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Abstract
We propose a novel clustering model encompassing two well-known clustering models: k-center
clustering and k-median clustering. In the Hybrid k-Clustering problem, given a set P of points
in Rd, an integer k, and a non-negative real r, our objective is to position k closed balls of radius r to
minimize the sum of distances from points not covered by the balls to their closest balls. Equivalently,
we seek an optimal L1-fitting of a union of k balls of radius r to a set of points in the Euclidean
space. When r = 0, this corresponds to k-median; when the minimum sum is zero, indicating
complete coverage of all points, it is k-center.

Our primary result is a bicriteria approximation algorithm that, for a given ε > 0, produces a
hybrid k-clustering with balls of radius (1 + ε)r. This algorithm achieves a cost at most 1 + ε of
the optimum, and it operates in time 2(kd/ε)O(1)

· nO(1). Notably, considering the established lower
bounds on k-center and k-median, our bicriteria approximation stands as the best possible result for
Hybrid k-Clustering.
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Figure 1 Two disks of radius 2 cover all except four points that are colored red. The total sum
of distances from these points to the yellow disks is 2(1 +

√
8 − 2).

1 Introduction

Suppose we want to install a set of k access points (APs) at certain locations to provide
wireless internet (Wi-Fi) coverage to a group of people belonging to a certain area. Each AP
is capable of providing Wi-Fi within a circular-shaped region (i.e., a disk) of fixed radius r,
and it may not be possible to cover the entire region with k such disks. Thus, after placing
k APs, some people may be outliers, that lie outside any of the k disks and do not receive
Wi-Fi coverage. We can model this scenario as the classical k-Center with Outliers
problem, which is a crude model since it only cares about the number of outliers. However,
our scenario is more nuanced. All people that lie within any of the k disks of radius r already
receive Wi-Fi, whereas a person lying outside all of the k disks must travel to the boundary of
the nearest disk in order to receive coverage. Naturally, we would like to minimize the total
distance traveled by people. Motivated by this and several other problems in computational
geometry/clustering, we consider the following clustering problem, which encompasses two
fundamental variants of clustering: k-Center and k-Median. Given a set P of points in
some metric space and integer k and real r ≥ 0, our objective is to position k closed balls of
radius r in a way that minimizes the sum of distances from points uncovered by the balls to
their closest balls. In Figure 1, we provide an example of such clustering with k = 2 and
r = 2.

To define the new clustering formally, we need some definitions. We consider Euclidean
inputs, i.e., all points belong to Rd for some d ≥ 1 and the distance function dist(·, ·) is given
by the Euclidean (ℓ2) distance. For a point p ∈ P and a finite set of points Q ⊂ Rd, we
define dist(p, Q) := minq∈Q dist(p, q). Further, for x, y ∈ P , and a real r ≥ 0, we define the
shorthand distr(x, y) := max {dist(x, y)− r, 0}.

Hybrid k-Clustering

Input. A set P ⊂ Rd of n points, an integer k ≥ 1, and a real r ≥ 0.
Task. Find a set F ⊂ Rd of size at most k, that minimizes:

costr(P, F ) :=
∑
p∈P

distr(p, F ) (1)
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We denote an instance of Hybrid k-Clustering as I = (P, k, r, d), where d denotes the
dimension. When r = 0, the optimal cost of Hybrid k-Clustering equals the optimal
k-Median clustering cost of the instance. Thus in this case, Hybrid k-Clustering reduces
to k-Median. However, when r > 0, distr(·, ·) does not form a metric, and hence we cannot
simply reduce the problem to k-Median. On the other hand, the minimum value r that
guarantees the cost of Hybrid k-Clustering to be zero is equal to the optimal k-Center
value. In this sense, Hybrid k-Clustering reduces to k-Center.

r⋆

r

p

c

distr

Figure 2 Left: k-Center clustering, a special case of Hybrid k-Clustering with r = r⋆. All
points are covered by k balls of radius r⋆ and OPTr⋆ = 0. Right: k-Median clustering, a special
case of Hybrid k-Clustering with r = 0, and every point contributes its distance to the closest
center (some are shown as brown arrows). Middle: A general instance of Hybrid k-Clustering
lies somewhere in between the two cases, where points outside radius-r balls contribute the distance
to the boundary (shown in blue).

1.1 Our Result and Techniques
The main result of this paper is a bicriteria approximation algorithm for Hybrid k-
Clustering. An α-approximation to an instance I = (P, k, r, d) is a subset F ⊂ Rd

of size k with costr(P, F ) ≤ α · OPTr, where OPTr := costr(P, F ∗) denotes the cost of an
optimal solution F ∗ ⊂ Rd of size at most k. Furthermore, an (α, β)-bicriteria approximation
is a solution F ⊂ Rd with costβr(P, F ) ≤ α · OPTr. Here, costβr(P, F ) =

∑
p∈P distβr(P, F ).

Consider the special case of r = r∗, where r∗ is the optimal radius for k-Center. Then,
OPTr∗ = 0. Therefore, a (α, 1)-bicriteria approximation would return a solution of cost
α · OPTr∗ = 0 using radius 1 · r∗, i.e., an optimal solution for k-Center. On the other
hand, a (1, β)-bicriteria approximation, for the special case of r = 0, would return an
optimal-cost solution using the radius of βr = 0. That is, such an algorithm would optimally
solve k-Median. Combining these observations with the established lower bounds from the
literature for k-Median and k-Center in Euclidean spaces, implies the following bounds
for Hybrid k-Clustering.

▶ Proposition 1. The following holds for Hybrid k-Clustering even when the input is
from R2.

For any α ≥ 1, there exists no FPT in k algorithm that returns an (α, 1)-approximation,
unless FPT = W[1] [27].
For any finite β ≥ 1, there exists no polynomial-time algorithm that returns a (1, β)-
approximation unless P = NP [29].

Further, assuming the Exponential-Time Hypothesis (ETH), if the input is from Rd with
d ≥ 4, then there exists no no(k) time algorithm that returns a (1, β)-approximation, for any
finite β ≥ 1 [10].

APPROX/RANDOM 2024
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Given these results, a natural question arises: Can we achieve a (1+ε, 1+ε)-approximation
for Hybrid k-Clustering, running in time f(k, ε) · nO(1), particularly in low-dimensional
Euclidean spaces? Our main theorem answers this question.
▶ Theorem 2. Let 0 < ε < 1. There exists a randomized algorithm that, given an instance
of Hybrid k-Clustering in Rd, runs in time 2( kd

ε )O(1)
· nO(1), and returns a (1 + ε, 1 + ε)-

approximation with probability at least a positive constant.
This randomized algorithm and the proof of correctness are described in Section 2. Here

we discuss some of the main ideas. Recall that our objective, as the problem name suggests,
is a “hybrid” of k-Center and k-Median. In our preprocessing steps, we first handle the
inputs that behave almost like either of the two problems. Suppose we (approximately) know
the optimal value of Hybrid k-Clustering for the given set of points P , called OPTr.
First, in Lemma 4, if r > OPTr, then we show that an approximate solution can be found
using techniques used for approximating k-Center. Specifically, for each of the k centers in
the optimal solution, we find a “nearby” center within distance ϵr via overlaying a fine grid
in the space. Thus, we can assume that r ≤ OPTr. Next, we consider the case when r is too
small compared to OPTr, namely, when r < εOPTr

n , and show that in this case, the input
behaves like k-Median– an approximate k-Median solution is also an approximation for
Hybrid k-Clustering (Lemma 5). In this manner, we preprocess to handle inputs that
resemble k-Center and k-Median, we obtain a relation between r and OPTr, which can be
used to discretize the distances, which can be used to bound the aspect ratio (i.e., the ratio
of maximum to minimum positive distance) (Lemma 6).

After the preprocessing step, we obtain inputs that are not immediately reducible to
k-Center/Median. To handle such inputs, we design an intricate recursive algorithm that,
at each step, tries to simultaneously handle parts (i.e., clusters) of the input that can be
handled by either of the two techniques. This algorithm is inspired by the sampling approach
of Kumar, Sabharwal, and Sen [24, 25] (also Jaiswal, Kumar, and Sen [23]). In this approach,
one first takes a large enough sample that can be used to pin down the location of the largest
cluster center. Then, one removes enough points from the vicinity of this center, so that the
next largest cluster becomes dominant, and hence a subsequent sample contains sufficiently
many points from the second cluster, and so on.

However, our scenario is more intricate and challenging for several reasons due to the
peculiar nature of the objective. Nevertheless, in principle, one can classify each cluster as
either being more 1-center-like, or more 1-median like (see Figure 3 for an illustration). In a
1-center-like cluster, a large fraction of points lie within a ball of radius O(r/ε). On the other
hand, in a 1-median-like cluster, a vast majority of points lie outside the O(r/ε)-radius ball.
Note that any such point loses very little due to the “−r” term in the clustering cost, i.e., its
distr and dist values are approximately equal. Hypothetically, if we knew the partition of
the input points into k clusters, then we could use this classification to handle each type of
cluster separately – an almost-optimal center of a 1-center-like cluster can be found using
a grid, whereas one can use an approximation for 1-median (as a black box) to handle a
1-median-like cluster. However, the actual clusters are obviously unknown to the algorithm.
Hence, the algorithm has to carefully navigate between the two types of clusters based on the
random sample obtained, and must simultaneously handle both scenarios using branching
(i.e., recursion). The analysis of the algorithm is also much more involved due to the various
cases in which the distinction between two types of clusters is murkier. Nevertheless, we are
able to show that the algorithm returns a (1+ε, 1+ε)-approximation in time 2(kd/ε)O(1) ·nO(1)

with good probability. Note that we incur an exponential dependence on the dimension d

due to “grid-arguments” used to handle 1-center-like clusters, unlike the approach of [24].
However, such dependence seems unavoidable using our approach.
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Figure 3 Example of two different types of clusters. In each figure, we show the cluster center in
red, a ball of radius r around the center in green, and a larger ball of radius O(r/ϵ) in cyan with
a dashed outline. Left: A 1-center-like cluster. Note that a large chunk of points lies within the
radius O(r/ε) ball around the center. Right: A 1-median-like cluster. Note that most of the points
lie outside the O(r/ϵ) radius ball around c, and for any such point, e.g., p that is outside the O(r/ε)
radius ball, distr(p, c) ≈ dist(p, c).

1.2 Related Problems

Euclidean Clustering. An extensive body of literature exists on approximation algorithms
for k-Center and k-Median in the Euclidean space. For k-Median in Rd, Polynomial-
Time Approximation Schemes (PTASes) with a running time of nf(ϵ,d) have been developed,
leveraging local search techniques [18, 12]. Additionally, various Fixed-Parameter Tractable
Approximation Schemes (FPT-AS) with a running time of f(k, d, ϵ) · nO(1) are known for
this problem [11, 13, 25, 23]. The dependence on dimension d can be eliminated through
dimensionality reduction techniques [26, 9].

For k-Center, an FPT-AS was introduced by Agarwal and Procopiuc in [4], with a
runtime of O(n log k) + (k/ε)O(dk1−1/d) in Rd. Subsequent work by Badoiu, Har-Peled, and
Indyk [5] improved the running time to 2O(k log k)/ϵ2 .

In [30], Tamir introduces a common generalization of the two clustering problems, namely,
ℓ-centrum. In this problem, one ignores ℓ closest points from the cost. Notably, k-Median
ignores 0 points, and k-Center ignores all but one point. While this problem is related to
Hybrid k-Clustering, their objectives differ. Ordered k-Median, a further generalization
of ℓ-Centrum, also does not align with our objective. Approximation algorithms for this
problem and some variants were developed in [2, 1, 6, 7].

k-center clustering with outliers. In k-Center clustering, we are given sets P (clients) and
F (facilities) of points. Given an integer k, the task is to identify k centers F ⊆ F minimizing
the maximum distance of any point in P from its closest center. A popular variant of k-center
is a formulation that considers outliers. For a selected parameter x, up to x points are
allowed not to be allocated to any center. A plethora of approximation algorithms for this
problem, and the related problems of covering points by disks and minimum enclosing balls

APPROX/RANDOM 2024
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with outliers, exist in the literature [5, 14, 8, 19, 15, 16, 21, 28]. Hybrid k-Clustering
could be seen as a variant of k-Center with outliers, where we focus on the sum of distances
to outliers rather than their numbers.

Shape fitting. A natural problem arising in machine learning, statistics, data-mining, and
many other fields is to fit a shape γ to a set of points P in Rd. Har-Peled in [20] introduces the
following formalization of this problem. For a family of shapes F (points, lines, hyperplanes,
spheres, etc.) we seek for a shape γ ∈ F with the best fit to P . The typical criteria for
measuring how well a shape γ fits a set of points P could be the maximum distance between
a point of P and its nearest point on γ (L∞-fitting), sum of the distances from P to γ

(L1-fitting) or the sum of the squares of the distances (L2-fitting). In this setting, Hybrid
k-Clustering is the problem of L1-fitting to a shape from F , where F is the family of
shapes defined by unions (not necessarily disjoint) of k balls in Rd. Some relevant work in
this direction includes [3, 20, 22, 31].

2 Bicriteria FPT Approximation Scheme in Euclidean Spaces

We first set up some notation and define an important subroutine. For Y ⊂ Rd, and y ∈ Y ,
let cl(y, Y ) ⊆ P denote the subset of points of P , whose closest point in Y is y. Ties are
broken arbitrarily. Note that {cl(y, Y ) : y ∈ Y } forms a partition of P .

Let p ∈ Rd be a point and λ ≥ 0, let B(p, λ) =
{

q ∈ Rd : d(p, q) ≤ λ
}

denote the ball
of radius λ centered at p. For 0 ≤ τ ≤ λ, let Grid(p, λ, τ) be the outcome of the following
procedure: we place a grid of sidelength τ/

√
d (of arbitrary offset). From each grid cell L

that (partially) intersects with B(p, λ) (i.e., L contains a point q with d(p, q) ≤ λ), we pick
an arbitrary point from L and add it to the set Grid(p, λ, τ). Note that Grid(p, λ, τ) can be
computed in time proportional to the size of the output. We have the following observations
that follow from simple geometric arguments.

▶ Observation 3.
1. |Grid(p, λ, τ)| ≤ O((

√
dλ/τ)d), where d is the dimension.

2. For any q ∈ B(p, λ), there exists some q′ ∈ Grid(p, λ, τ) such that d(q, q′) ≤ τ .

2.1 Preprocessing
Suppose we know an estimate of OPTr up to a constant factor – this can be done by an
exponential search or by first finding a bicriteria (constant) approximation. For simplicity of
exposition, we assume that we know OPTr exactly.

Step 1. Obtaining OPTr ≥ r ≥ εOPTr

2n .
First, in the following lemma, we handle k-center-like instances, which we can handle

using “grid arguments”. If this is not applicable, we obtain that r ≤ OPTr. 1

▶ Lemma 4 (♠). If r > OPTr, then in time
(

d
ε

)O(dk) · nO(1)one can find a set F ⊂ Rd of
size k, such that, cost(1+ε)r(P, F ) ≤ (1 + ε)OPTr.

1 Due to space constraints, some proofs are omitted in this extended abstract. They can be found in the
full version of the paper [17]. The statements with missing proofs are marked by ♠.
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In the following lemma, we handle k-median-like instances, where r is very small compared
OPTr. We directly reduce such instances to k-Median (where r = 0). If this is not applicable,
then we obtain that r is not “too small” compared to OPTr.

▶ Lemma 5 (♠). Let 0 < ε < 1. Suppose for an instance I, OPTr ≥ 2nr
ε . Then,

OPT0 ≤ (1 + ε/2) · OPTr ≤ (1 + ε/2) · OPT0. Furthermore, if F ⊂ Rd satisfies that
cost0(P, F ) ≤ (1 + ε/3) · OPT0. Then, costr(P, F ) ≤ (1 + ε) · OPTr. Such a set F can be
found in time 2(k/ε)O(1) · nd.

For a given input P , we try the procedures from Lemma 4 and 5 and keep them as
candidate solutions. However, if P does not satisfy the conditions required to apply these
lemmas, then we must have that εOPTr

2n ≤ r ≤ OPTr. In this case, we use the next step
before proceeding to the main algorithm.

Step 2. Bounding the aspect ratio.
In this step, we suitably discretize the distances in order to bound the aspect ratio of the

metric (i.e., the maximum ratio of inter-point distances) by O( n2

ε ). This procedure preserves
the cost of an optimal solution up to a factor of 1 + ε.

▶ Lemma 6 (♠). Let P be a set of points satisfying εOPTr

2n ≤ r ≤ OPTr. Then, in polynomial
time we can obtain another (multi)set of points P ′ such that, for any solution F ⊂ Rd,

costr(P ′, F ) ∈ (1± ε) · costr(P, F ), and maxp,q∈P ′ dist(p, q)
minp,q∈P ′:dist(p,q) ̸=0 dist(p, q) ≤

4n2

ε
.

Bounding the aspect ratio by O(n2

ε ) means that an exponential search over distances
has at most log2

(
n2

ε

)
= O

(
log(n)

ε

)
levels, which will be useful in our main algorithm. By

slightly abusing the notation, we continue to use P for referring to the discretized (multi)set
P ′ returned by Lemma 6. If there are any co-located points in P , we will treat them as
separate points, and hence use set terminology instead of multiset terminology.

After the two preprocessing steps, we now proceed to the description of the main algorithm.

2.2 Main Algorithm
Our goal is to prove Theorem 2, that is, to design a randomized bicriteria FPT approximation
for Hybrid k-Clustering. We define some parameters. Let δ := ε

10k < 1
2 , δ′ := δ

3 and
r′ := (1 + δ′)r.

Algorithm 1 is a recursive algorithm, and is called HybridClustering. It takes three
parameters F ′, k, and m. F ′ ⊂ Rd is a subset of centers added to the solution so far and
has size k −m. Further, k is the total size of the solution, and m is an upper bound on the
remaining solution (since we have already added k −m centers). At a high (and imprecise)
level, the goal of each recursive step is to find an approximate replacement for each center in
an unknown optimal solution.

In line 2, we check whether m = 0, i.e., whether we have used our budget of k centers,
and if so, we return the same set F ′ of centers built through the recursive process. Otherwise
(line 4 onward), we assume that m > 0, i.e., we are yet to add a set of centers. Throughout
this process (line 4 to 13, we will build a set R consisting of candidate centers, at least one of
which will be an approximate replacement of an unseen center (i.e., one whose approximate
replacement has not already been found) from an optimal solution. Finally, in line 15, we
will make a recursive call by adding each candidate to the current solution F ′. Now we
discuss how we build the set R.

APPROX/RANDOM 2024
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Algorithm 1 HybridClustering(F ′, k, m).

F ′ ⊆ Rd is a subset of centers of size at most k −m added to the solution so far
β = 1

δc′ as required in Proposition 13 and β′ := β · 150k
δ3 .

1: if m = 0 then
2: return F ′

3: end if
4: R←

⋃
c′∈F ′ Grid(c′, 16r, δr)

5: for each q of the form 2j in the range [8r, distmax] do
6: Pq := P \

(⋃
c′∈F ′ B(c′, q)

)
7: Let Sq be a sample of size β′ chosen uniformly at random from Pq

8: R← R ∪
⋃

p∈Sq
Grid(p, 8r

δ , δr)
9: for each S ⊆ Sq of size β do

10: c′ ← ApproxSolutionOnSample(S, δ/8) ▷ Algorithm from Proposition 13
11: R← R ∪ {c′}
12: end for
13: end for
14: for each c ∈ R \ F ′ do
15: Call HybridClustering(F ′ ∪ {c} , k, m− 1)
16: end for
17: Call HybridClustering(F ′, k, m− 1)
18: return solution F̃ minimizing costr′(P, F̃ ) over recursive calls made in lines 15 and 17

First, in line 4, for each center c′ ∈ F ′ added so far, we add a set of “nearby” centers by
placing a grid. This handles the case when an unseen optimal center is close to one of the
already chosen centers in F ′. Next, in the outer for loop (line 5 to 13), we handle the case
when all new optimal centers are relatively far from the already chosen centers. In this for
loop, we iterate over a range of values for the parameter q via exponential search. Parameter
q tries to approximate half of the minimum distance between the already chosen and new
optimal centers. Thus, for the “correct” value of q, the set of points Cq lying “far” from the
centers of F ′ (line 6), leaves all of the m unseen optimal clusters untouched. At this point,
we aim to use a sample of faraway size (chosen in line 7), to find an approximate replacement
for one of these m unseen centers. We do this by using the sample in two different ways, to
handle two different situations. First, if our sample happens to contain a point “nearby” an
unseen center, say c⋆, then the points chosen from the fine grid in line 8 will find such an
approximate replacement for c⋆. Otherwise, the idea is that, if we have removed a significant
fraction of points from the “seen” clusters in line 6, by virtue of being close to F ′, then the
sample contains sufficiently many (i.e., at least β) points from the largest unseen cluster,
say C⋆, with reasonable probability, and these points can be used to find an approximate
replacement of the cluster center (using Proposition 13). However, a priori we do not know
which subset of the sample comes from C⋆. Therefore, we iterate over all subsets of size β in
the inner for loop (lines 9 to 12) to find such a subset of size β that comes entirely from
C⋆ and use a known subroutine, called ApproxSolutionOnSample, to find an approximate
replacement. Finally, in 15, we make a recursive call by adding each center from R \ F ′, and
in line 17, we make a recursive call by not adding any new center (to handle a particular
case). In line 18, we return the minimum-cost solution found over all recursive calls. This
completes the description of the algorithm.
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2.3 Analysis

The crux of the analysis is to establish that Algorithm 1 satisfies the following invariant.

Invariant

Let 0 ≤ m ≤ k and 0 < α < 1 be a constant. Suppose for the given F ′ of size at most k−m,
there exists some F = F ′ ⊎ Fo ⊂ Rd, such that
1. |Fo| ≤ m, and
2. ∑

c∈F ′

costr′(cl(c, F ), c) +
∑
c∈Fo

costr(cl(c, F ), c) ≤ (1 + δ)k−m · OPTr (2)

Then, with probability at least αm, the algorithm returns a solution F̃ ⊂ Rd, such that
1. |F̃ | ≤ k,
2. F ′ ⊆ F̃ , and
3. ∑

c∈F̃

costr′(cl(c, F ), c) ≤ (1 + δ)k · OPTr. (3)

Proof of Correctness

The proof is by induction on m. For the base case, consider m = 0. In the base case
(Algorithm 1), we return the same F ′ = F with probability one. In this case, the invariant
tells us that costr′(P, F ) ≤ (1 + δ)k ·OPTr, which is what we need to prove. Now we assume
that the claim is true for some m − 1 ≥ 0 and we prove it for m by considering different
cases.

Easy case: F = F ′. This is a much simpler case since we have already found the desired
set. In this case, any solution F̃ returned by a recursive call always contains F = F ′ as a
subset. Then, in this case, we have that:

costr′(P, F̃ ) ≤ costr′(P, F ) ≤ (1 + δ)k−m · OPTr ≤ (1 + δ)k · OPTr

Here, the first inequality follows from the assumption that F̃ ⊇ F = F ′, and the second
inequality follows from (2) of the invariant. Note that we do not need to rely on the induction
here.

Main case: F ′ ⊊ F . This is the case where we are yet to discover some subset (namely,
F \ F ′) of centers. We will analyze this case by considering different scenarios based on the
inter-center distances, as well as their relative sizes.

First, since F ′ ⊊ F , there exists some c ∈ F \F ′. Now, let c ∈ F \F ′ and c′ ∈ F ′ be the pair
of centers with the smallest distance, i.e., (c, c′) is a pair realizing minc1∈F \F ′,c2∈F ′ dist(c1, c2).
Now we consider different cases depending on dist(c, c′), namely the closest distance between
an already chosen center c′ ∈ F ′, and an “unseen center” c ∈ F \ F ′.
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16r ⋆

c′

c

c̃

×
×

δr

×

Figure 4 Illustration for Case 1. Centers in F ′ are shown as red squares and unseen centers of
F \ F ′ are shown as purple crosses. c is the closest center to F ′ and dist(c, c′) ≤ 16r. Then, a nearby
center c̃′ can be found using a δr grid.

Case 1. Nearby center: dist(c, c′) ≤ 16r. In this case, via Observation 3, we conclude
that there exists some c̃ ∈ Grid(c′, 16r, δr) with dist(c̃, c) ≤ δr. Let F̃ = F ′ ∪ {c̃}. Then, the
proof follows from the following claim (see Figure 4).

▷ Claim 7. Let c1 ∈ Fo and let c̃1 ∈ Rd be such that dist(c1, c̃1) ≤ δ′r. Then, with
probability at least αm−1, HybridClustering(F ∪ c̃1, k, m − 1) returns a solution F̃ that
satisfies the required properties.

Proof. Consider c1, c̃1 as defined in the statement. Let A = cl(c1, F ). For any point p ∈ A,
dist(p, c̃1) ≤ dist(p, c1) + dist(c1, c̃1) ≤ dist(p, c1) + δ′r. This implies that, distr′(p, c̃1) ≤
distr′(p, c1). Define Fnew := F ′

new ⊎ F ′
o, where F ′

new := F ′ ∪ {c̃1} and F ′
o := Fo \ {c1}. First,

we show the following inequality.∑
c∈F ′

new

costr′(cl(c, F ), c)+
∑
c∈F ′

o

costr(cl(c, Fnew), c)

≤
∑
c∈F ′

costr′(cl(c, F ), c) +
∑
c∈Fo

costr(cl(c, F ), c) (4)

We construct an assignment of clients to the centers in Fnew, where we may not assign a
client to its closest center. To construct this assignment, we consider different cases. For
c ∈ F ′ ∪ Fo \ {c1}, we assign all points p ∈ cl(c, F ) to c. The contribution of all such points
is the same as the right-hand side of (4). Finally, we assign all points in cl(c1, F ) to c̃1. By
the choice of c̃1, costr′(cl(c1, F ), c̃1) ≤ costr(cl(c1, F ), c1), which is the contribution of such
points on the right-hand side. Since the cost on the left-hand side is no larger than the cost
of the assignment thus constructed, it shows (4).
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×

×

c′ t

c

×
q⋆

q⋆

q⋆

Figure 5 Illustration for Case 2. Centers of F ′ are shown as red squares and unseen centers of
F \ F ′ are shown as purple crosses. Balls of radius q⋆ around F ′ are shown in dashed orange. P ′

are the points lying outside these balls. Among the points of P ′, D is the set of points belonging
to clusters around F ′, and shown as green-orange filled dots. Finally, the cluster around c is the
largest unseen cluster (marked in dashed blue shape), L. We analyze different cases depending on
the relative sizes of L and D.

Note that the right-hand side of (4) is at most (1+δ)k−m ·OPTr due to the invariant, and
hence Fnew satisfies the properties required to apply the inductive hypothesis for m− 1. This
implies that with probability at least αm−1 the recursive call Recursive(F ′ ∪ {c̃1} , k, m− 1)
returns a solution F̃ satisfying costr′(P, F̃ ) ≤ (1 + δ)k · OPTr. ◁

Case 2. Faraway center: 16r < dist(c, c′) ≤ distmax. Let t = dist(c, c′) and q⋆ be the
largest power of 2 that is at most t/2. Consider Pq⋆ = P \

(⋃
c1∈F ′ B(c1, q⋆)

)
. Let c⋆ ∈ F \F ′

denote the center of the maximum-size cluster, i.e., c⋆ = arg maxc1∈F \F ′ |cl(c1, F )|, and
L := cl(c⋆, F ) denote the largest cluster. Finally, let D :=

⋃
cold∈F ′ cl(cold, F ) ∩ Pq⋆ denote

the set of clients that are distant from the respective centers in F ′. Let us summarize some
consequences of these definitions in the following observation (its proof is essentially discussed
above). Also see Figure 5.

▶ Observation 8.
1. Pq⋆ = D ⊎

⊎
c1∈F \F ′

cl(c1, F ) ∩ Pq⋆ .

2. In particular, cl(c, F ), cl(c⋆, F ) ⊆ Pq⋆ .
We consider different sub-cases based on the relative sizes of L and D.

Case 2.1. New cluster is tiny: |L| ≤ δ2/4 · |D|. Let N := cl(c, F ). Note that the
definition of c⋆, combined with the case assumption, implies that |N | ≤ |L| ≤ δ2

4 · |D|. We
summarize a few technical consequences of these definitions in the following claim.
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▷ Claim 9.

costr(N, c′) ≤ δ · costr(D, F ) + (1 + δ) · costr(N, c) (5)

Proof. Note that for each p ∈ D, dist(p, F ) ≥ t
4 . Thus, distr(p, c′) ≥ t

4 − r ≥ 3t
16 , where the

last inequality follows from the case assumption, namely t > 16r. Thus, each point p ∈ D

contributes at least 3t
16 to costr′(P, F ), and their total contribution to costr(P, F ) is

costr(D, F ) :=
∑
p∈D

distr(p, c′) ≥ |D| · 3t

16 (6)

Now we upper bound the cost of assigning points of N to c′. To this end, we
partition N = Nnear ⊎ Nfar, where Nnear := {p ∈ A : dist(p, c) ≤ 2r/δ} and Nfar :=
{p ∈ A : dist(p, c) > 2r/δ}. Note that, for each p ∈ Nfar, distr(p, c) = dist(p, c) − r ≥
dist(p, c)− δ

2 · dist(p, c), which implies that, for each p ∈ Nfar,

dist(p, c) ≤
(

1
1− δ

2

)
· distr(p, c) ≤ (1 + δ) · distr(p, c) (7)

Now consider,

costr(N, c′) ≤
∑
p∈N

dist(p, c′) (Since distr(·, ·) ≤ dist(·, ·))

≤
∑
p∈N

dist(p, c) + dist(c, c′) (Triangle inequality)

= |N | · dist(c, c′) +
∑

p∈Nnear

dist(p, c) +
∑

p∈Nfar

dist(p, c)

≤ δ2

8 · |D| · t +
∑

p∈Nnear

4r
δ +

∑
p∈Nfar

(1 + δ) · distr(p, c)

(From case assumption and (7))

= δ2

4 · |D| · t + 4r
δ · |Nnear|+ (1 + δ) · costr(N, c)

≤ δ2

4 · |D| · t + δ · |D| · t
16 + (1 + δ) · costr(N, c)

(|Nnear| ≤ |N | ≤ δ2

4 and t > 16r)
≤ |D| · 3t

16 · δ ·
( 4δ

3 + 1
3
)

+ (1 + δ) · costr(N, c)
≤ δ · costr(D, F ) + (1 + δ) · costr(N, c) (8)

Where the last inequality follows from (6) and δ < 1/2. ◁

Thus, consider the solution F \ {c}. To upper bound costr(P, F \ {c}), we assign all
points in N = cl(c, F ) to c′. The cost of this solution can be upper bounded as follows

costr(P, F \ {c}) ≤ costr(P, F )− costr(N, c) + costr(N, c′)
≤ costr(P, F ) + δ · costr(D, F ) + δ · costr(N, c) (From (5))
≤ costr(P, F ) + δ · costr(P, F ) (Since D ⊎N ⊆ P )
≤ (1 + δ)k−m+1 · OPTr (9)

Where the last inequality follows from the invariant. Further, observe that c ∈ F \ F ′,
which implies that |(F \ {c}) \ F ′| ≤ m − 1. This, combined with (9), shows that the
solution F \ {c} = F ′ ⊎ (Fo \ {c}) satisfies the conditions of the invariant for m − 1.
Then, by using inductive hypothesis, HybridClustering(F, k, m − 1), with probability
at least αm−1 ≥ αm, returns a solution F̃ such that (a) |F̃ | ≤ k, (b) F ⊆ F̃ , and (c)
cost(1+δ)r′(F, F̃ ) ≤ (1 + δ)k · OPTr, completing the induction.
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Case 2.2. New cluster is large enough: |L| > δ2/4 · |D|. That is, the largest “untouched”
cluster is at least an δ fraction of the remaining points. Since L = cl(c⋆, F ) is the largest
“untouched” cluster, |L| ≥ |cl(c1, F )| for all c1 ∈ F \ F ′. Then, by Observation 8, we have
that,

|Pq⋆ | = |D|+
∑

c1∈F \F ′

|cl(c1, F )| ≤ |D|+ |F \ F ′| · |L| ≤ 4
δ2 · |L|+ k · |L| ≤ 5k

δ2 · |L|

In other words, |L| ≥ δ2

5k · |Pq⋆ |.
In the next claim, we summarize some properties of the sample S chosen in line 7 of the

algorithm, in the current case, i.e., when |L| ≥ δ2

5k |Cq⋆ |.

▷ Claim 10. Consider the iteration of the for loop of Algorithm 1, when q = q⋆, and the
corresponding sample Sq obtained in Algorithm 1. The following statements hold.
1. With probability at least 1/2, Sq contains at least β points of L.
2. Sq ∩L has the same distribution as selecting |Sq ∩L| points uniformly at random from L.
3. Let L′ ⊆ L be an arbitrary subset of size at least δ

10 |L|. Then, with probability at least
1/2, Sq contains at least 1 point from L, i.e., Sq ∩ L′ ̸= ∅.

Proof. Recall that β′ = β · 150k
δ3 and |L| ≥ δ2

5k |Cq⋆ |. So, the first item follows, say, via Markov’s
inequality 2. The second item is an easy consequence of conditional distributions. The proof
of the third item is analogous to the first item, combined with the bound on |L′|. ◁

Now we condition on the event that |Sq⋆ ∩ L| ≥ β, which, by Claim 10 happens with
probability at least 1

2 . Then, let S′ ⊆ S ∩ L be such a subset of size β. Let L = Lnear ⊎ Lfar,
where Lnear =

{
p ∈ L : dist(p, c⋆) ≤ 8r

δ

}
and Lfar =

{
p ∈ L : dist(p, c⋆) > 8r

δ

}
. We consider

different cases depending on the relative sizes of Lnear and Lfar. In the first case below
(2.2.1), when |Lnear| is not very tiny compared to |Lfar|, we show that our sample contains
at least one point from Lnear with good probability, and hence an εr grid around that point
will contain an approximate center. In the complementary case (2.2.2), |Lnear| is very tiny
compared to |Lfar|, and in this case, we argue that, instead of finding an approximate Hybrid
1-Median, we can focus on finding an approximate 1-Median, which can be found using
the sample. Now we formally analyze each of these cases.

Case 2.2.1. |Lnear| > δ
8 · |Lfar|. In this case, letting L′ ← Lnear in Claim 10, we infer

that with at least probability 1/2, S′ ∩ Lnear ̸= ∅. We condition on this event. Then, since
dist(p, c⋆) ≤ 8r

δ , it follows that there exists a c̃⋆ ∈ Grid(p, 8r
δ , δr), such that dist(c̃⋆, c⋆) ≤ δr.

Since we branch on each point in
⋃

p′∈S Grid(p, 8r
δ , δr), we will branch on c̃⋆ in particular.

Then, by Claim 7, HybridClustering(F ′ ∪ {c̃⋆} , k, m − 1) returns a solution F̃ , with
probability at least 1/2 · αm−1 ≥ αm.

Case 2.2.2. |Lnear| ≤ δ
8 · |Lfar|. We prove two claims, namely Claim 11, and Claim 12.

The latter essentially reduces the problem to finding an approximate solution to 1-median on
L. Intuitively speaking, this follows from the following two reasons: (1) As we show in (10),
a similar statement holds for the points in Lfar. This essentially follows from the fact that,
since each point of Lfar has distance at least 8r

δ to c, the subtraction of r from their distances
has little effect on the cost, and (2) Due to the case assumption, the points of Lfar vastly
outnumber the points of Lnear. Hence, the preceding claim also translates to the points of
L = Lfar ∪ Lnear, at a further small approximation error.

2 In fact, a closer inspection reveals that the probability is much closer to 1, but “at least 1/2” suffices for
our purpose.
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▷ Claim 11.
∑
p∈L

distr(p, c⋆) ≤
∑
p∈L

dist(p, c⋆) ≤ (1 + 3δ
4 ) ·

∑
p∈L

distr(p, c⋆).

Proof. First, consider,∑
p∈Lfar

distr(p, c⋆) =
∑

p∈Lfar

dist(p, c⋆)− r ≥
∑

p∈Lfar

dist(p, c⋆)− δ
8 · dist(p, c⋆)

(Since dist(p, c⋆) ≥ 8r
δ > r)

Then, the inequality between the first and the last term can be rewritten as,∑
p∈Lfar

dist(p, c⋆) ≤ 1
1− δ/8 ·

∑
p∈Lfar

distr(p, c⋆) ≤ (1 + δ
4 ) ·

∑
p∈Lfar

distr(p, c⋆) (10)

The following inequality will be used later to show that the contribution of points of
Lnear is negligible to the overall cost.∑

p∈Lfar

dist(p, c⋆) ≥
∑

p∈Lfar

distr(p, c⋆) ≥
∑

p∈Lfar

(1− δ
8 ) · dist(p, c⋆) (From (10))

≥ (1− δ
8 ) · 8r

δ · |Lfar| (Definition of Lfar)
≥ 1

2 ·
8r
δ ·

8
δ · |Lnear|

(Case assumption: |Lfar| ≥ 8
δ · |Lfar|)

= 4
δ ·

8r
δ · |Lnear|

≥ 4
δ ·

∑
p∈Lnear

distr(p, c⋆) (11)

Where the last inequality follows from the definition of Lnear.
The next sequence of inequalities shows a bound similar to (10), but when the sum is

taken over all points of L (instead of only the points of Lfar, as in Equation (10)).∑
p∈L

distr(p, c⋆) ≤
∑
p∈L

dist(p, c⋆) =
∑

p∈Lnear

distr(p, c⋆) +
∑

p∈Lfar

distr(p, c⋆)

= (1 + δ
4 ) ·

∑
p∈Lfar

dist(p, c⋆) (From (11))

≤ (1 + δ
4 ) · (1 + δ

4 ) ·
∑

p∈Lfar

distr(p, c⋆) (From (10))

≤ (1 + 3δ
4 ) ·

∑
p∈L

distr(p, c⋆) (12)

Where the last inequality follows from (i) (1 + δ
4 ) · (1 + δ

4 ) ≤ 1 + 3δ
4 and (ii) Lfar ⊆ L. This

completes the proof of the claim. ◁

Using this claim, we prove the following claim, which shows that it is sufficient to find an
approximate 1-median solution for L, which will also be a good approximation for Hybrid
1-Median for L. To this end, let c̃⋆ ∈ Rd denote the optimal 1-median for L.

▷ Claim 12. Let c1 be an (1 + δ
8 )-approximation for 1-Median for L, i.e.,

∑
p∈L dist(p, c1) ≤

(1 + δ
8 ) ·

∑
p∈L dist(p, c̃⋆). Then, it is also a (1 + δ)-approximation for Hybrid 1-Median for

L, i.e.,∑
p∈L

distr(p, c1) ≤ (1 + δ) ·
∑
p∈L

distr(p, c⋆) (13)
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Proof. Let c1, c̃⋆ ∈ Rd as defined above. Then,∑
p∈L

distr(p, c1) ≤
∑
p∈L

dist(p, c1) ≤ (1 + δ
8 ) ·

∑
p∈L

dist(p, c̃⋆) (By definition of c1)

≤ (1 + δ
8 ) ·

∑
p∈L

dist(p, c⋆)

(Since c1 ∈ Rd is an optimal 1-median and c⋆ ∈ Rd is a feasible median)

≤ (1 + δ
8 ) · (1 + 3δ

4 ) ·
∑
p∈L

distr(p, c⋆) (From Claim 11)

≤ (1 + δ) ·
∑
p∈L

distr(p, c⋆) ◁

Thus, now the task reduces to finding a 1 + δ
8 -approximate 1-Median solution for L. To this

end, we have the following result from [24, 25].

▶ Proposition 13 ([24, 25]). Let X ⊂ Rd be a set of n points and 0 < δ < 1. Let S ⊆ X be a
uniform sample chosen from X of size β =

( 1
δ

)c′

. Then, there exists an algorithm that runs
in time 2O(1/δc)d, and with probability at least α′, returns an (1 + δ)-approximate 1-median
for X. Here, c, c′ are absolute constants independent of the dimension d.

We combine the properties of the sample Sq⋆ proved in Claim 10 along with the previous
proposition, to complete the proof. To this end, note that the first item of Claim 10
implies that, with probability at least 1/2, Sq⋆ contains at least β = 1

δc points from L.
Then, we use the algorithm of Proposition 13, that returns with probability at least α′, a
(1 + δ

8 )-approximate 1-median c1 ∈ Rd for L. It follows that,∑
c∈F ′∪{c1}

costr′(cl(c, F ), c) +
∑

c∈Fo\{c⋆}

costr(cl(c, F ), c)

≤
∑
c∈F ′

costr′(cl(c, F ), c) +
∑
c∈Fo

costr(cl(c, F ), c)− costr(cl(c⋆, F ), c⋆) +
∑
p∈L

distr(p, c1)

≤
∑
c∈F ′

costr′(cl(c, F ), c) +
∑
c∈Fo

costr(cl(c, F ), c)− costr(cl(c⋆, F ), c⋆)

+ δ ·
∑
c∈Fo

costr(cl(c, F ), c) (From Claim 12)

≤(1 + δ) ·
(∑

c∈F ′

costr′(cl(c, F ), c) +
∑
c∈Fo

costr(cl(c, F ), c)
)

≤(1 + δ)k−m+1 · OPTr (14)

Then, by induction hypothesis, HybridClustering(F ′ ∪ {c1} , k, m − 1), with probability
at least αm−1, returns a solution F̃ such that costr′(P, F̃ ) ≤ (1 + δ)k · OPTr. The overall
probability of this event is at least 1

2 · α
′ · αm−1 = αm, completing the induction.

This finishes the case analysis, and thus we have established the invariant using induction.
Using the invariant, we can show the following key lemma.

▶ Lemma 14. HybridClustering(∅, k, k) returns a (1 + ε, 1 + ε)-bicriteria approximation
solution to the given instance of Hybrid k-Clustering with probability at least αk for some
constant 0 < α < 1.

APPROX/RANDOM 2024



4:16 Hybrid k-Clustering: Blending k-Median and k-Center

Proof. We first show the following:

▷ Claim 15. |R| ≤
(

k
√

d
δ

)O(d)
+ k log n

δO(1) ·
((√

d
δ

)O(d)
+
(

β′

β

))
≤ (log n) · 2(kd/δ)O(1)

.

Proof. First, in Algorithm 1, we add the points returned by Grid(c′, 16r, δr) for each c′ ∈ F ′.

The number of such points is
(

16r
√

d
δr

)d

=
(√

d
δ

)O(d)
. Next, there are at most log n

δO(1) values
for q (this follows from the second preprocessing step, cf. Lemma 6), corresponding to each
iteration of the for loop. In each iteration, we take a sample S of size β′ = O

(
150kβ

δ3

)
. Then,

for each p ∈ S, we add to R the points of Grid(p, 8r/δ, δr), and the number of such points is

at most
(

8
√

d
δ2

)d

=
(√

d
δ2

)O(d)
. In addition, we iterate over each subset S′ ⊆ S of size β, and

the number of such subsets is
(

β′

β

)
≤
(

eβ′

β

)β

=
(

k
δ3·β

)β

=
(

k
δ3

)(1/δ)O(1)

= k1/δO(1) . Thus,

overall, the size of R is bounded by (log n) · 2(kd/δ)O(1) . ◁

To bound the running time of the algorithm, let T (m) denote an upper bound on
HybridClustering(F ′, k, m) for any F ′ ⊂ Rd. Note that we make a recursive call on each
point in R. Further by Proposition 13, the time taken to compute a center in Algorithm 1
is at most 2(1/δ)O(1) ; and this algorithm is used in each of the at most k log n

(1/δ)O(1) ·
(

β′

β

)
≤

(log n) · k(1/δ)O(1) . Thus, T (m) can be bounded by the following recurrence.

T (m) ≤ |R| · T (m− 1) + (log n) · k(1/δ)O(1)
· nO(1)

≤ (log n) · 2( kd
δ )O(1)

· T (m− 1) + k(1/δ)O(1)
· nO(1)

It can be shown that this recurrence solves to T (m) ≤ 2( kd
δ )O(1)

· nO(1) – here we use the
standard argument that (log n)k ≤ kO(k) · nO(1).

Finally, note that our first call to the recursive algorithm is HybridClustering(F ′ =
∅, k, k). At this point, the precondition of the invariant is satisfying setting Fo ← F ∗, an
optimal solution satisfying costr(P, F ∗) = OPTr. Then, the correctness of the invariant
implies that, with probability at least αk, the algorithm returns a solution F̃ of size at most
k, that is a (1 + ε, 1 + ε)-bicriteria approximation – here we use that δ = ε

10k , which implies
that (1 + δ)k ≤ (1 + ε). ◀

We now conclude with the following theorem, which is restated for convenience.

▶ Theorem 2. Let 0 < ε < 1. There exists a randomized algorithm that, given an instance
of Hybrid k-Clustering in Rd, runs in time 2( kd

ε )O(1)
· nO(1), and returns a (1 + ε, 1 + ε)-

approximation with probability at least a positive constant.

Proof. From Lemma 14, the success probability of the algorithm is αk for some constant
α > 0. Thus, we need to repeat the algorithm α−k times to boost the probability to at least
a positive constant, which gets absorbed in the 2( kd

ε )O(1)
factor. ◀

A Hybrid of k-Center and k-Means

We note that an almost identical algorithm also implies a (1+ε, 1+ε) bicriteria approximation
for an analogous generalization of k-Center and k-Means. In this problem, the objective
of (1) is replaced by the following: costr(C, F ) :=

∑
p∈C distr(p, C)2. Let us refer to this

problem as Hybrid (k, 2)-Clustering – the “2” in the name refers to the squares of the
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distance-thresholds that feature in the objective. Most of the analysis can be adapted to deal
with the squares of the distances, by appropriately changing the sizes and distance-thresholds.
The only significant change is that instead of Proposition 13, one needs to use an algorithm
that computes an approximate 1-Means solution given a large enough uniform sample of
the cluster – such an algorithm can also be found in [25]. Then, one obtains the following
theorem.

▶ Theorem 16. Let 0 < ε < 1. There exists a randomized algorithm that, given an
instance of Hybrid (k, 2)-Clustering in Rd, runs in time 2( kd

ε )O(1) · nO(1) and returns a
(1 + ε, 1 + ε)-approximation with probability at least a positive constant.

More generally, one can also define Hybrid (k, z)-Clustering analogously, where the
threshold-distances feature the z-th power of distances. Again, our approach easily extends
to this problem, modulo a version of Proposition 13 for the vanilla (k, z)-Clustering in
Euclidean spaces. To the best of our knowledge, such an algorithm is not explicitly known in
the literature; however, it may be possible to obtain such an algorithm using the approach
of [23, 25].

3 Conclusion and Future Directions

In this paper, we proposed a novel clustering objective and defined a new problem, called
Hybrid k-Clustering, that generalizes both k-Median and k-Center. For d-dimensional
euclidean inputs, we designed a randomized (1 + ε, 1 + ε)-bicriteria approximation scheme
for Hybrid k-Clustering running in time 2(kd/ε)O(1) , for any ε > 0. Further, essentially
the same algorithm also generalizes for a hybrid objective of k-Center and k-Means. We
remind that improving either of the two (1 + ε) factors to 1 would imply an exact FPT
algorithm for k-Center/Median(/Means) in Euclidean spaces, which is unlikely to exist.

Our work opens up several interesting research directions. An immediate question
is whether improving or removing the FPT dependence on the dimension d is possible,
similar to the approach in [25] for k-Median/Means. One potential direction for achieving
this could be the recent result that imports the famous Johnson-Lindenstrauss dimension
reduction technique to k-clustering problems [26]. Another intriguing question is the design
of coresets for Hybrid k-Clustering, which could also have some implications for the
previous problem via the approach of [9]. However, at a high level, designing coresets for
Hybrid k-Clustering appears to be challenging, since a priori we do not know which
points belong inside the radius-r balls (and thus contribute 0 to the cost), and which ones lie
outside, and hence their cost needs to be approximately preserved.

Finally, considering Hybrid k-Clustering with inputs from arbitrary metric spaces, a
primal-dual algorithm from [7] can be adapted to obtain an (α, β)-bicriteria approximation
in polynomial time, for some constants α and β 3. Exploring the best possible constants in
the bicriteria approximation would be an interesting avenue for future research.
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