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Abstract
We study monotonicity testing of functions f : {0, 1}d → {0, 1} using sample-based algorithms,
which are only allowed to observe the value of f on points drawn independently from the uniform
distribution. A classic result by Bshouty-Tamon (J. ACM 1996) proved that monotone functions can
be learned with exp(Õ(min{ 1

ε

√
d, d})) samples and it is not hard to show that this bound extends

to testing. Prior to our work the only lower bound for this problem was Ω(
√

exp(d)/ε) in the small
ε parameter regime, when ε = O(d−3/2), due to Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky
(Combinatorica 2000). Thus, the sample complexity of monotonicity testing was wide open for
ε ≫ d−3/2. We resolve this question, obtaining a nearly tight lower bound of exp(Ω(min{ 1

ε

√
d, d}))

for all ε at most a sufficiently small constant. In fact, we prove a much more general result, showing
that the sample complexity of k-monotonicity testing and learning for functions f : {0, 1}d → [r]
is exp(Ω(min{ rk

ε

√
d, d})). For testing with one-sided error we show that the sample complexity is

exp(Ω(d)).
Beyond the hypercube, we prove nearly tight bounds (up to polylog factors of d, k, r, 1/ε in the

exponent) of exp(Θ̃(min{ rk
ε

√
d, d})) on the sample complexity of testing and learning measurable

k-monotone functions f : Rd → [r] under product distributions. Our upper bound improves upon the
previous bound of exp(Õ(min{ k

ε2

√
d, d})) by Harms-Yoshida (ICALP 2022) for Boolean functions

(r = 2).
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1 Introduction

A function f : X → R over a partial order P = (X , ⪯) is k-monotone if there does not exist a
chain of k + 1 points x1 ≺ x2 ≺ · · · ≺ xk+1 for which (a) f(xi+1) − f(xi) < 0 when i is odd
and (b) f(xi+1) − f(xi) > 0 when i is even. When k = 1, these are the monotone functions,
which are the non-decreasing functions with respect to ⪯. Monotone and k-monotone Boolean
functions over domains {0, 1}d, [n]d, and Rd have been the focus of a significant amount of
research in property testing and computational learning theory. We give an overview of the
literature in Section 1.4.
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37:2 Sample-Based Testing and Learning of k-Monotone Functions

The field of property testing is concerned with the design and analysis of sub-linear
time randomized algorithms for determining if a function has, or is far from having, some
specific property. A key aspect in the definition of a property testing algorithm is the type
of access it has to the function. Early works on property testing, e.g. [61, 44], focused on the
notion of query-based testers, which are allowed to observe the value of the function on any
point of their choosing, and since then this has become the standard model. The weaker
notion of sample-based testers, which can only view the function on independent uniform
samples, was also considered by [44] and has received some attention over the years, see e.g.
[51, 3, 41, 45, 37, 38]. Sample-based algorithms are considered more natural in many settings,
for example in computational learning theory, where they are the standard model. In fact,
sample-based testing and learning are closely related problems; given a learning algorithm, it
is always possible to design a testing algorithm with the same sample complexity, up to an
additive poly(1/ε) factor1.

For many fundamental properties, there is still a large gap between how much we know
in the query-based vs the sample-based models. Monotonicity (and k-monotonicity) is such
a property; despite a vast body of research on query-based monotonicity testing over the
hypercube {0, 1}d, the only work we know of which considers this problem in the sample-based
model is [43], who gave an upper bound of O(

√
2d/ε) and a matching lower bound for the

case when ε = O(d−3/2) on the number of samples needed to test monotonicity of functions
f : {0, 1}d → {0, 1}. The upper bound for learning monotone Boolean functions due to
[23, 54] also implies a testing upper bound of exp(Õ( 1

ε

√
d)). Thus, this question has been

wide open for ε ≫ d−3/2.
Our work addresses this gap in the monotonicity testing literature, proving a lower bound

which matches the learning upper bound for all ε at most some constant, up to a factor
of log d in the exponent. More generally, we prove tight lower bounds for k-monotonicity
testing of functions, f : {0, 1}d → [r], i.e. functions with image size at most r. To round
out our results, we also give an improved learning algorithm for k-monotone functions over
Rd under product distributions whose sample complexity matches our sample-based testing
lower bound, up to poly-logarithmic factors in the exponent.

1.1 Results
Before explaining our results and the context for them, we first provide some terminology
and basic notation. Given a domain X and a distribution µ over X , we denote the Hamming
distance between two functions f, g : X → R under µ by dµ(f, g) = Px∼µ[f(x) ̸= g(x)]. We
say that f is ε-far from k-monotone if dµ(f, g) ≥ ε for every k-monotone function g. The
results in this paper pertain to sample-based testing and learning of k-monotone functions
with respect to Hamming distance. We use the following terminology:

The example oracle for f under µ, denoted by EX(f, µ), when queried, generates an
example (x, f(x)) where x is sampled according to µ.
A sample-based k-monotonicity tester under µ is a randomized algorithm which is given
access to EX(f, µ) for an arbitrary input function f and satisfies the following: (a) if
f is k-monotone, then the algorithm accepts with probability at least 2/3, and (b) if f

is ε-far from k-monotone, then the algorithm rejects with probability at least 2/3. The
tester has one-sided error if in case (a) it accepts with probability 1.

1 See Lemma C.1 in the full version of the paper for a precise statement. Also, note that if the learning
algorithm is proper, then the time complexity is also preserved. If the learning algorithm is improper,
then there is a time complexity blow-up, but the sample complexity is still preserved.
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A sample-based learning algorithm for k-monotone functions under µ is a randomized
algorithm which is given access to EX(f, µ) for an arbitrary k-monotone input function
f and outputs a hypothesis h such that dµ(f, h) ≤ ε with probability at least 1 − δ. If
left unspecified, δ = 1/3.

In all of the above definitions if µ is unspecified, then it is the uniform distribution.
Testing and learning are closely related problems; any sample-based learning algorithm can
be used to construct a sample-based tester with the same sample complexity. We refer to
this transformation as the testing-by-learning reduction and although this is not a new idea
we provide a proof in Section C in the full version of the paper for completeness.

Finally, we recall some important learning theory terminology. A learning algorithm
for concept class C is called proper if it always outputs a hypothesis h ∈ C, and is called
improper if it is allowed to output arbitrary h. Given a function f , and a concept class
C, let d(f, C) = ming∈C d(f, g). An agnostic proper learner is one which, given any f (not
necessarily in C), outputs a hypothesis h ∈ C for which d(f, h) ≤ d(f, C) + ε with probability
at least 1 − δ.

1.1.1 Sample-Based Testing and Learning on the Hypercube

The problem of learning monotone Boolean functions over the hypercube {0, 1}d was studied
by [23] who proved an upper bound2 of exp(O(min{ 1

ε

√
d log d, d})) for improper learning and

very recently by [54, 55] who obtained the same upper bound for agnostic proper learning.
The improper learning upper bound was extended by [17] who showed an upper bound of
exp(O(min{ k

ε

√
d log d, d})) and a nearly matching lower bound of exp(Ω(min{ k

ε

√
d, d})) for

learning k-monotone Boolean functions for any k ≥ 1. The testing-by-learning reduction
shows that their upper bound also holds for sample-based testing. The only prior lower
bound for sample-based testing that we’re aware of is Ω(

√
2d/ε) when ε = O(d−3/2) and

k = 1 [43, Theorem 5]. Our main result is the following much more general lower bound for
this problem, which we prove in Section 3.

▶ Theorem 1 (Testing Lower Bound). There is an absolute constant c > 0 such that for all
ε ≤ c, every sample-based k-monotonicity tester for functions f : {0, 1}d → [r] under the
uniform distribution has sample complexity

exp
(

Ω
(

min
{

rk

ε

√
d, d

}))
.

Even for the special case of sample-based monotonicity testing of Boolean functions (k = 1
and r = 2), Theorem 1 is already a new result, which matches the upper bound for learning
by [23] and is the first lower bound to hold for ε ≫ d−3/2. Moreover, our lower bound is
much more general, holding for all r, k, and is optimal in all parameters, d, r, k, ε, up to a
log d factor in the exponent. We show a nearly matching upper bound in Theorem 3.

We also note that the testing-by-learning reduction implies that the same lower bound
holds for learning with samples. As we mentioned, this result was already known for Boolean

2 We remark that any function over {0, 1}d can be learned exactly with O(d2d) = exp(O(d)) samples by
a coupon-collector argument. Combining this with the exp(O( 1

ε

√
d log d)) upper bound by [23] yields

exp(O(min{ 1
ε

√
d log d, d})). We use this slightly clunkier notation involving the min to emphasize that

our upper and lower bounds are nearly matching in all parameter regimes.

APPROX/RANDOM 2024
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functions (the r = 2 case) [17], but the general case of r ≥ 2 was not known prior to our
work3.

▶ Corollary 2 (Learning Lower Bound). There is an absolute constant c > 0 such that for
every ε ≤ c, every sample-based uniform-distribution learning algorithm for k-monotone
functions f : {0, 1}d → [r] has sample complexity

exp
(

Ω
(

min
{

rk

ε

√
d, d

}))
.

On the upper bound side, a relatively straightforward argument extends the learning
algorithm of [17] for Boolean k-monotone functions, to k-monotone functions with image
size at most r. We give a short proof in Section 1.5. This shows that our lower bounds in
Theorem 1 and Corollary 2 are tight up to a factor of log d in the exponent.

▶ Theorem 3 (Learning Upper Bound for Hypercubes). There is a uniform-distribution
learning algorithm for k-monotone functions f : {0, 1}d → [r] which achieves error at most ε

with time and sample complexity

exp
(

O

(
min

{
rk

ε

√
d log d, d

}))
.

The testing-by-learning reduction again gives us the following corollary.

▶ Corollary 4 (Testing Upper Bound for Hypercubes). There is a sample-based k-monotonicity
tester for functions f : {0, 1}d → [r] with sample complexity

exp
(

O

(
min

{
rk

ε

√
d log d, d

}))
.

Lastly, we consider the problem of sample-based testing with one-sided error. For
monotonicity testing of functions f : {0, 1}d → {0, 1} with non-adaptive queries, we know that
one-sided and two-sided error testers achieve the same query-complexity (up to polylog(d, 1/ε)
factors): there is a Õ(

√
d/ε2) one-sided error upper bound due to [53] and a Ω̃(

√
d) two-

sided error lower bound due to [33]. We show that the situation is quite different for
sample-based monotonicity testing; while the sample complexity of two-sided error testers is
exp(Θ̃(min{ 1

ε

√
d, d})), one-sided error testers require exp(Θ(d)) samples for all ε.

▶ Theorem 5 (Testing with One-Sided Error). For every d, r, k, and ε > 0, sample-based
k-monotonicity testing of functions f : {0, 1}d → [r] with one-sided error requires exp(Θ(d))
samples.

1.1.2 Sample-Based Testing and Learning in Continuous Product Spaces
Learning k-monotone Boolean-valued functions has also been studied over Rd with respect
to product measures by [49] who gave an upper bound of exp(Õ(min{ k

ε2

√
d, d})) where Õ(·)

hides polylog factors of d, k, and 1/ε. Our next result gives an upper bound which improves
the dependence on ε from 1/ε2 to 1/ε in the exponent. By the same approach we used to
generalize the upper bound in Theorem 3 to arbitrary r ≥ 2, we get the same generalization
for product spaces. We obtain the following upper bound which matches our lower bound
for {0, 1}d in Theorem 1 up to polylog factors of d, k, r, and 1/ε. We say that a function
f : Rd → [r] is measurable if the set f−1(i) is measurable for every i ∈ [r].

3 It is possible that the techniques from [17] could be extended to provide an alternative proof of
Corollary 2, but we have not checked whether this is the case.
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▶ Theorem 6 (Learning Upper Bound for Product Spaces). Given an arbitrary product measure
µ, there is a learning algorithm under µ for measurable k-monotone functions f : Rd → [r]
with time and sample complexity

exp
(

Õ

(
min

{
rk

ε

√
d, d

}))
.

The Õ(·) hides polylogarithmic dependencies on d, r, k, and 1/ε.

We prove Theorem 6 in Section 4. Once again the testing-by-learning reduction gives us
the following corollary for sample-based testing.

▶ Corollary 7 (Testing Upper Bound for Product Spaces). Given an arbitrary product measure
µ, there is a k-monotonicity tester for measurable functions f : Rd → [r] under µ with sample
complexity

exp
(

Õ

(
min

{
rk

ε

√
d, d

}))
.

The Õ(·) hides polylogarithmic dependencies on d, r, k, and 1/ε.

1.2 Proof Overviews
In this section we give an overview of our proofs for Theorem 1 and Theorem 6.

1.2.1 The Testing Lower Bound for Hypercubes
Our proof of Theorem 1 uses a family functions known as Talagrand’s random DNFs
introduced by [63] which have been used by [4] and [33] to prove lower bounds for monotonicity
testing of Boolean functions f : {0, 1}d → {0, 1} against adaptive and non-adaptive query-
based testers. Very recently, they have also been used to prove lower bounds for tolerant
monotonicity testing [29] and for testing convexity of sets in {−1, 0, 1}d [10].

To understand our construction, let us first consider the special case of monotonicity of
Boolean functions, i.e. k = 1 and r = 2. We think of a DNF term as a point t ∈ {0, 1}d which
is said to be satisfied by x ∈ {0, 1}d if t ⪯ x, where ⪯ denotes the standard bit-wise partial
order over {0, 1}d. The width of a term t is its Hamming weight, |t|, and the width of a DNF
is the max width among its terms. Consider N randomly chosen terms t1, . . . , tN each of
width |tj | = w. We will see later how to choose N and w. Let B := {x : d

2 ≤ |x| ≤ d
2 + ε

√
d}

and for each j ∈ [N ], let

Uj := {x ∈ B : tj ⪯ x and tj′
̸⪯ x for all j′ ̸= j}

be the set of points in B which satisfy tj and no other terms. Let U :=
⋃

j∈[N ] Uj . Now observe
that any two points lying in different Uj ’s are incomparable and therefore independently
embedding an arbitrary monotone function into each Uj will result in a function which
globally is monotone if one defines the function outside of U appropriately. Using this fact
we can define two distributions Dyes and Dno as follows. Let A denote the set of points in
x ∈ {0, 1}d for which either |x| > d

2 + ε
√

d or x ∈ B and tj , tj′ ⪯ x for two different terms
j ̸= j′.

f ∼ Dyes is drawn by setting f(x) = 1 if and only if x ∈ A ∪
(⋃

j∈T Uj

)
where T ⊆ [N ]

contains each j ∈ [N ] with probability 1/2, independently. Such a function is always
monotone.

APPROX/RANDOM 2024



37:6 Sample-Based Testing and Learning of k-Monotone Functions

f ∼ Dno is drawn by setting f(x) = 1 if and only if x ∈ A ∪ R where R contains each
x ∈ U with probability 1/2, independently. Such a function will be Ω(|U | · 2−d)-far from
monotone with probability Ω(1) since its restriction with U is uniformly random.

Now, each x ∈ U satisfies Pf∼Dyes [f(x) = 1] = Pf∼Dno [f(x) = 1] = 1/2 and for both
distributions the events f(x) = 1 and f(y) = 1 are independent when x, y lie in different Uj ’s.
Therefore, any tester will need to see at least two points from the same Uj to distinguish
Dyes and Dno. Roughly speaking, by birthday paradox this gives a Ω(

√
N) lower bound on

the number of samples. The lower bound is thus determined by the maximum number of
terms N that can be used in the construction for which |U | = Ω(ε2d).

So how are N and w chosen? By standard concentration bounds, we have |B| = Ω(ε2d)
and observe that a point x ∈ B satisfies a random term with probability exactly (|x|/d)w.
We need U to contain a constant fraction of B, i.e. we need x to satisfy exactly 1 term with
constant probability. The expected number of satisfied terms is N · (|x|/d)w and, roughly
speaking, we need this value to be Θ(1) for all x ∈ B. Applying this constraint to the case
when |x| = d/2 forces us to pick N ≈ 2w. Now when |x| = d/2 + ε

√
d, the expected number

of satisfied terms is N · 2−w · (1 + 2ε/
√

d)w ≈ (1 + 2ε/
√

d)w and we are forced to choose
w ≈

√
d/ε. The lower bound for sample-based monotonicity testing of f : {0, 1}d → {0, 1} is

then Ω(
√

N) ≈ exp(Ω(
√

d/ε)).
Let us now think about generalizing this construction to testing k-monotonicity of

functions f : {0, 1}d → [r]. The moral of the above argument is that the permitted number of
terms is controlled by the number of distinct Hamming weights in the set B. We observe that
for larger values of k and r we can partition B into k(r−1) blocks as B := B1∪B2∪· · ·∪Bk(r−1)

each with a window of Hamming weights of size only ε
√

d
k(r−1) . We are able to essentially repeat

the above construction independently within each block wherein we can set w ≈ k(r−1)
√

d
ε

and consequently N ≈ 2
k(r−1)

√
d

ε .
For each block i ∈ [k(r − 1)], the random Talagrand DNF within block Bi is defined

analogously to the above construction, except that it assigns function values from {i mod
(r − 1), i mod (r − 1) + 1}, instead of {0, 1}. See Figure 1 for an illustration. Since there are
k(r−1) blocks in total, the distribution Dyes only produces k-monotone functions. At the same
time, a function f ∼ Dno assigns uniform random {a, a+1} values within each block Bm(r−1)+a.
This results in a large number of long chains through Ba ∪ B(r−1)+a ∪ · · · ∪ B(k−1)(r−1)+a

which alternate between function value a and a + 1. Considering the union of all such chains
for a = 0, 1, . . . , r − 2 shows that f is Ω(ε)-far from k-monotone with probability Ω(1).

1.2.2 The Learning Upper Bound for Product Spaces

As we discussed in Section 1.1, it suffices to prove Theorem 6 for the case of r = 2, i.e.
learning functions f : Rd → {±1} under a product measure µ. We use a downsampling
technique to reduce this problem to learning a discretized proxy of f over a hypergrid [N ]d
where N = Θ(kd/ε) with mild label noise. This technique has been used in previous works
[46, 12, 49] and our proof borrows many technical details from [49].

Next, for N which is a power of 2, we observe that a k-monotone function f : [N ]d → {±1}
can be viewed as a k-monotone function over the hypercube {±1}d log N by mapping each
point x ∈ [N ]d to its bit-representation. We can then leverage a result of [17] which shows
that all but a ε-fraction of the mass of the Fourier coefficients of k-monotone Boolean
functions f : {0, 1}d → {0, 1} is concentrated on the terms with degree at most k

√
d

ε . We
can then use the Low-Degree Algorithm introduced by [57] which was shown to work under
random classification noise by [50].
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⋮

⋮

⋮
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+ ε d
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0 0 0 0 0
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0,1 0,1 0,1 0,1

1 1 1 1 1
2

2
1,2 1,2 1,2 1,2

r − 2 r − 2 r − 2 r − 2
r − 1r − 1,2 r − 1,2 r − 1,2

0 0 0 0
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0,1 0,1 0,1

1 1
1 1,2

2 1,21,2

r − 2 r − 2

r − 1
r − 1,2r − 1,2

r − 1

0

d
2

+
ε d

k(r − 1)

d
2

+ 2
ε d

k(r − 1)

d
2

+
ε d

k

r − 2

1

1,2

0

⋮

⋮

Figure 1 An illustration of the construction used in our proof of Theorem 1. The image represents
the set of points in the hypercube {0, 1}d with Hamming weight in the interval [ d

2 , d
2 +ε

√
d), increasing

from bottom to top. The numbers on the left denote the Hamming weight of the points lying in
the adjacent horizontal line. The Bi blocks are the sets of points contained between two adjacent
horizontal lines. Each orange shaded region within Bi represents the set of points satisfied by a term
ti,j . The blue numbers represent the value that functions in the support of Dyes and Dno can take.
We have used the notation “r − 1, 2” as shorthand for r − 2, r − 1.

1.3 Discussion and Open Questions

Our results for sample-based testing and learning over the hypercube are tight up to a log d

factor in the exponent. Our upper bound for product spaces matches the lower bound for
hypercubes only up to polylog factors of d, k, r, 1/ε in the exponent. In particular, the upper
bound for product spaces goes to ∞ as any one of the parameters r, k, or 1/ε grow to
∞, whereas the lower bound for the hypercube can be at most exp(Θ(d)) simply because
|{0, 1}d| = 2d and so any function f : {0, 1}d → R can be learned exactly with exp(O(d))
samples. It seems intuitive that sample-based testing and learning of k-monotone functions
over [n]d should require nΩ(d) samples as either of the parameters k or r approaches ∞.
A corollary of such a result would be that the sample-complexity of these problems for
f : Rd → [r] grow to ∞ as k or r approach ∞. Moreover, if this is true, then k-monotonicity
of functions f : Rd → R is not testable with a finite number of samples. Our results do not
address this and it would be interesting to investigate this further.

▶ Question 8. Is there a lower bound for sample-based k-monotonicity testing of functions
f : [n]d → [r] which approaches nΩ(d) as r or k go to ∞?

APPROX/RANDOM 2024



37:8 Sample-Based Testing and Learning of k-Monotone Functions

1.4 Related Work
Monotone functions and their generalization to k-monotone functions have been extensively
studied within property testing and learning theory over the last 25 years. We highlight some
of the results which are most relevant to our work. Afterwards, we discuss some selected
works on sample-based property testing.

1.4.1 Sample-Based Monotonicity Testing
Sample-based monotonicity testing of Boolean functions over the hypercube, {0, 1}d, was
considered by [43] (see [43, Theorems 5 and 6]) who gave an upper bound of O(

√
2d/ε) and a

lower bound of Ω(
√

2d/ε) for ε = O(d−3/2). Sample-based monotonicity testing over general
partial orders was studied by [42] who gave a O(

√
N/ε) one-sided error tester for functions

f : D → R where D is any partial order on N elements. Sample-based monotonicity testing
of functions on the line f : [n] → [r] was studied by [58] who gave a one-sided error upper
bound of O(

√
r/ε) and a matching lower bound of Ω(

√
r) for all sample-based testers.

1.4.2 Query-Based Monotonicity Testing
Monotonicity testing has been extensively studied in the standard query model [59, 35, 43, 34,
56, 42, 47, 1, 48, 2, 39, 62, 8, 22, 36, 16, 60, 9, 26, 27, 32, 7, 19, 30, 25, 52, 4, 33, 11, 58, 12,
49, 15, 21, 14, 13, 29]. When discussing these works we treat ε as a small constant for brevity.
For f : {0, 1}d → {0, 1}, the non-adaptive query complexity has been established at Θ̃(

√
d)

[53, 33] with an adaptive lower bound of Ω̃(d1/3) [33]. This gap for adaptive monotonicity
testing of Boolean functions is still an outstanding open question. For f : [n]d → {0, 1} and
f : Rd → {0, 1} under product measures, a recent result of [13] established a non-adaptive
upper bound of d1/2+o(1). For functions f : {0, 1}d → [r], [15] showed upper and lower bounds
of Θ̃(min(r

√
d, d)) for non-adaptive, one-sided error testers and there is a general (adaptive)

lower bound of Ω(min(d, r2)) due to [16]. For real-valued functions f : [n]d → R, the query
complexity is known to be Θ(d log n). The upper bound is non-adaptive [26] and the lower
bound holds even for adaptive testers [28].

1.4.3 k-Monotonicity Testing
The generalization to k-monotonicity testing has also been studied in the standard query
model by [46, 24]. These works show that the query-complexity of non-adaptive one-sided
error k-monotonicity testing is exp(Θ̃(

√
d)) for all k ≥ 2, demonstrating an interesting

separation between (1-)monotonicity and 2-monotonicity.

1.4.4 Learning Monotone Functions
Monotone Boolean functions f : {0, 1}d → {0, 1} were studied in the context of learning
theory by [23] who showed that they can be (improperly) learned to error ε under the uniform
distribution with exp(Õ( 1

ε

√
d)) time and samples. Very recent works [54, 55] have given

agnostic proper learning algorithms with the same complexity.

1.4.5 Learning k-Monotone Functions
The result of [23] was generalized by [17] who gave upper and lower bounds of exp(Θ̃( k

ε

√
d))

for learning k-monotone Boolean functions f : {0, 1}d → {0, 1}. For Boolean functions over
hypergrids f : [n]d → {0, 1}, [24] gave an upper bound of exp(Õ(min( k

ε2

√
d, d))) where Õ(·)

hides polylog factors of d, k, 1/ε. This result was generalized to functions f : Rd → {0, 1}
under product measures by [49].
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1.4.6 Sample-Based Property Testing
The notion of sample-based property testing was first presented and briefly studied by [44].
Broader studies of sample-based testing and its relationship with query-based testing have
since been given by [40, 41, 45]. A characterization of properties which are testable with a
constant number of samples was given by [20].

As we mentioned, sample-based algorithms are the standard model in learning theory,
and learning requires at least as many samples as testing for every class of functions. Thus,
it is natural to ask, when is testing easier than learning in terms of sample complexity? This
question is referred to as testing vs learning and has been studied by [51] and more recently
by [18, 37, 38].

There has also been work studying models that interpolate between query-based and
sample-based testers. For instance, [3] introduced the notion of active testing, where the
tester may make queries, but only on points from a polynomial-sized batch of unlabeled
samples drawn from the underlying distribution. This was inspired by the notion of active
learning which considers learning problems under this access model.

Sample-based convexity testing of sets over various domains has also seen some recent
attention [31, 5, 6, 10].

1.5 Learning Functions with Bounded Image Size: Proof of Theorem 3
In this section we give a short proof showing that the learning algorithm of [17] can be
extended in a relatively straightforward manner to functions f : {0, 1}d → [r] by increasing
the sample-complexity by a factor of r in the exponent.

Proof of Theorem 3. [17, Theorem 1.4] proved this result for the case of r = 2. In particular,
they show that there is a sample-based learning algorithm which given an arbitrary k-
monotone Boolean function f , outputs h such that Ph[d(f, h) > ε] < δ using ln(1/δ) ·
exp

(
O
(

min
{

rk
ε

√
d log d, d

}))
queries4 to the example oracle, EX(f). We will make use of

this result.
For each t ∈ [r], let ft : {0, 1}d → {0, 1} denote the thresholded Boolean function defined

as ft(x) := 1(f(x) ≥ t). Observe that for all x ∈ {0, 1}d we have f(x) = argmaxt{ft(x) = 1}.
Thus, for each t ∈ [r], run the learning algorithm of [17] with error parameters set to ε′ := ε/r

and δ = 1/3r to obtain a hypothesis ht. We have P[d(ht, ft) > ε/r] < 1/3r. By a union
bound, with probability at least 2/3, every t ∈ [r] satisfies d(ht, ft) ≤ ε/r. Moreover, if
this holds then by another union bound we have Px[∃t ∈ [r] : ht(x) ̸= f(x)] ≤ ε. Thus, the
hypothesis h(x) := argmaxt{ht(x) = 1} satisfies d(h, f) ≤ ε. The number of samples used is
ln(1/δ) · exp(O(min{ k

ε′

√
d log d, d})) = exp(O(min{ rk

ε

√
d log d, d})) and this completes the

proof. ◀

2 Preliminaries on k-Monotonicity

We use the notation [n] := {0, 1, . . . , n − 1}.

▶ Definition 9. Given a poset P = (X , ⪯) and a function f : X → R, an m-alternating
chain is a sequence of points x1 ≺ x2 ≺ · · · ≺ xm such that for all i ∈ {1, . . . , m − 1},
1. f(xi+1) − f(xi) < 0 when i is odd, and
2. f(xi+1) − f(xi) > 0 when i is even.

4 Their result (Thm 1.4 of [17]) is stated for constant δ, but can be easily extended to arbitrary δ with
the stated query complexity by replacing Thm 3.1 in their proof with the Low-Degree Algorithm stated
for general δ.
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▶ Definition 10 (k-monotonicity). For a poset P = (X , ⪯), a function f : X → R is called
k-monotone if it does not have any (k + 1)-alternating chains.

Let MP,k denote the set of all k-monotone functions f : X → R over the poset P = (X , ⪯).
The Hamming distance between two functions f, g : X → R is d(f, g) = |X |−1 · |{x ∈
X : f(x) ̸= g(x)}|. The distance to k-monotonicity of f is denoted by ε(f, MP,k) :=
ming∈MP,k

d(f, g). The following claim is our main tool for lower bounding the distance to
k-monotonicity.

▷ Claim 11. Let f : X → R and k′ ≥ 3k be an integer. Let C ⊂ X k′ be a collection of
disjoint k′-alternating chains for f . Then

ε(f, MP,k) ≥ 1
3|X |

·

∣∣∣∣∣ ⋃
C∈C

C

∣∣∣∣∣ .
Proof. Observe that every k-monotone function g ∈ MP,k has the following property: for
every C = (x1, x2, . . . , xk′) ∈ C, the sequence(

1, g(x2) − g(x1), g(x3) − g(x2), . . . , g(xk′) − g(xk′−1)
)

changes sign at most k − 1 times, whereas the sequence(
1, f(x2) − f(x1), f(x3) − f(x2), . . . , f(xk′) − f(xk′−1)

)
changes sign exactly k′ − 1 times. We have prepended a 1 so that the first sign change occurs
as soon as the function value decreases. Now, changing f(xi) can only reduce the number of
times the sequence changes sign by at most 2 and so |{i : f(xi) ̸= g(xi)}| ≥ k′−k

2 . Summing
over all chains in C and normalizing yields

d(f, g) ≥ k′ − k

2 · |C|
|X |

≥ k′

3 · |C|
|X |

≥ 1
3|X |

·

∣∣∣∣∣ ⋃
C∈C

C

∣∣∣∣∣
where the second inequality follows from k ≤ k′/3 and the third inequality is due to the fact
that the chains in C are all disjoint and each of size k′. This completes the proof since this
inequality holds for all g ∈ MP,k. ◁

We use the notation Mr,k to denote the set of all k-monotone functions f : {0, 1}d → [r]
over the hypercube whose image has at most r distinct values.

3 Lower Bound for Sample-Based Testers

In this section we prove Theorem 1, our lower bound on the sample-complexity of testing
k-monotonicity of functions f : {0, 1}d → [r]. We refer the reader to Section 1.2.1 for a
discussion of our main ideas and a proof sketch for the special case of k = 1 and r = 2, i.e.
monotone Boolean functions. Our proof follows the standard approach of defining a pair of
distributions Dyes, Dno over functions f : {0, 1}d → [r] which satisfy the following:

Dyes is supported over k-monotone functions.
Functions drawn from Dno are typically Ω(ε)-far from k-monotone: Pf∼Dno [ε(f, Mr,k) =
Ω(ε)] = Ω(1).
The distributions over labeled examples from Dyes and Dno are close in TV-distance.
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Our construction uses a generalized version of a family functions known as random Talag-
rand DNFs, which were used by [4] and [33] to prove lower bounds for testing monotonicity
of Boolean functions with adaptive and non-adaptive queries.

Let r, k satisfy rk ≤ ε
√

d
24300 . For convenience, we will assume that k(r−1)

ε and
√

d are
integers and that k(r−1)

ε divides
√

d. Let Lℓ :=
{

x ∈ {0, 1}d : |x| = ℓ
}

denote the ℓ’th
Hamming level of the hypercube. We partition

⋃
ℓ∈[0,ε

√
d) Ld/2+ℓ into k(r − 1) blocks as

follows. For each i ∈ [k(r − 1)], define

Bi =
(i+1)· ε

√
d

k(r−1) −1⋃
ℓ=i· ε

√
d

k(r−1)

L d
2 +ℓ.

The idea of our proof is to define a random DNF within each Bi. The width of each DNF will
be set to w := (r−1)k

√
d

2ε and for each i, the number of terms in the DNF within Bi will be set
to Ni := 2w · e−i = 2

(r−1)k
√

d
2ε (1−o(1)). The DNF defined over Bi will assign function values

from {i mod (r − 1), i mod (r − 1) + 1}. The terms in each DNF will be chosen randomly
from the following distribution. We think of terms as points t ∈ {0, 1}d in the hypercube
where another point x satisfies t if t ⪯ x, i.e. ti = 1 implies xi = 1.

▶ Definition 12 (Term distribution). A term t ∈ {0, 1}d is sampled from the distribution
Dterm as follows. Form a (multi)-set S ⊆ [d] by choosing w independent uniform samples
from [d]. For each a ∈ [d], let ta := 1(a ∈ S).

3.1 The Distributions Dyes and Dno

We now define the yes and no distributions over functions f : {0, 1}d → [r]. For each i ∈
[k(r−1)], choose terms ti,1, . . . , ti,Ni i.i.d. from Dterm and let ttt = {ti,j : i ∈ [k(r−1)], j ∈ [Ni]}
denote the random set of all terms. Now, for each i ∈ [k(r − 1)] and j ∈ [Ni], define the set

Ui,j =
{

x ∈ Bi : x ⪰ ti,j and x ̸⪰ ti,j′
for all j′ ̸= j

}
(1)

of all points in the i’th block that satisfy the j’th term uniquely. Let Ui =
⋃

j∈[Ni] Ui,j denote
the set of points in Bi that satisfy a unique term. The following claim is key to our result
and motivates our choice of w and Ni. We defer its proof to Section 3.2.

▷ Claim 13. For any i ∈ [k(r − 1)], j ∈ [Ni], and x ∈ Bi, we have

1
45Ni

≤ Pt[x ∈ Ui,j ] ≤ 3
Ni

.

As a corollary, we have Pt[x ∈ Ui] ≥ 1/45.

Functions drawn from Dyes are generated as follows. For each i ∈ [k(r − 1)] choose a
uniform random assignment

ϕϕϕi : [Ni] → {i mod (r − 1), i mod (r − 1) + 1} and let ϕϕϕ = (ϕϕϕi : i ∈ [k(r − 1)]).

For every x ∈ Bi define

fttt,ϕϕϕ(x) =


i mod (r − 1), if ∀j ∈ [Ni], x ̸⪰ ti,j

i mod (r − 1) + 1, if ∃j ̸= j′ ∈ [Ni], x ⪰ ti,j , ti,j′

ϕϕϕi(j), if x ∈ Ui,j .

APPROX/RANDOM 2024
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Functions drawn Dno are generated as follows. For each i ∈ [k(r − 1)] choose a uniform
random function

rrri : Ui → {i mod (r − 1), i mod (r − 1) + 1} and let rrr = (rrri : i ∈ [k(r − 1)]).

For each x ∈ Bi define

fttt,rrr(x) =


i mod (r − 1), if ∀j ∈ [Ni], x ̸⪰ ti,j

i mod (r − 1) + 1, if ∃j ̸= j′ ∈ [Ni], x ⪰ ti,j , ti,j′

rrri(x), if x ∈ Ui.

For x not belonging to any Bi: if |x| < d
2 , then both the yes and no distributions assign

value 0 and if |x| ≥ d
2 + ε

√
d, then both the yes and no distributions assign value r − 1.

In summary, a function fttt,ϕϕϕ ∼ Dyes assigns the same random value ϕϕϕi(j) ∈ {i mod (r −
1), i mod (r − 1) + 1} to all points in Ui,j , which results in a k-monotone function, whereas a
function fttt,rrr ∼ Dno assigns an i.i.d. uniform random {i mod (r−1), i mod (r−1)+1}-value to
each point in Ui, resulting in a function that is far from being k-monotone. By construction,
to detect any difference between these cases a tester will need to sample at least two points
from the same Ui,j . Theorem 1 follows immediately from the following three lemmas.

▶ Lemma 14. Every function in the support of Dyes is k-monotone.

Proof. Consider any ft,ϕϕϕ(x) ∈ supp(Dyes). For each a ∈ [k], consider the union of r − 1
blocks formed by

Ya := Ba(r−1) ∪ Ba(r−1)+1 ∪ · · · ∪ B(a+1)(r−1)−1.

Recall that if |x| < d/2, then ft,ϕϕϕ(x) = 0 and if |x| ≥ d/2 + ε
√

d, then ft,ϕϕϕ(x) = r − 1.
If d/2 ≤ |x| < d/2 + ε

√
d, then x ∈

⋃
a∈[k] Ya. Therefore, it suffices to show that for any

pair of comparable points x ≺ y ∈ Ya, we have ft,ϕϕϕ(x) ≤ ft,ϕϕϕ(y). Firstly, observe that by
construction all points z ∈ Ba(r−1)+b have function value ft,ϕϕϕ(z) ∈ {b, b + 1}. Since x ≺ y, if
x and y are in different blocks, then x ∈ Ba(r−1)+b and y ∈ Ba(r−1)+b′ where b < b′ and so
the inequality is satisfied. Therefore, we may assume x, y ∈ Ba(r−1)+b are in the same block.
Since x ≺ y, if t ≺ x for some term t ∈ supp(Dterm), then t ≺ y as well. I.e. the set of terms
in Ba(r−1)+b satisfied by y is a superset of the set of terms in Ba(r−1)+b satisfied by x. By
construction, this implies ft,ϕϕϕ(x) ≤ ft,ϕϕϕ(y). ◀

▶ Lemma 15. For fttt,rrr ∼ Dno, we have Pttt,rrr[ε(fttt,rrr, Mr,k) = Ω(ε)] = Ω(1).

We prove Lemma 15 in Section 3.4.

▶ Lemma 16. Given a collection of points xxx = (x1, . . . , xs) ∈ ({0, 1}d)s and a function
f : {0, 1}d → [r], let (xxx, f(xxx)) = ((x1, f(x1)), . . . , (xs, f(xs)))) denote the corresponding
collection of labelled examples. Let Eyes and Eno denote the distributions over (xxx, f(xxx))
when xxx consists of s i.i.d. uniform samples and f ∼ Dyes and f ∼ Dno, respectively. If
s ≤ 2

(r−1)k
√

d
5ε , then the total variation distance between Eyes and Eno is o(1).

We prove Lemma 16 in Section 3.3.
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3.2 Proof of Claim 13
Proof. Recall w = (r−1)k

√
d

2ε , Ni = 2w · e−i, the definition of Dterm from Definition 12,
and the definition of Ui,j from Equation (1). Since x ∈ Bi we have |x| = d

2 + ℓ where
iε

√
d

k(r−1) ≤ ℓ < (i+1)ε
√

d
k(r−1) . Note that Pt∼Dterm [t ⪯ x] = (|x|/d)w since t ⪯ x iff the non-zero

coordinates of t are a subset of the non-zero coordinates of x. Therefore, we have

Pt[x ∈ Ui,j ] = Pti,j [ti,j ⪯ x] ·
∏

j′∈[Ni]\{j}

Pti,j′ [ti,j′
̸⪯ x] = (|x|/d)w (1 − (|x|/d)w)Ni−1 .

Note that the first term is upper bounded as

(|x|/d)w ≤

(
d
2 + (i+1)·ε

√
d

k(r−1)

d

)w

= 1
2w

(
1 + 2ε

k(r − 1)
√

d
· (i + 1)

)w

≤ ei+1+o(1)

2w
≤ e1+o(1)

Ni

and this immediately implies the upper bound on Pt[x ∈ Ui,j ]. We can also lower bound this
quantity by

(|x|/d)w ≥

 d
2 + i·ε

√
d

k(r−1)

d

w

= 1
2w

(
1 + 2ε

k(r − 1)
√

d
· i

)w

≥ ei−o(1)

2w
≥ 1

eo(1)Ni
.

Now, combining our upper and lower bounds on (|x|/d)w yields

Pt[x ∈ Ui,j ] ≥ 1
eo(1)Ni

(
1 − e1+o(1)

Ni

)Ni

≥ 1
eo(1)Ni

e−(1+o(1))·e1+o(1)
≥ 1

ee+1Ni
≥ 1

45Ni
.

◁

3.3 Dyes and Dno are Hard to Distinguish: Proof of Lemma 16
Proof. Recall the definition of the set Ui,j in Equation (1). For a ̸= b ∈ [s], let Eab denote
the event that xa and xb belong to the same Ui,j for some i ∈ [k(r −1)] and j ∈ [Ni]. Observe
that conditioned on ∨a,bEab, the distributions Eyes and Eno are identical. Let x, y ∈ {0, 1}d

denote two i.i.d. uniform samples. We have

P[Eab] = Px,y,t

∨
i,j

(x ∈ Ui,j ∧ y ∈ Ui,j)


=
∑
i,j

Px,y,t [x ∈ Ui,j ∧ y ∈ Ui,j ] =
∑
i,j

Px,t[x ∈ Ui,j ]2 (2)

where the first step holds since the Ui,j ’s are disjoint and the second step holds by independence
of x and y. Now, for a fixed i ∈ [k(r − 1)] and j ∈ [Ni] we have the following: by Claim 13,
for x ∈ Bi we have Pt[x ∈ Ui,j ] ≤ 3

Ni
and for x /∈ Bi we have Pt[x ∈ Ui,j ] = 0. Therefore

Px,t[x ∈ Ui,j ] ≤ 3
Ni

. Therefore, the RHS of Equation (2) is bounded as∑
i,j

Px,t[x ∈ Ui,j ]2 =
∑

i

Ni · Px,t[x ∈ Ui,j ]2 ≤
∑

i

9
Ni

≤ rk · 9
Nk(r−1)−1

since the Ni’s are decreasing with respect to i. Therefore,

dT V (Eyes, Eno) ≤ Pxxx,ttt

 ∨
a,b∈[s]

Eab

 ≤ s2 · rk · 9
Nk(r−1)−1

= o(1)

since Nk(r−1)−1 = 2
(r−1)k

√
d

2ε (1−o(1)) = ω(s2 · rk). ◀
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3.4 Functions Drawn from Dno are Far from k-Monotone: Proof of
Lemma 15

Proof. We will use Claim 11, restated below for the special case of r-valued functions over
the hypercube. Recall that Mr,k is the set of k-monotone functions f : {0, 1}d → [r].

▷ Claim 17. Let f : {0, 1}d → [r] and k′ ≥ 3k be an integer. Let C ⊂ ({0, 1}d)k′ be a
collection of disjoint k′-alternating chains for f . Then

ε(f, Mr,k) ≥ 1
3 · 2d

·

∣∣∣∣∣ ⋃
C∈C

C

∣∣∣∣∣ .
From the above claim, we can lower bound the distance to k-monotonicity of f by showing

that it contains a collection of disjoint k′-alternating chains where k′ ≥ 3k whose union
makes up an Ω(ε)-fraction of the hypercube.

Recall Ui = Ui,1 ∪ · · · ∪ Ui,Ni
⊆ Bi and note that ft,rrr ∼ Dno takes values only from

{i mod (r − 1), i mod (r − 1) + 1} in Bi. In particular, for a ∈ {0, 1, . . . , r − 2}, let

Xa = Ba ∪ B(r−1)+a ∪ B2(r−1)+a ∪ · · · ∪ B(k−1)(r−1)+a =
⋃

i∈[k]

Bi(r−1)+a (3)

and note that all points x ∈ Xa are assigned value ft,rrr(x) ∈ {a, a + 1}. Moreover, this value
is chosen uniformly at random when x ∈

⋃
i∈[k] Ui(r−1)+a, which occurs with probability

≥ 1/45 by Claim 13. Let k′′ := ε
√

d
r−1 and recall that we are assuming rk ≤ ε

√
d

24300 and so
k′′ ≥ 24300k. We first show there exists a large collection Ca of length-k′′ disjoint chains in
Xa for all a ∈ {0, 1, . . . , r − 2}.

▷ Claim 18. For every a ∈ {0, 1, . . . , r − 2}, there exists a collection of vertex disjoint chains
Ca ⊂ (Xa)k′′ in Xa of length k′′ of size |Ca| ≥ Ω( 2d

√
d
).

Proof. We start by showing that there is a large matching in the transitive closure of the
hypercube from L d

2
to L d

2 +ε
√

d−1. Consider the bipartite graph (U, V, E) where U := L d
2
,

V := L d
2 +ε

√
d−1, and E := {(x, y) ∈ U × V : x ≺ y}. Observe that vertices in U have degree

exactly ∆ :=
( d

2
ε
√

d−1

)
while vertices in V have degree exactly

( d
2 +ε

√
d−1

ε
√

d−1

)
≥ ∆. Note also

that |V | =
(

d
d
2 +ε

√
d−1
)

≥ Ω( 2d
√

d
) by Stirling’s approximation. We now use the following claim

from [10].

▷ Claim 19 (Claim 5.10 of [10]). Let (U, V, E) be a bipartite graph and ∆ > 0 be such that
(a) each vertex x ∈ U has degree exactly ∆ and (b) each vertex y ∈ V has degree at least ∆.
Then there exists a matching M ⊆ E in (U, V, E) of size |M | ≥ 1

2 |V |.

By the above claim and the previous observations, there exist subsets S ⊆ L d
2

and
T ⊆ L d

2 +ε
√

d−1 of size |S| = |T | = Ω( 2d
√

d
) and a bijection ϕ : S → T satisfying x ≺ ϕ(x) for

all x ∈ S. We now use the following routing theorem due to Lehman and Ron to obtain a
collection of disjoint chains from S to T .

▶ Theorem 20 (Lehman-Ron, [56]). Let a < b and S ⊆ La, T ⊆ Lb where m := |S| = |T |.
Moreover, suppose there is a bijection ϕ : S → T satisfying x ≺ ϕ(x) for all x ∈ S. Then
there exist m vertex disjoint paths from S to T in the hypercube.
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Now, invoking the above theorem on our bijection ϕ : S → T yields a collection P of
|P | ≥ Ω( 2d

√
d
) vertex disjoint paths from L d

2
to L d

2 +ε
√

d−1. For each a ∈ {0, 1, . . . , r − 2},
let Ca denote the collection of chains formed by taking a path in P and including only the
vertices from Xa (recall Equation (3)). Note that the resulting chains in Ca are of length
k′′ = ε

√
d

r−1 . This completes the proof of Claim 18. ◁

From Claim 18, we have C0, C1, . . . , Cr−2 where each Ca ⊂ (Xa)k′′ is a collection of
vertex disjoint chains of length k′′ ≥ 24300k of size |Ca| ≥ Ω( 2d

√
d
). Fix a chain C =

(x1, x2, . . . , xk′′) ∈ Ca. Let A(C) be the random variable which denotes the max-length
alternating sub-chain (recall Definition 9) of C over a random ft,rrr ∼ Dno. Fix xj in the
chain and suppose xj ∈ Bi ⊆ Xa. By Claim 13, Pt[xj ∈ Ui] ≥ 1/45. Moreover, conditioned
on xj ∈ Ui, ft,rrr(xj) is chosen from {a, a + 1} uniformly at random. Thus, any step of the
sequence

(1, ft,rrr(x2) − ft,rrr(x1), ft,rrr(x3) − ft,rrr(x2), . . . , ft,rrr(xk′′) − ft,rrr(xk′′−1))

is non-zero and differs in sign from the previous non-zero step with probability at least
1/90 and so E[A(C)] ≥ k′′/90. I.e., 0 ≤ E[k′′ − A(C)] < k′′(1 − 1

90 ). Thus, using Markov’s
inequality we have

P
[
A(C) <

k′′

8100

]
= P

[
k′′ − A(C) > k′′

(
1 − 1

90

)(
1 + 1

90

)]
≤ 1

(1 + 1
90 )

= 1 − 1
91 . (4)

Now, let C = C0 ∪ C1 ∪ · · · ∪ Cr−2 and let Z := |{C ∈ C : A(C) ≥ k′′

8100 }|. By Equation (4) we
have E[Z] ≥ |C|/91 and 0 ≤ E[|C| − Z] ≤ |C|(1 − 1

91 ). Again using Markov’s inequality, we
have

P
[
Z <

|C|
8281

]
= P

[
|C| − Z > |C|

(
1 − 1

91

)(
1 + 1

91

)]
≤ 1

(1 + 1
91 )

= 1 − 1
92 . (5)

Now, for C ∈ C such that A(C) ≥ k′′/8100, let C ′ be any (k′′/8100)-alternating sub-chain
of C. Let C′ = {C ′ : C ∈ C such that A(C) ≥ k′′/8100} which is a collection of disjoint
(k′′/8100)-alternating chains for ft,rrr. Now, recall that k′′ ≥ 24300k and so k′′/8100 ≥ 3k.
Thus, if Z ≥ |C|/8281, then |C′| ≥ |C|/8281 and so by Claim 17 we have

ε(ft,rrr, Mr,k) ≥ 1
3 · 2d

∣∣∣∣∣ ⋃
C′∈C′

C ′

∣∣∣∣∣ ≥ 1
3 · 2d

· |C′| · k′′

8100 ≥ k′′ · |C|
201, 228, 300 · 2d

(6)

By Claim 18 we have |C| ≥ (r − 1) · Ω( 2d
√

d
) and recall that k′′ = ε

√
d

r−1 . Thus, the RHS of
Equation (6) is Ω(ε). In conclusion,

Pt,rrr [ε(ft,rrr, Mr,k) ≥ Ω(ε)] ≥ P
[
Z ≥ |C|

8281

]
≥ 1

92

by Equation (5) and this completes the proof of Lemma 15. ◀

4 Learning Upper Bound over Product Spaces

In this section we prove Theorem 6, our upper bound for learning measurable k-monotone
functions in Rd. We restate the theorem below without any hidden logarithmic factors and
for the case of r = 2. The theorem for general r ≥ 2 can then be obtained by replacing ε with
ε/r and δ by 1/3r following the same approach we used to prove Theorem 3 in Section 1.5.
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▶ Theorem 21. Given an arbitrary product measure µ, there is a learning algorithm under µ

which learns any measurable k-monotone function f : Rd → {±1} to error ε with probability
1 − δ with time and sample complexity

ln
(

1
δ

)
· min

{
(d log(dk/ε))O

(
k
ε

√
d log(dk/ε)

)
,

(
dk

ε

)O(d)
}

(7)

Our proof uses downsampling to reduce our learning problem over Rd to learning over
a hypergrid, [N ]d, under the uniform distribution with mild label noise. In Section 4.1 we
synthesize the results from [49] which we borrow for our proof. In Section 4.2 we give two
learning results for hypergrids whose time complexities correspond to the two arguments
inside the min expression in Equation (7). In Section 4.3 we describe the learning algorithm
and prove its correctness.

Throughout this section, let µ =
∏d

i=1 µi be any product measure over Rd and let N be
a power of two satisfying 8kd/ε ≤ N ≤ 16kd/ε.

4.1 Reduction to Hypergrids via Downsampling
The idea of downsampling is to construct a grid-partition of Rd into Nd blocks such that
(a) the measure of each block under µ is roughly N−d, and (b) the function f we’re trying
to learn is constant on most of the blocks. Roughly speaking, this allows us to learn f

under µ by learning a proxy for f over [N ]d under the uniform distribution. The value of N

needed to achieve this depends on what [49] call the “block boundary size” of the function.
Formally, the downsampling procedure constructs query access to maps block : Rd → [N ]d
and blockpoint : [N ]d → Rd which have various good properties which we will spell out
in the rest of this section. One should think of block as mapping each point x ∈ Rd to
the block of the grid-partition that x belongs to and blockpoint as mapping each block to
some specific point contained in the block. See [49, Def 2.1] for a formal definition. Given
these maps and a function f : Rd → {±1} we define the function fblock : [N ]d → {±1} as
fblock(z) = f(blockpoint(z)). We let block(µ) denote the distribution over [N ]d induced by
sampling x ∼ µ and then taking block(x).

▶ Proposition 22 (Downsampling, [49]). Let f : Rd → {0, 1} be a k-monotone function and
N, Q ∈ Z+. Using

m := O

(
NQ2d2

min(δ, ε)2 ln
(

Nd

δ

))
samples from µ = µ1 × · · · × µd, there is a downsampling procedure that constructs query
access to maps block : Rd → [N ]d and blockpoint : [N ]d → Rd such that with probability at
least 1 − δ over the random samples, the following two conditions are satisfied:
1.
∥∥block(µ) − unif([N ]d)

∥∥
TV ≤ δ

Q .
2. Px∼µ

[
f(x) ̸= fblock(block(x))

]
≤ ε.

The total running time and number of samples is O(m).

Proof. [49, Prop. 2.5] shows that there is a randomized procedure using m samples from µ

and O(m) time which constructs the maps block and blockpoint such that with probability
1, we get

Px∼µ

[
f(x) ̸= fblock(block(x))

]
≤ N−d · bbs(f, N) +

∥∥block(µ) − unif([N ]d)
∥∥

TV (8)
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where bbs(f, N) is the N -block boundary size of f [49, Def. 2.4], which is at most kdNd−1

when f is k-monotone [49, Lemma 7.1]. Thus, the first of the two quantities in the RHS is
at most kd/N which is at most ε/8 using our definition of N . Then, [49, Lemma 2.7] states
that

P
[∥∥block(µ) − unif([N ]d)

∥∥
TV > β

]
≤ 4Nd · exp

(
− β2m

18Nd2

)
(9)

and so invoking this lemma with β := min(δ/4Q, ε/8) and m := 18Nd2

β2 ln
( 16Nd

δ

)
completes

the proof. ◀

4.2 Learning over Hypergrids
For a function f : X → {±1} and a measure µ over X , recall that the example oracle for
f under µ, denoted by EX(f, µ), when queried, generates an example, (x, f(x)), where x

is sampled from µ. Given a noise parameter η, the noisy example oracle EXη(f, µ), when
queried, samples x from µ, returns the true example (x, f(x)) with probability 1 − η, and
returns the corrupted example (x, −f(x)) with probability η. This is referred to as random
classification noise (RCN).

We prove the following two upper bounds for learning over hypergrids under RCN. The
bound in Lemma 23 is relatively straightforward to prove using coupon collector arguments
plus some additional work to handle the label noise. We give a proof in the appendix (see
Section B in the full version of the paper).

▶ Lemma 23 (Coupon Collecting Learner). Let ε, δ ∈ (0, 1), η ∈ (0, 1/2), and N ∈ Z+. There
is an algorithm which, given any k-monotone function f : [N ]d → {±1}, uses at most

Õ

(
1

(1 − 2η)2

(
log 1

ε
+ log 1

δ

))
· NO(d)

examples from EXη(f, unif([N ]d)) and returns h : [N ]d → {±1}, satisfying Ph[d(f, h) ≤ ε] ≥
1 − δ.

▶ Lemma 24 (Hypercube Mapping Learner). Let ε, δ ∈ (0, 1), η ∈ (0, 1/2), and N ∈ Z+ be a
power of two. There is an algorithm which, given any k-monotone function f : [N ]d → {±1},
uses at most

O

(
1

ε2(1 − 2η)2 + log 1
δ

)
(d log N)O

(
k
ε

√
d log N

)
examples from EXη(f, unif([N ]d)) and returns h : [N ]d → {±1}, satisfying Ph[d(f, h) ≤ ε] ≥
1 − δ.

Proof. Let b : [N ] → {±1}log N denote the bijection which maps each element of [N ] to its
bit representation. Let bbb : [N ]d → {±1}d log N be defined as bbb(x) = (b(x1), . . . , b(xd)). Given
f : [N ]d → {±1} define the function f cube : {±1}d log N → {±1} as f cube(z) = f(bbb−1(z)).

▶ Observation 25. If f is k-monotone over [N ]d, then f cube is k-monotone over {±1}d log N .

Proof. Observe that if bbb(x) ≺ bbb(y) in {±1}d log N , then x ≺ y in [N ]d. Thus, if bbb(x1) ≺ · · · ≺
bbb(xm) is an m-alternating chain for f cube, then x1 ≺ · · · ≺ xm is an m-alternating chain for
f . Therefore, if f cube is not k-monotone, then neither is f . ◀
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Now, given Observation 25 and the bijection bbb : [N ]d → {±1}d log N , it suffices to provide
a learning algorithm for f cube. This is achieved using the Low-Degree Algorithm introduced
by [57] which was shown by [50] to be robust to classification noise. Formally, we use the
following theorem, which we prove in the appendix for the sake of completeness (see Section
A in the full version of the paper).

▶ Theorem 26 (Low-Degree Algorithm with Classification Noise). Let ε, δ ∈ (0, 1) and η ∈
(0, 1/2). Suppose C is a concept class of Boolean functions over {±1}d such that for some fixed
positive integer τ , all f ∈ C satisfy

∑
S⊆[d] : |S|>τ f̂(S)2 ≤ ε/2. Then there is an algorithm A

which, on any input f ∈ C, uses at most

O

((
1

ε2(1 − 2η)2 + log 1
δ

)
· dτ

)
examples from EXη(f, unif({±1}d)) and returns a hypothesis h : {±1}d → {±1} where
Ph[d(f, h) ≤ ε] ≥ 1 − δ.

We use the following Fourier concentration lemma due to [17] for k-monotone Boolean
functions.

▶ Lemma 27 ([17]). If f : {±1}d → {±1} is k-monotone, then
∑

S : |S|> k
√

d
ε

f̂(S)2 ≤ ε.

By Lemma 27, we can invoke Theorem 26 with τ = k
√

d log N

ε , concluding the proof of
Lemma 24. ◀

4.3 Putting it Together: Proof of Theorem 21
Proof. We now have all the tools to define the algorithm and prove its correctness.

Algorithm 1 Learning algorithm for k-monotone functions under product measure µ.

Input: ε, δ ∈ (0, 1) and access to examples from EX(f, µ) where f : Rd → {±1} is
k-monotone;

1. Let N be a power of 2 such that 8kd
ε ≤ N ≤ 16kd

ε . Let A denote the learning
algorithm for k-monotone functions g : [N ]d → {±1} which has the smaller
sample-complexity among the algorithms guaranteed by Lemma 23 and Lemma 24.
Let Q be the sample-complexity of A;

2. Run the downsampling procedure of Proposition 22 to obtain the maps block,
blockpoint, and access to the corresponding function fblock : [N ]d → {±1} ;

3. Obtain a set of Q examples S ∈ (Rd × {±1})Q from (EX(f, µ))Q;
4. Let Sblock = {(block(x), f(x)) : (x, f(x)) ∈ S} ∈ ([N ]d × {±1})Q;
5. Run A using the sample Sblock, which returns a hypothesis hblock : [N ]d → {±1}
for fblock;

Return the hypothesis h : Rd → {±1} for f : Rd → {±1} defined as
h(x) = hblock(block(x))

Recall that given maps block : Rd → [N ]d, blockpoint : [N ]d → Rd, and a function
f : Rd → {±1} we define the function fblock : [N ]d → {±1} as fblock(z) = f(blockpoint(z)).
Recall that block(µ) is the distribution over block(x) ∈ [N ]d when x ∼ µ. By Proposition 22,
step (2) of Alg. 1 results in the following items being satisfied with probability at least 1 − δ.
1.
∥∥block(µ) − unif([N ]d)

∥∥
TV ≤ δ

Q .
2. Px∼µ

[
f(x) ̸= fblock(block(x))

]
≤ ε.
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Firstly, by item (2), an example (block(x), f(x)) where x ∼ µ, is equivalent to an example
(z, b) ∼ EXη(fblock, block(µ)) for some η ≤ ε. I.e. the set Sblock ∈ ([N ]d × {±1})Q from step
(4) of Alg. 1 is distributed according to (EXη(fblock, block(µ)))Q. Now, as stated, Lemma 23
and Lemma 24 only hold when A is given a sample from (EXη(fblock, unif([N ]d)))Q. However,
the following claim shows that since block(µ) and unif([N ]d)) are sufficiently close (item (1)
above), the guarantees on A from Lemma 23 and Lemma 24 also hold when A is given a
sample from (EXη(fblock, block(µ)))Q.

▷ Claim 28. Let C : X → {±1} be a concept class and let A be an algorithm which
given any f ∈ C, ε, δ ∈ (0, 1), and η ∈ [0, 1/2) uses a sample from (EXη(f, unif([N ]d)))Q

and produces h satisfying Px∼unif([N ]d)[h(x) ̸= f(x)] ≤ ε with probability at least 1 − δ.
If D is a distribution over [N ]d with

∥∥D − unif([N ]d)
∥∥

T V
≤ γ, then given a sample from

(EXη(f, D))Q, A produces h satisfying Px∼D[h(x) ̸= f(x)] ≤ ε + γ with probability at least
1 − (δ + γQ) .

Using Claim 28 and item (1) above, if step (2) of Alg. 1 succeeds, then with probability at
least 1 − 2δ, step (5) produces hblock such that Pz∼block(µ)[hblock(z) ̸= fblock(z)] ≤ 2ε. By the
triangle inequality and using our definition of h in the return statement of Alg. 1, we have

Px∼µ[h(x) ̸= f(x)]
≤ Px∼µ[f(x) ̸= fblock(block(x))] + Px∼µ[fblock(block(x)) ̸= hblock(block(x))]
= Px∼µ[f(x) ̸= fblock(block(x))] + Pz∼block(µ)[fblock(z) ̸= hblock(z)]. (10)

The first term in the RHS is at most ε by item (2) above and the second term is at most
2ε as we argued in the previous paragraph. Finally, adding up the failure probabilities of
steps (2) and (5), we conclude that Alg. 1 produces h satisfying Px∼µ[h(x) ̸= f(x)] ≤ 3ε

with probability at least 1 − 3δ. ◀

4.3.1 Proof of Claim 28
Proof. It is a well-known fact that for two distributions D1 and D2, the TV-distance between
the corresponding product distributions satisfies

∥∥∥DQ
1 − DQ

2

∥∥∥
T V

≤ Q ∥D1 − D2∥T V and thus
we have∥∥DQ − unif([N ]d)Q

∥∥
T V

≤ γQ

Given a set of Q examples S ∈ ([N ]d × {±1})Q, let E(S) denote the event that the algorithm
A fails to produce a hypothesis with error at most ε, after sampling S. First, note the
distribution over labels for the distributions are the same, and therefore

PS∼(EXη(f,D))Q [E(S)] − PS∼(EXη(f,unif([N ]d)))Q [E(S)]
= PS∼DQ [E(S)] − PS∼unif([N ]d)Q [E(S)]. (11)

Using the definition of TV-distance we have

PS∼DQ [E(S)] − PS∼unif([N ]d)Q [E(S)] ≤
∥∥DQ − unif([N ]d)Q

∥∥
T V

≤ γQ (12)

and therefore

PS∼(EXη(f,D))Q [E(S)] ≤ PS∼(EXη(f,unif([N ]d)))Q [E(S)] + γQ ≤ δ + γQ (13)
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where we used PS∼(EXη(f,unif([N ]d)))Q [E(S)] ≤ δ by the assumption in the statement of the
claim. Now, conditioned on ¬E(S), we have that A produces h satisfying Px∼unif([N ]d)[h(x) ̸=
f(x)] ≤ ε. Again using our bound on the TV-distance, we have

Px∼D[h(x) ̸= f(x)] − Px∼unif([N ]d)[h(x) ̸= f(x)] ≤
∥∥D − unif([N ]d)

∥∥
T V

≤ γ

and so Px∼D[h(x) ̸= f(x)] ≤ ε + γ. ◁

5 Sample-Based Testing with One-Sided Error

In this section we prove Theorem 5, our upper and lower bound on sample-based testing
with one-sided error over the hypercube.

Proof of Theorem 5. By a coupon-collecting argument, there is an O(d · 2d) sample upper
bound for exactly learning any function over {0, 1}d under the uniform distribution and
therefore the upper bound is trivial.

It suffices to prove the lower bound for the case of r = 2 and k = 1, i.e. for testing
monotonicity of Boolean functions. We will need the following fact.

▶ Fact 29. Let A ⊂ {0, 1}d be any anti-chain and let ℓ : A → {0, 1} be any labelling of A.
Then there exists a monotone function f : {0, 1}d → {0, 1} such that f(x) = ℓ(x) for all
x ∈ A. I.e. A shatters the class of monotone functions.

Now, let T be any monotonicity tester with one-sided error and let S ⊆ {0, 1}d denote a
set of s i.i.d. uniform samples. Since T has one-sided error, if the input function is monotone,
then T must accept. In other words, for T to reject it must be sure without a doubt that
the input function is not monotone. By Fact 29 for T to be sure the input function is not
monotone, it must be that S is not an anti-chain. Let f : {0, 1}d → {0, 1} be any function
which is ε-far from monotone. Since T is a valid tester, it rejects f with probability at least
2/3. By the above argument we have

2/3 ≤ PS [T rejects f ] ≤ PS [S is not an anti-chain] ≤ s2 · Px,y∼{0,1}d [x ⪯ y] (14)

where the last inequality is by a union bound over all pairs of samples. We then have

Px,y∼{0,1}d [x ⪯ y] = Px,y∼{0,1}d [xi ≤ yi, ∀i ∈ [d]] =
d∏

i=1
Pxi,yi∼{0,1}[xi ≤ yi] = (3/4)d.

(15)

Thus, combining Equation (14) and Equation (15) yields s ≥
√

2
3 ( 4

3 )d = exp(Ω(d)). ◀
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