
On the Amortized Complexity of Approximate
Counting
Ishaq Aden-Ali #Ñ

University of California, Berkeley, CA, USA

Yanjun Han #Ñ

New York University, NY, USA

Jelani Nelson #Ñ

University of California, Berkeley, CA, USA

Huacheng Yu # Ñ

Princeton University, NJ, USA

Abstract
Naively storing a counter up to value n would require Ω(log n) bits of memory. Nelson and Yu [9],
following work of Morris [8], showed that if the query answers need only be (1 + ϵ)-approximate
with probability at least 1 − δ, then O(log log n + log log(1/δ) + log(1/ϵ)) bits suffice, and in fact
this bound is tight. Morris’ original motivation for studying this problem though, as well as modern
applications, require not only maintaining one counter, but rather k counters for k large. This
motivates the following question: for k large, can k counters be simultaneously maintained using
asymptotically less memory than k times the cost of an individual counter? That is to say, does this
problem benefit from an improved amortized space complexity bound?

We answer this question in the negative. Specifically, we prove a lower bound for nearly the
full range of parameters showing that, in terms of memory usage, there is no asymptotic benefit
possible via amortization when storing multiple counters. Our main proof utilizes a certain notion of
“information cost” recently introduced by Braverman, Garg and Woodruff [2] to prove lower bounds
for streaming algorithms.

2012 ACM Subject Classification Theory of computation → Lower bounds and information com-
plexity

Keywords and phrases streaming, approximate counting, information complexity, lower bounds

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.33

Category RANDOM

Funding Ishaq Aden-Ali: supported by ONR DORECG award N00014-17-1-2127.
Yanjun Han: work done while at UC Berkeley, supported by the Berkeley-Simons Research Fellowship
and Norbert Wiener postdoctoral fellowship.
Jelani Nelson: supported by NSF award CCF-1951384, ONR grant N00014-18-1-2562, and ONR
DORECG award N00014-17-1-2127.

Acknowledgements We thank Sidhanth Mohanty for very enlightening discussions on unpredictable
paths, half Cauchy random variables, and stochastic processes in general that ultimately led to the
discovery of the first version of our main lower bound. We also thank Mark Sellke for answering
a certain question regarding stochastic processes. Lastly, we thank Greg Valiant for raising the
question of the amortized space complexity of approximate counting.

1 Introduction

Maintaining a counter subject to increments is one of the most basic data structural problems
in computer science. If the counter value stays below n, then the naive solution of maintaining
the counter explicitly consumes O(log n) bits of memory. In 1978, Morris devised a new

© Ishaq Aden-Ali, Yanjun Han, Jelani Nelson, and Huacheng Yu;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 33; pp. 33:1–33:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adenali@berkeley.edu
https://ishaqadenali.github.io/
https://orcid.org/0009-0001-5487-0883
mailto:yanjunhan@nyu.edu
https://yanjunhan2021.github.io/
https://orcid.org/0000-0002-8335-2364
mailto:minilek@berkeley.edu
https://people.eecs.berkeley.edu/~minilek/publications/
https://orcid.org/0000-0001-7370-3733
mailto:yuhch123@gmail.com
https://www.cs.princeton.edu/~hy2/
https://orcid.org/0000-0003-1450-1896
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 On the Amortized Complexity of Approximate Counting

approximate counting algorithm which could maintain such a dynamic counter using much
fewer bits in expectation [8]. His algorithm uses a number of random bits which itself is a
random variable, whose expectation is O(log log n + log(1/ϵ) + log(1/δ)). At query time, this
Morris Counter returns the correct counter value up to (1+ϵ)-multiplicative error with failure
probability at most δ. Recently, Nelson and Yu [9] showed that a slight alteration to Morris’
algorithm improves the dependence on δ, consuming only O(log log n+log(1/ϵ)+log log(1/δ))
bits of memory. They also proved that this bound is asymptotically optimal.

Morris’ original motivation for developing his approximate counter in the mid 1970s was,
for each of 263 possible trigrams (sequences of three characters), to count the number of
occurrences of that trigram amongst words in some text; these counts were then used by
typo, an early Unix spellchecker (see more on this history in a survey by Lumbroso [7]).
Approximate counters still find use in modern-day applications. For example, Redis is a
highly popular in-memory database which is often used as a cache, and one built-in cache
replacement policy is Least Frequently Used. To implement LFU, each item stored in cache
must have an associated counter, counting the number of queries to that item over some time
window. These counters are currently implemented in Redis using a variant of the Morris
Counter [6].

Both the original application of Morris as well as modern-day applications of approximate
counting, such as that described in Redis, need not store just one counter but many. Even
in the 1970s, Morris’ computer would have had enough memory to count the number of
occurrences of a single trigram, but the difficulty was keeping counts of all 263 counters in
memory simultaneously. Similarly, modern-day computers and mobile devices clearly also
contain enough memory to store a single counter for any reasonable counter value, but one
may wish to minimize the space per counter in an application where many counters must be
stored simultaneously, as in the case of Redis being used to cache a large number of items.
Thus even the original motivation of Morris inspires the following question:

What is the amortized space complexity of approximate counting? Specifically, for k large,
is it possible to maintain k approximate counters using less memory than k times that of an
individual approximate counter?

Typically such lower bounds are obtained via a direct sum argument in combination
with an information complexity lower bound [3]. Specifically, a common way to carry
out proving such lower bounds in the streaming context is as follows [1]: first, devise a
communication game that you believe is hard (requires a lot of communication) to solve,
and which reduces to the streaming problem (i.e., a low-memory streaming algorithm would
imply a low-communication protocol). Suppose for illustration that this communication
game is one-way, with Alice receiving input X who sends a single message Π to Bob who
holds input Y . Here we use distributional complexity, in which (X, Y) is drawn from some
distribution D, and the goal is to devise a protocol in which Bob computes some f(X, Y)
with success probability at least 1 − δ. Now, the so-called external information complexity of
Π is defined as I(Π; X, Y), which is at most |Π| and thus it suffices to lower bound I(Π; X, Y).
Once one establishes a lower bound on this quantity, then for a sequence {(Xi, Yi)}k

i=1 of
k of independently drawn such inputs, we have the following inequality [3, Theorem 1.5]:
I(Π; X1, Y1, X2, Y2, . . . , Xk, Yk) ≥

∑k
i=1 I(Π; Xi, Yi). Note though that if we want a lower

bound for Π solving the k-fold problem, then we cannot immediately invoke the single-
instance lower bound to bound each summand on the right hand side (since this Π is a
protocol solving the k-fold problem, not a single instance!). One then typically completes the
argument by showing how to efficiently embed the single-instance communication game into
that of k parallel instances, to then lift the single-instance lower bound to a lower bound for
the k-fold problem as outlined above.

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:3

The trouble with obtaining our desired lower bound for approximate counting via the
above paradigm is that the memory lower bound of [9] was not proven via information
complexity, and thus it is not clear how to execute the above direct sum argument. Rather,
the lower bound proof there followed an approach similar to the proof of the pumping lemma
for regular languages [10].

Our Contribution. We answer the above question in the negative for nearly the full range of
parameters (for technical reasons in our analysis, we require the restriction ϵ < 1/ log log(1/δ)).
Specifically, for this range of ϵ we prove a strong memory lower bound demonstrating that
there is no asymptotic benefit from amortization when maintaining multiple approximate
counters. Our main approach is to first establish a novel information complexity type lower
bound for a single approximate counter, which we then lift to multiple counters using a
standard direct sum argument, by constructing an embedding of the single-counter problem
into the k-fold problem.

Below we formally define the problem we solve, then state our main result. The approx-
imate counting problem for a single counter is to maintain a multiplicative approximation
to a count N (initially 0) that undergoes a sequence of increment operations. Specifically,
the algorithm should support two operations: increment() increments N by 1, and query()
returns a value N̂ such that P(|N̂ − N | ≥ ϵN) ≤ δ; that is, at any point in time the data
structure should be able to provide a (1 + ϵ) multiplicative approximation with probability
at least 1 − δ. Our generalization to approximating k counters is as follows:

▶ Definition 1 ((k, ϵ, δ)-approximate counter). Let N1, . . . , Nk be k counters all initially set
to 0. We say a randomized algorithm A is a (k, ϵ, δ)-approximate counter if it supports two
operations: increment(i) increments Ni by 1, and query(i) returns a value N̂i such that

P
(

|N̂i − Ni| ≥ ϵNi

)
≤ δ.

When k = 1, we will simply call this an (ϵ, δ)-approximate counter.

The following is then our main theorem, when here and henceforth we use n in lower
bounds to denote an upper bound on the number of increment operations:

▶ Theorem 2. For any δ < c1 and ϵ < c2/ log log(1/δ), if k < c3n then after a sequence of
at most n updates any (k, ϵ, δ)-counter must use Ω(k min{log(n/k), log log(n/k) + log(1/ϵ) +
log log(1/δ)}) bits of memory in expectation. Else if k > c3n, then a lower bound of
Ω(n log(2k/(c3n))) holds; c1, c2, c3 ≥ 0 are universal constants. Furthermore, for both ranges
of k, these lower bounds are tight up to constant factors.

1.1 Preliminaries and notation
We write X ∼ D to represent a random variable X sampled from the probability distribution
D. If the distribution of X has not been explicitly defined, we write PX to the corresponding
probability distribution of X. For two probability distributions P and Q defined on the
same domain, we write TV(P, Q) =

∫
|dP − dQ| to be their total variation distance and

KL(P∥Q) =
∫

dP log(dP/dQ) their Kullback-Leibler divergence. We frequently make use
of Pinsker’s inequality TV(P, Q) ≤

√
KL(P∥Q)/2. For random variables X and Y , we

write H(X) = Ex∼PX
[log(1/PX(x))] to denote the (Shannon) entropy and H(X | Y) =

E(x,y)∼PXY
[log(1/PX|Y (x | y))] to be the conditional (Shannon) entropy. The mutual

APPROX/RANDOM 2024

33:4 On the Amortized Complexity of Approximate Counting

information between two random variables X and Y is I(X; Y) := H(X) − H(X | Y) =
H(Y) − H(Y | X). The conditional mutual information is I(X; Y | Z) := H(X | Z) − H(X |
Y, Z). We frequently make use of the following inequality:

I(X; Y | Z) = E
X,Z

[
KL(PY |Z∥PY |X,Z)

]
.

We also use the following well known facts about conditional mutual information [4]:

▶ Proposition 3 (Chain rule). For random variables X1, X2, Y, Z we have

I(X1, X2; Y | Z) = I(X1; Y | Z, X2) + I(X2; Y | Z).

▶ Proposition 4 (Superadditivity). Let X1, · · · , Xn, Y and Z be random variables such that
X1, . . . , Xn are conditionally independent given Z. Then

n∑
i=1

I(Xi; Y | Z) ≤ I(X1, . . . , Xn; Y | Z).

Lastly, c, c1, c2, . . . > 0 represent universal constants that may change from statement to
statement.

1.2 Proof overview
Now we present an overview of our lower bound proof. It turns out that the terms
Ω(k(log log(n/k) + log(1/ϵ))) in the lower bound can be proved using a similar argument to
the single counter case, which holds even in the offline setting, and the main challenge is
to prove the dependence on δ, Ω(k log log(1/δ)). The previous proof, for single counter, of
Ω(log log(1/δ)) is based on a pumping-lemma argument, which crucially uses the fact that
all updates are exactly the same, i.e., incrementing the counter. However, this no longer
holds with multiple counters – we may increment any one of the k counters each time, and
there are k different updates we can perform. The previous argument fails to generalize.

As we mentioned in the introduction, we first (re)prove an information theoretic lower
bound for single counter, then apply the superadditivity of mutual information for independent
variables to obtain the direct-sum result. For simplicity, in this overview we will focus on the
case where δ = 2−Θ(n/k), and prove an Ω(k log log(1/δ)) = Ω(k log(n/k)) lower bound when
ϵ ≤ O(1/ log(n/k)). This case captures all the main ideas, and generalizing to the full lower
bound is straightforward.

To facilitate the argument, we first slightly reformulate the problem:1 Consider a stream
with T batches of updates (think T = (n/k)0.1), and in each batch i, the inputs are k

nonnegative integers Xi,c for c ∈ [k], which are the number of increments we apply to each
counter in this batch. Since the batch number i takes only O(log T) bits to maintain, we may
assume without loss of generality that it is given to the algorithm for free. Clearly if there
is an algorithm that approximately maintains k counters, this reformulation also admits a
solution using the same space, provided

∑
i,c Xi,c ≤ n. After the reformulation, the single

counter problem simply has T nonnegative numbers Xi as the input stream, and we would
like to approximate their sum using small space provided that the sum is at most poly T ,
again assuming that i is given to the algorithm for free.

We will design a hard distribution over the input streams, and analyze the failure
probability and measure “information” with respect to this distribution. It is crucial that
the notion of information cost we use for streaming algorithms is chosen carefully. The

1 For simplicity, the overview uses slightly different notation and parameters than the actual proof.

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:5

information cost defined in [2] turns out to be the right measure for our problem. Fix a
streaming algorithm, and let Mi be its memory state immediately after processing Xi (see
Figure 1). When all numbers Xi are independent, which will be the case for our distribution,
the information cost of this algorithm is defined as follows (see Figure 2)

IC :=
T∑

i=1

i∑
j=1

I(Mi; Xj | Mj−1).

X1 X2

R2R1

M2M1

X3

R3

M3

Xn

Rn

MnM0

Figure 1 A depiction of the evolution of the memory state of a randomized streaming algorithm
A. X1, . . . , Xn are the inputs the streaming algorithm receives and R1, . . . , Rn are the independent
random bits A uses as it processes the stream. M0 is the (possibly random) initial state and Mi is
the state of A after processing Xi. Note that Mi is a deterministic function of the previous memory
state Mi−1, the ith input Xi, and the random bits Ri. When the inputs are random variables,
this figure also depicts the dependence structure of the joint distribution of the random variables
(X1, . . . , Xn, R1, . . . , Rn, M0, M1, . . . , Mn).

X1 X2

M2M1

X3

M3

X4

M4

I(M4; X4 | M3)

I(M4; X3 | M2)

I(M4; X2 | M1)

M0

I(M4; X1 | M0)

Figure 2 An illustration of a single inner sum of the information cost
∑

j≤i
I(Mi; Xj |Mj−1) for

i = 4. To simplify the presentation we do not include the random bits that the streaming algorithm
uses while processing the stream in this illustration.

As it was shown in [2], this quantity lower bounds
∑T

i=1 |Mi|, i.e., T times the memory
consumption, and it satisfies the direct-sum property: solving k independent instances of
the problem needs exactly k times IC. Thus, it suffices to prove an IC lower bound of
Ω(T log T) = Ω(T log(n/k)) for a single approximate counter. Intuitively, such a lower bound
means that the algorithm must spend Ω(1) bits remembering each bit of the sum (recall that
we ensure

∑
Xi ≤ poly T).

Let us first focus on the lowest bit, i.e., the parity of the sum. Note that one does not
have to know the lowest bit in order to return an approximation of the sum. Nevertheless, we
will show that the algorithm has to constantly pay attention to this bit in order to output a
good approximation with very high probability. To this end, let us consider the distribution
where the Xi’s are independent and uniform in {0, 1}. Let us focus on the terms in IC with
j = i, i.e., those of the form I(Mi; Xi | Mi−1). Intuitively, under this distribution, this term
represents how much attention the algorithm is paying to the evolution of the parity at batch
i. This is because Xi is simply the difference between the parities of the first i − 1 and first i

inputs.

APPROX/RANDOM 2024

33:6 On the Amortized Complexity of Approximate Counting

Suppose that I(Mi; Xi | Mi−1) ≪ 1 for a constant fraction of i. Then, we can show that
the algorithm will make an error of Ω(T) with at least δ probability. Roughly speaking,
this is because for each such i, conditioned on Mi and Mi−1, the distribution of Xi is still
close to uniform (as Xi is uniform conditioned on Mi−1). Therefore, if we condition on all
M0, M1, . . . , MT , most Xi can still take both values 0 or 1 with constant probability, and all
Xi are still independent by the Markov property of the algorithm. In particular, by setting
all these Xi’s to 0 or setting all to 1, we reach the same final memory state MT , but in the
two cases, the total sum differs by Ω(T). Since both happen with probability 2−O(T) ≫ δ

given the final memory state MT , the algorithm must make an error of at least Ω(T) with
probability at least δ.

We can extend this argument to any specific bit of the sum by considering a stream
with Θ(T/Bl) independent random increments that are uniform in {0, Bl} for some constant
B and l ∈ [L], where L = logB T . Our final hard distribution interleaves L such streams,
which we call the scales. For each scale l ∈ [L], we evenly spread the Θ(T/Bl) random
increments in the whole stream with a gap of Θ(Bl) batches. Note that now the sum of
all inputs is always at most O(T log T). For the sum in the definition of IC, we will only
focus on L terms for each i: I(Mi; X⌊i⌋l

| M⌊i⌋l−1), where X⌊i⌋l
is the closest scale l input

before Mi. If IC ≪ T · L = O(T log T), then there must exist some scale l∗ such that
I(Mi; X⌊i⌋l∗ | M⌊i⌋l∗ −1) ≪ 1 for most i. Then we apply the above argument, and show
that conditioned on the memory states right before each scale-l∗ input, most scale-l∗ inputs
can still take values 0 or Bl∗ with constant probability, and the scale-l∗ inputs are still
independent. We further observe that for most of them, the inputs between X⌊i⌋l∗ and Mi

are coming from the lower scales l < l∗. The standard deviation of their sum is much smaller
than Bl∗ , and we can show that they do not affect the sum by too much as we alter X⌊i⌋l∗ .
Thus, by setting these scale-l∗ inputs to 0 or Bl∗ , the entire sum will again differ by Ω(T),
but they lead to the same final memory state, i.e., the algorithm does not distinguish between
the two cases. Since the sum is O(T log T), such a difference is more than ϵ times the sum
when ϵ < O(1/ log T). A more careful analysis shows that this happens with probability at
least 2−O(T) > δ, leading to a contradiction.

Discussion on the choice of the hard distribution

We note here that the independent uniform {0, 1} distribution, by itself, is not hard for the
information cost. One solution with low information cost is to divide Xi’s into blocks of
size S = Θ(ϵ−2 log T), and maintain the exact sum within the current block. If all blocks
have sums (1 ± ϵ)S/2, then we simply remember this fact and use T/2 as the final output.
Otherwise, the algorithm finds a block whose sum is not in this range, then it maintains the
exact sum for all future blocks. Since all previous blocks have sums (1 ± ϵ)S/2, in particular,
S/2 is a (1+ϵ)-approximation for them, the algorithm can also return a (1+ϵ)-approximation
of the whole sum. Now note that this case only happens with 1/poly(T) probability, and
the total information cost is at most T times the expected memory usage. The expected
memory is at most O(log(1/ϵ) + log log T) bits for maintaining the sum in the current block,
plus O(T −Θ(1) · log T) bits in expectation for maintaining the entire exact sum. When
ϵ = Θ(1/ log T), the information cost is only O(T log log T) ≪ T log T .

The above strategy works since the sum of block is concentrated around the expectation,
hence, we need extra space to maintain the exact sum only with very small probability. One
can also show that the above strategy also applies to any i.i.d. distributions with some
concentration.2 Our hard distribution is inspired by the discrete half-Cauchy distribution,

2 For example, it suffices to have finite E[|X|1.01].

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:7

which has probability Θ(1/(x + 1)2) at integers x ≥ 0. This distribution does not have an
expectation, hence, there is no concentration for blocks of any size. We also have a more
involved proof of our main result that uses this distribution instead; the main property that
proof relies on is that for every W random variables, roughly one of them takes value Θ(W).
The hard distribution we actually use in this paper is a bounded distribution that can be
viewed as extracting this useful property of the half-Cauchy distribution, but which can be
analyzed more simply.

2 Lower Bounds

In this section we will prove our lower bound for the space complexity of (k, ϵ, δ)-approximate
counting. We split the proof into two parts. We first focus on proving the difficult part of the
lower bound that depends on the failure probability δ. To do so, we derive a lower bound for
the space complexity of (ϵ, δ)-approximate counting by appealing to an information theoretic
argument. By using a good definition of information cost together with an appropriately
chosen hard distribution, we can prove that any accurate algorithm remember a lot of
information about many different parts of the stream, i.e. it incurs a high information cost.
This immediately gives us a lower bound on the memory size. We then use this result
to prove a space lowerbound for (k, ϵ, δ)-approximate counting via a direct sum argument.
We conclude the section by proving the portion of the lower bound that depends on the
approximation error ϵ and the total sum of all counters n by generalizing the argument used
in the single counter case.

2.1 Information lower bound for a single counter
Recall that for a randomized streaming algorithm A we define Mi to be the state of A after
processing the ith input Xi together with some additional independent random bits Ri, i.e.
Mi is a deterministic function of Mi−1, Xi and Ri (equivalently, a deterministic function
of X≤i and R≤i). The following is a notion of information cost for streaming algorithms
originally defined by Braverman, Garg, and Woodruff [2].

▶ Definition 5. Let A be a randomized streaming algorithm. Given a distribution D over input
sequences of length s, we define the information cost of algorithm A on input (X1, . . . , Xs) ∼ D
to be

IC(A, D) :=
s∑

i=1

i∑
j=1

I(Mi; Xj | Mj−1).

The above definition of the information cost is motivated by the following chain of inequalities:

E |Mi| ≥ H(Mi) (source coding theorem3)
≥ I(Mi; X≤i, M<i)

=
i∑

j=1
I(Mi; Xj , Mj−1 | X<j , M<j−1)

=
i∑

j=1
I(Mi; Mj−1 | X<j , M<j−1) + I(Mi; Xj | X<j , M<j)

=
i∑

j=1
I(Mi; Xj | X<j , M<j)

=
i∑

j=1
I(Mi; Xj | Mj−1).

APPROX/RANDOM 2024

33:8 On the Amortized Complexity of Approximate Counting

This implies that IC(A; D) ≤
∑s

i=1 E |Mi|. The main technical part of this paper is proving
the following lower bound for a single counter using this notion of information cost.

▶ Lemma 6. Let A be a (ϵ, δ)-approximate counter with parameters δ ∈ (0, c1) and ϵ ∈
(0, c2

log log(1/δ)) that uses |M | bits of space. There is a distribution D over inputs such that the
information cost of A on (X1, . . . , Xn) ∼ D satisfies

IC(A; D) = Ω(n log log(1/δ)),

where P[
∑n

i=1 Xi ≤ n] = 1 and n ≥ c3 logc4(1/δ). This implies the space lower bound

1
n

n∑
i=1

E |Mi| = Ω(log log(1/δ)) = Ω(min{log n, log log(1/δ)}).

Proof. We construct the distribution D as follows: let B ∈ N be a large integer constant to
be specified later, and T is the largest power of B such that T < log32(1/δ). When δ < c1
where c1 = c1(B) is a sufficiently small constant, we have T ≥ B and so L := logB T ∈ N.
The distribution D is an interleaving of L distributions Dℓ on L different scales, where for
each scale ℓ ∈ [L], the distribution Dℓ is a product distribution

∏T
i=1 Dℓ,i:

under Dℓ,i, Yℓ,i

{
∼ Unif({0, Bℓ}) if Bℓ divides (i − 1),
= 0 otherwise.

For notational simplicity, we also denote the non-zero entries of Yℓ,i by Zℓ,j = Yℓ,Bℓ(j−1)+1
for j ∈ [T/Bℓ]. The stream under distribution D is then generated by interleaving the Yℓ,i

terms to form the sequence Xn = (Y1,1, · · · , YL,1, Y1,2, · · · , YL,2, · · · YL,T), where n := TL is
the length of the sequence. The total value of the counter under this stream is at most

L∑
ℓ=1

Bℓ · T

Bℓ
= n.

Finally, note that n = TL ≥ c3 logc4(1/δ) for an appropriate choice of constants c3, c4 ≥ 0.
Let A be an (ϵ, δ)-approximate counter, and assume towards contradiction that IC(A; D) <

αnL where α is a small constant. For any index i ∈ [n] in the stream, let ⌊i⌋ℓ := BℓL⌊(i −
1)/(BℓL)⌋ + ℓ be the index of the closest Zℓ,j to the left of Xi in the stream, i.e. X⌊i⌋ℓ

= Zℓ,j .
Similarly, for j ∈ [T/Bℓ], we define ⌈j⌉ℓ := BℓL(j − 1) + ℓ to be the index of the jth non-zero
entry of scale ℓ in the stream, i.e. X⌈j⌉ℓ

= Zℓ,j . The definition of the information cost tells
us that

αnL > IC(A; D)

=
n∑

i=1

∑
j≤i

I(Mi; Xj | Mj−1)

≥
n∑

i=1

L∑
ℓ=1

I(Mi; X⌊i⌋ℓ
| M⌊i⌋ℓ−1)

3 The source coding theorem holds for any prefix code. In general we may lose a factor of 2 in this
inequality: we have both E[|Mi|] ≥ H(Mi | |Mi|) and E[|Mi|] =

∑
n≥1 npn =

∑
n≥1 pn log(1/2−n) =∑

n≥1 pn log(pn/2−n) + H(|Mi|) ≥ H(|Mi|) for pn := P(|Mi| = n); consequently 2E[|Mi|] ≥ H(Mi |
|Mi|) + H(|Mi|) ≥ H(Mi).

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:9

=
L∑

ℓ=1

T/Bℓ∑
j=1

⌈j+1⌉ℓ−1∑
i=⌈j⌉ℓ

I(Mi; X⌈j⌉ℓ
| M⌈j⌉ℓ−1)

≥
L∑

ℓ=1

T/Bℓ∑
j=1

BℓL · I(M⌈j+1⌉ℓ−1; X⌈j⌉ℓ
| M⌈j⌉ℓ−1)

≥ min
ℓ∈[L]

BℓL2
T/Bℓ∑
j=1

I(M⌈j+1⌉ℓ−1; X⌈j⌉ℓ
| M⌈j⌉ℓ−1)

= min
ℓ∈[L]

BℓL2
T/Bℓ∑
j=1

I(M⌈j+1⌉ℓ−1; Zℓ,j | M⌈j⌉ℓ−1)

where the second last inequality is due to the data processing inequality. By Markov’s
inequality, there exist ℓ0 ∈ [L] and J0 ⊆ [T/Bℓ0] with |J0| ≥ T/(2Bℓ0) and

I(M⌈j+1⌉ℓ0 −1; Zℓ0,j | M⌈j⌉ℓ0 −1) ≤ 2α, ∀j ∈ J0.

For ease of presentation, we abuse notation and write the above inequality as I(Mj ; Zj |
Mj−1) ≤ 2α for j ∈ J0. We shall also keep in mind that the stream between Mj−1 and Mj

contains (Z<
j , Zj , Z>

j), where Z<
j is the collection of all non-zero inputs {Zℓ′,j′} inside this

window with a lower scale ℓ′ < ℓ, and Z>
j is the counterpart with a higher scale ℓ′ > ℓ (see

Figure 3).
Next we define several good events for the sake of analysis. The first good event Ej,1

characterizes the behavior of the contribution of Z<
j and is formally defined as

1(Ej,1) := 1

(∣∣sum(Z<
j) − E[sum(Z<

j) | Mj−1, Mj]
∣∣ ≤ Bℓ0

4

)
, j ∈ J0.

By Chebyshev’s inequality, it is clear that

E
Mj−1,Mj

[P(Ec
j,1 | Mj−1, Mj)] ≤ E

Mj−1,Mj

[
Var(sum(Z<

j | Mj−1, Mj)
(Bℓ0/4)2

]

≤
Var(sum(Z<

j))
(Bℓ0/4)2

= 16
B2ℓ0

∑
ℓ<ℓ0

Bℓ0−ℓ · B2ℓ

4 ≤ 4
B − 1 .

Consequently, it holds that

E
Mj−1,Mj

[TV(PZj
, PZj |Mj−1,Mj ,Ej,1)]

= E
Mj−1,Mj

[TV(PZj |Mj−1 , PZj |Mj−1,Mj ,Ej,1)]

≤ E
Mj−1,Mj

[TV(PZj |Mj−1 , PZj |Mj−1,Mj
) + TV(PZj |Mj−1,Mj

, PZj |Mj−1,Mj ,Ej,1)]

= E
Mj−1,Mj

[TV(PZj |Mj−1 , PZj |Mj−1,Mj
)] + E

Mj−1,Mj

[P(Ec
j,1 | Mj−1, Mj)]

≤

√
1
2 E

Mj−1,Mj

[KL(PZj |Mj−1∥PZj |Mj−1,Mj
)] + 4

B − 1

=
√

I(Zj ; Mj | Mj−1) + 4
B − 1

≤
√

α + 4
B − 1 ,

APPROX/RANDOM 2024

33:10 On the Amortized Complexity of Approximate Counting

which can be made small by choosing α > 0 small enough and B ∈ N large enough.
Note that in the above inequality we have used the triangle inequality TV(P, Q) ≤
TV(P, R) + TV(Q, R), the conditioning relationship TV(P, P|E) = P (Ec), Pinsker’s in-
equality TV(P, Q) ≤

√
KL(P∥Q)/2, and Jensen’s inequality E[

√
X] ≤

√
E[X].

The next good event E2 concerns the simultaneous occurrence of {Ej,1} for a constant
proportion of j ∈ J0. Specifically, E2 is the event that there exists some J1 ⊆ J0 such that:
1. |J1| ≥ |J0|/2 ≥ T/(4Bℓ0);
2. event Ej,1 is true for all j ∈ J1;
3. a small TV distance TV(PZj

, PZj |Mj−1,Mj ,Ej,1) ≤ 1/4 (denoted by event Ej,2) for all
j ∈ J1.

Since {(Z<
j , Zj , Z>

j)} are conditionally independent given {Mj},

E
{Mj}

 ∑
j∈J0

1(Ej,1 ∩ Ej,2)

=

∑
j∈J0

E
Mj−1,Mj

[1(Ej,1 ∩ Ej,2)]

≥
∑
j∈J0

(
1 − E

Mj−1,Mj

[P(Ec
j,1 | Mj−1, Mj)]

− 4 · E
Mj−1,Mj

[TV(PZj , PZj |Mj−1,Mj ,Ej,1)]
)

≥
(

1 − 4
B − 1 − 4

(√
α + 4

B − 1

))
|J0|

≥ 3
4 |J0|,

by choosing α small enough and B large enough. Consequently, by Markov’s inequality, we
have P(E2) ≥ 1/2 over the randomness of {Mj} and {(Z<

j , Zj , Z>
j)}.

Now we condition on E2 and arrive at the desired contradiction. For a probability
distribution P over the real line and ∆ ≥ 0, define a quantity f(P, ∆) as follows:

f(P, ∆) = max{δ > 0 : ∃L ∈ R such that P ((−∞, L]) ≥ δ, P ([L + ∆, ∞)) ≥ δ}.

Intuitively, a small f(P, ∆) implies that the distribution P assigns a lot of probability to
some interval of length ∆. The following lemma summarizes some properties of f(P, ∆).

▶ Lemma 7. Let P and Q be two probability distributions over R, and P ⋆ Q denote their
convolution. For ∆1, ∆2, ∆ ≥ 0, it holds that

f(P ⋆ Q, ∆1 + ∆2) ≥ f(P, ∆1)f(Q, ∆2),
f(P ⋆ Q, ∆) ≥ f(P, ∆)/2.

Proof. For the first claim, suppose that

min{P ((−∞, L1)], P ([L1 + ∆1, ∞))} ≥ f(P, ∆1),
min{Q((−∞, L2)], Q([L2 + ∆2, ∞))} ≥ f(Q, ∆2).

Then the first inequality follows from

P ⋆ Q((−∞, L1 + L2]) ≥ P ((−∞, L1])Q((−∞, L2]) ≥ f(P, ∆1)f(Q, ∆2),
P ⋆ Q([L1 + L2 + ∆1 + ∆2, ∞))

≥ P ([L1 + ∆1, ∞))Q([L2 + ∆2, ∞)) ≥ f(P, ∆1)f(Q, ∆2).

The second claim is a direct consequence of the first claim and f(Q, 0) ≥ 1/2. ◀

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:11

To apply Lemma 7, we consider the conditional distribution PS|{Mj}, where S =
∑n

i=1 Xi

is the total number of counter updates, and {Mj} are the memory states at scale ℓ0
defined before. Since the counter A is (ϵ, δ)-approximate, in expectation PS|{Mj} must have
probability mass at least 1 − δ on an interval of size 2ϵn. This implies that

E
{Mj}

[f(PS|{Mj}, 2ϵn)] ≤ δ. (1)

On the other hand, since {(Z<
j , Zj , Z>

j)} are conditionally independent given {Mj}, we
may invoke Lemma 7 (first part for J1 and second part for Jc

1) to arrive at

E
{Mj}

[f(PS|{Mj}, 2ϵn)] ≥ P(E2) E
{Mj}

[f(PS|{Mj}, 2ϵn) | E2]

≥ 1
2 · E

{Mj}

 ∏
j∈J1

f(Psum(Z<
j

,Zj ,Z>
j

)|Mj−1,Mj
,

2ϵn

|J1|
) ·

(
1
2

) T

Bℓ0
−|J1|

| E2

≥ 1

2T
· E

{Mj}

 ∏
j∈J1

f(Psum(Z<
j

,Zj ,Z>
j

)|Mj−1,Mj
, 8ϵLBℓ0) | E2

 .

Conditioned on the event E2, the event Ej,1 implies that the deviation of sum(Z<
j) to its

posterior mean is at most Bℓ0/4, and the event Ej,2 implies that the posterior (marginal)
distribution of Zj puts at least 1/4 probability mass on both 0 and Bℓ0 . Moreover, sum(Z>

j)
is always an integral multiple of Bℓ0+1. Now we prove that

f(Psum(Z<
j

,Zj ,Z>
j

)|Mj−1,Mj ,Ej,1,Ej,2
,

Bℓ0

3) ≥ 1
16 .

We distinguish into two cases:
1. Case I: P(sum(Z>

j) ̸= median(sum(Z>
j))) ≥ 1/8. As sum(Z>

j) is always an integral
multiple of Bℓ0+1, this implies that with probability at least 1

8 , |median(sum(Z>
j)) −

sum(Z>
j)| is at least Bℓ0+1/2. By symmetry, without loss of generality we may assume that

median(sum(Z>
j))−sum(Z>

j) is at least Bℓ0+1/2 with probability at least (1/8)/2 = 1/16.
Moreover, the range of Zj is Bℓ0 , and the range of sum(Z<

j) is at most Bℓ0/2 under Ej,1.
Consider the interval[

median(sum(Z<
j , Zj , Z>

j), median(sum(Z<
j , Zj , Z>

j)) + Bℓ0

3

]
of length Bℓ0/3, it is clear that

P
(
sum(Z<

j , Zj , Z>
j) ≤ median(sum(Z<

j , Zj , Z>
j))

)
≥ 1

2 ,

P
(

sum(Z<
j , Zj , Z>

j) ≥ median(sum(Z<
j , Zj , Z>

j)) + Bℓ0

3

)
≥ P

(
sum(Z>

j) ≥ median(sum(Z>
j)) + 3Bℓ0

2 + Bℓ0

3

)
≥ 1

16 ,

as long as Bℓ0+1/2 ≥ 11Bℓ0/6, or equivalently B ≥ 4.
2. Case II: P(sum(Z>

j) = median(sum(Z>
j))) ≥ 7/8. In this case, we argue that each of the

following two probabilities is at least 1/16:

P
(

sum(Z<
j) + Zj + sum(Z>

j) ≤ E[sum(Z<
j)] + Bℓ0

3 + median(sum(Z>
j))

)
,

APPROX/RANDOM 2024

33:12 On the Amortized Complexity of Approximate Counting

P
(

sum(Z<
j) + Zj + sum(Z>

j) ≥ E[sum(Z<
j)] + 2Bℓ0

3 + median(sum(Z>
j))

)
.

By symmetry we only prove the first claim, where the event occurs whenever Zj = 0 and
sum(Z>

j) is equal to its median. By the union bound, this happens with probability at
least 1 − (1/8 + 3/4) = 1/8.

Consequently, as long as ϵ ≤ 1/(24L) = O(1/ log log(1/δ)),

E
{Mj}

[f(PS|{Mj}, 2ϵn)] ≥
(

1
32

)T

. (2)

However, as T < log32(1/δ), inequalities (1) and (2) are contradictory to each other. Thus,
the assumption that IC(A; D) < αnL cannot be true. ◀

X1 X2

M2M1

X3

M3

X4 X5

M5M4

X6

M6

X8 X9

M9M8

X10

M10

X11 X12

M12M11

X13

M13

X7

M7

X14

M14

Z2,2

=

Z1,3

=

0

=

0

=

0

=

0

=

0

=

Z1,2

=

0

=

0

=

0
=

Z3,1

=

Z2,1

=

Z1,1

=

= M j

= M j−1

= Zj ∈ Z>
j ∈ Z<

j

∈ Z<
j

M0

Figure 3 A simple example that illustrates the interleaving process for our random stream. We
set the parameters B = 2 and T = 8 so that we sample from L = 3 scales to get a stream of total
length n = 24. We do not illustrate the entire stream to save space. In this example we consider
ℓ0 = 2 and demonstrate what a typical Zj looks like. The sequence of random variables inside the
red dotted box/window consists of the terms (Z<

j , Zj , Z>
j) and we highlight the memory states

Mj−1, Mj .

2.2 Amortized space complexity via direct sum
We will now “lift” the information lower bound for any (ϵ, δ)-approximate counter to a lower
bound for any (k, ϵ, δ)-approximate counter from which we can derive a lower bound on the
memory size. The proof follows from a simple direct sum argument applied to the information
cost.

▶ Lemma 8. Any (k, ϵ, δ)-approximate counter with parameters δ ∈ (0, c1) and ϵ ∈
(0, c2

log log(1/δ)) that maintains k counters with total sum at most n ≥ k(c3 logc4(1/δ)) must
use

Ω(k log log(1/δ)) = Ω(k min{log(n/k), log log(1/δ)})

bits of memory in expectation.

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:13

Proof. We prove the lower bound via a reduction to the information lower bound for a single
counter. That is, we will embed updates from the hard distribution D used to prove the single
counter lower bound in Lemma 6 into the k counter problem. Fix a (k, ϵ, δ)-approximate
counter Ak. Since the distribution D is a product distribution, we can write D =

∏n′

i=1 Di

for n′ := n/k. We define Xk
i := (Xi,1, . . . , Xi,k) ∼ (Di)k for each i ∈ [n′]. We consider Xk

i

to be the ith input to Ak where Xi,j is the update applied to jth counter. The overall input
to Ak is

(Xk
1 , . . . , Xk

n′) ∼
n′∏

i=1
(Di)k,

and the total sum of all counts is at most n = kn′ ≥ k(c3 logc4(1/δ)) (see Lemma 6). Define
Dint :=

∏n′

i=1(Di)k. Let Mi be the memory state of the algorithm after processing the ith
input Xk

i . We can lower bound the information cost incurred by Ak:

IC(Ak, Dint) =
n′∑

i=1

i∑
j=1

I(Mi; Xk
j | Mj−1) ≥

k∑
u=1

n′∑
i=1

i∑
j=1

I(Mi; Xj,u | Mj−1),

where the inequality follows from the superadditivity of conditional mutual information
(Proposition 4).

We now explain how we embed the single counter problem into the k counter problem
using Ak. Given the input Xn′ = (X1, . . . , Xn′) ∼ D for a single counter, we pick an index
u ∈ [k] uniformly at random and proceed as if the updates are applied to uth counter of
Ak. Denote by U this uniformly random index. For the other counters, we simulate “fake”
updates from the same distribution and apply them to Ak as if they were received as inputs.
Denote by A′ the resulting approximate counter that maintains Xn′ . We can upper bound
the information cost of A′ by

IC(A′, D) =
n′∑

i=1

i∑
j=1

I(Mi; Xj,U | Mj−1, U)

= 1
k

k∑
u=1

n′∑
i=1

i∑
j=1

I(Mi; Xj,u | Mj−1)

≤ 1
k

n′∑
i=1

i∑
j=1

I(Mi; Xk
j | Mj−1)

= IC(Ak, Dint)
k

.

Combining the above with Lemma 6 provides a lower bound on IC(A′, D), which further
implies the space lower bound

1
n′

n′∑
i=1

E[|Mi|] ≥ Ω(k min{log(n/k), log log(1/δ)})

for the claimed range of ϵ and δ. ◀

2.3 Offline lower bound
We now state and prove the remaining part of the lower bound.

APPROX/RANDOM 2024

33:14 On the Amortized Complexity of Approximate Counting

▶ Lemma 9. For any ϵ ∈ (0, c1), δ ∈ (0, c2) and 1 < k ≤ n, any (k, ϵ, δ)-approximate counter
A that maintains k counters with total sum at most n must use

|M | = Ω (min{k log(n/k), k log(1/ϵ) + k log log(n/k)})

bits of memory.

Proof. Let N(i) = ⌈(e4iϵ − 1) · ϵ−1⌉. Some simple calculations show

(1 − ϵ) · N(i + 1) − (1 + ϵ) · N(i)

≥ ϵ−1(1 − ϵ)(e4(i+1)ϵ − 1) − ϵ−1(1 + ϵ)(e4iϵ − 1) − (1 + ϵ)
= ϵ−1((1 − ϵ)eϵ − 1 − ϵ)e4iϵ + 1 − ϵ

≥ ϵ−1((1 − ϵ)e4ϵ − 1 − ϵ)e4iϵ

≥ ϵ−1((1 − ϵ)(1 + 4ϵ) − 1 − ϵ) · 1
= 2 − 4ϵ > 0.

So for any i ̸= i′, N(i) and N(i′) must have a (1 ± ϵ) multiplicative gap. We will consider
k counters that take on such values, i.e. k counters that receive an (arbitrary) sequence of
increments leading to counts N(i1), N(i2), . . . , N(ik) respectively. It is easy to see that if
ir ≤ (4ϵ)−1 · ln(1+nϵ/k) for all r ∈ [k], the total sum of all the counters will be at most n. Let
q := ⌊(4ϵ)−1 · ln(1+nϵ/k)⌋ and define the set of possible counts N := {N(1), N(2), . . . , N(q)}.
We can represent the counts of all k counters as vectors in Nk.

Consider a “large” collection of vectors V ⊆ Nk such that for every pair of counts u, v ∈ V ,
u and v differ in at least at least 90% of the coordinates. Notice that this implies that u

and v differ multiplicatively in at least 90% of the coordinates by definition. Such a V is
equivalent to an error correcting code.

▶ Definition 10. An error correcting code C of length k over a finite alphabet Σ is a subset
of Σk. The elements of C are called code words. The distance of the code C, denoted ∆(C),
is defined as the minimum hamming distance between any two code words c1, c2 ∈ C, i.e.

∆(C) := min
c,c′∈C

c ̸=c′

∆(c, c′),

where ∆(c, c′) := |{i : ci ̸= c′
i}| is the hamming distance between two vectors.

In the language of error correcting codes, we want our collection of counts V to be a a large
error correcting code with a minimum distance of 0.9k. Fortunately, the Gilbert-Varshamov
bound immediately implies the existence of such a V that is large enough for our purposes.

▶ Lemma 11 (Gilbert-Varshamov bound). For any alphabet size q > 1, code length k and
distance d ≤ k, there exists an error correcting code C with size,

|C| ≥ qk∑d−1
i=0

(
k
i

)
(q − 1)i

.

Consequently, for d = 0.9k and any q larger than a universal constant, there is a code C with
size |C| ≥ q0.05k.

Thus, when q is a large enough constant (which can be achieved by making for ϵ smaller than
some universal constant c), the Gilbert-Varshamov bound tells us there is a choice of V such
that |V | ≥ q0.05k. Fix a (k, ϵ, δ)-approximate counter A. For any v ∈ V and i ∈ [k], A must

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:15

accurately approximate vi with probability at least 1 − δ. Denote the event that A correctly
approximates vi by Ev,i. Since E[

∑k
i=1 1(Ec

v,i)] ≤ k · δ < k/20, by Markov’s inequality we
can conclude the existence of a subset Iv ⊆ [k] such that:
1. |Iv| ≥ 0.9k,
2. P[∩i∈Iv

Ev,i] > 1/2. Put in words, with probability at least 1/2, for every i ∈ Iv, the
algorithm A outputs a (1 + ϵ)-approximation for vi.

Define the event Ev := ∩i∈Iv
Ev,i. Since E

[∑
v∈V 1(Ec

v)
]

≤ |V |/2, a standard averaging
argument implies the existence of a fixed choice for the random seed of A and a subset of
counts V ′ ⊆ V such that:
1. |V ′| > |V |/2,
2. and the algorithm is correct on all v ∈ V ′ in the sense of the event Ev on this random

seed.
Fix such a random seed and denote the now deterministic algorithm A′. For two counts
u, v ∈ V ′ define the set Du,v := {i ∈ [k] : ui ≠ vi}. By construction we have that
|Du,v| ≥ 0.9k. We have

|Du,v ∩ Iu ∩ Iv| ≥ k − |Dc
u,v| − |Ic

u| − |Ic
v |

≥ k − 0.3k = 0.7k > 1.

Thus, there is at least one index i∗ ∈ [k] such that ui∗ ̸= vi∗ and A′ (1 + ϵ)-approximates
both ui∗ and vi∗ , so A′ arrives at a different state for u and v. Since this holds for every
pair in V ′, we can conclude that A′ must arrive at a different state for every count in V ′.
We can now conclude that

2|M | ≥ |V ′| ≥ 0.5 · (⌊(4ϵ)−1 · ln(1 + nϵ/k)⌋)0.05k =
(

Ω
(

ln(1 + nϵ/k)
ϵ

))0.05k

,

or

|M | ≥ 0.05k log
(

ln(1 + nϵ/k)
ϵ

)
− O(k).

We distinguish into three cases:
1. If ϵ < k/n, then ln(1+nϵ/k)

ϵ = Ω(n/k), which implies |M | ≥ 0.05k log(n/k) − O(k).
2. If k/n ≤ ϵ <

√
k/n, we have

|M | ≥ 0.05k log(1/ϵ) − O(k)
≥ 0.05k log(1/ϵ) + k log log(n/k) − O(k log log(1/ϵ)).

3. If ϵ >
√

k/n, we have

|M | ≥ 0.05k log(1/ϵ) + 0.05k log log(ϵn/k) − O(k)
≥ 0.05k log(1/ϵ) + 0.05k log log(n/k) − O(k).

Putting all the above bounds together gives us

|M | ≥ min{0.05k log(n/k) − O(k), 0.05k log(1/ϵ) + 0.025k log log(n/k)
− O(k log log(1/ϵ))}

= Ω(min{k log(n/k), k log(1/ϵ) + k log log(n/k)}). ◀

APPROX/RANDOM 2024

33:16 On the Amortized Complexity of Approximate Counting

3 Upper bounds

We now state matching upper bounds (k, ϵ, δ)-approximate counting that follow immediately
from the single counter case. We give upper bounds in two regimes: the case k ≤ N , and the
case k > N . We start by analyzing the first case.

Recall that the space usage of an approximate counter is typically a random variable, and
the goal is to then prove an upper bound on the expected space (or, say, a high probability
bound). The work of Nelson and Yu [9] provided the following bound on expected space
usage for a single counter:

▶ Theorem 12 ([9]). For any ϵ, δ ∈ (0, 1/2), there is an (ϵ, δ)-approximate counter with
expected space usage O(log log N + log log(1/δ) + log(1/ϵ)) bits.

The following is then a very simple corollary of Theorem 12.

▶ Corollary 13. For any ϵ, δ ∈ (0, 1/2) and 1 ≤ k ≤ N , there is a (k, ϵ, δ)-approximate
counter that uses O(k(log log(2N/k) + log log(1/δ) + log(1/ϵ))) bits in expectation.

Proof. We simply instantiate k independent copies of the data structure from Theorem 12
to provide k independent approximate counters, one per actual counter. For each 1 ≤ i ≤ k,
let Si denote the (random) number of bits of memory used to store the approximate counter
representing the ith counter Ni and recall N :=

∑
i Ni. Then the total expected space is

E

[
k∑

i=1
Si

]
=

k∑
i=1

E[Si]

≤ C

k∑
i=1

(log log(Ni) + log log(1/δ) + log(1/ϵ)) (Theorem 12)

= Ck(log log(1/δ) + log(1/ϵ)) +
k∑

i=1
log log(Ni)

≤ Ck(log log(4N/k) + log log(1/δ) + log(1/ϵ)) (Jensen),

where the last inequality uses concavity of the function x ∈ (1, ∞) 7→ log log(x). Note that we
inject a constant 4 in the iterated logarithm so that the log log term stays nonnegative. ◀

We now turn to the case k > N . In this case, there is a clear lower bound of
Ω(N log(Ck/N)) bits, since log(

∑N
j=1

(
k
j

)
) bits of memory are needed to simply remember

which counters are non-zero, and the logarithm of this sum is Θ(N log(Ck/N)) [5, Exercise
9.42]. We claim that this is also an upper bound. Specifically, we can use O(N log(Ck/N))
bits to remember the locations of the t ≤ N non-zero counters. Now we have reduced to the
case k = t ≤ N and can apply Corollary 13 to approximately remember their values.

References
1 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics

approach to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732,
2004.

2 Mark Braverman, Sumegha Garg, and David P. Woodruff. The coin problem with applications
to data streams. In Proceedings of the 61st IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 318–329, 2020.

I. Aden-Ali, Y. Han, J. Nelson, and H. Yu 33:17

3 Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. Informational
complexity and the direct sum problem for simultaneous message complexity. In Proceedings
of the 42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 270–278,
2001.

4 Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley, 2 edition,
2006. URL: http://www.elementsofinformationtheory.com/.

5 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A
Foundation for Computer Science, 2nd Ed. Addison-Wesley, 1994.

6 Elena Kolevska. What happens with Redis runs out of memory, December 2018. URL:
https://www.youtube.com/watch?v=Xjq5XL2u3po.

7 Jérémie Lumbroso. The story of HyperLogLog: How Flajolet processed streams with coin
flips. CoRR, abs/1805.00612, 2018.

8 Robert H. Morris. Counting large numbers of events in small registers. Commun. ACM,
21(10):840–842, 1978.

9 Jelani Nelson and Huacheng Yu. Optimal bounds for approximate counting. In Proceedings of
the 41st ACM International Conference on Principles of Database Systems (PODS), pages
119–127, 2022.

10 Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.

APPROX/RANDOM 2024

http://www.elementsofinformationtheory.com/
https://www.youtube.com/watch?v=Xjq5XL2u3po

	1 Introduction
	1.1 Preliminaries and notation
	1.2 Proof overview

	2 Lower Bounds
	2.1 Information lower bound for a single counter
	2.2 Amortized space complexity via direct sum
	2.3 Offline lower bound

	3 Upper bounds

