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Abstract
Interactive coding allows two parties to conduct a distributed computation despite noise corrupting
a certain fraction of their communication. Dani et al. (Inf. and Comp., 2018) suggested a novel
setting in which the amount of noise is unbounded and can significantly exceed the length of the
(noise-free) computation. While no solution is possible in the worst case, under the restriction of
oblivious noise, Dani et al. designed a coding scheme that succeeds with a polynomially small failure
probability.

We revisit the question of conducting computations under this harsh type of noise and devise a
computationally-efficient coding scheme that guarantees the success of the computation, except with
an exponentially small probability. This higher degree of correctness matches the case of coding
schemes with a bounded fraction of noise.

Our simulation of an N -bit noise-free computation in the presence of T corruptions, communicates
an optimal number of O(N + T ) bits and succeeds with probability 1 − 2−Ω(N). We design this
coding scheme by introducing an intermediary noise model, where an oblivious adversary can choose
the locations of corruptions in a worst-case manner, but the effect of each corruption is random: the
noise either flips the transmission with some probability or otherwise erases it. This randomized
abstraction turns out to be instrumental in achieving an optimal coding scheme.
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1 Introduction

In many distributed systems nowadays, communication channels suffer various types of noise
and interference that may corrupt information exchanged between devices. Interactive coding,
initiated by the seminal work of Schulman [25, 26] (see also [12]), allows two or more devices
to correctly complete their computation despite channel noise, by adding only a moderate
amount of redundancy to the computation. The capability of an interactive coding scheme
usually depends on the specific type of noise it is designed to withstand. For instance, when
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43:2 Interactive Coding with Unbounded Noise

the noise can flip bits, interactive coding schemes withstand up to a fraction of 1/6 of flipped
bits [8, 20] (a fraction of 1/4 can be withstood over channels with larger alphabets [5]); when
the noise erases bits (i.e., replaces a bit with a special erasure mark ⊥), then a fraction of 1/2
of bit erasures can be withstood [11, 20], which also applies for larger alphabets [8]. When
messages can be inserted and deleted, the maximal corruption rate is again 1/4, see [4, 27].

In a recent work, Dani, Hayes, Movahedi, Saia, and Young [7] suggested a different and
interesting model for interactive coding in which the amount of noise is unbounded. That
is, the number T of corruptions that affects a given execution, can be arbitrary. Note that
this number T is unknown to the coding scheme; this is in contrast to the standard model
of interactive coding, where a limit on the fraction of corrupted transmissions is known by
all devices. The scheme in [7] correctly computes any two-party computation that takes
N rounds without noise, by communicating N + O(T +

√
N(T + 1) log T ) bits and succeeds

with probability 1 − O(1/N log N).
In a nutshell, the idea of the scheme in [7] is as follows. Every message sent between

the parties contains the round number it corresponds to and a signature. A device checks
that the signature is valid before processing a received message. If the signature does not
check out, the device ignores that communication. The coding scheme tracks the progress of
both parties via the added information of the round number, so that corrupted messages are
re-transmitted until they arrive correctly at the other side.

One significant drawback of the above approach, is that the noise might corrupt a message
along with its signature so that the receiver believes that the signature is correct. This
occurs with exponentially small probability in the length of the signature, which leads to
the polynomially-small failure probability of the scheme. In other words, the scheme in [7]
assumes that the noise never creates a valid signature and settles with a failure probability
of magnitude 1/N log N .

In this work we aim to achieve an interactive coding scheme that can withstand an
unbounded amount of noise, yet, with failure probability exponentially small in N , similar to
most previous work on interactive coding (e.g., [26, 18, 2, 19]). This effectively means that
the coding scheme must cope with corrupted messages being processed by some device. That
is, the coding scheme must be resilient to the event, that occurs with polynomially small
probability in N , where both the message and the signature are corrupted in a matching way.

Our main result is a coding scheme that is resilient to an arbitrary and a priori unknown
number T of bit flips, with exponentially small failure probability.

▶ Theorem 1.1 (Main). Given any two-party binary interactive protocol π of length N ,
there exists an efficient randomized protocol Π of length O(N + T ) that simulates π with
probability 1 − 2−Ω(N) over a binary channel in the presence of an arbitrary and a priori
unknown number T of corruptions. The noise is assumed to be independent of the parties’
randomness.

We note that the scheme assumes oblivious noise in the sense that the T corrupted transmis-
sions are selected at the beginning of the computation (as a function of the coding scheme
and the parties’ inputs) and is independent of the parties’ (private) randomness. This
assumption is crucial, as no coding scheme withstands an unbounded amount of noise that is
non-oblivious [7, Theorem 6.1].

1.1 Techniques
Towards an optimal scheme: the code concatenation approach. The immediate approach
towards an improved coding scheme for an unbounded amount of corruptions is of code
concatenation, namely composing two layers of interactive code. The inner layer would be
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responsible for transmitting bits over the channel despite the unbounded amount of noise
(e.g., [7, 15]). The outer layer would then “see” only a limited amount of noise (which passes
the inner layer with polynomially-small probability) and perform a standard interactive
coding (e.g., [25, 26, 5, 21, 19, 14, 20]) using these bits.

Unfortunately, such an approach faces severe difficulties. For the inner layer, the scheme
of Dani et al. [7] assumes that no corrupted message is accepted by a party. That is, a
message can either be correct or marked as invalid. Requiring the parties to process incorrect
messages might cause their inner state to differ in a way that could not be recovered by the
scheme. That is, a single corrupted message (that is believed to be correct by one of the
parties) might cause the parties to “lose sync”, so that the parties do not agree anymore on
when the next phase of the scheme begins and ends, or whether the scheme has terminated
or not. The scheme will not recover from this fault because the synchronization information
would be sent by one party at certain rounds but expected by the other party at different
rounds. The other option for the inner layer is the scheme by Gelles and Iyer [15] designed
to withstand an unbounded amount of erasures, and thus, on its surface, does not fit our
purpose.

The randomized erasure–flip model. The key towards solving the above conundrum stems
from defining a new random noise model that we name the unbounded probabilistic Erase–Flip
noise model (UPEF). This model (formally defined in Section 2.2) still allows an unbounded
number of corruptions determined by the adversary in an oblivious way. However, when
the i-th transmission is corrupted by the adversary, the effect of the corruption is random:
the transmitted bit is flipped with some probability pi or erased with the complementary
probability. The probabilities {pi}i∈N are parameters of the model and can be determined
by the algorithm’s designer. In a sense, this type of noise matches the effect oblivious noise
has on messages that are protected with a signature: with some probability the corruption is
detected (the signature does not verify) and the message is marked as corrupted, i.e., erased.
On the other hand, with some small probability the corruption is such that the signature
verifies the corrupted message; in this case we have a flip. The probabilities are determined
by the length of the signatures in use.1

This novel randomized model is much simpler to handle, and facilitates the design and
analysis of optimal coding schemes. Furthermore, any scheme designed for this model can
be translated into a coding scheme that works in the standard unbounded flips (UF) noise
model, by employing signatures of respective length to match the erasure–flip probabilities of
the UPEF model. Therefore, this model serves as a crucial tool for obtaining optimal coding
schemes in the standard model.

Switching to the UPEF model allows us to use the scheme in [15] as the inner code
of our concatenated coding scheme, in an almost as-is fashion: by smartly setting the
probabilities {pi}i∈N, we can guarantee, with very high probability, that any execution
experiences an unbounded number of erasures but only a bounded number of bit-flips. The
scheme in [15] withstands the erasures and delivers the non-erased bits (either correct or
not) to the outer layer, which should be able to cope with this limited amount of bit flips.

One problem still remains, but to explain it, we must first explain how the [15] scheme
works. In a nutshell, the parties simulate the underlying (noiseless) protocol π bit-by-bit,
where the scheme adds to each bit the parity (mod 2) of the corresponding round number.

1 We use AMD codes [6] to generate signatures, see the full version of this paper [10, Appendix A] for the
exact details.

APPROX/RANDOM 2024



43:4 Interactive Coding with Unbounded Noise

The scheme works in challenge-response–style iterations: The first party (Alice) begins by
sending the bit of the next round of π along with the parity of that round (the challenge).
Bob receives this bit, and if the parity corresponds to the round number he expects, he
records this bit and replies with the next bit of π along with the parity of that round in π (the
response). When this reply reaches Alice, and the parity is correct, Alice records the bit from
Bob and moves on to the next iteration. In any case of erasures or if the parity mismatches,
the receiver ignores the received message. The analysis in [15] shows that this single parity
bit suffices to keep track of the progress despite an unbounded amount of erasures.

However, in the UPEF model, a bit flip can either corrupt the content bit (i.e., the next
simulated round of π) or the parity bit sent along! Corrupting the parity bit damages the
correctness of the [15] scheme, but this is the only way the noise can affect correctness.
Throughout a detailed case analysis, we prove that corrupting the parity bit has the sole
effect of making the parties out-of-sync, in the sense that one party advances to the next
round in π, while the other does not. Luckily, this type of out-of-sync corruption was already
considered in the interactive-coding community, initiated by the work of Braverman, Gelles,
Mao, and Ostrovsky [4], which presented a non-efficient scheme that withstands a noise
level of up to 1/18 fraction of the rounds, where “noise” here means insertions and deletions
producing out-of-sync events as described above. That work was followed by a work by
Sherstov and Wu [27], who showed that a variant of the [4] scheme withstands the optimal
level of noise, namely, up to 1/4 of the rounds, and by a work by Haeupler, Shahrasbi, and
Vitercik [22], who presented an efficient scheme, based on synchronization strings, with noise
resilience of 1/44.

Therefore, we can set the scheme in [22] (denoted HSV hereinafter) as the outer layer in
our construction, and set the probabilities {pi}i∈N such that the total number of insertion
and deletion errors will not surpass the threshold expected by the HSV scheme, except with
an exponentially small probability. This construction achieves our goal of obtaining a coding
scheme in the UPEF model, with optimal length of O(N + T ), and an exponentially small
failure probability.

Unfortunately, once converting this optimal UPEF scheme back to the standard UF
model, the overhead increases severely. In particular, the way we set the probabilities {pi}i∈N
implies a logarithmic overhead on the size of the signatures, leading to a sub-optimal scheme
of length O((N + T ) log(N + T )) in the UF model. To avoid this increase in communication,
we must maintain the probabilities {pi}i∈N “large”, and design a new scheme that is still
optimal in the UPEF model despite the high values of {pi}i∈N.

Obtaining an optimal scheme: the iterative approach. In order to obtain a UF-optimal
scheme, we take a different approach, namely, we execute an increasing-length instances of a
“standard” interactive coding [7]. As before, we start by constructing a coding scheme over
the UPEF model. Our goal now is to maximize the pi’s as much as possible. The main idea
is as follows. Let’s fix each pi to some constant, say, 2/3. Now, any corruption in the UPEF
model will cause an erasure with a fixed probability of 1/3. The number of erasures a party
observes is a good estimate of the level of noise during the same transmissions. Hence, the
parties can continue running the scheme again and again, until they believe the noise level
was low enough to produce the correct output.

In more detail, Alice and Bob run an efficient interactive coding scheme resilient to a
constant fraction of adversarial flips (e.g., [2, 19]). After executing the scheme, Alice and
Bob count the number of erasures observed during the execution and estimate (with high
probability) the fraction of corruption they experienced. They communicate this estimate



E. Fargion, R. Gelles, and M. Gupta 43:5

to each other, and decide how to continue accordingly. If the noise level seems sufficiently
low, the resilient scheme must have produced the correct output, and the parties can safely
terminate. Otherwise, the parties re-run the interactive scheme, doubling its length. They
repeat this action until they reach an execution where the noise level is low enough to
guarantee the success of the underlying interactive coding scheme.

With a correct choice of parameters, this results in a UPEF scheme of length O(N + T ).
However, since all {pi}i∈N are fixed to a constant, once we translate this scheme into a UF
scheme, we keep its length up to a constant and obtain an optimal length of O(N + T ) in
this case as well.

We note that a communication complexity of Θ(N +T ) is tight for the UF model. A lower
bound of Ω(N + T ) is immediate by considering the case where the adversary corrupts the
entirety of the communication between Alice and Bob for Θ(T ) rounds, e.g., by flipping each
bit with probability 1/2, thereby not allowing any information to cross the channel during
these rounds. After this corruption, N rounds are still needed to complete the protocol
without noise.

1.2 Related Work
As mentioned above, the field of interactive coding was initiated by the work of Schulman [25,
26]. Following this work, many two-party interactive coding schemes were developed, with
the goal to optimize various properties, such as efficiency, communication rate, and noise
resilience [5, 18, 2, 23, 21, 13, 3, 14, 20]. Two-party coding schemes for different types of
noise, such as erasures or insertions and deletions, appeared in [11, 13, 8, 4, 22, 27, 9, 20].
See [12] for an extensive survey on this field.

Closest to our work are coding schemes that withstand an unbounded amount of corruption.
As mentioned above, Dani et al. [7] developed a randomized scheme that deals with an
unbounded amount T of oblivious bit-flips, succeeds with high probability, and simulates
any π of length N in N + O(T +

√
N(T + 1) log T ) rounds. Gelles and Iyer [15] developed a

deterministic scheme that deals with an unbounded amount T of (not necessarily oblivious)
erasures in at most 2N + 4T communication rounds. For the multiparty setting, Aggarwal,
Dani, Hayes, and Saia [1] developed a coding scheme that correctly simulates any protocol
over an arbitrary network withstanding an unbounded amount of oblivious corruptions in
Õ(N + T ) rounds, suppressing logarithmic terms.

1.3 Paper Outline
We set up the UPEF and UF models, recall the insertion-deletion model, and review
interactive coding protocols in Section 2. In Section 3 we describe an optimal UPEF coding
scheme that follows a code concatenation approach. Its analysis is deferred to the full version
of this paper [10, Appendix A]. Finally, in Section 4 we describe an optimal coding scheme
in the UPEF model that follows an iterative approach. We then show how to translate it
into an optimal UF coding scheme.

2 Preliminaries

Notations. For an integer n ∈ N we use [n] = {1, 2, 3, . . . , n}. All logarithms are taken to
base 2 unless otherwise mentioned. For two strings a, b we denote by a◦ b their concatenation.
We will use ⃝k=1,2,...,ℓ ak ≜ a1 ◦ a2 ◦ · · · ◦ aℓ to abbreviate the concatenation of multiple
strings. We use Oε(·), Θε(·), etc., to explicitly remind that the constant inside the O(·) may
depend on (the constant) ε.

APPROX/RANDOM 2024



43:6 Interactive Coding with Unbounded Noise

2.1 Interactive Protocols and Coding Schemes
Consider two parties, Alice and Bob, having inputs x, y ∈ {0, 1}k respectively, who wish to
compute some function f(x, y) by communicating over a channel with alphabet Σ. Towards
that goal, Alice and Bob use an interactive protocol composed of two algorithms π = (πa, πb)
for Alice and Bob, respectively. These algorithms assume a common clock known by both
parties (i.e., the protocol is synchronized) and determine, for each party in each round
(timestep), whether the party (1) has to send a message in that round, (2) which symbol the
party sends, and (3) if the party should terminate in that round and which output should it
give.

Each party records all the messages it receives during the execution of the protocol. The
collection of these records is the party’s transcript. We assume that π has fixed order of
speaking; this means that in each round exactly one party is transmitting a symbol (the other
party listens), and the identity of the transmitting party in a given round is predetermined
and independent of the parties’ inputs. In particular, a protocol in which Alice speaks in odd
rounds, and Bob speaks in even rounds is said to be of an alternating order. Note that if π is
not alternating, then it can be converted to an alternating-order protocol while increasing the
communication complexity by a factor of at most 2. We say that a protocol is k-alternating,
for some k ∈ N, if during its execution each party transmits bulks of k bits. The length of a
protocol is defined to be the number of rounds it includes until both parties have terminated.

Noisy channels and coding schemes. Now, assume that the parties are connected by a
noisy channel. Formally, given an input and output alphabets Σin, Σout, respectively, a single
utilization of a noisy channel is the (possibly randomized) function C : Σin → Σout.

We can now discuss protocols that perform over noisy channels. We say that a protocol
π′ simulates π over the noisy channel C, if for any inputs (x, y), after executing π′ over the
noisy channel C, the parties can output their transcripts in an execution of π over a noiseless
channel with inputs (x, y). When the channel noise or the algorithm π′ are probabilistic, we
say that π′ simulates π with probability p if the probability that the parties’ output equal the
transcript of π is at least p, for any inputs pair.

A coding scheme (for some given noisy channel C) is a function CS, whose input is a
noiseless protocol π, and its output is a protocol π′ = CS(π) which simulates π over the
channel C. When the channel noise or the scheme are probabilistic, we say that the coding
scheme has success probability p, if for any π, the protocol π′ = CS(π) simulates π with
probability p.

2.2 Noise Models
As alluded to in the introduction, our scheme is designed to withstand an unbounded amount
of (oblivious) bit flips. However, we design the scheme by reducing the unbounded-flip model
to a different noise model with unbounded probabilistic erasures and flips. Furthermore, the
effect of probabilistic erasures and flips noise on the inner layer of our coding scheme is such
that the outer layer “sees” insertion and deletion noise. We will now define these three noise
models in turn.

The Unbounded Flip noise model (UF). Our main noise model is the unbounded flip
noise model, set forth by Dani et al. [7]. Given a specific execution of π′ with inputs (x, y),
the adversary sets a noise corruption pattern E ⊂ N such that the amount of noise, |E|,
satisfies |E| = T for some number T ∈ N decided by the adversary. The noise pattern can
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be set as a function of π, x, y but is independent of any randomness the parties might have
(i.e., an oblivious noise). The noise pattern E determines which bits get flipped during
the execution of π. Namely, if i ∈ E, then the i-th transmitted bit in π will be flipped.
Otherwise, the bit goes through uncorrupted. Note that T might be arbitrary. When one of
the parties terminates, the channel sends zeros to the another party, which may be flipped
by the adversary.

The Unbounded Probabilistic Erasure-Flip noise model (UPEF). Our coding scheme in
this work is designed and analyzed within the following noise model, that combines both
erasure and flip noise. This model naturally appears when executing a protocol in the UF
model while each message contains a (probabilistic) signature or a message authentication
tag that indicates its validity.

In this model, the parties are connected via a noisy communication channel C : {0, 1} →
{0, 1, ⊥}, which can either flip bits or erase them (denoted by the erasure mark ⊥). Similar
to the UF model, given any specific execution of π′ with inputs (x, y), the rounds which
are corrupted are predetermined by an adversary that knows π′, x, y and the inputs but not
the parties’ private randomness. This corruption is described via the noise pattern E ⊂ N,
where i ∈ N means that the i-th round is corrupted; otherwise, the bit arrives at the other
side intact. When a round is corrupted, the effect is as follows: the bit is flipped with some
probability pi or is erased with probability 1 − pi. The probabilities {pi}i∈N are parameters
of the model and will be specified later.

Terminating in the UPEF is different from terminating in the UF. When Alice terminates,
the channel transmits a special “silence” symbol, namely, “□”. Upon the reception of this
special symbol, Bob knows that Alice has quit, and terminates as well.

Similar to the UF model, we restrict the discussion to noise patterns in which the total
number of corrupted rounds is finite. That is, there exists some number T ∈ N, unknown to
the parties and π, such that |E| = T .

The Insertion-Deletion noise model. The insertion-deletion noise model [4], which we
briefly describe here, is important for our analysis of the concatenated coding scheme.

In this model we consider alternating interactive protocols π′, where no common clock is
assumed by the parties. Instead, Alice sends the first symbol (round 1), and Bob is idle until
receiving this symbol. Once the first symbol is obtained by Bob he transmits a symbol back
to Alice (round 2). Alice will execute round 3 once receiving this symbol, and so on. The
noise is allowed to either corrupt a symbol (i.e., the receiver will obtain a different symbol
from the one sent, a substitution), or to completely delete the symbol, so that the receiver
receives nothing. In the latter case, the protocol is “stuck” as both parties await an incoming
symbol to proceed. To avoid getting stuck, the noise must inject a new symbol towards the
sender of the symbol that got deleted. This causes the parties to get out of sync, that is, one
of them will believe the current round is i, while the other will believe the current round is
i + 2. See also [4, 27, 22, 9, 16, 17].

In [22], the authors give an efficient constant-rate coding scheme for insertions and
deletion noise, which we will use in our construction.

▶ Theorem 2.1 (Theorem 1.2 in [22]). For any alternating protocol π of length n and for any
ε > 0, there exists an efficient randomized protocol π′ simulating π in presence of δ = 1/44−ε

fraction of edit-corruptions, whose length is Θε(n) and succeeds with probability 1 − 2−Θ(n).
The alphabet size of π′ is Θε(1).

We assume that at its termination, π′ has an output, which equals to the output of π (under
the conditions in the theorem).

APPROX/RANDOM 2024
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3 A UPEF-optimal coding scheme via code concatenation

In this section we give an optimal UPEF coding scheme, based on code-concatenation
approach (Algorithms 1 and 2). The analysis of the scheme, presented in the full version of
this paper [10, Appendix A], proves the following Theorem.

▶ Theorem 3.1. Given any two-party binary interactive protocol π of length N , there exists
some constant C and an efficient randomized protocol Π of length O(N + T ) that simulates
π with probability 1 − 2−Ω(N) over a binary channel in the presence of an arbitrary and a
priori unknown number T of probabilistic Erasure–Flip corruptions, with pi = min

{
CN
i2 , 1

2
}

.

Let π be a binary alternating protocol that assumes noiseless channels of length |π| = N .
Our goal is to simulate π in the UPEF model. Let π′ be the randomized protocol obtained
from π via Theorem 2.1, by setting δ = 1/45 (i.e., ε = 1/1980). We denote |π′| = N ′. Denote
the alphabet of π′ by Σ′ and note that its size is constant, |Σ′| = Θ(1).

Our coding scheme (Algorithms 1 and 2) simulates the communication of π′, symbol by
symbol. As the channel in the unbounded probabilistic Erase–Flip noise model is binary, the
parties communicate the binary representations of the symbols in π′. Therefore, during each
iteration of the simulation, Alice sends a symbol to Bob using log |Σ′| bit transmissions, and
expects a symbol reply from Bob.

Algorithm 1 Simulation over Erasure and Substitution Channel with Unbounded Noise (Alice).

Input: An alternating binary protocol π of length N , an input x

Initialize: Let π′ be the protocol simulating π given by Theorem 2.1, setting ε = 1/1980. Let
N ′ = |π′| and assume Σ′ (the alphabet of π′) is a power of two.

A.1 Ta ← ∅, ra ← 0
A.2 while ra < N′

2 do
A.3 // Send Message
A.4 ra ← ra + 1
A.5 msend ← π′(x | Ta)
A.6 Ta ← Ta ◦msend

A.7 send (msend, ra mod 2) ▷ k transmissions
A.8
A.9 // Receive Message
A.10 receive m′ = (mrec, rrec) ▷ k transmissions
A.11 if m′ does not contain ⊥ and rrec = ra mod 2 then
A.12 Ta ← Ta ◦mrec

A.13 else
A.14 delete the last symbol of Ta

A.15 ra ← ra − 1
A.16 end if
A.17 end while
A.18 Output the output given by π′

The simulation of π′ employs a challenge-response paradigm, where Alice sends a symbol
(the challenge) and expects one back (the response). The parties maintain a counter to track
their respective progress, namely, the variables ra and rb, which represent the number of
successful iterations observed by Alice and Bob, respectively. Every time Alice and Bob send
a symbol, they attach to it the parity (mod 2) of their own counter. Hence, the simulation is
k-alternating, with k = ⌈log |Σ′|⌉ + 1.
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Algorithm 2 Simulation over Erasure and Substitution Channel with Unbounded Noise (Bob).

Input: An alternating binary protocol π of length N , an input x

Initialize: Let π′ be the protocol simulating π given by Theorem 2.1, setting ε = 1/1980. Let
N ′ = |π′| and assume Σ′ (the alphabet of π′) is a power of two.

B.1 Tb ← ∅, rb ← 0, err ← 0, m← (0, 0)
B.2 while m′ ̸= □ do
B.3 // Receive Message
B.4 receive m′ = (mrec, rrec) ▷ k transmissions
B.5 if m′ does not contain ⊥ and rrec ̸= rb mod 2 then
B.6 Tb ← Tb ◦mrec

B.7 err ← 0
B.8 else
B.9 err ← 1
B.10 end if
B.11
B.12 // Send Message
B.13 if err = 0 then
B.14 rb ← rb + 1
B.15 msend ← π′(y | Tb)
B.16 Tb ← Tb ◦msend

B.17 send m← (msend, rb mod 2) ▷ k transmissions
B.18 else
B.19 send m ▷ k transmissions; m from memory
B.20 end if
B.21 end while
B.22 Output the output given by π′

When Alice receives a symbol (as a response to the challenge she has previously sent),
she checks the counter value attached to it: if it matches her expected counter parity (mod
2), she “believes” this challenge-response iteration, delivers the received symbol to π′ and
increases ra by 1; otherwise, she ignores the reply and tries again in the next iteration.

Bob acts in an analogous manner: if the information received from Alice matches the
counter parity (mod 2) he is expecting, then he “believes” the received symbol, delivers it
to π′, increases rb by 1, obtains from π′ the next symbol to communicate to Alice, and sends
Alice this symbol and the parity of rb. If the information from Alice does not match Bob’s
expectation, he ignores this transmission and replies with the previous symbol computed
by π′ (along with the parity that corresponds to that symbol). When a party “believes” an
iteration, it appends the received and transmitted symbols of the iteration to its transcript,
Ta or Tb, respectively. This transcript records all the symbols communicated so far (by π′)
during the “successful” iterations of Algorithms 1 and 2.

To summarize, in each iteration of the loop, Alice generates the next message of π′,
denoted m ∈ Σ′, based on her current transcript Ta and her input x, i.e., m = π′(x | Ta).
Alice (temporarily) adds m to Ta, and sends its binary representation to Bob, along with the
parity of ra. After receiving a k-bit message (mrec, rrec) from Alice, Bob checks that none
of the k bits have been erased (denoted by ⊥) and that rrec is opposite to his parity (since
Alice added a new symbol and he did not, yet). If everything matches, Bob adds mrec to
his transcript Tb, increases rb by 1, computes the next message m′ = π′(y | Tb) and the new
parity of rb, and transmits them to Alice. On the other hand, if Bob notices any erasures
or the mismatch of the parity, he ignores Alice’s new symbol and replies with the latest
computed (m′, rb) recorded in his memory.
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At the end of the iteration, Alice receives a message and a parity from Bob; if there were
no erasures and the received parity matches ra, she adds that message to her transcript.
Otherwise, Alice deletes the (temporary) message she added at the beginning of this iteration.

The algorithm ends once the length of Ta reaches the length of π′ (for Alice) or when
a special symbol □, sent by the channel when Alice quits, is received by Bob. We discuss
termination in this model and the implication of assuming this special symbol in the full
version of this paper [10, Appendix B.1].

The complete detailed analysis of the coding scheme (Algorithms 1 and 2) and the proof
of Theorem 3.1, are deferred to the full version of this paper [10, Appendix A].

4 A UF Scheme with Optimal Communication

The concatenated scheme in Section 3, while optimal in the UPEF model, implies a UF
scheme of length O((N + T ) log(N + T )) in which the i-th bit is replaced with an AMD
code [6] of length O(log(p−1

i )); see the full version of this paper [10, Appendix B] for details.
In this section, we take a different approach towards constructing an optimal coding scheme
in the UPEF model, namely by executing increasing-length coding schemes in an iterative
fashion. This approach eventually leads to an optimal-communication UF scheme.

Here, Alice and Bob utilize a “standard” interactive coding scheme for substitutions
and estimate the experienced level of noise. If the estimated noise level is too high, Alice
and Bob repeat the execution with a larger amount of redundancy. When the noise level
is low enough, the interactive scheme guarantees the success of the computation, and the
parties can terminate. This approach, in addition to leading to a UF scheme with optimal
communication, is also much simpler and easier to analyze than the scheme of Section 3.
The key difference is that, all we need in order to estimate the noise level well, is that the
probabilities {pi}i∈N are bounded below by a constant, rather than converging to 0. This
aligns perfectly with obtaining optimal complexity, as smaller {pi}i∈N imply longer encodings.

The scheme in this section utilizes a slight variant of the UPEF model, denoted the
modified UPEF (mUPEF) model, which we now describe. Let a noise pattern E ⊂ N be
determined adversarially. As before, if i /∈ E, the i-th transmitted bit reaches the other
party intact. For i ∈ E, the i-th transmitted bit is still erased with probability 1 − pi, and
corrupted with probability pi. However, the corruption here is not necessarily a bit flip as in
the original UPEF. Instead, the adversary determines whether the bit is flipped, erased, or
not corrupted at all. The probabilities {pi}i∈N are parameters of the model. However, we
will actually set them all to have the same value. That is, ∀i, pi = 2/3.

In our scheme, we set pe = 1 − pi = 1/3 as a lower bound on the probability that a bit is
erased. Similar to the UF model, we will assume that when Alice terminates, the channel
implicitly sends Bob a default symbol (e.g., a zero).

In the following sections we describe and analyze a coding scheme in the mUPEF model,
with optimal O(N + T ) communication that, due to our choice of pe = 2/3, results with a
UF scheme with O(N + T ) communication as well.

An optimal mUPEF Coding Scheme. For the underlying substitution-resilient interactive
coding scheme, we can take any (efficient) 2-party scheme with binary alphabet that is
resilient to a constant fraction of adversarial noise, e.g., [2, 19]. In particular, let us assume
an interactive coding scheme that simulates any (noiseless) protocol π in the presence of
up to 0.1 adversarial substitutions with a constant rate over the binary alphabet. Denote
the substitution-resilient version by π′, so |π′| = O(|π|) = O(N). We assume that π′ is
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alternating. We additionally assume that the communication of π′ includes a constant
fraction of ones. To be concrete, out of the |π′|/2 bits Alice sends, at least |π′|/8 are the bit 1,
in any execution of π′. We must have this property, because in our scheme, a long sequence
of zeros will indicate termination. For that reason, we want that π′ will not send a long
sequence of zeros. This can be achieved, for instance by making the parties communicate a 1
every alternate round, or by means of randomization (see, e.g., [13]).

We proceed to describe our mUPEF resilient scheme Π simulating the substitution-
resilient π′ defined above. The execution of Π consists of iterations, where the i-th iteration,
i = 0, 1, 2, . . . , takes 2Li rounds with Li = |π′|2i. The i-th iteration can be broken down into
two parts, each of length Li. In the first part, the parties execute π′ from scratch, padded to
length Li; in this padded protocol, each bit of π′ is sent 2i times, and decoding is performed
by majority (defaulting to 0 on ties, considering erased copies as zeros). In the second part of
iteration i, only Bob speaks. He sends Alice the success string 0Li if and only if he observed
less than 0.001peLi erasures in the first part; otherwise Bob sends the error string 1Li .

Alice terminates at the end of iteration i if she observed less than 0.001peLi erasures in
each of the parts of iteration i, and Bob’s transmissions at the second part contains more 0’s
than 1’s (i.e., it decodes to the success string rather than to the error string). Alice gives as
an output the same output that π′ has generated in the iteration in which she terminated.
Bob terminates at the end of iteration j if he observed less than 0.001peLj erasures in the first
part of j and at most 0.001peLj of the received bits in the first part of j are 1’s. Bob gives
as an output the output of the latest iteration k, with k < j, in which (1) he observed less
than 0.001peLj erasures in the first part and (2) he received at least Lk/40 ones from Alice
in the first part. We call a valid iteration any iteration that satisfies these two conditions.

4.1 Analysis

In this section we prove the following theorem.

▶ Theorem 4.1. Given any two-party binary interactive protocol π of length N , there exists
an efficient randomized protocol Π of length O(N + T ) that simulates π with probability
1 − 2−Ω(N) over a binary channel in the presence of an arbitrary and a priori unknown
number T of mUPEF corruptions, with pi = 2/3 for all i.

We start with proving the correctness of our coding scheme: we begin by demonstrating that
Alice’s output is correct with high probability. Additionally, we show that Bob’s output at
Alice’s termination is also correct. Then, we prove that Bob terminates after Alice, that
Alice terminates in a valid iteration, and that there are no valid iterations afterwards. This
would imply that Bob gives the right output as well.

Recall that π′ is resilient to 0.1-fraction of substitutions. In addition, recall the padding
mechanism; in order to cause a bit substitution in π′ in some iteration i, at least a half
of its 2i transmitted copies must be flipped or erased. Thus, if there are less than Li/20
corruptions during the first part of iteration i (that is, indices that the adversary puts in E),
then π′ must give the correct output at the end of iteration i, for both Alice and Bob.

In the following lemma, we show that if there are more than Li/20 corruptions in some
iteration i, then Alice continues to executing iteration i + 1 and does not terminate at the
end of iteration i, except with a negligible probability of 2−Ωpe (Li).

▶ Lemma 4.2. Assume that in the first part of iteration i there are ci ≥ Li/20 corruptions.
Then, the probability that Alice terminates at the end of iteration i is 2−Ωpe (Li).
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Proof. We divide the proof into two separate cases: (1) each of Alice and Bob observes less
than 0.001peLi erasures in the first part, and (2) Bob observes more than 0.001peLi erasures
but Alice does not. Of course, if more than 0.001peLi erasures are observed by Alice during
the first part, she does not terminate by definition.

First, we find the probability of case (1) to occur. Denote by Ei the subset of the noise
pattern E containing only rounds in the first part of iteration i. Then, |Ei| ≥ ci ≥ Li/20.
Let e′ be the number of rounds during the first part of iteration i that were erased because
the event of channel erasure, which happens with probability pe, occurred. It holds that
E[e′] = |Ei|pe ≥ 0.05peLi, and by Chernoff’s inequality (Theorem 4.4(2) in [24]),

Pr(e′ < 0.002peLi) ≤ Pr(e′ < 0.04E[e′]) ≤ e−E[e′] 0.962
2 ≤ e−0.05peLi

0.962
2 ∈ 2−Ωpe (Li).

Thus, if ci ≥ Li/20, then e′ < 0.002peLi with probability 2−Ωpe (Li), which bounds the
probability of case (1) to occur.

In case (2), Bob sees a lot of erasures and sends the error string. In order for Alice to
terminate, it is necessary for her to decode this message as the success string. For this to
happen, it is necessary that the adversary corrupts at least Li/2 bits during the second part
of the i-th iteration. Similar to the proof of case (1), the adversary succeeds to corrupt so
many bits while causing less than 0.001peLi erasures during the second part with probability
of at most 2−Ωpe (Li). We conclude that Alice terminates at the end of iteration i with
probability of at most 2−Ωpe (Li). ◀

The above lemma indicates that, in the event of an excessive number of corruptions, Alice
will not terminate. The following observation complements this idea and states that if Alice
does terminate, the computation of π′ is successful with high probability, hence, her output
in Π is correct.

▶ Observation 4.3. When Alice terminates, π′ gives the correct output, with probability
1 − 2−Ωpe (N).

Proof. If during a given iteration there were less than Li/20 corruptions, then the resilience
of π′ guarantees that it gives the right output, and Alice terminates. The event in which Alice
terminates and provides incorrect output can only occur when there are more corruptions in
a specific iteration, the probability of which was constrained in Lemma 4.2. A union bound
over all possible iterations (while recalling that Li = |π′|2i) bounds the probability for Alice
to give an incorrect output, by

∞∑
i=0

2−Ωpe (Li) = 2−Ωpe (|π′|) = 2−Ωpe (N). ◀

Next, we prove that Bob terminates only after Alice has already terminated, with high
probability.

▶ Lemma 4.4. Consider an iteration i in which Alice has not yet terminated. Then, the
probability that Bob terminates at the end of iteration i is at most 2−Ωpe (Li).

Proof. In order to terminate at the end of iteration i, Bob must observe less than 0.001peLi

erasures in the first part of the iteration. In a manner analogous to the argument presented
in Lemma 4.2, it can be shown that, with a probability approaching 1 − 2−Ωpe (Li), there will
be a total of less than Li/20 corrupted messages received by Bob during the first part of
iteration i. Recall that as long as Alice has not terminated, at least Li/8 out of the Li/2
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bits she sends in iteration i are ones. Consider these transmissions only. Even if all the
corruptions during the first part of i occur during these transmissions, then Bob will observe
at least 0.001peLi ones in the first part of i, and will therefore not terminate by definition.
Consequently, Bob terminates in iteration i with probability 2−Ωpe (Li). ◀

Bob’s output is the output of π′ in the last valid iteration prior to his termination iteration.
The following lemma shows that, with high probability, the last valid iteration is the same
iteration in which Alice has terminated. By Observation 4.3, π′ gives the correct output in
that iteration.

▶ Lemma 4.5. Denote by i the iteration in which Alice terminates. Then, i is a valid
iteration with probability 1 − 2−Ωpe (Li). Further, the probability that there is a valid iteration
j > i is 2−Ωpe (N).

Proof. In order to prove that i is a valid iteration, we have to show that Bob observes less
than 0.001peLi erasures in the first part of i, and that he receives at least Li/40 ones from
Alice in the first part.

First, note that Bob observes less than 0.001peLi erasures in the first part of i if and
only if he sends the success string in the second part. We demonstrate that with probability
1 − 2−Ωpe (Li) this is the case. As illustrated in case (2) of Lemma 4.2, when Bob transmits
the error string to Alice in the second part of i, Alice terminates with probability 2−Ωpe (Li).
Since Alice terminates in i, there is a probability of 2−Ωpe (Li) that Bob sends the error string
in the second part of i and observes more than 0.001peLi erasures in the first part of i.

We proceed to show that Bob receives at least Li/40 ones from Alice in the first part of
i. By Lemma 4.2, during the first part of iteration i there are less than Li/20 corruptions
with probability 1 − 2−Ωpe (Li). Additionally, Alice always sends at least Li/8 ones in the
first part. Thus, Bob receives at least Li/40 ones during the first part of i with probability
1 − 2−Ωpe (Li), and this is the probability of i to be a valid iteration.

Let j be an iteration such that j > i. Recall that after Alice terminates the channel
sends Bob zeros, by default. We show that j is not a valid iteration with high probability,
by dividing into two cases. If there are at least Lj/40 flips in the transmissions towards
Bob during the first part of iteration j, then with probability 1 − 2−Ωpe (Lj) Bob observes
at least 0.001peLj erasures, similar to case (1) in Lemma 4.2, thus j is not valid. If there
are less than Lj/40 flips in these transmissions, then Bob receives less than Lj/40 ones
and j is not a valid iteration either. Thus, iteration j is valid with probability of at most
2−Ωpe (Lj). Since Lj = |π′|2j , applying a union bound on all the iterations gives a probability
of

∑∞
j=i 2−Ωpe (Lj) = 2−Ωpe (N) to the event that there is a valid iteration after i. ◀

We may use a union bound to conclude the correctness part for Bob. The overall
probability of Bob to terminate after Alice is 1 − 2−Ωpe (N). The probability of Bob to declare
Alice’s termination iteration as valid is 1 − 2−Ωpe (N). Bob gives the correct output at this
iteration with probability 1 − 2−Ωpe (N) by Lemma 4.2, and this iteration is the last valid
iteration with probability 1 − 2−Ωpe (N). We may use the inclusion-exclusion principle to show
that the probability of the intersection of all these four events is 1 − 2−Ωpe (N). Recall that
for any A, B it holds that 1 ≥ P (A ∪ B) = P (A) + P (B) − P (A ∩ B). Then, the fact that
P (A), P (B) ∈ 1 − 2−Ωpe (N) implies that P (A ∩ B) ≥ 2(1 − 2−Ωpe (N)) − 1 ∈ 1 − 2−Ωpe (N).
Thus, the probability of the event in which Bob gives the correct output at his termination
is 1 − 2−Ωpe (N), and we have completed the correctness part of Theorem 4.1.

The communication complexity of Π is
∑iB

i=1 2Li, with iB being the iteration in which
Bob terminates. At any iteration i before Alice terminates, the adversary has to select
at least 0.001peLi bits to corrupt in order to prevent Alice from terminating. In addition,
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at any iteration i after Alice’s and before Bob’s terminations, the adversary has to select
at least 0.001peLi bits to corrupt in order to prevent Bob from terminating. Denote
the iteration in which Alice terminates by iA < iB. Then,

∑iB−1
i=1,i̸=iA

0.001peLi < T , so∑iB−1
i=1,i̸=iA

2Li < 2000/pe × T . Since Li satisfies Li = 2Li−1 for all i, and since LiA−1, LiB−1

are included in
∑iB−1

i=1,i̸=iA
2Li < 2000/pe × T , then

∑iB

i=1 2Li < 6000/pe × T and the
communication complexity is Ope

(N + T ).

4.2 Obtaining a UF-optimal coding scheme
In this section we construct a UF-model scheme based on the mUPEF protocol Π, while
maintaining a communication complexity of O(N + T ). Recall, we set pe = 1/3. This means
that adversarial corruption in the i-th transmission of Π, becomes detectable (an erasure)
with probability at least 1/3. We would like to simulate this property in the UF model.

Towards this goal, we independently encode each bit of Π using a random code of length 5.
In particular, we encode a 0 to one of {00000, 10000, 01000} with equal probability, and
encode a 1 to one of {00100, 10010, 01001} with equal probability. A received 5-bit word is
decoded to a 0 or a 1 only if it belongs to respective set, or otherwise it is considered as an
erasure. It can easily be seen that any pattern of 1 to 5 bit-flips decodes to an erasure with
probability at least 1/3 as desired. We have thus inflated the scheme by only a constant
factor. The bit complexity of the resulting UF scheme is then 5 · |Π| = O(N + T ).
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