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Abstract
The Huge Object model is a distribution testing model in which we are given access to independent
samples from an unknown distribution over the set of strings {0, 1}n, but are only allowed to query a
few bits from the samples. We investigate the problem of testing whether a distribution is supported
on m elements in this model. It turns out that the behavior of this property is surprisingly intricate,
especially when also considering the question of adaptivity.

We prove lower and upper bounds for both adaptive and non-adaptive algorithms in the one-sided
and two-sided error regime. Our bounds are tight when m is fixed to a constant (and the distance
parameter ϵ is the only variable). For the general case, our bounds are at most O(log m) apart. In
particular, our results show a surprising O(log ϵ−1) gap between the number of queries required for
non-adaptive testing as compared to adaptive testing. For one-sided error testing, we also show that
an O(log m) gap between the number of samples and the number of queries is necessary. Our results
utilize a wide variety of combinatorial and probabilistic methods.
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1 Introduction

Property testing [12, 7] is a framework concerned with analyzing global properties of an input
while reading only a small part thereof, in the form of queries. Over the past few decades
property testing has become an active field of study in theoretical computer science (see
e.g, [6]). The study of distribution property testing was first implicitly explored in [8], and
explicitly formulated in [3] and [4]. In the standard model of distribution testing, an algorithm
can access a sequence of independently sampled elements drawn from an unknown input
distribution µ, and it either accepts or rejects the input based on this sequence. An ε-testing
algorithm for a property of distributions is required to accept every input distribution that
satisfies the property with high probability (e.g., 2

3 ), and to reject with high probability (e.g.,
2
3 ) every input distribution whose variation distance from every distribution satisfying the
property is greater than ε.

The standard model of distribution testing assumes that the elements drawn from
the distribution are fully accessible, which might be unreasonable if they have very large
descriptions (“huge objects”). The Huge Object model, whose study was initiated in [9],
treats the sampled elements as long strings that have to be queried. In this model, for
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46:2 Support Testing in the Huge Object Model

example, it is possible that the algorithm has two non-identical samples without being able
to distinguish between them efficiently. This “two-phase” characteristic of the Huge Object
model (“sample then query”, rather than only taking samples or only querying a string)
exhibits rich behavior with respect to adaptive querying, as studied in detail in [1].

In the standard model of distribution testing, [13] and [14] show a tight bound of
Θ(m/ log m) samples for two-sided error ε-testing of having a support size bounded by m in
the standard model, for every fixed ε. An upper bound of O(ε−1m) samples for one-sided
algorithms is implicitly shown in [1], and here we show that it is tight (Proposition 24). Based
on these tight bounds, the bounded support property is considered to be fully understood in
the standard model for one-sided testing, and mostly understood in the two-sided case (for
every fixed m there is still a gap between Ω(ε−1) and O(ε−2) for two-sided testing).

One would expect that having bounded support, which is arguably the simplest of
distribution properties, would have simple and easily understood testing bounds also in
the Huge Object model. As in the standard model, it is the only label-invariant property
that is testable using one-sided error algorithms. However, it turns out that the behaviour
of this property under the Huge Object model is surprisingly intricate. One unexpected
feature that we show here is a gap between the number of queries required for non-adaptively
testing for this property as compared to adaptive testing. Indeed there is no adaptivity in
the standard distribution testing model, and one would not expect the label-invariant (and
even mapping-invariant as per the definition in [9]) property of having bounded support to
exhibit such a gap.

1.1 Definition of the model

The Huge Object model differs from the standard sampling model in its distance measure
and in the way that the algorithm gathers information about the input distribution.

Algorithmic model

A probabilistic algorithm A with q queries and s samples, whose input is a distribution P

over {0, 1}n accessible via the Huge Object model, is an algorithm that acts in the following
manner: at every stage, the algorithm may ask for a new sample v that is provided by drawing
it according to P , independently of all prior samples, or may ask to query a coordinate
j ∈ {1, . . . , n} of an old sample u (the algorithm may use internal coin tosses to make its
decisions). When this query is made, the algorithm is provided with uj ∈ {0, 1} as its answer.
The algorithm has no access to the sampled vectors apart from query access. In the end, after
taking not more than a total of s samples and making a total of not more than q queries,
the algorithm provides its output.

We say that the algorithm is non-adaptive if it makes all its sampling and querying
decisions in advance, prior to receiving all query answers in bulk. Only the final output of a
non-adaptive algorithm may depend on the received answers.

Distances

Here we define some measures of distance. Note that we usually use d(·, ·) without mentioning
the measure that we use, if its context is unambiguous. For distributions over {0, 1}n, d(·, ·)
usually refers to the earth mover’s distance defined below.
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▶ Definition 1 (String distance). Let u, v ∈ {0, 1}n be two strings. We define their distance
as the normalized Hamming distance,

dH(u, v) = 1
n
|{1 ≤ i ≤ n | ui ̸= vi}| = Pr

i∼{1,...,n}
[ui ̸= vi]

We define the distance of u ∈ {0, 1}n from a set A ⊆ {0, 1}n as dH(u, A) = minv∈A dH(u, v).

▶ Definition 2 (Transfer distribution). Let P and Q be distributions over finite sets Ω1 and
Ω2, respectively. A distribution T over Ω1 × Ω2 is a transfer distribution from P to Q if for
every a ∈ Ω1, Pr(u,v)∼T [u = a] = P (a), and for every b ∈ Ω2, Pr(u,v)∼T [v = b] = Q(b). The
set of transfer distributions from P to Q is denoted by T (P, Q). Note that this is a compact
set when considered as a set of real-valued vectors.

▶ Definition 3 (Variation distance). Let µ and ν be two distributions over a finite set Ω.
Their variation distance is defined as:

dvar(µ, ν) = 1
2

∑
u∈Ω
|µ(u)− ν(u)| = max

E⊆Ω

∣∣∣∣Pr
µ

[E]− Pr
ν

[E]
∣∣∣∣ = min

T ∈T (µ,ν)
Pr

(u,v)∼T
[u ̸= v]

▶ Definition 4 (Earth mover’s distance). Let P and Q be two distributions over {0, 1}n. Their
earth mover’s distance is defined as:

dEMD(P, Q) = min
T ∈T (P,Q)

E
(u,v)∼T

[dH(u, v)]

The above minimum exists since it is in particular the minimum of a continuous function
over a compact set.

Testing model
▶ Definition 5 (A property). A property P is a sequence P1,P2, . . . such that for every n ≥ 1,
Pn is a compact subset of the set of all distributions over {0, 1}n.

▶ Definition 6 (Distance of a distribution from a property). Let P = (P1,P2, . . .) be a property
and P be a distribution over {0, 1}n for some n. The distance of P from P is defined as
dEMD(P,P) = minQ∈Pn

{dEMD(P, Q)}.

▶ Definition 7 (ε-test). Let P be a property of distributions over {0, 1}n. We say that a
probabilistic algorithm A is an ε-test for P if:

For every P ∈ P, A accepts with probability higher than 2
3 .

For every probability distribution P over {0, 1}n that is ε-far from P (satisfying d(P,P) >

ε), A rejects with probability higher than 2
3

▶ Definition 8 (one-sided and two-sided ε-test). Consider the setting of the above definition.
If additionally for every input P ∈ P, A accepts P with probability 1 (rather than “higher
than 2

3”), then we say that A is a one-sided ε-test for P. Otherwise, we say that A has
two-sided error.

1.2 Summary of our results
Table of results

The following is a table summarizing the bounds presented here for ε-testing for being
supported by at most m elements, along with previously known ones provided for reference
(Section 3 contains a sketch on how to derive them). The hidden coefficients in the O(·) and
the Ω(·) notations are global numerical constants. The new results appear in purple.

APPROX/RANDOM 2024



46:4 Support Testing in the Huge Object Model

Model One-sided Error Two-sided Error
Standard model Θ(ε−1m) Ω(ε−1m/ log m) [13]

(Sample complexity) Folklore, see [1] O(ε−2m/ log m) [14]
Huge Object Ω(ε−1m(log ε−1 + log m)) Ω(ε−1 log ε−1)
Non-adaptive O(ε−1m log ε−1 log m) O(ε−3m log ε−1) [14] + [9]
Huge Object Ω(ε−1m log m) Ω(ε−1m/ log m) [13]

Adaptive O(ε−1m log m · min{log ε−1, log m})

The following are some conclusions to be drawn from the bounds given above. We use
Sm to denote the property of being supported by at most m elements.

Adaptive vs. non-adaptive two-sided asymptotic gap

The most surprising result is that non-adaptively testing a distribution for being supported by
at most two elements cannot be done using a number of queries linear in ε−1, even with two-
sided error. This result applies for every m ≥ 2, and the exact bound is Ω(ε−1 log ε−1) (with
the implicit coefficient being independent of m). To the best of our knowledge, combined with
the O(ε−1) adaptive upper bound of [1] (which we improve in this paper), “being supported
by at most two elements” is the first explicit example of a property that is closed under
mapping (and in particular is label-invariant) which has different asymptotic bounds for the
number of queries for adaptive algorithms and non-adaptive ones in the Huge Object model
(see Theorem 26).

A possible explanation for this is that being label-invariant in the Huge Object model is
different from being so in the standard model, because applying a permutation on the labels
may change their distinguishability, and in particular it may change the distance from the
property.

In this paper we provide a thorough investigation of Sm utilizing a variety of methods. In
particular, we show several gaps such as the above mentioned one. However, the behaviour of
the bounded support property in the Huge Object model, especially when considering it as a
problem with two variables (namely the maximal support sized m and the distance parameter
ε) is still not completely understood. We do have tight bounds for the fixed constant m cases
(where only ε is variable) for all algorithm types, and bounds up to logarithmic factors for
the more general cases.

One-sided bounds and a gap from the standard model

We have tight bounds for ε-testing of Sm for every fixed m (and variable ε) for both non-
adaptive algorithms and adaptive ones. These bounds are also tight for every fixed ε (and
variable m). Additionally, our bounds show a gap between the standard model (considering
sample complexity) and the Huge Object model (considering query complexity). Consider
the bounded support property as a sequence of individual properties, where for every m ≥ 2,
the m-th property is Sm. We show that, if we only allow one-sided error tests, there is an
O(log m) gap between the standard model of distribution testing and the Huge Object model.
In the standard model, there exists a one-sided test for Sm at the cost of O(ε−1m) samples.
In the Huge Object model, there is a lower bound of Ω(ε−1m · log m) many queries for every
one-sided ε-test, even if it is adaptive. Note that the gap is between the number of samples
in the standard model and the number of queries in the Huge Object model, which is the
natural measure of complexity in this model.
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New tools
A new algorithmic paradigm

For the adaptive one-sided upper bound, we define a standalone algorithmic primitive,
the “fishing expedition” paradigm, that repeatedly executes a subroutine until it reaches a
predefined goal or when it finds out that it is no longer cost-effective (even if it did not reach
the goal). We believe that this primitive will also be useful in future endeavors.

A hybrid probabilistic-extremal analysis

We define a concept of “valid composition”. Loosely speaking, it is an ordered subset of
samples that become closer to each other as the sequence progresses, but are still ε-far from
each other. We use a hybrid probabilistic-extremal argument to show that for an input
distribution that is ε-far from m-support, with high probability, an algorithm with a bounded
number of queries will find a valid composition with at least m + 1-elements.

The hybrid probabilistic-extremal argument works as follows: we define some rank of
valid compositions. If for every individual valid composition with at most m elements,
there is a high probability that it is not maximal (according to the rank), then globally
there is a high probability that none of them is maximal. Hence, with high probability, the
maximally-ranked valid composition within our samples must have at least m + 1 elements.

A new use for an old combinatorial result

For the adaptive one-sided lower bound, we use an old combinatorial result, that a biclique
covering of the m-clique must have at least m log2 m vertices [10, 11], to show that every
witness against m-support is at least m log m bits long, which makes it a lower bound to
the number of queries. To apply a multiplicative factor of ε−1, which is pretty easy for
non-adaptive algorithms, in adaptive algortihms we analyze the effectivity of a decision tree
that incrementally constructs a witness based on the queries.

1.3 Open problems
One-sided non-adaptive bounds

We have an Ω(ε−1m(log ε−1 + log m)) lower bound for one-sided ε-testing of Sm, as well as
an O(ε−1m log ε−1 log m) upper bound for one-sided ε-testing of Sm. We believe that the
upper bound is tight, but we do not have the corresponding lower bound. What is the true
complexity of one-sided ε-testing Sm?

Non-trivial two-sided bounds

Is there a lower bound of ω(m/ log m) queries for two-sided testing of Sm (noting that [13]
only gives Ω(m/ log m)), even for non-adaptive algorithms? We believe that Ω(m) should be
this lower bound, based on the log m gap in the one-sided case (a Θ(m) tight bound in the
standard model, and a Θ(m log m) tight bound in the Huge Object model).

One-sided adaptive bounds

Our results for one-sided adaptive ε-testing of Sm are tight with respect to m, but have a
logarithmic gap with respect to min{ε−1, m}. Closing this gap is an open problem.

APPROX/RANDOM 2024
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The tradeoffs between sample and query complexity

Our bounds apply to the query complexity of the tests. The lower bounds adapted from
previous works on the traditional model clearly apply for the sample complexity here, even
if we allow a higher query complexity. As for our new upper bounds, most of them have
a polylogarithmic average queries per sample ratio. It would be interesting to investigate
whether the sample complexity can be reduced if we allow a much higher (but still sub-linear
in n) number of queries per sample.

2 Preliminaries

2.1 Algorithmic model
As observed by Yao [16], every probabilistic algorithm can be seen as a distribution over a
set of deterministic algorithms. Hence we can analyze probabilistic query-making algorithms
by analyzing the deterministic algorithms they are supported on.

We observe that we can assume that all samples are drawn before the first query is made,
since they are fully independent: the distribution of every sample made does not depend at
all on any calculation or queries that occurred before it was taken, and so we can assume
that it was taken before any calculation was performed. Based on this observation we can
represent our algorithms using a {0, 1}-valued matrix (whose rows are sampled from the
distribution), from which the algorithms are allowed to query.

▶ Definition 9 (Matrix representation of input access). Considering an algorithm with s

samples and q queries, we assume that the samples are all taken at the beginning of the
algorithm and are used to populate a matrix M ∈ {0, 1}s×n. Then, during the run of the
algorithm, each of its queries is represented as a pair (i, j) ∈ {1, . . . , s} × {1, . . . , n}, for
which the answer is Mi,j.

▶ Definition 10 (Adaptive algorithm). Every deterministic algorithm in the Huge Object
model with q queries over s samples is equivalent to a pair (T, A), where T is a decision tree
of height q in which every internal node contains a query (i, j) (where 1 ≤ i ≤ s is the index
of a sample and 1 ≤ j ≤ n is the index to query), and A is the set of accepting leaves.

▶ Definition 11 (Non-adaptive algorithm). A deterministic algorithm (T, A) with q queries
is non-adaptive if, for every 0 ≤ i < q, all internal nodes at the i-th level consist of the
exact same query. Every non-adaptive algorithm can be represented as a pair (Q, A), where
Q ⊆ {1, . . . , s} × {1, . . . , n} is a set of queries and A ⊆ {Q 7→ {0, 1}} is the set of accepted
answer vectors.

2.2 Technical components

Fishing expedition
We define an algorithmic primitive that allows us to repeat an execution of a probabilistic
subroutine until it is no longer effective. Consider for example a “coupon-collector” type
process, but one in which the number of distinct elements is not known to us. The goal is to
collect a preset number of elements, but we also want to stop early if we believe that there
are no more elements to be effectively collected.

Consider a (probabilistic) subroutine A that can either fail or succeed. We denote the
outcome of an execution of A by R. In this discussion the outcome includes both the
explicit output of the execution and its side effects, which may affect the probabilities for
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future executions of A. We thus analyze a sequence of executions R1, . . . , RN , where R1 is
performed over the initial state. We define two behaviors of “coupon collection” that such
an A must present.

▶ Definition 12 (Fail stability). Let A be a subroutine that may succeed or fail. Specifically
let R1, . . . , RN be random variables that detail the outputs of the first N executions of A. We
say that A is fail stable with respect to a set G of outcomes indicating success, if for every
2 ≤ i ≤ N and every result sequence (r1, . . . , ri−1) ∈ supp(R1, . . . , Ri−1) for which ri−1 /∈ G:

Pr [Ri ∈ G | R1 = r1, . . . , Ri−2 = ri−2, Ri−1 = ri−1]
= Pr [Ri−1 ∈ G | R1 = r1, . . . , Ri−2 = ri−2]

In other words, a failure does not affect the probability of further executions to succeed.

▶ Definition 13 (Diminishing returns). Let A and R1, . . . , RN be as in Definition 12. We say
that A has diminishing returns with respect to a set G of successful outcomes, if for every
2 ≤ i ≤ N and every result sequence (r1, . . . , ri−1) ∈ supp(R1, . . . , Ri−1):

Pr [Ri ∈ G | R1 = r1, . . . , Ri−2 = ri−2, Ri−1 = ri−1]
≤ Pr [Ri−1 ∈ G | R1 = r1, . . . , Ri−2 = ri−2]

That is, if A has diminishing returns, then a success in a single execution never increases,
but may decrease, the probability of further executions to succeed.

Recall the coupon-collecting example. We expect it to have both fail stability and
diminishing returns (with respect to a common set G of outcomes indicating success). If we
look for a coupon and do not find it in a single try, nothing happens. Further tries will have
the same probability to succeed. On the other hand, if we collect a coupon, then in further
tries, there are less uncollected coupons left and it is slightly harder to find an additional one.

The fishing expedition paradigm seeks to collect a goal of k coupons, but “gives up” if it
believes that the probability to find an additional coupon is less than some parameter p.

The desired algorithm (Algorithm 1) has three parameters: a threshold p, a confidence q

and a goal k ≥ 1. The input is a subroutine A with diminishing returns and fail stability
(with respect to some common set G). Informally, the goal of the algorithm is to have k

successful executions of A, but also to terminate earlier if the probability of A to succeed
becomes lower than p. Since the algorithm has no actual access to the success probability
of A, it should terminate early only if it is confident enough that the success probability of
further executions is too low for them to be effective.

▶ Lemma 14. Consider a black box subroutine A with fail stability (Definition 12) and
diminishing returns (Definition 13) with respect to a common set G of outcomes indicating
success.

For an algorithm that repeatedly executes A, we define the following random variables:
N – the number of executions.
R1, . . . , RN – their outcomes.
X1, . . . , XN – indicators of success (that is, Xi = 1 if and only if Ri ∈ G).
H =

∑N
i=1 Xi – the number of successful executions.

p̂ = Pr[XN+1 = 1|R1, . . . , RN ] – the success probability of a possible extra execution of A.

Considering the parameters p > 0 (threshold), q > 0 (confidence), and k ≥ 1 (goal), there
exists an algorithm that repeatedly executes A for which N ≤ p−1(4H +5(log q−1 +log(log k +
1))) + 1 and H ≤ k, such that with probability higher than 1− q, either H = k or p̂ ≤ p (or
both).

APPROX/RANDOM 2024



46:8 Support Testing in the Huge Object Model

Algorithm 1 Fishing expedition.

parameters k ≥ 1 (goal), p > 0 (threshold), q > 0 (confidence).
input A subroutine A with output, given as a black box, where an output outside a set G

means fail.
let tmax ← ⌊log k + 1⌋.
let N1 ← 0.
set H ← 0.
for t from 2 to tmax do

let Nt ←
⌈
p−1 max{2t, 5(log q−1 + log(log k + 1))}

⌉
.

for N from Nt−1 + 1 to Nt do ▷ possibly empty
run A, let RN be its outcome.
let XN be an indicator for success (XN = 1 if RN ∈ G, otherwise XN = 0).
set H ← H + XN .
if H = k then terminate with N . ▷ goal is reached

if H < 1
2 pNt then

terminate with Nt. ▷ continuing is ineffective

The proof of the lemma follows from two claims. The first claim asserts that for tmax =
⌊log k + 1⌋ and for every 2 ≤ t ≤ tmax, after

⌈
p−1 ·max{2t, 5(log q−1 + log(log k + 2))}

⌉
executions of A, the algorithm terminates if the number of successful executions was less than
a 1

2 p-portion of the total number of executions. The second claim shows that the algorithm
reaches one of its goals with probability higher than 1− q, and uses a variant of Chernoff’s
inequality to give an upper bound on the probabilities of bad events.

Contradiction graph
We define here what it means to be a “counter-example” for having support size at most m.

▶ Definition 15 (Contradiction graph). Let x1, . . . , xs ∈ {0, 1}n be a sequence of strings.
Let Q ⊆ {1 . . . , s} × {1, . . . , n} be a set of queries. We define the contradiction graph of
(x1, . . . , xs; Q) as G(V, E) with V = {1, . . . , s}, and for every 1 ≤ i1, i2 ≤ s:

{i1, i2} ∈ E ⇐⇒ ∃1 ≤ j ≤ n : (xi1)j ̸= (xi2)j ∧ ((i1, j), (i2, j) ∈ Q)

Note that the graph is undirected since the definition of the edges is commutative. It is also
clearly without self-loops.

▶ Definition 16 (Witness against m-support). Let P be a distribution that is supported by a
set of more than m elements. We say that (x1, . . . , xs; Q) is a witness against m-support (of
P ) if x1, . . . , xs are all drawn from P , and their contradiction graph is not m-colorable.

In the full version, we prove that calling the above a witness is indeed justified, in the
sense that a distribution P has m-support if and only if there is zero probability to draw a
tuple x1, . . . , xs for which one can provide a query set Q that makes it a witness.

▶ Lemma 17. Let x1, . . . , xs ∈ supp(P ) be a set of samples and let Q ⊆ {1, . . . , s}×{1, . . . , n}
be a query set. Let Q1, . . . , Qs be the sample-specific query sets, that is, Q =

⋃s
i=1({i} ×Qi),

and let G be the contradiction graph as per Definition 15. If G is not colorable by m

colors, then |{x1, . . . , xs}| > m. And if G is colorable by m colors, then there exists P̂

with |supp(P̂ )| ≤ m and a sequence y1, . . . , ys ∈ supp(P̂ ) such that for every 1 ≤ i ≤ s,
xi|Qi

= yi|Qi
.
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▶ Definition 18 (Explicit witness against m-support). Let P be a distribution that is supported
by a set of more than m elements. We say that (x1, . . . , xs, Q) is an explicit witness against
m-support (of P ) if x1, . . . , xs are all drawn from P , and their contradiction graph contains
a clique with m + 1 vertices as a subgraph.

Note that an explicit witness is in particular a witness against m-support, but the converse
does not generally hold.

3 Quick bounds from previous results

We recall some known results for the standard model and use them to derive initial bounds
on testing Sm. Due to space limitation, all proofs are deferred to the full version of the
paper.

Observe that, without loss of generality, we can assume that every sample is queried
at least once. Using distributions over sets of of vectors that are mutually 0.499-far, lower
bounds for the standard model can be converted to to the Huge Object model, implying in
particular the following.

▶ Proposition 19 (Proposition 2.8 in [9]). Every two-sided error ε-test for Sm makes at least
Ω(m/ log m) queries (for some fixed ε).

In the Huge Object model, different samples may be indistinguishable, hence standard-
model algorithms cannot be immediately converted to Huge Object model ones. However,
we can use the following reduction.

▶ Lemma 20 (Theorem 2.2 in [9]). Suppose that P is testable with sample complexity s(n, ε)
in the standard model, and that P is closed under mapping (note that bounded support
properties are closed under mapping). Then for every ε > 0 there exists a non-adaptive ε-test
for P in the Huge Object model that uses 3 · s(m, ε) samples and O(ε−1 log(ε−1s(m, ε/2)))
queries per sample.

▶ Proposition 21 (combining [14] and [9]). There exists a two-sided ε-test for Sm whose
query complexity is O(ε−3m log ε−1).

In the above we used [14] rather than the more recent [15], since we needed a statement
that holds for all values of ε (including those smaller than 1/m). Proposition 21 implies that
for every fixed ε and variable m, there exists an O(m) non-adaptive two-sided error ε-test
for Sm. In this context we also note the following known bounds.

▶ Theorem 22 (Corollary 2.3 in [9]). For every ε > 0 and m ≥ 2, there exists a non-
adaptive one-sided ε-testing algorithm for Sm that takes O(ε−1m) samples and makes
O(ε−2m log(m/ε)) queries.

▶ Theorem 23 (Theorem 6.1 in [1]). For every ε > 0 and m ≥ 2, there exists an adaptive
one-sided ε-testing algorithm for Sm that takes O(ε−1m) samples and makes O(ε−1m2)
queries.

This immediately implies an upper bound of O(ε−1m) samples for ε-testing Sm in the
standard model of distribution testing. As can be expected, this is tight. The following
proposition is considered common knowledge, but for the sake of completeness we prove it in
the full version of the paper.

▶ Proposition 24. Every one-sided ε-test for Sm takes at least Ω(ε−1m) samples in the
standard model.

As with Proposition 19, this can be converted to a Huge Object model bound.
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▶ Proposition 25. Every one-sided ε-test for Sm in the Huge Object model must make at
least Ω(ε−1m) queries as well.

In this paper we improve this proposition, showing a gap between the standard model and
the Huge Object model for one-sided error tests.

4 Overview of our proofs

In this section we state our main results and give an overview of how to obtain them. The
full proofs apear in the full version.

4.1 Two-sided, non-adaptive lower-bound
▶ Theorem 26. Every non-adaptive ε-test for Sm must make Ω(ε−1 log ε−1) queries, even
if it has two-sided error.

We first describe our lower bound for S2, which holds the main ideas also for Sm. We
begin by analyzing a restricted form of non-adaptive algorithms, which we call rectangle
algorithms. A rectangle algorithm is characterized by the number of samples s and a set I of
indices. Every sample is queried at the indices of I, hence the query complexity is s · |I|. We
say that |I| is the “width” of the rectangle and that the number of samples is its “height”.

Consider the following O(ε−1)-query rectangle algorithm: for some hard-coded parameter
β > 0, it chooses a set I of O(β−1) indices, and then it takes O(βε−1) samples, and queries
every sample on all indices of I.

Now consider the following form of inputs. For some α > 0 and two strings a and b

for which d(0, a), d(0, b), d(a, b) = Θ(α), let P be the following distribution. The string 0 is
picked with probability 1− cα−1ε, the string a with probability c

2 · α
−1ε and the string b

with probability c
2 · α

−1ε, where c > 1 is some global constant.
Intuitively, the algorithm finds a witness against 2-support if there is a query common to

a and b, at an index j that is not always zero (we call such j a non-zero index). That is,
there are two necessary conditions to reject: the algorithm must get both a and b as samples,
and it must query at an index j for which (a)j ̸= (b)j .

The expected number of non-zero samples that the algorithm gets is O(α−1β). If α is
much greater than β, then with high probability the algorithm only gets all-zero samples
and cannot even distinguish the input distribution from the deterministic all-zero one.

If α is much smaller than β, then with high probability all queries are made in “zero
indices” and the algorithm again cannot even distinguish the input distribution from the
deterministic all-zero one. Thus, the algorithm can reject the input with high probability
only if α ≈ β.

Our construction of Dno chooses α = 2k where k is distributed uniformly over its relevant
range, to ensure that a rectangle algorithm (with a fixed β) “misses” α with high probability.
Intuitively, the idea is that a non-adaptive algorithm must accommodate a large portion of
the possible values of α, which would lead to an additional log ε−1 factor. Then, we show that
given an input drawn from Dno, if the algorithm did not distinguish two non-zero elements,
then the distribution of runs looks exactly the same as the distribution of runs of the same
algorithm given an input drawn from Dyes, which is supported over 0 and a single a.

To show that the above distributions defeat any non-adaptive algorithm (not just rectangle
algorithms), we analyze every index 1 ≤ j ≤ n according to the number of samples which are
queried in that index. If few samples are queried, then this index has a high probability of not
hitting two non-zero samples, rendering it useless (we gain an important advantage by noting
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that querying j from at least two non-zero samples is required for it to be useful). If many
samples are queried on j then this index may hit many samples, but only few indices can
host many queries, which gives us a high probability of all of them together not containing a
non-zero index among them.

To extend this result to m ≥ 2, for every t ≥ 2 we define a distribution Dt
no over inputs

that are supported by t + 1 elements (one of them being the zero vector), and also ε-far
from being supported by m elements (for every m ≤ t/2 + 1). As before, we define Dyes as
a distribution over inputs supported by 2 elements, which is identical to D1

no, and then we
proceed with the same argument as before.

▶ Definition 27 (Dt
no, Dyes). The distribution Dt

no (over a set of distributions) is obtained by
the following process. Draw α such that log2 α−1 is uniform over {2, . . . ,

⌊
log2 ε−1⌋

−2}. Draw
a set D ⊆ {1, . . . , n} such that for every 1 ≤ j ≤ n, Pr[j ∈ D] = 4α, independently. Then,
for every 1 ≤ k ≤ t, draw a set Ak ⊆ D such that for every j ∈ D, Pr[j ∈ Ak|j ∈ D] = 1

2 ,
independently. The resulting input is defined as the following distribution over {0, 1}n:

P :


0 with probability 1− 2α−1ε

1A1 with probability 2α−1ε/t
...
1At

with probability 2α−1ε/t

The distribution Dyes is identical to D1
no

4.2 One-sided, non-adaptive upper bound
▶ Theorem 28. There exists a one sided ε-testing algorithm for Sm making O(ε−1 log ε−1 ·
m log m) queries.

Let us first consider a “reverse engineering” algorithm: for every ℓ = 20, 21, . . . , 2log ε−1 ,
we query Θ((ε−1/ℓ) · log m) indices that are common to at least ℓ ·m samples. Intuitively,
according to the analysis of the two-sided lower bound, the algorithm should have roughly
Ω(m log m) indices that distinguish pairs of elements, which suffice for a contradiction graph
that contains an m + 1-clique.

This intuition appears to be lacking when it comes to showing the correctness of this
construction for inputs that lack the special form of Dt

no from Definition 27. To be able to
handle distance combinations (instead of just one “α” as above), we use a concept of “valid
compositions”.

▶ Definition 29. A valid composition is an ordered combination of samples (x1, . . . , xk)
and a sequence of non-decreasing scales (a2, . . . , ak), for which the distances are bounded by
d(xi, {x1, . . . , xi−1}) > 2−ai−1 .

Querying according to index sets whose random choice follows the prescribed distances
distinguishes all elements in a composition with high probability. Our goal is to show the
existence of valid compositions of m + 1 elements in order to ensure that we find an explicit
witness, and thus establish the upper bound. In particular, the algorithm (Algorithm 2)
works as follows. It looks for a set A for of size at least m + 1 whose elements are fully
distinguishable using queries.

At first, the algorithm chooses I0 ⊆ I1 ⊆ · · · ⊆ Ilog ε−1 ⊆ {1, . . . , n}, where Ia consists of⌈
2a+2 log(m + 1)

⌉
indices drawn uniformly and independently.
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The algorithm takes 1+32ε−1m samples. Except for the first sample, they are partitioned
into 2m “blocks” of at most 16ε−1 samples each. For every 1 ≤ k ≤ 2m and 0 ≤ a ≤ log ε−1,
the algorithm takes a sequence Sa,k of 23−aε−1 new samples, and queries every sample in it
at the indices of Ia.

The algorithm rejects if there exists a distinguishable composition of size m + 1 (which in
particular is also a witness against Sm).

▶ Definition 30. We say that a composition is a distinguishable composition if for every
1 ≤ i1 < i2 ≤ k there exists a query j ∈ Iai1

∩ Iai2
for which (xi1)j ̸= (xi2)j.

Algorithm 2 Non-adaptive construction of a valid composition.

choose indices i1, . . . , i⌈4ε−1 log(m+1)⌉ uniformly and independently, with repetitions.
for 0 ≤ a ≤ log ε−1 do

let Ia = {i1, . . . , i⌈2a+2 log(m+1)⌉}.
take a sample u.
query u at Ilog ε−1 .
for k from 1 to 2m do

for a from 0 to log ε−1 do
take 23−aε−1 new samples, denoting the sequence by Sa,k.
query all samples in Sa,k at Ia.

if there exists a distinguishable composition of size m + 1 then
return reject

else
return accept

However, it is not clear that “long” valid compositions even exist. To show their existence
with high probability whenever the input is ε-far from having support size at most m, we
use an extremal probabilistic argument. For this purpose, for a composition A we define its
rank to be its scale sequence r⃗(A) = (a2, . . . , ak), and refer to the lexicographic order over
ranks (in particular considering a proper prefix of a sequence to be smaller in that order).

We then show that if the input is ε-far from having support size m, then with high
probability no composition with at most m elements has maximal rank. This implies that
the maximally ranked composition cannot have less than m + 1 elements, leading with high
probability to finding an explicit witness against m-support through the queries made to
this composition.

To show the above in the full version, for every K ⊆ {1, . . . , 2m} we define the event that
the blocks indexed by K are exactly those that contain the maximally ranked composition.
We then show that if the length of this composition is at most m, (and the input is ε-far
from the property), then the probability of this event happening is small enough to deploy a
union bound argument against all such events.

4.3 One-sided, adaptive upper bound

▶ Theorem 31. There exists a one-sided ε-testing algorithm for Sm making O(ε−1m log m ·
min{log ε−1, log m}) queries.
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We adaptively construct a distinguishing sequence that resembles a valid composition
(see Definition 29), but at some point we decide to “give up” and change phase to another
way of querying that is more efficient under some conditions. Luckily, the condition that
makes us give up implies them. For every distance scale, from Ω(1) to 1

m , we use the “fishing
expedition” paradigm (Lemma 14) using Algorithm 3 as the subroutine A, to extend our
sequence with as many elements as we can until we are certain enough that it is no longer
effective to look for them (or until we find a witness against m-support). This phase is
described in Algorithm 4.

Algorithm 3 Adaptive one-sided ε-test for Sm, a single batch.

parameters ε > 0, A, m ≥ 2, 0 ≤ a ≤ ⌈log m⌉ where |A| ≤ m.
input A distribution P .
choose a set J of

⌈
2a+2 log m

⌉
indices uniformly and independently.

query X at J for every X ∈ A.
take

⌈
22−aε−1 log m

⌉
samples.

query each new sample at J .
if there exists a sample Y for which Y |J ̸= XJ for every X ∈ A then

set A← A ∪ {Y }.
return success with (Y, J).

else
return fail

Algorithm 4 Adaptive one-sided ε-test for Sm, first phase.

parameters ε > 0, m ≥ 2.
input A distribution P , a set A ⊆ supp(P ) of distinguishable elements.
for a from 0 to ⌈log m⌉ do

let ka = m + 1− |A|.
run Algorithm 1 (“fishing expedition”) with parameters k = ka, q = 1

4⌈log m+1⌉ , p = 1
3 ,

and A = Algorithm 3 (a single batch).
if |A| ≥ m + 1 then

return reject
Proceed to the second phase with A.

Unfortunately, it is possible that at some point the algorithm is certain enough that it is
no longer effective to look for elements in any of these scales. At this point, we observe that
the contribution of elements with small distance scale to the distance of the input from Sm

is still Ω(ε) (that is, we can safely ignore the “rare large-distance elements”). To make use of
this observation, the algorithm shifts to the second phase, looking for elements with small
distances in a way which does not follow the theme of looking for valid compositions.

In the small distance scale phase we construct and maintain a “decision tree” data
structure over the existing elements, so that for every element that we need to compare to
the existing elements, we can rule out in advance, using only O(m) many queries, all but one
of them. This allows us to save queries, since the smaller distances require the querying of
relatively many indices for a comparison, which would have been very inefficient to perform
for all existing elements. See Algorithm 5 for precise details.
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Algorithm 5 Adaptive one-sided ε-test for Sm, a single iteration of the second phase.

input A sample Y ∈ supp(P ), A ⊆ supp(P ), a decision tree T ; |A| ≥ 1.
invariant T has |A| leaves corresponding to A’s elements.
choose a set J of m indices uniformly, independently, with repetitions.
let X ∈ A for which T (Y ) = T (X) (using up to |A| queries to Y to follow T and find X).
query X, Y at J .
if Y |J ̸= X|J then

set A← A ∪ {Y }.
add Y to T (using a distinguishing index j ∈ J to split the leaf of X).

Finally, we combine the above procedure to obtain our desired algorithm:

Algorithm 6 Adaptive one-sided ε-test for Sm.

input A distribution P .
if ε ≥ 1

m2 then
run Algorithm 2 and return its answer.

take the first sample u.
set A← {u}.
run Algorithm 4 (possibly modifying A, possibly rejecting).
construct a decision tree T based on A.
invariant T has |A| leaves corresponding to A’s elements.
for

⌈
48ε−1⌉

times do
draw another sample Y .
run Algorithm 5 with (Y, A, T ) (note that A, T may have been modified).
if |A| ≥ m + 1 then

return reject
return accept

4.4 One-sided lower-bounds
▶ Theorem 32. Every one-sided (possibly adaptive) ε-test for Sm must make Ω(ε−1m log ε−1)
queries.

We prove that an algorithm obtains a witness against m-support if and only if the contradiction
graph (Definition 15) is not m-colorable. Hence we look for the lower bound on the number
of queries needed to construct a non-m-colorable contradiction graph.

We observe that, given a query set, every index j describes a biclique contradiction graph
whose classes are “all samples queried at j for which xj = 0” and “all samples queried at j

for which xj = 1”. The contradiction graph is the union of these graphs. Specifically, we
define the notion of capacity.

▶ Definition 33 (Capacity of an edge cover). Let G be a graph over a set V vertices and let
G = (G1, . . . , Gk) be a sequence of graphs over V1, . . . , Vk ⊆ V such that G =

⋃k
i=1 Gi. We

define the capacity of G as cap(G) =
∑k

i=1 |Vk|.

The following observation follows directly from the definition of capacity.

▶ Observation 34. Let P be a distribution over {0, 1}n, x1, . . . , xs ∈ supp(P ) be a set of
samples and Q ⊆ {1, . . . , s} × {1, . . . , n} be a query set. Let S1, . . . , Sn be the index-specific
query sets, that is, Q =

⋃n
j=1(Sj × {j}). In other words, for every j, all samples in Sj
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are queried at the index j. Let G = (G1, . . . , Gn) be the edge cover of the contradiction
graph (Definition 15) implied by (x1, . . . , xs; Q): for every 1 ≤ j ≤ n, Gj is the complete
bipartite graph whose vertices are Sj and the sides are Lj = {i ∈ Sj |(xi)j = 0} and
Rj = {i ∈ Sj |(xi)j = 1}. In this setting, cap(G) = |Q|.

The following lemma is crucial for our one-sided testing lower bounds.

▶ Lemma 35 ([10, 11, 2]). Let V be a set of vertices, and let G = (G1, . . . , Gk) be an edge cover
of the V -clique such that all graphs G1, . . . , Gk are bipartite. Then cap(G) ≥ |V | log2 |V |.

It can be extended to any non-m-colorable graph, which is what we need.

▶ Lemma 36. Let G be a graph over a set V of vertices that is not m-colorable, and let
G = (G1, . . . , Gk) be an edge cover of G such that all graphs G1, . . . , Gk are bipartite. Then
cap(G) ≥ (m + 1) log2(m + 1).

Then we extend our analysis in two ways, one of which applies to non-adaptive algorithms
(giving a log ε−1 factor) and the other also applies to adaptive ones (giving a log m factor).

For non-adaptive algorithms, we extend the analysis of the two-sided bound to show
that a one-sided algorithm for Sm requires Ω(ε−1m log ε−1) many queries. The following
shows the hardness of “gathering a witness against Sm”, which allows for a more versatile
argument as compared to the indistinguishability argument that we use for the lower bound
of Theorem 26.

We use Dt
no (Definition 27) using t = 4m/3. For a non-adaptive algorithm that makes

less than O(ε−1m log ε−1) queries, the probability that it distinguishes two specific non-zero
elements is 1

16 . Considering the contradiction graph, excluding the vertex corresponding to
the zero vector, we show that the expected number of edges is at most 1

16
(

t
2
)
. By Markov’s

inequality, with probability higher than 2
3 , there are less than

(3t/4−1
2

)
=

(
m−1

2
)

edges,
meaning that this subgraph is colorable using m − 1 colors. Combined with the vertex
corresponding to the zero vector, the contradiction graph is colorable by m colors, hence it
cannot be a witness against being supported on only m-support.

For the other bounds we use Lemma 36. To show a lower bound against non-adaptive
algorithms, we construct a distribution in which a single, “anchor” element is drawn with prob-
ability 1−Θ(ε). This way, for every non-adaptive algorithm that makes only o(ε−1m log m)
many queries, the expected number of queries applied to other elements is o(m log m).
By Markov’s inequality, with probability 2

3 , only o(m log m) queries are made in non-zero
elements, and in this case, there cannot be a witness against m− 1 other elements.

This construction cannot be immediately applied to adaptive algorithms, since they can
use adaptivity to avoid wasting queries on the anchor element. To overcome this issue, we
use two additional methods. The first one is using very short strings, that is, we focus on
distributions over {0, 1}O(log m) that are ε-far from having m elements in their support (later
we prove that the bound also holds for arbitrarily large n using a simple repetition technique).
The second method involves using shared-secret code ensembles [5] that guarantee, in an
appropriate setting, that if the algorithm makes less than O(log m) queries in an individual
sample, then it gathers no information at all. This way, for every individual sample, the
algorithm either behaves similarly to a non-adaptive algorithm or makes at least a fixed
portion of the maximum number of queries. The exact argument requires a careful analysis
of the decision tree of the algorithm.
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