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Abstract

We prove that throughout the satisfiable phase, the logarithm of the number of satisfying assignments
of a random 2-SAT formula satisfies a central limit theorem. This implies that the log of the number
of satisfying assignments exhibits fluctuations of order

√
n, with n the number of variables. The

formula for the variance can be evaluated effectively. By contrast, for numerous other random
constraint satisfaction problems the typical fluctuations of the logarithm of the number of solutions
are bounded throughout all or most of the satisfiable regime.
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1 Introduction

1.1 Background and motivation

The quest for satisfiability thresholds has been a guiding theme of research into random
constraint satisfaction problems [7, 17, 24]. But once the satisfiability threshold has been
pinpointed a question of no less consequence is to determine the distribution of the number
of satisfying assignments within the satisfiable phase [33]. Indeed, the number of solutions is
intimately tied to phase transitions that affect the geometry of the solution space, which in
turn impacts the computational nature of finding or sampling solutions [4, 15, 28]. However,
few tools are currently available to count solutions of random problems. Where precise
rigorous results exist (such as in random NAESAT or XORSAT), the proofs typically rely on
the method of moments (e.g., [6, 26, 40, 41]). Yet a necessary condition for the success of
this approach is that the problem in question exhibits certain symmetries, which are absent
in many interesting cases [7, 20].

The aim of the present paper is to shed a closer light on the number of satisfying
assignments in random 2-SAT, the simplest random CSP that lacks said symmetry properties.
While the random 2-SAT satisfiability threshold has been known since the 1990s [19, 31], a
first-order approximation to the number of satisfying assignments has been obtained only
recently [5]. This timeline reflects the computational complexity of the respective questions.
As is well known, deciding the satisfiability of a 2-CNF reduces to directed reachability,
solvable in polynomial time [10].

By contrast, calculating the number of satisfying assignmets Z(Φ) of a 2-CNF Φ is a
#P-hard task [45]. Nonetheless, Monasson and Zecchina [36] put forward a delicate physics-
inspired conjecture as to the exponential order of the number of satisfying assignments of
random 2-CNFs. Achlioptas et al. [5] recently proved this conjecture. Their theorem provides
a first-order, law-of-large-numbers approximation of the logarithm of the number of satisfying
assignments. The present paper contributes a much more precise result, namely a central
limit theorem. We show that throughout the satisfiable phase the logarithm of the number
of satisfying assignments, suitably shifted and scaled, converges to a Gaussian. This is the
first central limit theorem of this type for any random CSP.

Let Φ = Φn,m be a random 2-CNF on n Boolean variables x1, . . . , xn with m clauses,
drawn independently and uniformly from all 4

(
n
2
)

possible 2-clauses. Suppose that m ∼ dn/2
for a fixed real d > 0. Thus, d gauges the average number of clauses in which a variable xi

appears. The value d = 2 marks the satisfiability threshold; hence, Φ is satisfiable with high
probability (“w.h.p.”) if d < 2, and unsatisfiable w.h.p. if d > 2 [19, 31]. Achlioptas et al. [5]
determined a function ϕ(d) > 0 such that for all d < 2, i.e., throughout the entire satisfiable
phase we have

Z(Φ) = exp(nϕ(d) + o(n)) w.h.p. , (1)

thereby determining the leading exponential order of Z(Φ).
However, (1) fails to identify the limiting distribution of Z(Φ). To be precise, since (1)

shows that Z(Φ) scales exponentially, we expect this random variable to exhibit multiplicative
fluctuations. Therefore, the appropriate goal is to find the limiting distribution of the
logarithm of this random variable, i.e., of log Z(Φ). Indeed, physics intuition suggests that
log Z(Φ) should be asymptotically Gaussian [34]. The main result of the present paper
confirms this hunch. Specifically, letting Γη(d) be a Gaussian with mean 0 and standard
deviation η(d) > 0, we prove that for all 0 < d < 2, log Z(Φ) satisfies
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P
[
log Z(Φ) − E[log Z(Φ) | Z(Φ) > 0] < z

√
m
]

∼ P
[
Γη(d) < z

]
(z ∈ R). (2)

The order Θ(
√

n) of fluctuations confirmed by (2) sets random 2-SAT apart from a large
family of other random constraint satisfaction problems. For example, for random graph
q-colouring with q ≥ 3 colours the log of the number of q-colourings superconcentrates, i.e.,
merely has bounded fluctuations throughout most of the regime where the random graph
is q-colourable [12].1 The same is true of random NAESAT, XORSAT and the symmetric
perceptron [1, 11, 20, 40]. In each of these cases, certain fundamental symmetry properties
(e.g., that the set of q-colourings remains invariant under permutations of the colours) enable
the computation of the number of solutions via the method of moments. Random 2-SAT
lacks the respective symmetry (as the set of satisfying assignments is not generally invariant
under swapping “true” and “false”), and accordingly (2) establishes that the number of
solutions fails to superconcentrate (for more details see [20]).

1.2 The main result
The formula for the standard deviation η(d) from (2) comes in terms of a fixed point equation
on a space of probability measures. Thus, let P(R2) be the set of all (Borel) probability
measures on R2. For 0 < d < 2 and 0 ≤ t ≤ 1 we define an operator

logBP⊗
d,t :P

(
R2) → P

(
R2) , ρ 7→ ρ̂ = logBP⊗

d,t(ρ), (3)

as follows. Let

(ξρ,i)i≥1, (ξ′
ρ,i)i≥1, (ξ′′

ρ,i)i≥1, ξρ,i =
(

ξρ,i,1
ξρ,i,2

)
, ξ′

ρ,i =
(

ξ′
ρ,i,1

ξ′
ρ,i,2

)
, ξ′′

ρ,i =
(

ξ′′
ρ,i,1

ξ′′
ρ,i,2

)

be random vectors with distribution ρ, let d
dist= Po(td), d′, d′′ dist= Po((1 − t)d) and let

si, s′
i, s′′

i , ri, r′
i, r′′

i for i ≥ 1 be uniformly random on {±1}, all mutually independent. Then
ρ̂ is the distribution of the vector(∑d

i=1 si log
( 1

2
(
1 + ri tanh(ξρ,i,1/2)

))
+
∑d′

i=1 s′
i log

( 1
2
(
1 + r′

i tanh(ξ′
ρ,i,1/2)

))∑d
i=1 si log

( 1
2
(
1 + ri tanh(ξρ,i,2/2)

))
+
∑d′′

i=1 s′′
i log

( 1
2
(
1 + r′′

i tanh(ξ′′
ρ,i,2/2)

))) .

In addition, define a function B⊗
d,t : P(R2) → (0, ∞] by letting

B⊗
d,t(ρ) = E

[ 2∏
h=1

log
(

1 − 1
4(1 + r1 tanh(ξρ,1,h/2))(1 + r2 tanh(ξρ,2,h/2))

)]
. (4)

▶ Theorem 1. For any 0 < d < 2, t ∈ [0, 1], there exists a unique probability measure
ρd,t ∈ P(R2) such that

ρd,t = logBP⊗
d,t(ρd,t) and

∫
R2

∥ξ∥2
2dρd,t(ξ) < ∞. (5)

1 Formally, up to the so-called condensation threshold, which precedes the q-colourabiliy threshold by a
small additive constant, the logarithm of the number of q-colurings minus its expectation converges in
distribution to a random variable with bounded moments [12, 13, 20].

APPROX/RANDOM 2024
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Figure 1 Left: Numerical approximations to the function ϕ(d) from (1) (red) and the variance
η(d)2 from (7) (green). The black dashed line is the first moment bound d 7→ log(2) + d

2 log(3/4).
Right: An illustration of the tree T ⊗ from Section 2.6.

Furthermore,

lim
n→∞

log Z(Φ) − E[log Z(Φ) | Z(Φ) > 0]√
m

= Γη(d) in distribution, where (6)

η(d)2 =
∫ 1

0
B⊗

d,t(ρd,t)dt − B⊗
d,0(ρd,0) ∈ (0, ∞). (7)

The conditioning on log Z(Φ) > 0 is necessary in (6), because even for d < 2 the formula
Φ is unsatisfiable with probability Ω(n−1), in which case log Z(Φ) = −∞. Moreover, the
L2-bound from (5) ensures that the integral (7) is well-defined. Finally, (6) implies (2).

How can the formula (7) be evaluated? Because the proof of the uniqueness of the
stochastic fixed point ρd,t from (5) is based on the contraction method, a fixed point iteration
will converge rapidly. In effect, for any d, t a discrete distribution that approximates ρd,t

arbitrarily well (in Wasserstein distance) can be computed via a randomised algorithm called
population dynamics [34, Chapter 14]. Since B⊗

d,t(ρd,t) varies continously in d and t, η(d)2

can thus be approximated within any desired accuracy, see Figure 1.

2 Proof strategy

The main challenge towards the proof of Theorem 1 is to get a handle on the variance of
log Z(Φ) given satisfiability. The key idea, inspired by spin glass theory [18] but novel to
random constraint satisfaction, is to count the joint number of satisfying assignments of
two correlated random formulas. Once this is accomplished Theorem 1 will follow from the
careful application of a general martingale central limit theorem. To get acclimatised we first
revisit the method of moments, the reasons it fails on random 2-SAT and the combinatorial
interpretation of the law of large numbers (1).

2.1 The method of moments fails
The default approach to estimating the number of solutions to a random CSP is the venerable
second moment method [7]. Its thrust is to show that the second moment of the number
of solutions is of the same order as the square of the expected number of solutions. If so
then the moment computation together with small subgraph conditioning yields the precise
limiting distribution of the number of solutions [23, 42]. However, this approach works only if
the log of the number of solutions superconcentrates around the log of the expected number
of solutions.



A. Chatterjee et al. 39:5

This necessary condition is not satisfied in random 2-SAT. In fact, a straightforward
calculation yields

1
n

logE[Z(Φ)] ∼ log 2 + d

2 log(3/4). (8)

The formula on the r.h.s. is displayed as the black dashed line in Figure 1. As can be
verified analytically, this line strictly exceeds the function ϕ(d) from (1) for any 0 < d < 2.
Consequently, (1) implies that log Z(Φ) ≤ logE[Z(Φ)] − Ω(n) w.h.p. In other words, the
expected number of solutions E[Z(Φ)] overshoots the typical number of solutions by an
exponential factor w.h.p. ; cf. the discussion in [6, 8].

2.2 Belief Propagation
Instead of the method of moments, the prescription of the physics-based work of Monasson
and Zecchina [36] is to estimate log Z(Φ) by way of the Belief Propagation (BP) message
passing algorithm. This approach was vindicated rigorously by Achlioptas et al. [5].

As we will reuse certain elements of that analysis we dwell on BP briefly. For a clause a

of a 2-CNF Φ let ∂a = ∂Φa be the set of variables that a contains. Moreover, for x ∈ ∂a

let signΦ(x, a) = sign(x, a) ∈ {±1} be the sign with which x appears in a. Analogously,
let ∂x = ∂Φx be the set of clauses in which variable x appears. BP introduces “messages”
between clauses a and the variables x ∈ ∂a. More precisely, each such clause-variable
pair a, x comes with two messages µx→a, µa→x. The messages are probability distributions
on “true” and “false”, which we represent by ±1. Thus, µx→a(±1), µa→x(±1) ≥ 0 and
µx→a(1) + µx→a(−1) = µa→x(1) + µa→x(−1) = 1.

The messages get updated iteratively by an operator

BP : (µx→a, µa→x)a,x∈∂a 7→ (µ̂x→a, µ̂a→x)a,x∈∂a = BP((µx→a, µa→x)a,x∈∂a). (9)

For a clause a with adjacent variables ∂a = {x, y} the updated messages µ̂a→x(±1) are
defined by

µ̂a→x(sign(x, a)) = 1
1 + µy→a(sign(y, a)) , µ̂a→x(−sign(x, a)) = µy→a(sign(y, a))

1 + µy→a(sign(y, a)) .

(10)

Moreover, for a variable x and a clause a ∈ ∂x we define2

µ̂x→a(s) =
∏

b∈∂x\{a} µb→x(s)∏
b∈∂x\{a} µb→x(1) +

∏
b∈∂x\{a} µb→x(−1) (s ∈ {±1}) ; (11)

The purpose of BP is to heuristically “approximate” the marginal probabilities that a random
satisfying assignment σ = σΦ of Φ will set a certain variable to a specific truth value. The
“approximation” given by the set (µx→a, µa→x)a,x∈∂a of messages reads

µx(s) =
∏

b∈∂x µb→x(s)∏
b∈∂x µb→x(1) +

∏
b∈∂x µb→x(−1) (s ∈ {±1}). (12)

The BP “ansatz” now asks that we iterate the BP operator until an (approximate) fixed
point is reached, i.e., ideally until µ̂a→x = µa→x and µ̂x→a = µx→a for all a, x. Then we
evaluate the BP marginals (12) and plug them into a generic formula called the Bethe free

2 For the sake of tidyness, if the above denominator vanishes we simply let µ̂x→a(±1) = 1
2 .

APPROX/RANDOM 2024
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entropy, which yields the BP “approximation” of log Z(Φ); an excellent exposition can be
found in [34]. The BP recipe provably yields the correct result if the bipartite graph induced
by the clause-variable incidences of the 2-CNF Φ is acyclic, but may be totally off otherwise.

Of course, for 1 < d < 2 the bipartite graph associated with the random formula Φ
contains cycles in abundance. Nonetheless, (1) confirms that the BP formula provides a
valid approximation to within o(n). The proof is based on two observations. First, that the
local structure of the clause-variable incidence graph can be described by a Galton-Watson
tree. Second, that the Galton-Watson tree enjoys a spatial mixing property called Gibbs
uniqueness.

Since the proof of Theorem 1 also harnesses Gibbs uniqueness, let us elaborate. To mimic
the local structure of Φ consider a multitype Galton-Watson tree T whose types are variable
nodes and clause nodes of four sub-types (s, s′) with s, s′ ∈ {±1}. The root o is a variable
node. The offspring of any variable node is a Po(d/4) number of clause nodes of each of the
four sub-types. Finally, the offspring of a clause node is a single variable node. The clause
type (s, s′) indicates that s is the sign with which the parent variable appears in the clause,
while s′ determines the sign of the child variable. Thus, the Galton-Watson tree T can be
viewed as a (possibly infinite) 2-CNF. For an integer ℓ ≥ 0 let T (2ℓ) be the finite tree/2-CNF
obtained by deleting all variables and clauses at a distance larger than 2ℓ from the root.

The tree T approximates Φ locally in the sense that for any fixed ℓ and any given variable
xi the distribution of the depth-2ℓ neighbourhood of xi in Φ converges to T (2ℓ) as n → ∞ (in
the sense of local weak convergence). Moreover, Gibbs uniqueness posits that under random
satisfying assignments of the tree-CNF T (2ℓ) the truth value σo of the root under a random
satisfying assignment σ decouples from the values σT ,y of variables y ∈ ∂2ℓo at distance
precisely 2ℓ from o for large ℓ. Formally, with S(T (2ℓ)) the set of satisfying assignments of
the 2-CNF T (2ℓ), the following is true.

▶ Proposition 2 ([5, Proposition 2.2]). We have

lim
ℓ→∞

E
[

max
τ∈S(T (2ℓ))

∣∣∣P [σo = 1 | T (2ℓ), σ∂2ℓo = τ∂2ℓo

]
− P

[
σo = 1 | T (2ℓ)

]∣∣∣] = 0. (13)

2.3 Approaching the variance
The proof of the formula (1) combines the Gibbs uniqueness property and the local convergence
to the Galton-Watson tree with a coupling argument called the “Aizenman-Sims-Starr
scheme” [5]. Unfortunately, this combination does not seem precise enough to get a handle
on the limiting distribution of log Z(Φ) by a long shot. Actually, it is anything but clear
how even the order of the standard deviation of log Z(Φ) could be derived along these lines.
One specific problem is that the rate of convergence of (13) diminishes as d approaches the
satisfiability threshold.

To tackle this challenge we devise a combinatorial interpretation of log2 Z(Φ). A key
idea, which we borrow from spin glass theory [18], is to set up a family of correlated
random formulas. Specifically, given integers M, M ′ ≥ 0 we construct a correlated pair
(Φ1(M, M ′), Φ2(M, M ′)) of formulas on the variable set Vn = {x1, . . . , xn} as follows. Let
(ai)i≥1, (a′

i)i≥1, (a′′
i )i≥1 be sequences of mutually independent uniformly random clauses on

Vn. Then

Φ1(M, M ′) = a1 ∧ · · · ∧ aM ∧ a′
1 ∧ · · · ∧ a′

M ′ , (14)
Φ2(M, M ′) = a1 ∧ · · · ∧ aM ∧ a′′

1 ∧ · · · ∧ a′′
M ′ .
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Thus, the two formulas share clauses a1, . . . , aM . Additionally, each contains another M ′

independent clauses. In particular, Φ1(m, 0), Φ2(m, 0) are identical, while Φ1(0, m), Φ2(0, m)
are independent.

Interpolating between these extreme cases offers a promising avenue for computing the
variance: given that Φ1(M, m − M) and Φ2(M, m − M) are satisfiable for all M , we can
write a telescoping sum

log Z(Φ1(m, 0)) · log Z(Φ2(m, 0)) − log Z(Φ1(0, m)) · log Z(Φ2(0, m)) (15)

=
m∑

M=1
log Z(Φ1(M, m − M)) · log Z(Φ2(M, m − M))

− log Z(Φ1(M − 1, m − M + 1)) · log Z(Φ2(M − 1, m − M + 1)).

If we could take the expectation on the l.h.s. of (15), we would precisely obtain the variance
of log Z(Φ). Moreover, each summand on the r.h.s. amounts to a “local” change of swapping
a shared clause for a pair of independent clauses. Yet we cannot just take the expectation of
(15), because some Φh(M, m − M) may be unsatisfiable. To remedy this, we will replace
log Z(Φ) by a tamer random variable with the same limiting distribution. Its construction is
based on the Unit Clause Propagation algorithm.

2.4 Unit Clause Propagation
Employed by all modern SAT solvers as a sub-routine, Unit Clause Propagation is a linear
time algorithm that tracks the implications of partial assignments. The algorithm receives as
input a 2-CNF Φ along with a set L of literals. These literals are deemed to be “true”. The
algorithm then pursues direct logical implications, thereby identifying additional “implied”
literals that need to be true so that no clause gets violated. This procedure is outlined in
Steps 1–2 of Algorithm 1; the outcome of Steps 1–2 is independent of the order in which
literals/clauses are processed.

Algorithm 1 Pessimistic Unit Clause Propagation (“PUC”).

Data: A 2-CNF Φ along with a set L of literals deemed true.
1 while there exists a clause a ≡ l ∨ ¬l′ with l′ ∈ L and l ̸∈ L do
2 add literal l to L;
3 For variables x ∈ V (Φ) such that x ∈ L or ¬x ∈ L let

σx =


1 if x ∈ L and ¬x ̸∈ L,

−1 if ¬x ∈ L and x ̸∈ L,

0 otherwise.

Let C be the set of all clauses a such that σx = 0 for all x ∈ ∂a and return L, C, σ;

Clearly, trouble brews if PUC ends up placing both a literal l and its negation ¬l into
the set L. Our “pessimistic” Unit Clause variant makes no attempt at mitigating such
contradictions. Instead, Step 3 just constructs a partial assignment where all conflicting
literals are set to a dummy value zero. Additionally, PUC identifies the set C of conflict clauses
that contain conflicted variables only.

APPROX/RANDOM 2024
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Now consider a 2-CNF Φ on a set of variables V (Φ). For each possible literal l ∈ {x, ¬x :
x ∈ V (Φ)} we run PUC(Φ, L = {l}). Let C(Φ, {l}) be the set of conflict clauses returned by
PUC. Obtain the pruned formula Φ̂ from Φ by removing all clauses in C(Φ) =

⋃
l C(Φ, {l}).

Then it is easy to verify the following.

▶ Fact 3. For any 2-CNF Φ the pruned 2-CNF Φ̂ is satisfiable.

Generally, the pruned formula Φ̂ could have far fewer clauses than the original formula
Φ. Accordingly, even if Φ is satisfiable the number Z(Φ̂) of satisfying assignments of Φ̂
could dramatically exceed Z(Φ). However, the following proposition shows that on a random
formula, the impact of pruning is modest.

▶ Proposition 4. With probability 1 − o(n−1/2) we have | log Z(Φ̂) − log Z(Φ)| ≤ n1/3.

2.5 Variance redux

The error bound from Proposition 4 is tight enough so that towards the proof of Theorem 1
it suffices to establish a central limit theorem for log Z(Φ̂), i.e., the log of the number of
satisfying assignments of the pruned formula. Once again the pivotal task to this end is
to compute the variance of log Z(Φ̂). Revisiting the telescoping sum (15), we obtain the
following expression. Recalling (14), we write Φ̂h(M, M ′) = ̂Φh(M, M ′) for the formula
obtained by pruning Φh(M, M ′).

▶ Lemma 5. Let

∆(M) = E

[
log
(

Z(Φ̂1(M, m − M))
Z(Φ̂1(M − 1, m − M))

)
· log

(
Z(Φ̂2(M, m − M))

Z(Φ̂2(M − 1, m − M))

)]
, (16)

∆′(M) = E

[
log
(

Z(Φ̂1(M − 1, m − M + 1))
Z(Φ̂1(M − 1, m − M))

)
· log

(
Z(Φ̂2(M − 1, m − M + 1))

Z(Φ̂2(M − 1, m − M))

)]
.

(17)

Then Var
[
log Z(Φ̂)

]
=

m∑
M=1

(∆(M) − ∆′(M)) .

Lemma 5 expresses the variance as a sum of local changes. For example, Φ1(M, m − M)
is obtained from Φ1(M − 1, m − M) by adding a single random clause, namely aM . Thus,
∆(M) equals the expected change upon addition of a single shared clause – modulo the effect
of pruning, that is.

But fortunately, on random formulas only a few clauses get pruned w.h.p. In effect,
we can express the impact of these random changes neatly in terms of random satisfying
assignments of the “small” formulas Φ̂h(M −1, m−M) that appear in (16)–(17). Specifically,
the quotients in (16)–(17) boil down to the probabilities that random satisfying assignments
of the “small” formulas survive the extra clause that gets added to obtain the 2-CNFs in the
respective numerators. Thus, with σ = (σy)y∈Vn denoting a random satisfying assignment
of Φ̂h(M − 1, m − M), we obtain the following.
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▶ Proposition 6. Let 1 ≤ M ≤ m. W.h.p. we have

Z(Φ̂h(M, m − M))
Z(Φ̂h(M − 1, m − M))

=

1 −
∏

y∈∂aM

P
[
σy ̸= sign(y, aM ) | Φ̂h(M − 1, m − M), aM

]
+ o(1) (h = 1, 2),

Z(Φ̂1(M − 1, m − M + 1))
Z(Φ̂1(M − 1, m − M))

=

1 −
∏

y∈∂a′
m−M+1

P
[
σy ̸= sign(y, a′

m−M+1) | Φ̂1(M − 1, m − M), a′
m−M+1

]
+ o(1),

Z(Φ̂2(M − 1, m − M + 1))
Z(Φ̂2(M − 1, m − M))

=

1 −
∏

y∈∂a′′
m−M+1

P
[
σy ̸= sign(y, a′′

m−M+1) | Φ̂2(M − 1, m − M), a′
m−M+1

]
+ o(1).

2.6 Local convergence in probability

To evaluate the expressions from Proposition 6 we need to get a grip on the joint distribution
of the truth values of y under random satisfying assignments of the two correlated formulas
Φ̂h(M − 1, m − M). To this end we will devise a Galton-Watson tree T ⊗ that mimics
the joint distribution of the local structure of (Φ̂1(M − 1, m − M), Φ̂2(M − 1, m − M)).
Subsequently, we will establish Gibbs uniqueness for this Galton-Watson tree to compute
the expressions from Proposition 6.

The Galton-Watson tree T from Section 2.2 that describes the local topology of the
“plain” random formula Φ had one type of variable nodes and four types (±1, ±1) of clause
nodes. To approach the correlated pair (Φ̂1(M, m − M − 1), Φ̂2(M, m − M − 1)) we need a
Galton-Watson process with three types of variable nodes and a full dozen types of clause
nodes. Specifically, there are shared, 1-distinct and 2-distinct variable nodes. The root o of
T ⊗ is a shared variable node. The clause node types are (s, s′)-shared, (s, s′) 1-distinct and
(s, s′) 2-distinct for s, s′ ∈ {±1}.

In addition to d ∈ (0, 2) the offspring distributions of T ⊗ = T ⊗
d,t involve a second

parameter t ∈ [0, 1]:
A shared variable spawns Po(dt/4) shared clauses of type (s, s′) as well as Po(d(1 − t)/4)
1-distinct clauses of type (s, s′) and Po(d(1 − t)/4) 2-distinct clauses of type (s, s′) for
any s, s′ ∈ {±1}.
An h-distinct variable begets Po(d/4) h-distinct clauses of type (s, s′) for any s, s′ ∈ {±1}
(h = 1, 2).
A shared clause has precisely one shared variable as its offspring.
An h-distinct clause spawns a single h-distinct variable (h = 1, 2).

Figure 1 provides an illustration of the tree T ⊗. Shared variables/clauses are indicated in
red, 1-distinct variables/clauses in green and 2-distinct ones in blue.

From T ⊗ we extract a pair (T 1, T 2) of correlated random trees. Specifically, T h is
obtained from T ⊗ by deleting all (3 − h)-distinct variables and clauses. Hence, the parameter
t determines how “similar” T 1, T 2 are. Specifically, if t = 1 then no {1, 2}-distinct clauses
exist and thus T 1, T 2 are identical. By contrast, if t = 0 then T 1, T 2 are independent copies
of the tree T from Section 2.2.
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For an integer ℓ ≥ 0 obtain T ⊗, (2ℓ), T
(2ℓ)
1 , T

(2ℓ)
2 from T ⊗, T 1, T 2 by omitting all nodes

at a distance greater than 2ℓ from the root o. As in Section 2.2, we can interpret these
trees as 2-CNFs, with the type (s, s′) of a clause indicating the signs of its parent and child
variables. We say that two possible outcomes T, T ′ of T ⊗,(2ℓ) are isomorphic if there is a
tree isomorphism that preserves the root o as well as all types.

Further, a variable x ∈ Vn is called a 2ℓ-instance of T in (Φ̂1(M, M ′), Φ̂2(M, M ′)) if
there exist isomorphisms ιh of the 2-CNFs Th obtained from T by deleting all (3 − h)-distinct
variables/clauses to the depth-2ℓ neighbourhoods ∂≤2ℓ

Φ̂h(M,M ′)x of x in Φ̂h(M, M ′) such that
the root gets mapped to x, i.e., ι1(o) = ι2(o) = x,
for any shared variable y of T1, T2 the image variables coincide, i.e., ι1(y) = ι2(y),
for any shared clauses a of T1, T2 the image ι1(a) = ι2(a) ∈ {a1, . . . , aM } is a shared
clause,
for any 1-distinct clause a whose parent in T1 is a shared variable, ι1(a) ∈ {a′

1, . . . , a′
M ′},

and
for any 2-distinct clause a whose parent in T2 is a shared variable, ι1(a) ∈ {a′′

1 , . . . , a′′
M ′}.

Let N (2ℓ)(T, (Φ1(M, M ′), Φ2(M, M ′))) be the number of 2ℓ-instances of T in (Φ1(M, M ′),
Φ2(M, M ′)). The following proposition confirms that T ⊗ models the local structure of
(Φ̂1(M, M ′), Φ̂2(M, M ′)) faithfully.

▶ Proposition 7. Let ℓ > 0 be a fixed integer, let t ∈ [0, 1] and suppose that M ∼ tdn/2
and M ′ ∼ (1 − t)dn/2. Then w.h.p. for all possible outcomes T of T ⊗,(2ℓ) we have
N (2ℓ)(T, (Φ̂1(M, M ′), Φ̂2(M, M ′))) ∼ nP

[
T ⊗, (2ℓ) ∼= T

]
.

2.7 Correlated Belief Propagation
Now that we have a branching process description of our pair of correlated formulas the next
step is to run BP on the random trees (T 1, T 2) to find the joint distribution of the truth
values σ

T
(2ℓ)
1 ,o

, σ
T

(2ℓ)
2 ,o

assigned to the root. Hence, let

µ(2ℓ) =
(
P
[
σ

T
(2ℓ)
1 ,o

= 1 | T ⊗
]

,P
[
σ

T
(2ℓ)
2 ,o

= 1 | T ⊗
])

∈ (0, 1)2. (18)

Since BP is exact on trees, we could calculate these marginals by iterating (9)–(11) for
2ℓ steps, starting from all-uniform messages. But our objective is not merely to calculate the
marginals of a specific pair of trees, but the distribution of the vector (18) for a random T ⊗.
Fortunately, due to the Markovian nature of the Galton-Watson tree T ⊗, the bottom-up BP
computation on a random tree can be expressed by a fixed point iteration on the space of
probability distributions on R2. The appropriate operator is the logBP⊗

d,t-operator from (3).
To be precise, that operator expresses the updates of the log-likelihood ratios of the BP
messages from (10)–(11). Thus, let

t : (z1, z2) ∈ R2 7→ ((1 + tanh(z1/2))/2, (1 + tanh(z2/2))/2) ∈ (0, 1)2

be the function that maps log-likelihood ratios back to probabilities. Furthermore, for a
probability measure ρ ∈ P(R2) let t(ρ) be the pushforward probability measure on (0, 1)2.3

▶ Proposition 8. Let ρ
(0)
d,t ∈ P(R2) be the atom at the origin and let ρ

(ℓ)
d,t = logBP⊗

d,t(ρ
(ℓ−1)
d,t ).

Then µ(2ℓ) has distribution t(ρ(ℓ)
d,t).

3 That is, for a measurable A ⊆ (0, 1)2 we have t(ρ)(A) = ρ(t−1(A)).
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Figure 2 The distributions t(ρd,t) for d = 1.9 and t = 0.1, 0.5, 0.9.

We employ the contraction method to show that the sequence (ρ(ℓ)
d,t)ℓ≥1 of measures converges.

▶ Proposition 9. There exists a unique ρd,t ∈ P(R2) that satisfies (5) and limℓ→∞ ρ
(ℓ)
d,t = ρd,t

weakly.

Furthermore, the Gibbs uniqueness property (13) extends to T 1 and T 2.

▶ Corollary 10. For all t ∈ [0, 1] and h = 1, 2 we have

E

[
max

τ∈S(T
(2ℓ)
h

)

∣∣∣P [σT
(2ℓ)
h

,o
= 1 | T ⊗, σ

T
(2ℓ)
h

,∂2ℓo
= τ∂2ℓo

]
− P

[
σ

T
(2ℓ)
h

,o
= 1 | T ⊗

]∣∣∣] → 0,

(19)

as ℓ → +∞.

Combining Propositions 8 and 9 and Corollary 10, we are now in a position to pinpoint
the joint marginals of Φ̂1(M, M ′), Φ̂2(M, M ′). Formally, let

πΦ̂1(M,M ′),Φ̂2(M,M ′) =

1
n

n∑
i=1

δ(P[σΦ̂1(M,M′),xi
=1|Φ̂1(M,M ′)],P[σΦ̂2(M,M′),xi

=1|Φ̂2(M,M ′)]) ∈ P([0, 1]2)

be the empiricial distribution of the joint marginals of Φ̂1(M, M ′) and Φ̂2(M, M ′), which
we need to know to evaluate the expressions from Proposition 6. Furthermore, denote by
W1( · , · ) the Wasserstein L1-distance of two probability measures on [0, 1]2.

▶ Corollary 11. For any t ∈ [0, 1] and any M ∼ tnd/2, M ′ ∼ (1 − t)dn/2 we have

E
[
W1

(
πΦ̂1(M,M ′),Φ̂2(M,M ′), t(ρd,t)

)]
= o(1).

Finally, combining Proposition 6 with Corollary 11, we obtain the variance of log Z(Φ̂).

▶ Corollary 12. With η(d)2 from (7) we have η(d) > 0 and Var log Z(Φ̂) ∼ mη2
d.

Because the proof of Proposition 9 is based on a contraction argument, for any d, t the
distribution ρd,t can be approximated effectively within any given accuracy via a fixed point
iteration. Figure 2 displays approximations to t(ρd,t) for different values of t and shows
how correlations between the two coordinates of the random vector increase with t (brighter
diagonal).
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2.8 The central limit theorem
With the variance computation done, we have now overcome the greatest hurdle en route to
Theorem 1. Indeed, to obtain the desired asymptotic normality we just need to combine the
techniques from the variance computation with a generic martingale central limit theorem.

To this end we set up a filtration (Fn,M )0≤M≤mn
by letting Fn,M be the σ-algebra gener-

ated by a1, . . . , aM . Hence, conditioning on Fn,M amounts to conditioning on a1, . . . , aM ,
while averaging on the remaining clauses aM+1, . . . , am. The conditional expectations

Zn,M = m−1/2E
[
log Z(Φ̂) | Fn,M

]
(20)

then form a Doob martingale. Let Xn,M = Zn,M − Zn,M−1 be the martingale differences.

▶ Proposition 13. For all 0 < d < 2 the martingale (20) satisfies

lim
n→∞

E
[

max
1≤M≤m

|Xn,M |
]

= 0 and lim
n→∞

E

∣∣∣∣∣η(d)2 −
m∑

M=1
X2

n,M

∣∣∣∣∣ = 0. (21)

Thanks to pruning, the first condition from (21) is easily checked. Furthermore, the
steps that we pursued towards the proof of Corollary 12, i.e., the variance calculation, also
imply the second condition without further ado. Finally, as (21) demonstrates that the
marginal differences are small and that the variance process converges to a deterministic
limit, Theorem 1 follows the general martingale central limit theorem from [27].

3 Discussion

The hunt for satisfiability thresholds of random constraint satisfaction problems was launched
by the experimental work of Cheeseman, Kanefsky and Taylor [17]. The 2-SAT threshold was
the first one to be caught [19, 31]. Subsequent successes include the 1-in-k-SAT threshold [3]
and the k-XORSAT threshold [26, 40]. Furthermore, Friedgut [29] proved the existence
of non-uniform (i.e., n-dependent) satisfiability thresholds in considerable generality. The
plot thickened when physicists employed a compelling but non-rigorous technique called
the cavity method to “predict” the exact satisfiability thresholds of many further problems,
including the k-SAT problem for k ≥ 3 [35]. A line of rigorous work [6, 8, 22] culminated in
the verification of this physics prediction for large k [24].

Even though the satisfiability threshold of random 2-SAT was determined already in
the 1990s, the problem continued to receive considerable attention. For example, Bollobás,
Borgs, Chayes, Kim and Wilson [14] investigated the scaling window around the satisfiability
threshold, a point on which a recent contribution by Dovgal, de Panafieu and Ravelomanana
elaborates [25]. Abbe and Montanari [2] made the first substantial step towards the study
of the number of satisfying assignments that 1

n log Z(Φ) converges in probability to a
deterministic limit φ(d) for Lebesgue-almost all d ∈ (0, 2). However, their techniques do not
reveal the value φ(d). Moreover, Montanari and Shah [37] obtain a “law-of-large-numbers”
estimate of the number of assignments that violate all but o(n) clauses for d < 1.16. Finally,
the aforementioned article of Achlioptas et al. [5] verifies the prediction from [36] as to the
number of satisfying assignments for all d < 2. The main result of the present paper refines
these results considerably by establishing a central limit theorem.

For random k-CNFs with k ≥ 3 an upper bound on the number of satisfying assignments
can be obtained via the interpolation method from mathematical physics [39]. This bound
matches the predictions of the cavity method [34]. However, no matching lower bound is



A. Chatterjee et al. 39:13

currently known. The precise physics prediction called the “replica symmetric solution” has
only been verified for “soft” versions of random k-SAT where unsatisfied clauses are penalised
but not strictly forbidden, and for clause-to-variable ratios well below the satisfiability
threshold [37, 38, 44].

Random CSPs such as random k-XORSAT or random k-NAESAT that exhibit stronger
symmetry properties than random k-SAT tend to be amenable to the method of moments
[6].4 Therefore, more is known about their number of solutions. For example, due to
the inherent connection to linear algebra, the number of satisfying assignments of random
k-XORSAT formulas is known to concentrate on a single value right up to the satisfiability
threshold [11, 26, 40]. Furthermore, in random k-NAESAT, random graph colouring and
several related problems, the logarithm of the number of solutions superconcentrates, i.e.,
has only bounded fluctuations for constraint densities up to the so-called condensation
threshold, a phase transition that shortly precedes the satisfiability threshold [12, 20, 41].
The same is true of random k-SAT instances with regular literal degrees [23]. A further
example is the symmetric perceptron [1], where the number of solutions superconcentrates
but the limiting distribution is a log-normal with bounded variance. Going beyond the
condensation transition, Sly, Sun and Zhang [43] proved that the number of satisfying
assignments of random regular k-NAESAT formulas matches the “1-step replica symmetry
breaking” prediction from physics.

Apart from the superconcentration results for symmetric problems from [12, 23, 20, 41],
the limiting distribution of the logarithm of the number of solutions has not been known in
any random constraint satisfaction problem. In particular, Theorem 1 is the first central
limit theorem for this quantity in any random CSP. We expect that the technique developed
in the present work, particularly the use of two correlated random instances in combination
with spatial mixing, can be extended to other problems. The present use of correlated
instances is inspired by the work of Chen, Dey and Panchenko [18] on the p-spin model from
mathematical physics, a generalisation of the famous Sherrington-Kirkpatrick model. That
said, on a technical level the present use of correlated instances is quite different from the
approach from [18]. Specifically, while here we construct correlated 2-CNFs that share a
specific fraction of their clauses and employ a martingale central limit theorem, Chen, Dey
and Panchenko combine a continuous interpolation of two mixed p-spin Hamiltonians with
Stein’s method.

A further line of work deals with central limit theorems for random optimisation problems.
Cao [16] provided a general framework based on the “objective method” [9]. Unfortunately,
the conditions of Cao’s theorem tend to be unwieldy for Max Csp problems with hard
constraints. Recent work of Kreačič [32] and Glasgow, Kwan, Sah, Sawhney [30] on the
matching number therefore instead resorts to the use of stochastic differential equations. A
promising question for future work might be whether the present method of considering
correlated instances might extend to random optimisation problems.
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