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Abstract
Numerous works have studied the probability that a length t − 1 random walk on an expander
is confined to a given rectangle S1 × . . . × St, providing both upper and lower bounds for this
probability. However, when the densities of the sets Si may depend on the walk length (e.g., when
all set are equal and the density is 1 − 1/t), the currently best known upper and lower bounds are
very far from each other. We give an improved confinement lower bound that almost matches the
upper bound.

We also study the more general question, of how well random walks fool various classes of test
functions. Recently, Golowich and Vadhan proved that random walks on λ-expanders fool Boolean,
symmetric functions up to a O(λ) error in total variation distance, with no dependence on the
labeling bias. Our techniques extend this result to cases not covered by it, e.g., to functions testing
confinement to S1 × . . . × St, where each set Si either has density ρ or 1 − ρ, for arbitrary ρ.

Technique-wise, we extend Beck’s framework for analyzing what is often referred to as the “flow”
of linear operators, reducing it to bounding the entries of a product of 2 × 2 matrices.
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1 Introduction

Fix a set of vertices V = [n] and t subsets S1, . . . , St ⊆ V . The hitting property of expander
graphs [1] says that for a sufficiently good expander graph G on the set of vertices V , the
probability that for all i = 1, . . . , t the i’th step of a random walk on G falls inside Si is
small, and therefore, with a good probability, the walk escapes the confinement S1 × . . . × St.
Specifically,

▶ Theorem 1 (Expander Hitting Property, based on [10]). Let G = (V, E) be a λ-expander.
Then, for every sequence of subsets S1, . . . , St ⊆ V such that Si is of density ρi = |Si| / |V |,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≤ √
ρ1ρt ·

t−1∏
i=1

(
(1 − λ)√ρiρi+1 + λ

)
. (1)
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31:2 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

We remark that a slightly weaker bound of
∏t−1

i=1
(√

ρiρi+1 + λ
)

appears in [10]. For the case
where all densities ρi are the same ρ, a bound of ρ ((1 − λ)ρ + λ)t−1 appears in [15], and of
ρ(ρ + λ)t−1 appears in [2]. The bound in the general case (Equation 1) follows by a similar
proof, with a slightly more careful analysis. See Subsection 4.1.

However, on a conceptual level, one expects an expander random walk to mimic a truly
random walk, each time choosing a vertex uniformly at random independent of all other
choices. I.e., ideally, we would have liked a bound stating that the probability of an expander
random walk being confined to S1 × . . . × St is roughly the same as the probability of the
same event with respect to a walk on the complete graph with self loops (which equals the
product of the densities of the sets). Indeed, for the case in which all densities are equal, the
following has been proven in [2]:

▶ Theorem 2 ([2]). Let G = (V, E) be a λ-expander. For every sequence of subsets
S1, . . . , St ⊆ V such that Si is of density ρ,

If λ < ρ/6, then Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ · (ρ − 2λ)t−1.

If λ < ρ2/2, then Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ · (ρ − λ)t−1.

How tight are these bounds?
To get a feeling for the upper and lower bounds, let us look at the special case where all

densities ρi are the same ρ. In this case, independent sampling gives the exact answer ρt.
The upper bound (Theorem 1) is ρµt−1, where µ = ρ + (1 − ρ)λ, and

|ρµt−1 − ρt| = ρ(µt−1 − ρt−1) = ρ(µ − ρ)
t−2∑
j=0

ρjµt−2−j ≤ ρ(1 − ρ)λ
t−2∑
j=0

ρj ≤ ρ · λ,

where the first equality is because µ ≥ ρ and the second equality is using ak − bk =
(a − b)

∑k−1
j=0 ajbk−1−j . We also use µ − ρ = (1 − ρ)λ. In particular the error term is at most

λ, and tends to zero when λ tends to 0.
However, for the lower bound (Theorem 2), for any λ we have

∣∣ρt − ρ(ρ − λ)t−1∣∣ = ρ(ρt−1 − (ρ − λ)t−1) = ρλ

t−2∑
j=0

ρt−2−j(ρ − λ)j

≥ ρλρt−2
t−2∑
j=0

(ρ − λ)j ≈ ρt−1 λ

λ + 1
t

.

Thus, when λ is some small constant, independent of t and ρ = 1 − 1/t, the difference
between independent sampling and the lower bound is ρt−1 λ

λ+1/t =≈ 1/e. Therefore, even
for arbitrarily small λ, if we let t grow to infinity and we let the density ρ depend on t,
there is a constant gap between the independent sampling probability and the lower bound!
Thus, a natural question is: can we find a better lower bound that matches the independent
probability? In this work we prove:

▶ Theorem 3 (New confinement lower-bound). Let G = (V, E) be a λ-expander, and let
S1, . . . , St ⊆ V be each of density ρ for some ρ.1. If λ ≤ ρ2

3 , then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ ·
(
ρ − λ(1 − ρ2)

)t−1
.

1 In fact, we prove the theorem under more general conditions, see Section 4



A. Ta-Shma and R. Zadicario 31:3

This bound is close to the independent sampling probability:∣∣ρt − ρ · (ρ − λ(1 − ρ2))t−1∣∣ = ρt − ρ · (ρ − λ(1 − ρ2))t−1

= ρ · λ(1 − ρ2)
t−2∑
j=0

ρj(ρ − λ(1 − ρ2))t−2−j

≤ λ · ρ(1 − ρ2) ·
∞∑

j=0
ρj = λ · ρ(1 + ρ) ≤ 2ρλ.

Therefore, for any λ, if we let t grow to infinity, and even if we let the density ρ depend
on t, the distance between the independent probability (ρt) and the lower bound is at most
2λ (instead of an absolute constant before).

1.1 Further Results
Expander random walks are typically used as a randomness-efficient way of generating a
uniform-like sequence of vertices v1, . . . , vt. In most applications, the walk is used to “fool” a
test function f . For example, we may think of the confinement problem when all sets Si are
the same set S, as taking an expander with |V | vertices, which we label with 0 or 1 according
to membership in S. We set f to be the AND function. We compare the probability that
f(x1, . . . , xt) evaluates to 1 when x1, . . . , xt are the labels obtained from a random walk on
the graph (which is the quantity we want to bound) with the probability that f evaluates to
1 when the labels are obtained from vertices chosen uniformly at random (which is a known
quantity and equals the density S raised to the power of t). We wish to claim these two
quantities are close to each other.

More generally, we say a test function f : Zt
d′ → Zd is ε-fooled by expander ran-

dom walks if for every λ-expander graph G = (V, E) and every labeling val : V → Zd′ ,
dT V

(
f(val(RWt

G)), f(val(Indt
V ))
)

≤ ε. where
RWt

G is the distribution obtained by taking a length t − 1 random walk on G. That is, we
sample v1 ∈ V uniformly at random. Then, for i = 2, . . . , t sample vi uniformly at random
from the neighbours of vi−1. f(val(RWt

G)) is the distribution of f(val(v1), . . . , val(vt))
when (v1, . . . , vt) is sampled from RWt

G.
Indt

V is the distribution obtained by sampling v1, . . . , vt ∈ V uniformly at random. Note
that Indt

V = RWt
J where J is the complete graph on V with self loops. f(val(Indt

V )) is
the distribution of f(val(v1), . . . , val(vt)) when (v1, . . . , vt) is sampled from Indt

V .

Cohen et al. [4] proved that all Boolean symmetric functions f are fooled by expander
random walks with up to a O(λ/

√
ρmin) error in total variation distance, where ρmin =

min{ρ0, ρ1}, and ρb is the density of b, i.e., that fraction of vertices with label b. Thus, even
in the symmetric Boolean case, the error bound of [4] is O(λ) only when ρmin is bounded
from below by some constant. When ρmin is allowed to depend on t, the error bound of [4]
may weaken as t increases.

A remarkable recent result of Golowich and Vadhan [8] significantly strengthened and
extended the results of [4], and using new techniques managed to eliminate the dependence
on the bias. That is, they prove that all symmetric Boolean functions are fooled by expander
random walks with up to O(λ) error in total variation distance, where the constant hidden
in the Big-O notation is absolute and does not depend on ρmin.

Notice that [8] implies that for confinement to a single set (which is a symmetric function)
the difference between independent sampling and RW sampling is bounded by O(λ), even
when the density ρ may depend on t. Thus, it implies that Theorem 2, which gives constant

APPROX/RANDOM 2024



31:4 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

difference for ρ = 1 − 1/t, is not tight. In this regard, Theorem 3 gives a bound that replaces
the O(λ) difference guaranteed by [8] with a more precise bound (that is in particular at
most 2λ).

Let us now discuss whether the are functions for which the [8] bound does not guarantee
an O(λ) error, while our technique does.

A first candidate for such a problem is the confinement problem for S1 ×. . .×St, where the
sets Si might be different, and are only guaranteed to all have the same density. Theorem 3
still guarantees the same bound, whereas [8] seems to not apply, because the function is not
symmetric anymore. However, the Golowich-Vadhan result might be modified to cover this
case as well, by using one fixed set, and adding corresponding permutation operators to the
expanders, making them directed (which is still fine for [8]).2

However, using our techniques, we prove the following. Let 1S(i) equal 1 if i ∈ S and 0
otherwise. Then, 1S1 ⊗ · · · ⊗ 1St

equals one if the input is confined to S1 × . . . × St and zero
otherwise. We prove:

▶ Theorem 4. Let G = (V, E) be a λ-expander where λ ≤ 1/3, and t ≥ 1 an integer . Let
S1, . . . , St ⊆ V be a sequence of subsets such that the largest subset also has the maximal
variance. Then,

dT V

(
1S1 ⊗ · · · ⊗ 1St

(RWt
G), 1S1 ⊗ · · · ⊗ 1St

(Indt
V )
)

< 3ρmax · λ,

where ρmax is the density of the largest subset.

In particular,

▶ Corollary 5. Let G = (V, E) be a λ-expander where λ ≤ 1/3, and t ≥ 1 an integer. Let
S ⊆ V be a subset of density ρ, and suppose S1, . . . , St ⊆ V are subsets such that for every i,
Si = S or Si = S. Then,

dT V

(
1S1 ⊗ · · · ⊗ 1St

(RWt
G), 1S1 ⊗ · · · ⊗ 1St

(Indt
V )
)

< 3ρ · λ.

Notice that these functions are not symmetric, and therefore the results of [8] do not
apply to them, while our techniques still work.

We also use similar techniques to analyze the extent to which the sum function modulo d

is fooled by expander random walks on graphs with arbitrarily biased labelings, and prove
that it is fooled with an O(

√
d · λ) error in total variation distance, with no dependence on

the labeling bias. We prove:

▶ Theorem 6. For integers t ≥ 1, d′ ≥ 2, and d ≥ 2 let G = (V, E) be a λ-expander where
λ ≤ 1/6. Let val : V → Zd′ be any labeling. Then

dT V

(
Sumd

(
val(RWt

G)
)

, Sumd

(
val(Indt

V )
))

≤ 5
√

d · λ.

The O(
√

d · λ) error term also follows from the work of [8] on width-d permutation
branching programs, using different techniques.

Additionally, we prove a bound on the bias of a labeling in terms of the density of the
most frequent label, ρmax. This is in contrast to previous bias-dependent result (e.g [8] for
symmetric functions over Zd with d > 2) where the total variation bound degrades with ρmin,
rather than 1 − ρmax (and notice that always ρmin ≤ 1 − ρmax). This dependence is more

2 We thank the anonymous referee for bringing this to our attention.
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resilient as it can tolerate very rare labels, as long as the most common label is not too
dominant. We think that this observation could potentially serve as an incentive to shift the
bias dependence in previous works from the smallest label weight to the largest. Specifically,
we prove,

▶ Proposition 7. For a prime p, let val : [n] → Zp be a labeling that assigns label a ∈ Zp to
ρa fraction of the vertices, and denote ρmax = maxa ρa. Then, for every non-trivial character

χ of Zp, biasχ(val) ≤
√

1 −
(

1 − cos 2π
p

)
(1 − ρmax), where biasχ(val) def=

∣∣Ei∈[n]χ(val(i))
∣∣.

We also point out that our proofs apply even if the graph is different for each of the t

steps, as long as it is a λ-expander at each step. The same property holds in previous works
as well, e.g [8].

1.2 The Technique
We extend the techniques of Gillman [6], Healy [9] and Beck [3], that established a framework
for analyzing what is often referred to as the “flow” of linear operators. The flow of a linear
operator T from the linear subspace V2 to the linear subspace V1 is the quantity ∥Π1TΠ2∥
where Πi is the projection operator onto Vi. In our context, V1 and V2 will be either the line
spanned by the all-ones vector (The “parallel space”), or its orthogonal complement (The
“perpendicular space”).

Let G also denote the transition matrix of a λ-expander graph, and let P denote the
projection matrix on the set S. That is, P is the diagonal matrix satisfying P [v, v] = 1 if
v ∈ S and 0 otherwise. The probability that a length t random walk on G never escapes S

can be expressed algebraically as 1T (PG)t−1P1, where we denote 1 = 1√
|V |

(1, . . . , 1)T .
One way to analyze this expression is to decompose the probability distribution at each of

the t steps to its parallel and perpendicular components. The parallel component is identical
to the independent sampling case, while the perpendicular component is shrunk by a factor
of λ after each step on G. The above approach underlies many results in the field, and, in
particular, the expander Chernoff bound [6, 9]. Beck [3] simplified the analysis by defining
a 2 × 2 “flow” matrix for a linear operator T . The i, j’th entry of the flow matrix is the
flow of T from Vj to Vi, where Vi and Vj are either the perpendicular space or the parallel
space. This notation reduced the problem of bounding quantities like

∣∣1T T1
∣∣ to bounding

the [0, 0] entry of a 2 × 2 matrix with non-negative entries. In this language, the expression
1T (PG)t−1P1 is the flow of the operator (PG)t−1P from the parallel space to itself. For
more details about the flow framework see Section 3.

[2] proved their confinement probability lower bound by giving simultaneous upper and
lower bounds on flows between the perpendicular and parallel spaces. However, they did it
explicitly and specifically for the confinement problem with equal density at each step, and
obtained sub-optimal bounds. In this paper we analyze flows emerging from confinement
problems (and additional problems) using the 2 × 2 flow matrix notation. As a result,
we achieve simpler terms that are easier to follow and generalize to a broader setting of
confinement problems with varying densities. These terms also indicate how to improve upon
previous work (even when all densities are equal).

1.3 Summary and Discussion
As mentioned before, several total variation bounds in previous works depend on the labeling
bias, namely on the weights ρb that are induced by a labeling. Cohen et al. [4] proved that all
Boolean symmetric functions are fooled by expander random walks with up to a O(λ/

√
ρmin)

error in total variation distance.

APPROX/RANDOM 2024



31:6 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

Recently, Golowich and Vadhan [8], significantly strengthened and extended these results
using new techniques, and in some cases managed to eliminate the dependence on the bias.
In particular, they prove that for the Boolean case, all symmetric functions are fooled by
expander random walks with up to O(λ) error in total variation distance, where the constant
hidden in the Big-O notation is absolute.

For the non-Boolean case much less is known:
For symmetric functions defined on Zt

d, Golowich and Vadhan prove an O(( d
ρmin

)O(d) · λ)
total-variation bound where ρmin = mina ρa, and ρa is the density of label a. Notice that
in this bound there is a dependence on ρmin. It is an intriguing open problem whether
the dependence on the bias is necessary.
Golowich and Vadhan [8] also show that expander random walks fool width-w permutation
branching programs up to a O(λ) error in ℓ2 distance, and a O(

√
w · λ) error in total

variation distance, a bound that does not depend on the bias of the labeling. Notice that
this bias-independent bound also holds for non-symmetric functions, as long as they are
computed by a low-width permutation branching program.

In this work we add another example where the error bound does not depend on the
labeling bias. We show for the confinement problem, when the set of maximal density
ρ(S) is also of maximal variance (the variance is

√
ρ(S)(1 − ρ(S))), the error bound is O(λ)

regardless of the densities. Note that this case is not symmetric. We also improve the lower
bound for the symmetric case, as previously discussed.

There are many open problems left.
First, and foremost, is it possible that all symmetric functions over Σt are O|Σ|(λ) fooled
by random-walks? For Σ = {0, 1} [8] gave an affirmative answer, but the general case is
left open.
What other non-symmetric functions are fooled by random-walks without a dependence
on the bias? [8] showed all small-width permutation branching programs are such. We
added the confinement test functions when all sets have the same variance. What other
functions have this property?
As alluded to by Proposition 7, we think that for many functions the parameter dominating
the bias-dependent error is 1 − ρmax rather than ρmin. For example, the bias-dependent
bound for any confinement test function (Proposition 29) is O( λ

1−ρmax
) where ρmax is the

density of the largest set. It would be interesting to examine previous results and see if
the error terms can be correspondingly amended.

The paper is organized as follows: In Section 2 we give some preliminaries and background,
and introduce our notations. In Section 3 we review Beck’s flow framework [3] and extend it.
In Section 4 we prove Theorem 3, and prove analogous lower bounds in the general setting
of varying sets and densities. In Section 5 we study fooling confinement test functions, and
in particular prove Theorem 4. In Section 6, we prove Theorem 6 using our techniques. The
proof for Proposition 7 appears in the full version of this paper [14].

2 Preliminaries

Notation

For any positive integer d, let Zd denote the group of integers modulo d, and [d] = {1, . . . , d}.
We define the ℓ1-norm of a vector x ∈ Fn as ∥x∥1 =

∑
i |xi|, and its ℓ2-norm as ∥x∥ =√∑

i |xi|2. For a field F = R or C, let 1n = (1/
√

n, . . . , 1/
√

n) ∈ Fn denote the normalized
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all-ones vector. When n is clear from context we simply write 1. For a matrix M ∈ Fn×n,
the operator norm of M is given by maxx∈Fn\{0} ∥Mx∥ / ∥x∥. For M ∈ Cn×n, its conjugate
transpose is denoted as M∗. For two real matrices L, M ∈ Rn×n, the notation L ≤e.w M

stands for entry-wise inequality
A symmetric matrix W ∈ [0, 1]n×n is an undirected random walk matrix on n vertices

if the columns and rows of W sum to 1, which implies that Wj,i = Wi,j represents the
transition probability between vertex i and j, or vice versa. In this context, In denotes the
n × n identity matrix, and Jn = 1n1T

n represents a matrix with all entries being 1/n. When
the dimension is clear from the context, we use the notations I and J respectively. Notably,
Jn is the random walk matrix for a complete graph on n vertices with self-loops. For a
sequence of matrices M1, . . . , Mt, we denote

∏t
i=1 Mi = Mt · Mt−1 · . . . · M1.

We often use the decomposition Fn = V0 ⊕ V1 where V0 = Span{1} is the subspace of
Fn spanned of the all ones vector, and V1 = V⊥

0 is its orthogonal complement. We define
Π0 as the projection operator onto V0, noting that Π0 = Jn, and Π1 as the projection on
V1, noting that Π1 = In − Jn. For a vector x ∈ Fn we define x∥ = Π0x and x⊥ = Π1x.

For two probability distributions p1 and p2 over a finite sample space Ω, their total
variation distance is dT V (p1, p2) = 1

2 ·
∑

s∈Ω |p1(s) − p2(s)| .

The Information Theoretic XOR-Lemma

The characters of the group Zd are the maps χb(a) = ωb·a
d for b = 0, . . . , d − 1, where

ωd = e
2πi

d . Let CZd denote the vector space of all complex valued function on Zd, equipped
with the inner product ⟨h, g⟩ =

∑
a∈Zd

h(a)g(a).
The information theoretic XOR-Lemma [7] relates the total variation distance between

two distributions over Zd to the heaviest Fourier coefficient of their difference, also called the
maximum bias.

▶ Lemma 8 (Based on [7]). For any two distributions p1 p2 over Zd: dT V (p1, p2) ≤
√

d
2 ·

maxb∈Zd
|⟨χb, p1 − p2⟩| .

The proof, based on [7], appears in the full version of this paper.

Expanders

For a regular, undirected graph G = (V, E) on n vertices, the random walk matrix is the nor-
malized adjacency matrix. The spectral expansion is defined as the second largest eigenvalue
of the graph’s random walk matrix in absolute value, namely λ(G) = maxx,y⊥1

|⟨x,Gy⟩|
∥x∥·∥y∥ =

maxx⊥1
∥Gx∥
∥x∥ , where the maximum is over all non-zero x, y ∈ Rn which are orthogonal to the

all-ones vector, and by abuse of notation G also denotes the random walk matrix of the graph
G. We say G is a λ-expander if λ(G) = λ. For a λ-expander G, let A = 1

λ (G−J). Since the all-
ones vector is an eigenvector of both G and J with eigenvalue 1, it follows that A is zero on the
parallel space Span{1}. Additionally, ∥Ax∥ =

∥∥Ax⊥ + Ax∥
∥∥ = 1

λ ·
∥∥Gx⊥

∥∥ ≤
∥∥x⊥

∥∥ ≤ ∥x∥ .

This implies a valuable decomposition G = J + λA where the symmetric “error matrix” A is
zero on the parallel space, and ∥A∥ ≤ 1. Another useful decomposition follows by setting
E = 1

λ (G − (1 − λ) · J). One can easily verify that E acts like the identity on the parallel
space, and that the orthogonal space is E-invariant. Thus, for every vector x we have

∥Ex∥2 =
∥∥Ex∥

∥∥2 +
∥∥Ex⊥

∥∥2 ≤
∥∥x∥

∥∥2 + 1
λ

∥∥Gx⊥
∥∥2 ≤ ∥x∥2

.

This gives rise to the decomposition G = (1 − λ)J + λE where the symmetric “error
matrix” E satisfies ∥E∥ ≤ 1.

APPROX/RANDOM 2024



31:8 The Expander Hitting Property When the Sets Are Arbitrarily Unbalanced

3 Flow

Let F be either C or R. We decompose Fn = V0 ⊕ V1 where V0 is the span of the all-
ones vector Span{1} (the “parallel” space) and V1 = V⊥

0 its orthogonal complement (the
“orthogonal” space). Let Π0 be the projection operator onto V0, and Π1 the projection onto
V1.

Throughout this work we study linear operators T : Fn → Fn by examining ∥Πb1TΠb2∥
for b1, b2 ∈ {0, 1}. Intuitively, this can be understood as the “flow of mass” from Vb2 to Vb1

under the linear operator T . To study the flow of a linear operator, we extend upon the
techniques introduced by Gillman, Healy, and Beck, using the notation and claims of Beck
[3]. These were used mostly in the context of the expander Chernoff bound [6, 9].

▶ Definition 9 (The Flow Matrix). Let T : Fn → Fn be any linear operator. Then the flow
matrix of T , denoted T̃ , is the 2 × 2 non-negative matrix defined by

T̃ =
(

∥Π0TΠ0∥ ∥Π0TΠ1∥
∥Π1TΠ0∥ ∥Π1TΠ1∥

)
▶ Example 10. Let G be the random walk operator of a λ-expander graph. Then

G̃ ≤e.w

(
1 0
0 λ

)
where ≤e.w stands for entry-wise inequality.

To see this, apply the decomposition G = J + λA where ∥A∥ ≤ 1 and A is zero on the
parallel space. That is, AΠ0 = Π0A = 0. We then have

(i) ∥Π0GΠ0∥ = ∥Π0JΠ0∥ = ∥J∥ = 1,
(ii) ∥Π0GΠ1∥ = ∥Π0(J + λA)Π1∥ = ∥Π0JΠ1 + λΠ0AΠ1∥ = 0,
(iii) By symmetry ∥Π1GΠ0∥ = 0 .
(iv) Finally, ∥Π1GΠ1∥ = λ ∥Π1AΠ1∥ ≤ λ.

By submultiplicativity and subadditivity of the operator norm, we have the following
submultiplicativity property of the flow operator:

▷ Claim 11 ([3]). For every linear operators L, M : Fn → Fn, we have L̃ · M ≤e.w L̃ · M̃ .

Proof. Let i, j ∈ {0, 1}. Recall that Π0 = J and Π1 = I − J , and thus Π0 + Π1 = I. We have

L̃ · M [i, j] = ∥ΠiLMΠj∥ = ∥ΠiL(Π0 + Π1)MΠj∥ ≤ ∥ΠiLΠ0MΠj∥ + ∥ΠiLΠ1MΠj∥
≤ ∥ΠiLΠ0∥ · ∥Π0MΠj∥ + ∥ΠiLΠ1∥ · ∥Π1MΠj∥

= L̃[i, 0] · M̃ [0, j] + L̃[i, 1] · M̃ [1, j] = L̃ · M̃ [i, j]. ◁

Typically, the primary technical tool utilized for analyzing flow matrices consists of the
following bound, which generally hold for non-negative 2 × 2 matrices.

▶ Lemma 12 ([3]). If A =
(

a b

c d

)
≥e.w 0 with a ≥ 1 and d < 1, then

At[0, 0] ≤ a ·
(

a + bc

1 − d

)t−1
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Proof. By induction on t. The base case t = 1 is clear. Assume for 1, . . . , t − 1 and let us
prove for t. We have the following recurrence relation

At[0, 0] = At−1[0, 0] · A[0, 0] +
t−2∑
j=0

Aj [0, 0] · A[0, 1] · A[1, 1]t−2−j · A[1, 0]

where j goes over the last time the path was at vertex 0 before taking the final step. As
A[i, j] ≥ 0 and A[0, 0] ≥ 1, we see that Ak2 [0, 0] ≥ Ak1 [0, 0] for all k2 ≥ k1. Hence,

At[0, 0] = At−1[0, 0] · a +
t−2∑
j=0

Aj [0, 0] · bc · dt−2−j

≤ At−1[0, 0]

a + bc

∞∑
j=0

dj

 ≤ At−1[0, 0]
(

a + bc

1 − d

)
The proof is complete by applying the induction hypothesis. ◀

A simple way to generalize this lemma to the case where A[0, 0] > A[1, 1] but not necessarily
A[0, 0] > 1 is as follows.

▶ Lemma 13. If A =
(

a b

c d

)
≥e.w 0 with a > d then At[0, 0] ≤ a ·

(
a + bc

a−d

)t−1
.

Proof. Write A = a ·
(

1 b
a

c
a

d
a

)
. Then, by the previous lemma

At[0, 0] ≤ at ·

(
1 +

b
a · c

a

1 − d
a

)t−1

= a ·
(

a + bc

a − d

)t−1
. ◀

▶ Remark 14. Note that the lemma above is not tight when a is small. Indeed, At[0, 0]
decreases with a, while the bound of Lemma 13 blows up when a approaches d. We do not
try to optimize the bound for d close to a. Also, it would be nice to have a generalization of
this lemma for the case of possibly different A1, . . . , At.

▶ Lemma 15. If A =
(

a b

c d

)
≥e.w 0 with a > d. Then for all t ≥ 2,

At[0, 0] − (A[0, 0])t ≤ abc

a − d
·

t−2∑
k=0

ak

(
a + bc

a − d

)t−k−2

Proof. For every integer k ≥ 1 xk − yk = (x − y) ·
∑k−1

i=0 xiyk−i−1. Using this and Lemma 13,
we see that

At[0, 0] − (A[0, 0])t ≤ a ·
(

a + bc

a − d

)t−1
− at = a

((
a + bc

a − d

)t−1
− at−1

)

= a · bc

a − d
·

t−2∑
k=0

ak

(
a + bc

a − d

)t−k−2
◀

▶ Lemma 16. For an integer t ≥ 1, Let M1, . . . , Mt be a sequence of n × n matrices. Then∣∣∣∣∣1T

(
t∏

i=1
Mi

)
1 − 1T

(
t∏

i=1
Π0Mi

)
1

∣∣∣∣∣ ≤

(
t∏

i=1
M̃i

)
[0, 0] −

(
t∏

i=1
M̃i[0, 0]

)
.
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Proof. Writing Mi = Π0Mi + Π1Mi we have

1T

(
t∏

i=1
Mi

)
1 =

∑
b∈{0,1}t

1T
t∏

i=1
(Πbi

Mi)1 =
∑

b∈{0,1}t−1

1T Π0Mt

(
t−1∏
i=1

(Πbi
Mi)

)
· 1

Since 1T Π1 = 0. To complete the proof let LHS =
∣∣∣1T

∏t
i=1 Mi1 − 1T

(∏t
i=1(Π0Mi)

)
1
∣∣∣.

Then,

LHS =

∣∣∣∣∣∣∣∣∣
∑

b∈{0,1}t−1

b̸=0t

1T Π0Mt

(
t−1∏
i=1

(ΠbiMi)
)

· 1

∣∣∣∣∣∣∣∣∣
≤

∑
b∈{0,1}t−1

b ̸=0t

∣∣∣∣∣1T Π0Mt

(
t−1∏
i=1

(Πbi
Mi)

)
· Π01

∣∣∣∣∣ ≤
∑

b∈{0,1}t−1

b̸=0t

∥∥∥∥∥Π0Mt

(
t−1∏
i=1

(Πbi
Mi)

)
· Π0

∥∥∥∥∥
=

∑
b∈{0,1}t−1

b ̸=0t

∥∥∥∥∥Π0MtΠbt−1

(
t−1∏
i=2

(
Πbi

MiΠbi−1

))
· Πb1M1Π0

∥∥∥∥∥
≤

∑
b∈{0,1}t−1

b ̸=0t

∥∥Π0MtΠbt−1

∥∥ ·
t−1∏
i=2

∥∥Πbi
MiΠbi−1

∥∥ ∥Πb1M1Π0∥

=
∑

b∈{0,1}t−1

b ̸=0t

M̃t[0, bt−1]
(

t−1∏
i=2

M̃i[bi, bi−1]
)

M̃1[b1, 0] =
(

t∏
i=1

M̃i

)
[0, 0] −

t∏
i=1

M̃i[0, 0]. ◀

▶ Lemma 17. Let A1, . . . , At be a sequence of non-negative 2 × 2 matrices such that for all
i, Ai ≤e.w A for some 2 × 2 matrix A. Then(

t∏
i=1

Ai

)
[0, 0] −

t∏
i=1

(Ai[0, 0]) ≤ At[0, 0] − (A[0, 0])t.

Proof. We have(
t∏

i=1
Ai

)
[0, 0] −

t∏
i=1

(Ai[0, 0]) =
∑

b∈{0,1}t−1

b̸=0t

At[0, bt−1]
(

t−1∏
i=2

Ai[bi, bi−1]
)

A1[b1, 0]

≤
∑

b∈{0,1}t−1

b ̸=0t−1

A[0, bt−1]
(

t−1∏
i=2

A[bi+1, bi]
)

A[b1, 0] = At[0, 0] − (A[0, 0])t. ◀

We now proceed to establish techniques for proving flow lower bounds. While these concepts
were introduced specifically for the confinement problem with the same set density in [2], we
extend them to general linear operators and use the flow matrix notation.
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▶ Lemma 18 (Flow Progress). For linear operators T1, . . . , Tt,

t̃∏
i=1

Ti[0, 0] ≥ T̃t[0, 0] ·
t̃−1∏
i=1

Ti[0, 0] − T̃t[0, 1] ·
t̃−1∏
i=1

Ti[1, 0] (2)

t̃∏
i=1

Ti[1, 0] ≤ T̃t[1, 0] ·
t̃−1∏
i=1

Ti[0, 0] + T̃t[1, 1] ·
t̃−1∏
i=1

Ti[1, 0] (3)

Proof. We have

t̃∏
i=1

Ti[0, 0] =

∥∥∥∥∥Π0

t∏
i=1

TiΠ0

∥∥∥∥∥ =

∥∥∥∥∥Π0 (TtΠ0 + TtΠ1)
t−1∏
i=1

TiΠ0

∥∥∥∥∥
≥ ∥Π0TtΠ0∥ ·

∥∥∥∥∥Π0

t−1∏
i=1

TiΠ0

∥∥∥∥∥− ∥Π0TtΠ1∥ ·

∥∥∥∥∥Π1

t−1∏
i=1

TiΠ0

∥∥∥∥∥
= T̃t[0, 0] ·

t̃−1∏
i=1

Ti[0, 0] − T̃t[0, 1] ·
t̃−1∏
i=1

Ti[1, 0]

and

t̃∏
i=1

Ti[1, 0] =

∥∥∥∥∥Π1

t∏
i=1

TiΠ0

∥∥∥∥∥ =

∥∥∥∥∥Π1 (TtΠ0 + TtΠ1)
t−1∏
i=1

TiΠ0

∥∥∥∥∥
≤ ∥Π1TtΠ0∥ ·

∥∥∥∥∥Π0

t−1∏
i=1

TiΠ0

∥∥∥∥∥+ ∥Π1TtΠ1∥ ·

∥∥∥∥∥Π1

t−1∏
i=1

TiΠ0

∥∥∥∥∥
= T̃t[1, 0] ·

t̃−1∏
i=1

Ti[0, 0] + T̃t[1, 1] ·
t̃−1∏
i=1

Ti[1, 0] ◀

▶ Definition 19 (Flow sequence). For a sequence of linear operators T1, . . . , Tt, the flow
sequence is defined recursively such that c1 = T̃1[0,0]

T̃1[1,0]
and for k ≥ 1

ck+1 = T̃k+1[0, 0] · ck − T̃k+1[0, 1]
T̃k+1[1, 0] · ck + T̃k+1[1, 1]

The constants ci emerge from recursively dividing Equation 2 of Lemma 18 by Equation 3,
as demonstrated by the following lemmas. Therefore, from an intuitive perspective, the
constants ci in the definition above can be thought of as a lower bound on the ratio between
the mass preserved inside the parallel space after the i-th step and the mass lost to its
orthogonal complement.

We remark that the smaller T̃i[0, 1], T̃i[1, 1] are taken relative to T̃i[0, 0] and T̃i[1, 0], the
larger sequence elements will become. In all of our use cases, each operator Ti includes a
step on a λ-expander graph G. Thus, as we shall later see, we can make T̃i[0, 1] and T̃i[1, 1]
smaller by taking the the expansion parameter λ smaller, and hence the sequence elements
larger. Specifically, in all instances considered in this work, the constants ci are strictly
positive. Therefore, for the remainder of this section, we proceed with the assumption that
the provided linear operators T1, . . . , Tt are such that their corresponding flow sequence
elements are positive.
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▶ Lemma 20. Let T1, . . . , Tt be linear operators with a positive flow sequence. Then, for all
k = 1, . . . , t it holds that

∏̃k
i=1 Ti[0, 0] ≥ ck ·

∏̃k
i=1 Ti[1, 0].

Proof. By induction on k. For k = 1 the claim holds by definition. For the induction
step, assume that

∏̃k
i=1 Ti[0, 0] ≥ ck ·

∏̃k
i=1 Ti[1, 0]. Plugging the induction hypothesis into

Equation 2 see that

k̃+1∏
i=1

Ti[0, 0] ≥ T̃k+1[0, 0] ·
k̃∏

i=1
Ti[0, 0] − T̃k+1[0, 1] ·

k̃∏
i=1

Ti[1, 0]

≥

(
T̃k+1[0, 0] − T̃k+1[0, 1]

ck

)
t̃−1∏
i=1

Ti[0, 0].

Similarly, plugging the induction hypothesis into Equation 3,

k̃+1∏
i=1

Ti[1, 0] ≤ T̃k+1[1, 0] ·
k̃∏

i=1
Ti[0, 0] + T̃k+1[1, 1] ·

k̃∏
i=1

Ti[1, 0]

≤

(
T̃k+1[1, 0] + T̃k+1[1, 1]

ck

)
k̃∏

i=1
Ti[0, 0].

Combining these we obtain

k̃+1∏
i=1

Ti[0, 0] ≥

(
T̃k+1[0, 0] − T̃k+1[0,1]

ck

)
(

T̃k+1[1, 0] + T̃k+1[1,1]
ck

) k̃∏
i=1

Ti[0, 0]

=
(

T̃k+1[0, 0] · ck − T̃k+1[0, 1]
T̃k+1[1, 0] · ck + T̃k+1[1, 1]

)
k̃∏

i=1
Ti[0, 0] = ck+1 ·

k̃∏
i=1

Ti[0, 0] ◀

Hence we have the following corollary

▶ Corollary 21. For all k = 1, . . . , t we have

k̃∏
i=1

Ti[0, 0] ≥ T̃1[0, 0] ·
k∏

i=2

(
T̃i[0, 0] − T̃i[0, 1]

ci−1

)

Proof. By induction on k. For k = 1 the product on the right hand side is empty and the
equality trivially holds. For the induction step, Using Equation 2, the previous claim, and
the induction hypothesis,

k̃+1∏
i=1

Ti[0, 0] ≥ T̃k+1[0, 0] ·
k̃∏

i=1
Ti[0, 0] − T̃k+1[0, 1] ·

k̃∏
i=1

Ti[1, 0]

≥

(
T̃k+1[0, 0] − T̃k+1[0, 1]

ck

)
k̃∏

i=1
Ti[0, 0] ≥ T̃1[0, 0] ·

k+1∏
i=2

(
T̃i[0, 0] − T̃i[0, 1]

ci−1

)
. ◀
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4 Expander Hitting Property Revised

We use the following notations. For a set Si ⊆ [n] we define its density as ρi = |Si| /n and
its variance as σi =

√
ρi(1 − ρi). We let Pi be the projection matrix on the set Si. That is,

Pi is the diagonal matrix satisfying Pi[v, v] = 1 if v ∈ Si and 0 otherwise. G is the random
walk operator of the graph G.

4.1 Confinement Probability Upper-bounds
We begin with the hitting property for sets with possibly different densities. In [10] the
authors give the bound

∏t−1
j=1(√ρjρj+1 + λ), which corresponds to ∥PtG . . . GP1∥ rather than

1T PtG . . . GP11. However, we observe that this loss is not necessary.

▶ Proposition 22 (Expander Hitting Property). Let G = (V, E) be a λ-expander. Then, for
every sequence of subsets S1, . . . , St ⊆ V such that Si is of density ρi,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≤ √
ρ1ρt ·

t−1∏
i=1

(
(1 − λ)√ρiρi+1 + λ

)
.

Proof. First note that for all i, ∥PiJPi+1∥ = √
ρiρi+1. Indeed,

∥PiJPi+1∥ =
∥∥Pi1(Pi+11)T

∥∥ = ∥Pi1∥ · ∥Pi+11∥ = √
ρiρi+1

Decomposing G = (1 − λ)J + λE with ∥E∥ ≤ 1, we find that

∥PiGPi+1∥ = ∥(1 − λ) · PiJPi+1 + λ · PiEPi+1∥
≤ (1 − λ) · ∥PiJPi+1∥ + λ ≤ (1 − λ)√ρiρi+1 + λ.

Let u = (1/n, . . . , 1/n) ∈ Rn be the uniform vector. Expressing the probability linear-
algebraically we obtain

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] = 1T Pt

(
t−1∏
i=1

GPi

)
1 = 1T Pt

t−1∏
i=1

(Pi+1GPi)P11

=

∥∥∥∥∥Pt

t−1∏
i=1

(Pi+1GPi)P1u

∥∥∥∥∥
1

≤ √
ρt · n ·

∥∥∥∥∥
t−1∏
i=1

(Pi+1GPi)P1u

∥∥∥∥∥
≤ √

ρt · n ·

∥∥∥∥∥
t−1∏
i=1

(Pi+1GPi)

∥∥∥∥∥ · ∥P1u∥ = √
ρt · n ·

∥∥∥∥∥
t−1∏
i=1

(Pi+1GPi)

∥∥∥∥∥
2

·
√

ρ1

n

≤ √
ρtρ1 ·

t−1∏
i=1

∥(Pi+1GPi)∥ ≤ √
ρ1ρt ·

t−1∏
i=1

(
(1 − λ)√ρiρi+1 + λ

)
,

where we use P 2
i = Pi, and the first inequality is Cauchy-Schwartz, noting that after

multiplying by Pt, the resulting vector has at most ρt · n non-zero entries. ◀

4.2 Confinement Probability Lower-bounds
As explained in the introduction, previous lower bounds do not give an O(λ) bound on the
error term comparing with the independent sampling case. In this section, we give a tighter
lower bound that, in particular, is O(λ)-close to the probability of the same confinement
event but with independently chosen samples.
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Expressing the probability linear-algebraically we find that

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] = 1T
t∏

i=2
(PiG) P11 =

∥∥∥∥∥Π0

t∏
i=1

(PiG) Π0

∥∥∥∥∥ =
˜t∏

i=1
(PiG)[0, 0].

Therefore, we see that this quantity is applicable to bounds via the lower-bound part of the
flow framework. Consider the sequence of linear operators P1G, . . . , PtG with corresponding
flow sequence c1, . . . ct. It follows from Corollary 21 that

˜t∏
i=1

(PiG)[0, 0] ≥ P̃1G[0, 0] ·
k+1∏
i=2

(
P̃iG[0, 0] − P̃iG[0, 1]

ci−1

)

Hence, our next objective is to bound the entries of P̃iG, and find lower bounds on the
constants c1, . . . ct.

▶ Lemma 23. For all i = 1, . . . , t we have P̃iG ≤e.w

(
ρi λσi

σi λ

)
where the first column holds

with equality.

Proof. First, observe that

P̃iG[0, 0] = ∥Π0PiGΠ0∥ =
∥∥11T PiG11T

∥∥ =
∥∥11T Pi11T

∥∥ =
∣∣1T Pi1

∣∣ = ρi

Following the discussion about the norm of rank-one matrices, we see that for b ∈ {0, 1},

∥ΠbPiGΠ0∥ =
∥∥ΠbPiG11T

∥∥ = ∥ΠbPi1∥ · ∥1∥ = ∥ΠbPi1∥ .

Using this , we find that

P̃iG[0, 0]2 + P̃iG[1, 0]2 = ∥Π0Pi1∥2 + ∥Π1Pi1∥2 = ∥Pi1∥2 = ρi

hence P̃iG[1, 0] =
√

ρi(1 − ρi) = σi.
Now, let us write G = J + λA where ∥A∥ ≤ 1 and A is zero on the parallel space. Then

P̃iG[0, 1] = ∥Π0PiGΠ1∥ = ∥Π0Pi (J + λA) Π1∥ = λ ∥Π0PiAΠ1∥ = λ ∥Π0PiΠ1AΠ1∥
≤ λ ∥Π0PiΠ1∥ = λσi

where we have used that Π1A = A in the last equality. In the inequality we observe that
P̃iG[1, 0] = ∥Π1PiGΠ0∥ = ∥Π1PiΠ0∥ = ∥Π0PiΠ1∥ . Hence we substitute ∥Π0PiΠ1∥ = σi.

For the last entry we have P̃iG[1, 1] = ∥Π1PiGΠ1∥ = λ ∥Π1PiAΠ1∥ ≤ λ. ◀

By definition of flow sequence (Definition 19) and the previous lemma, we obtain:

▶ Corollary 24 (Flow sequence lower-bound). Let G = (V, E) be a λ-expander, and let
S1, . . . , St ⊆ V be a sequence of subsets such that Si is of density ρi and variance σi. Let
c1, . . . , ct be the flow sequence of the linear operators P1G, . . . , PtG. Then c1 = ρ1

σ1
and:

ci+1 ≥ ci·ρi+1−λ·σi+1
ci·σi+1+λ .

▶ Corollary 25. Let G = (V, E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence
of subsets such that Si is of density ρi. Let c1, . . . , ct be the flow sequence of the linear
operators P1G, . . . , PtG. Suppose that λ is sufficiently small so that ci > 0 for all i. Then,

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
∏t

i=2

(
ρi − σi

ci−1
λ
)

.



A. Ta-Shma and R. Zadicario 31:15

Next, we demonstrate how distinct conditions imposed on λ lead to varying bounds on the
flow sequence, consequently leading to corresponding confinement probability lower bounds.

▶ Lemma 26. Let G = (V, E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence of
subsets each of density ρi. If for all i, λ < 1

6 · σiσi+1 · 1+ρi+1
1−ρi+1

, then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi − 2 · σi

σi−1
λ

)
.

Proof. By Corollary 25, it suffices to prove that under our assumption on λ, we have ci ≥ σi/2
for all i.

For i = 1, we clearly have c1 = ρ1
σ1

= σ1
1−ρ1

> σ1. Now, assume that ci ≥ σi/2. Using
Corollary 24, we find that

ci+1 − σi+1

2 ≥ ciρi+1 − λσi+1

ciσi+1 + λ
− σi+1

2 =
ci

(
2ρi+1 − σ2

i+1
)

− 3λσi+1

2 (ciσi+1 + λ)

= ciρi+1 (1 + ρi+1) − 3λσi+1

2 (ciσi+1 + λ)

Therefore it suffices to show 3λσi+1 ≤ ciρi+1 (1 + ρi+1). Indeed, using our assumption on λ

and the induction hypothesis,

λ <
1
6 · σiσi+1 · 1 + ρi+1

1 − ρi+1
≤ ci

3 · σi+1

1 − ρi+1
(1 + ρi+1) = ci

3 · ρi+1

σi+1
(1 + ρi+1). ◀

The first part of Theorem 2 follows as a special case of the lemma above, in which all sets have
the same density. Indeed, in this case, our assumption on λ becomes λ < 1

6 ·σ2· 1+ρ
1−ρ = 1

6 ρ(1+ρ).

▶ Lemma 27. Let G = (V, E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence of
subsets each of density ρi. If for all i, λ < 1

2 · σi

σi+1
· ρ2

i+1, then

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi − σi

σi−1
λ

)
.

Proof. By Corollary 25 it suffices to prove that under our assumption on λ, we have ci ≥ σi

for all i. The proof is by induction on i. For i = 1 we clearly have c1 =
√

ρ1
1−ρ1

= σ1
1−ρ1

> σ1.

Assume that ci ≥ σi. By Corollary 24, we have

ci+1

σi+1
≥ ciρi+1 − λσi+1

ciσ2
i+1 + λσi+1

=
ciρi+1 + ciσ

2
i+1 + λσi+1 − ciσ

2
i+1 − 2λσi+1

ciσ2
i+1 + λσi+1

= 1 +
ci

(
ρi+1 − σ2

i+1
)

− 2λσi+1

ciσ2
i+1 + λσi+1

= 1 +
ciρ

2
i+1 − 2λσi+1

ciσ2
i+1 + λσi+1

Therefore it suffices to show 2λσi+1 ≤ ciρ
2
i+1. Indeed, using our assumption on λ and the

induction hypothesis, λ < 1
2 · σi

σi+1
· ρ2

i+1 ≤ ciρ2
i+1

2σi+1
. ◀

The second part of Theorem 2 follows as a special case of the lemma above, in which all sets
have the same density. In that case our assumption on λ becomes λ < ρ2

2 .
The following lemma refines the bound given in [2] and also allows for arbitrary densities

with decreasing variances.
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▶ Lemma 28. Let G = (V, E) be a λ-expander, and let S1, . . . , St ⊆ V be a sequence of
subsets, each of density ρi and variance σi. Suppose that σ1 ≥ · · · ≥ σt. If λ ≤ σi

σi−1
· ρi−1ρi

4

for all i, then Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
∏t

i=2
(
ρi − λ(1 − ρ2

i−1)
)

.

Proof. Using our assumption that σi ≥ σi+1 for all i = 1, . . . , t, it suffices to prove that
σi ≤ (1 − ρ2

i )ci for all i. Indeed, in that case, by Corollary 25 we obtain

Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] ≥ ρ1 ·
t∏

i=2

(
ρi − σi

ci−1
λ

)
≥ ρ1 ·

t∏
i=2

(
ρi − σi−1

ci−1
λ

)

≥ ρ1 ·
t∏

i=2

(
ρi − (1 − ρ2

i−1) · λ
)

Now, we prove by induction on i that σi ≤ (1 − ρ2
i )ci. For i = 1 we clearly have

(1 − ρ2
1)c1 = (1 − ρ2

1)
√

ρ1

1 − ρ1
= (1 + ρ1)

√
ρ1(1 − ρ1) > σ1.

Assume that σi−1 ≤ (1 − ρ2
i−1)ci−1. Then, by Corollary 24

1 − ρ2
i

σi
· ci ≥ 1 − ρ2

i

σi
· ci−1ρi − λσi

ci−1σi + λ
= ci−1σi(1 + ρi) − λ(1 − ρ2

i )
ci−1σi + λ

= ci−1σi + λ + ci−1σiρi − λ(2 − ρ2
i )

ci−1σ + λ
= 1 + ci−1σiρi − λ(2 − ρ2

i )
ci−1σi + λ

where the second equality uses the identity ρ(1 − ρ2)/σ = σ(1 + ρ). Thus, it remains to prove
that ci−1σiρi ≥ λ(2 − ρ2

i ). Indeed, on the one hand, by our induction hypothesis

ci−1σiρi ≥ σi−1σiρi

(1 − ρ2
i−1) = σi

σi−1
· ρi−1ρi

1 + ρi−1
.

using the identity ρ/σ = σ/(1 − ρ).
On the other hand, our assumption on λ implies that

λ ≤ σi

σi−1
· ρi−1ρi

4 ≤ σi

σi−1
· ρi−1ρi

(1 + ρi−1)(2 − ρ2
i )

and the proof is complete. ◀

When all subsets have the same density ρ, we observe that in fact (1 + ρ)(2 − ρ2) ≤ 3.
Therefore, Theorem 3 follows.

5 Fooling Non-Symmetric Confinement Functions

The class of t-wise confinement functions Conf⊗t
n ⊆ {f : [n]t → {0, 1}} is defined as

Conf⊗t
n = {1S1 ⊗ · · · ⊗ 1St | S1, . . . , St ⊆ [n]} where 1S(i) equals 1 if i ∈ S and 0 otherwise.

This class of functions is sometimes referred to as cut-tensors or cut-functions. Generally,
confinement functions are not symmetric, hence a density-independent total variation bound
for this class is not implied by the previous work of [8]. Nevertheless, we show that the class
of confinement functions where the sets have equal variances, is O(λ)-fooled by expander
random walks regardless of the densities.

We begin with a density-dependent bound which holds for all confinement functions.
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▶ Proposition 29. For t ≥ 1, let G = (V, E) be a λ-expander, and let S1, . . . , St be a sequence
of subsets such that Si is of density ρi. Let ρmax = maxi ρi. Then,

dT V

(
1S1 ⊗ · · · ⊗ 1St

(RWt
G), 1S1 ⊗ · · · ⊗ 1St

(Indt
V )
)

≤
(

1 + 1 − ρt−1
max

1 − ρmax

)
· λ.

Proof. First, observe that we may assume t ≥ 2, as for t = 1 the distributions are identical and
claim trivially holds. The decomposition G = J +λA with ∥A∥ ≤ 1 implies that ∥G − J∥ ≤ λ.
Also, recall that ∥JPiJ∥ = ρi. Let LHS be left-hand size of the inequality in the proposition.
Expressing LHS linear-algebraically, we see that LHS =

∣∣∣1T
∏t

i=1 (PiG) 1 − 1T
∏t

i=1 (PiJ) 1
∣∣∣

and

LHS ≤

∥∥∥∥∥
t∏

i=1
(PiG) −

t∏
i=1

(PiJ)

∥∥∥∥∥ ≤
t∑

k=1

∥∥∥∥∥∥
 t∏

j=k+1
(PjG)

Pk(G − J)

k−1∏
j=1

(PjJ)

∥∥∥∥∥∥
≤

t∑
k=1

∥(G − J)∥

∥∥∥∥∥∥
k−1∏

j=1
(PjJ)

∥∥∥∥∥∥ ≤
t∑

k=1
λ ·

k−2∏
j=1

ρj ≤ λ

(
1 +

t−2∑
ℓ=0

ρℓ
max

)

= λ ·
(

1 + 1 − ρt−1
max

1 − ρmax

)
◀

Note that, in particular, the proof implies a tλ bound for all confinement functions. A similar
hybrid idea was used in [12] to derive a generalization of the expander mixing lemma for
length-t random walks.3 Proposition 29 shows that when the all the sets are small, say, of
density which is bounded from above by some constant α, the corresponding confinement
function is Oα(λ)-fooled.

We proceed with the main result for this section.

Proof of Theorem 4. First, observe that we may assume t ≥ 2, as for t = 1 the distributions
are identical and claim trivially holds. Let LHS be left-hand side of the inequality in the
proposition. Let n = |V | and identify V with [n] arbitrarily. Let us denote by ρi the density
of Si, and by σi its variance, so that ρmax = maxi ρi. Further denote σmax = maxi σi.

We consider two cases according to the relationship between ρmax and λ. Assume first
that ρmax ≤ 2λ. Applying the upper-bound Proposition 22 we find that

LHS =

∣∣∣∣∣ Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] −
t∏

i=1
ρi

∣∣∣∣∣ ≤ √
ρ1ρt ·

t−1∏
i=1

(
λ + (1 − λ)√ρiρi+1

)
≤ ρmax (λ + ρmax(1 − λ))t−1 ≤ ρmax (3λ)t−1 ≤ 3 · ρmax · λ

For the first inequality we observe that both terms inside the absolute value are non-negative,
hence the magnitude of their difference is bounded by the maximal one. Additionally, the
upper-bound provided by the hitting property as presented in Proposition 22 applies to both
terms. Then, we bound λ + 2λ(1 − λ) ≤ 3λ. The last inequality holds under our assumption
that λ ≤ 1/3 and t ≥ 2.

3 In fact their result is more general, as it goes beyond random walk on expander graphs. Their “splittable-
mixing lemma” holds for what they call “λ-splittable structures”, which are subsets of [n]t that admit
certain high-dimensional expansion properties.
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Now, Assume that ρmax ≥ 2λ. For i = 1, . . . , t, let Pi be the n × n projection matrix on
the set Si. That is, Pi is the diagonal matrix satisfying Pi[v, v] = 1 if v ∈ Si and 0 otherwise.

We have the following entry-wise bounds on the flow matrices: P̃i ≤e.w

(
ρi σi

σi 1

)
where all

entries except for the right bottom are equality. To see this, consider that

∥Π0PiΠ0∥ = ∥JPiJ∥ =
∥∥11T Pi11T

∥∥ =
∣∣1T Pi1

∣∣ = ρi.

Moreover, for b ∈ {0, 1} we have

∥ΠbPiΠ0∥ =
∥∥ΠbPi11T

∥∥ = ∥ΠbPi1∥ · ∥1∥ = ∥ΠbPi1∥ .

Since ∥Pi1∥ =
√∑

i∈Si

1
n = √

ρi, we have

∥Π1PiΠ0∥ = ∥Π1Pi1∥ =
√

∥Pi1∥2 − ∥Π0Pi1∥2 =
√

ρi(1 − ρi) = σi.

By symmetry we also have ∥Π1PΠ0∥ = σi . Finally, we bound ∥Π1PiΠ1∥ ≤ ∥Π1∥2 ∥Pi∥ ≤ 1.

Let σmax = maxi σi, and recall that by assumption σmax =
√

ρmax(1 − ρmax). Through
utilizing the submultiplicativity of the flow operator (Claim 11) and Example 10, we find

that G̃Pi ≤e.w

(
ρi σi

λσi λ

)
≤e.w A for A

def=
(

ρmax σmax
λσmax λ

)
. Now, expressing the total

variation distance linear algebraically, we have

LHS =

∣∣∣∣∣ Pr
(v1,...,vt)∼RWt

G

[∀i vi ∈ Si] −
t∏

i=1
ρi

∣∣∣∣∣ =

∣∣∣∣∣1T
t∏

i=2
(PiG) P11 − 1T

t∏
i=2

(PiJ) P11

∣∣∣∣∣
=

∣∣∣∣∣1T
t∏

i=1
(GPi) 1 − 1T

t∏
i=1

(JPi) 1

∣∣∣∣∣ =

∣∣∣∣∣1T
t∏

i=1
(GPi) 1 − 1T

t∏
i=1

(Π0GPi) 1

∣∣∣∣∣
≤

(
t∏

i=1
G̃Pi

)
[0, 0] −

(
t∏

i=1
G̃Pi[0, 0]

)
≤ At[0, 0] − (A[0, 0])t

Where the first inequality is by Lemma 16, and the second is by Lemma 17 Using Lemma 15
we obtain the bound

At[0, 0] − (A[0, 0])t ≤ λρmaxσ2
max

ρmax − λ
·

t−2∑
k=0

ρk
max

(
ρmax + λσ2

max
ρmax − λ

)t−k−2

= λρ2
max(1 − ρmax)
ρmax − λ

·
t−2∑
k=0

ρk
max

(
ρmax + λρmax(1 − ρmax)

ρmax − λ

)t−k−2

≤ 2ρmax · λ · (1 − ρmax)
t−2∑
k=0

ρk
max (ρmax + ρmax(1 − ρmax))t−k−2

≤ 2ρmax · λ · (1 − ρmax)
∞∑

k=0
ρk

max = 2ρmax · λ,

where in the second inequality we have used that ρmax/(ρmax − λ) ≤ 2 and λ/(ρmax − λ) ≤ 1
under our assumption that ρmax ≥ 2λ. ◀
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6 Fooling The Sum Function modulo d

For integers d ≥ 2, d′ ≥ 2 and t ≥ 1, define the function Sumd′,d : Zt
d′ → Zd as

Sumd′,d(a1, . . . , at) =
∑t

i=1 ai mod d. Given the insignificance of d′ within this context,
we will simplify our notation by omitting it, using only Sumd.

In this section we use the flow framework to prove a bias-independent O(
√

d · λ) total
variation bound for Sumd. We also prove a bias amplification result (Lemma 33) from which
an O(

√
d ·ct) total variation bound can be derived using Lemma 8, where c < 1 is a parameter

that depends on the bias of the labeling and λ. [8] obtains a similar bound, which they
derive from their results on permutation branching programs.
▶ Remark 30. While characters of Zd are formally defined on values in Zd, throughout this
section, we simplify notation by using χ(a) for an arbitrary integer a and character χ of Zd,
to mean χ(a mod d).

6.1 Bias Amplification
We begin our discussion with the Boolean case.

▶ Definition 31 (bias over Z2). The bias of a labeling val : [n] → {0, 1} is defined as
bias(val) def=

∣∣Ei∈[n](−1)val(i)
∣∣.

The distribution over {0, 1} obtained by sampling a uniformly random element of [n]
and outputting its label is bias(val)-biased. However, the distribution obtained by taking t

uniformly random samples from [n] and computing the parity of the corresponding labels is
only bias(val)t-biased. That is, the bias decreases exponentially with t. To see this, note that∣∣∣∣ E

(i1,...,it)∈[n]t
(−1)

∑t

j=1
val(ij)

∣∣∣∣ =

∣∣∣∣∣∣
t∏

j=1
E

ij∈[n]
(−1)val(ij)

∣∣∣∣∣∣ = bias(val)t.

It has been observed in [13] that this bias reducing construction can be derandomized by
taking length-(t − 1) expander random walks on [n] rather than independent samples. In this
case, it is shown that the bias of the resulting distribution is at most (bias(val)+λ)⌊t/2⌋, where
λ is the expansion parameter of the graph. In [13], this property is called parity sampling,
and it follows that expander random walks are good parity samplers. This observation is a
key part of the breakthrough construction of almost optimal ε-balanced codes [13].

In the context of the sum function modulo d, we allow labelings with a larger alphabet
size. It is therefore natural to ask whether the bias amplification phenomenon extends to
Zd where d > 2. Observe that the bias of a labeling val : [n] → {0, 1} is simply the inner
product of the distribution induced by the labeling with the non-trivial character of Z2. This
notion extends naturally to characters of Zd as follows.

▶ Definition 32 (bias over Zd). For integers d ≥ 2 and d′ ≥ 2, the bias of a labeling
val : [n] → Zd′ with respect to a character χ of Zd is defined as biasχ(val) def=

∣∣Ei∈[n]χ(val(i))
∣∣.

The same argument as before shows that for any character χ of Zd, taking t independent
samples from [n] and outputting the sum of their labels modulo d yields a distribution on
Zd with bias biasχ(val)t with respect to the character χ. Moreover, we prove that replacing
the independent samples by length t − 1 random walk on a λ-expander graph obtains a
distribution on Zd with bias at most (biasχ(val) + λ)⌊t/2⌋ with respect to the character χ. (In
fact, the bound is slightly better, as here it may be larger than 1). In other words, expander
random walks are good character samplers. This fact has also been independently observed
in [11].
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▶ Lemma 33 (Bias Amplification). For integers t ≥ 2, d ≥ 2, and d′ ≥ 2, let G = (V, E) be a
λ-expander, and let val : V → Zd′ be any labeling. Let χ be a character of Zd. Then∣∣∣∣∣ E

(v1,...,vt)∼RWt
G

χ

(
t∑

i=1
val(vi)

)∣∣∣∣∣ ≤
(
(1 − λ)2 · biasχ(val) + 2λ(1 − λ) + λ2)⌊ t

2 ⌋
, (4)

where biasχ(val) =
∣∣∣∣ E
i∈[n]

χ(val(i))
∣∣∣∣ is the bias of val with respect to χ.

The proof for Lemma 33 appears in the full version of this paper [14]

6.2 Bias-independent bound using the flow framework
When the bias is bounded by a constant, the bias amplification property implies that the
distributions Sumd(val(Indt

V )) and Sumd(val(RWt
G)) are highly unbiased, with bias which is

exponentially small in t. Applying the triangle inequality to the XOR-Lemma (Lemma 8),
we see that the total variation distance between these distributions is bounded by the sum of
the biases of each distribution with respect to a worst-case non-trivial character. As such,
it is decreasing exponentially fast with t as well. However, this argument hinges on the
assumption that the given labeling is balanced. If we have, say, biasχ(val) = 1 − 1/t for some
non-trivial character χ of Zd, the bias amplification argument is insufficient for an effective
total variation bound. This constitutes the primary reason why earlier works such as [5] and
[4], which rely heavily on the bias-amplification property, result in total variation bounds
that are bias-dependent.

Next, we use the flow framework to obtain an O(
√

d · λ) bias independent bound, similar
to that of [8]. The proof in this case is arguably simpler than the more general case in [8],
which applies for all small-width permutation branching programs.

Proof of Theorem 6. First, observe that we may assume t ≥ 2, as for t = 1 the distributions
are identical, and the claim trivially holds. Let LHS be left-hand side of the inequality in the
theorem. Let n = |V | and identify V with [n] arbitrarily. Observe that in order to obtain a
total variation bound, it suffices to bound the maximum bias of the difference between the
two distributions. Indeed, by the XOR-Lemma (Lemma 8 )

LHS ≤
√

d

2 · max
χ∈Ẑd

∣∣〈χ, Sumd

(
val(RWt

G)
)

− Sumd

(
val(Indt

V )
)〉∣∣

We fix a character χ of Zd that attains the maximum. Let µ = biasχ(val) be the bias of the
labeling val with respect to χ. We consider two cases according to the relation between µ

and λ. To begin, let us assume that µ ≤ 3λ. In that case,

LHS ≤
√

d

2

∣∣∣∣∣ E
v=(v1,...,vt)∼RWt

G

χ

(
t∑

i=1
val(vi)

)
− E

v∼Indt
V

χ

(
t∑

i=1
val(vi)

)∣∣∣∣∣ (5)

≤
√

d ·
(
(1 − λ)2 · µ + 2λ(1 − λ) + λ2)⌊ t

2 ⌋

≤
√

d ·
(
3(1 − λ)2 · λ + 2λ(1 − λ) + λ2)⌊ t

2 ⌋ ≤
√

d · (5λ)⌊
t
2 ⌋ ≤ 5

√
d · λ,

where the second inequality is implied by the triangle inequality and the bias amplifica-
tion property established in the previous subsection. The last inequality holds under our
assumption that t ≥ 2 and λ ≤ 1/6.
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Now, let us assume that µ ≥ 3λ. Instead of applying the triangle inequality on the
second line of Equation 5, we express it linear algebraically. We then give entry-wise bounds
for the flow matrices of the involved linear operators. Let P be the n × n diagonal matrix
P = diag(χ(val(1)), . . . , χ(val(n))). We have the following entry-wise bounds on the flow

matrix: P̃ ≤e.w

(
µ

√
1 − µ2√

1 − µ2 1

)
where all entries except for the right bottom are

equality. To see this, note that

P̃ [0, 0] = ∥Π0PΠ0∥ = ∥JPJ∥ =
∥∥11T P11T

∥∥ =
∣∣1T P1

∣∣ = µ.

Moreover, we see that for b ∈ {0, 1},

∥ΠbPΠ0∥ =
∥∥ΠbP11T

∥∥ = ∥ΠbP1∥ ·
∥∥1T

∥∥ = ∥ΠbP1∥ .

Now, since P is unitary,

P̃ [0, 0]2 + P̃ [1, 0]2 = ∥Π0P1∥2 + ∥Π1P1∥2 = ∥P1∥2 = ∥1∥ = 1

By symmetry we conclude that P̃ [1, 0] = P̃ [0, 1] =
√

1 − µ2. Finally, we bound P̃ [1, 1] =
∥Π1PΠ1∥ ≤ ∥Π1∥2 ∥P∥ ≤ 1. By submultiplicativity of the flow operator (Claim 11) and

Example 10, We see that G̃P ≤e.w A for A
def=
(

µ
√

1 − µ2

λ
√

1 − µ2 λ

)
. Now, Let us pick

up Equation 5 after the first inequality. Expressing the bias linear-algebraically,∣∣∣∣∣ E
v∼RWt

G

χ

(
t∑

i=1
val(vi)

)
− E

v∼Indt
V

χ

(
t∑

i=1
val(vi)

)∣∣∣∣∣ =
∣∣1T (PG)t−1P1 − 1T (PJ)t−1P1

∣∣
and,∣∣1T (PG)t−1P1 − 1T (PJ)t−1P1

∣∣ =
∣∣1T (GP )t1 − 1T (JP )t1

∣∣
=
∣∣1T (GP )t1 − 1T (Π0GP )t1

∣∣ (Π0G = J)

≤ (G̃P )t[0, 0] − (G̃P [0, 0])t (Lemma 16)
≤ At[0, 0] − (A[0, 0])t. (Lemma 17)

Applying Lemma 13 we obtain the bound

At[0, 0] − (A[0, 0])t ≤ λµ(1 − µ2)
µ − λ

t−2∑
k=0

µk

(
µ + λ(1 − µ2)

µ − λ

)t−k−2

≤ 3
2 · λ(1 − µ2)

t−1∑
k=0

µk

(
µ + 1

2 · (1 − µ2)
)t−k−1

≤ 3
2 · λ · (1 + µ)(1 − µ)

∞∑
k=0

µk

≤ 3 · λ.

where the second inequality holds as our assumption µ ≥ 3λ implies that µ/(µ − λ) ≤ 3/2
and λ/(µ − λ) ≤ 1/2. In the third inequality we have used that µ + 1

2 · (1 − µ2) ≤ 1. Overall,
we have dT V

(
Sumd

(
val(RWt

G)
)

, Sumd

(
val(Indt

V )
))

< 5
√

d · λ in all cases, and the proof is
complete. ◀
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