
Matrix Multiplication Verification Using Coding
Theory∗

Huck Bennett #Ñ

University of Colorado Boulder, CO, USA

Karthik Gajulapalli #Ñ

Georgetown University, Washington DC, USA

Alexander Golovnev # Ñ

Georgetown University, Washington DC, USA

Evelyn Warton #Ñ

Oregon State University, Corvallis, OR, USA

Abstract
We study the Matrix Multiplication Verification Problem (MMV) where the goal is, given three
n × n matrices A, B, and C as input, to decide whether AB = C. A classic randomized algorithm
by Freivalds (MFCS, 1979) solves MMV in Õ(n2) time, and a longstanding challenge is to (partially)
derandomize it while still running in faster than matrix multiplication time (i.e., in o(nω) time).

To that end, we give two algorithms for MMV in the case where AB − C is sparse. Specifically,
when AB −C has at most O(nδ) non-zero entries for a constant 0 ≤ δ < 2, we give (1) a deterministic
O(nω−ε)-time algorithm for constant ε = ε(δ) > 0, and (2) a randomized Õ(n2)-time algorithm using
δ/2 · log2 n + O(1) random bits. The former algorithm is faster than the deterministic algorithm of
Künnemann (ESA, 2018) when δ ≥ 1.056, and the latter algorithm uses fewer random bits than the
algorithm of Kimbrel and Sinha (IPL, 1993), which runs in the same time and uses log2 n + O(1)
random bits (in turn fewer than Freivalds’s algorithm).

Our algorithms are simple and use techniques from coding theory. Let H be a parity-check
matrix of a Maximum Distance Separable (MDS) code, and let G = (I | G′) be a generator matrix
of a (possibly different) MDS code in systematic form. Our deterministic algorithm uses fast
rectangular matrix multiplication to check whether HAB = HC and H(AB)T = H(CT), and our
randomized algorithm samples a uniformly random row g′ from G′ and checks whether g′AB = g′C

and g′(AB)T = g′CT .
We additionally study the complexity of MMV. We first show that all algorithms in a natural

class of deterministic linear algebraic algorithms for MMV (including ours) require Ω(nω) time. We
also show a barrier to proving a super-quadratic running time lower bound for matrix multiplication
(and hence MMV) under the Strong Exponential Time Hypothesis (SETH). Finally, we study
relationships between natural variants and special cases of MMV (with respect to deterministic
Õ(n2)-time reductions).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Pseudorandomness and derandomization; Theory of computation →
Error-correcting codes

Keywords and phrases Matrix Multiplication Verification, Derandomization, Sparse Matrices, Error-
Correcting Codes, Hardness Barriers, Reductions

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.42

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2309.16176 [7]

∗ Due to space constraints, we have made the body of our submission a modified version of the introduction
to our paper. This introduction contains a detailed overview of our work and a comparison with prior
work. Nevertheless, we strongly encourage the reader to read the full version of our paper [7].

© Huck Bennett, Karthik Gajulapalli, Alexander Golovnev, and Evelyn Warton;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 42; pp. 42:1–42:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:huckbennett@gmail.com
https://home.cs.colorado.edu/~hbennett/
https://orcid.org/0000-0002-5469-8841
mailto:kg816@georgetown.edu
https://kgajulapalli.org
https://orcid.org/0009-0000-1029-1882
mailto:alexgolovnev@gmail.com
https://golovnev.org/
https://orcid.org/0000-0002-7847-1027
mailto:wartone@oregonstate.edu
https://www.evelynw.xyz/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.42
https://arxiv.org/abs/2309.16176
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Matrix Multiplication Verification Using Coding Theory

Funding Huck Bennett: Supported by NSF Grant CCF-2312297.
Karthik Gajulapalli: Supported by NSF grant CCF-2338730.
Alexander Golovnev: Supported by NSF grant CCF-2338730.

Acknowledgements We thank Amir Nayyeri for many helpful discussions in the early stages of work
on this paper, and Mark Iwen [16] for answering questions about [17]. We also thank the anonymous
reviewers for their helpful comments.

1 Introduction

The goal of the Matrix Multiplication Problem (MM) is to compute the product AB of
two n × n matrices A and B given as input. Matrix multiplication has many practical and
theoretical applications, and because of this has been studied by an extensive line of work.
The primary goal of this work has been to determine the running time O(nω) of the fastest
algorithms for MM, which is captured by the matrix multiplication exponent ω.1 The best
upper bounds on ω and related quantities continue to improve [23, 3, 11, 22, 25], and [25]
recently showed the current best known bound of ω ≤ 2.371552. The dream of this line of
work is to show that ω = 2, and this in fact holds under certain plausible combinatorial
and group-theoretic conjectures (see [10, Conjecture 4.7 and Conjecture 3.4]). Nevertheless,
showing that ω = 2 seems very challenging for the time being.

In this work, we consider a variant of matrix multiplication where the goal is to verify
that the product of two matrices is equal to a third matrix. Specifically, we study the
Matrix Multiplication Verification Problem (MMV) where, given three n × n matrices A, B,
and C as input, the goal is to decide whether AB = C. MMV is clearly no harder than
matrix multiplication – it can be solved in O(nω) time by computing the product AB and
then comparing the product entry-wise against C – but it is natural to ask whether it is
possible to do better. In what became classic work, Freivalds [12] answered this question
in the affirmative and gave a simple, randomized algorithm that solves MMV in Õ(n2)
time. This Õ(n2) running time bound is essentially the best possible, and so, unlike matrix
multiplication, the complexity of MMV is relatively well understood.

However, it is in turn natural to ask whether it is possible to derandomize Freivalds’s
algorithm partially or completely. More specifically, it is natural to ask whether it is possible
to give a deterministic algorithm for MMV running in Õ(n2) time or at least O(nω−ε) time
for constant ε > 0.2 Or, if it is not possible to give a deterministic algorithm for MMV with
these running times, it is natural to ask whether it is possible to use fewer random bits than
Freivalds’s algorithm, which uses n random bits. Trying to answer these questions has become
a key goal for derandomization efforts, and has received substantial study [4, 19, 20, 21].

1 Formally, ω is defined as the infimum over ω′ such that the product of two n × n matrices can be
computed in O(nω′

) time. So, MM algorithms are actually only guaranteed to run in O(nω+ε) time for
any constant ε > 0.

2 We use the notation Õ(f(n)) to mean f(n) · poly(log f(n)). Freivalds’s algorithm uses O(n2) arithmetic
operations, each of which takes poly(log n) time when working over integer matrices with entries bounded
in magnitude by poly(n); we assume this setting in the introduction.
Of course, it is only possible for such a O(nω−ε)-time algorithm to exist if ω > 2. We assume that this
is the case throughout the introduction.

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:3

Table 1 Algorithms for MMV on matrices A, B, C ∈ Zn×n with entries of magnitude at most
poly(n) and such that AB −C has at most nδ non-zero entries for 0 ≤ δ ≤ 2. Our new algorithms are
shown in bold. We list asymptotic running times, with poly(log n) factors suppressed for readability,
and the number of random bits used to achieve success probability 1/2. (Each of the three listed
randomized algorithms has one-sided error, so this probability is meaningful.) Here ω(·, ·, ·) is the
rectangular matrix multiplication exponent, ω = ω(1, 1, 1) is the (square) matrix multiplication
exponent, and ε > 0 is an arbitrarily small positive constant.

Algorithm Asymptotic Runtime Bits of Randomness

Matrix Multiplication nω+ε 0

Random Entry Sampling (folklore) n3−δ 2n2−δ · log2(n) + O(1)

Freivalds’s Algorithm [12] n2 n

Vandermonde Mat. Sampling [19] n2 log2(n) + O(1)

Multipoint Poly. Evaluation [21] n2 + n1+δ 0

Cauchy Bound [20] n3 (n2 in Integer RAM) 0

Parity Check/Fast RMM (Thm. 1) nω(1,1,δ/2)+ε 0

Cauchy Mat. Sampling (Thm. 2) n2 δ
2 · log2(n) + O(1)

1.1 Our Results
Our main results are two new algorithms for the Matrix Multiplication Verification Problem
in the sparse regime, i.e., in the case where AB − C is promised to have few non-zero entries
(if any). See Table 1 for a summary of our algorithms and how they compare to other known
algorithms for MMV. Additionally, we give a barrier for giving a fast algorithm for MMV
using a broad class of linear algebraic techniques, a barrier to showing hardness of MMV,
and reductions between variants of MMV.

1.1.1 Algorithms
Besides being inherently interesting, MMV in the sparse regime is the natural decision
version of the well-studied Output-Sensitive Matrix Multiplication Problem (OSMM). It is
also motivated by the following scenario. Suppose that Alice wants to compute the product
AB of two large matrices A and B, but has restricted computational resources. So, she
sends A and B to Bob, who has more extensive computational resources. Bob computes the
product AB, and sends the result back to Alice over a noisy channel (without error-correction,
which increases the size of the message), from which Alice receives a matrix C. Alice knows
that either C = AB as desired, or that C is corrupted but (with high probability) only differs
from AB in a few entries. She wants to check which is the case efficiently.

We define ∥v∥0 (respectively, ∥M∥0) to be the number of non-zero entries in (i.e., Hamming
weight of) a vector v (respectively, matrix M). We call a vector v (respectively, matrix M)
t-sparse if ∥v∥0 ≤ t (respectively, if ∥M∥0 ≤ t).

Our first algorithm (given in Figure 2) is deterministic, and uses fast rectangular matrix
multiplication. For α, β, γ ∈ [0, 1], let the rectangular matrix multiplication exponent
ω(α, β, γ) be the infimum over values ω′ > 0 such that the product of a nα × nβ matrix and a
nβ ×nγ matrix can be computed using O(nω′) arithmetic operations. Note that ω = ω(1, 1, 1)
is the standard (square) matrix multiplication exponent.

APPROX/RANDOM 2024

42:4 Matrix Multiplication Verification Using Coding Theory

1 1.25 1.5 1.75 22

2.1

2.2

2.3

2.4

2.5

δ

R
un

ni
ng

T
im

e
Ex

po
ne

nt

MM [25]
[21]
Theorem 1

Figure 1 Running times of deterministic algorithms for MMV when AB − C is O(nδ)-sparse
for 1 ≤ δ ≤ 2. Our algorithm from Theorem 1 is faster than the best known algorithms for matrix
multiplication [25] and faster than Künnemann’s algorithm [21] for all 1.056 ≤ δ < 2. The plotted
blue points corresponding to the running time of the algorithm in Theorem 1 are derived from the
bounds on ω(1, 1, δ/2) in [25, Table 1]. The line segments connecting them are justified by the fact
that ω(1, 1, ·) is a convex function.

(1) Let k := ⌈
√

t⌉.
(2) Compute an arbitrary prime p that satisfies n ≤ p ≤ 2n.
(3) Compute a (parity check) matrix H ∈ Fk×n

p of a code with distance at least k + 1.
(4) Output YES if H(AB − C) = 0 and H(AB − C)T = 0 (where arithmetic is

performed over Z), and output NO otherwise.

Figure 2 Deterministic Algorithm for MMV corresponding to Theorem 1.

▶ Theorem 1 (Fast deterministic MMV for sparse matrices, informal). Let A, B, C ∈ Zn×n be
matrices satisfying maxi,j{|Ai,j | , |Bi,j | , |Ci,j |} ≤ nc for some constant c > 0 and satisfying
∥AB − C∥0 ≤ nδ for 0 ≤ δ ≤ 2. Then for any constant ε > 0, there is a deterministic
algorithm for MMV on input A, B, C that runs in O(nω(1,1,δ/2)+ε) time.

We note that ω(1, 1, β) < ω for all β < 1 (assuming ω > 2);3 and so our algorithm is faster
than matrix multiplication when AB − C is promised to be O(nδ)-sparse for constant δ < 2.
Furthermore, it is faster than Künnemann’s algorithm [21], which is also for MMV in the
regime where AB − C is sparse, when ω(1, 1, δ/2) < 1 + δ. The equation ω(1, 1, δ/2) = 1 + δ

whose unique solution corresponds to the crossover point at which our algorithm becomes
faster than Künnemann’s turns out to be relevant in other contexts too [27], and [23, 25] both
provide bounds on its solution. Specifically, [25] shows that the solution δ to this equation
satisfies δ ≤ 1.056, and so our algorithm in Theorem 1 is (strictly) faster than any previously
known deterministic algorithm for MMV when 1.056 ≤ δ < 2.

3 See [7, Theorem 2.3]

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:5

(1) Let k := ⌈
√

t/ε⌉.
(2) Compute an arbitrary prime p satisfying k + n ≤ p < 2(k + n).
(3) Compute a ⌈

√
t⌉-regular matrix S = (s1, . . . , sk) ∈ Fn×k

p .
(4) Sample a uniformly random column index i ∼ {1, . . . , k}.
(5) Output YES if ABsi = Csi and (AB)T si = CT si (where arithmetic is performed

over Z), and output NO otherwise.

Figure 3 Randomized Algorithm for MMV corresponding to Theorem 2.

Additional bounds on ω(1, δ/2, 1) = ω(1, 1, δ/2) – and hence the running time of the
algorithm in Theorem 1 – appear in [25, Table 1]. For example, that table shows that
ω(1, 1, 0.55) < 2.067 and ω(1, 1, 0.95) < 2.333 (which correspond to δ = 1.1 and δ = 1.9,
respectively). We also note that our algorithm runs in essentially optimal Õ(n2) time when
δ ≤ 0.642 ≤ 2ω⊥, where ω⊥ := sup{ω′ > 0 : ω(1, 1, ω′) = 2} ≥ 0.321 is the dual matrix
multiplication exponent [25], but that Künnemann’s algorithm [21] runs in Õ(n2) time for
any δ ≤ 1.

Our second algorithm runs in Õ(n2) time, but is randomized (see Figure 3). It uses few
bits of randomness when AB − C is sparse.

▶ Theorem 2 (Fast randomized MMV for sparse matrices, informal). Let c > 0 be a constant,
let A, B, C ∈ Zn×n be matrices satisfying maxi,j{|Ai,j | , |Bi,j | , |Ci,j |} ≤ nc and satisfying
∥AB − C∥0 ≤ nδ for 0 ≤ δ ≤ 2, and let ε = ε(n) ≥ 1/n. Then there is a randomized
algorithm for MMV on input A, B, C that runs in Õ(n2) time, succeeds with probability 1 − ε,
and uses at most ⌈δ/2 · log2(n) + log2(1/ε)⌉ bits of randomness.

Theorem 2 improves on the number of random bits used by the algorithm of Kimbrel
and Sinha [19] when δ < 2 (which uses log2(n) + log2(1/ε) + O(1) random bits regardless of
the sparsity of AB − C), and matches the number of random bits used by their algorithm
when δ = 2. The algorithms both run in Õ(n2) time. In fact, one may think of the algorithm
summarized in Theorem 2 as a natural extension of the algorithm in [19] to handle the
sparse case more efficiently, although it requires additional techniques to implement. (Our
algorithm requires matrices with a stronger pseudorandomness property than theirs; see the
“algorithmic techniques” section below.)

We note that Theorem 2 only improves on known algorithms when 1 < δ < 2, and only
by a factor of δ/2. Indeed, as mentioned above, when δ ≤ 1 Künnemann’s algorithm [21]
solves MMV deterministically in Õ(n2) time, and when δ = 2 our algorithm matches the
number of random bits used by Kimbrel and Sinha’s algorithm. Although seemingly modest,
this constant-factor improvement is not surprising: any super-constant improvement on
the number of bits used by [19] (i.e., an MMV algorithm using o(log n) random bits) could
be turned into a deterministic algorithm for MMV with only a sub-polynomial (i.e., no(1))
multiplicative increase in running time.

1.1.1.1 Algorithmic techniques

Here we briefly summarize the techniques that we use for the MMV algorithms corresponding
to Theorems 1 and 2. We start by remarking that Theorems 1 and 2 hold not just for
matrices over Z with entries of polynomial magnitude, but also for matrices over all finite

APPROX/RANDOM 2024

42:6 Matrix Multiplication Verification Using Coding Theory

fields Fq with q ≤ poly(n).4 In fact, our algorithms work “natively” in the finite field setting
– i.e., on n × n matrices A, B, C over finite fields Fq – which is directly amenable to using
techniques from coding theory. We assume this setting in the description below. Furthermore,
there is a linear-time, sparsity-preserving reduction from MMV to the special case of MMV
where C is fixed as C = 0 and the goal is to decide whether AB = 0 for input matrices A, B

(see [21, Proposition 3.1]). We will also generally assume this setting in the introduction.
For both algorithms, we will use the observation that if AB − C is non-zero and t-sparse

then at least one row or column of AB − C must be non-zero and k-sparse for k := ⌊
√

t⌋. A
similar observation appears in [26].

Our first, deterministic algorithm (Theorem 1) uses a matrix H over Fq such that any k

columns of H are linearly independent. Equivalently, we require a matrix H ∈ Fm×n
q such

that for all non-zero vectors x ∈ Fn
q with ∥x∥0 ≤ k (corresponding to a sparse, non-zero

column or row of AB), Hx ≠ 0. This is exactly the property guaranteed by the parity-check
matrix H of an error correcting code C ⊆ Fn

q with minimum distance d > k. Moreover, if a
code C with minimum distance d = k + 1 is a so-called Maximum Distance Separable (MDS)
code, then it has a k ×n parity-check matrix H. MDS codes with useful parameters exist and
have efficiently constructible parity-check matrices. In particular, (generalized) Reed-Solomon
codes are MDS codes, and exist when k ≤ n ≤ q (see, e.g., [14]). Their parity-check matrices
H are Vandermonde matrices, which are constructible in kn · poly(log q) ≤ n2 · poly(log q)
time.

Our algorithm then uses fast rectangular matrix multiplication to compute HAB =
(HA)B and H(AB)T = (HBT)AT using roughly nω(1,1,δ/2) arithmetic operations, where
0 ≤ δ ≤ 2 is such that t ≤ nδ. If AB = 0, then HAB = H(AB)T = 0. On the other hand, if
AB ̸= 0 then AB is t-sparse and therefore has a k-sparse row or column. So, at least one of
the expressions HAB and H(AB)T is non-zero.

Our second, randomized algorithm (Theorem 2) uses a matrix S ∈ Fm×n
q with the property

that all of its k × k submatrices are non-singular. Matrices S with this property are called
k-regular, and matrices S all of whose square submatrices (of any size) are non-singular are
called super regular.5 We note that k-regularity is stronger than the property we require for
H in the first algorithm. In particular, if a matrix S ∈ Fm×n

q is k-regular and 0 < ∥x∥0 ≤ k,
then ∥Sx∥0 ≥ m − k + 1. I.e., S being k-regular implies not only that Sx is non-zero, but
that Sx has relatively high Hamming weight for such x. This property is useful because it
implies that Pr[⟨s, x⟩ ≠ 0] ≥ (m − k + 1)/m, where s is a random row of S. Indeed, this
observation leads to our second algorithm: we sample a random row s from a k-regular
matrix S ∈ Fm×n

q and check whether sAB = 0 and s(AB)T = 0. Setting, e.g., m = 2k, we
get that this algorithm succeeds with probability at least (2k − k + 1)/(2k) > 1/2.

It remains to construct (rows of) k-regular matrices S efficiently. Although a priori it is
not even obvious that k-regular matrices exist for arbitrary k, in fact super regular matrices
exist and are efficiently constructible. Specifically, we use a family of super regular (and hence
k-regular) matrices called Cauchy matrices; the entries of such a matrix S are defined as
Si,j = 1/(xi − yj), where x1, . . . , xm, y1, . . . , yn are distinct elements of Fq. In fact, as follows
from their definition, given a (random) index 1 ≤ i ≤ m, it is even possible to construct the
ith row of a Cauchy matrix S efficiently without computing the rest of the matrix, as needed.

4 The algorithms also work over larger finite fields, but with slower running times due to the increased bit
complexity of performing arithmetic operations over those fields.

5 For formal definitions see [7, Section 2.4]

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:7

Finally, we remark that there is a deep connection between MDS codes and super regular
matrices (and between generalized Reed-Solomon codes, Vandermonde matrices, and Cauchy
matrices). Specifically, if G = (I | S) is the generator matrix of an MDS code in systematic
form, then S is a super regular matrix [24]. Moreover, if such a matrix G is the generator
matrix of a generalized Reed-Solomon code, then S is a Cauchy matrix [24].

1.1.2 Barriers
The dream for the line of work described in this paper is to give a deterministic, Õ(n2)-time
algorithm for MMV on arbitrary matrices. However, achieving this goal has proven to be
very difficult despite a substantial amount of work towards it. So, it is natural to ask whether
perhaps no such algorithm exists, i.e., whether MMV is in some sense hard. We first show a
result in this direction, and then show a barrier result to showing SETH hardness of MMV
(and even MM).6

1.1.2.1 Linear algebraic algorithms barrier

We first prove that a natural class of deterministic linear algebraic algorithms for MMV
based on multiplying smaller matrices – including the algorithm in Theorem 1 – cannot run
in less than nω time when using a matrix multiplication subroutine running in worst-case
rectangular matrix multiplication time and when performing all multiplications independ-
ently. Specifically, the Ω(nω) lower bound holds if for all α, β ≥ 0, the subroutine requires
Ω(nω(1,1,α)) to compute the product of an n × nα matrix and an n × n, and Ω(nω(1,1,β)) time
to compute the product of an n × n matrix and an n × nβ matrix.

The idea is that natural algorithms for verifying that AB = C for n × n matrices A, B, C

including ours amount to performing k “zero tests.” More specifically, the ith such test checks
that Li(AB − C)Ri = 0 for some fixed nαi × n matrix Li and n × nβi matrix Ri, where
αi, βi ∈ [0, 1]. We observe that the conditions Li(AB − C)Ri = 0 for i = 1, . . . , k together
correspond to a homogeneous system of

∑k
i=1 nαi+βi linear equations in the n2 variables

corresponding to the entries of X = AB − C for 1 ≤ i, j ≤ n. So, for this system to have
Xi,j = 0 for 1 ≤ i, j ≤ n as its unique solution, it must be the case that

∑k
i=1 nαi+βi ≥ n2,

which we show implies that
∑k

i=1 nω(1,1,min(αi,βi)) ≥
∑k

i=1 nω(αi,1,βi) ≥ nω. Therefore, an
algorithm that independently computes each product LiABRi in time Ω(nω(1,1,min(αi,βi)))
uses Ω(nω).7

1.1.2.2 A barrier to SETH-hardness of MM

While under certain reasonable conjectures, the matrix multiplication exponent ω = 2 (see [10,
Conjecture 4.7 and Conjecture 3.4]), the best provable upper bound we have is ω < 2.371552
by [25]. Nevertheless, given the apparent difficulty of showing ω ≈ 2, it is natural to ask
whether MM is in fact hard. To that end, we study showing its hardness under the Strong
Exponential Time Hypothesis (SETH). However, rather than showing SETH-hardness of MM,
we show a barrier to proving nγ-hardness of MM for constant γ > 2 under SETH. (Because
MMV is trivially reducible to MM, our hardness barrier result also applies to MMV.)

6 More properly, our first result is a barrier to giving a fast algorithm for MMV, and our second result
is a barrier to showing hardness of MMV (i.e., it “gives a barrier to giving a barrier” for a fast MMV
algorithm).

7 For a more detailed exposition of this barrier see [7, Section 3.3]

APPROX/RANDOM 2024

42:8 Matrix Multiplication Verification Using Coding Theory

We informally define several concepts used in the statement of our result. SETH says
that for large constant k, k-SAT instances on n variables take nearly 2n time to solve, and
the Nondeterministic Strong Exponential Time Hypothesis (NSETH) says that certifying
that such k-SAT formulas are not satisfiable takes nearly 2n time even for nondeterministic
algorithms. We call a matrix rigid if the Hamming distance between it and all low-rank
matrices is high (the Hamming distance and rank are quantified by two parameters). Rigid
matrices have many connections to complexity theory and other areas, and a key goal is to
find explicit, deterministic constructions of such matrices.

Intuitively, NSETH rules out showing hardness of problems with non-trivial co-nondetermi-
nistic algorithms under SETH. Somewhat more precisely, assuming NSETH, problems
contained in coTIME[f(n)] (but perhaps only known to be in TIME[g(n)] for g(n) = ω(f(n))),
cannot be shown to be Ω(f(n)1+ε)-hard under SETH.8 Künnemann [21] noted that, because
Freivald’s algorithm shows that MMV is in coTIME[n2 ·poly(log n)], NSETH rules out showing
Ω(nγ) hardness of MMV under SETH for constant γ > 2.

In this work, we extend this observation and give a barrier not only to showing SETH-
hardness of MMV but to showing hardness of MM. We demonstrate that, if there exists a
constant γ > 2 and a reduction from k-SAT to MM such that a O(nγ−ε)-time algorithm
for MM for any constant ε > 0 breaks SETH, then either (1) the Nondeterministic Strong
Exponential Time Hypothesis (NSETH) is false, or (2) a new non-randomized algorithm for
computing (arbitrarily large) rigid matrices exists. We also note that, by known results,
falsifying NSETH implies a new circuit lower bound as a consequence. In short, our barrier
result says that showing nγ-hardness of MM under SETH for γ > 2 would lead to major
progress on important questions in complexity theory.9

A key idea that we use for proving our result is that it is possible to compute the product
of two non-rigid matrices efficiently using a nondeterministic algorithm. This follows from
two facts. First, by definition, a non-rigid matrix is the sum of a low-rank matrix L and a
sparse matrix S, and using nondeterminism it is possible to guess L and S efficiently. Second,
it is possible to compute the product of two sparse matrices or a low-rank matrix and another
matrix efficiently. (In fact, we also use nondeterminism to guess a rank factorization of L,
and this factorization is what allows for fast multiplication by L.)

Very roughly, we prove the barrier result as follows. We first suppose that there is
a reduction from k-SAT to (potentially multiple instances of) matrix multiplication. In
particular, such a reduction outputs several pairs of matrices to be multiplied. We then
analyze three cases:
1. If the matrices output by this reduction always have small dimension (as a function

of n), then we can compute the product of each pair quickly using standard matrix
multiplication algorithms (even using naïve, cubic-time matrix multiplication). This leads
to a fast, deterministic algorithm for k-SAT, which refutes SETH (and hence NSETH).

2. If the matrices output by this reduction are always not rigid, then we can compute the
product of each pair quickly using the nondeterministic algorithm sketched above. This
leads to a fast, nondeterministic algorithm for showing that k-SAT formulas are not
satisfiable, which refutes NSETH.

3. Finally, if neither of the above cases holds, then the reduction must sometimes output
rigid matrices with large dimension as a function of n. So, we obtain an algorithm for
generating arbitrarily large rigid matrices using an NP oracle: iterate through all k-SAT

8 We refer the reader to see [7, Definition 2.22] for a formal definition of SETH-hardness.
9 See see [7, Section 4] for a more detailed exposition.

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:9

formulas φ with at most a given number of variables, apply the reduction from k-SAT
to MM to each formula, and then use the NP oracle to check whether each large matrix
output by the reduction is rigid.

We remark that although NSETH is a strong and not necessarily widely believed con-
jecture, [18, 9] showed that refuting it (as in Item 2 above) would nevertheless imply an
interesting new circuit lower bound. Specifically, they showed that if NSETH is false, then
the complexity class ENP requires series-parallel circuits of size ω(n).

Additionally, we remark that despite how slow the “iterate through all sufficiently large
k-SAT formulas and apply the k-SAT-to-MM reduction to each one” algorithm described
in Item 3 seems, it would still substantially improve on state-of-the-art non-randomized
algorithms for generating rigid matrices. This is also true despite the fact that the algorithm
uses an NP oracle.10

1.1.3 Reductions
Again, motivated by the apparent challenge of fully derandomizing Freivalds’s algorithm, we
study relationships between variants of MMV with the goal of understanding what makes the
problem hard to solve deterministically in Õ(n2) time but easy to solve in Õ(n2) time using
randomness (in contrast to MM). More specifically, we study which variants are potentially
easier than MMV (i.e., reducible to MMV, but not obviously solvable deterministically in
Õ(n2) time using known techniques), equivalent to MMV, and potentially harder than MMV
(i.e., variants to which MMV is reducible, but which are not obviously as hard as MM). We
study these questions by looking at deterministic Õ(n2)-time reductions between variants.
See Figure 4 for a summary of our results.

First, we show that two apparently special cases of MMV are in fact equivalent to MMV.
These special cases are: (1) the Inverse Verification Problem, where the goal is to verify
that B = A−1 for input matrices A and B (equivalently, the special case of MMV where
C = In), and (2) the Symmetric MMV Problem, where the input matrices A and B (but
not necessarily C) are symmetric.11 These reductions are relatively simple, and complement
the (also simple) reduction of [21], who showed that the All Zeroes Problem (i.e., the special
case of MMV where C = 0) is MMV-complete.

Second, we identify two problems that are Õ(n2)-time reducible to MMV, but are not
clearly solvable in Õ(n2) time or equivalent to MMV. These problems are: (1) the Strong
Symmetric MMV Problem, where all three of the input matrices A, B, and C are symmetric,
and (2) the Monochromatic All Pairs Orthogonal Vectors Problem, where the goal is, given
vectors a1, . . . , an to decide whether ⟨ai, aj⟩ = 0 for all i ̸= j.

Third, we identify two problems for which there are Õ(n2)-time reductions from MMV
and that are Õ(n2)-time reducible to MM. These “MMV/MM-intermediate problems” are:
(1) the Matrix Product Sparsity Problem (MPS), in which the goal is, given matrices A

and B and r ≥ 0 as input, to decide whether ∥AB∥0 ≤ r, and (2) the k-MMV problem, in
which given matrices A1, . . . , Ak, C as input, the goal is to decide whether

∏k
i=1 Ai = C. We

note that MPS is equivalent to the counting version of the Orthogonal Vectors Problem
(#OV).12 We additionally show that k-MMV is equivalent to the k-All Zeroes problem,

10 See [7, Section 4] for a more thorough discussion.
11 See [7, Section 5] for the complete reductions
12 Indeed, Monochromatic All Pairs Orthogonal Vectors is no harder than MMV (and not obviously

equivalent), Bichromatic All Pairs Orthogonal Vectors is equivalent to the All Zeroes Problem and is

APPROX/RANDOM 2024

42:10 Matrix Multiplication Verification Using Coding Theory

MMV

AllZeroes

Inverse-Verification

Symmetric-MMVStrong-Symmetric-MMV

k-AllZeroes

Mono-All-Pairs-OV k-MMV

MPS MM

Figure 4 A diagram of reductions among MMV and related problems on n × n matrices. Arrows
represent deterministic O(n2)-time reductions (and double-headed arrows denote equivalences under
such reductions). Red arrows indicate new (non-trivial) reductions.

i.e., k-MMV where C is fixed to be 0. See Figure 4 for a summary of these variants and
reductions between them. For a full presentation of definitions and reductions we refer the
reader to [7, Section 5].

1.2 Related Work
We next discuss other algorithms for MMV and related problems on n × n integer matrices
A, B, and C. We summarize these algorithms, as well as ours, in Table 1. We start by
noting that it suffices to consider the special case of MMV where C = 0 (i.e., where the
goal is to decide whether AB = 0), which is called the All Zeroes Problem. Indeed, a
result from [21] shows that there is a simple O(n2)-time reduction from MMV on n × n

matrices A, B, C to the All Zeroes problem on 2n × 2n matrices A′, B′ with the property
that ∥AB − C∥0 = ∥A′B′∥0. So, for this section we consider the All Zeroes Problem without
loss of generality.

Perhaps the most closely related works to ours are [17, 1], which use fast rectangular
matrix multiplication for the Output-Sensitive Matrix Multiplication Problem (OSMM). In
t-OSMM, the goal is, given matrices A, B as input, to compute the product AB when it is
promised to be t-sparse. There is a trivial reduction from MMV when the output is promised
to be t-sparse to t-OSMM – compute AB and check whether it is equal to 0. Indeed, OSMM
is essentially the search version of sparse MMV. In particular, [17] use techniques from
compressive sensing to solve OSMM. However, it is not clear that the measurement matrix
M in [17] can be constructed deterministically in Õ(n2) time, and so the algorithm in [17]
is a non-uniform algorithm as described. There are other candidate measurement matrices
with deterministic constructions that may work for a similar purpose [16], but the exact
tradeoffs do not seem to have been analyzed and it is not clear that it is possible to get a
(uniform) algorithm with the same parameters. Additionally, [17] only handles the case when
all columns or rows of AB are promised to have a given sparsity, rather than the case where
there is a “global bound” of t on the sparsity of the matrix product itself.

therefore equivalent to MMV, and MPS/#OV is at least as hard as MMV. In the fine-grained complexity
setting OV variants are usually considered with n vectors in dimension d = poly(log n); here we are
considering the regime where d = n.

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:11

The main algorithm in [1] for OSMM (summarized in [1, Theorem 1.4]) runs in randomized
time O(n1.3459δ) when both the input matrices A, B and their product AB are nδ-sparse.13

For the special case when all entries in A, B are non-negative [1] give a deterministic
algorithm with the same running time as their randomized algorithm. We note that [1] was
written independently and concurrently with this work.

Besides simply using matrix multiplication, perhaps the most natural idea for an algorithm
for the All Zeroes problem is to compute a random entry (AB)i,j of AB and check whether it
is non-zero. If ∥AB∥0 ≥ nδ, then sampling, say, 10n2−δ random entries of AB independently
will find a non-zero entry with good constant probability. Because computing each such
entry amounts to computing an inner product, and sampling indices i, j ∼ {1, . . . , n} takes
roughly 2 log2 n random bits, this algorithm overall takes Õ(n3−δ) time and O(n2−δ log n)
random bits. So, this algorithm is relatively efficient and succeeds with good probability in
the case when AB is dense, but even then requires a relatively large number of random bits.
We also note the somewhat odd fact that this algorithm is most efficient when AB is dense,
whereas our algorithms are most efficient when AB is sparse.

Freivalds’s algorithm [12] works by sampling a uniformly random vector x ∼ {0, 1}n, and
outputting “YES” if ABx = 0 and “NO” otherwise. If AB = 0, then this algorithm is always
correct, and if AB ̸= 0 then it fails with probability at most 1/2.14 In particular, Freivalds’s
algorithm has one-sided error with no false negatives (i.e., it is a coRP algorithm).

A key idea for subsequent algorithms was to reduce MMV to a question about polynomials.
The main idea is the following. Define x := (1, x, x2, . . . , xn−1)T , where x is an indeterminate,
and define pi(x) := (ABx)i =

∑n
j=1(AB)i,j · xj−1. Note that AB = 0 if and only if

the polynomials pi(x) are identically zero (as formal polynomials) for all i ∈ {1, . . . , n}.
Furthermore, if the ith row of AB is non-zero then pi(x) is a non-zero polynomial of degree
at most n − 1, and therefore has at most n − 1 distinct complex (and hence integral) roots.
So, for such pi(x) and a non-empty set S ⊂ Z, Prα∼S [p(α) = 0] ≤ (n − 1)/ |S|, which is
less than 1/2 when |S| ≥ 2n. This observation leads to the following algorithm for MMV,
which forms the basis for Kimbrel and Sinha’s algorithm [19]. Sample α ∼ {1, . . . , 2n}, and
output “YES” if and only if ABα = 0 for α := (1, α, α2, . . . , αn−1)T . Using associativity, it
is possible to compute this product as A(Bα) using O(n2) arithmetic operations.

However, there is an issue with this algorithm: it requires computing powers of α up to
αn−1. These powers require Ω(n) bits to represent for any integer α ≥ 2, and so performing
arithmetic operations with them takes Ω(n) time. To solve this, Kimbrel and Sinha instead
consider the “test vector” α modulo an (arbitrary) prime 2n ≤ q ≤ 4n, which they can find
deterministically in O(n2) time. They show that their algorithm is still correct with good
probability (over the choice of α) with this modification.

Korec and Wiedermann [20] showed how to deterministically find a good α for the above
test – that is, a value α such that pi(α) ̸= 0 if pi is not identically zero – using Cauchy’s bound,
which gives an upper bound on the magnitude of the largest root of a polynomial as a function
of the polynomial’s coefficients. Namely, they just choose α larger than Cauchy’s bound.
(They note that the maximum magnitude of an entry in AB – and hence of a coefficient in

13 A more general version of this theorem, which gives an algorithm whose running time depends both on
the sparsity of the input matrices A, B and of their product AB, appears as [1, Theorem 1.7].

14 To see this, note that in the latter case some row sT of AB must be non-zero, and let j∗ be the index
of the last non-zero entry in s. Then for uniformly random x ∼ {0, 1}n, Pr[ABx = 0] ≤ Pr[⟨s, x⟩ =
0] = Pr[sj∗ xj∗ = −

∑j∗−1
k=1 skxk] ≤ 1/2. Moreover, this holds for matrices A, B over any ring R, and so

Freivalds’s algorithm works for MMV over any ring R.

APPROX/RANDOM 2024

42:12 Matrix Multiplication Verification Using Coding Theory

any of the polynomials pi(x) – is at most nµ2, where µ is the maximum magnitude of an
entry in A or B.) Their algorithm uses only O(n2) arithmetic operations, but again requires
computing powers of α up to αn−1, and therefore the algorithm has bit complexity Ω(n3).

Additionally, we mention the work of Künnemann [21], which works for MMV over finite
fields Fq with q > n2 (he reduces MMV over the integers to MMV over such fields). His
algorithm works by considering the bivariate polynomial f(x, y) = fA,B(x, y) := xT ABy

for x = (1, x, x2, . . . , xn−1), y = (1, y, y2, . . . , yn−1), where x and y are indeterminates, and
the corresponding univariate polynomial g(x) = gA,B(x) := f(x, xn). The coefficient of
x(i−1)+(j−1)n in g(x) (and of xi−1yj−1 in f(x, y)) is equal to (AB)i,j , and so to decide
whether AB = 0 it suffices to decide whether g(x) (or f(x, y)) is identically zero as a formal
polynomial.15 He shows that to do this it in turn suffices to decide whether g(αi) = 0
for all i ∈ {0, . . . , t − 1}, where α ∈ Fq is an element of order at least n2 and t = nδ is
an upper bound on the sparsity of AB. Indeed, he notes that the system of equations
g(1) = · · · = g(αt−1) = 0 is a Vandermonde system of homogeneous linear equations in the
at most t non-zero entries (AB)i,j in AB, and so its only solution is the solution (AB)i,j = 0
for all 1 ≤ i, j ≤ n (i.e., it must be the case that AB = 0). To evaluate g on the t values
1, α, . . . , αt−1 quickly, he uses a known result about fast multipoint polynomial evaluation.

We also note that MMV and its variants have also been studied from angles other
than derandomization of Freivalds’s algorithm. Notably, [8] gave a O(n5/3)-time quantum
algorithm for MMV, [15] studied the Boolean Matrix Multiplication Verification problem,
and [13, 26] study the problem of correcting matrix products. I.e., they study the problem
of computing AB given matrices A, B, and C where ∥AB − C∥0 is guaranteed to be small,
which Künnemann showed is equivalent to OSMM.

Finally, we remark that other recent works including [9, 5, 2, 6] have also studied “barriers
to SETH hardness”.

1.3 Open Questions
Of course, the main question that we leave open is whether Freivalds’s algorithm can be
fully derandomized, i.e., whether there is a deterministic Õ(n2)-time algorithm for MMV
on n × n matrices over finite fields Fq with q ≤ poly(n) and integer matrices with entries
[−nc, nc] for constant c > 0. Additionally, it would be interesting to extend our results for
MMV in the sparse regime to Output Sensitive Matrix Multiplication. The coding-theoretic
techniques that we use seem amenable to this.

References
1 Amir Abboud, Karl Bringmann, Nick Fischer, and Marvin Künnemann. The time complexity

of fully sparse matrix multiplication. In SODA, 2024.
2 Divesh Aggarwal, Huck Bennett, Zvika Brakerski, Alexander Golovnev, Rajendra Kumar,

Zeyong Li, Spencer Peters, Noah Stephens-Davidowitz, and Vinod Vaikuntanathan. Lattice
problems beyond polynomial time. In STOC, 2023.

3 Joah Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In SODA, 2021.

4 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of almost
k-wise independent random variables. In FOCS, 1990.

15 Indeed, [21] notes that this mapping from A, B to g(x) is a reduction from the All Zeroes Problem to
Univariate Polynomial Identity Testing (UPIT).

H. Bennett, K. Gajulapalli, A. Golovnev, and E. Warton 42:13

5 Tatiana Belova, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, and Denil Sharipov.
Polynomial formulations as a barrier for reduction-based hardness proofs. In SODA, 2023.

6 Tatiana Belova, Alexander S. Kulikov, Ivan Mihajlin, Olga Ratseeva, Grigory Reznikov, and
Denil Sharipov. Computations with polynomial evaluation oracle: ruling out superlinear
SETH-based lower bounds. arXiv, 2023. arXiv:2307.11444.

7 Huck Bennett, Karthik Gajulapalli, Alexander Golovnev, and Evelyn S Warton. Matrix
multiplication verification using coding theory. arXiv preprint, 2023. arXiv:2309.16176.

8 Harry Buhrman and Robert Spalek. Quantum verification of matrix products. arXiv, 2004.
arXiv:quant-ph/0409035.

9 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis
and consequences for non-reducibility. In ITCS, 2016.

10 Henry Cohn, Robert Kleinberg, Balázs Szegedy, and Christopher Umans. Group-theoretic
algorithms for matrix multiplication. In FOCS, 2005.

11 Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing. In FOCS, 2023.

12 Rūsin, š Freivalds. Fast probabilistic algorithms. In MFCS, 1979.
13 Leszek Gasieniec, Christos Levcopoulos, Andrzej Lingas, Rasmus Pagh, and Takeshi Tokuyama.

Efficiently correcting matrix products. Algorithmica, 79(2):428–443, 2017.
14 Jonathan I. Hall. Notes on coding theory. Available at https://users.math.msu.edu/users/

halljo/classes/codenotes/GRS.pdf.
15 Wing-Kai Hon, Meng-Tsung Tsai, and Hung-Lung Wang. Verifying the product of generalized

boolean matrix multiplication and its applications to detect small subgraphs. In WADS, 2023.
16 Mark A. Iwen, 2023. Personal Communication.
17 Mark A. Iwen and Craig V. Spencer. A note on compressed sensing and the complexity of

matrix multiplication. Information Processing Letters, 109(10):468–471, 2009. doi:10.1016/
j.ipl.2009.01.010.

18 Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In ICALP, 2015.
19 Tracy Kimbrel and Rakesh Kumar Sinha. A probabilistic algorithm for verifying matrix

products using O(n2) time and log2 n + O(1) random bits. Information Processing Letters,
45(2):107–110, 1993.

20 Ivan Korec and Jiří Wiedermann. Deterministic verification of integer matrix multiplication
in quadratic time. In SOFSEM, 2014.

21 Marvin Künnemann. On nondeterministic derandomization of Freivalds’ algorithm: Con-
sequences, avenues and algorithmic progress. In ESA, 2018.

22 François Le Gall. Faster rectangular matrix multiplication by combination loss analysis. In
SODA, 2024.

23 François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the Coppersmith-Winograd tensor. In SODA, 2018.

24 Ron M. Roth and Abraham Lempel. On MDS codes via Cauchy matrices. IEEE Transactions
on Information Theory, 35(6):1314–1319, 1989.

25 Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In SODA, 2024.

26 Yu-Lun Wu and Hung-Lung Wang. Correcting matrix products over the ring of integers. arxiv,
2023. arXiv:2307.12513.

27 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
Journal of the ACM, 49(3):289–317, 2002.

APPROX/RANDOM 2024

https://arxiv.org/abs/2307.11444
https://arxiv.org/abs/2309.16176
https://arxiv.org/abs/quant-ph/0409035
https://users.math.msu.edu/users/halljo/classes/codenotes/GRS.pdf
https://users.math.msu.edu/users/halljo/classes/codenotes/GRS.pdf
https://doi.org/10.1016/j.ipl.2009.01.010
https://doi.org/10.1016/j.ipl.2009.01.010
https://arxiv.org/abs/2307.12513

	1 Introduction
	1.1 Our Results
	1.1.1 Algorithms
	1.1.2 Barriers
	1.1.3 Reductions

	1.2 Related Work
	1.3 Open Questions

