i.e., the maximum number of subsets intersecting any one element.
This bound was shown to be tight in the worst-case, but leaves much to be desired from an
average-case perspective.

In this paper, we characterize the average-case integrality gap present in random
Hitting Set and prove that, with high probability, Lovász’s greedy algorithm [12] finds
the minimal hitting set in polynomial time. Namely, we consider the following integer
programming (IP) formulation of the problem,

valIP :=
{

minimize
x

∥x∥1

subject to Ax ≥ 1, x ∈ {0, 1}n
,

(1.1)

where the i-th row of A ∈ {0, 1}m×n provides a binary encoding of the membership of the
elements of X in the set Si and 1 := (1, . . . , 1) ∈ Rm. With the vertex cover formulation
of the problem at hand, we note that A consists of the incidence matrix of the underlying
hypergraph. In particular, the constraint Ax ≥ 1 ensures that each set in C is hit by a
prescribed candidate solution vector. A natural convex relaxation is obtained by allowing
fractional solutions, and may be expressed as the following linear program (LP),

valLP :=
{

minimize
x

∥x∥1

subject to Ax ≥ 1, x ∈ [0, 1]n.
(1.2)

Whilst clearly valLP ≤ valIP, tightness need not hold in general. In fact, for m = n and
A ∈ {0, 1}n×n chosen such that each row and column contains exactly k ones, for some fixed
1 < k < n, an optimal solution is provided by x∗

LP = (1/k, ..., 1/k), which is not integral, thus
leading to a strictly smaller objective whenever n/k is not an integer. This evidences the
existence of a multiplicative integrality gap, as we define next.

▶ Definition 1. Given solutions valIP and valLP to Equation (1.1) and Equation (1.2) re-
spectively, we define multiplicative integrality gap as follows:

IPGAP := valIP

valLP
. (1.3)

In [12], Lovász proved an essentially optimal worst-case upper bound on the Hitting Set
multiplicative integrality gap: IPGAP ≤ 1 + log dmax, where dmax corresponds to the maximum
degree in the underlying hypergraph. This is obtained by analysing the Greedy algorithm
(Algorithm 1), which constructs a vertex cover by sequentially adding vertices with the
highest degree amongst the uncovered edges, and will be discussed in more detail in the
next sections. However, in many natural examples, the maximum degree dmax grows with
the number of vertices in the hypergraph, thus leading to progressively worse bounds for
increasingly large hypergraphs. Besides being arguably the most natural candidate for solving
Hitting Set, the greedy algorithm has been shown to be the best possible polynomial time
approximation algorithm [15] for the worst-case instances of this classical problem.

Despite extensive work conducted on Hitting Set in the last decades, a gap remains
in our understanding of the typical performance of linear programming and the greedy
algorithm on random problem instances. We hence pose the following questions:
1. Are there integrality gaps in random instances of Hitting Set?
2. Can near-optimal solutions be found efficiently?

G. Arpino, D. Dmitriev, and N. Grometto 30:3

In the present work, we provide answers to the above questions with high probability (w.h.p.)
in a non-asymptotic sense, in the setting where the cardinality n of the ground set X is large
but finite. We will prove the absence of integrality gaps up to constants in a wide regime
of n, m, p, by conducting an average case analysis of an algorithm that outputs integral
covers of matching size to the fractional ones. In addition, a rigorous analysis of the greedy
routine will follow by a straightforward reduction. The forthcoming results are valid under
the conditions listed below, which will be assumed to hold throughout.

▶ Assumption 2. We assume that
1. Each element j ∈ X is assigned to any subset Si, i ∈ [m] with probability p ≡ p(n),

independently. That is, A ∈ {0, 1}m×n is such that Aij
iid∼ Bernoulli(p);

2. n is intended to be large but finite;
3. m ≡ m(n) = poly(n), i.e. ∃c, C > 0, such that cnc ≤ m ≤ CnC for n large enough;
4. There exist δ ∈ (0, 1), such that p ≡ p(n) satisfies 1/nδ ≤ p ≤ 1/2, for all n large enough.

Note that in Assumption 2.3, the upper bound is chosen to avoid trivial solutions w.h.p.
which arise, for example, in the setting where the number of sets grows exponentially in
the cardinality of X . In addition, Assumption 2.4 is by no means restrictive, since one
can show that for m = poly(n) and np ≪ log n, we have that A contains an all-zero row
w.h.p., yielding an infeasible solution for IP. The requirement p ≤ 1/2 is chosen for technical
convenience and can be relaxed to any constant p, encompassing the regime in [10].

Our contributions stem from the study of the size of the inclusion sets Ij := {i ∈ [m] : j ∈ Si},
for j ∈ [n], which in the MVCH formulation of the problem at hand correspond to the set
of hyperedges incident to any given vertex. The key quantity under study is the average
inclusion set size, that is E|Ij | = mp, for all j, under the present distributional assumptions.
This quantity exhibits two separate regimes of interest, referred to as the sparse, mp≪ log n,
and dense, mp≫ log n, regimes. These, in turn, determine the size of the maximum inclusion
set, or maximum degree, dmax := maxj∈[n] |Ij |. We characterize the integrality gap behaviour
up to multiplicative constants and analyse Lovász’s Greedy algorithm [12] in these two
regimes w.h.p as n → ∞. We do this by proving the success of a simple greedy heuristic,
the BlockGreedy algorithm (Algorithm 2). Throughout, we use the notation valGr, valBGr to
denote the size of the hitting set returned by Greedy and BlockGreedy respectively. Below
we provide an informal description of the main results which hold with high probability,
where A(n) ∼ B(n) denotes that cA(n) ≤ B(n) ≤ CA(n) for large enough n and for some
constants c, C > 0:

Sparse Regime (mp ≪ log n)

We show that IPGAP ∼ 1 in the sparse regime by proving that the BlockGreedy algorithm
succeeds in reaching the LP lower bound of m

dmax
.

valBGr ∼ valIP ∼ valLP ∼
m

dmax
.

Dense Regime (mp ≫ log n)

We prove that IPGAP ∼ log mp
log n in the dense regime. We show that the BlockGreedy

algorithm performs as well as IP in this regime, i.e.

1
p

log
(

mp

log n

)
∼ valBGr ∼ valIP ≫ valLP ∼

1
p
∼ m

dmax
.

APPROX/RANDOM 2024

30:4 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

n0.1 n0.3 n0.5 n0.7
1/n0.9
1/n0.7

1/n0.5

1/n0.3

valBGr ∼ valIP ∼ valLP ∼ m/dmax

valBGr ∼ valIP ∼ log
(

mp
log n

)
/p

valLP ∼ 1/p

m(n)

p(n) mp ∼ log n

Figure 1 Transition between the sparse and the dense regime for different values of the average
inclusion set size mp.

Threshold Regime (mp ∼ log n)

This regime smoothly interpolates between the sparse and dense ones, with IPGAP ∼ 1. The
scaling for all quantities of interest is m/dmax ∼ 1/p.

Greedy

We prove that valGr ∼ valIP when δ < 1/2, where δ is the parameter from Assumption 2.4.

The results above are also depicted in Figure 1, and the formal statements are given
in Corollary 9 and Theorem 10. The rest of the paper is organized as follows. In Section
2, we present relevant notation. In Section 3, we outline and discuss related literature. In
Section 4, we prove a number of preliminary results that will be instrumental in developing
the core arguments. Subsequently, in Section 5, we delve into the algorithmic aspects of the
problem at hand by first providing guarantees for a simple algorithm, BlockGreedy. We
then analyse Greedy by means of a reduction. We conclude in Section 6 by summarizing the
results and offering indications for future work. We defer the proofs of more technical results
to the appendix, in order to streamline the presentation for the reader’s convenience.

2 Notation and conventions

For integers k ∈ N, we write [k] := {1, ..., k}. We denote vectors, matrices by bold-faced
Roman letters x, A ∈ Rk,Rk×k, respectively, for some k ∈ N. Define the inclusion set of
an element, or node, j ∈ [n] as Ij = {i ∈ [m] : j ∈ Si}. We denote the ℓ1 norm of the j-th
column of A by Xj , j ∈ [n], noting that Xj = |Ij | and X1, . . . Xn

iid∼ Binomial(m, p). In
addition, we let dmax ≡ dmax(X1, . . . , Xn) := maxi∈[n] Xi. We use E, Var to denote expectation
and variance, respectively. By ≲, ≳ we denote inequalities up to multiplicative constants.
We let A ∼ B denote that A ≲ B ≲ A for large enough n. We let log denote the natural
logarithm. For possibly random functions f(n), g(n), we let {f ≲ g} denote a sequence of

G. Arpino, D. Dmitriev, and N. Grometto 30:5

events {f(n) ≤ Ag(n)} for some constant A > 0 independent of n. Consequently, P(f ≲ g)
is viewed as a function of n. For deterministic functions h(n), w(n), we let h≪ w, h≫ w

denote that h/w → 0, w/h→ 0 respectively, as n→∞. The notation for other inequalities
is defined analogously. We say that a sequence of events {An} holds with high probability
(w.h.p.) with respect to a probability measure P if there exists a constant c > 0, independent
of n, such that P(An) ≥ 1− n−c, for large enough values of n.

3 Related Work

Worst-case analysis of Greedy

Perhaps the most well-known algorithm for solving Hitting Set, or equivalently MVCH, is
the greedy algorithm of Lovász [12], with runtime complexity O(mn2). This algorithm,
which constructs a cover by sequentially adding elements of the ground set which hit the
largest number of remaining subsets, was initially studied by Lovász [12] and Johnson [11]
independently, for deterministic hypergraphs. Lovász analyses the greedy algorithm to obtain
an upper bound on the Hitting Set integrality gap of 1 + log dmax. Slavik [15] developed
the tightest known approximation lower bound for Greedy, constructing an instance where
Greedy finds coverings at least log m times as large as the minimum one. Importantly,
Feige [6] proved that an approximation ratio of (1− ϵ) log m is not achievable in polynomial
time for any ϵ > 0 unless NP ⊂ TIME [nO(log log n)], certifying Greedy as the best possible
polynomial-time approximation algorithm for set cover in the worst-case.

Random Hitting Set

Little is known about the typical performance of polynomial-time algorithms on random
instances of Hitting Set. Closing this gap is important from a theoretical standpoint and for
applications in combinatorial inference. A prime example of this is found in group testing, a
classical inference problem where one aims to identify a small subset of defective items within
a large population by conducting the smallest number of pooled tests, with applications
ranging from the analysis of communication protocols [8] to DNA sequencing [5] and search
problems [4]. In [10], Iliopoulos and Zadik consider the smallest hitting set as an estimator
in the setting of the group testing problem, referring to it as the Smallest Satisfying Set
estimator. In particular, they provide extensive empirical evidence supporting the claim
that the class of instances of the random hitting set problem induced by non-adaptive group
testing is tractably solvable by computers.

Insights from Statistical Physics

The analysis of a random instance of Hitting Set appears in the work of Mézard and Tarzia
and relies on nonrigorous techniques from statistical physics [13]. This work considers regular
uniform hypergraphs, where the degree of vertices and the size of edges are fixed and assumed
to be constant. Depending on these values, they evidence sharp transitions between three
different phases, the so-called replica symmetry, 1-replica symmetry breaking, and full replica
symmetry breaking phases, which characterize the complexity of the optimization landscape
for this problem in the average case setting.

APPROX/RANDOM 2024

30:6 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

Fixed p regime

Another instance was studied by Telelis and Zissimopoulos [16] in the setting of random
Bernoulli hypergraphs, where elements belong to subsets independently with fixed probability
p ∈ (0, 1). Their analysis concerns the asymptotic regime where the size n of the ground
set scales to infinity. In this setting, they study the average-case performance of a simple
deterministic algorithm which approximates random Hitting Set within an additive error
term at most o(log m) almost everywhere. This gives an improvement over Lovász’s argument
in [12] which provides a multiplicative bound. However, the analysis in [16] does not capture
the case of sparse hypergraphs, i.e., when p→ 0 as n→∞. The analysis in [16] also does
not prove guarantees for the Greedy algorithm in the chosen parameter regime.

Related problem formulations

We bring to the reader’s attention a more recent line of work [2, 3], where the authors
obtain bounds on (additive) integrality gaps between the value of a random integer program
max cT x, Ax ≤ b, x ∈ {0, 1}n with m constraints and that of its linear programming
relaxation for a wide range of distributions on (A, b, c), holding w.h.p. as n→∞. These
include the case where the entries of A are uniformly distributed on an integer interval
consisting of at least three elements and where the columns of A are distributed according
to an isotropic logconcave distribution. However, these fail to capture the setting where A is
sparse with entries in {0, 1}, which is of interest for Hitting Set.

4 Preliminary Bounds

In this section, we outline preliminary bounds on valLP, valIP, dmax which will prove crucial to
analysing IPGAP and Greedy. We begin by characterizing the value of the linear program:

▶ Lemma 3. There exists c > 0, independent of n, such that with probability at least
1− exp(cn1−δ), we have that

m

dmax
≤ valLP ≲

1
p

.

The proof is included in Appendix A, and follows from a maximum argument and a standard
Chernoff bound. We note that the proof also implies P(IP is feasible) ≥ 1− exp

(
−cn1−δ

)
.

Although Lemma 3 readily yields valIP ≥ m/dmax, we highlight that this lower bound is not
tight whenever mp≫ log n. Indeed, we apply the first moment method to obtain a tighter
lower bound on valIP in this regime:

▶ Lemma 4. Let mp≫ log n. For any D ≥ 1 and n large enough, with probability at least
1− n−D we have that

1
p

log
(

mp

log n

)
≲ valIP

The proof of Lemma 4 is provided in Appendix A. Lemmas 3 and 4 come short of providing
a full characterization of IPGAP, namely lacking an upper bound on valIP. In this light, we
turn our attention to the Greedy algorithm, and utilize it to construct a feasible integral
solution and hence an upper bound on the value of IP. The analysis of Greedy crucially
relies on characterizing the maximum inclusion set size, dmax := maxj∈[n] |Ij |. The following
lemma offers such a characterization in expectation, and evidences a key difference between
the sparse and dense regimes of our problem:

G. Arpino, D. Dmitriev, and N. Grometto 30:7

Algorithm 1 Greedy.

1: I ← {I1, . . . , In} ▷ Inclusion sets
2: U ← [m]
3: t← 0
4: while |U | > 0 do
5: P ← argmaxI∈I

∣∣I ∩ U
∣∣ ▷ Greedy step

6: I ← I \ {P}
7: U ← U \ P

8: t← t + 1
9: valGr ← t

10: return valGr.

▶ Lemma 5 (Maximum of Binomials). Let X1, . . . , Xn
iid∼ Bin(m, p). Under the conditions in

Assumption 2, it holds that

Edmax = Emax
i∈[n]

Xi ∼

{
log n

log(log n/mp) , if mp≪ log n,

mp , if mp ≳ log n.

The proof of Lemma 5 is provided in Appendix A, and involves a straight forward application
of Markov’s and Jensen’s inequalities. Lemma 5 indicates a sharp transition between two
regimes: the sparse regime mp≪ log n, where binomial random variables are known to be
well approximated by Poisson random variables, and the dense regime mp≫ log n, where
binomial random variables are known to be well approximated by Gaussian random variables.
Importantly, in the sparse (Poisson-like) regime, the expected maximum of binomial random
variables exceeds their individual expectations: EX1 ≪ Edmax. Meanwhile in the dense
(Gaussian-like) regime, the expected maximum and individual expectations are asymptotically
equivalent up to multiplicative constants: EX1 ∼ Edmax. This fine-grained characterization
of the maxima of binomial random variables will prove essential to analysing the behaviour
of BlockGreedy in Section 5. Finally, we characterize the asymptotic behaviour of dmax and
prove that dmax ≲ Edmax with high probability. Whilst this one sided result suffices for the
forthcoming analysis, we expect a matching lower bound to hold as well. Additional insights
into the concentration of dmax may be found in Lemmas 19, 20, in Appendix A.

▶ Lemma 6. Let X1, . . . , Xn
iid∼ Bin(m, p). Then, there exist constants c, c̃ > 0, independent

of n, such that

P
(

max
i∈[n]

Xi ≥ c · Emax
i∈[n]

Xi

)
≤ 1

nc̃
.

The proof of Lemma 6 is provided in Appendix A.

5 Algorithmic solutions

5.1 Challenges of Greedy analysis
The aim of the present section is to conduct a rigorous analysis of the standard Greedy
algorithm for the Hitting Set problem, within the prescribed Bernoulli random setting. In
particular, we show that this routine succeeds at constructing hitting sets of optimal size
w.h.p., as in the results of Section 4, up to multiplicative constants. This is done by first
analysing a variation of the greedy heuristic, and subsequently proceeding by a reduction
argument.

APPROX/RANDOM 2024

30:8 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

Algorithm 2 BlockGreedy.

1: Let Bt ⊂ {I1, ..., In} denote the t-th block, i.e. inclusion sets that become available at
step t.

2: I ← ∅
3: U ← [m]
4: t← 0
5: while |U | > 0 and Bt ̸= ∅ do
6: I ← I ∪ Bt ▷ Adding elements from the new block
7: P ← argmaxI∈I

∣∣I ∩ U
∣∣ ▷ Greedy step

8: I ← I \ {P}
9: U ← U \ P

10: t← t + 1
11: valBGr ← t

12: if |U | > 0 then cover the rest of U with a trivial algorithm, valBGr ← valBGr + |U |
13: return valBGr.

The core principle of Greedy is to construct a feasible solution in steps, by sequentially
adding to the candidate solution an element which hits the largest number of remaining
sets. In the chosen setting, where elements are added to sets with equal probability and
independently of each other, we have precise estimates on the number of subsets hit by
an element which is picked first. In fact, the size of this set is given by the maximum of
independent Binomial random variables, which was analysed in Section 4. However, this
very first step introduces nontrivial dependencies amongst the remaining matrix columns
and significantly complicates keeping track of the marginal gains of each subsequent element
addition to the candidate solution.

5.2 BlockGreedy algorithm

In order to circumvent this issue, we introduce a modified greedy routine, which we refer
to as the BlockGreedy algorithm, where the elements of the ground set [n] are split into
separate sets of a given size, which we call blocks. At the t-th iteration, the algorithm
picks the element hitting the largest number of remaining sets across the first t blocks only.
By choosing the size of the blocks appropriately, we have that at each iteration t one is
guaranteed to find a solution of near-optimal size at least within the set of newly-included
independent columns.
BlockGreedy is detailed in Algorithm 2, whilst informally, it works as follows.
1. Let K be the size of the solution (suggested by theoretical analysis);
2. Uniformly at random split n columns into K blocks with n/K columns per block;
3. Start with an empty set of possible choices of columns;
4. At the t-th iteration, first add the columns from the t-th block (Step 6). Then, perform

one greedy step on the current set of possible choices (Step 7);
5. If after K iterations of the algorithm, some subsets remain uncovered, we use a trivial

covering, i.e., covering each subset by a separate column.
Note that the first selection of the element which hits the most number of subsets again
introduces dependencies. However, the columns that are in the newly added block are
independent of everything else at time t. Let vt be the element which is picked at the t-th step

G. Arpino, D. Dmitriev, and N. Grometto 30:9

of BlockGreedy, ft be the number of new subsets that are hit by vt
1, and Ft :=

∑t
i=1 fi be

the total number of subsets which are hit after t steps. In order to analyse how many elements
BlockGreedy has picked, we will consider the sequence f1, f2, . . . , fs, with Ft :=

∑t
i=1 fi,

such that the following holds:
1. Fs = m;
2. if mp ≲ log n, then s ≲ valLP, otherwise, s ≲ valIP.

The first property ensures that BlockGreedy picks at most s elements, and the second
property gives optimal bounds on s. One way to guarantee that BlockGreedy succeeds is
to prove that among the choices of BlockGreedy at each step t, there was an element ṽt

which hits at least ft new subsets w.h.p. We will prove that it is enough to look for ṽt in
the new block of columns Bt, which are added at step t. Note that unless Ft = m, we have
that ft ≥ 1, since each subset is hit by at least one element w.h.p.. Therefore, it will be
enough to find a sequence {f1, f2, . . . , fv} such that Fv ≥ m− v, since it implies F2v = m.
This allows us to reduce the problem of proving the effectiveness of BlockGreedy to a key
technical lemma. This lemma assumes that before step t, exactly Ft−1 subsets are hit, and
bounds from below the probability that some vertex in the new block will hit at least ft new
subsets. This boils down to computing P(Bin(m− Ft−1, p) ≥ ft).

▶ Lemma 7 (Informal, see Lemma 26). Let ε > 0 and mp ≲ log n. For some constants τ > 0,
1 < α < β, and for t ∈ N, let:

ft =
⌈
(α/β)k

τEdmax

⌉
where k is such that β−k−1m < m− Ft−1 ≤ β−km;

Then there exists a choice of τ, α, β and K, such that FK ≥ m−K and K ∼ valLP. Further-
more, for this sequence ft (which depends on ε), for any t ≤ K,

P(Bin(m− Ft−1, p) ≥ ft) ≥ n−ε. (5.1)

Note that the implicit constants in the statements K ∼ valLP depend on ε.

This lemma highlights the crucial dependency of the problem on the relationship between
the average degree, mp, and log n. For clarity of exposition, we only state the lemma for
the case mp ≲ log n and refer to the Lemma 26 in the Appendix for the full version and
corresponding proof. Here we comment on the intuition behind the proof.
When mp ≲ log n, we need to carefully track how the maximum degree changes. We look for
an element which (i) covers a large number of subsets, i.e., close to the expected maximum
number, Edmax and (ii) can be found with large enough probability. The second property is
important for the reduction to the standard Greedy algorithm, whose direct analysis presents
substantial difficulties, and is done later in this section. The quantity Edmax is sensitive to
mp whenever the latter is close to log n. Hence, we need to adjust which element we look for
accordingly. This is done by setting ft =

⌈
(α/β)k

τEdmax

⌉
and increasing the parameter k as

the number of remaining rows, m− Ft, decreases.
For example, consider the case mp = log n. First, we can only pick a random element, since
it will be as good (up to a multiplicative constant) as the maximal element. However, during
the execution of the algorithm, the problem becomes more sparse, and if we continue to

1 It may happen that vt hits more than ft new subsets. In this case, we still only count that exactly ft are
covered, and several extra sets will be covered multiple times in subsequent rounds. This overcounting
simplifies the analysis and does not result in suboptimal solution.

APPROX/RANDOM 2024

30:10 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

pick random elements, we will construct a suboptimal solution. Therefore, we gradually
increase how much the newly picked element will cover, with respect to a random element.
This corresponds to the transition between Gaussian-like and Poisson-like behaviour of
Bin(m− Ft−1, p).
It is now straightforward to prove the following theorem, which makes rigorous the statements
in Section 1.

▶ Theorem 8. Under Assumption 2, we have that

(i) if mp ≲ log n then, for any ε > 0 and n large enough,

P
(

valBGr ≲
m

Edmax

)
≥ 1− exp

(
−n1−δ−ε

)
;

(ii) if mp≫ log n, then, for any ε > 0 and n large enough,

P
(

valBGr ≲
1
p

log
(

mp

log n

))
≥ 1− exp

(
−n1−δ−ε

)
.

(5.2)

Note that if mp ≳ nγ for some γ > 0, then log mp
log n ∼ log n, and the bound in (ii) can be

simplified.

Proof. The main idea of the proof is to analyse the distribution of the columns that are
added at each step t. These columns are independent, and for each newly added column, the
number of additional subsets which it covers is distributed according to Bin(m− Ft−1, p),
where Ft−1 is the number of subsets which are already covered. Lemma 26 (see Lemma 7
above for an informal version) allows us to lower bound Ft, and we show now that we can do
this with high probability.
Fix ε > 0 and let ε′ := ε/4. Let f1, f2, . . . be the sequence from Lemma 26 for ε′ and
let K be the value for which (C.1) is satisfied, i.e. FK ≥ m − K. Notice that K ≤
C max

{
m

Edmax
, 1

p log(mp
log n)

}
for some constant C > 0, for n large enough. We uniformly at

random split n elements (columns) into K groups of size n/K each (assuming without loss of
generality that K divides n, otherwise we consider groups of size ⌊n/K⌋), so that Bt yields a
new set of n/K elements at each iteration t ≤ K and Bt = ∅ for t > K. We say that the
algorithm fails at step t if before step t, at least Ft−1 subsets are covered, but after step t less
than Ft sets are covered. Using that, for n large enough, (i) columns in each newly added
block are independent, (ii) P (Bin(m− Ft−1, p) ≥ ft) ≥ n−ε′ , and (iii) n/K ≥ n1−δ−ε′ , we
get

P (BlockGreedy fails at step t)
(i)
≤ (P (Bin(m− Ft−1, p) < ft))n/K

(ii)
≤
(

1− n−ε′
)n/K

(iii)
≤ exp

(
−n1−δ−2ε′

)
.

We then proceed by applying a union bound to obtain the result,

P (BlockGreedy fails during first K steps)

≤
K∑

t=1
P (BlockGreedy fails at step t) ≤ K · exp

(
−n1−δ−2ε′

)
≤ exp

(
−n1−δ−3ε′

)
,

where the second inequality holds since, by definition, the algorithm runs for K iterations,
and the third one holds for n large enough. We proved that BlockGreedy succeeds in finding

G. Arpino, D. Dmitriev, and N. Grometto 30:11

at most K elements such that at most m−FK sets remain uncovered. Since by construction,
m−FK ≤ K, we can cover the remaining rows trivially using that IP is feasible by Lemma 16
with high probability, which proves that

P (valBGr ≤ 2K) ≥ 1− exp
(
−n1−δ−4ε′

)
= 1− exp

(
−n1−δ−ε

)
,

for n large enough. Recalling that K ≲ valLP for mp ≲ log n, and that K ≲ valIP for
mp≫ log n, finishes the proof. ◀

▶ Corollary 9. Under Assumption 2, we have that for any D > 0,

(i) for any n large enough,

P (valBGr ∼ valIP) ≥ 1− n−D;
(ii) if mp ≲ log n, then, for any n large enough,

P (IPGAP ∼ 1) ≥ 1− n−D;
(iii) if mp≫ log n, then, for any n large enough,

P
(

IPGAP ∼ log
(

mp

log n

))
≥ 1− n−D.

(5.3)

Proof. Proof follows from Lemma 3, Lemma 4, and Theorem 8. ◀

5.3 Reduction from BlockGreedy to Greedy

With the above results at hand, we now proceed to analyse the Greedy algorithm by means
of a suitable reduction. Recall that we denote outputs of BlockGreedy and Greedy as valBGr

and valGr respectively.

▶ Theorem 10. Under Assumption 2 with δ < 1/2, we have that, for n large enough,

P (valGr ∼ valIP) ≥ 1− exp
(
−
√

n
)

.

Proof. We use Theorem 8 with ε = 1/8− δ/4, and let K,Bt be as defined in the proof of
Theorem 8. We have that, for n large enough,

P (BlockGreedy fails at any step) ≤ exp
(
−n∆) ,

where ∆ := 3/4− δ/2 > 1/2.
Given a matrix A, consider running the above definition of BlockGreedy for J := exp(

√
n)

times, each time reshuffling the columns. In what follows, we address BlockGreedy and
Greedy defined with the same tie-breaking strategy when it comes to a number of elements
hitting the same number of sets, i.e., selecting the left-most column in the associated matrix
A. Both valBGr and valGr are random variables, but conditioned on A, valGr is deterministic,
while valBGr still depends on the randomness of separating columns into blocks. Using the
union bound, we have that

P (valGr > 2K) ≤ P (∃ a failed copy of BlockGreedy)
+ P (valBGr < valGr over all J copies) .

(5.4)

Applying the union bound again, we can upper bound the first term in (5.4):

P (∃ a failed copy of BlockGreedy) ≤ J exp
(
−n∆) = exp

(
−n∆ + n1/2

)
. (5.5)

APPROX/RANDOM 2024

30:12 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

Now we focus on the second term in (5.4). Let v1, v2, . . . , vg be the ordered sequence of
elements picked by Greedy. Let Mt := {v1 ∈ B1, v2 ∈ B1 ∪ B2, . . . , vt ∈ B1 ∪ . . . ∪ Bt}. The
event {valBGr ≥ valGr} contains the event Mg, since in this case BlockGreedy will necessarily
pick exactly the same columns v1, v2, . . . , vg. Given that each reshuffling of the columns
generates a uniform distribution of Bi’s over possible partitions of n columns, we get that

P (Mg) = P (v1 ∈ B1)P (v2 ∈ B1 ∪ B2 |M1) . . .P (vg ∈ B1 ∪ . . . ∪ Bg |Mg−1) .

The t-th term in the product above is equal to

P(vt ∈ B1 ∪ . . . ∪ Bt |Mt−1) =
t n

K − (t− 1)
n− (t− 1) ≥

t

K
− t− 1

n
≥ t

2(K − 1) ,

where the last inequality holds for n ≥ 4K (recall that n≫ K). Since Mg ⊂ {valBGr ≥ valGr},
we can lower bound the probability of the latter event as follows (note that when g < K

there will be less terms in the product, hence, P(Mg) will be even larger),

P (valBGr ≥ valGr for 1 copy) ≥ P(Mg)

≥
K−1∏
t=1

P(vt ∈ B1 ∪ . . . ∪ Bt |Mt−1) ≥
K−1∏
t=1

t

2(K − 1) ≥ e−2K ,

where we used that k! ≥ (k/e)k in the last inequality. Since K ≤ C max
{

m
Edmax

, 1
p log(mp

log n)
}

and 1/p ≤ nδ, there exists a constant C̃ > 0 large enough, such that K ≤ C̃nδ log n.
Therefore, using independence of the reshuffling between the copies, we can compute

P (valBGr < valGr over all J copies) = (1− P (valBGr ≥ valGr for 1 copy))J

≤ (1− e−2K)J

≤ exp
(
−e

√
n−2C̃nδ log n

)
.

(5.6)

Combining (5.4), (5.5) and (5.6), we showed that P (valGr > 2K) ≤ exp (−
√

n) for n large
enough, which finishes the proof. ◀

▶ Remark 11. We note that the δ < 1/2 condition in Theorem 10 is likely not optimal,
and could be relaxed by reducing to BlockGreedy with more carefully chosen sets Bt. In
particular, the appropriate set sizes |Bt| may not be identical across t ≤ K. The analysis
becomes more technical in this case, and we highlight this as an interesting open direction.

6 Discussion and Open Questions

Our work characterises multiplicative integrality gaps for the random hitting set problem. In
this section, we discuss the intuition behind our main results, together with open questions
and conjectures.

6.1 Summary of our results and proof techniques
We identified that the nature of integrality gaps depends on the size of the inclusion set,
also viewed as the sparsity of the underlying hypergraph. In particular, when the average
degree of a vertex is small, i.e., when each element belongs to a small number of subsets, we
proved that there exists only a constant gap between linear and integer program solutions,
together with a simple algorithmic solution. The situation changes when the hypergraph

G. Arpino, D. Dmitriev, and N. Grometto 30:13

becomes dense, where we show an increasing integrality gap. This separation stems mostly
from the property of the binomial distribution, where the maximum of random variables
grows identically to the expected value whenever the expected value is large, but is away
from it if mp≪ log n.
In our analysis of BlockGreedy, we track this change of behaviour using a geometric series,
which means that the further we are in the execution of the algorithm, the larger the ratio
between the element we pick and the average element will be. This picture coincides exactly
with how the binomial distribution will behave if we decrease the average degree: for large
instances, it will look approximately as a Gaussian, but when the average degree is small,
Poisson approximation starts to dominate, the right tail becomes heavier, and the difference
between dmax and mp increases. Our analysis tracks the transition between Gaussian and
Poisson-like behavior.

6.2 Multiplicative vs. additive integrality gaps
Our result only concerns multiplicative gaps, but the constants in our analysis can be large.
This might be a consequence of the generality of the studied problem. For example, if one
focuses only on the case of constant p, which immediately implies a very dense instance in
our characterization, [16] proves that a simple algorithm is optimal for approximating the
integer program up to a small additive error. Proving similar upper bounds on the constant
in more general cases is an interesting open problem. Based on numerical experiments, we
formulate the following conjectures.

▶ Conjecture 12 (Very sparse). For mp≪ 1, valGr
valLP

→ 1.

▶ Conjecture 13 (Sparse). For 1 ≲ mp≪ log n, valGr
valIP

→ 1, and valIP
valLP

→ C1 ∈ (1, 1.5).

▶ Conjecture 14 (Dense). For mp≫ log n, valGr
valIP

→ C2 ∈ (1, 1.5).

6.3 Analysis of a linear program solution.
One motivation for studying the gaps between the integer and linear programs together with
the solutions of linear programs themselves is to construct a rounding scheme which converts
a fractional solution to an integer one. We believe this is another interesting direction for
future work. In particular, numerical experiments show that entries which have large value
in the fractional solution have a strong tendency to correspond to elements that are picked
for the integer solution. This supports the claim that a combination of the greedy and linear
programming approach might be fruitful in efficiently solving Hitting Set. One approach
for further study consists of first solving a linear program, initializing x with the largest
elements in the linear solution, and greedily covering the remaining subsets.

References
1 Gabriel Arpino, Daniil Dmitriev, and Nicolo Grometto. Greedy heuristics and linear relaxations

for the random hitting set problem, 2023. arXiv:2305.05565.
2 Sander Borst, Daniel Dadush, Sophie Huiberts, and Samarth Tiwari. On the integrality

gap of binary integer programs with gaussian data. Mathematical Programming, 2022. doi:
10.1007/s10107-022-01828-1.

3 Sander Borst, Daniel Dadush, and Dan Mikulincer. Integrality gaps for random integer
programs via discrepancy. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete
Algorithms, SODA, 2023. doi:10.1137/1.9781611977554.ch65.

APPROX/RANDOM 2024

https://arxiv.org/abs/2305.05565
https://doi.org/10.1007/s10107-022-01828-1
https://doi.org/10.1007/s10107-022-01828-1
https://doi.org/10.1137/1.9781611977554.ch65

30:14 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

4 Dingzhu Du, Frank K Hwang, and Frank Hwang. Combinatorial group testing and its
applications. World Scientific, 2000. doi:10.1142/4252.

5 Yaniv Erlich, Anna Gilbert, Hung Ngo, Atri Rudra, Nicolas Thierry-Mieg, Mary Wootters,
Dina Zielinski, and Or Zuk. Biological screens from linear codes: theory and tools. BioRxiv,
2015. doi:10.1101/035352.

6 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
1998. doi:10.1145/285055.285059.

7 William Feller and Philip M Morse. An introduction to probability theory and its applications.
American Institute of Physics, 1958. doi:10.1063/1.3062516.

8 Antonio Fernández Anta, Miguel A Mosteiro, and Jorge Ramón Muñoz. Unbounded contention
resolution in multiple-access channels. Algorithmica, 2013. doi:10.1007/s00453-013-9816-x.

9 Abdolhossein Hoorfar and Mehdi Hassani. Inequalities on the lambert w function and
hyperpower function. Journal of Inequalities in Pure and Applied Mathematics, 2008. URL:
https://arxiv.org/abs/2305.05565.

10 Fotis Iliopoulos and Ilias Zadik. Group testing and local search: is there a computational-
statistical gap? In Conference on Learning Theory. PMLR, 2021. URL: https://proceedings.
mlr.press/v134/iliopoulos21a.html.

11 David S Johnson. Approximation algorithms for combinatorial problems. In Proceedings of the
fifth annual ACM symposium on Theory of computing, 1973. doi:10.1145/800125.804034.

12 László Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics,
1975. doi:10.1016/0012-365X(75)90058-8.

13 Marc Mézard and Marco Tarzia. Statistical mechanics of the hitting set problem. Physical
Review E, 2007. doi:10.1103/PhysRevE.76.041124.

14 Vangelis T Paschos. A survey of approximately optimal solutions to some covering and packing
problems. ACM Computing Surveys (CSUR), 1997. doi:10.1145/254180.254190.

15 Petr Slavík. A tight analysis of the greedy algorithm for set cover. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, 1996. doi:10.1145/237814.237991.

16 Orestis A Telelis and Vassilis Zissimopoulos. Absolute O(log m) error in approximating
random set covering: an average case analysis. Information Processing Letters, 2005. doi:
10.1016/j.ipl.2005.02.009.

17 Ramon Van Handel. Probability in high dimension. Lecture notes, 2014. URL: https:
//api.semanticscholar.org/CorpusID:124828412.

A Auxiliary lemmas

▶ Lemma 15 (Lower Bound in Lemma 3). We have that

valLP ≥
m

dmax
.

Proof. Let x∗
LP = (x∗

1, x∗
2, . . . , x∗

m) be an optimal solution for (1.2). Since Ax∗
LP ≥ 1

entrywise, by summing all entries we obtain that

m ≤
∑

i

x∗
i Xi ≤ dmax

∑
i

x∗
i = dmaxvalLP.

which upon rearranging yields the desired result. ◀

In addition to the above, we have the following elementary upper bound on valLP, which
holds both in the sparse and dense regime.

▶ Lemma 16 (Upper Bound in Lemma 3). There exists c > 0, independent of n, such that

P
(

valLP ≲
1
p

)
≥ 1− exp

(
−cn1−δ

)
.

This also implies that P(IP is feasible) ≥ 1− exp
(
−cn1−δ

)
.

https://doi.org/10.1142/4252
https://doi.org/10.1101/035352
https://doi.org/10.1145/285055.285059
https://doi.org/10.1063/1.3062516
https://doi.org/10.1007/s00453-013-9816-x
https://arxiv.org/abs/2305.05565
https://proceedings.mlr.press/v134/iliopoulos21a.html
https://proceedings.mlr.press/v134/iliopoulos21a.html
https://doi.org/10.1145/800125.804034
https://doi.org/10.1016/0012-365X(75)90058-8
https://doi.org/10.1103/PhysRevE.76.041124
https://doi.org/10.1145/254180.254190
https://doi.org/10.1145/237814.237991
https://doi.org/10.1016/j.ipl.2005.02.009
https://doi.org/10.1016/j.ipl.2005.02.009
https://api.semanticscholar.org/CorpusID:124828412
https://api.semanticscholar.org/CorpusID:124828412

G. Arpino, D. Dmitriev, and N. Grometto 30:15

Proof. Consider the candidate feasible solution x̂ := 1
C̃np

1, for some constant 0 < C̃ < 1.
The following results from applying a union bound over constraints and the standard Chernoff
bound.

P (x̂ not feasible) = P (∃i ∈ [m] : (Ax̂)i < 1)
≤ mP

(
Bin(n, p) < C̃np

)
≤ nC exp

(
− (1− C̃)2np

2

)
≤ exp

(
−cn1−δ

)
.

The desired conclusion follows by considering the complementary event to the one above
and noting that ∥x̂∥1 ∼ 1/p. Note that the event {x̂ is feasible for LP} implies the event
{IP is feasible}. ◀

▶ Lemma 17 (Lambert W function, [9]). For any x ≥ e, there holds that

log x− log log x + log log x

2 log x
≤W0(x) ≤ log x− log log x + e

e− 1
log log x

log x
. (A.1)

In particular,

W0(x) = log x− log log x + o(1), as x→∞. (A.2)

In addition, for any x ≥ 1/e, the following identity is satisfied

W0(x) = log x

W0(x) . (A.3)

Proof of Lemma 4. Fix D ≥ 1. Let Zk := |{x ∈ {0, 1}m : Ax ≥ 1, ∥x∥1 = k}| be the
number of feasible solutions of norm exactly k. Clearly, Zk ≤ Zk+1 for any k ≥ 0. We also
have that

EZk =
∑

∥x∥=k

P ((Ax)i ≥ 1,∀i ∈ [m]) =
(

n

k

)(
1− (1− p)k

)m
.

We will now show that for k ≪ 1
p log

(
mp

log n

)
, we have EZk ≤ n−D. Using that p ≤ 1/2 from

Assumption 4 and that for x ∈ (0, 1
2), we have (1− x)y ≥ e−2xy, we can bound

EZk =
(

n

k

)
(1− (1− p)k)m ≤ nk

(
1− e−2pk

)m

≤ nke−me−2pk

= exp
{

k log n−me−2pk
}

.

Therefore, EZk ≤ n−D will follow from

2pke2pk ≤ −2Dpe2pk + 2mp

log n
. (A.4)

Since k ≪ 1
p log

(
mp

log n

)
, we also have that k ≤ k∗ := 1

2p W0

(
mp

D log n

)
for n large enough. For

k = k∗, the left hand side of (A.4) is equal to mp
D log n , while the right hand side is lower

bounded by mp
log n . Since D ≥ 1, we recover that EZk ≤ n−D. Note that for n large enough,

valIP ≪ 1
p log mp

log n implies that Zk∗ > 0. Therefore, applying Markov’s inequality, we get
that

P
(

valIP ≪
1
p

log
(

mp

log n

))
≤ P (Zk∗ > 0) ≤ EZk∗ ≤ n−D, (A.5)

APPROX/RANDOM 2024

30:16 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

and the proof follows by considering the complementary events. Note that using similar
derivations, one can also show that for k∗ := 1

p log
(

1
δ

mp
log n

)
, where δ is defined in Assumption 4,

we have EZk∗ ≥ 1. ◀

Proof of Lemma 5. For ease of notation, let us define bn := log n
mp , b∗

n := 1
e (bn − 1), gn :=

log n
log(log n/mp) . We begin by proving the desired upper bound. By Jensen’s inequality and
bounding the maximum of positive values by their sum, for any λ > 0, we obtain

Emax
i∈[n]

Xi ≤ 1
λ

logE exp
(

λ max
i∈[n]

Xi

)
= 1

λ
logE

(
max
i∈[n]

exp (λXi)
)

≤ 1
λ

log
∑
i∈[n]

E exp(λXi).

Finally, computing the moment generating function of binomial random variables, together
with the inequality 1− x ≤ e−x yields

Emax
i∈[n]

Xi = log n + m log (1− p(1− eλ))
λ

≤ log n−mp(1− eλ)
λ

.

In the regime where mp ≳ log n, we may choose λ > 0 arbitrary, independent of n, from
which it immediately follows that Emaxi∈[n] Xi ≲ mp.
For mp≪ log n, we proceed by differentiating the last line in the above display and setting
the resulting expression to zero. From this, we may choose λ as the solution of the following.

eλ−1 (λ− 1) = b∗
n

Under the present assumptions, this is expressed in terms of the Lambert W function as
λ = 1 + W0(b∗

n), so that by (A.3), we obtain

Emax
i∈[n]

Xi ≤
log n

(
1− 1

bn
+ b∗

n

bn

e
W0(b∗

n)

)
1 + W0(b∗

n) ∼ gn.

In the dense mp ≳ log n regime, a matching lower bound is easily obtained by noting that
Emaxi∈[n] Xi ≥ EX1 = mp.
To deal with the sparse regime, let τ = 1/16. From Markov’s inequality,

Emax
i∈[n]

Xi ≥ τgnP
(

max
i∈[n]

Xi = ⌈τgn⌉
)

= τgn (1− (1− P (X1 = ⌈τgn⌉))n) .

Hence, applying Lemma 25, for n large enough,

Emax
i∈[n]

Xi ≥ τgn

(
1−

(
1− n−1/2

)n)
≥ (τ/2)gn,

thus providing a matching lower bound for the sparse regime.
In the intermediate threshold regime mp ∼ log n, the average and maximum of Xi’s

become of the same order, that is mp ∼ Edmax ∼ log n. The smooth transition follows by
noting that in this regime, bn, b∗

n, W0(b∗
n) ∼ 1. ◀

▶ Lemma 18 (Chernoff Bound - upper tail). Let X1, ..., Xn be independent random variables
taking values in {0, 1}, X denote their sum and µ = EX. Then for any δ > 0,

P (X ≥ (1 + δ)µ) ≤ e−δ2µ/(2+δ).

In order to deal with concentration of dmax around its expectation, we state the following
useful result on tensorization of variance. We introduce notation Vari and Ei, where subscript
i indicates conditioning on each component of an underlying random vector, except for the
i-th one.

G. Arpino, D. Dmitriev, and N. Grometto 30:17

▶ Lemma 19 (Theorem 2.3, [17]). Let X1, ..., Xn be independent random variables and for
each function f : Rn → R, define

Varif(x1, ..., xn) := Var (x1, ..., xi−1, Xi, xi+1, ..., xn) .

Then, there holds that

Var (f (X1, ..., Xn)) ≤ E
n∑

i=1
Varif (X1, ..., Xn)

▶ Lemma 20 (Concentration for dmax). Let X1, . . . , Xn
iid∼ Bin(m, p). Then, for any t > 0,

P (|dmax − Edmax| > t) ≤ mp

t2 .

▶ Remark 21. Note that in all regimes of m, p satisfying Assumption 2, choosing t ∼ Edmax is
sufficient to deduce from the previous lemma that dmax ∼ Edmax w.h.p..

Proof. Proceeding by Chebyschev’s inequality, it suffices to show that Var(dmax ≤ mp. By
Lemma 19, we have that

Var(dmax) ≤ E
n∑

i=1
Ei (dmax − Eidmax)2

= E
n∑

i=1
Ei

[
(dmax − Eidmax)2 | dmax = Xi

]
Pdmax = Xi

+ E
n∑

i=1
Ei

[
(dmax − Eidmax)2 | dmax ̸= Xi

]
Pdmax ̸= Xi

= 1
n
E

n∑
i=1

VarXi

≤ mp,

which is as required. ◀

Proof of Lemma 6. Let us consider the sparse and dense regimes separately.
In the dense regime for mp ≳ log n, there exist constants c1, c2, c3 > 0 such that c1mp ≤
Emaxi∈[n] Xi ≤ c2mp, as argued in Lemma 5, and mp ≥ c3 log n. We apply the union and
Chernoff bounds as in Lemma 18 to obtain, for any t ≥ 1/c1,

P
(

max
i∈[n]

Xi ≥ t · Emax
i∈[n]

Xi

)
≤ nP (X1 ≥ tc1mp)

≤ n exp
(
− (tc1 − 1)2mp

1 + tc1

)
≤ n exp

(
−c3(tc1 − 1)2 log n

1 + tc1

)
.

It now suffices to choose t as a function of c1, c3 such that c3(tc1−1)2

1+tc1
> 1. By rearranging and

solving the resulting quadratic equation, it follows immediately that any t > 1
c1

+ 1+
√

1+8c3
2c3c1

>
1
c1

suffices. Hence, there exist universal constants c, c̃, such that the desired conclusion holds.
We now consider the sparse regime mp≪ log n, where by Lemma 5 there exists c4 > 0 such
that mp ≤ c4 log n/ log

(
log n

log mp

)
. Notice that for any λ > 0, maxi∈[n] Xi ≤ 1

λ log
∑n

i=1 eλXi .
We apply Markov’s inequality to obtain, for any t > 0,

APPROX/RANDOM 2024

30:18 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

P
(

max
i∈[n]

Xi ≥ t · Emax
i∈[n]

Xi

)
≤ P

(
n∑

i=i

eλXi ≥ eλtE maxi∈[n] Xi

)

≤ nEeλX1

exp
(
λt Emaxi∈[n] Xi

)
=

n
(
1− p + peλ

)m

exp
(
λt Emaxi∈[n] Xi

)
≤ exp

log n + mp
(
eλ − 1

)
− λt c4 log n

log
(

log n
mp

)
 ,

where we used that 1 + x < ex to obtain the last inequality. Finally, by choosing t = 3/c4
and λ = log (log n/mp), we obtain

P
(

max
i∈[n]

Xi ≥
3
c4
· Emax

i∈[n]
Xi

)
≤ 1

n
. ◀

▶ Lemma 22 (Asymptotic expression for binomial probability mass function).
Let a ≡ a(n) and b ≡ b(n) be such that
1. 1≪ b≪

√
a,

2. p≪ 1.
If b ≥ Cap for C > 1, then

logP(Bin(⌈a⌉ , p) = ⌈b⌉) ≥ −
(

b log b

ap
− b + ap

)
(1 + o(1)), (A.6)

If also b≫ ap, we have that

logP(Bin(⌈a⌉ , p) = ⌈b⌉) ≥ −
(

b log b

ap

)
(1 + o(1)), (A.7)

Furthermore, all bounds remain valid upon replacing ⌈a⌉ to ⌊a⌋.

Proof. We defer the proof of Lemma 22 to the extended version of this work found in [1]. ◀

▶ Lemma 23 (Binomial Monotonicity). Let Sm ∼ Bin(m, p). Then for r ≥ mp, we have that
P(Sm = r + 1) ≤ P(Sm = r) and P(Sm−1 = r) ≤ P(Sm = r).

Proof. The proof follows a similar argument as that presented in [7].

P(Sm = r + 1)
P(Sm = r) =

(
m

r+1
)
pr+1(1− p)m−r−1(

m
r

)
pr(1− p)m−r

=
m!

(r+1)!(m−r−1)! p
r+1(1− p)m−r−1

m!
r!(m−r)! p

r(1− p)m−r

= (m− r)p
(r + 1)(1− p) ≤ 1.

Similar arguments show that P(Sm−1 = r) ≤ P(Sm = r). ◀

G. Arpino, D. Dmitriev, and N. Grometto 30:19

B Main tool for the case mp ≲ log n and Proof of Lemma 25

▶ Lemma 24. If mp ≲ log n, then, for any ε > 0, there exist constants τ > 0 and 1 < α < β,
such that, for k ≲ log n and for any m̃, satisfying β−k−1m ≤ m̃ ≤ β−km, for all n large
enough,

P
(

Bin(m̃, p) =
⌈
(α/β)kτEdmax

⌉)
≥ n−ε.

Proof. The proof is essentially a careful application of Lemma 22. Let τ, α, β be constants to
be fixed later and m̃ =

⌊
β−k−1m

⌋
. Depending on whether we have mp≪ log n or mp ∼ log n,

different terms will dominate the asymptotic expression from Lemma 22.
We start with the case mp≪ log n. From Lemma 5, this implies that mp≪ Edmax ≪ log n.
Here we can fix α ≡ 2 and β ≡ 3. Applying (A.7) for a = 3−k−1m and b = (2/3)kτEdmax, we
have:

logP
(

Bin(m̃, p) =
⌈
(2/3)kτEdmax

⌉)
≥ −(2/3)kτEdmax log

(
2k3τEdmax

mp

)
(1 + o(1)) (B.1)

Recall that our goal is to show logP
(

Bin(m̃, p) =
⌈
(2/3)kτEdmax

⌉)
≥ −ε log n. We first

show that there exists τ > 0 satisfying the following two inequalities:

(i) (2/3)kτ(log 3 + k log 2)Edmax

log n
≤ ε

4 ,

(ii) (2/3)kτ
Edmax

log n
log
(
Edmax

mp

)
≤ ε

4 .

(B.2)

Indeed, since Edmax ≪ log n and k ≪ (3/2)k, inequality (i) will be satisfied for any τ > 0 for
n large enough. For (ii) we need to use explicit bound for Edmax, in particular from Lemma 5
we know that there exists C > 0, such that Edmax ≤ C log n/(log log n− log mp) for n large
enough. Plugging this into (ii), we get for k = 0,

τ
Edmax

log n
log
(
Edmax

mp

)
≤ τC(log C + log log n − log(log log n − log mp) − log mp)

log log n − log mp
= τC +o(1). (B.3)

For τ = ε/(8C), (ii) holds for k = 0 for n large enough. By increasing k we only decrease
left hand side of (ii), therefore, the same value of τ works for any k ≥ 0.
Finally, by adding (i) and (ii) we showed that, for n large enough,

logP
(

Bin(m̃, p) =
⌈
(α/2)kτEdmax

⌉)
≥ −ε

2 log n(1 + o(1)) > −ε log n,

which finishes the proof for the case mp≪ log n.
Now we focus on the case mp ∼ log n. Here we apply (A.6) for the values a = β−k−1m and
b = (α/β)kτEdmax keeping in mind the condition b ≥ Cap with C > 1. We have

logP
(

Bin(m̃, p) =
⌈
(α/β)kτEdmax

⌉)
≥ −

(
(α/β)kτEdmax log

(
βαkτEdmax

mp

)
− (α/β)kτEdmax + β−k−1mp

)
(1 + o(1))

We pick τ = γmp/Edmax, for some constant γ > 1 to be specified later. Note that this way
condition for applying (A.6), b

ap ≥ C > 1, is satisfied since b
ap ≥

τEdmax
mp = γ > 1. This

simplifies the latter expression to the following:

APPROX/RANDOM 2024

30:20 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

logP
(

Bin(m̃, p) =
⌈
(α/β)kγmp

⌉)
≥ −mp

(
(α/β)kγ log

(
βγαk

)
− (α/β)kγ + β−k−1) (1 + o(1))

Since in this regime we have mp ≤ D log n for some D > 0, for n large enough, it is enough
to show

(α/β)kγ log
(
βγαk

)
− (α/β)kγ + β−k−1 ≤ ε/(2D).

We first show that there exist constants 1 < α < β and γ > 1, depending on ε and D,
satisfying the following two inequalities for any k ≥ 0:

(i) (α/β)k

(
γ log βγ − γ + 1

αkβ

)
≤ ε

4D
,

(ii) (α/β)kk log α ≤ ε

4D
.

Note that left hand side of (i) decreases as k increases, therefore, it is enough to look at
k = 0. We need to show that there exist β, γ > 1, depending on ε, D such that

f(β, γ) := γ log βγ − γ + 1
β
≤ ε

4D
.

Note that ∂f
∂β = γ/β − 1/β2 > 0 and ∂f

∂γ = log βγ > 0 as long as βγ > 1. Since f(1, 1) = 0,
we can find β, γ > 1, close enough to 1, such that f(β, γ) ≤ ε/(4D). We use these values of
β and γ (or, equivalently, τ). Since k ≪ (β/α)k, there exists α ∈ (1, β), such that (ii) holds.
Summing (i) and (ii) shows that, for n large enough,

logP
(

Bin(m̃, p) =
⌈
(α/β)kγmp

⌉)
≥ −εmp

2D
(1 + o(1)) ≥ −ε log n

2 (1 + o(1)) ≥ −ε log n.

We proved that for mp ≲ log n, for any ε > 0, for n large enough, there exists τ, α, β, such
that

Pr
(

Bin(
⌊
β−k−1m

⌋
, p) = ⌈(α/β)kτEdmax⌉

)
≥ n−ε.

Since β−k−1mp < β−kmp < ⌈(α/β)kτEdmax⌉, from binomial monotonicity, Lemma 23, we
have that for any m̃ such that β−k−1m ≤ m̃ ≤ β−km,

P
(

Bin(m̃, p) = ⌈(α/β)kτEdmax⌉
)
≥ n−ε.

In order to deal with the more delicate sparse regime throughout the paper where
mp≪ log n, we apply the following technical lemma.

▶ Lemma 25. For mp≪ log n, ε > 0, and n large enough, we have

P
(

Bin(m, p) =
⌈

ε

8
log n

log (log n/mp)

⌉)
≥ n−ε. ◀

Proof of Lemma 25. We follow the argument in Lemma 24 with k = 0 and Edmax replaced
by log n/(log log n− log mp). Note that in the proof of Lemma 24, in the case mp≪ log n, we
only used that mp≪ Edmax ≪ log n and Edmax ≤ C log n/(log log n− log mp) for some C > 0.
Since both these properties remain true upon replacing Edmax with log n/(log log n− log mp),
the proof follows. Since τ = ε/(8C), in the setting of Lemma 25, and C = 1 in this argument,
we pick τ = ε/8. ◀

G. Arpino, D. Dmitriev, and N. Grometto 30:21

C Lemma 26, formal version of Lemma 7

▶ Lemma 26. Let ε > 0. Consider the following choices of f1, f2, . . .:

(i) if mp ≲ log n, for some constants τ > 0 and 1 < α < β,

ft =
⌈
(α/β)k

τEdmax

⌉
where k is such that β−k−1m < m− Ft−1 ≤ β−km;

(ii) if mp≫ log n, and log mp≪ log n,

ft =
⌈
mp(1− p)t−1⌉ if t ≤ t∗ :=

⌈
1
p

log
(

mp

log n

)⌉
,

ft = f̃t−t∗ , otherwise, where f̃t is the sequence from the case mp ≲ log n;
(iii) otherwise, i.e., when log mp ≳ log n,

ft =
⌈
mp(1− p)t−1⌉ .

Then, there exists K, such that

(i) FK ≥ m−K;
(ii) if mp ≲ log n, then K ∼ valLP;

if mp≫ log n, then K ∼ valIP.

(C.1)

Furthermore, for this sequence ft (which depends on ε), for any t ≤ K,

P(Bin(m− Ft−1, p) ≥ ft) ≥ n−ε. (C.2)

Note that the implicit constants in the statements K ∼ valLP or K ∼ valIP depend on ε.

Proof. We proceed in the proof by first showing that there exists K̃, such that m−FK̃ ≲ K̃,
and then, by increasing K̃ by a multiplicative factor, we find K such that m− FK ≤ K.

Case mp ≲ log n. From Lemma 24, there exist constants τ > 0, α, β with 1 < α < β,
such that, for any m̃, satisfying β−k−1m ≤ m̃ ≤ β−km, for all n large enough,

P
(

Bin(m̃, p) =
⌈
(α/β)kτEdmax

⌉)
≥ n−ε.

Recall that in this case ft =
⌈
(α/β)kτEdmax

⌉
, where k is such that β−k−1m ≤ m− Ft−1 ≤

β−km and Ft =
∑t

s=1 fs. From Lemma 24 we have that P(Bin(m − Ft−1, p) = ft) ≥ n−ε.
Our goal is to prove that there exists s ≲ valLP ∼ m/Edmax, such that m− Fs ≲ s.

▶ Lemma 27. Let t(k) := β−1
βτ

m
Edmax

α−k.

If m− Ft−1 ≤ β−km

then m− Ft+t(k)−1 ≤ β−k−1m.

Informally, if after t− 1 steps of BlockGreedy, at most β−km subsets are uncovered, then
after t + t(k) − 1 steps, at most β−k−1m subsets remain uncovered.

Proof. Let s ≥ t. As long as m−Fs−1 > β−k−1m, we will always have fs =
⌈
(α/β)kτEdmax

⌉
.

We proceed by contradiction. Assume that m− Ft+t(k)−1 > β−k−1m. This implies that for
all s ∈ [t− 1, t + t(k) − 1], we have fs = f :=

⌈
(α/β)kτEdmax

⌉
. Therefore,

Ft+t(k)−1 − Ft−1 = t(k)f ≥ m(β − 1)
βk+1 = β−km− β−k−1m,

APPROX/RANDOM 2024

30:22 Greedy Heuristics and Linear Relaxations for the Random Hitting Set Problem

and

m− Ft+t(k)−1 = m− Ft−1 −
(
Ft+t(k)−1 − Ft−1

)
≤ β−km− (β−km− β−k−1m) = β−k−1m.

Therefore, we must have m− Ft+t(k)−1 ≤ β−k−1m. ◀

Note that we always have β−1m ≤ m−F0 = m. If we consecutively apply Lemma 27 starting
with k = 0, then, for v(k) :=

∑k
s=0 t(s) we have m − Fv(k)−1 ≤ β−k−1m. Therefore, for

k := log Edmax
log β , we have m− Fv(k)−1 ≤ m

Edmax
. We can bound

v(k) ≤
∞∑

s=0
t(k) = β − 1

βτ(α− 1)
m

Edmax
∼ m

Edmax
.

From Lemma 6 we have dmax ≲ Edmax with high probability. Together with Lemma 15 this
implies valLP ≥ m

dmax
≳ m

Edmax
. Now, if we pick K̃ := v(k) ≲ m

Edmax
, we have that valBGr ≲ m

Edmax
.

Since valLP ≤ valBGr, we have that K̃ ∼ valLP and m− FK̃ ≲ K̃.

Case mp ≫ log n. Here, we have that Edmax = mp(1 + o(1)), therefore, picking an element
that hits an average number of subsets is approximately the same as picking an element that
hits close to maximum number of subsets. From the properties of the mean and the median
of the binomial distribution, it follows that P(Bin(m̃, p) ≥ ⌈m̃p⌉) ≥ 1/3, for any m̃.

We begin with the case log mp≪ log n. This means that mp cannot grow polynomially
in n, but e.g. mp ∼ log2 n is possible. In this regime, valIP ∼ 1

p log
(

mp
log n

)
. Let K1 =⌈

1
p log

(
mp

log n

)⌉
and f1, . . . , fK1 be a sequence such that fs = ⌈mp(1− p)s⌉. Then, we have

that m− FK1 ≤ m(1− p)K1 ≤ 1
p log n. Therefore, (m− FK1)p ∼ log n, and we can continue

with f̃t from the previous section mp ∼ log n, with F̃t :=
∑t

s=1 f̃t. For this sequence
f̃1, . . . , f̃K2 , we have have K2 ≲ 1

p , and m− FK1 − F̃K2 ≲ 1
p ≪

1
p log

(
mp

log n

)
. The required

statement holds for combined sequences ft and f̃t and K̃ := K1 + K2.
Finally, we study the case log mp ≳ log n, which implies that valIP ∼ 1

p log n. This case is

trivial, as one can pick K̃ =
⌈

1
p log

(
mp

log n

)⌉
≲ valIP and f1, . . . , fK̃ a sequence such that

fs = ⌈mp(1− p)s⌉. Then, we have that m− FK̃ ≤ m(1− p)K̃ ≤ 1
p log n ≲ valIP.

From m − FK̃ ≲ K̃ to m − FK ≤ K. Finally, using that ft ≥ 1 by Lemma 16 unless
Ft = m, there exists some constant C > 0, such that for K := CK̃, FK ≥ m −K, which
finishes the proof. ◀

	1 Introduction
	2 Notation and conventions
	3 Related Work
	4 Preliminary Bounds
	5 Algorithmic solutions
	5.1 Challenges of Greedy analysis
	5.2 BlockGreedy algorithm
	5.3 Reduction from BlockGreedy to Greedy

	6 Discussion and Open Questions
	6.1 Summary of our results and proof techniques
	6.2 Multiplicative vs. additive integrality gaps
	6.3 Analysis of a linear program solution.

	A Auxiliary lemmas
	B Main tool for the case mp lesssim log n and Proof of Lemma 25
	C Lemma 26, formal version of Lemma 7

