
Refining the Adaptivity Notion in the Huge Object
Model
Tomer Adar #

Technion – Israel Institute of Technology, Haifa, Israel

Eldar Fischer #

Technion – Israel Institute of Technology, Haifa, Israel

Abstract
The Huge Object model for distribution testing, first defined by Goldreich and Ron in 2022, combines
the features of classical string testing and distribution testing. In this model we are given access to
independent samples from an unknown distribution P over the set of strings {0, 1}n, but are only
allowed to query a few bits from the samples. The distinction between adaptive and non-adaptive
algorithms, which occurs naturally in the realm of string testing (while being irrelevant for classical
distribution testing), plays a substantial role also in the Huge Object model.

In this work we show that the full picture in the Huge Object model is much richer than just
that of the adaptive vs. non-adaptive dichotomy. We define and investigate several models of
adaptivity that lie between the fully-adaptive and the completely non-adaptive extremes. These
models are naturally grounded by observing the querying process from each sample independently,
and considering the “algorithmic flow” between them. For example, if we allow no information at all
to cross over between samples (up to the final decision), then we obtain the locally bounded adaptive
model, arguably the “least adaptive” one apart from being completely non-adaptive. A slightly
stronger model allows only a “one-way” information flow. Even stronger (but still far from being
fully adaptive) models follow by taking inspiration from the setting of streaming algorithms. To
show that we indeed have a hierarchy, we prove a chain of exponential separations encompassing
most of the models that we define.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Huge-Object model, Property Testing

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.45

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2306.16129

Funding Eldar Fischer : Research supported by an Israel Science Foundation grant number 879/22.

1 Introduction

Property testing is the study of sublinear, query-based probabilistic decision-making al-
gorithms. That is, algorithms that return accept or reject after reading only a small
portion of their input. The study of (classical) property testing, starting with [6], [14]
and [15], has seen an extensive body of work. See for example [10]. Usually, a property-
testing algorithm with threshold parameter ε is required to accept an input that satisfies the
property with high probability, and reject an input whose distance from any satisfying one is
more than ε, with high probability as well. For string properties, which were the first to be
studied (along with functions, matrices, etc. that can also be represented as strings), the
distance measure is usually the normalized Hamming distance.

Distribution testing is a newer model, first defined implicitly in [11] (a version of which
has already appeared in 2000 as a technical report). In [4] and [5] it was explicitly defined
and researched. The algorithms in this model are much weaker, where instead of queries, the

© Tomer Adar and Eldar Fischer;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 45; pp. 45:1–45:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomer-adar@campus.technion.ac.il
https://orcid.org/0009-0004-2371-1339
mailto:eldar@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.45
https://arxiv.org/abs/2306.16129
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Refining the Adaptivity Notion in the Huge Object Model

decision to accept or reject must be made based only on a sequence of independent samples
drawn from an unknown distribution. In such a setting the distance metric is usually the
variation distance. For a more comprehensive survey, see [7].

The study of a combination of string and distribution testing was initiated in [12]. Here
the samples in themselves are considered to be very large objects, and hence after obtaining
a sample (usually modeled as a string of size n), queries must be made to obtain some
information about its contents. This requires an appropriate modification in the distance
notion. This model is appropriately called the Huge Object model.

Contrast the above to the original “small object” distribution testing model, where it
is assumed that every sample is immediately available to the algorithm in its entirety. In
particular, in the original model, the algorithm does not have any choice of queries, as it
just receives a sequence of independent samples from the distribution to be tested. Hence
one might even call it a “formula” rather than an “algorithm”. Grossly speaking, the only
decision made is whether to accept or reject the provided sequence of sampled objects.

On the other hand, in the string testing model, an algorithm is provided with a (de-
terministic) input string, and may make query decisions based both on internal random
coins and on answers to previous queries. An algorithm which makes use of the option of
considering answers to previous queries when choosing the next query is called adaptive,
while an algorithm that queries based only on coin tosses is called non-adaptive (the final
decision on whether to accept or reject the input must, of course, depend on the actual
answers).

Algorithms for the Huge Object model, due to their reliance on individual queries to the
provided samples, can be adaptive or non-adaptive. This relationship with respect to the
Huge Object model was first explored in [8].

However, as we shall demonstrate below, the complete picture here is richer than the
standard adaptive/non-adaptive dichotomy used in classical string testing. As it turns out,
several categories of adaptivity can be defined and investigated based on the consideration of
the shared information between the different samples that are queried.

1.1 Adaptivity notions in the Huge Object model
For our purpose, unless we state otherwise, we assume that the sequence of samples is taken
in advance (but is not directly disclosed to the algorithm), and is presented as a matrix from
which the algorithm makes its queries. For a sequence of s samples from a distribution whose
base set is {0, 1}n, this would be a binary s× n matrix.

We say that an algorithm is non-adaptive if it chooses its entire set of queries before
making them, which means that it cannot choose later queries based on the answers to earlier
ones. This is identical to the definition of a non-adaptive algorithm for string properties.

A fully adaptive algorithm is allowed to choose every query based on answers to all queries
made before it. This is quite similar to the definition of an adaptive algorithm for string
properties, but restricting ourselves to this dichotomy does not give the full picture. We
refine the notion of adaptivity by considering more subtle restrictions on the way that the
algorithms plan their queries, leading to query models that are not as expressive as those
of fully adaptive algorithms, but are still more expressive than those of non-adaptive ones.
In this introduction we only introduce the rationale of every model; the formal definitions
appear in the preliminaries section.

One interesting restriction, which is surprisingly difficult to analyze, is “being adaptive
for every individual sample, without sharing adaptivity between different samples” (the
results of random coin tosses are still allowed to be shared). We say that an algorithm is

T. Adar and E. Fischer 45:3

locally-bounded if it obeys this restriction. This model captures the concept of distributed
execution, in a way that every node has a limited scope of a single sample, and only when
all nodes are done, their individual outcomes are combined to facilitate a decision.

A more natural restriction is “being able to query only the most recent sample”. We say
that an algorithm is forward-only if it cannot query a sample after querying a later one. This
can be viewed (if we abandon the above-mentioned matrix representation) as the algorithm
being provided with oracle access to only one sample at a time, not being able to “go back in
time” once a new sample was taken. An example for the usage of the model is an anonymous
survey. As long as the survey session is alive, we can present new questions based on past
interactions and on the current one, but once the session ends, we are not able to recall the
same participant for further questioning.

A natural generalization of forward-only adaptiveness is having a bounded memory for
holding samples (rather than only having one accessible sample at a time). Once the memory
is full, the algorithm must drop one of these samples (making it inaccessible) in order to free
up space for a new sample. An additional motivation for this model is the concept of stream
processing, whose goal is computing using sublinear memory. Relevant to our work is [2],
where the input stream is determined by an unknown distribution, in contrast to the usual
streaming setting where the order of the stream is arbitrary. Within the notion of having
memory of a fixed size, we actually distinguish two models. In the weak model, when the
memory is full, the oldest sample is dropped. In the strong model, the algorithm decides
(possibly adaptively) which sample to drop.

We show that every two consecutive models in the above hierarchy have an exponential
separation, which means that there is a property that requires Ω(poly(n)) queries for an ε-test
in the first model (for some fixed ε), but is also ε-testable using O

(
poly

(
ε−1)

log n
)

queries
in the second model (for every ε > 0). Moreover, our upper bounds always have one-sided
error, while the lower bounds apply for both one-sided and two-sided error algorithms. The
exact relationship between the weak and the strong limited memory models remains open,
however.

We believe that investigating limited adaptiveness models can apply to other areas
where there are two “query scales”. That is, when investigating a model takes into account
collections of objects that are restricted both in the way that whole objects are obtained and
in the access model inside each obtained object. For example, one could think of a distributed
computing scenario where the communication between the nodes follows a LOCAL or a
CONGEST scheme (see [13]), but additionally each node holds a “large” input from which it
may only perform sub-linear time computation between the communication rounds.

1.2 Organization of the paper
We start with formal definitions of the models which are required to state our results, followed
by an overview of the results themselves and a description of the main ideas of their proofs.
This review includes the definitions of the properties showing our separation results, along
with a sketch of the lower bounds and the algorithms for the upper bounds. The proofs
themselves are deferred to the full version of this paper.

2 Preliminaries

The following are the core definitions and lemmas used throughout this paper, including the
model definitions used in the overview in Section 3. Here, all distributions are defined over
finite sets.

APPROX/RANDOM 2024

45:4 Refining the Adaptivity Notion in the Huge Object Model

▶ Definition 1 (Common notations). For a set A, the power set of A is denoted by P(A).
For two sets A and B, the set of all functions f : A→ B is denoted by BA. For a finite set
A, the set of all permutations over A is denoted by π(A).

▶ Definition 2 (Set of distributions). Let Ω be a finite set. The set of all distributions that
are defined over Ω is denoted by D(Ω).

While parts of this section are generalizable to distributions over non-finite sets Ω with
compact topologies, we restrict ourselves to distributions over finite sets, which suffice for
our application.

▶ Definition 3 (Property). A property P over a finite alphabet Σ is defined as a sequence of
compact sets Pn ⊆ D(Σn). Here compactness refers to the one defined with respect to the
natural topology inherited from R|Σ|n .

All properties are defined over Σ = {0, 1} unless we state otherwise.

2.1 Distances
The following are the distance measures that we use. In the sequel, we will omit the subscript
(e.g. use “d(x, y)” instead of “dH(x, y)”) whenever the measure that we use is clear from the
context.

▶ Definition 4 (Normalized Hamming distance). For two strings s1, s2 ∈ Σn, we use dH(s1, s2)
to denote their normalized Hamming distance, 1

n |{1 ≤ i ≤ n|s1[i] ̸= s2[i]}|.

For all our distance measures we also use the standard extension to distances between sets,
using the corresponding infimum (which in all our relevant cases will be a minimum). For
example, For a string s ∈ {0, 1}n and a set A ⊆ {0, 1}n, we define dH(s, A) = min

s′∈A
dH(s, s′).

▶ Definition 5 (Variation distance). For two distributions P and Q over a common set Ω,
we use dvar(P, Q) to denote their variation distance, maxE⊆Ω |PrP [E]− PrQ[E]|. Since Ω is
finite there is an equivalent definition of dvar(P, Q) = 1

2
∑

s∈Ω |P (s)−Q(s)|.

▶ Definition 6 (Transfer distribution). For two distributions P over Ω1 and Q over Ω2, we
say that a distribution T over Ω1×Ω2 is a transfer distribution between P and Q if for every
x0 ∈ Ω1, Pr(x,y)∼T [x = x0] = PrP [x0], and for every y0 ∈ Ω2, Pr(x,y)∼T [y = y0] = PrQ[y0].
We use T (P, Q) to denote the set of all transfer distributions between P and Q.

We note that for finite Ω1 and Ω2 the set T (P, Q) is compact as a subset of D(Ω1 × Ω2).

▶ Definition 7 (Earth Mover’s Distance). For two distributions P and Q over a com-
mon set Ω with a metric dΩ, we use dEMD(P, Q) to denote their earth mover’s distance,
defined by the infimum of the “average distance” demonstrated by a transfer distribution,
infT ∈T (P,Q) E(x,y)∼T [dΩ(x, y)].

In the sequel, the above “inf” can and will be replaced by “min”, by the compactness of
T (P, Q) for finite Ω. Most papers (including the original [12]) use an equivalent definition
that is based on linear programming, whose solution is the optimal transfer distribution.

In our theorems, Ω is always {0, 1}n for some n and the metric is the Hamming distance.
Sometimes, as an intermediate phase, we may use a different Ω (usually {1, . . . , k}n for some
k), and then show a reduction back to the binary case.

T. Adar and E. Fischer 45:5

▶ Definition 8 (Distance from a property). The distance of a distribution P from a property
P = ⟨Pn⟩ is loosely noted as d(P,P) and is defined to be dEMD(P,Pn) = infQ∈Pn

dEMD(P, Q).

It is very easy to show that for any two distributions P, Q ∈ D(Σn) we have dEMD(P, Q) ≤
dvar(P, Q). This means that the topology induced by the variation distance is richer than
that induced by the earth mover’s distance (actually for finite sets these two topologies are
identical). In particular it means that all considered properties form compact sets with
respect to the earth mover’s distance. We obtain the following lemma.

▶ Lemma 9. For a property P of distributions over strings, and any distribution P ∈ D(Σn),
there is a distribution realizing the distance of P from P, i.e. a distribution Q ∈ Pn for which
d(P, Q) = d(P,Pn). In particular, the infimum in Definition 8 is a minimum.

2.2 The testing model
This model is defined in [12]. We use an equivalent definition which will be the “baseline”
for our restricted adaptivity variants.

The input is a distribution P over Σn (our final theorems will be for Σ = {0, 1}, but some
intermediate arguments require other finite Σ). An algorithm A gets random oracle access to
s samples that are independently drawn from P . Then it is allowed to query individual bits
of the samples. The output of the algorithm is either accept or reject. For convenience
we identify the samples with an s× n matrix, so for example the query “(i, j)” returns the
jth bit of the ith sample.

The input size n and the number of samples s are hard-coded in the algorithm. As
with boolean circuits, an algorithm for an arbitrarily sized input is defined as a sequence of
algorithms, one for each n.

For a given algorithm we define another measure of complexity, which is the total number
of queries that the algorithm makes. Without loss of generality, we always assume that every
sample is queried at least once (implying that q ≥ s).

For a property P and ε > 0, we say that an algorithm A is an ε-test if:
For every P ∈ P, A accepts the input P with probability higher than 2

3 .
For every P that is ε-far from P, A accepts the input P with probability less than 1

3 .
We say that A is an ε-test with one sided error if:

For every P ∈ P, A accepts the input P with probability 1.
For every P that is ε-far from P, A accepts the input P with probability less than 1

2 .

The choice of the probability bounds in the above definition are somewhat arbitrary. For
the one sided error definition 1

2 is more convenient than 1
3 . We also note that for non-ε-far

inputs that are not in P, any answer by A is considered to be correct.

2.3 Restricted models
As observed by Yao in [16], every probabilistic algorithm can be seen as a distribution over
the set of allowable deterministic algorithms. This simplifies the algorithmic analysis, since
we only have to consider deterministic algorithms (a distinction between public and private
coins can break this picture, but this will not be the case here). We will use Yao’s observation
to define every probabilistic algorithmic model by defining its respective set of allowable
deterministic algorithms. The following definitions formalize the description of the models
introduced in Section 1.

APPROX/RANDOM 2024

45:6 Refining the Adaptivity Notion in the Huge Object Model

▶ Definition 10 (Fully adaptive algorithm). Every deterministic algorithm can be described as
a full decision tree T and a set A of accepted leaves. Without loss of generality we assume
that all leaves have the exactly the same depth (we use dummy queries if “padding” is needed).
Every internal node of T consists of a query (i, j) ∈ {1, . . . , s} × {1, . . . , n} (the jth bit of
the ith sample), and every edge corresponds to an outcome element (in Σ). The number of
queries q is defined as the height of the tree. Every leaf can be described by the string of
length q detailing the answers given to the q queries, corresponding to its root-to-leaf path.
Thus we can also identify A with a subset of Σq.

Now that we have defined the most general form of a deterministic algorithm in the Huge
Object model, we formally define our models for varying degrees of adaptivity.

▶ Definition 11 (Non-adaptive algorithm). We say that an algorithm is non-adaptive if it
chooses its queries in advance, rather than deciding each query location based on the answers
to its previous ones. Formally, every deterministic non-adaptive algorithm is described as a
pair (Q, A) such that Q ⊆ {1, . . . , s} × {1, . . . , n} (for some sample complexity s) is the set
of queries, and A ⊆ ΣQ is the set of accepted answer functions. The query complexity is
defined as q = |Q|.

▶ Definition 12 (Locally-bounded adaptive algorithm). We call an algorithm locally-bounded
if it does not choose its queries to a sample based on answers to queries in other samples.
Formally, every s-sample deterministic locally-bounded algorithm is a tuple (T1, . . . , Ts; A),
where every Ti is a decision tree of height qi (where q =

∑s
i=1 qi is the total number of

queries) that is only allowed to query the ith sample, and A ⊆ Σq represents a set of accepted
superleaves, where a superleaf is defined as the concatenation of the q1, . . . , qs symbol long
sequences that represent the leaves of trees T1, . . . , Ts respectively.

▶ Definition 13 (Forward-only adaptive algorithm). We call an algorithm forward-only if
it cannot query a sample after querying a later one. Formally, a forward-only algorithm
for s samples of n-length strings is defined as a pair (T, A), where T is a decision tree
over {1, . . . , s} × {1, . . . , n} and A ⊆ Σq (as with general adaptive algorithms), additionally
satisfying that for every internal node of T that is not the root, if its query is (i, j) and its
parent query is (i′, j′), then i′ ≤ i.

▶ Definition 14 (Weak memory-bounded adaptive algorithm). We say that an algorithm is weak
m-memory bounded if it can only query a sliding window of the m most recent samples at a
time. Formally, a weak m-memory-bounded adaptive algorithm using s samples of n-length
strings is defined as a pair (T, A), where T is a decision tree over {1, . . . , s}× {1, . . . , n} and
A ⊆ Σq (as with general adaptive algorithms), additionally satisfying that for every internal
node of T that is not the root, if its query is (i, j), then for every ancestor whose query is
(i′, j′), it holds that i′ −m < i.

▶ Definition 15 (Strong memory-bounded adaptive algorithm). A strong memory-bounded
adaptive algorithm for s samples of n-length strings is defined as a triplet (T, A, M) where
T is a decision tree, A ⊆ Σq is the set of accepted answer vectors, and M : nodes(T) →
P({1, . . . , s}) is the “memory state” at every node. The explicit rules of M are:

For every internal node u ∈ T , |M(u)| ≤ k (there are at most k samples in memory).
For every internal node u ∈ T , if i ∈M(u), and if v is a child of u for which i /∈M(v),
then for every descendant w of v, i /∈M(w) (a “forgotten” sample cannot be “recalled”).
For every internal node u ∈ T whose query is (i, j), i ∈M(u) (the ith sample must be in
memory in order to query it).

T. Adar and E. Fischer 45:7

Without loss of generality, because the samples are independent, we can assume that:
M(root) = {1, . . . , k} (the algorithm has initial access to the first k samples).
For every internal node u ∈ T and the set V of all its ancestors, it holds that max(M(u)) ≤
1 + max

v∈V
(max M(v)) (new samples are accessed “in order”).

3 Overview of results and methods

The following is a semi-formal overview of our work, which is described in extensive details
in the full version of the paper. Most of our results are exponential separations between
models (that is, O(log n) vs nΩ(1) bounds).

All separations are with an exponential gap, and are achieved by properties that have an
efficient 1-sided error test in one model, but do not even have an efficient 2-sided test in the
other model.

Figure 1 provides a visualization of our results. More details about the difference between
the weak k-memory and the strong k-memory model are provided below.

Non

adaptive

Locally

bounded

Forward

only

(𝑘=1)

𝑘

Weak

memory

𝑘

Strong

memory

Weak

𝑘+1

memory

Fully

adaptive

Strong

𝑘+1

memory

strictly contains (⊊) contains (⊆) does not contain (⊈)

Figure 1 Graphical summary of our results.

3.1 Non-adaptive algorithms
To showcase what can be done with non-adaptive algorithms, we analyze the property of a
distribution having support size at most m, and the even more basic property of a distribution
being deteministic, that is, having support size 1.

We show that the determinism property (the property that the distribution draws a
specific element with probability 1) can be tested non-adaptively using O(ε−1) queries,
consisting of O(ε−1) samples (as in the classic model) and O(1) queries per sample.

▶ Observation 16. The property of drawing a fixed string has a one-sided error non-adaptive
ε-test that uses O(ε−1) queries.

We also show a non-adaptive m-support test.

▶ Theorem 17. The property of being supported on a set of at most m elements has a
one-sided error non-adaptive ε-test that uses O(ε−2m log m) queries.

Algorithm 1 demonstrates this upper bound.

APPROX/RANDOM 2024

45:8 Refining the Adaptivity Notion in the Huge Object Model

Algorithm 1 One sided ε-test for m-bounded support, non adaptive, O(ε−2m log m) queries.

take s = 1 +
⌈
8ε−1m

⌉
samples.

let t =
⌈
4ε−1(ln m + 2)

⌉
choose j1, . . . , jt ∈ [n] uniformly and independently at random.
let J = {j1, . . . , jt}
for i from 1 to s do

query sample i at j for every j ∈ J , giving substring yi of length |J |.
if

∣∣{y1, . . . , ys
}∣∣ > m then

return reject
return accept

As described in detail in the full version of the paper, in which we prove the correctness
of Algorithm 1, our ε-test for the m-support property needs more than a fixed number
of queries per sample. Though not necessarily optimal, this algorithm demonstrates the
core difference between the Huge Object model and the classic one: the limited ability to
distinguish different samples. This limitation holds for adaptive algorithms as well, even
though the adaptivity can reduce the number of queries per sample for some properties. A
concurrent work [1] shows a lower bound of Ω(ε−1 log ε−1) queries for non-adaptive support
testing even for m = 2, showing that this limitation is unavoidable.

Locally bounded adaptive algorithms
The locally-bounded adaptive model (Definition 12) allows the algorithm to pick its queries
based on answers to previous queries for every fixed sample, but lacks the ability to pass
information between samples. The ability of being adaptive allows the algorithm more ways
to query its samples, but it still lacks the ability to test relations between the samples.

Analysis method

To analyze the locally-bounded model, we define an intermediate model of string testing
which we call the split-adaptive model.

▶ Definition 18 (Split adaptive algorithm). For a fixed k, a k-split adaptive deterministic
algorithm for n-long strings (where n is divisible by k) over some alphabet Σ is a sequence of
k decision trees T1, . . . , Tk, where the tree Ti can only query at indexes between (i− 1)k + 1
and ik, and a set of accepted answer sequences. The query complexity of the algorithm is
defined as the sum of heights of its trees.

In this model, we test properties of k-tuples of strings, where the queries are made
separately for every entry of the tuple (that is, every entry is processed using an adaptive
algorithm that is oblivious of the other entries). To obtain a reduction, we consider every
s-sample locally-bounded algorithm over an input distribution P as a split-adaptive algorithm
whose input is drawn from P s (that is, an s-tuple whose entries are independently drawn
from P).

Exponential separation from the non-adaptive model

Naturally, there is an exponential separation between the locally-bounded model and the non-
adaptive model of the Huge Object model. The property CPal (defined below) demonstrates
this separation.

T. Adar and E. Fischer 45:9

▶ Definition 19 (string property cpal, see [8], [3]). For any fixed n, the property cpal is
defined over {0, 1, 2, 3}n as the set of n-long strings that are concatenations of a palindrome
over {0, 1} and a palindrome over {2, 3} (in this order).

The following lemma is well-known (the adaptive bound, using binary search, is described
in [8]).

▶ Lemma 20. Property cpal does not have a non-adaptive 1
5 -test using o(

√
n) queries, while

having an adaptive ε-test using O(log(n) + 1/ε) many queries.

In [8] this was made into a distribution property by using “distributions” that are
deterministic.

▶ Definition 21 (Distribution property CPal, see [8]). For a fixed, even n, the property
CPal is defined as the set of distributions over {0, 1}n that are deterministic (have support
size 1), whose support is an element that belongs to cpal, with respect to the encoding
(0, 1, 2, 3) 7→ (00, 01, 10, 11).

▶ Lemma 22. CPal has a locally-bounded ε-test that uses O(poly(ε−1) log n) queries for
every ε > 0, but there exists some ε0 > 0 for which any non-adaptive ε0-test requires
Ω(poly(n)) queries.

This is an almost-direct corollary of a result from [12] regarding converting string testing
problems to the Huge Object model. Essentially, the Huge Object model “contains” the
string testing one, and the conversion produces locally adaptive algorithms out of their
respective adaptive string algorithms.

Forward only adaptive algorithms
In the forward-only model (Definition 13), the algorithm virtually gets a stream of samples,
and is allowed to query only the current sample without any restriction (but further queries
to past samples are not allowed), based on answers to all past queries. In contrast to the
locally bounded model, forward algorithms can test a richer collection of binary relations
between samples, due to the ability to query one sample and then use the gathered data to
choose the queries for the next one.

Exponential separation from the locally-bounded model

We use the ability of forward-only algorithms to consider a richer collection of relations
between samples, as compared to locally-bounded algorithms, to show an exponential
separation between these models. The property Inv∗ (defined below) demonstrates this
separation.

In [9] it was shown that ε-testing two functions over {1, . . . , n} for being inverses of each
other is possible with O(ε−1) many queries, while testing a single function for having an
inverse is harder and requires a polynomial number of queries. Formally, we cite the function
property inv:

▶ Definition 23 (Function property inv). For a fixed n, the property inv is defined over
[n][2n] as the set of ordered pairs of functions f, g : [n]→ [n] such that either f(i) = g(i) for
every 1 ≤ i ≤ n or g(f(i)) = i for every 1 ≤ i ≤ n.

APPROX/RANDOM 2024

45:10 Refining the Adaptivity Notion in the Huge Object Model

Note that we modified the definition of the property slightly from the original, by allowing
also the case f = g. This technical change makes it possible to construct a test using
forward-only adaptivity that is also with one-sided error.

Here we separate the two functions by setting them in a probability space with support
size 2. If we allow forward-only adaptivity, then the original inverse test can be implemented,
as it works by verifying that g(f(i)) = i for sufficiently many is. We can call the first sample
“f”, and after writing down our f(i1), . . . , f(iq), we “wait” for a sample of g and then verify
that g(f(ij)) = ij for i1, . . . , iq. Formally, we define the property Inv:

▶ Definition 24 (Distribution property Inv). For a fixed n, the property Inv is defined as
the set of distributions over [n][n] that are supported by a set of the form {f, g} such that
(f, g) ∈ inv. Note that in particular all deterministic distributions satisfy Inv, since we allow
f = g to occur.

To make the above work for binary strings (rather than an alphabet of size n) we use an
appropriate large distance encoding of the values.

▶ Definition 25 (Distribution property Inv∗). For a fixed n, let Cn : [n]→ {0, 1}2⌈log2⌉n be
an error-correction code whose distance is at least 1

3 . We define Inv∗ as the property of
distributions over {0, 1}2⌈log2 n⌉n that can be constructed by the following procedure: beginning
with some P ∈ Inv, we let P ∗ denote the distribution that draws x ∈ [n]n according to P ,
and then outputs the concatenation Cn(x1) · · ·Cn(xn).

The lower bound against locally-bounded adaptivity requires an intricate analysis of
the model. Essentially we use the split-adaptive string-testing model to show that when
querying each of f and g “in solitude”, being adaptive over a function that is drawn at
random does not provide an advantage over a non-adaptive algorithm. In particular, the
values of a uniformly drawn permutation are “too random” to allow the implementation of a
meaningful query strategy without getting some information from the inverse function, even
if we allow to “coordinate in advance” the query strategy.

▶ Theorem 26. Property Inv∗ has a forward-only ε-test that uses O(ε−2 log n) queries for
every ε > 0, but any locally-bounded adaptive 1

5 -test requires Ω(
√

n) queries.

The upper bound for forward-only testing of Inv is demonstrated in Algorithm 2. Applying
Algorithm 2 to Inv∗ is pretty straightforward.

Algorithm 2 One sided ε-test for Inv, forward only, O(ε−2) queries.

Treat samples as n-long strings over [n].
let s = 1 +

⌈
3ε−2⌉

.
choose j2, . . . , js ∈ [n], uniformly at random and independently.
choose k2, . . . , ks ∈ [n], uniformly at random and independently.
query sample 1 at j2, . . . , js, giving f(j2), . . . , f(js).
query sample 1 at k2, . . . , ks, giving f (k2) , . . . , f (ks).
for i from 2 to s do

query sample i at ji, f(ki), giving g(ji), g(f(ki)).
if f(ji) ̸= g(ji) and g(f(ki)) ̸= ki then

return reject
return accept

T. Adar and E. Fischer 45:11

The query foresight method

Some adaptive algorithms do not obey the forward only restriction but can be modified to
do so, using a method we call query foresight. Intuitively, an adaptive algorithm that has
some knowledge about the structure of the queries it may make in the future can make them
speculatively at present (that is, we make all potential queries to satisfy the forward-only
constraint, even though we believe that some of them will later be considered as irrelevant).
The more knowledge the algorithm has about the potential future queries, the less queries
are wasted on the current sample.

As an example to the query foresight method, we analyze and convert a fully adaptive
algorithm for the m-support property (Algorithm 3)

Algorithm 3 One sided ε-test for m-bounded support, strong m + 1-memory, O(ε−1m2) queries.

Memory storage for samples: z1, . . . , zm; x, all initialized to NULL.
Extra cell: We have another syntactic “write-only” memory storage zm+1 which we never
query.
take s = 1 +

⌈
2ε−1m

⌉
samples.

set c, t← 0.
set j1, . . . , jm ← NULL
for k from 1 to s do

Invariant 1 c = m or zc+1 = NULL.
Invariant 2 for 1 ≤ i ≤ c, zi

J are distinct where J = {j1, . . . , jt}.
store x← sample k.
query x at j1, . . . , jt, giving substring yk.
for i from 1 to c do

query sample zi at j1, . . . , jt giving substring yi. ▷ the yis are distinct
choose j ∈ [n] uniformly at random.
query x at j, giving xj .
if ∃i : yi = yk then ▷ if exists it is unique

query sample zi at j giving zi
j .

if xj ̸= zi
j then

store zc+1 ← x.
set jt+1 ← j. ▷ keep Invariant 2
set t← t + 1 and c← c + 1. ▷ keep Invariant 1

else
store zc+1 ← x. ▷ Invariant 2 still holds
set c← c + 1. ▷ keep Invariant 1

if c > m then
return reject

return accept

▶ Theorem 27. Algorithm 3 is a one-sided ε-test for being supported by at most m elements.

We observe that the general structure of Algorithm 3’s queries is highly predictable,
and provide a modified version thereof (Algorithm 4) which is also forward-only, without
increasing its worst-case query complexity.

The idea is straightforward: we simulate the run of an adaptive algorithm. Every time
that the simulation is about to query a new sample, we make additional speculative queries
in the current sample, before dropping it as per the requirement of a forward-only algorithm.

APPROX/RANDOM 2024

45:12 Refining the Adaptivity Notion in the Huge Object Model

If the simulated algorithm makes a query to an old sample, we feed it with the answer of
the corresponding speculative query. If such a speculative query does not exists, we either
accept (for one-sided algorithms) or behave arbitrarily (for two-sided algorithms). If the
prediction is conservative, that is, the speculated queries are ensured to cover all queries to
past samples, then the construction guarantees the exact acceptance probability for every
individual input. This is not guaranteed when the prediction is not conservative, and in this
case we need to analyze the effect of bad speculations.

Algorithm 4 One sided ε-test for m-bounded support, forward only, O(ε−1m2) queries.

take s = 1 +
⌈
2ε−1m

⌉
samples.

choose j1, . . . , js ∈ [n] uniformly and independently at random.
let M be an uninitialized m× n sparse matrix {0, 1}. ▷ storage for speculative queries
let A be an empty list over [n].
c← 0.
for k from 1 to s do

Invariant Mi,j is initialized for all 1 ≤ i ≤ c and j ∈ {j1, . . . , js}.
for all j in A do ▷ simulation of yk

query sample k at j, giving xk
j .

set found ← 0.
for i from 1 to c do

if
∧

j∈A

(
Mi,j = xk

j

)
then ▷ simulation of the yis

set found ← 1.
j ← jk.
query sample k at j, giving xk

j .
if Mi,j ̸= xk

j then
c← c + 1.
add j to A.
query sample k at j1, . . . , js, giving Mc,j1 , . . . , Mc,js

. ▷ speculative queries
▷ keep the invariant

if found = 0 then
c← c + 1.
query sample k at j1, . . . , js, giving Mc,j1 , . . . , Mc,js . ▷ speculative queries

▷ keep the invariant
if c > m then

return reject
return accept

k-bounded memory algorithms
As per Definitions 14 and 15 we have two models of bounded memory, which we call weak
and strong respectively. Intuitively, in both models, the algorithm gets a stream of samples,
and it has an unrestricted access to k of these samples. When the algorithm needs an access
to a new sample, it must give up the ability to access one of the past samples. In the weak
model, the algorithm does not have a choice and it must drop the earliest sample. In other
words, the weak model has an unrestricted access to a sliding window of the k most recent
samples. In the strong model, the algorithm is allowed to choose the sample to drop.

T. Adar and E. Fischer 45:13

For k = 1, the weak and strong models are both equal to each other and to the forward-only
model. Intuitively, as k increases, the algorithm is able to consider more complicated relations
between samples, especially k-ary relations, which are more challenging for k − 1-memory
algorithms.

Exponential separation from the forward-only model

We use the ability to fully consider binary relations using 2-memory algorithms, compared
to the limited ability to do so using forward-only algorithms, to establish an exponential
separation between them.

We define a property Sym that catches the idea of symmetric functions. For some
symmetric function f : [m]× [m]→ {0, 1}, a distribution in the property draws a random key
a ∈ [m] and returns a vector that contains both a (using a high distance code of length m)
and all values of f at points (a, b) for b ∈ [m]. For technical reasons, we use fixed-distance
systematic codes to encode a as a part of the row.

▶ Lemma 28 (Systematic code). There exists a set C of error correction codes, such that for
every n ≥ m ≥ 10, it has a code Cm,n : [m]→ {0, 1}n with the following properties: (1) Its
minimal codeword distance is at least 1

3 and (2) The projection of Cm,n on its first ⌈log2 m⌉
is one-to-one, that is, Cm,n can be decoded by reading the first ⌈log2 m⌉ bits.

From now on, every use of systematic codes refers to the set C that is guaranteed by Lemma
28, usually denoted just by C (rather than the explicit notion Cm,n).

▶ Definition 29 (Matrix property sym). For a fixed n, the property sym of functions with
two variables f : [n]2 → {0, 1} is defined as the property of being symmetric, i.e. satisfying
f(i, j) = f(j, i) for all i, j ∈ [n].

The corresponding distribution property is inspired by considering distributions over the
rows of a symmetric matrix, along with properly encoded identifiers.

▶ Definition 30 (Distribution property Sym). For any m and the systematic code C : [m]→
{0, 1}m from Lemma 28, the property Sym is defined as the set of distributions for which

Pr
x∼P

[∃a ∈ [m] : x1,...,m = C(a)] = 1

(all vectors start with an encoding of a “row identifier”), and for every a, b ∈ [m],

Pr
x,y∼P

[x1,...,m = C(a) ∧ y1,...,m = C(b) ∧ xm+b ̸= ym+a] = 0

(if two “identifiers” a and b appear with positive probability, then the respective “f(a, b)” and
“f(b, a)” are identical).

▶ Theorem 31. There exists a one-sided weak 2-memory ε-test for Sym that makes
O(ε−2 log n) queries, but every forward-only 1

14 -test for Sym must use at least Ω(
√

m)
queries (for sufficiently large m).

The lower bound follows from a forward-only algorithm being given access to every sample
without any knowledge about the keys of “future” samples. If the algorithm has only one
accessible sample at a time, it can only “guess” the other key, but the probability to actually
draw a later sample with that key is too low, unless the algorithm collects queries according
to about

√
m guessed keys.

APPROX/RANDOM 2024

45:14 Refining the Adaptivity Notion in the Huge Object Model

For the upper-bound, Algorithm 5 performs a sequence of independent iterations using
two samples at a time. In every iteration, it gathers their “keys” a1 and a2, verifies the
correctness of their codewords, and then checks whether f(a1, a2) = f(a2, a1). There are
some cases that should be carefully analyzed, for example the case where the distribution
does not correspond to a single f , or the case where some values for “a” appear very rarely
or not at all, but these do not defeat the above algorithm (they somewhat affect its number
of needed iterations).

Algorithm 5 One-sided ε-test for Sym, weak 2-memory, O(ε−2 log n) queries.

let m← n/2.
for

⌈
8ε−2⌉

times do
take two samples x, y.
query x1, . . . , x⌈log2 m⌉, giving κ(x) as a.
query y1, . . . , y⌈log2 m⌉, giving κ(y) as b.
choose i ∈ [m], uniformly at random.
query x, y at i, giving xi, yi.
query ϕx(b), ϕy(a).
if xi ̸= (C(a))i or yi ̸= (C(b))i then

return reject ▷ rejection by key invalidity
if ϕx(b) ̸= ϕy(a) then

return reject ▷ rejection by asymmetry
return accept

Larger memory generalization

We generalize the above theorem to state an exponential separation between the k-weak
model (Definition 14) and the k− 1-strong model (Definition 15). We define a property Park

based on parity for every k ≥ 2 for which:

▶ Theorem 32. For every k ≥ 2, there exists a one-sided weak k-memory ε-test for Park

that makes O(kε−k log n) queries, but every forward-only 1
6k -test for Park must use at least

Ω(
√

m) (for sufficiently large n), which is Ω(n1/2k) queries since n ≈
(

m
k−1

)
.

To motivate the definition of Park, suppose that f :
([m]

k

)
→ {0, 1}k is a function such

that f(A) has zero parity for every subset A ⊆ [m] of size k. We “encode” such a function as
a distribution, making sure to “separate” the k bits of f(A) to k different samples. A typical
sample in the distribution would have an encoding (using a high distance code) of a random
key a ∈ [m], followed by some information on f(A) for every A that contains a. Specifically,
for each such A we supply the ith bit of f(A), where i is the “rank” of a in A (going by the
natural order over [m]).

▶ Definition 33 (Preliminaries for distribution property Park). Let k ≥ 2 be the degree of
freedom in the represented function. Let m be the (sufficiently large) size of the input set
and n =

(
m−1
k−1

)
. Also, consider a systematic code C : [m]→ {0, 1}n.

For a string x ∈ {0, 1}2n, let κ(x) = C−1(x1,...,n) be the key of x (if the inverse function
is not defined we can use an arbitrary key instead). Since we have an implicit mapping
between k − 1-subsets of {1, . . . , m} \ {κ(a)} and the indexes {1, . . . , n}, for every A ⊆
{1, . . . , m} \ {κ(a)} of size k − 1 we can define ΦA(x) as the corresponding bit in xn+1,...,2n.

▶ Definition 34 (Distribution property Park). For k, m, n, C defined above, the property
Park is defined as the set of distributions over {0, 1}2n for which

Pr
x∼P

[∃a ∈ [m] : x1,...,n = C(a)] = 1

T. Adar and E. Fischer 45:15

(all vectors start with an encoding of a “row identifier”), and for every a1 < . . . < ak ∈ [m],

Pr
x1,...,xk∼P

[
k∧

i=1
(xi)1,...,n = C(ai) ∧

k⊕
i=1

Φ{a1,...,ak}\{ai}(xi) = 1
]

= 0

(if all “identifiers” a1, . . . , ak appear with positive probability, then the respective concatenation
of values which forms “f({a1, . . . , ak})” has zero parity).

For the lower bound, if the algorithm has less than k accessible samples at a time, as
with the analysis of the Sym property under forward-only testing, the algorithm here can
only “guess” the missing key, and the probability to make the right guess is too low.

We go further, and show that even if the k − 1-memory algorithm is allowed to choose
which of the samples are retained in every stage (strong k − 1-memory) rather than keeping
a sliding window of recent history, the exponential separation still holds. The separation is
achieved for an εk-test of the property where εk = Θ(1/k).

For the upper bound, Algorithm 6 makes a sequence of independent iterations of k samples
at a time. In every iteration it gathers the keys a1, . . . , ak and verifies their codewords. If
they are all different, the algorithm constructs the value of f({a1, . . . , ak}) and checks its
parity.

Algorithm 6 One-sided ε-test for Park, weak k-memory, O(ε−kk log n) queries.

let m be such that
(

m−1
k−1

)
= n.

for
⌈
4ε−kk

⌉
times do

take k new samples x1, . . . , xk.
for t from 1 to k do

query xt
1, . . . , xt

⌈log2 m⌉, giving κ(xt) as at.
choose i ∈ [m], uniformly at random.
query xt at i, giving xt

i.
if xt

i ̸= (C(at))i then
return reject ▷ reject by key invalidity

if
∣∣{a1, . . . , ak

}∣∣ = k then
for t from 1 to k do

query Φxt({a1, . . . , ak} \ {at}), giving st.
if

⊕k
i=1 st = 1 then

return reject ▷ reject by parity-invalidity
return accept

4 Remaining open problems

It is an open problem whether the weak k-memory model is indeed strictly weaker than the
strong k-memory model (for the same k). And if so, is the separation exponential? Also, we
do not know whether or not for every k there exists k∗ such that the k∗-weak model contains
the k-strong one.

We believe that there exist some ε0 > 0 and 0 < α < 1 such that for every sufficiently
large k, there is an exponential separation between the weak k-memory model and the strong
αk-memory model, with respect to an ε0-test, rather than the separation for εk = Θ(1/k)
that we show for k − 1 vs k memory.

APPROX/RANDOM 2024

45:16 Refining the Adaptivity Notion in the Huge Object Model

Another interesting open problem is whether the fully adaptive model has a simultaneous
exponential separation from all fixed k-memory models. That is, whether there exists a
property P and some ε0 > 0 such that ε0-testing of P would require Ω(poly(n)) queries in
every k-memory model (the polynomial degree possibly depending on k), but P is ε-testable
using O(log n) queries using a fully adaptive algorithm for every fixed ε > 0.

References
1 Tomer Adar, Eldar Fischer, and Amit Levi. Support testing in the huge object model. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2024, August 28-30, 2024, London, United Kingdom, volume 317. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024.

2 Maryam Aliakbarpour, Andrew McGregor, Jelani Nelson, and Erik Waingarten. Estimation
of entropy in constant space with improved sample complexity. In Proceedings of the 34th
Annual Conference on Advances in Neural Information Processing Systems (NeurIPS), 2022.

3 Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. Regular languages are
testable with a constant number of queries. SIAM Journal on Computing, 30(6):1842–1862,
2001.

4 Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick
White. Testing random variables for independence and identity. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, pages 442–451. IEEE, 2001.

5 Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D Smith, and Patrick White. Testing
that distributions are close. In Proceedings 41st Annual Symposium on Foundations of
Computer Science, pages 259–269. IEEE, 2000.

6 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 73–83, 1990.

7 Clément L. Canonne. A Survey on Distribution Testing: Your Data is Big. But is it Blue?
Number 9 in Graduate Surveys. Theory of Computing Library, 2020. doi:10.4086/toc.gs.
2020.009.

8 Sourav Chakraborty, Eldar Fischer, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen.
Testing of index-invariant properties in the huge object model. CoRR, abs/2207.12514, 2022.
doi:10.48550/arXiv.2207.12514.

9 Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate pcps. In Proceedings of
the thirty-first annual ACM symposium on Theory of computing, pages 41–50, 1999.

10 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
11 Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Studies

in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation, pages 68–75, 2011.

12 Oded Goldreich and Dana Ron. Testing distributions of huge objects. In Mark Braverman,
editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January
31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 78:1–78:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.78.

13 David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.
14 Ronitt Rubinfeld and Madhu Sudan. Self-testing polynomial functions efficiently and over

rational domains. In SODA, pages 23–32, 1992.
15 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications

to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.
16 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.

In Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pages
222–227, 1977.

https://doi.org/10.4086/toc.gs.2020.009
https://doi.org/10.4086/toc.gs.2020.009
https://doi.org/10.48550/arXiv.2207.12514
https://doi.org/10.4230/LIPIcs.ITCS.2022.78

	1 Introduction
	1.1 Adaptivity notions in the Huge Object model
	1.2 Organization of the paper

	2 Preliminaries
	2.1 Distances
	2.2 The testing model
	2.3 Restricted models

	3 Overview of results and methods
	3.1 Non-adaptive algorithms

	4 Remaining open problems

