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Abstract
For S ⊆ Fn, consider the linear space of restrictions of degree-d polynomials to S. The Hilbert
function of S, denoted hS(d,F), is the dimension of this space. We obtain a tight lower bound on
the smallest value of the Hilbert function of subsets S of arbitrary finite grids in Fn with a fixed size
|S|. We achieve this by proving that this value coincides with a combinatorial quantity, namely the
smallest number of low Hamming weight points in a down-closed set of size |S|.

Understanding the smallest values of Hilbert functions is closely related to the study of degree-d
closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A,
2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-d closures
of subsets of Fn

q , which answers a question posed by Doron, Ta-Shma, and Tell (Computational
Complexity, 2022).

We use the bounds on the Hilbert function and degree-d closure of sets to prove that a random
low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove
the existence of low-degree extractors and dispersers for sources generated by constant-degree
polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic
extractors for such sources was not known.
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41:2 Hilbert Functions and Low-Degree Randomness Extractors

1 Introduction

1.1 Hilbert Functions
Low-degree polynomials are fundamental objects in theoretical computer science, and their
properties are extensively studied due to their important role in areas such as error correcting
codes and circuit lower bounds. Let d ≥ 0 be an integer, F be a field, and S ⊆ Fn be a set.
Each degree-d n-variate polynomial p over F can be naturally viewed as a map p : Fn → F,
and hence also defines a map p|S : S → F. Considering the linear space of all such maps in FS ,
which is a subspace of the space of all maps from S to F, allows one to tap into a wide array
of algebraic techniques in order to prove useful facts about the set S. This approach was for
example utilized in complexity theory famously in the work of Smolensky [39], where proving
bounds on the dimension of the aforementioned subspace was used to obtain lower-bounds for
AC0[⊕] circuits computing the indicator function of the set S, for various S ⊆ {0, 1}n. The
dimension of the space consisting of p|S for all degree-d polynomials p is indeed a well-studied
and classical concept in algebraic geometry known as the (affine) Hilbert function of S,
denoted by hS(d,F). Hilbert functions encode important geometric and algebraic information,
such as the dimension, degree, and regularity of varieties, in a more general context.

Hilbert functions have previously been studied in complexity theory due to their ap-
plications in circuit lower bounds, in particular for AC0[⊕] circuits, that were established
by Smolensky [39] and Razborov [36]. Such applications require finding sets S ⊆ {0, 1}n

where the Hilbert function takes a very large value. However, it is also interesting to prove
general lower bounds or find lower-bounding methods for arbitrary sets S. An example
of such a result is the work of Moran and Rashtchian [32], who showed upper and lower
bounds on hS(d,F) for S ⊆ {0, 1}n ⊆ Fn via various concepts in VC theory. [32] treated the
Hilbert function as a complexity measure of the set S and compared it to measures that
arise naturally in learning theory, including “shattering” and “strong shattering” values.

Suppose r > 0 is an integer. It is natural to wonder, what the extreme values of hS(d,F)
are, among all sets S of size |S| = r. It is not hard to show that the maximum value is equal
to min (r, hFn(d,F)) when S ⊆ Fn. For example, the maximum value of the Hilbert function
of a set S ⊆ Fn

2 of size r is min(r,
(

n
≤d

)
).

On the other hand, finding the true smallest value of hS(d,F) is a natural and intriguing
question even when S is restricted to subsets of some finite and structured set in Fn.

▶ Question 1. Let 0 ≤ d ≤ n be integers, F be a field, and A = A1 × · · · × An ⊆ Fn where
Ai ⊆ F are finite sets. For any r ≤ |A|, what is the smallest value of hS(d,F) among all
subsets S ⊆ A of cardinality |S| = r?

This question has been answered in the case of F = F2 and A = Fn
2 by Keevash and

Sudakov [27] and Ben-Eliezer, Hod, and Lovett [6], and later generalized to F = Fp and
A = Fn

p by Beame, Oveis Gharan, and Yan [4]. For simplicity, let r = pk for some k ≥ 0. [4]
proved that the smallest value of hS(d,Fp) with |S| = r is equal to the number of degree-≤ d

monomials on k variables, for example when p = 2, this is equal to simply
(

k
≤d

)
=
(log2 r

≤d

)
.

We prove a more general result that answers Question 1 for arbitrary finite grids A ⊆ Fn

in arbitrary fields F. We show that the smallest values of Hilbert functions are exactly
determined by an extremal combinatorial question about the number of low-Hamming-weight
elements in down-closed sets, which we solve by building on the work of Beelen and Datta [5].

The prior works discussed above were motivated by applications in bounding the list-size
of the Reed-Muller codes and obtaining certain extensions of Frankl–Ray-Chaudhuri–Wilson
theorems on cross-intersecting sets. In contrast, in this paper, we are interested in Question 1
due to its applications in pseudorandomness, particularly in randomness extraction.
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Understanding the smallest values of Hilbert functions is closely related to the study of
degree-d closure of sets, a notion introduced by Nie and Wang [33].

▶ Definition 1. The degree-d closure of a set T ⊆ Fn is defined as

cld(T ) := {a ∈ Fn | for every degree-d polynomial f , f |T ≡ 0 ⇒ f(a) = 0} .

Equivalently, cld(T ) is the set of all points a ∈ Fn such that the values f(a) of a degree-d
polynomial f are determined by f |T .

The existence of a small set with a large degree-d closure has application to hitting-set
generators for polynomials [17]. As an application of our answer to Question 1, we obtain an
upper bound on the size of cld(T ) in terms of |T |. Our bound in fact yields an optimal way
of creating a small set with a large degree-d closure.

Futhermore, Question 1 has direct implications to the theory of randomness extractors,
which we discuss next.

1.2 Randomness Extractors
The theory of randomness extractors is an active research area that was initiated in [38, 7]
with the motivation of simulating randomized algorithms with access to “weak” randomness
sources. The main objective of this theory is to design extractors that are capable of
purifying imperfect randomness sources into high-quality random bits or bit sequences.
Extractors and related objects such as dispersers, samplers, and condensers have since found
numerous applications in constructing other pseudorandom objects such as pseudorandom
generators [34] and expander graphs [50], as well as applications in other areas of theoretical
computer science and mathematics including cryptography [15], combinatorics [30], hardness
of approximation [51], error correcting codes [42], and metric embeddings [25].

A deterministic extractor for a family X of distributions over {0, 1}n is a map f : {0, 1}n →
{0, 1}m such that for any X ∈ X , f(X) is close to the uniform distribution in statistical
distance. It is common to measure the amount of randomness in a random variable X by
its min-entropy, defined H∞(X) := − log2 maxx∈{0,1}n Pr[X = x]. It is easy to show that no
deterministic extractor can extract from general n-bit randomness sources of min-entropy as
high as n − 1 [11]. As a result, researchers in the area have explored two directions. Much
of the focus in the area has been given to the more powerful seeded extractors that have
access to an additional short purely random seed. This article contributes to another line
of work that has extensively investigated the extra assumptions on the randomness sources
that allow for explicit deterministic extractors and dispersers to exist. A widely studied
class of sources in this latter direction, introduced in [43] is “samplable sources”, where the
sources of randomness are distributions sampled by applying a low-complexity map (e.g.,
a decision forest, local map, NC0 circuit, AC0 circuit, an affine or a low-degree map) to
the uniform distribution. Unfortunately, constructing explicit extractors even for sources
samplable by really low-complexity maps has been quite challenging, and for example all
the known constructions of extractors for local sources require quite high min-entropy of
Ω(

√
n) [47, 14]. Due to the difficulty of constructing good explicit extractors and motivated

by applications in complexity theory such as circuit lower bounds [29] and lower bounds for
distribution-sampling [46], researchers have considered the seemingly easier task of proving
the existence of low-complexity extractors [45, 19, 10, 44, 8, 16, 24, 12, 1].

The state of affairs is much worse when it comes to randomness extraction from sources
sampled by more powerful maps such as AC0[⊕] or low-degree F2-polynomial maps. In
this case obtaining nontrivial explicit constructions and even non-explicit low-complexity

APPROX/RANDOM 2024
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extractors remains open. In fact, the same problems are open even in the case of dispersers.
Here a map f : {0, 1}n → {0, 1} is a disperser for X if for every source X ∈ X , the support
of f(X) is {0, 1}. On the positive side, Chattopadhyay, Goodman, and Gurumukhani [9],
recently proved the existence of deterministic (not necessarily low-complexity) extractors for
low-degree F2-polynomial sources with logarithmic min-entropy.

1.3 Our Results on Hilbert Functions
We obtain our answer to Question 1 by first reducing it to a purely combinatorial problem. In
particular, via an algebraic geometric argument, we prove the following theorem which states
that the minimum value of Hilbert functions over subsets of a grid is exactly captured by a
combinatorial quantity related to down-closed sets. (A set T ⊆ Nn is said to be down-closed
if T is closed under decreasing any coordinates of its elements.)

▶ Theorem 2 (See Corollary 35). Let F be a field, and A1, . . . , An ⊆ F be finite sets of size
|Ai| = ri. Define A = A1 × · · · × An. For every k ≤ |A|,

min
S⊆A:|S|=k

hS(d,F) = min
down-closed T ⊆F :|T |=k

|T≤d| ,

where F =
∏

i{0, . . . , ri − 1} and T≤d = {x ∈ T :
∑

i xi ≤ d}.

For space reasons, we defer the proofs of Theorem 2 and the consequent results to the
full version [20].

Let I be the ideal of F[X1, . . . , Xn] associated with a set S ⊆ A, that is, the set of all
polynomials vanishing on S.

Classical results in algebraic geometry (such as Hilbert’s Nullstellensatz) establish close
connections between the structure of S and the structure of I, which allows us to focus on
studying I.

The proof of Theorem 2 is based on the idea that the ideal I can be reasonably ap-
proximated by another ideal, the ideal of leading terms of I. This approximation preserves
important information about I, and consequently, about S as well. In particular, when the
ideal of leading terms of I is defined with respect to a specific total order of monomials
compatible with the total degree, it can be shown that such an approximation preserves the
value of the Hilbert function. One advantage of working with the ideal of leading terms is
that it is a monomial ideal, that is, an ideal generated by monomials, whose relatively simple
structure can be analyzed using combinatorial tools.

We remark that the concept of transforming a general ideal into a monomial ideal is
closely related to the theory of Gröbner bases, which serves as a basis of computational
algebraic geometry. For a detailed discussion, see, e.g., [3]. This concept is also used in
Smolensky’s algebraic method for proving circuit lower bounds [40].

Theorem 2 allows us to reduce the problem of determining the smallest value of Hilbert
function of a set of size k to understanding the smallest number of low-Hamming-weight
points in down-closed sets of the same size. We then solve this combinatorial problem by
proving that the minimum is obtained by the down-closed set MF (k) which is defined as the
set of k lexicographically first elements of F .

▶ Theorem 3 (See Theorem 38). Let 1 ≤ r1 ≤ · · · ≤ rn be integers and let F =∏n
i=1{0, . . . , ri − 1}. Then

min
down-closed T ⊆F

|T≤d| = |MF (k)≤d| .
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In the case of r1 = · · · = rn = 2, we prove the above theorem via an elementary
combinatorial argument, that via a series of operations turns any set of k elements into
MF (k) without increasing the number of elements of Hamming weight ≤ d. We prove the
general case by building on a recent result of Beelen and Datta [5]. This result generalizes
the work of Wei [49] and Heijnen–Pellikaan [22, 21] in studying the generalized Hamming
weights of certain linear codes.

We record the following corollary of our results specialized to finite fields which generalizes
the bounds due to [27, 6, 4], where Mn

q (k) is the set of k lexicographically first strings in the
set
∏n

i=1{0, 1 . . . , q − 1}.

▶ Corollary 4 (See Corollary 39). For every prime power q, and n, k, d ∈ N where k ≤ qn, we
have

min
S⊆Fn

q :|S|=k
hS(d,Fq) = |Mn

q (k)≤d| .

In particular, setting q = 2, for every n, k, d ∈ N where k ≤ 2n, and every S ⊆ Fn
2 of size

|S| = k,

hS(d,F2) ≥
(

⌊log(k)⌋
≤ d

)
.

1.3.1 Degree-d Closure of Sets
Motivated by its applications to combinatorial geometry, the notion of degree-d closures of
subsets of Fn

q was introduced in [33]. This concept has since found further applications and
connections to complexity theory [28, 35, 41] and pseudorandomness [17].

Recall that the degree-d closure cld(T ) of a set T ⊆ Fn over a finite field F is the set of
all points a ∈ Fn such that any degree-d polynomial vanishing on T also vanishes at a. Nie
and Wang [33] proved the following result.

▶ Theorem 5 ([33, Theorem 5.6]). Let n, d ∈ N and T ⊆ Fn
q . Then

|cld(T )| ≤ qn

hFn
q
(d,Fq) · |T |. .

Building on our results on Hilbert functions, we obtain an improvement of Theorem 5 by
obtaining a tight upper bound on the size of degree-d closures of sets.

▶ Theorem 6 (See Theorem 47 and Theorem 48). Let n, d, m ∈ N. Let T ⊆ Fn
q be a set of

size m. Then

|cld(T )| ≤ max
0≤k≤qn:|Mn

q (k)≤d|≤m
k =

{
max0≤k≤qn:|Mn

q (k)≤d|=m k if m ≤ hFn
q
(d,Fq),

qn otherwise.
(1)

Moreover, this bound is tight in the sense that for any 0 ≤ m ≤ qn, there exists T ⊆ Fn
q of

size m for which (1) holds with equality.

In fact, the set T of size m that attains the bound in the above theorem can be constructed
explicitly; see Theorem 48 for details.

For convenience, we state the following corollary which is used later in the paper. For
n, d, δ ∈ N, denote by N(n, d, δ) the number of monomials Xe1

1 · · · Xen
n with e1, . . . , en ≤ δ

and e1 + · · · + en ≤ d.

APPROX/RANDOM 2024
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▶ Corollary 7. Let n, d, ℓ ∈ N. If T ⊆ Fn
q is a set of size less than N(ℓ, d, q − 1), then

|cld(T )| < qℓ. In particular, if q = 2 and T ⊆ Fn
2 is a set of size less than

(
ℓ

≤d

)
, then

|cld(T )| < 2ℓ.

Proof. Observe that |Mn
q (qℓ)≤d| = N(ℓ, d, q − 1). Then apply Theorem 6. ◀

Let us compare our bound with the bound of Nie and Wang in some specific settings.

▶ Example 8. Suppose ℓ ≤ n. Let T ⊆ Fn
2 be a set of size

(
ℓ

≤d

)
− 1. Then by Corollary 7,

we have the bound |cld(T )| ≤ 2ℓ − 1. On the other hand, the bound of Nie and Wang
(Theorem 5) gives

|cld(T )| ≤ 2n(
n

≤d

) · |T | ,

which is exponential in n, rather than in ℓ, at least when d ≤
( 1

2 − c
)

n for some constant
c > 0.

▶ Example 9. Suppose ℓ ≤ n and d < q. Let T ⊆ Fn
q be a set of size N(ℓ, d, q − 1) − 1 =(

ℓ+d
d

)
− 1. Then by Corollary 7, we have the bound |cld(T )| ≤ qℓ − 1, which is exponential in

ℓ log q. On the other hand, the bound of Nie and Wang (Theorem 5) gives

|cld(T )| ≤ qn(
n+d

d

) · |T | ,

which is exponential in n log q, rather than in ℓ log q, at least when n + d ≤ q1−c for some
constant c > 0.

In [17], Doron, Ta-Shma, and Tell explicitly asked if there exists a small set T ⊆ Fn
q

whose degree-d closure is very large. Our Theorem 6 gives an upper bound on the size of the
degree-d closure of T in terms of the size of T , which is tight in the sense that there exist
sets T that exactly meet this bound for every cardinality of T . Moreover, such sets T can be
constructed explicitly (see Theorem 48). Thus, we completely resolve the question posed by
Doron, Ta-Shma, and Tell.

1.4 Our Results on Randomness Extractors
Continuing the line of work on low-complexity extractors, in this paper we investigate the
power of low-degree polynomials in randomness extraction.

▶ Question 2. For which families X of sources does there exist a low-degree disperser?
Similarly, for which families X of sources does there exist a low-degree extractor?

Let us first discuss the easier task of obtaining low-degree dispersers before moving on to our
main application of low-degree extractors. For simplicity, we will focus on the most important
case of extracting randomness over F2, but all our results easily generalize to Fq. Non-explicit
constructions of low-degree dispersers can be obtained via understanding the probability that
a random low-degree polynomial is a disperser for a family X of distributions over {0, 1}n

which we identify with Fn
2 in the natural way. Our starting point is the observation that the

notion of Hilbert functions can be used to exactly describe the probability that a random
degree-d polynomial f : {0, 1}n → {0, 1} is a disperser for a fixed source X ∈ X . Indeed, this
probability is exactly equal to 1 − 21−hS(d,F2), where S = support(X). Thus, in particular,
Corollary 4 can be used to bound the probability that a random degree-d polynomial is not
a disperser for a fixed source.
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1.4.1 Low-Degree Dispersers
Let X be a family of sources of min-entropy ≥ k. Observing that the support of any
distribution X ∈ X is of size ≥ 2k, one gets as an immediate corollary of Corollary 4, the
existence of low-degree dispersers X as long as |X | is small.

▶ Theorem 10 (Informal, see Corollary 50). Let n, d, k ≥ 1. Let X be a family of distributions
of min-entropy ≥ k. Then a random degree-d polynomial over F2 is a disperser for X with
probability at least

1 − |X | · 21−( k
≤d) .

This theorem itself implies the existence of low-degree dispersers for several interesting
families of samplable sources such as sources sampled by local maps, bounded-depth decision
forests, and polynomial-sized bounded-fan-in circuits, to name a few.

A map f : {0, 1}m → {0, 1}n is called ℓ-local if each of its output bits depends on at
most ℓ input bits. A depth-ℓ decision forest is a map f where each output bit can be
computed as a depth-ℓ decision tree. It is easy to obtain an upper bound exponential in
poly(n) on the number of local or decision forest sources. Hence we get the following as a
corollary of Theorem 10.

▶ Corollary 11 (Informal, see Corollary 51). Let 1 ≤ ℓ ≤ d ≤ n be integers. There exists a
degree-d disperser

for the family of ℓ-local sources on {0, 1}n with min-entropy k > d(2ℓn + 2ℓn log n)1/d.
for the family of depth-ℓ decision forest sources on {0, 1}n with min-entropy k > d((ℓ +
log n)2ℓ+1n)1/d.

As mentioned above, since in addition to the min-entropy requirement, the only require-
ment in Theorem 10 about the family X is a bound on |X |, it can be used to immediately
obtain low-degree dispersers for various other families of sources as well. For example, since
for any c, the number of Boolean circuits with ≤ nc bounded fan-in gates is at most 2O(nc+1),
one can also use Theorem 10 to obtain a degree-O(c) disperser for such families of circuits.
However, we will not do an exhaustive search for all such applications, and instead our
main disperser applications will focus on two powerful families of sources, namely sources
sampled by low-degree polynomials over F2 and AC[⊕] circuits which we define as the family
of unbounded-depth polynomial-size Boolean circuits with AND, OR, XOR, NOT gates of
unbounded fan-in, where the input gates are not counted towards the size.

Note that low-degree polynomial maps f : {0, 1}m → {0, 1}n, even affine ones, can depend
on the entire input for any m ≫ n and thus one cannot simply bound |X | when X is the
family of sources sampled by low-degree polynomials. This property holds for AC[⊕] circuits,
as we allow them to non-trivially depend on an arbitrary number of input gates (since the
circuit gates have unbounded fan-in). Nevertheless, utilizing an “input-reduction” trick of [9]
which applies to both the foregoing families of sources, it can be shown that for our disperser
purposes we may assume the input of both families of sources to be of length O(n). This
allows us to apply Theorem 10 to obtain low-degree dispersers for both of these families.

▶ Theorem 12 (Informal, see Theorems 53 and 54). For every 1 ≤ ℓ < d ≤ n, there exists a
degree-d disperser

for the family of degree-ℓ sources on {0, 1}n with min-entropy k ≥ (12ℓ · dd · n)
1

d−ℓ + 1.
for the family of nℓ-size AC[⊕] circuit sources on {0, 1}n with min-entropy k ≥ (302 · dd ·
n2ℓ)

1
d−2 + 1.

In particular, for every ℓ ∈ N, there is a degree-(ℓ + 2) disperser for degree-ℓ sources on
{0, 1}n with min-entropy Ω (

√
n).

APPROX/RANDOM 2024
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We note that both of these source families are very powerful, and to the best of our
knowledge, no nontrivial low-complexity dispersers for either of these families of sources was
known prior to this work (except in the easier case of degree-1 sources which corresponds to
affine sources for which explicit extractors for logarithmic entropy was recently proved [30]).
Let us also point out that the two foregoing classes have incomparable power, and that it is
straightforward to use our proof technique to conclude the same result for a class of sources
that generalizes both AC[⊕] and constant-degree polynomials. Indeed, the input-reduction
and counting idea works for the “hybrid” class of polynomial-size circuits which extends
AC[⊕] by allowing additional unbounded fan-in gates computing arbitrary polynomials of
fixed constant degree. However, for ease of exposition, we have chosen to present only the
results for AC[⊕] and low-degree sources separately.

1.4.2 Low-Degree Extractors
Next, we move on to another application concerning the existence of low-degree extractors
for samplable sources. Can we prove the existence of low-degree extractors for all the families
for which we proved the existence of low-degree dispersers? We prove this by showing an
analogue of Theorem 10 for extractors.

▶ Theorem 13 (Informal, see Theorem 58 for the more general statement). Let X be a family
of distributions of min-entropy k ≥ 5 log n over {0, 1}n for large enough n. Then for every
d ≥ 6, a uniformly random degree-d polynomial is an ε-extractor for X with probability at
least

1 − |X | · e3n−O(kd/2)/n2

for ε = (2d)d · k−d/4.

A similar statement (see Theorem 58) holds for families of sources that are close to convex
combinations of another small family of sources. Combined with the input-reduction trick,
we obtain as a corollary, the existence of low-degree extractors for various families of sources,
notably, lower-degree sources and AC[⊕] circuits.

▶ Theorem 14 (Informal, see Theorem 60). For all ℓ, d ≥ 1, and all large enough n, and
k ≥ 5 log n. There exists a degree-d F2-polynomial that is an ε-extractor for the following
families of sources over {0, 1}n for ε = (2d)d · k−d/4:

ℓ-local sources for k ≥ (2ℓn3 log n)2/d.
depth-ℓ decision forest sources for k ≥ (2ℓn3(log n + ℓ))2/d.
degree-ℓ sources for k ≥ (3ℓn)

6
d−2ℓ .

nℓ-size AC[⊕] circuit sources (with unbounded number of input gates) for k ≥ 3n
4(ℓ+1)

d−4 .

In Theorem 61, we further extend our low-degree extractors to multi-output extractors
that output Θ(k) bits. This is done by independently picking random degree-d polynomials
p1, . . . , pt for some t = Θ(k), and analyzing the probability that each pi is an extractor for
the family of sources obtained by X conditioned on the values of p1, . . . , pi−1.

Let us now discuss our proof technique for Theorem 13. Recall that Theorem 10 was a
corollary to Corollary 4 which showed that a random polynomial is with high probability
non-constant on the support of any fixed high min-entropy distribution. A priori it is not
clear how to use this bound on the Hilbert function to prove Theorem 13.

Indeed, let us consider the simpler case of a fixed k-flat source X over {0, 1}n, which is
uniformly distributed over a set S ⊆ {0, 1}n with |S| = 2k. Note that a map p : {0, 1}n →
{0, 1} is an extractor for X if it has small bias on S. Thus, for example, to prove the special
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case of Theorem 13 for small families of k-flat sources, we would need to prove that a random
degree-d polynomial is small-biased on S with high probability. However, Corollary 4 only
tells us that hS(d,F2) ≥

(
k

≤d

)
, which is not enough to prove concentration bounds for the

bias of a random degree-d polynomial on an arbitrary set S. We note that when S is highly
structured, that is when it is an affine subspace, this problem is equivalent to questions about
list-decoding size of Reed-Muller codes, and known results such as one by Kaufman, Lovett,
and Porat [26] that show that the number of distinct ε-biased degree-d polynomials on a
k-dimensional subspace S is at most (1/ε)kd−1 could be utilized. However, for our application
we have to deal with arbitrary sets S.

Uniform covering by sets of full Hilbert dimension. We say that a set T ⊆ {0, 1}n has
“full Hilbert dimension” if hT (d,F2) = |T |. Note that when T has full Hilbert dimension, then
the restriction of a random degree-d polynomial to T is uniformly distributed over {0, 1}T .
In particular, if T is a sufficiently large set of full Hilbert dimension, then a random degree-d
polynomial is small-biased on T with high probability. We use this observation to design our
technique for bounding the probability that a random degree-d polynomial is small-biased on
any fixed source X of large min-entropy. For simplicity we describe the idea for flat sources.
In this case, X is uniformly distributed over a set S with |S| ≥ 2k. It is sufficient to prove
the existence of an almost-uniform covering of S by large sets T1, . . . , Tt of the same size
with full Hilbert dimensions, where we call a covering almost-uniform if each element x ∈ S

belongs to roughly tm/|S| many sets, where we assume |Ti| = m.
We obtain such a covering by analyzing the probability that a uniformly picked subset

Ti ⊆ S has full Hilbert dimension. Using our bound on the Hilbert function, Corollary 4,
which allows us to bound the size of the “degree-d closure” of small sets, we prove that a
random set Ti of size m, for some m =

(Θ(k)
≤d

)
, has full Hilbert dimension with high probability.

Similarly, we prove using the Bayes rule, that we may pick these good sets Ti’s of full Hilbert
dimension in a way that leads to an almost uniform covering. Since Ti’s are of sufficiently
large size

(Θ(k)
≤d

)
and of full Hilbert dimension, we can use the Hoeffding inequality to bound

the probability that a random degree-d polynomial is biased on a Ti to be exponentially small
in Θ(k)d, which is good enough for our applications to existence of low-degree extractors.
We obtain the following result which can be used to prove Theorem 13.

▶ Theorem 15 (Informal, see Theorem 57). Let n, d, k ≥ 1, and ε > 0 be a real. Then for every
distribution X over {0, 1}n with H∞(X) ≥ k, a uniformly random degree-d polynomial f is
an ε-extractor for X, with probability at least 1 − e3n−ε2( ℓ

≤d)/(Cn2) where ℓ = k/2 − log(32n/ε)
and C = 7 · (32)2.

We find our technique of obtaining almost uniform coverings with sets of full Hilbert
dimension to be powerful, and hope that it will find other applications beyond the ones
explored here.

1.5 Remarks
Correlation bounds over arbitrary subsets. We note that our proof of Theorem 15 (The-
orem 58) can be modified to the following correlation bounds with any fixed function.

▶ Theorem 16. Let n, d, k ≥ 1, ε > 0 be a real, and g : Fn
2 → F2 be a fixed function. Then

for every distribution X over {0, 1}n with H∞(X) ≥ k, for a uniformly random degree-d
polynomial f we have

Pr[f(X) = g(X)] = 1
2 ± ε,

with probability at least 1 − e3n−ε2( ℓ
≤d)/(Cn2) where ℓ = k/2 − log(32n/ε) and C = 7 · (32)2.
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This generalization is quite straightforward, as once we obtain a uniform covering by sets
of maximum Hilbert dimension, then Hoeffding bounds can be used to bound the correlation
of a random polynomial with the fixed function restricted to the sets belonging to the cover.
This can then be used to bound the over-all correlation with the fixed function in a similar
way to the proof of Theorem 58.

Punctured Reed-Muller codes. The special case of Theorem 16 when X is a flat source can
be interpreted as a bound on the list-decoding size of Reed-Muller codes when “punctured” on
a large set S ⊆ Fn

2 . Recall that the binary Reed-Muller code RM[d, n] consists of codewords
in Fn

2 that correspond to the evaluation vectors of degree ≤ d polynomials over F2. Given a
set S ⊆ Fn

2 , the resulting punctured code consists of the evaluation of degree ≤ d polynomials
on S. In this context, Theorem 16 can be used to bound the list-size of any puncturing of the
Reed-Muller code, showing that for any word w from FS

2 , only a small fraction of codewords
are within radius 1

2 − ε of w. Another interpretation of Theorem 16 is that any puncturing of
the Reed-Muller codes over a set S can be turned into a “small-biased” code without much
loss in the rate of the code.

Sampling lower bound for polynomial sources. Our low-degree extractor for lower-degree
sources (Theorem 14) has a direct application in distributions that are hard to sample
by low-degree polynomials. Indeed, an argument similar to the proof of [48, Lemma 3],
Theorem 14 implies the existence of a degree-O(d) polynomial p for which the distribution
(U, p(U)) cannot be sampled by any degree-d source, where U ∼ Un.

Suppose that p is a degree-O(d) polynomial that is an ε-extractor for the family of
degree ≤ 2d sources over {0, 1}n of min-entropy ≥ n

2 , where ε = o(1). The existence of
such a polynomial p is guaranteed by Theorem 14. Now suppose that (G(U′), g(U′)), where
U′ ∼ Um for some m ≥ 1, is a degree ≤ d source sampling (U, p(U)). In particular, G is
an n-bit degree ≤ d source and g is a degree ≤ d polynomial. Consider the n-bit random
variable R = G(U′) · g(U′) + Un · (1 − g(U′)). Since R is sampled by a degree ≤ 2d source
of min-entropy n − O(1), Pr[p(R) = 1] = 1

2 + o(1). On the other hand, by the definition R,
we have Pr[p(R) = 1] ≥ 1

2 + Ω(1), which is a contradiction.

Related Work. An independent and concurrent paper by Alrabiah, Goodman, Mosheiff, and
Ribeiro [2] proves the existence of low-degree extractors for similar families of sources that
are considered in our work, as well as sumset sources. While the proofs are quite different,
they both rely on bounds on the dimension of punctured Reed-Muller codes (equivalently
the Hilbert function).

2 Preliminaries

All logarithms in this paper are base 2. By N we denote the set of non-negative integers. For
a positive integer n, by [n] we denote the set {1, . . . , n}. For a prime power q, denote by Fq

the finite field q elements.
For simplicity, throughout this paper, we refer to a polynomial as a degree-d polynomial

if its total degree is at most d. When q is a prime power, by Pq(n, d) we denote the set of all
degree-d polynomials from F[X1, . . . , Xn] with individual degrees at most q − 1. Note that
each element of Pq(n, d) corresponds to a unique map Fn

q → Fq.
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Let r1, . . . , rn ≥ 1 be integers and F =
∏n

i=1{0, . . . , ri − 1}. For x ∈ F and i ∈ [n], xi

denotes the ith coordinate of x. For x ∈ F , we define its generalized Hamming weight as
|x| :=

∑
i xi, where the summation is over the integers. For an integer d ≥ 0, and a set

T ⊆ F , we denote the set of its elements of generalized Hamming weight ≤ d by

T≤d := {x ∈ T : |x| ≤ d} .

For a, b ∈ F , we write a ≤P b if ai ≤ bi for all i ∈ [n]. We say a subset T ⊆ F is
down-closed if for all a, b ∈ F such that a ≤P b, if b is in T , then so is a. Similarly, we say a
subset T ⊆ F is up-closed if for all a, b ∈ F such that a ≤P b, if a is in T , then so is b.

The lexicographic order ≺ on F is defined as follows. For distinct x, y ∈ F , x precedes
y, denoted x ≺ y, in lexicographic order if xi < yi, where i is the smallest index such that
xi ̸= yi.

We will be studying the following quantity.

▶ Definition 17. For F =
∏n

i=1{0, . . . , ri − 1} and k ≤ |F |, let

HF (d, k) := min
T

|T≤d| ,

where the minimum is taken over all down-closed sets T ⊆ F with |T | = k. Moreover, denote
HF (d, k) by Hn

q (d, k) in the special case where r1 = · · · = rn = q for some q ≥ 1.

2.1 Probability Distributions
We use lowercase letters such as x, y to denote vectors, uppercase bold letters such as X, Y
to denote random variables, and X , Y to denote families of distributions. By Un we denote
the uniform distribution over {0, 1}n.

The statistical distance between two distributions A and B over a finite domain X is

∆(A, B) = 1
2

(∑
x∈X

|Pr[x ∈ A] − Pr[x ∈ B]|
)

.

We say two distributions A and B are ε-close if ∆(A, B) ≤ ε. For a distribution X ∼ {0, 1}n,
the min-entropy of X is

H∞(X) = min
x∈support(X)

− log(Pr[X = x]) .

We will use following forms of Chernoff’s and Hoeffding’s bounds (see, e.g., [31, 23]).

▶ Theorem 18 (Chernoff bound). Let X1, . . . , Xn ∈ {0, 1} be independent random variables.
Let X =

∑n
i=1 Xi and µ = E(X). Then we have

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3

for all 0 < δ < 1.

▶ Theorem 19 (Hoeffding’s inequality). Let X1, . . . , Xn ∈ [0, 1] be independent random
variables, X =

∑n
i=1 Xi and µ = E[X]. Then,

Pr[|X − µ| ≥ R] ≤ 2e− 2R2
n .
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2.2 Randomness Sources, Dispersers, and Extractors
▶ Definition 20 (Sources and Their Convex Combinations). A distribution X ∼ {0, 1}n is a
source from a class C of functions, if X = f(Um) for some f : {0, 1}m → {0, 1}n ∈ C. A
distribution Y is a convex combination of sources Xi if Y =

∑
i piXi for some non-negative

pi satisfying
∑

i pi = 1, i.e., Y samples from each Xi with probability pi.

One of the most powerful classes of sources that we consider in this work is the class of
circuits of polynomial size.

▶ Definition 21 (AC[⊕] circuits). An AC[⊕] circuit is an unbounded-depth Boolean circuit
consisting of AND, OR, XOR, NOT gates of unbounded fan-in. The size of such a circuit is
the number of non-input gates in it.

We focus on the class of AC[⊕] circuit as it generalizes circuit classes previously studied in
this context: unbounded-depth circuits of bounded fan-in from P/poly, and bounded-depth
circuits of unbounded fan-in from, say, AC0. We remark that we define AC[⊕] sources (see
Definition 22) as sources where each output is computed by an AC[⊕] circuit of polynomial
size but with an arbitrary (possibly super-polynomial) number of inputs. This explains why
in this context P/poly and AC0 circuits are incomparable, and why we work with AC[⊕]
circuits generalizing both of the aforementioned classes. In fact, our results hold even for a
larger class of circuits where not only XOR but arbitrary constant-degree polynomials over
F2 can be computed at gates (see the discussion at the end of Section 6).

▶ Definition 22 (Structured Sources). Let n, d, m ∈ N, f : {0, 1}m → {0, 1}n, and X be a
distribution over {0, 1}n that is generated as f(Um).

X is called a d-local source if every output bit of f depends only on at most d of its
input bits.
X is called a depth-d decision forest source if every output bit of f is determined by a
depth-d decision tree of its input variables.
X is called a degree-d source if every output bit of f is a degree-d polynomial over F2.
X is called a size-nd circuit source if there is an AC[⊕] circuit of size nd that computes
all output bits of f .

Note that every d-local source is a depth-d decision forest source, and a degree-d source.
Also, every depth-d decision forest source is a degree-d source and a 2d-local source.

We will use the following bounds on the numbers of d-local sources and depth-d decision
forest sources.

▶ Proposition 23. Let n, d ≥ 1.
The number of d-local sources over {0, 1}n is bounded from above by 22dn+2dn log n.
The number of depth-d decision forest sources is bounded from above by 2(d+log n)2d+1n.

For polynomial and circuit sources where the number of input bits cannot be bounded
by a small function of n (unlike the sources considered in Proposition 23), we will need the
following bounds on the number of such sources for a fixed number of input bits m.

▶ Proposition 24. Let n, d, m ≥ 1.
The number of degree-d polynomials f : Fm

2 → Fn
2 is bounded from above by 2n·( m

≤d).
The number of AC[⊕] circuits C : {0, 1}m → {0, 1}n of size nd is bounded from above by
24nd(nd+m).
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▶ Definition 25 (Disperser). A function Disp : {0, 1}n → {0, 1} is a disperser for a family X
of sources over {0, 1}n with min-entropy k, if for every source X ∈ X with H∞(X) ≥ k, the
support of Disp(X) is {0, 1}.

▶ Definition 26 (Extractor). A function Ext : {0, 1}n → {0, 1}m is an ε-extractor for a family
X of sources over {0, 1}n with min-entropy k, if for every source X ∈ X with H∞(X) ≥ k,
∆ (Ext(X(Ut)), Um) ≤ ε.

For clarity of presentation, in this paper when working with sources that are guaranteed
to have entropy H∞(X) ≥ k, we will always assume that k is an integer.

2.3 Hilbert Functions and Standard Monomials
In this section, we recall some necessary definitions (see, e.g., [13]). Let F be a field,
X1, . . . , Xn be indeterminates, and F[X1, . . . , Xn] be the polynomial ring in n indeterminates
over F. For a polynomial f ∈ F[X1, . . . , Xn] and S ⊆ Fn, let f |S ∈ FS be the restriction of f

to S. For d ∈ N, by ΓS(d) ⊆ FS we denote the vector space spanned by f |S for all degree-d
polynomials f :

ΓS(d) := {f |S : f ∈ F[X1, . . . , Xn], deg(f) ≤ d} .

▶ Definition 27 (Hilbert function). For a set S ⊆ Fn, the (affine) Hilbert function of S over
F, hS( · ,F) : N → N, is defined as the dimension of ΓS(d) over F, i.e.,

hS(d,F) := dimF (ΓS(d)) .

▶ Definition 28 (Monomial order). Let ⪯ be a total order on the monomials in a polynomial
ring F[X1, . . . , Xn]. The order ⪯ is called a monomial order if 1 is the minimal element
of ⪯, and for all monomials m1, m2, m satisfying m1 ⪯ m2, we have that m1m ⪯ m2m. The
order ⪯ is degree-compatible if for all monomials m1, m2 such that deg(m1) < deg(m2), we
have that m1 ⪯ m2.

Examples of degree-compatible monomial orders include the graded lexicographic and graded
reverse lexicographic orders.

▶ Definition 29 (Graded orders). The graded lexicographic order ≤grlex and the graded reverse
lexicographic order ≤grevlex are defined as follows. For a pair of monomials m1 = Xα1

1 · · · Xαn
n

and m2 = Xβ1
1 · · · Xβn

n , let α =
∑n

i=1 αi, β =
∑n

i=1 βi, and γ = (β1 − α1, . . . , βn − αn). We
have that m1 ≤grlex m2 if and only if either α < β, or α = β and the leftmost non-zero entry
of γ is positive. Similarly, m1 ≤grevlex m2 if and only if either α < β, or α = β and the
rightmost non-zero entry of γ is negative.

▶ Definition 30 (Leading monomial). For a nonzero polynomial f ∈ F[X1, . . . , Xn], the
leading monomial of f under a monomial order ⪯ is the largest monomial of f under ⪯.

Let R be a commutative ring (such as the polynomial ring F[X1, . . . , Xn]). An ideal of R

is a subset I of R such that for all a, b ∈ I and r ∈ R, we have that a + b ∈ I and ra ∈ I.

▶ Definition 31 (Standard monomial). Let I be an ideal of F[X1, . . . , Xn], and ⪯ be a
monomial order. A standard monomial m of I is a monomial in X1, . . . , Xn that is not the
leading monomial of any nonzero polynomial in I.
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For an ideal I and d ∈ N, SM(I) denotes the set of all standard monomials of I, and
SM≤d(I) denotes the set of all standard monomials of I of degree at most d:

SM≤d(I) = {m ∈ SM(I) : deg(m) ≤ d} .

For a set S ⊆ Fn, by I(S) we denote the ideal of polynomials in F[X1, . . . , Xn] vanishing
on S,

I(S) = {f ∈ F[X1, . . . , Xn] : f |S = 0S} .

For an ideal I of F[X1, . . . , Xn], define the set V (I) ⊆ Fn by

V (I) = {a ∈ Fn : f(a) = 0 for all f ∈ I} .

By definition, for all f ∈ I and a ∈ V (I), we have f(a) = 0. So I ⊆ I(V (I)).
Finally, for a set S ⊆ Fn, define

SM(S) = SM(I(S)) and SM≤d(S) = SM≤d(I(S)) .

We say that a set T of monomials is down-closed if for all monomials m and m′ such that
m ∈ T and m′ divides m, it holds that m′ ∈ T . It is easy to see that SM(S) is down-closed.
Indeed, if m′ was the leading monomial of a polynomial p ∈ I(S), then m would be the
leading monomial of the polynomial p · (m/m′) ∈ I(S).

We will use the following facts about SM(S) and SM≤d(S), which are proven, for example,
in [37, Lemma 1] and [18, Corollary 2.1.21].

▶ Lemma 32. Let S ⊆ Fn be a finite set. Then
(a) for every monomial order ⪯,

|S| = |SM(S)| ;

(b) for every degree-compatible monomial order ⪯ and every d ∈ N,

hS(d,F) = |SM≤d(S)| .

3 Hilbert Functions of Sets in Finite Grids

Let F be a field. We consider Hilbert functions of subsets of a finite grid A =
∏n

i=1 Ai,
where each Ai is a finite subset of the field F. The main result of this section is that the
minimum value hS(d,F) of a set S ⊆ A of size k equals the quantity HF (d, k) introduced in
Definition 17, where F =

∏n
i=1{0, 1, . . . , |Ai| − 1}.

Consider the following setting: Let r1, . . . , rn be integers such that 1 ≤ ri ≤ |F| for i ∈ [n].
For each i ∈ [n], let Ai be a subset of F consisting of ri distinct elements ai,1, . . . , ai,ri

∈ F. Let
A be the Cartesian product

∏n
i=1 Ai. Let M be the set of monomials dividing

∏n
i=1 Xri−1

i .
Let σA be the bijection from M to A defined by

σA :
n∏

i=1
Xei

i 7→ (a1,e1+1, . . . , an,en+1). (2)

Finally, fix a degree-compatible monomial order ⪯.
The next lemma states that every down-closed subset T ⊆ M can be realized as the set

of standard monomials of the set σA(T ) ⊆ A.
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▶ Lemma 33. Let T be a down-closed subset of M.
Then SM(σA(T )) = T .

For space reasons, we defer the proofs of Lemma 33 and the consequent results to the full
version [20].

▶ Lemma 34. Let k, d ∈ N such that k ≤ |A|. Then

min
S⊆A:|S|=k

hS(d,F) = min
down-closed T ⊆M:|T |=k

|{m ∈ T : deg(m) ≤ d}| .

Let F =
∏n

i=1{0, 1, . . . , ri − 1}. Let ϕ : M → F be the bijection

ϕ :
n∏

i=1
Xei

i 7→ (e1, . . . , en). (3)

Lemma 34 can now be reformulated as follows.

▶ Corollary 35. Let k, d ∈ N such that k ≤ |A|. Then

min
S⊆A:|S|=k

hS(d,F) = HF (d, k) . (4)

For the special case of a finite field F = Fq, r1 = · · · = rn = q, and A1 = · · · = An = Fq,
we have A = Fn

q , and the right-hand side of Equation (4) becomes Hn
q (d, k) from Definition 17.

This leads us to the following corollary.

▶ Corollary 36. For every n, k, d ∈ N where k ≤ qn, a prime power q, and every set S ⊆ Fn
q

of size |S| = k, we have that

hS(d,Fq) ≥ Hn
q (d, k) .

Finally, we state the following lemma, which will be used in Section 5. Its proof reuses
ideas from the previous proofs in this section.

▶ Lemma 37. Let n, d ∈ N. Let σA : M → A and ϕ : M → F be the bijections (2) and (3)
respectively. Let S ⊆ A such that T := σ−1

A (S) ⊆ M is down-closed. Let T ′ = ϕ(T ) ⊆ F .
Then hS(d,F) = T ′

≤d.

4 Number of Points with Low Hamming Weight in Down-Closed Sets

In this section, we will find the exact values of all Hn
q (d, k) which, by Corollary 36, will give

us tight lower bounds on the Hilbert function of sets of size k.
For every n, k, q where k ≤ qn, we define Mn

q (k) as the set of the first k elements of
{0, . . . , q − 1}n in lexicographic order.

The main result of this section is the following theorem.

▶ Theorem 38. For every n, k, d, q ∈ N where k ≤ qn,

Hn
q (d, k) = |Mn

q (k)≤d| .

Combining Corollary 36 and Theorem 38, we obtain the following bounds on the Hilbert
function.
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▶ Corollary 39. For every prime power q, and n, k, d ∈ N where k ≤ qn, we have

min
S⊆Fn

q :|S|=k
hS(d,Fq) = |Mn

q (k)≤d| .

In particular, setting q = 2, for every n, k, d ∈ N where k ≤ 2n, and every S ⊆ Fn
2 of size

|S| = k,

hS(d,F2) ≥
(

⌊log(k)⌋
≤ d

)
.

We will use the following notation: For t ∈ {0, 1, . . . , n}, define Dn
q (t) to be the set of

x ∈ {0, . . . , q − 1}n whose first n − t coordinates are zero.
Note that for every q, k, and n,

Dn
q

(
⌊logq k⌋

)
⊆ Mn

q (k) ⊆ Dn
q

(
⌈logq k⌉

)
.

When n and q are clear from the context, we omit the superscript n and the subscript q from
Mn

q (k), Dn
q (t), and Hn

q (d, k).

4.1 The Boolean Case, q = 2
For a set S ⊆ {0, 1}n, let min(S) and max(S) be respectively the smallest and the largest
strings in S in lexicographic order. We say a set S ⊆ {0, 1}n is a contiguous k-set if |S| = k

and S consists of all x such that min(S) ⪯ x ⪯ max(S).
We first show that M(k) has the largest number of low Hamming weight strings among

all contiguous k-sets.

▶ Lemma 40. Let n, k, d ∈ N be integers such that k ≤ 2n. Let Sk ⊆ {0, 1}n be a contiguous
k-set. Then |M(k)≤d| ≥ |Sk

≤d|.

We now use Lemma 40 to prove that if a contiguous k-set Sk that does not contain any
of the first k strings in lexicographic order, then the result of Lemma 40 |Sk

≤d| ≤ |M(k)≤d|
can be strengthened to |Sk

≤d| ≤ |M(k)≤d−1|.

▶ Lemma 41. Let n, k, d ∈ N be integers such that k ≤ 2n. Let Sk ⊆ {0, 1}n be a contiguous
k-set. If Sk ∩ M(k) = ∅, then |M(k)≤d−1| ≥ |Sk

≤d|.

We are finally ready to prove the Boolean case of Theorem 38.

Proof of Theorem 38, the q = 2 case. Let S ⊆ {0, 1}n be a down-closed set of size k. We
prove this theorem by a simultaneous induction on k, d ≥ 0.

For the base cases, we consider pairs (k, d) such that d = 0 or k ≤ 2d. The case of
d = 0 is trivial. For the case where k ≤ 2d, a down-closed set S of size k cannot have
strings of Hamming weight > d, thereby showing |S≤d| = k. Also, by construction, M(k) is a
down-closed set of size k, implying H(d, k) = |M(k)≤d| = k in this case.

Given d ≥ 1 and k > 2d, assume that the theorem is true for all (k′, d′) such that either
k′ < k, or k′ = k and d′ < d. Suppose S is a down-closed set of size k and let m be the
smallest integer such that S ⊆ D(m). Define

S0 := {x ∈ S : xn−m+1 = 0} ,

S1 := {x − en−m+1 : x ∈ S and xn−m+1 = 1} .
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Since S is down-closed, we have S1 ⊆ S0. Moreover,

|S≤d| = |S0
≤d| + |S1

≤d−1| .

Applying the induction hypothesis for k′ = |S0| < k and d, we get |M(|S0|)≤d| ≤ |S0
≤d|. Let

T = M(k)\M(|S0|). Since |S1| ≤ |S0|, we have M(|S1|)∩T = ∅, and we may apply Lemma 41
to get |T≤d| ≤ |M(|S1|)≤d−1|. Now applying the induction hypothesis for k′ = |S1| and
d′ = d − 1, we get |M(|S1|)≤d−1| ≤ |S1

≤d−1|. Combining these observations, we get

|M(k)≤d| = |M(|S0|)≤d| + |T≤d|
≤ |S0

≤d| + |M(|S1|)≤d−1|
≤ |S0

≤d| + |S1
≤d−1|

= |S≤d|.

This concludes the induction, and shows that for every k, d ≥ 0, and down-closed set S of
size k, |M(k)≤d| ≤ |S≤d|. ◀

4.2 The General Case of Finite Grids

We prove Theorem 38 in this subsection. In fact, we prove the theorem in a more general
setting, described as follows.

Let F =
∏n

i=1{0, 1, . . . , ri − 1} where r1 ≤ r2 ≤ · · · ≤ rn. Let d ∈ N. We introduce the
following notations:

For S ⊆ F , define ∇(S) := {a ∈ F : b ≤P a for some b ∈ S}, i.e., ∇(S) is the up-closure
of S. For k ∈ {0, . . . , |F |}, denote by M(k) the set of the smallest k elements of F in
lexicographic order. And for r ∈ {0, . . . , |F≤d|}, denote by L≤d(r) the set of the largest r

elements of F≤d in lexicographic order.
The main result of this subsection is the following generalization of Theorem 38.

▶ Theorem 42. For every k ∈ N such that k ≤ |F |,

HF (d, k) = |M(k)≤d| .

We derive Theorem 42 from a combinatorial result of Beelen and Datta [5], which
generalizes the earlier work of Wei [49] and Heijnen–Pellikaan [22, 21].

▶ Theorem 43 ([5, Theorem 3.8]). Let S ⊆ F≤d and r = |S|. Then |∇(L≤d(r))| ≤ |∇(S)|.1

Define ∆(S) := F \ ∇(S) for S ⊆ F . The next lemma gives a characterization of ∆(S).

▶ Lemma 44. Let T ⊆ F≤d be down-closed and S = F≤d \ T . Then ∆(S) is the unique
maximal set with respect to inclusion among all down-closed subsets U of F satisfying
U≤d = T .

▶ Lemma 45. Let r ∈ {0, . . . , |F≤d|} and k = |∆(L≤d(r))|. Then ∆(L≤d(r)) = M(k).

1 In [5], L≤d(r) is denoted by M(r), while we use M(r) to denote the set of the smallest r elements of F
in lexicographic order.
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5 A Tight Bound on the Size of Degree-d Closures of Sets

For n, d, δ ∈ N, denote by N(n, d, δ) the number of monomials Xe1
1 · · · Xen

n with e1, . . . , en ≤ δ

and e1 + · · · + en ≤ d. For example, N(n, d, 1) =
(

n
≤d

)
and N(n, d, δ) =

(
n+d

d

)
for d ≤ δ.

▶ Lemma 46. hFn
q
(d,Fq) = N(n, d, q − 1).

In particular, Theorem 5, which was proved by Nie and Wang [33], can be restated as

|cld(T )| ≤ qn

hFn
q
(d,Fq) · |T | = qn

N(n, d, q − 1) · |T | . (5)

We now give the following tight bound on the size of the degree-d closure of a set T ⊆ Fn
q ,

improving (5).

▶ Theorem 47. Let n, d, m ∈ N. Let T ⊆ Fn
q be a set of size m. Then

|cld(T )| ≤ max
0≤k≤qn:|Mn

q (k)≤d|≤m
k =

{
max0≤k≤qn:|Mn

q (k)≤d|=m k if m ≤ N(n, d, q − 1),
qn otherwise.

(6)

The next theorem states that the bound in Theorem 47 is tight and explicitly constructs
sets that meet this bound.

▶ Theorem 48. Let σA : M → A and ϕ : M → F be the bijections (2) and (3) respectively,
where A = Fn

q , F = {0, 1, . . . , q − 1}n, and M = {
∏n

i=1 Xei
i : 0 ≤ e1, . . . , en ≤ q − 1}. Let m

be any integer such that 0 ≤ m ≤ qn. Choose the maximum k ≤ qn such that |Mn
q (k)≤d| ≤ m.

Let T0 = (σA ◦ ϕ−1)(Mn
q (k)≤d) ⊆ A = Fn

q . If |T0| ≥ m, let T = T0. Otherwise, let T be an
arbitrary set obtained by adding m − |T0| elements from Fn

q \ T0 to T0. Then T is a set of
size m that attains the equality in (6).

6 Low-Degree Dispersers

In this section, we will show how to use Theorem 38 to conclude the existence of low-degree
dispersers for various families of sources. In Section 6.1, we will use Corollary 39 to show that
for every family of at most 2O(kd) sources of min-entropy k, there exists a degree-d disperser.
In particular, this will imply dispersers for local sources and bounded-depth decision forest
sources. In Section 6.2, we will extend this result to large families of sources, including
polynomial and circuit sources.

6.1 Dispersers for Small Families of Sources
In Theorem 49, we use the bound of Corollary 39 on the values of Hilbert functions to bound
the probability that a random polynomial takes a fixed value on an arbitrary subset of Fn

2 .

▶ Theorem 49. Let n, d ≥ 1, S ⊆ Fn
2 be an arbitrary nonempty set, and f : S → F2 be a

function. Then,

Pr
p∈uP2(n,d)

[p|S ≡ f ] ≤ 2−hS(d,F2) ≤ 2−(⌊log2 |S|⌋
≤d ) . (7)

We will now use Theorem 49 to prove the existence of low-degree dispersers for every
small family of sources.
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▶ Corollary 50. Let n, d, k ≥ 1, and X be a family of distributions of min-entropy ≥ k over
{0, 1}n.

Then a uniformly random polynomial p ∈ P2(n, d) is a disperser for X with probability at
least

1 − |X | · 21−( k
≤d) .

Proof. Let X be a distribution from X . Since H∞(X) ≥ k, we have that |support(X)| ≥ 2k.
By Theorem 49,

Pr
p∈uP2(n,d)

[p|support(X) is constant] ≤ 21−( k
≤d) .

The corollary follows by applying the union bound over all |X | sources in X . ◀

We will demonstrate two immediate applications of Corollary 50 for the families of local
and decision forests sources.

▶ Corollary 51 (Low-degree dispersers for local sources). Let 1 ≤ ℓ ≤ d ≤ n be integers. There
exists p ∈ P2(n, d) that is a disperser

for the family of ℓ-local sources on {0, 1}n with min-entropy k > d(2ℓn + 2ℓn log n)1/d.
for the family of depth-ℓ decision forest sources on {0, 1}n with min-entropy k > d((ℓ +
log n)2ℓ+1n)1/d.

The recent result of [1] uses further properties of local sources to prove the existence of
low-degree dispersers for local sources with min-entropy k ≥ cℓ3d · (n log n)1/d for a constant
c > 0. Noting that every depth-ℓ decision forest source is also a (2ℓ − 1)-local source, the
disperser of [1] for local sources implies a result similar to the above.

6.2 Dispersers for Polynomial and Circuit Sources
In this section, we will extend the results of the previous section to prove the existence
of low-degree dispersers for powerful families of sources including polynomial-size circuits
and low-degree polynomial sources. Unlike the previous examples such as local sources, the
sources considered here may non-trivially depend on an arbitrary number of inputs. For
example, even a degree-1 (i.e. affine) source defined by an affine map f : Fm

2 → Fn
2 can

depend on an arbitrary number m ≫ n of input bits. We get around this by restricting
the map f : {0, 1}m → {0, 1}n defining the source to a low-dimensional affine subspace.
Specifically, we will use the input-reduction procedure from [9], where it was used to prove
that random (not necessarily bounded degree) maps extract from low-degree sources.

▶ Lemma 52 ([9, Lemma 4.5]). Let m, n, k ∈ N, k > 1, and f : Fm
2 → Fn

2 be a function. If
H∞(f(Um)) ≥ k, then there exists an affine map L : F11k

2 → Fm
2 such that

H∞ (f (L(U11k))) ≥ k − 1 .

Equipped with Lemma 52, we are ready to construct dispersers for low-degree sources.

▶ Theorem 53 (Low-degree disperser for lower-degree polynomial sources). Let 1 ≤ ℓ < d ≤ n

be integers. There exists p ∈ P2(n, d) that is a disperser for the family of degree-ℓ sources on
{0, 1}n with min-entropy k ≥ (12ℓ · dd · n)

1
d−ℓ + 1.

In particular, for every ℓ ∈ N, there is a degree-(ℓ + 2) disperser for degree-ℓ sources on
{0, 1}n with min-entropy Ω (

√
n).
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▶ Theorem 54 (Low-degree disperser for circuit sources). Let ℓ ≥ 1 and n ≥ d ≥ 2ℓ + 2 be
integers. There exists p ∈ P2(n, d) that is a disperser for the family of nℓ-size circuit sources
on {0, 1}n with min-entropy k ≥ (302 · dd · n2ℓ)

1
d−2 + 1.

Theorems 53 and 54 construct low-degree dispersers for sources generated by constant-
degree polynomials and polynomial-size AC[⊕] circuits. These two classes of sources are
incomparable. Indeed, AC[⊕] computes AND(x1, . . . , xm) which is not a constant-degree
polynomial, while constant-degree polynomials compute polynomials in m inputs which do
not admit circuits of size polynomial in n. We remark that the techniques of Theorems 53
and 54 can be used to conclude the same result for a class of sources that generalizes both
AC[⊕] and constant-degree polynomials. This is the class of polynomial-size circuits which
extends AC[⊕] with gates computing arbitrary polynomials in m inputs of a fixed constant
degree. For ease of exposition, we present only the results for more natural sources in
Theorems 53 and 54.

7 Random Low-Degree Polynomials Extract from Fixed Sources

In this section, we use our bounds on the values of Hilbert functions to prove the existence
of a low-degree extractor for a fixed high min-entropy source. Specifically, in Theorem 57
we show that for every source X of high min-entropy, a random low-degree polynomial p

has bias ≤ ε, i.e., Prx∈uX [f(x) = 1] ∈ 1/2 ± ε with high probability. One special case of
interest is the case of k-flat sources X which are uniform distributions over sets of size 2k. In
Section 8, we will use Theorem 57 to prove the existence of low-degree extractors for various
expressive families of sources.

We start this section by using our bounds on the degree-d closure of sets in order to
lower-bound the probability that a random somewhat large subset T of a set S has “full
Hilbert dimension”, i.e., hT (d,F2) = |T |. We then use this to prove Lemma 56 which states
that for a large enough set S ⊆ {0, 1}n, a random subset T ⊆ S of full Hilbert dimension will
contain each element x ∈ S with almost the same probability. Finally, we present a proof of
Theorem 57 which crucially relies on Lemma 56.

▷ Claim 55. Let 1 ≤ d ≤ n, d ≤ ℓ, and S ⊆ {0, 1}n. Let T be a uniformly random subset of
S of size

(
ℓ

≤d

)
. Then

Pr
T

[
hT (d,F2) = |T | =

(
ℓ

≤ d

)]
≥ 1 −

(
ℓ

≤ d

)
· 2ℓ/|S| .

▶ Lemma 56. Let 1 ≤ d ≤ n, d ≤ ℓ, and S ⊆ {0, 1}n. Let T be a uniformly random subset
of S of size

(
ℓ

≤d

)
. Then for every x ∈ S,

(1 − δ) ·
(

ℓ
≤d

)
|S|

≤ Pr
T

[x ∈ T | hT (d,F2) = |T |] ≤ 1
(1 − δ) ·

(
ℓ

≤d

)
|S|

,

where δ =
(

ℓ
≤d

)
· 2ℓ/|S|.

Equipped with Lemma 56, we are ready to present the proof of Theorem 57.

▶ Theorem 57. Let n, d, k ≥ 1, and ε > 0 be a real. Then for every distribution X over
{0, 1}n with H∞(X) ≥ k, a uniformly random degree-d polynomial f is an ε-extractor for X,

Pr
x∼X

[f(x) = 1] = 1
2 ± ε

with probability at least 1 − e3n−ε2( ℓ
≤d)/(Cn2) where ℓ = k/2 − log(32n/ε) and C = 7 · (32)2.
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8 Low-Degree Extractors

In this section, we extend the results of Section 6 to the setting of extractors. We start
with the extractors version of Corollary 50 in Theorem 58, where we show that low-degree
polynomials extract from small families of sources. Then, in Theorem 60, we use Theorem 58
to prove the existence of low-degree extractors for a number of families of sources. Finally,
in Section 8.1, we prove the existence of low-degree extractors with multi-bit outputs.

▶ Theorem 58. Let X be a family of distributions of min-entropy k ≥ 5 log n over {0, 1}n

for large enough n. Let Y be a family of distributions each of which is ε′-close to a convex
combination of distributions from X . Then for every d ≥ 6, a uniformly random polynomial
p ∈ P2(n, d) is an ε-extractor for Y with probability at least

1 − |X | · e3n−30kd/2/n2

for ε =
(
2d/k1/4)d + ε′.

We will use the following input-reduction result from [9].

▶ Theorem 59 ([9, Theorem 4.1]). Let m, n, k ∈ N, k > 1, and f : Fm
2 → Fn

2 be a function.
If H∞(f(Um)) ≥ k, then there exist affine maps L1, . . . , Lt : F11k

2 → Fm
2 such that the distri-

bution f(Um) is 2−k-close to a convex combination of distributions f (Li(U11k)). Moreover,
for each i ∈ [t],

H∞ (f (Li(U11k))) ≥ k − 1 .

We are now ready to prove that low-degree polynomials extract from many sources of
interest.

▶ Theorem 60. For all ℓ, d ≥ 1, and all large enough n, there exists p ∈ P2(n, d) that is an
ε-extractor for the following families of sources over {0, 1}n of min-entropy k ≥ 5 log n for
ε = 2

(
2d/k1/4)d.

ℓ-local sources for k ≥ (2ℓn3 log n)2/d.
depth-ℓ decision forest sources for k ≥ (2ℓn3(log n + ℓ))2/d.
degree-ℓ sources for k ≥ (3ℓn)

6
d−2ℓ .

nℓ-size circuit sources for k ≥ 3n
4(ℓ+1)

d−4 .

8.1 Extractors Outputting Multiple Bits
In Theorem 61, we show how to extend our single-bit extractors for small families of sources
to the multi-bit setting, which combined with input-reduction lemma, will extend all our
single-bit extractors from Theorem 60 to O(k)-bit extractors.

▶ Theorem 61. Let X be a family of distributions of min-entropy k ≥ 5 log n over {0, 1}n

for large enough n. Let Y be a family of distributions each of which is ε′-close to a convex
combination of distributions from X . Then for every d ≥ 6 and t < k, let p1, . . . , pt ∈ P2(n, d)
be independent and uniformly random polynomials. Then p = (p1, . . . , pt) is a tε-extractor
for Y with probability at least

1 − |X | · e3n+t+1−30(k−2t)d/2/n2

for ε =
(
2d/k1/4)d + ε′, assuming ε ≤ 1/4.
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