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Abstract
For a large class of random constraint satisfaction problems (csp), deep but non-rigorous theory
from statistical physics predict the location of the sharp satisfiability transition. The works of Ding,
Sly, Sun (2014, 2016) and Coja-Oghlan, Panagiotou (2014) established the satisfiability threshold
for random regular k-nae-sat, random k-sat, and random regular k-sat for large enough k ≥ k0

where k0 is a large non-explicit constant. Establishing the same for small values of k ≥ 3 remains an
important open problem in the study of random csps.

In this work, we study two closely related models of random csps, namely the 2-coloring on
random d-regular k-uniform hypergraphs and the random d-regular k-nae-sat model. For every
k ≥ 3, we prove that there is an explicit d⋆(k) which gives a satisfiability upper bound for both of
the models. Our upper bound d⋆(k) for k ≥ 3 matches the prediction from statistical physics for the
hypergraph 2-coloring by Dall’Asta, Ramezanpour, Zecchina (2008), thus conjectured to be sharp.
Moreover, d⋆(k) coincides with the satisfiability threshold of random regular k-nae-sat for large
enough k ≥ k0 by Ding, Sly, Sun (2014).
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1 Introduction

In this work, we study the 2-coloring on random d-regular k-uniform hypergraphs and
the random d-regular k-nae-sat model for k ≥ 3. We establish an explicit well-defined
upper bound on the satisfiability/colorability threshold that holds for every k ≥ 3, which is
conjectured to be sharp in statistical physics [25] for hypergraph 2-coloring, and matches the
previous rigorous results for random regular k-nae-sat model for k large enough [28].
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47:2 Upper Bounds on the Colorability Threshold for Random Regular Graph

Given a k-uniform hypergraph with n nodes and m hyperedges, where every edge consists
of k nodes, a hypergraph 2-coloring is an assignment of colors from {red, blue} ≡ {0, 1} to
the nodes such that there is no monochromatic hyperedge. If there is such a 2-coloring,
the hypergraph is said to be colorable or satisfiable. It is a typical example of a constraint
satisfaction problem (csp) that has been studied extensively in combinatorics and computer
science literature [54, 7, 2, 24, 34, 38, 39].

A k-nae-sat problem is another closely related csp studied in computer science [19, 28,
57, 50, 56], which can be viewed as a variant of the infamous k-sat problem [41]. A k-sat
formula is a boolean cnf formula with n variables formed by taking the and of m clauses,
which is the or of k variables or their negations. Then, a nae-sat solution x ∈ {0, 1}n is an
assignment such that x and its negation ¬x evaluates true in the formula. Thus, denoting
each clause as a hyperedge, if no variable is negated in every clause, then a nae-sat solution
is equivalent to a hypergraph 2-coloring.

A significant direction of research on satisfiability has involved examining the large-system
limit of randomly generated problem instances. The study of random constraint satisfaction
problems (csps) aims to discern typical behaviors and phase transitions in these systems as
the number of variables n and the number of constraints m tends to infinity with a fixed
ratio α ≡ m

n . In this sparse regime, there has been considerable effort into identifying the
satisfiability transition, or the critical density, denoted by αsat, beyond which solutions cease
to exist [6, 5, 3, 23].

Many of the sparse csps belong to a broad universality class called the one-step-replica-
symmetry-breaking (1rsb) class from statistical physics [43] (see Chapter 19 of [47] for a
survey) - including 2-coloring on random regular k-uniform hypergraphs, random regular
k-nae-sat, and random k-sat for k ≥ 3. The 1rsb class refers to csps which are predicted
to possess a single layer of hierarchy of well-separated clusters, where a cluster roughly refers
to a dense region of the solution space. A shared characteristic of these problems is that in a
non-trivial regime below αsat ≡ αsat(k), the number of solutions fails to concentrate about
its mean due to the clustering effect. This effect thus prevents standard first and second
moment methods from locating the exact transition, presenting a significant mathematical
challenge.

Despite such difficulties, breakthroughs were made to successfully locate the satisfiability
threshold of the random regular k-nae-sat [31], the random k-SAT [32], and random regular
k-SAT [21] for large enough k ≥ k0, where k0 is a non-explicit large absolute constant. These
works carried out a demanding second moment method to the number of clusters instead
of the number of solutions based on intuitions from statistical physics [46] and previous
mathematical works [6, 20, 21]. See Section 1.1 for further literature.

However, for small values of k ≥ 3, locating the satisfiability threshold for csps in the
1rsb class remains an important open problem. Indeed, for all the aforementioned models in
1rsb class, the physicists conjecture an explicit value α⋆(k) for αsat(k), the 1rsb threshold,
which is expected to be correct for all k ≥ 3 [45, 46, 25]. The methods of [31, 32, 21] crucially
uses the fact that k is large enough for their second moment method to succeed.

In this work, we consider 2-coloring on random d-regular k-uniform hypergraphs, where the
random hypergraph is generated uniformly at random from the set of k-uniform hypergraphs
such that every variable participates in exactly d hyperedges. We also consider random
d-regular nae-sat, where k-sat formula is generated uniformly at random with the condition
that every variable participates in exactly d clauses. We establish an upper bound d⋆(k)
on the satisfiability thresholds for these problems for every k ≥ 3, which is sharp [28] for
random regular k-nae-sat for large k ≥ k0 and conjectured to be sharp [25] for k ≥ 3 for
hypergraph 2-coloring.
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▶ Theorem 1.1. For k ≥ 3 and dlbd(k) ≤ d ≤ dubd(k), where dlbd(k), dubd(k) are defined in
(1.4) below, there exists a unique solution x⋆ ≡ x⋆(k, d) to the equation

d = 1 +
(

log 1 − 2x
1 − x

)
/ log

(
1 − 2xk−1

1 − xk−1

)
on the interval 1

2 − 1
2k ≤ x ≤ 1

2 . (1.1)

Define d⋆(k) by the largest zero of the explicit function

⋆Φ(d) := − log(1 − x) − d(1 − k−1 − d−1) log(1 − 2xk) + (d− 1) log(1 − xk−1) , (1.2)

where the existence of the root of ⋆Φ(d) is guaranteed in the interval [dlbd(k), dubd(k)].
Then, for k ≥ 3, and d > d⋆(k), the random d-regular k-uniform hypergraph is not

2-colorable with probability tending to one as the graph size n → ∞. Similarly for k ≥ 3 and
d > d⋆(k), then the random d-regular k-nae-sat instance is not satisfiable with probability
tending to one as n → ∞.

A matching lower bound was obtained in [28] for large enough k ≥ k0 in random d-regular
nae-sat by a demanding second moment method. Our proof is based on an interpolation
method from statistical physics [35, 37, 52]. We give a proof outline in Section 1.2.

We emphasize that for any k ≥ 3, determining the colorability threshold for 2-coloring
on random d-regular k-uniform hypergraphs was previously open, thus Theorem 1.1 for
2-coloring is novel even for large k. Although it is expected that the colorability threshold
for the model matches the satisfiability threshold for random regular k-nae-sat, it is highly
non-trivial to modify the proof techniques for random regular nae-sat [31] to the 2-coloring
model since many of the arguments in [31] crucially take advantage of the randomness of
clauses. For example, any x ∈ {0, 1}n has the same probability of being a nae-sat solution
by the randomness of the clauses while this is obviously not true for the 2-coloring model.
As we see below, even the calculation of the first moment of the solutions is substantially
more involved for the 2-coloring model. Let Znae be the number of solutions of random
d-regular k-nae-sat, then it is trivial to calculate EZnae exactly by taking advantage of the
randomness of the clauses:

EZnae = 2n(1 − 2−k+1)m = exp
(
n
(

log 2 + α log
(
1 − 2−k+1))) =: exp

(
nΦk(α)

)
. (1.3)

On the other hand, if we denote Zcol by the number of 2-colorings on random d-regular k-
uniform graphs, then estimating EZcol is more delicate: we appeal to the idea of exponential
tilting from large deviations theory [26] and local central limit theorem [13] to prove that
EZcol is of the same order as exp

(
nΦk(α)

)
in Lemma 1.7 below. Using the interpolation

bound which is simpler than moment calculations, we clarify a simple mechanism (cf. Lemma
2.2) behind the identical satisfiability upper bounds for both models.

The solution x⋆(k, d) to the equation (1.1) has a mathematical interpretation. Namely,
2x⋆(k, d) is the fraction of the so-called frozen variables in the cluster model. The solution
x⋆(k, d) is called the Belief Propagation (bp) fixed point for the cluster model in statistical
physics. We emphasize that addressing the uniqueness of the bp fixed point is a well-known
major obstacle for many combinatorial optimization and statistical inference problems that
exhibit sharp phase transitions (e.g. for spherical perceptron model [55]; see [59, Chapter 3]
for a further discussion). We establish the uniqueness of the bp fixed point by showing that
the Belief Propagation recursion (cf. (1.12)) is a contraction for k ≥ 3 and [dlbd(k), dubd(k)],
which might be also useful in obtaining a matching lower bound to Theorem 1.1.

APPROX/RANDOM 2024
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Table 1 A comparison with the upper bound d⋆(k) in Theorem 1.1 with the first moment
threshold d1(k) := k log 2

− log(1−2−k+1) for small values of k. For 3 ≤ k ≤ 10, the values also appear in
Table 1 of [25].

k 3 4 5 6 7 8 9 10 11 12 13 14 15
⌈d⋆(k)⌉ 7 20 53 130 307 705 1592 3543 7802 17028 36902 79488 170340
⌈d1(k)⌉ 8 21 54 131 309 708 1594 3546 7804 17031 36905 79491 170343

Since EZnae and EZcol are given by exp
(
nΦk(α)

)
up to a constant (cf. (1.3) and Lemma

1.7), the first moment thresholds for both of the models are given by d1(k) := k log 2
− log(1−2−k+1) .

In Table 1, we report ⌈d⋆(k)⌉ and ⌈d1(k)⌉ for 3 ≤ k ≤ 15. For every 3 ≤ k ≤ 15, the upper
bound ⌈d⋆(k)⌉ in Theorem 1.1 improves over the first moment threshold. For large values of
k, d⋆(k) improves over d1(k) by Ω(k) (see (1.5) below). The quantities dlbd(k), and dubd(k)
are defined by

dlbd(k) =


6.74 k = 3 ,
16.7 k = 4 ,
(2k−1 − 2)k log 2 k ≥ 5 .

dubd(k) =
{

7.5 k = 3 ,
2k−1k log 2 k ≥ 4 .

(1.4)

▶ Remark 1.1. For d ≤ dlbd(k) and large k ≥ k0, the second moment method applied to Znae
succeeds in showing the satisfiability for the random d-regular k-nae-sat model (see [28,
Section 2.1]). For k ∈ {3, 4}, dlbd(k) must be adjusted to be higher to guarantee that ⋆Φ(d)
is well-defined, i.e. there exists a unique solution to (1.1). The value dubd(k) ≡ 2k−1k log 2 >
d1(k) for k ≥ 4 is a convenient upper bound for satisfiability. For k = 3, we take dubd(3)
to be 7.5 > 3 log 2

− log(3/4) = d1(3), which does not change d⋆(3), but is more convenient for the
proof.

Finally, we note that the large k asymptotics of d⋆(k) was proven in [58, Appendix B]:

α⋆(k) ≡ d⋆(k)
k

=
(

2k−1 − 1
2 − 1

4 log 2

)
log 2 + ok(1) , (1.5)

where ok(1) denotes an error tending to zero as k → ∞. Since d1(k) = (2k−1 − 1/2)k log 2 +
ok(1), we have that d⋆(k) ≤ d1(k) − Ω(k).

1.1 Related work
Many of the earlier mathematical works on csps focused on determining their satisfiability
thresholds and verifying the sharpness of sat-unsat transitions. For models that are known
not to exhibit rsb, such goals were established. These models include random 2-sat [15, 12],
random 1-in-k-sat [1], k-xor-sat [33, 27, 53], and random linear equations [8]. On the other
hand, for the models which are predicted to belong to 1rsb class, intensive studies have been
conducted to estimate their satisfiability threshold, as shown in [42, 6, 21] (random k-sat),
[3, 24, 19] (random k-nae-sat), and [4, 16, 23, 17] (random graph coloring).

More recently, the satisfiability thresholds for rcsps that exhibits rsb have been rigor-
ously determined for several models, namely the random regular k-nae-sat [31], maximum
independent set on d-regular graphs [30], random regular k-sat [21] and random k-sat [32]
for large k and d. Although determining the location of q-colorability threshold for the
sparse Erdős Rényi graph is left open, the condensation threshold αcond for random graph
coloring, where the free energy becomes non-analytic, was settled in [11]. They carried out a
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technically challenging analysis based on a clever “planting” technique, where the results
were further generalized to other models in [18]. Similarly, [10] identified the condensation
threshold for random regular k-sat, where each variable appears d/2-times positive and
d/2-times negative. Further, in the condensation regime α ∈ (αcond, αsat), many quantities
of interest were established for random regular k-nae-sat with large enough k, matching
the statistical physics prediction. Namely, the number of solutions at exponential scale (free
energy) [58], the concentration of the overlap [49, 51], and the local weak limit [56] were
established. Establishing the same quantities for other models in the condensation regime is
still open.

The closest result to ours in the literature is by Ayre, Coja-Oghlan, and Greenhill [9],
where they lower bound the chromatic number (or equivalently, upper bound the colorability
threshold) of the random regular graph of any degree, which is conjectured to be tight. [9]
also considers the sparse Erdős-Rényi graph, which is more complicated since the conjectured
chromatic number is defined in terms of a distributional (rather than real-valued) optimization
due to the randomness of the local neighborhoods. In this work, we do not consider Erdős-
Rényi type problems, but we additionally address the question of the uniqueness of the
bp fixed point for any k ≥ 3 (unique solution to the equation (1.1)). As in [9], we use an
interpolation bound, which gives an upper bound of the satisfiability threshold also for the
(non-regular) random k-nae-sat model. It would be interesting to address the uniqueness of
the bp fixed point for random k-nae-sat and random k-sat for small k ≥ 3. We refer to
[55, 48, 60, 36] which addresses the uniqueness of bp fixed point for various models.

1.2 Proof methods
We aim to rigorously establish the upper bound for the satisfiability threshold predicted
by the so-called “1rsb cavity method” from statistical physics [25]. To do so, instead of
using moment methods, we use a theorem derived from the so called “interpolation method”
from the theory of spin glasses developed by [35, 37, 52]. The interpolation method has been
successful in upperbounding the satisfiability threshold for random k-sat [29] for large k,
the free energy for random regular k-nae-sat [57], and the colorability threshold for random
graphs [9].

We first introduce the notations and mathematical framework that we use throughout
the paper. For both the d-regular k-uniform hypergraphs and the k-nae-sat formula, we
can represent them as (labelled) (d, k)-regular bipartite graph. Let V = {v1, . . . , vn} be the
set of variables or nodes and F = {a1, . . . , am} be the set of clauses or hyperedges. An edge
is formed if the variable or node vi is included in the clause or hyperedge aj . For an edge e,
we denote v(e) (resp. a(e)) by the variable (resp. clause) adjacent to it.

Denote G = (V, F,E) by the resulting bipartite graph. Each variable v ∈ V has incident
half-edges δv, while each clause a ∈ F has incident half-edges δa. Throughout, we denote
α ≡ m

n = d
k . For the nae-sat formula, there is an extra label for each edge e ∈ E, namely

the literal Le ∈ {0, 1}, which specifies how the variable v(e) participates in the clause a(e).
Then, the labelled graph G = (V, F,E, L) ≡ (V, F,E, (Le)e∈E) represents a nae-sat instance.

▶ Definition 1.2. Given a nae-sat instance G = (V, F,E, L), x ∈ {0, 1}V is a (nae-sat)
solution if∏

a∈F
φ((xv(e) ⊕ Le)e∈δa) = 1 ,

where for z = (zi)i≤k ∈ {0, 1}k, φ(z) ≡ 1(z1 = . . . = zk), and ⊕ denotes addition mod 2.
Given a graph G = (V, F,E), x ∈ {0, 1}V is a (hypergraph 2-) coloring if x is a nae-sat
solution on G with literals identically zero (G, 0).

APPROX/RANDOM 2024



47:6 Upper Bounds on the Colorability Threshold for Random Regular Graph

The configuration model can be described as follows. Add d (resp. k) half-edges adjacent
to each variable (resp. each clause) so that there are total nd = mk number of half-edges
adjacent to variables (resp. clauses). Thus, E can be regarded as a perfect matching between
to the set of half-edges adjacent to variables to those adjacent to clauses, and hence a
permutation in Snd. Then, the configuration model G = (V, F,E) is defined by taking
E ∼ Unif(Snd). For a random d-regular k-nae-sat instance G = (G,L), we take the literals
L ≡ (Le)e∈E

i.i.d.∼ Unif({0, 1}).
Note that the configuration model G may induce multi-edges. However, if we denote

S to be the event that G is simple, then it is well-known that P(G ∈ S ) = Ω(1) (see e.g.
Chapter 9 of [40]). Thus, the configuration model is mutually contiguous with respect to the
uniform distribution among all (d, k)-regular graphs, so to prove Theorem 1.1, it suffices to
work with the configuration model.

In order to use the interpolation method, we consider the positive temperature analogs
of the 2-coloring or the nae-sat model, which have more desirable properties due to the
softness of the constraints - e.g. the concentration of the free energy as seen in Lemma 1.3
below. We introduce notations that allow us to set up the positive temperature models. Let
S be a finite set and b ≡ (bs)s∈S be a vector with bs ≥ 0. Also, let X be a finite set encoding
the spins and denote F(X ) by the set of functions X → R≥0. Let f : S → F(X ) be a random
function which may be chosen randomly according to any distribution, i.e. f(·; s) ∈ F(X )
is random for s ∈ S, and f1, . . . , fk be i.i.d. copies of f . Then, define the random function
θ : X k → R as follows. For x = (x1, . . . , xk) ∈ X k, let

θ(x) =
∑
s∈S

bs

k∏
i=1

fi(xi; s) . (1.6)

We will consider S = X = {0, 1} in Definition 1.4 below, but one may also consider the
case S ≠ X in general. We assume that there exists a constant ε ∈ (0, 1) such that for any
x ∈ X k,

ε ≤ 1 − θ(x) ≤ ε−1 almost surely. (1.7)

On a (d, k)-regular bipartite graph G = (V, F,E), let (θa)a∈F be i.i.d. copies of the random
function θ, and define the (random) Gibbs measure on X V by

µG(x) ≡ 1
Z(G)

∏
a∈F

(
1 − θa(xδa)

)
,

where Z(G) is the normalizing constant explicitly given by

Z(G) ≡
∑
x∈X V

∏
a∈F

(
1 − θa(xδa)

)
. (1.8)

We note that the condition (1.7) on θ guarantees that the Gibbs measure µG is “finite
temperature”. In particular, if we define the free energy

Fn ≡ 1
n
E logZ(G) , (1.9)

where G is drawn from the configuration model and E above is over the randomness of G

and randomness of (θa)a∈F , we have the following concentration of the free energy.
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▶ Lemma 1.3. Assume that θ satisfies (1.7) with some constant ε ∈ (0, 1). Then, for any
δ > 0, there exists a constant which only depends on ε, δ > 0 such that

P
(∣∣∣∣ 1n logZ(G) − Fn

∣∣∣∣ ≥ δ

)
≤ e−cn .

The concentration of free energy in Lemma 1.3 is standard in literature [11, 22, 9], and we
provide the proof in Section 2 for completeness.

▶ Definition 1.4. (Positive temperature models) For β > 0, called the inverse temperature,
the positive temperature nae-sat model θnae(·) ≡ θnae(· ; β) is defined as follows. Let
L ≡ (Li)i≤k

i.i.d.∼ Unif({0, 1}) be a sequence of i.i.d. Bernoulli(1/2) random variables. Then
for x = (xi)i≤k ∈ {0, 1}k, define

θnae(x) ≡ θnae(x;β) ≡ (1 − e−β) ·

(
k∏
i=1

(Li ⊕ xi) +
k∏
i=1

(Li ⊕ xi ⊕ 1)
)
. (1.10)

That is, in the general form (1.6), we take S = X = {0, 1}, bi ≡ 1 − e−β , and f(x; 0) ≡
1 − f(x; 1) ≡ 1(x⊕ L) for L ∼ Unif({0, 1}). Moreover, the positive temperature hypergraph
2-coloring model θcol(·) ≡ θcol(· ; β) is defined by taking Li ≡ 0 above:

θcol(x) ≡ θcol(x;β) ≡ (1 − e−β) ·
∑

s∈{0,1}

k∏
i=1

1(xi = s) , (1.11)

which is taking f(x; s) = 1(x = s) in (1.6).

We note that formally taking β = ∞ and θ = θcol(x;β), the corresponding partition function
Z(G) equals the number of 2-coloring on G. A similar statement holds for the nae-sat
model.

By constructing a certain sequential coupling of the given factor graph (G, (θ)a∈F ) to a set
of disjoint trees so that the free energy is monotone at every step, the interpolation method
[35, 37, 52] gives an upper bound on the free energy Fn as follows: for ζ ∈ P

(
P(P(X ))

)
,

where P(A) denotes the set of probability measures on A, and λ ∈ (0, 1), there exists an
explicit functional P(ζ, λ) ≡ Pd,k,θ(ζ, λ) such that we have Fn ≤ infζ,λ P(ζ, λ) + on(1). By
taking advantage of the interpolation method applied to positive temperature models in
Definition 1.4 and the concentration of the free energy in Lemma 1.3, we prove the proposition
below in Section 2.

▶ Proposition 1.5. For a given k ≥ 3 and d, suppose that there is a solution x ∈ [1/2 −
1/2k, 1/2] to the bp equation (1.1). Further, suppose that ⋆Φ(d) in (1.2) defined with such x
satisfies ⋆Φ(d) < 0. Then, with probability tending to one, no nae-sat solution exists on G.
Also, with probability tending to one, no 2-coloring exists on G.

Moreover, we show that d⋆(k) in Theorem 1.1 is well-defined and that the assumptions of
Proposition 1.5 are meaningful. Note that the bp equation (1.1) is equivalent to Ψd(x) = x,
where Ψd ≡ Ψk,d : [0, 1] → [0, 1] is defined by Ψd ≡ Ψ̇ ◦ Ψ̂ with

Ψ̇(x) ≡ Ψ̇d(x) ≡ 1 − xd−1

2 − xd−1 , Ψ̂(x) ≡ Ψ̂k(x) ≡ 1 − 2xk−1

1 − xk−1 . (1.12)

The function Ψ̇(·) is variable bp recursion and Ψ̂(·) is clause bp recursion (see [31, Section
3.1] for the motivation).

APPROX/RANDOM 2024



47:8 Upper Bounds on the Colorability Threshold for Random Regular Graph

▶ Proposition 1.6. For k ≥ 3 and d ∈ [dlbd(k), dubd(k)], there exists a unique root to
Ψd(x) ≡ (Ψ̇ ◦ Ψ̂)(x) = x in the interval x ∈ [1/2 − 1/2k, 1/2]. Thus, ⋆Φ(d) in equation (1.2)
is well-defined. Furthermore, d → ⋆Φ(d) is continuous in the interval d ∈ [dlbd(k), dubd(k)]
with ⋆Φ(dlbd(k)) > 0 and ⋆Φ(dubd(k)) < 0.

The proof of Proposition 1.6 is given in Section 3 for k ≥ 4. We refer to the full version [14]
for the proof of Proposition 1.6 for k = 3, which requires extra numerical estimates. Finally,
we show that the first moment EZcol of the number of 2-colorings on random d-regular
k-uniform hypergraphs is the same with EZnae up to a constant.

▶ Lemma 1.7. For k ≥ 3, there exist constants Ck,d,i for i = 1, 2,, which only depends on
k, d such that EZcol/EZnae ∈ [Ck,d,1, Ck,d,2]

Proof of Theorem 1.1. By Proposition 1.6, the function ⋆Φ(d) is well-defined and has a
root in the interval [dlbd(k), dubd(k)]. Moreover, since ⋆Φ(dubd(k)) < 0 holds and ⋆Φ(·)
is continuous, we have ⋆Φ(d) < 0 for d ∈ (d⋆(k), dubd(k)]. Hence, Proposition 1.5 shows
that if d ∈ (d⋆(k), dubd(k)], then the 2-coloring of random d-regular k-uniform hypergraph
and random d-regular k-nae-sat is not satisfiable, both with probability tending to one as
n → ∞. Further, since EZcol ≍k,d EZnae = exp

(
n
(

log 2+α log
(
1−2−k+1))) by Lemma 1.7

and log 2 + α log
(
1 − 2−k+1) < 0 holds for d > dubd(k), the same is true for d > dubd(k) by

Markov’s inequality. ◀

2 Satisfiability upper bound by interpolation

In this section, we prove Lemma 1.3, Proposition 1.5, and Lemma 1.7. We prove Proposition
1.5 in Section 2.1 based on the interpolation bound from statistical physics [35, 37]. In
Section 2.2, we prove Lemma 1.3 based on Azuma Hoeffding’s inequality applied to the Doob
martingale with respect to clause revealing filtration. In Section 2.3, we prove Lemma 1.7
based on the local central limit theorem.

2.1 Proof of Proposition 1.5
Throughout, we assume that we are given k ≥ 3 and d such that there is a solution
x ∈ [1/2 − 1/2k, 1/2] to the equation (1.1). We use the following one-step-replica-symmetry-
breaking bound proven in [58, Theorem E.3] for random regular graphs (see also [44]), which
is the analog of [52, Theorem 3] for Erdős-Rényi graphs.

▶ Theorem 2.1 (Theorem E.3 in [58]). Let X and S be finite sets and consider the partition
function Z(G) (cf. Eq. (1.8)), where θ in (1.6) satisfies the condition (1.7) for some ε > 0
and bs ≥ 0 holds for s ∈ S. Let M0 ≡ P(X ) be the space of probability measures over X ,
M1 ≡ P(M0) be the space of probability measures over M0, and M2 ≡ P(M1) be the
space of probability measures over M1. For ζ ∈ M2, let η = (ηa,j)a≥0,j≥0 be an array of
i.i.d. samples from ζ. For each index (a, j) let ρa,j ∈ P(X ) be a conditionally independent
sample from ηa,j, and denote ρ = (ρa,j)a≥0,j≥0. For x ∈ X define random variables

ua(x) ≡
∑
x∈X k

1{x1 = x}
(
1 − θa(x)

) k∏
j=2

ρa,j(xj) , ua ≡
∑
x∈X k

(
1 − θa(x)

) k∏
j=1

ρa,j(xj) ,

where we recall that (θa)a≥0 are i.i.d. copies of the random function θ. For any λ ∈ (0, 1)
and any ζ ∈ M2,
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Fn ≤ P(ζ, λ) +Oε(n−1/3) , where

P(ζ, λ) ≡ Pθ(ζ, λ) := λ−1E logE′
[(∑

x∈X

d∏
a=1

ua(x)
)λ]

− (k − 1)αλ−1E logE′
[

(u0)λ
]
. (2.1)

Here, Fn is the free energy for the configuration model defined in (1.9), E′ denotes the
expectation over ρ conditioned on all else, and E denotes the overall expectation.

▶ Remark 2.1. [58, Theorem E.3] is stated more general than Theorem 2.1 by considering
independent external field {hv}v∈V and random (bs)s∈S . For our purposes, it suffices to
consider non-random bs ≥ 0 and hv ≡ 1.
We use Theorem 2.1 for the positive temperature models in Definition 1.4. Note that
θnae(· ; β) and θcol(· ; β) satisfies the condition (1.7) with ε = e−β . Furthermore, in the
bound (2.1), we take λ = β−1/2 and ζ ≡ ζk,d,β ∈ P

(
P
(
P({0, 1})

))
given by a point mass

at ηk,d,β :

ζk,d,β ≡ δηk,d,β
, (2.2)

where ηk,d,β ∈ P(P({0, 1})) is defined as follows. Identify P({0, 1}) with [0, 1] by the map

ρ ∈ P({0, 1}) ↔ ρ(1) ∈ [0, 1] .

Thus, denoting η ≡ ηk,d,β ∈ P([0, 1]), define

η

(
eβ

eβ + e−β

)
= η

(
e−β

eβ + e−β

)
= x , η

(
1
2

)
= 1 − 2x , (2.3)

where x⋆ ≡ x⋆(k, d) is the bp fixed point, i.e. the solution to the equation (1.1). Such choice
of ζk,d,β is motivated from physics [43] and previous mathematical works [31, Section 3] and
[32, Section 4].

Before proceeding further, we show that if ζ is given as in (2.2), (2.3), then P(ζ, λ) does
not depend on literals. More precisely, suppose that ζ = δη0 , where η0 ∈ P([0, 1]) is such
that η0(dx) = η0(d(1 − x)), i.e. ρ d= 1 − ρ holds for ρ ∼ η0. For a fixed L = (Li)i≤k ∈ {0, 1}k,
let

θL(x) = (1 − e−β) ·

(
k∏
i=1

(Li ⊕ xi) +
k∏
i=1

(Li ⊕ xi ⊕ 1)
)
.

With abuse of notation, for x ∈ {0, 1} and independent samples ρa,j ∈ P({0, 1}) from η0, let

ua,L(x) ≡
∑

x∈{0,1}k

1{x1 = x}
(
1 − θL(x)

) k∏
j=2

ρa,j(xj) , uL ≡
∑

x∈{0,1}k

(
1 − θL(x)

) k∏
j=1

ρ0,j(xj) ,

where we consider L ∈ {0, 1}k to be fixed. Then, for a given sequence of literals La ∈ {0, 1}k
for 0 ≤ a ≤ d, let

P
(
δη0 , λ; (La)0≤a≤d

)
:= λ−1 logE′

( ∑
x∈{0,1}

d∏
a=1

ua,La
(x)
)λ

−(k−1)αλ−1E logE′ (uL0

)λ
, (2.4)

where E′ is the expectation with respect to the independent samples ρa,j ∈ P({0, 1}) from
η0. Note that if La

i.i.d∼ Unif({0, 1}k), then Pθnae(δη0 , λ) = ELP
(
δη0 , λ; (La)0≤a≤d

)
holds, and

if La ≡ 0 for 0 ≤ a ≤ d, then Pθcol(δη0 , λ) = P
(
δη0 , λ; 0

)
holds. The following lemma then

clarifies the mechanism behind the identical satisfiability upper bound in Theorem 1.1.

APPROX/RANDOM 2024
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▶ Lemma 2.2. Consider ζ = δη0 for some η0 ∈ P([0, 1]) such that η0(dx) = η0(d(1 − x)).
Then, for any literals La ∈ {0, 1}k for 0 ≤ a ≤ d, the value P

(
δη0 , λ; (La)0≤a≤d

)
does not

depend on (La)0≤a≤d. Thus, Pθnae(δη0 , λ) = Pθcol(δη0 , λ) holds.

Proof. For fixed La ∈ {0, 1}k for 0 ≤ a ≤ d, note that the vectors
(
ua,L

a
(0), ua,L

a
(1)
)

are
independent for 0 ≤ a ≤ d. Thus, it suffices to show that for given L, L′ ∈ {0, 1}k and
1 ≤ a ≤ d,

uL
d= uL′ and

(
ua,L(0), ua,L(1)

) d=
(
ua,L′(0), ua,L′(1)

)
. (2.5)

To this end, let L′ = 0 and we first prove that uL
d= u0 holds. Since θL(x) = θ0(x⊕ L),

uL ≡
∑

x∈{0,1}k

(
1 − θL(x)

) k∏
j=1

ρ0,j(xj) =
∑

x∈{0,1}k

(
1 − θ0(x)

) k∏
j=1

ρ0,j(xj ⊕ Lj) .

Note that since (ρ0,j)1≤j≤k are i.i.d. samples from η0 and η0(dx) = η0(d(1 − x)) holds, the
sequence

(
ρ0,j(· ⊕ Lj)

)
1≤j≤k are also i.i.d. from η0. Hence, the equation above shows that

uL
d= u0 holds.
Next, we prove that

(
ua,L(0), ua,L(1)

) d=
(
ua,0(0), ua,0(1)

)
holds. Without loss of generality,

let a = 1. Again since θL(x) = θ0(x⊕ L),

u1,L(x) =
∑

x∈{0,1}k

1{x1 ⊕ L1 = x}
(
1 − θ0(x)

) k∏
j=2

ρ1,j(xj ⊕ Lj)

Now, observe that θ0(·) is invariant under global flip, i.e. θ0(x) = θ0(x⊕ 1). Thus, it follows
that

u1,L(x) =
∑

x∈{0,1}k

1{x1 = x}[1 − θ0(x)]
k∏
j=2

ρ1,j(xj ⊕ L1 ⊕ Lj) .

By the same reasons as above,
(
ρ1,j(· ⊕ L1 ⊕ Lj)

)
2≤j≤k have the same distribution as(

ρ1,j
)

2≤j≤k, which are i.i.d. from η0. Thus, we have that
(
u1,L(0), u1,L(1)

) d=
(
u1,0(0), u1,0(1)

)
.

Therefore, (2.5) holds, which concludes the proof. ◀

The following lemma relates Pθcol(ζk,d,β , β−1/2) = Pθnae(ζk,d,β , β−1/2), and ⋆Φ(d), which
plays a crucial role in proving Proposition 1.5. Recall the definition of ζk,d,β in (2.2) and
(2.3).

▶ Lemma 2.3. Pθcol(ζk,d,β , β−1/2) ≤ C+β1/2 ×⋆Φ(d) holds for some constant C ∈ R, which
does not depend on β > 0.

Proof. Throughout, let (ρa,j)a≥0,j≥0 denote i.i.d. samples from ηk,d,β defined in (2.3), and
let E′ (resp. P′) denote the expectation (resp. probability) with respect to (ρa,j)a≥0,j≥0.
Also, we use the generic notation C by a constant that does not depend on β > 0. Note that
since θcol and ηk,d,β are non-random, the outer expectation E in the definition of P(ζ, λ) in
(2.1) is redundant.

First, we bound the second term of the definition of Pθcol(ζk,d,β , β−1/2) in (2.1):

(k − 1)αβ1/2 logE′
[

(u0)β
−1/2 ]

= (k − 1)αβ1/2 logE′

[(
1 − (1 − e−β)

( k∏
j=1

ρ0,j(0) +
k∏
j=1

ρ0,j(1)
))β−1/2]
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Note that the expectation inside the log in the right hand side above is bounded below by

2−β−1/2
· P′
(

1 − (1 − e−β)
( k∏
j=1

ρ0,j(0) +
k∏
j=1

ρ0,j(1)
)

≥ 1
2

)
= 2−β−1/2

(1 − 2xk) ,

where x is the solution to the bp equation (1.1) and the equality holds for large enough
β ≥ β0 since for large β and k ≥ 3, (1 − e−β)

(∏k
j=1 ρ0,j(0) +

∏k
j=1 ρ0,j(1)

)
≥ 1

2 holds if

and only if either ρ0,j(1) = eβ

eβ+e−β holds for all 1 ≤ j ≤ k, or ρ0,j(1) = e−β

eβ+e−β holds for all
1 ≤ j ≤ k. Thus, it follows that

−(k − 1)αλ−1E logE′
[
(u0)λ

]
≤ C − β1/2(k − 1)α log

(
1 − 2xk

)
. (2.6)

Next, we estimate the first term of the definition of Pθcol(ζk,d,β , β−1/2) in (2.1), which equals

β1/2 logE′
[( ∑

x∈{0,1}

d∏
a=1

ua(x)
)β−1/2]

= β1/2 logE′

( d∏
a=1

(
1 − (1 − e−β)

k∏
j=2

ρa,j(0)
)

+
d∏
a=1

(
1 − (1 − e−β)

k∏
j=2

ρa,j(1)
))β−1/2

(2.7)

We upper bound the expectation inside the log in the above expression by

2β
−1/2

· P′(A)+
(
3e−β)β−1/2

,

where

A :=


d∏
a=1

(
1 − (1 − e−β)

k∏
j=2

ρa,j(0)
)

+
d∏
a=1

(
1 − (1 − e−β)

k∏
j=2

ρa,j(1)
)

≥ 3e−β

 .

Define the events E0 and E1 involving (ρa,j)1≤a≤d,2≤j≤k as follows.

E0 is the event such that for each 1 ≤ a ≤ d, we have for some j ∈ {2, . . . , k} that
ρa,j(0) ̸= eβ

eβ+e−β .
E1 is the event such that for each 1 ≤ a ≤ d, we have for some j ∈ {2, . . . , k} that
ρa,j(1) ̸= eβ

eβ+e−β .

We now claim that for large enough β, the event A is included in E0 ∪ E1. To this
end, suppose that the event (E0 ∪ E1)c = Ec

0 ∩ Ec
1 holds. Then, for each x ∈ {0, 1}, for

some a ≡ a(x) ∈ {1, . . . , d} such that ρa,j(x) = eβ

eβ+e−β holds for all 2 ≤ j ≤ k. Thus, for
x ∈ {0, 1}, we have

d∏
a=1

(
1 − (1 − e−β)

k∏
j=2

ρa,j(x)
)

≤ 1 − (1 − e−β)
(

eβ

eβ + e−β

)k−1

≤ e−β + ke−2β <
3
2e

−β ,

where the last inequality holds for large enough β ≥ βk and we used (1−x)k−1 ≥ 1− (k−1)x
for x > 0 in the second inequality. Hence, summing over x ∈ {0, 1} gives that the event
A cannot hold, which proves our claim that A ⊂ E0 ∪ E1. Consequently, the term (2.7) is
bounded above by

β1/2 log
(

2β
−1/2

· P′(E0 ∪ E1
)

+ (3e−β)β
−1/2

)
≤ β1/2 logP′(E0 ∪ E1

)
+ C .
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Note that P′(E0 ∪ E1
)

can be calculated explicitly by

P′(E0 ∪ E1) = 2(1 − xk−1)d − (1 − 2xk−1)d = (1 − xk−1)d−1(1 − 2xk)
1 − x

,

where in the final equality, we used the fact that x is the solution to the equation (1.1).
Therefore, we have proven that

β1/2 logE′
[( ∑

x∈{0,1}

d∏
a=1

ua(x)
)β−1/2]

≤ C + β1/2 (− log(1 − x) + (d− 1) log(1 − xk−1) + log(1 − 2xk)
)
. (2.8)

In conclusion, combining (2.6) and (2.8), and recalling the definition of ⋆Φ(d) in (1.2), we
have

Pθcol(ζk,d,β , β−1/2) ≤ C + β1/2⋆Φ(d) ,

which concludes the proof. ◀

Proof of Proposition 1.5. Given a nae-sat instance G, let SOL(G) ⊂ {0, 1}V denotes
the set of nae-sat solutions. Also, let Zβ,nae(G) denotes the partition function (1.8) for
θ = θnae(· ; β). Note that if x ∈ SOL(G), then θnae(xδa) = 0 for any a ∈ F , thus we have for
any β > 0 that

Zβ,nae(G) ≡
∑

x∈{0,1}V

∏
a∈F

(
1 − θnae(xδa;β)

)
≥ |SOL(G)| . (2.9)

On the other hand, since θnae(· ; β) satisfies the condition (1.7) with ε = e−β , we have by
Theorem 2.1 that

1
n
E
[

logZβ,nae(G)
]

≤ Pθnae(ζk,d,β , β−1/2) + on(1) = Pθcol(ζk,d,β , β−1/2) + on(1) ,

where the last equality is due to Lemma 2.2. By Lemma 2.3, the right hand side is further
bounded by

1
n
E
[

logZβ,nae(G)
]

≤ β1/2 · ⋆Φ(d) + C + on(1) ,

for some constant C that does not depend on n nor β. If ⋆Φ(d) < 0, then for large enough
β > 0, β1/2 · ⋆Φ(d) + C < −1 holds, thus n−1E

[
logZβ,nae(G)

]
< −1 holds for large enough

n. For such β = β0(k, d) > 0, we have by (2.9) and Lemma 1.3 that for large enough n,

P
(

|SOL(G)| ≥ 1
)

≤ P
(∣∣∣∣ 1n logZβ0,nae(G) − 1

n
E
[

logZβ0,nae(G)
]∣∣∣∣ ≥ 1

)
≤ e−cn ,

for some constant c that depends only on β0 > 0, which finishes the proof for the nae-sat
model.

Given a configuration model G, let Zβ,col(G) denote the partition function (1.8) for
θ = θcol(· ; β). Then, by the same reasoning, Theorem 2.1 and Lemma 2.3 shows that if
⋆Φ(d) < 0 then 1

nE
[

logZβ,col(G)
]
< −1 holds for large enough β = β0(k, d) > 0 and n

large enough. On the event that there exists a 2-coloring on G, Zβ,col(G) ≥ 1 holds, so
Lemma 1.3 again concludes the proof. ◀
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2.2 Proof of Lemma 1.3
Recall that G = (V, F,E) is generated from the configuration model, where the E is drawn
uniformly from Snd. Thus, E has the same law as sequentially drawing random clauses
a1, . . . ,am as follows. At times t ∈ {1, . . . ,m} clause at is drawn by connecting the k adjacent
half-edges to previously unmatched half-edges adjacent to variables. For 1 ≤ t ≤ m, let Ft be
the σ-algebra generated by a1, . . . ,at, and F0 ≡ ∅. Denote Mt ≡ E

[
logZ(G) | Ft

]
by the

associated Doob martingale. Note that if G = (V, F,E) and G′ = (V, F,E′) has the the same
set of edges except for those adjacent to two clauses a1 ̸= a2 ∈ F , then by our assumption of
θ in (1.7) and the definition of Z(G) in (1.8), it follows that ε2 ≤ Z(G)/Z(G′) ≤ ε−2 holds.
Thus, we have for every t ∈ {0, 1, . . . ,m− 1} that∣∣∣Mt+1 −Mt

∣∣∣ ≡
∣∣∣E[ logZ(G) | Ft+1

]
− E

[
logZ(G) | Ft

]∣∣∣ ≤ 2 log
(
1/ε
)
, (2.10)

from which Lemma 1.3 follows.

Proof of Lemma 1.3. Note that Mm = logZ(G) and M0 = E
[

logZ(G)
]

holds and
(Mt)0≤t≤m is a martingale with bounded difference by (2.10). Therefore, the conclusion
follows from Azuma Hoeffding’s inequality. ◀

2.3 Proof of Lemma 1.7
The following notations are convenient for the proof of Lemma 1.7. For non-negative
quantities f = fd,k,n and g = gd,k,n, we use any of the equivalent notations f = Ok,d(g), g =
Ωk,d(f), f ≲k,d g and g ≳k,d f to indicate that there exists a constant Ck,d, which only
depends on k, d such that f ≤ Ck,d · g. We drop the subscripts d (resp. k, d) if the constant
Ck,d does not depend on d (resp. k, d). When f ≲k,d g and g ≲k,d f , we write f ≍k,d g.
Similarly when f ≲ g and g ≲ f , we write f ≍ g.

Note that EZcol is the sum over x ∈ {0, 1}V of the probabilities that x is a 2-coloring
on G. By symmetry, the probability of x ∈ {0, 1}V being a 2-coloring depends only on the
number nγ of nodes having color 1, which we denote by pγ . Thus, EZcol =

∑
γ

(
n
nγ

)
pγ ,

where the sum is over γ ∈ (0, 1) such that nγ ∈ Z. Moreover, we can express pγ as follows.
Let X1, . . . , Xm be i.i.d. Binom(k, γ) random variables and denote Pγ by the probability
with repect to (Xi)i≤m. Then, we have

pγ = Pγ
(
Xi /∈ {0, k} for all 1 ≤ i ≤ m

∣∣∣ m∑
i=1

Xi = kmγ
)

≤
Pγ
(
Xi /∈ {0, k} for all 1 ≤ i ≤ m

)
Pγ
(∑m

i=1 Xi = kmγ
) ≲k

√
m(1 − γk − (1 − γ)k)m , (2.11)

where the last inequality is due to a Stirling’s approximation. It follows that

EZcol ≤ nO(1)
∑
γ

exp
(
nFα(γ)

)
, where

Fα(γ) := H(γ) + α log
(
1 − γk − (1 − γ)k

)
. (2.12)

Here, H(γ) ≡ −γ log γ − (1 − γ) log(1 − γ) is the entropy of γ. Note that γ → γk + (1 − γ)k
is uniquely minimized at γ = 1/2. Further, the entropy H(γ) is strictly concave and
is maximized at γ = 1/2. Thus, γ → Fα(γ) is uniquely maximized at γ = 1/2 with
∂2Fα

∂γ2 (1/2) < 0. Since EZnae = exp
(
nFα(1/2)

)
, it follows from (2.12) that

EZcol ≤ nO(1) exp
(
nFα(1/2)

)
= nO(1) · EZnae . (2.13)

We now show that the polynomial factor nO(1) can actually be removed with a matching
lower bound.
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First, by (2.11) and the fact that γ → Fα(γ) is uniquely maximized at γ = 1/2 with strictly
negative second derivative, the contribution to EZcol from γ such that |γ − 1/2| ≥ n−1/3 is
negligible:

∑
|γ−1/2|≥n−1/3

(
n

nγ

)
pγ ≲k,d exp

(
− Ωk,d

(
n1/3)) · EZnae . (2.14)

Thus, we focus on the regime |γ − 1/2| ≤ n−1/3. Note that we can calculate pγ by summing
over the empirical distribution ν of (Xi)i≤m. Consider ν ∈ P({1, . . . , k − 1}) and let
pγ(j) :=

(
k
j

)
γj(1 − γ)k−j . Then,

pγ =

∑
ν 1
(∑

j jνj = kmγ
)
e−kmγλ( m

mν

)∏
j(pγ(j)eλj)mνj

Pγ
(∑m

i=1 Xi = kmγ
) ,

where
(
m
mν

)
≡ m!∏

j
(mνj)!

and we introduced a lagrange parameter λ ∈ R in the last equality.

Let

νγ,λ(x) := pγ(x)eλx∑k−1
j=1 pγ(j)eλj

for 1 ≤ x ≤ k − 1 ,

and denote Pγ,λ by the probability with respect to X̃1, . . . , X̃m
i.i.d.∼ νγ,λ. Then, it follows

that

pγ =
Pγ,λ

(∑m

i=1 X̃i = kmγ
)

Pγ

(∑m

i=1 Xi = kmγ
) exp

(
− m · Ξ(γ, λ)

)
, where Ξ(γ, λ) := kγλ − log

( k−1∑
j=1

pγ(j)eλj

)
.

(2.15)

In order to use the local central limit theorem, we take λ = λ(γ) such that Eγ,λX̃ = kγ,
where X̃ ∼ νγ,λ. The existence of such λ(γ) is guaranteed by the lemma below.

▶ Lemma 2.4. For large enough n and all γ such that |γ − 1/2| ≤ n−1/3, there exists
a unique λ = λ(γ) such that Eγ,λX̃ = kγ holds. Furthermore, we have λ(1/2) = 0 and∣∣λ(γ)

∣∣ ≲k n−1/3 holds uniformly over |γ − 1/2| ≤ n−1/3.

Proof. Note that we have ∂Ξ
∂λ (γ, λ) = kγ − Eγ,λX̃ by definition of νγ,λ and Ξ(γ, λ). Further,

we have that

∂Ξ
∂λ

(1
2 , 0

)
= k

2 − E 1
2 ,0X̃ = k

2 − E 1
2

[
X
∣∣X /∈ {0, k}

]
= 0 ,

where E 1
2

is with respect to X ∼ Binom(1/2). Since λ → log
(∑k−1

j=1 pγ(j)eλj
)

is strongly
convex, we have ∂2Ξ

∂λ2

( 1
2 , 0
)
< 0. Thus, implicit function theorem shows that for γ ∈

(1/2 − ε, 1/2 + ε), where ε = ε(k) > 0 depends only on k, there exists λ = λ(γ) such that
∂Ξ
∂λ

(
γ, λ(γ)

)
= 0 holds, and that γ → λ(γ) is continuously differentiable. Therefore, for

large enough n and γ ∈ (1/2 − n−1/3, 1/2 + n1/3), there exists a unique λ = λ(γ) such that
Eγ,λ(γ)X̃ = kγ, and |λ(γ)| ≲k n−1/3 holds uniformly over γ ∈ (1/2 − n−1/3, 1/2 + n1/3). ◀

Having Lemma 2.4 in hand, we prove Lemma 1.7 by appealing to the local central limit
theorem.
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Proof of Lemma 1.7. The contribution to EZcol from γ such that |γ − 1/2| ≥ n−1/3 is
negligible by (2.14), thus we consider γ such that |γ − 1/2| ≤ n−1/3 holds. To this end,
we take λ = λ(γ) from Lemma 2.4 in equation (2.15). Then, by the local central limit
theorem [13],

pγ ≍
( Varγ

(
X
)

Varγ,λ(γ)
(
X̃
))1/2

· exp
(

−m · Ξ
(
γ, λ(γ)

))
, (2.16)

where X ∼ Binom(k, γ) and X̃ ∼ νγ,λ(γ). Lemma 2.4 further shows that
∣∣λ(γ)

∣∣ ≲k n−1/3,
thus we have

Varγ,λ(γ)
(
X̃
)

≍k Varγ
(
X
∣∣ 1 ≤ X ≤ k − 1

)
≍k Varγ(X) , (2.17)

where the final estimate holds because |γ − 1/2| ≤ n−1/3. Combining with (2.14), it follows
that

EZcol =
(
1 + on(1)

) ∑
|γ−1/2|≤n−1/3

(
n

nγ

)
pγ ≍k,d n

−1/2
∑

|γ−1/2|≤n−1/3

exp
(
nGα(γ)

)
, (2.18)

where

Gα(γ) := H(γ) − α · Ξ
(
γ, λ(γ)

)
.

Note that by comparing (2.16) and (2.17) with (2.11), we have Gα(γ) ≤ Fα(γ) for |γ−1/2| ≤
n−1/3. Also, note that for γ = 1/2, Gα(1/2) = Fα(1/2) holds since

Gα(1/2) = H(1/2) − α · Ξ(1/2, 0) = H(1/2) + α log
(
1 − γk − (1 − γ)k

)
,

where we used λ(1/2) = 0 by Lemma 2.4. Recalling that γ → Fα(γ) is uniquely maximized
at γ = 1/2 with strictly negative second derivative at the maximizer, it follows that the
same holds for γ → Gα(γ). Therefore, the sum in the right hand side of (2.18) can be
approximated by a Gaussian integration, which shows that

EZcol ≍k,d exp
(
nGα(1/2)

)
= EZnae .

This concludes the proof. ◀

3 Proof of Proposition 1.6

In this section, we prove Proposition 1.6 for k ≥ 4. The proof of Proposition 1.6 for k = 3
is available in the arXiv version [14]. The proof of Proposition 1.6 for k ≥ 4 can be split
into the following two lemmas. In Section 3.1, we prove Lemma 3.1 which guarantees the
existence and the uniqueness of the bp fixed point for k ≥ 4.

▶ Lemma 3.1. For k ≥ 4 and d ∈ [dlbd(k), dubd(k)], there exists a unique solution to
Ψd(x) = x in the range x ∈ [ 1

2 − 1
2k ,

1
2 ].

By Lemma 3.1, the function d → ⋆Φ(d) is well-defined. In Section 3.2, we prove Lemma 3.2
which guarantees that d⋆(k) is well-defined for k ≥ 4.

▶ Lemma 3.2. For k ≥ 4, the function d → ⋆Φ(d) is continuous for d ∈ [dlbd(k), dubd(k)].
Further, ⋆Φ(dlbd(k)) > 0 and ⋆Φ(dubd(k)) < 0 hold.

Proof of Proposition 1.6 for k ≥ 4. This is immediate from Lemma 3.1 and Lemma 3.2. ◀
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3.1 Proof of Lemma 3.1
Recall the variable bp recursion Ψ̇ and the clause bp recursion Ψ̂ defined in (1.12). To
prove the uniqueness of the bp fixed point, we show that the bp recursion Ψd ≡ Ψ̇ ◦ Ψ̂ is a
contraction for k ≥ 4.

▶ Lemma 3.3. For k ≥ 4 and d ∈ [dlbd(k), dubd(k)],
∣∣(Ψd)′(x)

∣∣ < 1 holds uniformly over
x ∈ [ 1

2 − 1
2k ,

1
2 ].

Proof. Throughout, we let x ∈ [1/2 − 1/2k, 1/2] and denote v = Ψ̂(x). We first consider
k ≥ 5. Observe that the derivative of the clause bp recursion can simply be bounded in
absolute value by

∣∣(Ψ̂)′(x)
∣∣ = (k − 1)xk−2

(1 − xk−1)2 ≤ (k − 1) · 2−k+2

(1 − 2−k+1)2 = 4(k − 1)
2k(1 − 2−k+1)2 , (3.1)

where the inequality holds since x → xk−2

(1−xk−1)2 is increasing. Similarly, we bound the
derivative of the variable bp recursion:∣∣(Ψ̇)′(v)

∣∣ = (d− 1)vd−2

(2 − vd−1)2 ≤ (d− 1)vd−2
0

(2 − vd−1
0 )2

≤ (d− 1)vd−2
0

(2 − vd−2
0 )2

, (3.2)

where we denoted v0 := Ψ̂(x0) for x0 = 1/2 − 1/2k. The first inequality holds because
x → Ψ̂(·) is decreasing on [1/2 − 1/2k, 1/2], and the last inequality holds since v0 < 1. To
this end, we upper bound vd−2

0 by

vd−2
0 =

(
1 − xk−1

0

1 − xk−1
0

)d−2

≤ (1 − xk−1
0 )d−2 ≤ e−(d−2)xk−1

0 . (3.3)

Note that xk−1
0 =

( 1
2
)k−1 (1 − 2

2k

)k−1 ≥
( 1

2
)k−1

(
1 − 2(k−1)

2k

)
and d ≥ (2k−1 − 2)k log 2 hold,

thus we can lower bound (d− 2)xk−1
0 by

(d− 2)xk−1
0 ≥

(
k log 2 − 4k log 2 + 4

2k

)
·
(

1 − 2(k − 1)
2k

)
.

Thus, combining with (3.3) shows that

vd−2
0 ≤ 2−keεk , where εk := 2(k − 1)k log 2

2k + 4k log 2 + 4
2k

(
1 − 2(k − 1)

2k

)
. (3.4)

Plugging this bound into (3.2), we have

|(Ψ̇)′(v)| < (d− 1) vd−2
0

(2 − vd−2
0 )2

≤ (2k−1k log 2 − 1) · 2−k · eεk

(2 − 2−keεk )2 .

Combining with the contraction of clause bp recursion in (3.1), we have

|(Ψd)′(x)| ≤ αk := 2k(k − 1) log 2
2k ·

(
1 − 1

2k−1k log 2

)
· eεk

(1 − 2−k+1)2(2 − 2−keεk )2 .

By comparing εk and εk+1 for k ≥ 5, it can be easily checked that k → εk is decreasing, and
the same holds for k → 2k(k−1) log 2

2k ·
(

1 − 1
2k−1k log 2

)
. Thus, k → αk is decreasing for k ≥ 5.

Furthermore, α5 can be calculated up to arbitrary precision (e.g. by Mathematica), which
satisfies α5 < 0.99 < 1. Consequently, |(Ψd)′(x)| < 1 holds for k ≥ 5.
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The case where k = 4 is more delicate, and the previous strategy of bounding the
derivative of clause and variable bp recursions separately no longer is successful. To this end,
we bound (Ψd)′(x) directly. If we denote v = Ψ̂k(x), then

∣∣(Ψd)′(x)
∣∣ =

∣∣(Ψ̂)′(x)| · |(Ψ̇)′(v)
∣∣ = (k − 1)(d− 1)vd−2

(2 − vd−1)2 · xk−1

(1 − xk−1)2 · 1
x
.

Since v ≡ Ψ̂k(x) ≡ 1−2xk−1

1−xk−1 , rearranging gives xk−1 = 1−v
2−v . Substituting this in for xk−1, we

have that∣∣(Ψd)′(x)
∣∣ = (k − 1)(d− 1) · v

d−2(2 − v)(1 − v)
(2 − vd−1)2 · 1

x
. (3.5)

We now claim that v → vd−2(2−v)(1−v)
(2−vd−1)2 is increasing for v ∈ [Ψ̂4(1/2), Ψ̂4(1/2 − 1/24)] and

d ∈ [24 log 2, 32 log 2] (recall that 24 log 2 > 16.7 ≡ dlbd(4) holds). Since v → (2 − vd−1)2 is
decreasing, it suffices to show that v → vd−2(2 − v)(1 − v) is increasing. Note that

d
dv

(
vd−2(2 − v)(1 − v)

)
= (dv2 − 3(d− 1)v+ 2(d− 2))vd−3 > 0 ⇐⇒ d >

4 − 3v
(2 − v)(1 − v) .

Note that v → 4−3v
(2−v)(1−v) is increasing since its derivative is given by 3v2−8v+6

(2−v)2(1−v)2 > 0. Thus,
to prove our claim, it suffices to check that for d0 := 24 log 2 and v0 = Ψ̂4(1/2 − 1/24) that
d0 >

4−3v0
(2−v0)(1−v0) holds. By a direct calculation, v0 = 3410/3753 < 0.91 and 24 log 2 > 16 >

4−3·0.91
(2−0.91)(1−0.91) holds, thus the claim that v → vd−2(2−v)(1−v)

(2−vd−1)2 is increasing is proven for d, v
in the regime of interest.

Note that x → v = Ψ̂4(x) is decreasing, thus (3.5) and our previous claim shows that for
all x0 ≤ x ≤ 1/2, where x0 = 1/2 − 1/24, we have

∣∣(Ψd)′(x)
∣∣ ≤ (d− 1)(k − 1)v

d−2
0 (2 − v0)(1 − v0)

(2 − vd−1
0 )2

· 1
x0

,

where v0 = Ψ̂4(x0) = 3410/3753. We next show that the right hand side as a function of
d ∈ [24 log 2, 32 log 2] is decreasing: since d → (2 − vd−1

0 )2 is increasing, it suffices to show
that d → (d− 1)vd−2

0 is decreasing. Note that

d
dd

(
(d− 1)vd−2

0

)
= vd−2

0

(
1 − (d− 1) log

(
1/v0

))
< 0 ⇐⇒ d >

1
log(1/v0) + 1 ,

and it can be verified that 24 log 2 > 16 > 1/ log(3753/3410) + 1 holds. Therefore, for k = 4,
it follows that for d0 = 24 log 2,

∣∣(Ψd)′(x)
∣∣ ≤ 3(d0 − 1)v

d0−2
0 (2 − v0)(1 − v0)

(2 − vd0−1
0 )2

· 1
x0

.

The right hand side can be computed to arbitrary precision (e.g. by Mathematica), it can be
verified that 3(d0 − 1)v

d0−2
0 (2−v0)(1−v0)

(2−vd0−1
0 )2 · 1

x0
< 0.9 < 1. This concludes the proof for the case

k = 4. ◀

In the proof of Lemma 3.3, we did not use the adjustment for dlbd(4) ≡ 16.7 > 24 log 2.
That is, max 1

2 − 1
24 ≤x≤ 1

2

∣∣(Ψd)′(x)
∣∣ < 1 holds for d ∈ [24 log 2, 32 log 2]. The adjustment

dlbd(4) ≡ 16.7 is needed for the following lemma, which guarantees the existence of the
solution to Ψd(x) = x.
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▶ Lemma 3.4. Ψd( 1
2 − 1

2k ) > 1
2 − 1

2k holds for k ≥ 4 for d ∈ [dlbd(k), dubd(k)].

Proof. Let v0 ≡ v0(k) = Ψ̂
( 1

2 − 1
2k

)
as before. Then, from the definition of Ψ̇, Ψ̂ in (1.12),

Ψd( 1
2 − 1

2k ) > 1
2 − 1

2k is equivalent to vd−1
0 < 4

2k+2 , which we aim to show for k ≥ 4. We start
with the case k ≥ 5. We have shown in (3.4) that vd−2

0 ≤ 2−keεk , holds, and by an analogous
proof, vd−1

0 ≤ 2−keβk holds, where βk ≡ εk − 1
2k−1

(
1 − 2(k−1)

2k

)
. Thus, it suffices to show that

eβk

(
1 + 1

2k−1

)
< 4 , where βk ≡ 2(k − 1)k log 2

2k + 4k log 2 + 2
2k

(
1 − 2(k − 1)

2k

)
.

For k = 5, eβ5(1 + 1/24) can be computed to arbitrary precision (e.g. by Mathematica), and
it can be numerically verified that eβ5(1 + 1/24) < 3.7. Further, k → βk is decreasing by
comparing βk and βk+1, thus this concludes the proof for k ≥ 5.

Next, we consider the case k = 4. Since d → vd−1
0 is maximized at d = dlbd(4) ≡ 16.7,

it suffices to show that v15.7
0 ≤ 2

9 holds, where v0 ≡ Ψ̂4(1/2 − 1/24) = 3410/3753. Since
v15.7

0 = (3410/3753)15.7 can be computed to arbitrary precision (e.g. by Mathematica), it can
be checked that v15.7

0 = (3410/3753)15.7 < 0.2221 < 2
9 holds, so this concludes the proof. ◀

Proof of Lemma 3.1. By Lemma 3.4, Ψd( 1
2 − 1

2k ) > 1
2 − 1

2k holds for k ≥ 4. Note that
Ψd(1/2) < 1/2 holds since Ψ̇(x) < 1/2 holds for any x ≥ 0. Thus, since x → Ψd(x) is
continuous and differentiable, intermediate value theorem guarantees the existence of the
solution to Ψd(x) = x for x ∈ [ 1

2 − 1
2k ,

1
2 ]. Moreover,

∣∣(Ψd)′(x)
∣∣ < 1 holds uniformly over

x ∈ [ 1
2 − 1

2k ,
1
2 ] by Lemma 3.3, thus mean value theorem guarantees the uniqueness of the

solution to Ψd(x) = x for x ∈ [ 1
2 − 1

2k ,
1
2 ]. ◀

3.2 Proof of Lemma 3.2
Recall that ⋆Φ(d) is defined in (1.2) as ⋆Φ(d) ≡ Φ

(
d, x⋆(k, d)

)
, where x⋆(k, d) ∈ [ 1

2 − 1
2k ,

1
2 ]

is the solution to Ψd(x) = x, and we defined the function Φ(d, x) by

Φ(d, x) ≡ Φk(d, x) := − log(1−x)−d(1−k−1−d−1) log(1−2xk)+(d−1) log(1−xk−1) . (3.6)

To prove ⋆Φ
(
dlbd(k)

)
> 0 and ⋆Φ

(
dubd(k)

)
< 0, we show respectively in Lemmas 3.5 and

3.6 that Φ
(
dlbd(k), x

)
> 0 and Φ

(
dubd(k), x

)
< 0 hold uniformly over x ∈ [ 1

2 − 1
2k ,

1
2 ].

▶ Lemma 3.5. For k ≥ 4, Φ(dlbd(k), x) > 0 holds uniformly over x ∈ [ 1
2 − 1

2k ,
1
2 ].

Proof. Note that rearranging Φ(d, x) gives

Φ(d, x) = − log(1 − x) − d
(
(1 − k−1) log(1 − 2xk) − log(1 − xk−1)

)
+ log(1 − 2xk) − log(1 − xk−1)

≥ − log(1 − x) − d
(
(1 − k−1) log(1 − 2xk) − log(1 − xk−1)

)
,

(3.7)

where the inequality holds since log(1−2xk) ≥ log(1−xk−1) holds for x ∈ [0, 1/2]. Note that
the first term in the right hand side x → − log(1 − x) is convex, so the linear approximation
at x = 1/2 shows that − log(1 − x) ≥ log 2 + 2(x − 1/2) holds. Further, the function
x → (1 − k−1) log(1 − 2xk) − log(1 − xk−1) is increasing since

d
dx

(
(1 − k−1) log(1 − 2xk) − log(1 − xk−1)

)
= (k − 1)xk−2(1 − 2x)

(1 − 2xk)(1 − xk−1) ≥ 0 .
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Thus, the right hand side in (3.7) for d = dlbd(k) can further be lower bounded by

Φ
(
dlbd(k), x

)
≥ log 2 + 2

(
x− 1/2

)
+ dlbd(k)

k
· log

(
1 − 2−k+1)

≥ log 2 − 2−k+1 + dlbd(k)
k

· log
(
1 − 2−k+1) =: F (k) , (3.8)

where we used x ≥ 1/2 − 1/2k in the last inequality. Using the inequality log(1 − a) ≥
−a− a2

2 − a3

2 for a = 2−k+1 ≤ 1
8 , we have, for k ≥ 5, that

F (k) = log 2−2−k+1+(2k−1−2) log 2·log(1−2−k+1) ≥ 1
2k

(
3 log 2 − 2 − 6 log 2

2k + 8 log 2
22k

)
.

For k ≥ 6, the right hand side above is positive since 3 log 2 − 2 − 3 log 2
32 > 0.01, thus

(3.8) shows that Φ
(
dlbd(k), x

)
> 0 holds for k ≥ 6 and x ∈ [ 1

2 − 1
2k ,

1
2 ]. For k ∈ {4, 5}, we

can explicitly calculate F (k) by F (4) ≡ log 2 − 1/8 + (16.7/4) log (7/8) > 0.01 > 0, and
F (5) ≡ log 2 − 1/16 + 14 log 2 · log (15/16) > 0.004 > 0, thus (3.8) again concludes the proof
for k ∈ {4, 5}. ◀

▶ Lemma 3.6. For k ≥ 4, Φ
(
dubd(k), x

)
< 0 holds uniformly over x ∈ [ 1

2 − 1
2k ,

1
2 ].

Proof. We first claim that for k ≥ 5, the function x → Φ
(
dubd(k), x

)
is increasing for

x ∈ [ 1
2 − 1

2k ,
1
2 ] and dubd(k) ≡ 2k−1k log 2. A direct calculation shows that

∂Φ
∂x

(
dubd(k), x

)
= 1

1 − x
− (2k−1k log 2 − 1)(k − 1) · xk−2(1 − 2x)

(1 − xk−1)(1 − 2xk) − 2xk−1

1 − 2xk

≥ 1
1
2 + 1

2k

− (2k−1k log 2 − 1)(k − 1) · xk−2(1 − 2x)
(1 − xk−1)(1 − 2xk) − 4

2k − 2 , (3.9)

where the inequality holds since x → (1−x)−1 increasing, so it is minimized at x = 1/2+1/2k,
and x → 2xk−1/(1 − 2xk) is increasing, so it is maximized at x = 1/2. Further, it is
straightforward to check that x → xk−2(1 − 2x) is decreasing for x ∈ [ 1

2 − 1
2k ,

1
2 ], thus it is

maximized at x = 1/2 − 1/2k. Also, x → (1 − xk−1)(1 − 2xk) is minimized at x = 1/2. Thus,
by plugging in these bounds, we can further bound

∂Φ
∂x

(
dubd(k), x

)
≥ 2 −

(
2

2k−1 + 1 + 4
2k − 2 + (2k−1k log 2 − 1)(k − 1)

22k−3 ·
(

1 − 1
2k−1

)k−4
)

≥ 2 −
(

2
2k−1 + 1 + 4

2k − 2 + (2k−1k log 2 − 1)(k − 1)
22k−3

)
=: 2 −G(k) .

(3.10)

Note that the function k → G(k) is increasing for k ≥ 5. Furthermore, using the bound
log 2 < 0.7, we can bound G(5) = 2

17 + 2
15 + 80 log 2−1

32 < 1.97 < 2. Therefore, ∂Φ
∂x

(
dubd(k), x

)
>

0 holds for k ≥ 5 and x ∈ [ 1
2 − 1

2k ,
1
2 ], which proves our first claim.

Consequently, for the case k ≥ 5, it suffices to show that Φ(2k−1k log 2, x) < 0 holds for
x = 1/2. A direct calculation gives

Φ
(

2k−1k log 2, 1
2

)
= log 2 + 2k−1 log 2 · log

(
1 − 1

2k−1

)
< 0 , (3.11)

where the inequality holds since log(1 − a) < −a holds for a ∈ (0, 1). This concludes the
proof for k ≥ 5.
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It remains to consider the case k = 4. For k = 4, we claim that x → Φ4
(
dubd(4), x) is

convex in the interval x ∈ [ 7
16 ,

1
2 ]. From the computation of ∂Φ

∂x

(
dubd(k), x

)
in (3.9), we can

calculate the second derivative by

∂2Φ
∂x2

(
dubd(4), x) = d

dx

(
1

1 − x
− 2x3

1 − 2x4

)
+3(32 log 2−1)· d

dx

(
x2(2x− 1)

(1 − x3)(1 − 2x4)

)
. (3.12)

The first term in the right hand side can be bounded by

d
dx

(
1

1 − x
− 2x3

1 − 2x4

)
= 1

(1 − x)2 − 6x2 + 4x6

(1 − 2x4)2 >
1

(1 − 7
16 )2 −

6
( 1

2
)2 + 4

( 1
2
)6

(1 − 2
( 1

2
)4)2

> 0 , (3.13)

where the final inequality is equivalent to 256
81 − 100

49 > 0. The second term can be calculated
as

d
dx

(
x2(2x− 1)

(1 − x3)(1 − 2x4)

)
= x(−16x8 + 10x7 + 4x5 − 4x4 − x3 + 6x− 2)

(1 − x3)2(1 − 2x4)2 .

Note that by neglecting the terms 10x7 + 4x5 above, we can lower bound

−16x8 + 10x7 + 4x5 − 4x4 − x3 + 6x− 2 > 6 · 7
16 − 2 −

(
1
2

)3
− 4

(
1
2

)4
− 16

(
1
2

)8
> 0 ,

thus d
dx

(
x2(2x−1)

(1−x3)(1−2x4)

)
> 0 holds for x ∈ [ 7

16 ,
1
2 ] as well. Therefore, combining with (3.12)

and (3.13) finishes the proof of our claim that x → Φ4
(
dubd(4), x) is convex in the interval

x ∈ [ 7
16 ,

1
2 ].

Thus, by convexity, x → Φ4
(
dubd(4), x) is maximized at the end points x ∈ {7/16, 1/2},

and it suffices to show that Φ4
(
dubd(4), 7/16) < 0 and Φ4

(
dubd(4), 1/2) < 0. For x = 7/16,

Φ4
(
dubd(4), 7/16) can be computed to arbitrary precision (e.g. by Mathematica), and it

can be checked that Φ4
(
dubd(4), 7/16) < −0.08 < 0. For x = 1/2, (3.11) shows that

Φ4
(
dubd(4), 1/2) < 0 holds. This concludes the proof for the case k = 4. ◀

Proof of Lemma 3.2. By definition, ⋆Φ(d) = Φ
(
d, x⋆(k, d)

)
holds, and (d, x) → Φ(d, x)

is clearly continuous. Thus, in order to show the continuity of ⋆Φ(·), it suffices to show
that d → x⋆(k, d) is continuous for any fixed k ≥ 4. To that end, note that the function
ψ(d, x) := Ψd(x) − x satisfies ∂ψ

∂x < 0 by Lemma 3.3. Since x⋆(k, d) is defined to be the root
of ψ(d, ·), this implies that d → x⋆(k, d) is continuous by the implicit function theorem. As
a consequence, we conclude that d → ⋆Φ(d) is continuous. Since ⋆Φ(dlbd(k)) > 0 holds by
Lemma 3.5 and ⋆Φ(dubd(k)) < 0 holds by Lemma 3.6, we conclude the proof. ◀
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