
On the Houdré-Tetali Conjecture About an
Isoperimetric Constant of Graphs
Lap Chi Lau #

Cheriton School of Computer Science, University of Waterloo, Canada

Dante Tjowasi #

Cheriton School of Computer Science, University of Waterloo, Canada

Abstract
Houdré and Tetali defined a class of isoperimetric constants φp of graphs for 0 ≤ p ≤ 1, and
conjectured a Cheeger-type inequality for φ 1

2
of the form

λ2 ≲ φ 1
2
≲
√

λ2,

where λ2 is the second smallest eigenvalue of the normalized Laplacian matrix. If true, the conjecture
would be a strengthening of the hard direction of the classical Cheeger’s inequality. Morris and
Peres proved Houdré and Tetali’s conjecture up to an additional log factor, using techniques from
evolving sets. We present the following related results on this conjecture.
1. We provide a family of counterexamples to the conjecture of Houdré and Tetali, showing that

the logarithmic factor is needed.
2. We match Morris and Peres’s bound using standard spectral arguments.
3. We prove that Houdré and Tetali’s conjecture is true for any constant p strictly bigger than 1

2 ,
which is also a strengthening of the hard direction of Cheeger’s inequality.

Furthermore, our results can be extended to directed graphs using Chung’s definition of eigenvalues
for directed graphs.
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1 Introduction

Motivated by Talagrand’s isoperimetric inequality for the hypercubes [20] (see Subsection 1.2),
Houdré and Tetali [8] extended Talagrand’s isoperimetric constant to general Markov chains
and also to different exponents.

▶ Definition 1 (Isoperimetric Constants for Markov Chains [8]). Let (V, P, π) be an irreducible
Markov chain with vertex set V , transition matrix P ∈ R|V |×|V | and stationary distribution
π : V → R≥0. For any p ∈ (0, 1], define the isoperimetric constant as

φp(P ) := min
S⊂V :π(S)≤ 1

2

φp(S) := min
S⊂V :π(S)≤ 1

2

∑
v∈S π(v) ·

(∑
u∈S P (v, u)

)p

π(S) .
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Let ∂S := {v ∈ S |
∑

u∈S P (v, u) > 0} be the inner vertex boundary of S. Then, for p = 0,

φ0(P ) := min
S⊂V :π(S)≤ 1

2

φ0(S) := min
S⊂V :π(S)≤ 1

2

π(∂S)
π(S) .

Given an undirected graph or a directed graph G = (V, E), let PG be the transition matrix of
the natural random walk, where PG(v, u) = 1/ deg(v) in the undirected case and PG(v, u) =
1/ degout(v) in the directed case. Then the isoperimetric constant φp(G) for the graph G is
defined as φp(PG).

When p = 1, this is known as the Cheeger isoperimetric constant of a Markov chain
(see e.g. [16]) or the edge conductance/expansion of a graph (see Section 2 for definition).
When p = 0, this measures the vertex expansion of an undirected graph or a directed graph.
Talagrand studied the case p = 1

2 and proved a lower bound on φ 1
2

for Boolean hypercubes.
One can view φ 1

2
as a quantity that interpolates between edge conductance and vertex

expansion, since it follows from the Cauchy-Schwarz inequality that φ 1
2
(G)2 ≤ φ1(G) · φ0(G),

and Talagrand used his lower bound to recover Margulis’ theorem about edge conductance
and vertex expansion on hypercubes (see Subsection 1.2).

For an undirected graph G, one can use the second smallest eigenvalue λ2 of the matrix
I − PG to give upper and lower bound on φ1(G). The classical Cheeger’s inequality is

λ2(I − PG) ≲ φ1(G) ≲
√

λ2(I − PG).

Houdré and Tetali conjectured that the same relations hold for φ 1
2
(G) as well when the

Markov chain is reversible.

▶ Conjecture 2 ([8]). Let (V, P, π) be an irreducible and reversible Markov chain. Then

λ2(I − P ) ≲ φ 1
2
(P ) ≲

√
λ2(I − P ).

It is clear from the definition that φp(G) increases as p decreases, and thus λ2 ≲ φ1(G) ≤
φp(G) for all p < 1. Therefore, the Houdré-Tetali conjecture is a strengthening of the hard
direction of Cheeger’s inequality. It predicts that when the hard direction of Cheeger’s
inequality is tight for a graph G such that φ1(G) ≍

√
λ2, then the graph must satisfy

φ1(G) ≍ φ 1
2
(G). Or, in other words, when φ1(G) ≪ φ 1

2
(G) such as on the hypercube (see

Remark 7) or on the dumbbell graphs, then the hard direction of Cheeger’s inequality cannot
be tight. So, the conjecture can be viewed as an improved Cheeger’s inequality in the spirit
of [11, 10] and this is a main motivation of this work.

Morris and Peres came close to proving the conjecture with an extra logarithmic factor.

▶ Theorem 3 ([18]). Let (V, P, π) be an irreducible and reversible Markov chain. Suppose
that P (v, v) ≥ 1

2 for all v ∈ V . Then

λ2(I − P ) ≳
(
φ 1

2
(P )
)2

log
(
1/φ 1

2
(P )
) .

Their proof is based on techniques from evolving sets. They lower bounded the “boundary
gauge” Ψ using φ 1

2
, and also upper bounded the mixing rate using Ψ so that they can relate

λ2 and φ 1
2
.
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1.1 Our Results
We found counterexamples to the Houdré-Tetali conjecture, showing that the extra logarithmic
factor is needed.

▶ Theorem 4. There are irreducible and reversible Markov chains (V, P, π) with

λ2(I − P ) ≲ log |V |
|V |2

and φ 1
2
(P ) ≳ log |V |

|V |
=⇒ λ2(I − P ) ≲

(
φ 1

2
(P )
)2

log
(
1/φ 1

2
(P )
) .

The counterexample is simple to describe, which is a weighted undirected graph with
vertex set [n] and edge weight P (i, j) inversely proportional to min{|i − j|, n − |i − j|}3. See
Section 4 for details.

On the positive side, we match the result of Morris and Peres using standard spectral
arguments. We show that the simple sweep-cut algorithm can be used to output a set S

with φ 1
2
(S) satisfying the guarantee in Theorem 3, without the self-loop assumption. See

Subsection 3.1.
Perhaps more interestingly, the same arguments can be used to prove that the Houdré-

Tetali conjecture is true if we replace 1
2 by any constant p > 1

2 .

▶ Theorem 5. Let (V, P, π) be an irreducible and reversible Markov chain. For any p ∈ ( 1
2 , 1],(

φp(P )
)2 ≤ 4

2p − 1 · λ2(I − P ).

Similar to the discussion after Conjecture 2, this shows that the tight examples of the hard
direction of Cheeger’s inequality must satisfy φ 1

2 +ϵ(G) ≲
√

1
ϵ · φ1(G) for any ϵ ∈ (0, 1

2 ). Also,
this provides an improved analysis of Cheeger’s inequality that if φ1(G) ≪

√
2p − 1 · φp(G)

then φ1(G) ≪
√

λ2. So this result has similar consequences as if Houdré and Tetali’s
conjecture was true.

Finally, we observe that the same statement as in Theorem 5 can also be proved for
non-reversible Markov chains, by replacing λ2(I − P ) with the eigenvalue defined for directed
graphs by Chung [5]. See Theorem 9.
▶ Remark 6 (φp for p < 1

2 ). For p < 1
2 , a simple argument shows that an inequality of the

form in Theorem 5 cannot hold. To see it, consider the transformation P → (1 − δ)I + δP

for some parameter 0 < δ < 1 (equivalent to adding a large self loop when δ is small) will
scale φp by a factor δp, while the second eigenvalue scales by a factor of δ, and so the ratio
φp(G)/

√
λ2(I − PG) scales by δp− 1

2 → ∞ as δ → 0. When p = 1
2 , adding self loops does not

change the ratio. Thus, it is the first exponent where such an inequality makes sense.

1.2 Previous Work on Boolean Hypercubes
The isoperimetric constant φ 1

2
was initially studied by Talagrand in the Boolean hypercubes.

Let {0, 1}n be the n-dimensional hypercube. For a point x ∈ {0, 1}n, let x⊕i be the point
obtained by flipping the i-th bit of x. For a subset S ⊂ {0, 1}n, if x /∈ S define hS(x) = 0
and otherwise if x ∈ S define

hS(x) :=
∣∣{i ∈ [n] | x⊕i /∈ S}

∣∣,
so that

∑
x hS(x) is the size of the edge boundary of S. Let µ be the uniform distribution

on {0, 1}n and µ(S) :=
∑

x∈S µ(x). The classical Poincaré inequality can be stated as, for
any S ⊂ {0, 1}n,

µ(S) · (1 − µ(S)) ≲ Ex∼µ

[
hS(x)

]
. (1)

APPROX/RANDOM 2024
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Talagrand [20] proved a strengthening of the Poincaré inequality: For any S ⊂ {0, 1}n,

µ(S) · (1 − µ(S)) ≲ Ex∼µ

[√
hS(x)

]
. (2)

The quantity E
√

hS is always smaller than EhS and can be seen as a different measure of
the boundary information of S. Let ∂S := {x | hS(x) > 0} be the vertex boundary of S. By
the Cauchy-Schwarz inequality, Talagrand’s theorem implies Margulis’ theorem [17] that

µ(S)2 · (1 − µ(S))2 ≲ Ex∼µ

[
hS(x)

]
· µ(∂S),

which was an original motivation for Talagrand to consider the quantity E
√

hS . More
recently, both Margulis’ and Talagrand’s theorems inspired the analogs for directed graphs
developed in [3, 9], to make major progresses in analyzing sublinear time algorithms for
testing monotone functions. See also [6, 7] for a proof of a Talagrand’s conjecture that further
sharpens these inequalities.

The following remark clarifies the connection between φp and the quantities appearing in
Poincaré’s inequality and Talagrand’s inequality.

▶ Remark 7 (φp for Hypercubes). For the n-dimensional Boolean hypercube Qn, the stationary
distribution π is simply the uniform distribution µ. Note that the numerator in φ1(Qn) is
exactly 1

nEx∈µ[hf (x)], and the Poincaré inequality translates to φ1(Qn) ≳ 1
n . Similarly, the

numerator of φ 1
2
(Qn) is exactly 1√

n
Ex∈µ[

√
hf (x)], and the Talagrand’s inequality translates

to φ 1
2
(Qn) ≳ 1√

n
.

Finally, we note that a parameter similar to φp, called hp
f , was also studied in [6].

2 Preliminaries

Given two functions f, g, we use f ≲ g to denote the existence of a positive constant c > 0,
such that f ≤ c · g always holds. We use f ≍ g to denote f ≲ g and g ≲ f . For positive
integers k, we use [k] to denote the set {1, 2, . . . , k}. For a function f : X → R, supp(f)
denotes the domain subset on which f is nonzero. The function log x refers to the base e

logarithm.

Undirected Graphs. Let G = (V, E) be an undirected graph. Let w : E → R≥0 be a weight
function on the edges. The weighted degree of a vertex v is defined as degw(v) :=

∑
e:e∋v w(e).

Let S ⊂ V be a nonempty subset of vertices. The edge boundary of S is defined as
δ(S) := {e ∈ E | e ∩ S ≠ ∅ and e ∩ S ̸= ∅} and w(δ(S)) be the total edge weight of δ(S).
The volume of S is defined as volw(S) :=

∑
v∈S degw(v). The edge conductance of S and of

G are defined as

ϕ(S) :=
w
(
δ(S)

)
volw(S) and ϕ(G) := min

S:volw(S)≤volw(V )/2
ϕ(S).

In an undirected graph, the ordinary random walk has transition matrix P with P (u, v) =
w(uv)/ degw(u) for every u, v ∈ V . If the graph is connected, then the stationary distribution
π is unique with π(u) = degw(u)/

∑
v∈V degw(v) for every u ∈ V . It is thus straightforward

to check that ϕ(S) = φ1(S) and ϕ(G) = φ1(G), i.e. the two definitions coincide.
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Directed Graphs. Let G = (V, E) be a directed graph. Let w : E → R≥0 be a weight func-
tion on the edges. The weighted indegree of a vertex v is defined as din

w (v) :=
∑

u:−→uv∈E w(−→uv)
and the weighted outdegree of v is defined as dout

w (v) :=
∑

u:−→vu∈E w(−→vu). In a directed graph,
the ordinary random walk has transition matrix P with P (u, v) = w(−→uv)/ degout

w (u). The
stationary distribution π has no easy description but is unique as long as the directed graph
is strongly connected. There are different notions of directed edge conductance for directed
graphs. In analyzing random walks, the standard definition is exactly φ1(G) as described in
Definition 1, and this quantity is closely related to the mixing time of random walks; see
e.g. [16, 5, 18]. In analyzing graph partitioning, there is a definition that extends the edge
conductance above to directed graphs, which will not be used in this paper; see e.g. [21, 13].

Spectral Graph Theory. Given an undirected graph G = (V, E) with a weight function
w : E → R≥0, its adjacency matrix A = A(G) is an |V |×|V | matrix where the (u, v)-th entry is
w(uv). The Laplacian matrix is defined as L := D−A, where D := diag({degw(v)}v∈V ) is the
diagonal degree matrix. The normalized adjacency matrix is defined as A := D−1/2AD−1/2,
and the normalized Laplacian matrix is defined as L := I − A. Let λ1(L) ≤ λ2(L) ≤ · · · ≤
λn(L) be the eigenvalues of L. It is known that λ1(L) = 0 with eigenvector D1/21⃗, and

λ2(L) = min
g⊥D1/21⃗

gT Lg

gT g
= min

f⊥D1⃗

fT Lf

fT Df
= min

f⊥D1⃗

∑
uv∈E w(uv) · (f(u) − f(v))2∑

v degw(v) · f(v)2 .

Cheeger’s inequality [4, 2, 1] is a fundamental result in spectral graph theory that connects
edge conductance of an undirected graph G = (V, E) to the second smallest eigenvalue of its
normalized Laplacian matrix:

λ2

2 ≤ ϕ(G) ≤
√

2λ2.

The random walk transition matrix P is similar to the normalized Laplacian matrix
A, and the matrix I − P is similar to the normalized Laplacian matrix L. In particular,
I − P enjoys the same spectral properties as L with real eigenvalues and a quadratic form
characterization of λ2 as above; see Lemma 8.

Chung [5] defined the Laplacian matrix of a directed graph and used it to prove an analog
of Cheeger’s inequality. These will be stated in Subsection 3.2.

3 Positive Results

To prove Theorem 5, we follow standard spectral arguments used in proving Cheeger-type
inequalities, in Trevisan’s style. First, we start with the second eigenvector f2 : V → R and
truncate it so that the π weight of its support is at most half while preserving its Rayleigh
quotient. The proof of the following lemma is standard and we defer it to the end of this
section.

▶ Lemma 8. Let (V, P, π) be an irreducible and reversible Markov chain. Let f2 be an
eigenvector associated to the second smallest eigenvalue of the matrix I − P , with π({v |
f2(v) > 0}) ≤ 1

2 . Define the truncated vector f such that f(v) := max{f2(v), 0} for all
v ∈ V . Then

λ2(I − P ) ≥
∑

f(i)≥f(j) π(i) · P (i, j) · (f(i) − f(j))2∑
i∈V π(i)f(i)2 .

APPROX/RANDOM 2024
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Then the plan is to prove that one of the level sets has small isoperimetric constant.
We index the vertices by [n] and order them so that f(i) ≤ f(j) for i ≤ j. For any t ≥ 0,
define the level set St := {i ∈ [n] | f(i)2 > t}. By the construction of f , it holds that
π(St) ≤ 1

2 for any t ≥ 0, and so φp(P ) ≤ mint:t≥0 φp(St). For convenience, we rescale f so
that maxi f(i) = 1.

To prove that one of St has small isoperimetric constant, we choose a uniform random t ∈
[0, 1] and consider φp(St). We will bound the expected value of the numerator of φp(St) and of
the denominator of φp(St) and conclude that there exists a t with φp(St) at most the ratio of
the expected values, i.e. min

t:t≥0
φp(St) ≤ Et[numerator of φp(St)] / Et[denominator of φp(St)].

The expected value of the denominator is easy to analyze. Since we choose t uniformly
randomly, each vertex i is included in St with probability f(i)2, and thus

Et[π(St)] =
∑
i∈V

π(i) · f(i)2.

The rest of the proof is to analyze the expected value of the numerator
∑

i∈V π(i)·P (i, St)p.
For a vertex i, if the random threshold t is between f(j)2 and f(j − 1)2 with f(j) > f(j − 1),
then P (i, St) = P (i, [j − 1]), and so

Et

[
P (i, St)p

]
=

i∑
j=1

(
f(j)2 − f(j − 1)2) · P (i, [j − 1])p

=
i∑

j=1

(
f(j)2 − f(j − 1)2) ·

j−1∑
l=1

(
P (i, [l])p − P (i, [l − 1])p

)
=

i−1∑
l=1

(
f(i)2 − f(l)2) ·

(
P (i, [l])p − P (i, [l − 1])p

)
,

where the second equality is by writing a telescoping sum and the third equality is by a
change of summation. So, the expected numerator Et[

∑n
i=1 π(i) · P (i, St)p] is

n∑
i=1

i−1∑
j=1

π(i) ·
(
f(i)2 − f(j)2) ·

(
P (i, [j])p − P (i, [j − 1])p

)

≤

√√√√ n∑
i=1

i−1∑
j=1

π(i) · (f(i) − f(j))2 · P (i, j)

·

√√√√ n∑
i=1

i−1∑
j=1

π(i) · (f(i) + f(j))2 ·
(
P (i, [j])p − P (i, [j − 1])p

)2

P (i, j)

≤

√√√√λ2 ·
n∑

i=1
π(i) · f(i)2 ·

√√√√ n∑
i=1

4 · π(i) · f(i)2 ·
i−1∑
j=1

(
P (i, [j])p − P (i, [j − 1])p

)2

P (i, [j]) − P (i, [j − 1]) ,

where the first inequality is by Cauchy-Schwarz, and the second inequality is by Lemma 8
and (f(i) + f(j))2 ≤ 4f(i)2 and P (i, j) = P (i, [j]) − P (i, [j − 1]).

To upper bound the inner sum of the second term, we denote aj := P (i, [j]) and it suffices
to upper bound the sum of the form

∑n
j=1(ap

j − ap
j−1)2/(aj − aj−1) with a0 = 0 and an ≤ 1,

with a bound independent of n. Let C(n, a) denote the supremum of the sum when an = a.
Note that C(n, a) = a2p−1 · C(n, 1) by a simple scaling argument. Let (ai)n

i=1 be an optimal
sequence that achieves the supremum of C(n, 1). Then,
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C(n, 1) = C(n − 1, an−1) +
(1 − ap

n−1)2

1 − an−1
= a2p−1

n−1 · C(n − 1, 1) +
(1 − ap

n−1)2

1 − an−1

≤ a2p−1
n−1 · C(n, 1) +

(1 − ap
n−1)2

1 − an−1
.

It follows that

C(n, 1) ≤ sup
a∈[0,1]

(1 − ap)2

(1 − a)(1 − a2p−1) ≤ sup
a∈[0,1]

(1 − ap)2

(2p − 1)(1 − a)2 ≤ 1
2p − 1 ,

where the second inequality is by the mean value theorem that 1 − a2p−1 ≥ (2p − 1)(1 − a)
and the last inequality is because a ∈ [0, 1] and p ∈ ( 1

2 , 1]. Clearly, C(n, 1) ≥ C(n, an) for
any an ∈ [0, 1], and so the inner sum of the second term in the expected numerator is at
most 1

2p−1 . Putting together, this completes the proof of Theorem 5 as

φp(P ) ≤ min
t:t>0

φp(St) ≤
Et[
∑n

i=1 π(i) · P (i, St)p]
Et[π(St)]

≤ 2
√

λ2

√
1

2p − 1 ,

which implies that
(
φp(P )

)2 ≤ 4
2p−1 · λ2.

3.1 Recovering Morris and Peres’s Result
To recover Theorem 3, we follow the same arguments but add a truncation step so that the
sequence ai above will start with a0 ≈ φ 1

2
(P ). In this subsection, we plug in p = 1

2 . As
above, the main work is to upper bound the expected value of the numerator. Recall that

Et

[√
P (i, St)

]
=

i−1∑
j=1

(
f(i)2 − f(j)2) ·

(√
P (i, [j]) −

√
P (i, [j − 1])

)
,

Let li be the index such that
√

P (i, [li]) ≤ 1
2 φ 1

2
(P ) but

√
P (i, [li + 1]) > 1

2 φ 1
2
(P ). Then, we

can upper bound the right hand side by

Et

[√
P (i, St)

]
≤ 1

2φ 1
2
(P ) · f(i)2 + (f(i)2 − f(li + 1)2)

(√
P (i, [li + 1]) − 1

2φ 1
2
(P )
)

+
i−1∑

j=li+2
(f(i)2 − f(j)2)

(√
P (i, [j]) −

√
P (i, [j − 1])

)
.

To shorten the expression, let us use the notations

ai,0 = 1
2φ 1

2
(P ) and ai,j =

√
P (i, [li + j]).

Summing over i and using these notations, the expected numerator is

Et

[ n∑
i=1

π(i) ·
√

P (i, St)
]

≤ 1
2φ 1

2
(P ) ·

n∑
i=1

π(i) · f(i)2

+
n∑

i=1
π(i) ·

i−li−1∑
j=1

(f(i)2 − f(li + j)2) · (ai,j − ai,j−1)︸ ︷︷ ︸
(∗)

APPROX/RANDOM 2024
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Applying Cauchy-Schwarz as before gives

(∗) ≤

√√√√ n∑
i=1

i−li−1∑
j=1

π(i) · (f(i) − f(li + j))2 · P (i, li + j)

·

√√√√ n∑
i=1

i−li−1∑
j=1

π(i) · (f(i) + f(li + j))2 ·
(
ai,j − ai,j−1

)2

P (i, li + j)

≤

√√√√λ2 ·
n∑

i=1
π(i) · f(i)2 ·

√√√√√√√
n∑

i=1
4 · π(i) · f(i)2 ·

i−1∑
j=1

ai,j − ai,j−1

ai,j + ai,j−1︸ ︷︷ ︸
(∗∗)

,

where the second inequality uses Lemma 8 and P (i, li + j) = a2
i,j − a2

i,j−1.
To upper bound (∗∗), we let bi := ai,j and use that 1

2 φ 1
2
(P ) = b0 ≤ b1 ≤ . . . ≤ bm ≤ 1 =:

bm+1 to upper bound the function

f : (b0, b1, . . . , bm) → b1 − b0

b1 + b0
+ b2 − b1

b2 + b1
+ · · · + bm − bm−1

bm + bm−1
+ 1 − bm

1 + bm

The partial derivative of f is

∂f

∂bi
= 2bi−1

(bi + bi−1)2 − 2bi+1

(bi+1 + bi)2 = 2(bi+1 − bi−1)(bi−1bi+1 − b2
i )

(bi + bi−1)2(bi+1 + bi)2 .

Since bi+1 − bi−1 > 0 by definition, the function increases up until b2
i = bi−1bi+1 and then

decreases. So, the maximum is attained when bi = (b0)
m+1−i

m+1 with b0 = 1
2 φ 1

2
(P ) and

bm+1 = 1, in which case the sum is
m+1∑
i=1

bi − bi−1

bi + bi−1
=

m+1∑
i=1

1 − bi−1
bi

1 + bi−1
bi

=
m+1∑
i=1

1 − b
1

m+1
0

1 + b
1

m+1
0

= (m + 1) · 1 − b
1

m+1
0

1 + b
1

m+1
0

For b0 ∈ [0, 1], this value is increasing when m increases, and so the sum is upper bounded by

(∗∗) ≤ lim
x→∞

x · 1 − b
1
x
0

1 + b
1
x
0

= lim
x→∞

x · 1 − b
1
x
0

2 = lim
y→0

1 − by
0

2y

= lim
y→0

−by
0 log b0

2 = 1
2 log 1

b0
= 1

2 log 2
φ 1

2
(P ) ,

where the third last equality is by L’Hôpital’s rule. Plugging this back into (∗∗) and (∗), the
expected numerator is

Et

[ n∑
i=1

π(i) ·
√

P (i, St)
]

≤ 1
2φ 1

2
(P ) ·

n∑
i=1

π(i) · f(i)2

+

√√√√λ2 ·
n∑

i=1
π(i) · f(i)2 ·

√√√√ n∑
i=1

2 log 2
φ 1

2
(P ) · π(i) · f(i)2.

As before, the expected denominator is Et[π(St)] =
∑

i∈V π(i) · f(i)2. Putting together,

φ 1
2
(P ) ≤ min

t:t>0
φ 1

2
(St) ≤

Et

[∑n
i=1 π(i) ·

√
P (i, St)

]
Et[π(St)]

≤ 1
2φ 1

2
(P ) +

√
2 log 2

φ 1
2
(P )λ2.

Rearranging recovers Theorem 3.
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3.2 Non-Reversible Markov Chains

Houdré and Tetali only formulated Conjecture 2 for reversible Markov chains of which the
eigevalues of I − P are real. For non-reversible Markov chains, we observe that Chung’s
definition of eigenvalues for directed graphs [5] can be used to obtain the same results in
Theorem 3 and Theorem 5.

Given a directed graph G = (V, E) with a weight function w : E → R≥0, let PG be the
transition matrix of the ordinary random walks on G with PG(u, v) = w(uv)/

∑
v∈V w(uv)

for each edge uv ∈ E. Suppose G is strongly connected, then there is a unique stationary
distribution π : V → R+ such that πT P = πT . Let Π = diag(π). Chung defined the
Laplacian of the directed graph G as

L⃗G := I − 1
2

(
Π 1

2 PΠ− 1
2 + Π− 1

2 P T Π 1
2

)
.

Since L⃗G is a real symmetric matrix, its eigenvalues are real. Let λ2 be the second smallest
eigenvalue of L⃗G. Chung [5] proved an analog of Cheeger’s inequality that

1
2φ1(G)2 ≤ λ2(L⃗G) ≤ 2φ1(G).

We observe that λ2(L⃗G) can be used to extend our results to non-reversible Markov chains.

▶ Theorem 9. Let (V, P, π) be an irreducible Markov chain. For any p ∈ ( 1
2 , 1],

(
φp(P )

)2 ≤ 4
2p − 1 · λ2(L⃗G).

For p = 1/2,

λ2(L⃗G) ≳
(
φ 1

2
(P )
)2

log
(
1/φ 1

2
(P )
) .

Note that the main proofs of Theorem 5 and Theorem 3 (i.e. computing the expected
numerator) did not require the Markov chain to be reversible. The reversible assumption was
only used in characterizing the second eigenvalue in Lemma 8. The following is an analog of
Lemma 8 for non-reversible Markov chains using Chung’s definition of the second eigenvalue
of directed graphs.

▶ Lemma 10. Let (V, P, π) be an irreducible Markov chain. Let v2 be an eigenvector associated
to the second smallest eigenvalue of the matrix L⃗G. Define the reweighted eigenvector
f2 := Π− 1

2 v2, with π({v : f2(v) ≥ 0}) ≤ 1
2 . Define the truncated vector f := max(f2, 0).

Then

λ2(L⃗G) ≥
∑

u,v∈V :f(u)≥f(v) π(u) · P (u, v) · (f(u) − f(v))2∑
v∈V π(v)f(v)2 .

With this lemma, we can follow the proofs of Theorem 5 and Theorem 3 verbatim as in
above, by defining level sets St using the truncated vector f and computing the expected
numerator and denominator and so on.

This concludes the proof of Theorem 9. We will prove Lemma 10 in the next subsection.
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3.3 Proofs of Auxiliary Lemmas
In this subsection, we prove Lemma 8 and Lemma 10. The proofs are standard but we
include them for completeness.

Proof of Lemma 8. For f, g : V → R, we define ⟨f, g⟩π :=
∑

i∈V π(i) · f(i) · g(i). By
definition of the second eigenvector, ⟨(I − P )f2, f2⟩π = λ2⟨f2, f2⟩π.

For f := max(f2, 0), note that Pf ≥ Pf2, as

(Pf)(i) =
∑
j∈V

p(i, j)f(j) ≥
∑
j∈V

p(i, j)f2(j) = (Pf2)(i),

and thus

⟨Pf, f⟩π =
∑

i∈V :f2(i)≥0

π(i) ·(Pf)(i) ·f(i) ≥
∑

i∈V,f2(i)≥0

π(i) ·(Pf2)(i) ·f2(i) = (1−λ2)⟨f, f⟩π,

where the last equality uses that Pf2 = (1 − λ2)f2. It follows that

λ2 ≥ ⟨(I − P )f, f⟩π

⟨f, f⟩π
.

The denominator is the same as the denominator in the statement. It remains to check that
the numerator is also the same as the numerator in the statement. By direct calculation,

⟨(I − P )f, f⟩π =
∑
i∈V

π(i)f(i)2 −
∑
i∈V

π(i)
∑
j∈V

P (i, j)f(j)f(i)

=
∑
i∈V

∑
j∈V

π(i)P (i, j)f(i)2 −
∑
i∈V

∑
j∈V

π(i)P (j, i)f(j)f(i)

=
∑
i∈V

∑
j∈V

π(i)P (i, j)
(1

2(f(i)2 + f(j)2) − f(i)f(j)
)

=
∑
i>j

π(i)P (i, j)(f(i) − f(j))2,

where the second equality uses
∑

j∈V P (i, j) = 1 and the third equality uses reversibil-
ity which gives π(i)P (i, j) = π(j)P (j, i) for all i, j ∈ V , to get

∑
i,j π(i)P (i, j)f(i)2 =∑

i,j π(i)P (i, j)f(j)2. ◀

To prove Lemma 10, we will use the following facts about λ2(L⃗G) in [5].

▶ Lemma 11 ([5]). Let G = (V, E) be a strongly connected directed graph and π be its
stationary distribution. The second smallest eigenvalue λ2 of the directed Laplacian L⃗G

satisfies

λ2 = inf
f⊥π

∑
u,v∈V π(u) · P (u, v) · |f(u) − f(v)|2∑

v∈V π(v) · |f(v)|2

Suppose v2 is an eigenvector of L⃗G associated with eigenvalue λ2. Then, for the reweighted
eigenvector f2 := Π− 1

2 v2, for all u ∈ V ,

λ2 · f2(u) · π(u) = 1
2
∑

v

(
f2(u) − f2(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
.
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Proof of Lemma 10. We claim that the truncated vector f := max{f2, 0} satisfies

λ2 · f(u) · π(u) ≥ 1
2
∑

v

(
f(u) − f(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
.

for all u ∈ V . Indeed, for u such that f(u) > 0,

λ2 · f(u) · π(u) = λ2 · f2(u) · π(u)

= 1
2
∑
v∈V

(
f2(u) − f2(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
≥ 1

2
∑
v∈V

(
f(u) − f(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
,

where the second equality is by the fact above and the last inequality is by f2(u) − f2(v) ≥
f(u) − f(v) for all u, v ∈ V due to truncation. For u such that f(u) = 0, the inequality holds
trivially because

λ2 · f(u) · π(u) = 0 ≥ 1
2
∑

v

(
− f(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
as f(v) ≥ 0 for all v by truncation. Thus the claim follows. Multiplying both sides of the
claim by f(u) and then summing over all u gives

λ2 ·
∑
u∈V

f2(u)π(u) ≥ 1
2
∑
u∈V

f(u)
∑
v∈V

(
f(u) − f(v)

)
·
(
π(u)P (u, v) + π(v)P (v, u)

)
= 1

2
∑
u∈V

∑
v∈V

π(u) · P (u, v) ·
(1

2f(u)2 + 1
2f(v)2 − f(u)f(v)

)
= 1

2
∑
u∈V

∑
v∈V

π(u) · P (u, v) ·
(
f(u) − f(v)

)2
.

This is equivalent to the statement where the sum is over pairs with f(u) ≥ f(v). ◀

4 Counterexamples

In this section, we prove Theorem 4 by constructing a family of counterexamples and bounding
their second eigenvalues and φ 1

2
value. The construction is simple.

▶ Definition 12 (Counterexamples). Let Gn be a graph with vertex set [n]. For each i, j ∈
[n], i ̸= j, the edge weight is

P (i, j) = 1
C
(

min{|i − j|, n − |i − j|}
)3 ,

where C =
∑n

i=1 1/ min{|i − j|, n − |i − j|}3 is the normalizing constant to make the graph
1-regular.

We will prove the two claims in Theorem 4 about the second smallest eigenvalue and the
φ 1

/
2(G) value. First, we analyze the second smallest eigenvalue, based on the construction

that I − P is a circulant matrix.

▶ Lemma 13. For Gn in Definition 12, the second smallest eigenvalue of I − P is

λ2(I − P ) ≲ log n

n2 .
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Proof. By our construction, the graph Gn is cyclic that P (i, j) = P ((i + k) mod n, (j +
k) mod n) for all i, j, k ∈ [n]. So the matrix I − P is a circulant matrix of the form

I − P =



a0 a1 a2 . . . an−1
an−1 a0 · · · · · · an−2

an−2 an−1
. . . . . . an−3

...
. . . . . . . . .

...
a1 a2 . . . . . . a0


where a0 = 1 and aj = −P (1, j + 1) for all j ∈ [n]. It is well-known that an n × n circulant
matrix with first row entries a ∈ Rn has eigenvalues and corresponding eigenvectors{ n−1∑

i=0
aiωk

i
}n−1

k=0
and

{(
1, ωk, . . . , ωn−1

k

)T
}n−1

k=0

where ωk := e
2πkı

n are the n-th roots of unity for k ∈ [n] (where ı denotes the imaginary
number).

So, the second smallest eigenvalue λ2 of I − P corresponds to the first n-th root of unity
ω := ω1 = e

2πı
n , and

λ2 =
n−1∑
i=0

ai · ωi =
n∑

i=2
P (1, i) −

⌊n/2⌋+1∑
i=2

P (1, i) · ωi−1 −
n∑

i=⌊n/2⌋+2

P (1, i) · ωi−1.

We consider two cases, when n is odd and n is even. When n = 2k + 1 is odd, note that by
definition P (1, i) = P (1, 2k + 3 − i) for 2 ≤ i ≤ k + 1 and so we can pair up the terms in the
above equation to get

λ2 =
k+1∑
i=2

P (1, i)
(

2 − ωi−1 − 1
ωi−1

)
= −

k+1∑
i=2

P (1, i)
(

ω
i−1

2 − 1
ω

i−1
2

)2
.

Using the definition of ωk := e
2πkı

n = cos 2kπ
n + ı sin 2kπ

n , it follows that

λ2 = −
k+1∑
i=2

P (1, i)
(

ω
i−1

2 − ω
i−1

2

)2
= −

∑k+1
i=2 P (1, i)

(
2ı sin (i − 1)π

n

)2

= 4
∑k+1

i=2 P (1, i)
(

sin (i − 1)π
n

)2
.

Finally we use the fact that sin x < x and that P (1, i) = 1
C·min{|i−1|,n−|i−1|}3 < 1

(i−1)3 for
2 ≤ i ≤ k + 1 as C ≥ 1 to conclude that

λ2 < 4
k+1∑
i=2

1
(i − 1)3

( (i − 1)π
n

)2
= 4

k∑
i=1

1
i

(π2

n2

)
≲

log n

n2 .

When n = 2k is even, the proof follows along the same lines, but we need to remove the term
k = n

2 + 1 in the sum because ωn/2 = −1. However, it only contributes a term of O
( 1

n3

)
to

the sum, which is negligible. ◀

It remains to prove that φ 1
2
(P ) ≳ log n

n . As this graph is symmetric, our intuition is that
φ 1

2
(P ) attains its minimum at the set S = {1, . . . , n

2 }. In this case, for each vertex i ∈ S,

√
P (i, S) ≥

√√√√i+ n
2∑

j=i

1
j3 ≈ 1

i
− 1

i + n
2

≥ 1
2i

,
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which implies that

φ 1
2
(S) ≳

n
2∑

i=1

1
n

√
P (i, S) ≳ 1

n

n
2∑

i=1

1
i
≳

log n

n
.

Our plan was to prove that S indeed attains the minimum, but we do not have such a proof.
Instead, we will work on a slightly different lower bound, which satisfies a concavity property
that allows us to argue that sets of consecutive vertices attain the minimum, in order to
prove the lower bound. It turns out that the proof is a bit long and we will present it in the
next subsection.

4.1 Proof of φ1
2

Lower Bound
First, we set up some notations for the proof. Let us partition the vertex set of Gn into two
sets A and B := G \ A with |A| ≤ |B|. As the graph Gn is cyclic, we can arrange the vertices
V = [n] in a clockwise manner and without loss of generality we assume 1 ∈ A and n ∈ B.
Let us divide the vertices of A and B into contiguous sets A1, B1, A2, B2, . . . , Ak, Bk in the
cyclic representation, and denote their sizes by ai := |Ai| and bi := |Bi| for 1 ≤ i ≤ k. More
explicitly, for 1 ≤ i ≤ k, the vertices in Ai and Bi are

Ai =
{ i−1∑

j=1
aj +

i−1∑
j=1

bj +1, . . . ,

i∑
j=1

aj +
i−1∑
j=1

bj

}
,Bi =

{ i∑
j=1

aj +
i−1∑
j=1

bj +1, . . . ,

i∑
j=1

ai +
i−1∑
j=1

bi

}
.

For two disjoint subsets S, T ⊂ V , let us define f(S, T ) :=
∑

u∈S

√
P (u, T ). Note that

φ 1
2
(A) = f(A,B)

|A| , so our goal is to lower bound

f(A, B) =
k∑

i=1
f(Ai, B).

For two sets S, T ∈ {Ai}k
i=1 ∪ {Bi}k

i=1, let us define the contiguous block [S, T ] to
be the block of sets from S clockwise up until T , possibly going around. For example,
[Bk, A2] := Bk ∪ A1 ∪ B1 ∪ A2, and note that [S, T ] ̸= [T, S] since the sets are counted
clockwise.

After we set up the notations, we start with a lower bound on f(Ai, B) by a natural
function, the logarithm of the size of contiguous sets, which is the “slightly different lower
bound” that we mentioned before this subsection.

▶ Lemma 14. For 1 ≤ i ≤ k,
√

2C · f(Ai, B) ≥
∑k

j=1

(
log
(
|[Ai, Aj ]| + 1

)
+ log

(
|[Bi, Bj−1]| + 1

)
− log

(
|[Bi, Aj ]| + 1

)
− log

(
|[Ai, Bj−1]| + 1

))
,

where C is the normalizing constant in Definition 12 and |[S, T ]| denotes the number of
vertices in the block [S, T ].

Proof. We prove the statement for f(A1, B). By definition of f, Ai, Bi stated above,

√
2C · f(A1, B) =

√
2C ·

∑
i∈A1

√√√√ k∑
l=1

P (i, Bl)

=
√

2C ·
a1∑

i=1

√√√√ k∑
l=1

bl∑
j=1

P

(
i,

l∑
m=1

am +
l−1∑

m=1
bm + j

)
.
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By the definition of P in Definition 12, P (i, j) ≥ 1
C|i−j|3 and so

√
2C · f(A1, B) ≥

√
2 ·

a1∑
i=1

√√√√ k∑
l=1

bl∑
j=1

( l∑
m=1

am +
l−1∑

m=1
bm + j − i

)−3

=
√

2 ·
a1−1∑
i=0

√√√√ k∑
l=1

bl∑
j=1

( l∑
m=2

am +
l−1∑

m=1
bm + j + i

)−3
.

We lower bound the inner sum by an integral, so that

√
2C · f(A1, B) ≥

√
2 ·

a1−1∑
i=0

√√√√ k∑
l=1

∫ bl+1

1

( l∑
m=2

am +
l−1∑

m=1
bm + x + i

)−3
dx

=
a1−1∑
i=0

( k∑
l=1

( l∑
m=2

am +
l−1∑

m=1
bm + i + 1

)−2

︸ ︷︷ ︸
αl

−
( l∑

m=2
am +

l∑
m=1

bm + i + 1
)−2

︸ ︷︷ ︸
βl

)1/2
.

Now we use the following simple inequality about decreasing numbers.

▷ Claim 15. Let (αi)k
i=1, (βi)k

i=1 be positive real numbers such that α1 ≥ β1 ≥ α2 ≥ β2 ≥
· · · ≥ αk ≥ βk ≥ 0. Then

k∑
i=1

(
α2

i − β2
i

)
≥
( k∑

i=1

(
αi − βi

))2
.

Proof. The proof is by induction. For i = 1, the claim is clear as α2
1 − β2

1 ≥ (α1 − β1)2.
Suppose that the claim is true for i = k. Let A =

∑k+1
i=2 (α2

i − β2
i ) and B =

∑k+1
i=2 (αi − βi).

For the induction step, we need to show that α2
1 − β2

1 + A ≥ (α1 − β1 + B)2. Since A ≥ B2

by induction, it suffices to show that α2
1 − β2

1 ≥ (α1 − β1)(α1 − β1 + 2B), which is equivalent
to β1 ≥ B. It follows from the property of decreasing sequence that B ≤ α2 ≤ β1, verifying
the induction step. ◁

The √
αl and

√
βl in the right hand side above satisfy the assumptions of the claim, and

thus

√
2C ·f(A1, B) ≥

k∑
l=1

a1−1∑
i=0

(( l∑
m=2

am +
l−1∑

m=1
bm +i+1

)−1
−
( l∑

m=2
am +

l∑
m=1

bm +i+1
)−1)

We again lower bound the inner sum by an integral so that
√

2C · f(A1, B) is at least

k∑
l=1

∫ a1

0

(( l∑
m=2

am +
l−1∑

m=1
bm + x + 1

)−1
−
( l∑

m=2
am +

l∑
m=1

bm + x + 1
)−1)

dx

=
k∑

l=1

(
log
( l∑

m=1
am +

l−1∑
m=1

bm + 1
)

− log
( l∑

m=2
am +

l−1∑
m=1

bm + 1
)

− log
( l∑

m=1
am +

l∑
m=1

bm + 1
)

+ log
( l∑

m=2
am +

l∑
m=1

bm + 1
))
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=
k∑

l=1

(
log
(
|[A1, Al]| + 1

)
− log

(
|[B1, Al]| + 1

)
− log

(
|[A1, Bl]| + 1

)
+ log

(
|[B1, Bl]| + 1

))
,

using the definition e.g. |[A1, Bl]| =
∑l

j=1(aj + bj). ◀

Next, we are going to sum up the lower bounds in Lemma 14 to obtain a lower bound on
f(A, B). To write the sum nicely, we use a simple observation on the signs of the logarithm
in our sum. Let us call a contiguous block [S, T ] odd if there are an odd number of sets in
{Ai}k

i=1 ∪ {Bi}k
i=1, and even otherwise. Note that the odd blocks are exactly those with the

first and last sets from the same partition A or B, e.g. [Ai, Aj ], [Bi, Bj ]. With this definition,
the lower bound on f(A, B) can be written as follows.

▶ Lemma 16. Using the definitions and notations in this subsection,
√

2C ·f(A, B) ≥
∑

S ̸=T :[S,T ]odd

log
(
|[S, T ]|+1

)
−

∑
S ̸=T :[S,T ]even

log
(
|[S, T ]|+1

)
−(k−1) log(n+1),

where the sum is over S, T ∈ {Ai}k
i=1 ∪ {Bi}k

i=1.

Proof. We sum the inequalities in Lemma 14 from 1 ≤ i ≤ k. On the right hand side of
the inequality in Lemma 14, we see that all contiguous blocks starting from Ai or Bi are in
the sum, with the odd blocks positive and even blocks negative. Thus, summing over all
Ai, every contiguous block is counted once as it is uniquely determined by the starting and
ending sets, except for the whole cycle which appears once on the right hand side for every i

with a negative sign. ◀

To prove a lower bound on the right hand side of Lemma 16, the idea is to use the
following concavity property.

▶ Lemma 17. For k ≥ 2, consider the function

h : (a1, b1 . . . , ak, bk) →∑
S ̸=T :[S,T ]odd

log
(
|[S, T ]| + 1

)
−

∑
S ̸=T :[S,T ]even

log
(
|[S, T ]| + 1

)
− (k − 1) log(n + 1),

where the sum is over S, T ∈ {Ai}k
i=1 ∪ {Bi}k

i=1 and so |[S, T ]| depends on a1, b1, . . . , ak, bk.
Then, for all positive j, the function

g : x → h(x, b1, s − x, b2, . . . , ak, bk),

obtained by fixing non-negative integers b1, b2, a3, b3, . . . , ak, bk as the size of the other sets
and s as the sum of a1 + a2, is concave on x ∈ [0, s].

Proof. To prove concavity, we use the second derivative test, where g is concave if the second
derivative g′′ is non-positive. We write g as g0 + g1(x) + g2(x), where the g1(x) consists of all
the log terms which contain A1 but not A2, and similarly g2(x) consists of all the log terms
which contain only A2 but not A1. The remaining terms are in g0, which either contain both
A1 and A2 or none of A1 and A2. Note that these terms are independent of x, because if a
block [S, T ] contains both A1 and A2 then its size |[S, T ]| is the same even when we change
x, so these terms can be ignored when we compute derivatives.
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Let us focus on g1(x) first. The blocks that contain A1 but not A2 must be of the form
[S, A1] or [S, B1] for some set S. Let σ([S, T ]) denote the parity of the block [S, T ]. Note
that the parity of [S, A1] and [S, B1] are different, and so

g′′
1 (x) =

∑
S

(−1)σ([S,A1])+1
((

log
(
|[S, A1]| + 1

))′′ −
(

log
(
|[S, B1]| + 1

))′′
)

=
∑

S

(−1)σ([S,A1])+1
(

log(|[S, Bk]| + x + 1)′′ − (log(|[S, Bk]| + x + b1 + 1)
)′′

=
∑

S

(−1)σ([S,A1])
((

|[S, Bk]| + x + 1
)−2 −

(
|[S, Bk]| + x + b1 + 1

)−2
)

=
∑

S

(−1)σ([S,A1])
(

b1 ·
(
|[S, Bk]| + x + 1

)−2 ·
(
|[S, Bk]| + x + b1 + 1

)−1

+ b1 ·
(
|[S, Bk]| + x + 1

)−1 ·
(
|[S, Bk]| + x + b1 + 1

)−2
)

,

where the sum is over S ∈ {Ai}k
i=1 ∪ {Bi}k

i=1. In the special case when S = A1, we violate
our own notation and let |[A1, Bk]| = 0 in this proof; all other cases are still the same.

When b1 = 0, the sum equals zero and we are done, so assume b1 ̸= 0. To see that g′′
1 (x)

is negative, we pair up the terms with S = Bi and S = Ai+1 with indices taken modulo k so
that

1
b1

· g′′
1 (x) =

k∑
i=1

[(
|[Bi, Bk]| + x + 1

)−2 ·
(
|[Bi, Bk]| + x + b1 + 1)−1

+
(
|[Bi, Bk]| + x + 1

)−1 ·
(
|[Bi, Bk]| + x + b1 + 1

)−2

−
(
|[Ai+1, Bk]| + x + 1

)−2 ·
(
|[Ai+1, Bk]| + x + b1 + 1

)−1

−
(
|[Ai+1, Bk]| + x + 1

)−1 ·
(
|[Ai+1, Bk]| + x + b1 + 1

)−2
]

< 0,

where the inequality holds because |[Ai+1, Bk]| < |[Bi, Bk]| and so each summand is negative
(recall the special case that |[A1, Bk]| = 0 in this proof).

The function g2(x) is handled analogously in view of the symmetry of the second derivative
of the logarithm. This proves that g is concave. ◀

With the concavity property, we can apply a simple “swapping/merging” argument to
reduce to the case when there is only one contiguous set, i.e. k = 1, and then finish the proof.

By concavity, the function g(x) attains its minimum at one of the endpoints, and so

h(a1, . . . , bn) ≥ min
{

h(0, b1, a1 + a2, b2, . . . , an, bn), h(a1 + a2, b1, 0, b2, . . . , an, bn)
}

The next observation is that when one set has size zero, we can merge the two adjacent sets
in the same partition into one. More formally, let b1 = 0 without loss of generality, we claim
that

h(a1, 0, a2, b2 . . . , ak, bk) = h(a1 + a2, b2, . . . , ak, bk).

To see this, note that |[S, A1]| and |[S, B1]| have the same values but they have different
signs so the terms involving them cancel out each other, and similarly the terms involving
|[B1, S]| and |[A2, S]| cancel out each other. Therefore, in h(a1, 0, a2, b2, . . . , ak, bk), there are
no terms ending with A1 or B1 and no terms beginning with B1 or A2, and all the remaining
terms have a one-to-one correspondence with the terms in h(a1 + a2, b2, . . . , ak, bk).
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This reduces k by one. Repeating the same argument until k = 1, we see that
√

2C · f(A, B) ≥ h(|A|, n − |A|) = log(|A| + 1) + log(n − |A| + 1) − log(n + 1),

and thus

φ 1
2
(G) = min

A:|A|≤ n
2

f(A, B)
|A|

≳ min
l:l≤ n

2

h(l, n − l)
l

= min
l:l≤ n

2

log(l + 1) + log(n − l + 1) − log(n + 1)
l

,

where we used that C is upper bounded by an absolute constant.
It remains to lower bound the right hand side. Since l ≤ n

2 , it follows that log(n − l −
1) − log(n + 1) ≥ log((n + 1)/2) − log(n + 1) = − log 2, and so

log(k + 1) + log(n − k + 1) − log(n + 1)
k

≥
log k+1

2
k

≳
log k+1

2
k+1

2
≥ log n

n
,

where the last inequality is because log n
n is decreasing for n ≥ 3 and for 1 ≤ k ≤ 4 the last

inequality clearly holds when n is large enough. This concludes the proof of Theorem 4.

Concluding Remarks and Open Questions
We believe that the same analysis of φp(G) can be extended to other generalizations of
Cheeger’s inequality in [15, 11], and also to the directed edge conductance using the recent
notions of reweighted eigenvalues in [19, 12, 13, 14]. We leave it as an open question to find
a counterexample where the transition matrix is the simple random walk matrix of a graph.
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