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Abstract
A set family F is called intersecting if every two members of F intersect, and it is called uniform
if all members of F share a common size. A uniform family F ⊆

([n]
k

)
of k-subsets of [n] is ε-far

from intersecting if one has to remove more than ε ·
(

n
k

)
of the sets of F to make it intersecting. We

study the property testing problem that given query access to a uniform family F ⊆
([n]

k

)
, asks to

distinguish between the case that F is intersecting and the case that it is ε-far from intersecting.
We prove that for every fixed integer r, the problem admits a non-adaptive two-sided error tester
with query complexity O( ln n

ε
) for ε ≥ Ω(( k

n
)r) and a non-adaptive one-sided error tester with query

complexity O( ln k
ε

) for ε ≥ Ω(( k2

n
)r). The query complexities are optimal up to the logarithmic

terms. For ε ≥ Ω(( k2

n
)2), we further provide a non-adaptive one-sided error tester with optimal

query complexity of O( 1
ε
). Our findings show that the query complexity of the problem behaves

differently from that of testing intersectingness of non-uniform families, studied recently by Chen,
De, Li, Nadimpalli, and Servedio (ITCS, 2024).
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1 Introduction

A set family F is called intersecting if for every two sets F1, F2 ∈ F , it holds that F1 ∩F2 ̸= ∅.
The study of intersecting families plays a central role in the area of extremal combinatorics
with a particular attention dedicated to the uniform case, where all the sets of the family
share a common size. One of the most influential results in this context is the Erdős–Ko–Rado
theorem [4], proved in 1938 and published in 1961, which states that for integers n and k

with n ≥ 2k, the maximum size of an intersecting family of k-subsets of [n] = {1, 2, . . . , n}
is

(
n−1
k−1

)
, attained by the families of all k-subsets that include a fixed element. Another

prominent result, proved by Lovász [10] in 1978 settling a conjecture of Kneser [9] from
1955, asserts that for n ≥ 2k, the family

([n]
k

)
of all k-subsets of [n] cannot be covered by

fewer than n − 2k + 2 intersecting families. This result is tight, as follows by considering,
for each i ∈ [n − 2k + 1], the family of k-subsets of [n] that include i, and the family of
k-subsets of [n] \ [n − 2k + 1]. A more recent result, proved by Dinur and Friedgut [3] in
2009, provides a structural characterization for large intersecting families of k-subsets of [n]
when k is sufficiently smaller than n. It says, roughly speaking, that every such family is
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35:2 Testing Intersectingness of Uniform Families

approximately contained in an intersecting junta, that is, an intersecting family J over [n],
such that the membership of a set F in J depends only on F ∩ J for a fixed set J ⊆ [n],
where the size of J is determined by the precision of the containment (see Theorem 7).

In this paper, we investigate intersecting uniform families from the computational perspect-
ive of property testing. This field delves into the amount of data required for distinguishing
objects that satisfy a prescribed property from those that significantly deviate from satisfying
it. The objective is to design a randomized algorithm for this task, called a (two-sided error)
tester, that succeeds with high constant probability and minimizes the query complexity,
i.e., the number of queries to the input object. If the tester accepts objects that satisfy the
given property with probability 1, we say that its error is one-sided. The tester is said to be
non-adaptive if its queries are determined independently of the answers provided for prior
queries. For a thorough introduction to the field of property testing, the reader is referred to,
e.g., [8].

For integers n and k with n ≥ 2k and for a real ε ∈ [0, 1), we say that a family F ⊆
([n]

k

)
is

ε-far from intersecting if one has to remove more than ε ·
(

n
k

)
of its sets to make it intersecting.

In the property testing problem Intersectingn,k,ε, we are given access to a family F ⊆
([n]

k

)
,

represented by an indicator function f :
([n]

k

)
→ {0, 1}, and the goal is to distinguish between

the case that F is intersecting and the case that it is ε-far from intersecting. Note that the
Erdős–Ko–Rado theorem [4] implies that every intersecting family F ⊆

([n]
k

)
includes at most

a k/n fraction of the sets of
([n]

k

)
. This gives impetus to studying the Intersectingn,k,ε

problem for a proximity parameter ε = ε(n, k) that diminishes faster than the ratio k/n (see
the discussion at the end of Section 3).

Our interest in testing intersectingness of uniform families is sparked and inspired by a
recent paper of Chen, De, Li, Nadimpalli, and Servedio [2], who introduced and explored
the analogue problem for general (non-uniform) families of sets. In their setting, the input
consists of an indicator function f : {0, 1}n → {0, 1} of a family F of subsets of [n] (of
any size), identified with their characteristic vectors in {0, 1}n, and the goal is to decide
whether F is intersecting or ε-far from intersecting. Here, since the size of the domain is 2n,
a family is said to be ε-far from intersecting if more than ε · 2n of its sets should be removed
to make it intersecting. Chen et al. [2] proved that this problem admits a non-adaptive
one-sided error tester with query complexity poly(n

√
n·log(1/ε), 1

ε ). They further established
a nearly matching lower bound, showing that the query complexity of every non-adaptive
one-sided error tester for the problem is 2Ω(

√
n·log(1/ε)), whenever ε ∈ [2−n, ε0] for some

constant ε0 > 0. For non-adaptive two-sided error testers, they obtained a lower bound of
2Ω(n1/4/

√
ε) on the query complexity, assuming that ε ∈ [1/

√
n, ε0] for some constant ε0 > 0.

As will be shortly described, the results of the present paper highlight a significant difference
between the behavior of the query complexity of testing intersectingness in the uniform and
non-uniform settings.

1.1 Our Contribution

This paper studies the query complexity of the Intersectingn,k,ε testing problem. We offer
nearly matching upper and lower bounds for various settings of the integers n and k and the
proximity parameter ε = ε(n, k). Let us mention already here that all of our upper bounds
are proved via efficient testers, whose running time is polynomial in n. We further note that
the results presented below are applicable for all integers n and k for which the conditions on
ε allow it to be smaller than 1. The precise and formal statements are given in the upcoming
technical sections.
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Our first result furnishes a non-adaptive two-sided error tester for the case of ε ≥ Ω((k/n)r)
for a fixed constant r. Its analysis borrows the structural characterization of large intersecting
uniform families due to Dinur and Friedgut [3]. Note that the multiplicative factors hidden
by the O(·) and Ω(·) notations might depend on r.

▶ Theorem 1 (Two-Sided Error Tester). For every fixed integer r, for all integers n and k

with n ≥ 2k and for any real ε ≥ Ω(( k
n )r), there exists a non-adaptive two-sided error tester

for Intersectingn,k,ε with O( ln n
ε ) queries.

In fact, we prove Theorem 1 in a stronger form, adopting the concept of tolerant property
testing, introduced by Parnas, Ron, and Rubinfeld [12]. Strengthening the standard notion
of property testing, a tolerant tester is required to accept not only objects that satisfy the
given property, but also those that are close to satisfying it (and as usual, to reject objects
that significantly deviate from the property). Accordingly, the tester given in Theorem 1 is
shown to accept with high probability any family that can be made intersecting by removing
relatively few of its sets (see Theorem 6). Note that a result of Tell [13] implies that a
two-sided error is essentially inherent in tolerant property testing.

We next turn our attention to designing one-sided error testers for the Intersectingn,k,ε

problem, wherein an intersecting family must be accepted with probability 1. A natural
non-adaptive tester for this purpose, termed the canonical tester, selects m random sets
from

([n]
k

)
, uniformly and independently, and checks whether they include two sets that

demonstrate the non-intersectingness of the input family, namely, two disjoint sets within
the family. This raises the combinatorial question, which might be of independent interest,
of determining the smallest number m = m(n, k, ε) of random sets from

([n]
k

)
that guarantee

with high probability a pair of disjoint sets that lie in a family F ⊆
([n]

k

)
, assuming that F is

ε-far from intersecting. As our main technical contribution, we address this question for the
case where ε ≥ Ω((k2/n)r) for a fixed constant r. Our analysis yields the following result.

▶ Theorem 2 (One-Sided Error Tester). For every fixed integer r, for all integers n and k

with n ≥ 2k and for any real ε ≥ Ω(( k2

n )r), there exists a non-adaptive one-sided error tester
for Intersectingn,k,ε with O( ln k

ε ) queries.

Let us emphasize that the tester provided by Theorem 2 surpasses that of Theorem 1 in two
respects: its error is one-sided, and its query complexity is lower, replacing the ln n term
by ln k. On the other hand, Theorem 2 requires ε to satisfy ε ≥ Ω((k2/n)r), and is thus
applicable only for n ≥ Ω(k2), whereas the two-sided error tester of Theorem 1 is applicable
already for n ≥ Ω(k).

For the special case of r = 2, we offer a notably simple analysis of the canonical tester,
enabling us to enhance the query complexity achieved in Theorem 2 by getting rid of the
logarithmic term. This gives the following result.

▶ Theorem 3 (One-Sided Error Tester; r = 2). For all integers n and k with n ≥ 2k and for any
real ε ≥ Ω(( k2

n )2), there exists a non-adaptive one-sided error tester for Intersectingn,k,ε

with O( 1
ε ) queries.

We further consider the Intersectingn,k,ε problem for integers n and k satisfying
n = α · k for an arbitrary constant α ≥ 2. Interestingly, the canonical tester fails in this case,
because its random samples are unlikely to include even a single pair of disjoint sets, unless
the number of samples is exponential in n. Nevertheless, we show that for all constants
α ≥ 2 and ε ∈ (0, 1), the Intersectingn,k,ε problem with n = α · k admits a non-adaptive
one-sided error tester with constant query complexity. The proof employs a result of Friedgut
and Regev [7], and the details are given in Section 4.2 (see Theorem 17).

APPROX/RANDOM 2024



35:4 Testing Intersectingness of Uniform Families

Our final result supplies a lower bound on the query complexity of the Intersectingn,k,ε

problem. Note that the lower bound applies even to adaptive two-sided error testers. While
the result can be derived from a general result of [5], our proof in the full version of the
paper explicitly presents hard instances of the problem.

▶ Theorem 4 (Lower Bound). For all integers n and k with n ≥ 2k and for any real
ε = ε(n, k) with

(
n
k

)−1 ≤ ε < 1
2 , the query complexity of every tester for Intersectingn,k,ε

is Ω( 1
ε ).

It is noteworthy that Theorem 4 implies that the query complexities achieved by our
testers for the Intersectingn,k,ε problem are nearly tight. Specifically, the query complexity
obtained in Theorem 3 is tight up to a multiplicative constant, while those of Theorems 1
and 2 are tight up to multiplicative logarithmic terms. An intriguing task for further research
would be to decide whether these logarithmic terms can be avoided. More ambitiously, it
would be interesting to determine the query complexity of the Intersectingn,k,ε problem
for general values of n, k, and ε = ε(n, k).

1.2 Proof Techniques
We provide here a high-level description of the ideas applied in the proofs of Theorems 1
and 2. Let us start with the proof of Theorem 1, which gives a non-adaptive two-sided error
tester for the Intersectingn,k,ε problem with query complexity O( ln n

ε ), where ε ≥ Ω(( k
n )r)

for a fixed integer r. Given access to a family F ⊆
([n]

k

)
, our tester attempts to decide

whether F is approximately contained in an intersecting j-junta over [n] for some integer j

that depends solely on r. To do so, the tester picks random sets from
([n]

k

)
, uniformly and

independently, and checks whether they lie in F . These samples are used to estimate, for
each intersecting j-junta J over [n], the fraction of sets in

([n]
k

)
that lie in F \J . Our analysis

shows that O( ln n
ε ) samples suffice for these estimations to be pretty accurate with high

probability. Then, if those estimations indicate that F is approximately contained in some
intersecting j-junta over [n], the tester predicts that F is close to intersecting. Otherwise,
relying on the aforementioned structural result of Dinur and Friedgut [3], the tester deduces
that F is far from intersecting with high probability. Let us stress that the tester is two-sided
error, because even if F is intersecting and is essentially aligned with some intersecting
j-junta J over [n], the random samples might wrongly suggest, with low probability, that
F significantly deviates from J . As previously noted, Theorem 1 is proved with respect to
tolerant property testing. For the precise statement and argument, the reader is referred to
Section 3.

We next outline the approach applied in the proof of Theorem 2, which establishes a
non-adaptive one-sided error tester for the Intersectingn,k,ε problem with query complexity
O( ln k

ε ), where ε ≥ Ω((k2

n )r) for a fixed integer r. As mentioned earlier, the proof of this
result relies on the canonical tester, which selects random sets from

([n]
k

)
, uniformly and

independently, and checks if they include two sets that violate the intersectingness of the
given family. Therefore, our goal is to show that if a family F ⊆

([n]
k

)
is ε-far from intersecting,

then a collection of O( ln k
ε ) random sets from

([n]
k

)
includes with high probability two disjoint

sets within F . Consider a family F ⊆
([n]

k

)
, and assume that F is ε-far from intersecting.

Notice that this in particular implies that |F| > ε ·
(

n
k

)
, as otherwise, one could remove at

most ε ·
(

n
k

)
of its sets to make it intersecting.

Let us first suppose that the chosen random sets include, for each set A ⊆ [n] of size at
most r − 1, a set FA ∈ F with FA ∩ A = ∅. A key observation in our approach is that the
number of sets in

([n]
k

)
that intersect all of those sets FA does not exceed kr ·

(
n−r
k−r

)
. To see
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this, observe that every set that intersects them all includes an element j1 ∈ F∅, an element
j2 ∈ F{j1}, an element j3 ∈ F{j1,j2}, and so on, up to an element jr ∈ F{j1,...,jr−1}, where the
r elements j1, . . . , jr are distinct. It thus follows that there exists a collection of at most kr

subsets of [n] of size r, such that every set in
([n]

k

)
that intersects all the sampled sets that

lie in F contains at least one of the sets of the collection. This implies that the number of
those sets does not exceed kr ·

(
n−r
k−r

)
≤ ( k2

n )r ·
(

n
k

)
. Now, by combining our assumption on ε

with the fact that |F| > ε ·
(

n
k

)
, one can show that a random set from

([n]
k

)
lies in F and is

disjoint from at least one of the previously sampled sets that lie in F with non-negligible
probability. Therefore, a few additional random sets from

([n]
k

)
are expected to provide with

high probability the desired witness for the non-intersectingness of F .
The scenario discussed above, however, is somewhat oversimplified. It definitely might

be the case that for some set A ⊆ [n] of size at most r − 1, the sets of F that are disjoint
from A are quite rare, and as such, our random samples are not expected to include them.
Following the terminology of [3], we say that such a set A captures F (see Definition 13). To
deal with this situation, we show that if a set A of size at most r − 1 captures F , then it
admits two disjoint subsets B, C ⊆ A, such that the sub-families F1 and F2 of F , defined as
the restrictions of F to the sets whose intersection with A is, respectively, B and C, are far
from being cross-intersecting, that is, one has to remove plenty of sets from F1 and F2 so
that every set of F1 will intersect every set of F2. Since B and C are disjoint, this essentially
allows us to ignore from now on the elements of A, and to analyze the probability that
the random samples include two disjoint sets, one from F1 and one from F2. By a slight
variant of the key observation described above, we wish our samples to include, for each
set A′ ⊆ [n] \ A of size at most r − 1, a set FA′ ∈ F2 with FA′ ∩ A′ = ∅. If the samples
include such sets, then it can be shown that a random set is expected to lie in F1 and be
disjoint from some previously chosen set of F2 with non-negligible probability. However, if
some set A′ ⊆ [n] \ A of size at most r − 1 captures F2, then a suitable set FA′ is unlikely
to be found. In this case, we repeat the above process and further refine F1 and F2, fixing
the intersections of their sets with A′ to some disjoint subsets and keeping them far from
cross-intersecting. It might be needed to repeat this process multiple times, but a crucial
component of our argument shows that r iterations suffice. Indeed, after this number of
iterations, it turns out that the refined family F2 is already too small to still satisfy the
invariant that F1 and F2 are far from cross-intersecting.

To summarize, our analysis of the canonical tester shows that if a family F ⊆
([n]

k

)
is

ε-far from intersecting for a sufficiently large ε = ε(n, k), then there exist a set A ⊆ [n]
and two disjoint subsets B, C ⊆ A, such that (a) the restrictions F1 and F2 of F to the
sets whose intersections with A are B and C, respectively, are far from cross-intersecting,
and (b) no subset of [n] \ A of size at most r − 1 captures F2 (see Lemma 15). This allows
us to show that O( ln k

ε ) sets chosen randomly from
([n]

k

)
include with high probability a

collection of sets of F2, such that relatively few sets of F1 intersect them all. Therefore, a
few additional samples from

([n]
k

)
are expected to include a set of F1 that is disjoint from one

of the previously picked sets of F2, resulting in the desired witness for non-intersectingness
(see Lemma 16). For the precise and full argument, the reader is referred to Section 4.1.2.

1.3 Related Work
The Erdős–Ko–Rado theorem [4] implies that for all integers n and k with n ≥ 2k, every
family F ⊆

([n]
k

)
whose size exceeds

(
n−1
k−1

)
is not intersecting. One may thus ask whether

such a family F must include a set that is disjoint from many of the sets of F . This question
was recently investigated by Frankl and Kupavskii [6] and by Chau, Ellis, Friedgut, and

APPROX/RANDOM 2024



35:6 Testing Intersectingness of Uniform Families

Lifshitz [1], who provided a positive answer in a strong sense. Namely, it was shown in [1]
that for any δ > 0, there exists some α > 0, such that for all integers n and k with n ≥ α · k,
every family F ⊆

([n]
k

)
of size |F| =

(
n−1
k−1

)
+ 1 includes a set that is disjoint from at least

( 1
2 − δ) ·

(
n−k−1

k−1
)

of the sets of F .
We point out that the combinatorial question arising in our analysis of the canonical

tester for the Intersectingn,kε problem is similar in spirit to the question studied in [6, 1].
Indeed, the analysis requires us to show that if a family F ⊆

([n]
k

)
is ε-far from intersecting,

then a relatively small collection of random sets, chosen uniformly and independently from([n]
k

)
, includes with high probability two disjoint sets that lie in F . For such a statement,

one has to show not only the existence of a set in F that is disjoint from many of the sets of
F , but that many of the sets of F satisfy this property. Yet, a crucial difference between
the two concepts is that in ours, the family F is not assumed to exceed the Erdős–Ko–Rado
threshold but rather to be ε-far from intersecting.

1.4 Outline
The rest of the paper is organized as follows. In Section 2, we provide some definitions
and tools that will be used throughout the paper. In Section 3, we present and analyze
our two-sided error tester for the Intersectingn,k,ε problem and confirm Theorem 1.
Finally, in Section 4, we present and analyze the one-sided error canonical tester for the
Intersectingn,k,ε problem and confirm Theorems 2 and 3. We further present there
another one-sided error tester, appropriate for integers n and k with n = Θ(k). The proof of
Theorem 4 can be found in the full version of the paper.

2 Preliminaries

Throughout the paper, we omit all floor and ceiling signs, whenever these are not crucial.

2.1 Intersecting Families
For integers n and k, let

([n]
k

)
denote the family of all k-subsets of [n] = {1, . . . , n}. A family

F ⊆
([n]

k

)
is called intersecting if for every two sets F1, F2 ∈ F , it holds that F1 ∩ F2 ̸= ∅. For

a real ε ∈ [0, 1], we say that F is ε-close to intersecting if it is possible to make F intersecting
by removing at most ε ·

(
n
k

)
of its sets. Otherwise, we say that F is ε-far from intersecting.

For two families F1, F2 ⊆
([n]

k

)
, the pair (F1, F2) is called cross-intersecting if for every

two sets F1 ∈ F1 and F2 ∈ F2, it holds that F1 ∩ F2 ̸= ∅. For a real ε ∈ [0, 1], we say that the
pair (F1, F2) is ε-close to cross-intersecting if it is possible to make (F1, F2) cross-intersecting
by removing at most ε ·

(
n
k

)
of the sets of F1 and F2. Otherwise, we say that (F1, F2) is ε-far

from cross-intersecting. Note that if a family F ⊆
([n]

k

)
is ε-far from intersecting, then the

pair (F , F) is ε-far from cross-intersecting.
A function f :

([n]
k

)
→ {0, 1} is called intersecting, ε-close to intersecting, and ε-far from

intersecting, if the family f−1(1) of the sets of
([n]

k

)
that are mapped by f to 1 is, respectively,

intersecting, ε-close to intersecting, and ε-far from intersecting. For reals ε1, ε2 ∈ [0, 1) with
ε1 ≤ ε2, let Intersectingn,k,ε1,ε2 denote the tolerant property testing problem that given
query access to a function f :

([n]
k

)
→ {0, 1}, asks to distinguish between the case that f is

ε1-close to intersecting and the case that f is ε2-far from intersecting. We will be particularly
interested in the case of ε1 = 0, hence for a real ε ∈ [0, 1), we let Intersectingn,k,ε denote
the Intersectingn,k,0,ε problem.
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2.2 Chernoff–Hoeffding Bound
We will need the following version of the Chernoff–Hoeffding bound.

▶ Theorem 5. For an integer m and a real p ∈ (0, 1), let X1, . . . , Xm be independent binary
random variables satisfying Pr [Xi = 1] = p and Pr [Xi = 0] = 1 − p for all i ∈ [m], and put
X = 1

m ·
∑m

i=1 Xi. Then, for any µ ≥ 0,
1. if p ≤ µ, then Pr

[
X ≥ 2µ

]
≤ e−m·µ/3, and

2. if p ≥ µ, then Pr
[

X ≤ µ/2
]

≤ e−m·µ/8.
Note that the assertion of Theorem 5 for p = µ follows from standard statements of the
Chernoff–Hoeffding bound (see, e.g, [11, Theorem 2.3]). The cases of p < µ and p > µ stem
by monotonicity.

3 Two-Sided Error Tester

In this section, we present and analyze a tolerant non-adaptive two-sided error tester for the
Intersectingn,k,ε1,ε2 problem and prove the following result. Its special case with ε1 = 0
yields Theorem 1.

▶ Theorem 6. For every integer r ≥ 2, there exist constants c1 = c1(r) and c2 = c2(r) for
which the following holds. For all sufficiently large integers n and k with n ≥ 2k and for all
reals ε1, ε2 ∈ [0, 1) with ε2 ≥ 4 · ε1 + c1 · ( k

n )r, there exists a tolerant non-adaptive two-sided
error tester for Intersectingn,k,ε1,ε2 with at most c2 · ln n

ε2
queries, running time polynomial

in n, and success probability at least 2/3.

A crucial ingredient in the proof of Theorem 6 is the following theorem due to Dinur and
Friedgut [3]. Here, a family J of subsets of [n] is called a j-junta over [n] if there exists a set
J ⊆ [n] of size |J | = j such that the membership of a set F in J depends only on F ∩ J .

▶ Theorem 7 ([3]). For every integer r ≥ 2, there exist constants j = j(r) and a = a(r)
for which the following holds. For all integers n and k with n > 2k and k > j, if a family
F ⊆

([n]
k

)
is intersecting, then there exists an intersecting j-junta J over [n] such that

|F \ J | ≤ a ·
(

n−r
k−r

)
.

We are ready to prove Theorem 6.

Proof of Theorem 6. Fix an integer r ≥ 2, and let j = j(r) and a = a(r) be the constants
given in Theorem 7. Let n and k be sufficiently large integers. Since the theorem trivially
holds for n = 2k (with an appropriate c1), it may be assumed that n > 2k and k > j. For
an integer m and for reals ε1, ε2 ∈ [0, 1) with ε1 ≤ ε2, consider the following tester for the
Intersectingn,k,ε1,ε2 problem.

Input: Query access to a function f :
([n]

k

)
→ {0, 1}.

1. Pick m sets G1, . . . , Gm uniformly and independently at random from
([n]

k

)
.

2. Query f for the value of f(Gi) for each i ∈ [m].
3. For each intersecting j-junta J over [n], let αJ denote the fraction of the chosen

sets Gi that are mapped by f to 1 and do not lie in J , that is,

αJ = 1
m · |{i ∈ [m] | f(Gi) = 1 and Gi /∈ J }|.

4. If there exists an intersecting j-junta J over [n] with αJ ≤ ε2
2 , then accept, and

otherwise reject.

APPROX/RANDOM 2024
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The above tester is clearly non-adaptive. For the analysis of its success probability,
suppose that

ε2 ≥ 4 ·
(

ε1 + a ·
( k

n

)r
)

and m ≥ 12 · (j · ln n + 2j + 2)
ε2

. (1)

Let f :
([n]

k

)
→ {0, 1} be an input function, and consider the family F = f−1(1). Our goal is

to prove that if F is ε1-close to intersecting then the tester accepts f with probability at
least 2/3, and that if F is ε2-far from intersecting then the tester rejects f with probability
at least 2/3.

For each intersecting j-junta J over [n], let pJ denote the fraction of the sets of
([n]

k

)
that are mapped by f to 1 and do not lie in J , that is,

pJ = 1(
n
k

) ·
∣∣∣∣{G ∈

(
[n]
k

) ∣∣∣∣ f(G) = 1 and G /∈ J
}∣∣∣∣.

We shall prove that, with high probability, the values of pJ are well approximated by the
quantities αJ that our tester computes. Let E denote the event that for every intersecting
j-junta J over [n], it holds that
1. if pJ ≤ ε2

4 , then αJ < ε2
2 , and

2. if pJ ≥ ε2, then αJ > ε2
2 .

For a fixed intersecting j-junta J over [n], apply Item 1 of Theorem 5 with µ = ε2
4 to obtain

that if pJ ≤ ε2
4 , then αJ ≥ ε2

2 with probability at most e−m·ε2/12. Further, apply Item 2 of
Theorem 5 with µ = ε2 to obtain that if pJ ≥ ε2, then αJ ≤ ε2

2 with probability at most
e−m·ε2/8 ≤ e−m·ε2/12. The number of intersecting j-juntas over [n] is clearly bounded by(

n
j

)
· 22j . Therefore, by the union bound, the probability that there exists an intersecting

j-junta J over [n] for which either pJ ≤ ε2
4 and αJ ≥ ε2

2 , or pJ ≥ ε2 and αJ ≤ ε2
2 does not

exceed(
n

j

)
· 22j

· e−m·ε2/12 ≤ nj · 22j

· e−m·ε2/12 ≤ e−2 < 1
3 ,

where the second inequality holds by our assumption on m given in (1). Therefore, the event
E occurs with probability at least 2/3.

It suffices to show now that if the event E occurs, then the answer of our tester is correct.
Suppose first that F is ε1-close to intersecting. By definition, there exists an intersecting
family F ′ ⊆

([n]
k

)
such that |F \ F ′| ≤ ε1 ·

(
n
k

)
. By Theorem 7, using n > 2k and k > j, there

exists an intersecting j-junta J over [n] such that |F ′ \ J | ≤ a ·
(

n−r
k−r

)
≤ a · ( k

n )r ·
(

n
k

)
. It

thus follows that this J satisfies

|F \ J | ≤ ε1 ·
(

n

k

)
+ |F ′ \ J | ≤ ε1 ·

(
n

k

)
+ a ·

( k

n

)r

·
(

n

k

)
≤ ε2

4 ·
(

n

k

)
,

where the last inequality relies on our assumption on ε1 and ε2 in (1). This implies that
pJ ≤ ε2

4 , and since the event E occurs, it follows that αJ < ε2
2 , hence our tester accepts f .

Next, suppose that F is ε2-far from intersecting. This implies, for each intersecting j-junta
J over [n], that pJ > ε2, as otherwise, one could remove at most ε2 ·

(
n
k

)
of the sets of F

to obtain a sub-family of the intersecting family J . Since the event E occurs, each such J
satisfies αJ > ε2

2 , hence our tester rejects f .
Finally, let m be the smallest integer satisfying the condition in (1). Observe that the

running time of our tester is polynomial in m and in the number of intersecting j-juntas over
[n], where j depends only on r. It follows that the running time is polynomial in n and 1/ε2,
so by our assumption on ε2 in (1), it is polynomial in n. This completes the proof. ◀
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▶ Remark 8. The assumption on ε1 and ε2 in Theorem 6 can be weakened, by an almost
identical proof, to ε2 ≥ (1 + δ) · ε1 + c1 · ( k

n )r with an arbitrary δ > 0. For simplicity of
presentation, we omit the details.

We conclude this section with the observation that for all integers n and k with n ≥ 2k

and for all reals ε1, ε2 ∈ [0, 1) with ε2 ≥ 4 · (ε1 + k
n ), there exists an efficient tolerant non-

adaptive two-sided error tester for Intersectingn,k,ε1,ε2 with O( 1
ε2

) queries and high success
probability. To see this, consider the tester that given access to a function f :

([n]
k

)
→ {0, 1}

picks O( 1
ε2

) sets uniformly and independently at random from
([n]

k

)
, queries f on them, and

computes the fraction α of the chosen sets that are mapped by f to 1. If α ≤ ε2
2 , then the

tester accepts, and otherwise it rejects.
For correctness, let p denote the fraction of the sets of

([n]
k

)
that are mapped by f to 1. If

f is ε1-close to intersecting, then f can be made intersecting by flipping at most ε1 ·
(

n
k

)
of its

values. By the Erdős–Ko–Rado theorem [4], the fraction of the sets of
([n]

k

)
in an intersecting

family does not exceed k
n , hence p ≤ ε1 + k

n ≤ ε2
4 . In this case, Theorem 5 yields that with

high probability, it holds that α ≤ ε2
2 and the tester accepts. On the other hand, if f is

ε2-far from intersecting, then it holds that p > ε2, so using again Theorem 5, it follows that
with high probability, we have α > ε2

2 and the tester rejects.

4 One-Sided Error Tester

In this section, we present non-adaptive one-sided error testers for the Intersectingn,k,ε

problem. We start with the canonical tester, which is used to prove Theorems 2 and 3. We
then offer another non-adaptive one-sided error tester, appropriate for integers n and k with
n = Θ(k).

4.1 Canonical Tester
Consider the following tester for the Intersectingn,k,ε problem.

Canonical Tester (n, k, m)
Input: Query access to a function f :

([n]
k

)
→ {0, 1}.

1. Pick m sets G1, . . . , Gm uniformly and independently at random from
([n]

k

)
.

2. Query f for the value of f(Gi) for each i ∈ [m].
3. If for every two indices i1, i2 ∈ [m] with Gi1 ∩ Gi2 = ∅, it holds that either

f(Gi1) = 0 or f(Gi2) = 0, then accept, and otherwise reject.

The description of Canonical Tester immediately implies that it is non-adaptive and
that it accepts every intersecting function with probability 1 and is thus one-sided error. In
what follows, we analyze the number of queries m needed to reject with high probability any
function ε-far from intersecting for ε ≥ Ω(( k2

n )r), where r is a fixed integer. We start with
the case of r = 2, for which we offer a simple analysis that yields a bound of O( 1

ε ) on the
query complexity. We then consider the case of a general r, for which we obtain a bound of
O( ln k

ε ) on the query complexity.

4.1.1 The case r = 2

We prove the following result, which confirms Theorem 3.
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▶ Theorem 9. For all integers n and k with n ≥ 2k and for any real ε ∈ [0, 1) with
ε ≥ 2 · ( k2

n )2, there exists a non-adaptive one-sided error tester for Intersectingn,k,ε with
O( 1

ε ) queries, running time polynomial in n, and success probability at least 2/3.

The proof of Theorem 9 requires two simple lemmas. The first one, given below, may be
viewed as an analogue of a lemma of [2] for uniform families. Here, for a collection M of
pairs of sets, we say that the pairs of M are pairwise disjoint if no set lies in more than one
pair of M.

▶ Lemma 10. For integers n and k with n ≥ 2k and for a real ε ∈ [0, 1), if a family F ⊆
([n]

k

)
is ε-far from intersecting, then there exists a collection of more than ε

2 ·
(

n
k

)
pairwise disjoint

pairs (C, D) of sets of F satisfying C ∩ D = ∅.

Proof. Let F ⊆
([n]

k

)
be a family ε-far from intersecting, and consider a maximal collection M

(with respect to inclusion) of pairwise disjoint pairs (C, D) of sets of F satisfying C ∩ D = ∅.
The maximality of M implies that F can be made intersecting by removing all the 2 · |M| sets
that lie in the pairs of M. Since F is ε-far from intersecting, it follows that 2 · |M| > ε ·

(
n
k

)
.

This completes the proof. ◀

Using Lemma 10, we obtain the following.

▶ Lemma 11. For integers n and k with n ≥ 2k and for a real ε ∈ [0, 1), let F ⊆
([n]

k

)
be a

family ε-far from intersecting with |F| > k2 ·
(

n−2
k−2

)
. Then, more than ε

2 ·
(

n
k

)
of the sets of F

are disjoint from at least 1
2 · (|F| − k2 ·

(
n−2
k−2

)
) of the sets of F .

Proof. Let F ⊆
([n]

k

)
be a family ε-far from intersecting. By Lemma 10, there exists a

collection M of more than ε
2 ·

(
n
k

)
pairwise disjoint pairs (C, D) of sets of F satisfying

C ∩ D = ∅. Fix a pair (C, D) ∈ M. The disjointness of C and D implies that every set in([n]
k

)
that intersects both C and D includes some element of C and a different element of

D. It follows that the number of sets in
([n]

k

)
that intersect both C and D does not exceed

k2 ·
(

n−2
k−2

)
. Therefore, either C or D is disjoint from at least 1

2 · (|F| − k2 ·
(

n−2
k−2

)
) of the sets

of F . Since the pairs of M are pairwise disjoint, it follows that more than ε
2 ·

(
n
k

)
sets of F

are disjoint from at least 1
2 · (|F| − k2 ·

(
n−2
k−2

)
) of the sets of F , as required. ◀

We are ready to prove Theorem 9.

Proof of Theorem 9. For integers n, k, m and for a real ε ∈ [0, 1), consider the Canonical
Tester (n, k, m) for the Intersectingn,k,ε problem. As previously mentioned, this tester
is non-adaptive and one-sided error. To establish its correctness, it suffices to prove that if
a function f :

([n]
k

)
→ {0, 1} is ε-far from intersecting, then the m sets picked by the tester

include with probability at least 2/3 two disjoint sets that lie in f−1(1). Indeed, this implies
that the tester rejects such an f with the desired probability.

For a real ε ≥ 2 · (k2

n )2, let f :
([n]

k

)
→ {0, 1} be a function ε-far from intersecting.

Consider the family F = f−1(1), and note that F is ε-far from intersecting. In particular, it
holds that |F| > ε ·

(
n
k

)
, because F can be made intersecting by removing all of its sets. This

implies that

|F| − k2 ·
(

n − 2
k − 2

)
> ε ·

(
n

k

)
− k2 ·

(
k

n

)2
·
(

n

k

)
≥ ε

2 ·
(

n

k

)
, (2)

where the second inequality relies on our assumption on ε. We say that a set of
([n]

k

)
is

useful if it lies in F and is disjoint from at least ε
4 ·

(
n
k

)
of the sets of F . By Lemma 11,

combined with (2), the number of useful sets is greater than ε
2 ·

(
n
k

)
. Hence, a random set

picked uniformly from
([n]

k

)
is useful with probability at least ε/2.
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Now, consider the m sets chosen by Canonical Tester. The probability that no useful
set is picked throughout the first 4/ε choices does not exceed (1 − ε/2)4/ε ≤ e−2 < 1/6.
Therefore, with probability at least 5/6, these choices include a useful set A. Since A is useful,
it is disjoint from at least ε

4 ·
(

n
k

)
of the sets of F . Therefore, once such a set A is chosen, the

probability that a random set picked uniformly from
([n]

k

)
lies in F and is disjoint from A is

at least ε/4. It follows that the probability that no such set is picked throughout the next
8/ε choices does not exceed (1 − ε/4)8/ε ≤ e−2 < 1/6. By the union bound, for m = 12/ε,
the m sets picked by our tester include with probability at least 2/3 two disjoint sets that lie
in F . Observe that for this choice of m, the running time of our tester is polynomial in n

and 1/ε. By our assumption on ε, the running time is polynomial in n, as desired. ◀

4.1.2 General r

We proceed by analyzing the more nuanced case in which ε ≥ Ω((k2/n)r) for a general
integer r. We prove the following result, which confirms Theorem 2.

▶ Theorem 12. For every integer r ≥ 1, there exist constants c1 = c1(r) and c2 = c2(r) for
which the following holds. For all integers n and k with n ≥ 2k and for any real ε ∈ [0, 1)
with ε ≥ c1 · ( k2

n )r, there exists a non-adaptive one-sided error tester for Intersectingn,k,ε

with at most c2 · ln k
ε queries, running time polynomial in n, and success probability at least

2/3.

The proof of Theorem 12 requires a few lemmas, which involve the following definition.

▶ Definition 13. For integers n and k with n ≥ 2k, a family F ⊆
([n]

k

)
, a set A ⊆ [n], and a

set B ⊆ A, we let F(A↓B) denote the family of sets of F whose intersection with A is B,
that is,

F(A↓B) = {F ∈ F | F ∩ A = B}.

We say that the set A ε-captures F if the number of sets of F that are disjoint from A is
smaller than ε ·

(
n
k

)
, equivalently, |F(A↓∅)| < ε ·

(
n
k

)
.

The following lemma shows that if two families are far from cross-intersecting, then for
every small set A, it is possible to restrict the families to disjoint intersections with A, so
that the obtained restrictions are still far from cross-intersecting. The proof can be found in
the full version of the paper.

▶ Lemma 14. For an integer r ≥ 0, integers n and k with n ≥ 2k, and a real ε ∈ [0, 1),
let F1, F2 ⊆

([n]
k

)
be two families such that the pair (F1, F2) is ε-far from cross-intersecting,

and let A ⊆ [n] be a set of size |A| ≤ r. Then, there exist two sets B, C ⊆ A with B ∩ C = ∅
for which the pair (F1(A↓B), F2(A↓C)) is ε

3r -far from cross-intersecting. Moreover, if A
ε

3r -captures F2, then the guaranteed set C is not empty.

As a consequence of Lemma 14, we obtain the following.

▶ Lemma 15. For integers r, t ≥ 0, integers n and k with n ≥ 2k, and a real ε ∈ [0, 1), let
F1, F2 ⊆

([n]
k

)
be families such that the pair (F1, F2) is ε-far from cross-intersecting. Then,

there exist sets A ⊆ [n] and B, C ⊆ A with B ∩ C = ∅, such that
1. the pair (F1(A↓B), F2(A↓C)) is ε

3r·t -far from cross-intersecting, and
2. either there is no subset of [n] \ A of size at most r that ε

3r·t -captures F2(A↓C), or |C| ≥ t.
Moreover, if ε ≥ 3r·t · ( k

n )t, then the guaranteed set C satisfies |C| < t.1

1 Note that by combining the second item of the lemma with the “moreover” part, it follows that if
ε ≥ 3r·t · ( k

n )t, then there is no subset of [n] \ A of size at most r that ε
3r·t -captures F2(A↓C).
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Proof. Fix an integer r ≥ 0. We start by proving the first part of the lemma, i.e., the
existence of sets A ⊆ [n] and B, C ⊆ A with B ∩ C = ∅ satisfying Items 1 and 2. To do
so, we apply induction on t. The result clearly holds for t = 0, as follows from the choice
A = B = C = ∅ (for which we have F1 = F1(A↓B), F2 = F2(A↓C), and |C| ≥ 0).

Now, take t ≥ 1, and assume that the result holds for t − 1. To prove it for t, let
F1, F2 ⊆

([n]
k

)
be families such that the pair (F1, F2) is ε-far from cross-intersecting. By the

induction hypothesis, there exist sets A ⊆ [n] and B, C ⊆ A with B ∩ C = ∅, such that the
families H1 = F1(A↓B) and H2 = F2(A↓C) satisfy that
1. the pair (H1, H2) is ε

3r·(t−1) -far from cross-intersecting, and
2. either there is no subset of [n]\A of size at most r that ε

3r·(t−1) -captures H2, or |C| ≥ t−1.
By ε

3r·t ≤ ε
3r·(t−1) , it follows from Item 1 that the pair (H1, H2) is ε

3r·t -far from cross-
intersecting. Therefore, if there is no subset of [n] \ A of size at most r that ε

3r·t -captures H2,
then the result holds for t with the same sets A, B, C, and we are done. Otherwise, there
exists a set A′ ⊆ [n] \ A of size at most r that ε

3r·t -captures H2. In particular, there exists a
subset of [n] \ A of size at most r that ε

3r·(t−1) -captures H2, hence by Item 2 above, it follows
that |C| ≥ t − 1.

We apply Lemma 14 with the pair (H1, H2), which is ε
3r·(t−1) -far from cross-intersecting,

and with the set A′. Letting B′, C ′ ⊆ A′ be the sets with B′ ∩ C ′ = ∅ guaranteed by the
lemma, it follows that the pair (H1(A′

↓B′), H2(A′
↓C′)) is ε̃-far from cross-intersecting for

ε̃ = 1
3r · 1

3r·(t−1) = 1
3r·t . Moreover, since A′ ε̃-captures H2, it follows from the lemma that C ′

is not empty.
To complete the argument, define A′′ = A∪A′, B′′ = B ∪B′, and C ′′ = C ∪C ′. Recalling

that A ∩ A′ = ∅, B ∩ C = ∅, and B′ ∩ C ′ = ∅, we obtain that B′′ ∩ C ′′ = ∅ and that

|C ′′| = |C| + |C ′| ≥ (t − 1) + 1 = t.

We further have H1(A′
↓B′) = F1(A′′

↓B′′) and H2(A′
↓C′) = F2(A′′

↓C′′). Hence, the sets
A′′, B′′, C ′′ satisfy the required properties with respect to F1, F2 and t. This completes the
proof of the first part of the lemma.

We finally show that if ε ≥ 3r·t · ( k
n )t, then the guaranteed set C satisfies |C| < t. To

establish the contrapositive statement, let A, B, C be the sets guaranteed by the lemma for
two families F1, F2 ⊆

([n]
k

)
, and suppose that |C| ≥ t. Since the pair (F1(A↓B), F2(A↓C)) is

ε
3r·t -far from cross-intersecting, it follows that |F2(A↓C)| > ε

3r·t ·
(

n
k

)
. On the other hand,

each set of F2(A↓C) contains the set C, hence |F2(A↓C)| ≤
(

n−t
k−t

)
≤ ( k

n )t ·
(

n
k

)
. By combining

the two inequalities, we obtain that ε < 3r·t · ( k
n )t. This completes the proof. ◀

The following lemma constitutes a key ingredient in our analysis of the canonical tester.
Its proof can be found in the full version of the paper.

▶ Lemma 16. For every integer r ≥ 1, there exists a constant c = c(r), such that for all
integers n and k with n ≥ 2k and for any real ε ∈ [0, 1) with ε ≥ 2 · (k2

n )r, the following
holds. Let F ⊆

([n]
k

)
be a family, and suppose that there exist sets A ⊆ [n] and B, C ⊆ A

with B ∩ C = ∅, such that the pair (F(A↓B), F(A↓C)) is ε-far from cross-intersecting, and
there is no subset of [n] \ A of size at most r − 1 that ε-captures F(A↓C). Then, if at least
c · ln k

ε sets are chosen uniformly and independently at random from
([n]

k

)
, then the probability

that they include two disjoint sets that lie in F is at least 2/3.

We are ready to prove Theorem 12.
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Proof of Theorem 12. For integers n, k, m and for a real ε ∈ [0, 1), consider the Canonical
Tester (n, k, m) for the Intersectingn,k,ε problem. As previously mentioned, this tester
is non-adaptive and one-sided error. Fix an integer r ≥ 1, let c = c(r) be the constant given
in Lemma 16, and suppose that

ε ≥ 2 · 3r2
·
(

k2

n

)r

and m ≥ c · 3r2
· ln k

ε
. (3)

It suffices to prove that if a function f :
([n]

k

)
→ {0, 1} is ε-far from intersecting, then the m

sets picked by our tester include with probability at least 2/3 two disjoint sets that lie in
f−1(1). Indeed, this implies that the tester rejects such an f with the desired probability.

Let f :
([n]

k

)
→ {0, 1} be a function ε-far from intersecting. Set F = f−1(1), and note that

the family F is ε-far from intersecting, hence the pair (F , F) is ε-far from cross-intersecting.
Apply Lemma 15 with F1 = F2 = F and with t = r, to obtain that there exist sets A ⊆ [n]
and B, C ⊆ A with B ∩ C = ∅, such that for ε̃ = ε

3r2 , it holds that
1. the pair (F(A↓B), F(A↓C)) is ε̃-far from cross-intersecting, and
2. either there is no subset of [n] \ A of size at most r that ε̃-captures F2(A↓C), or |C| ≥ r.
Moreover, our assumption on ε in (3) clearly implies that ε ≥ 3r2 · ( k

n )r, hence it follows
from the lemma that |C| < r. We thus derive from Item 2 above that there is no subset of
[n] \ A of size at most r that ε̃-captures F(A↓C). This obviously implies that there is no
subset of [n] \ A of size at most r − 1 that ε̃-captures F(A↓C).

Now, by our assumptions in (3), it holds that ε̃ ≥ 2 · (k2

n )r and m ≥ c · ln k
ε̃ . Therefore,

we can apply Lemma 16 with the family F , the sets A, B, C, the integer r, and the real ε̃, to
obtain that with probability at least 2/3, the m sets picked by our tester include two disjoint
sets that lie in F , as required.

Finally, let m be the smallest integer satisfying the condition in (3). Observe that the
running time of our tester is polynomial in n and m, hence it is polynomial in n and 1/ε.
By our assumption on ε in (3), the running time is polynomial in n, and the proof is
completed. ◀

4.2 The case n = Θ(k)

We turn our attention now to the Intersectingn,k,ε problem, where the integers n and k

satisfy n = α · k for an arbitrary constant α ≥ 2. We first observe that for this range of
parameters, the canonical tester is not effective, even for a constant ε. To see this, observe
that two random sets, chosen uniformly and independently from

([n]
k

)
, are disjoint with

probability
(

n−k
k

)
/
(

n
k

)
. For n = α · k, with α ≥ 2 being a constant, this probability decreases

exponentially in n. Therefore, a collection of random sets from
([n]

k

)
is unlikely to include

even a single pair of disjoint sets, unless their number grows exponentially in n. As a result,
the canonical tester does not provide a useful upper bound on the query complexity of the
Intersectingn,k,ε problem in this setting.

To overcome this difficulty, we consider a slightly different tester for the
Intersectingn,k,ε problem, which picks random pairs of disjoint sets from

([n]
k

)
and checks

if at least one of the pairs demonstrates a violation of intersectingness for the tested function.
This tester allows us to prove the following result.

▶ Theorem 17. For all reals α ≥ 2 and ε ∈ (0, 1), there exists some c = c(α, ε), such that
for all sufficiently large integers n and k with n = α · k, there exists a non-adaptive one-sided
error tester for Intersectingn,k,ε with c queries and success probability at least 2/3.
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Theorem 17 is obtained using the following result, that was proved (in a generalized form)
by Friedgut and Regev [7].

▶ Theorem 18 ([7]). For all reals α > 2 and ε ∈ (0, 1), there exist a real δ = δ(α, ε) > 0 and
an integer j = j(α, ε), such that for all sufficiently large integers n and k with n = α · k, the
following holds. Suppose that F ⊆

([n]
k

)
is a family, such that for every intersecting j-junta

J over [n], it holds that |F \ J | > ε ·
(

n
k

)
. Then, a random unordered pair {A, B} of two

disjoint sets of
([n]

k

)
, chosen uniformly from all such pairs, satisfies A ∈ F and B ∈ F with

probability at least δ.

Proof of Theorem 17. Fix α ≥ 2 and ε ∈ (0, 1), and let n and k be sufficiently large integers
with n = α · k. For an integer m, consider the following tester for the Intersectingn,k,ε

problem.

Input: Query access to a function f :
([n]

k

)
→ {0, 1}.

1. Pick m unordered pairs {A1, B1}, . . . , {Am, Bm} of sets of
([n]

k

)
with Ai ∩Bi = ∅

for all i ∈ [m] uniformly and independently at random.
2. Query f for the values of f(Ai) and f(Bi) for each i ∈ [m].
3. If for each i ∈ [m], it holds that f(Ai) = 0 or f(Bi) = 0, then accept, and

otherwise reject.

The above tester is clearly non-adaptive. Since it accepts every intersecting function with
probability 1, its error is one-sided. It suffices to show that there exists m = m(α, ε), such
that if a function f :

([n]
k

)
→ {0, 1} is ε-far from intersecting, then our tester rejects it with

probability at least 2/3. Let f :
([n]

k

)
→ {0, 1} be a function ε-far from intersecting.

Consider first the simple case of α = 2. Here, the fact that f is ε-far from intersecting
implies that more than ε ·

(
n
k

)
of the 1

2 ·
(

n
k

)
unordered pairs of disjoint sets of

([n]
k

)
violate

the intersectingness. For m = 1/ε, the probability that our tester accepts f is at most
(1 − 2ε)m = (1 − 2ε)1/ε ≤ e−2. Hence, with the complement probability, which exceeds 2/3,
our tester rejects f , as desired.

Next, suppose that α > 2, let δ = δ(α, ε) > 0 and j = j(α, ε) be the constants given in
Theorem 18, and put F = f−1(1). Since F is ε-far from intersecting, it follows that every
intersecting j-junta J over [n] satisfies |F \ J | > ε ·

(
n
k

)
. By Theorem 18, at least δ fraction

of the unordered pairs of disjoint sets of
([n]

k

)
violate the intersectingness. Letting m = 2/δ,

the probability that our tester accepts f is at most (1 − δ)m = (1 − δ)2/δ ≤ e−2. As before,
it follows that with probability at least 2/3, our tester rejects f , and we are done. ◀
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