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Abstract
For distributions over discrete product spaces

∏n

i=1 Ω′
i, Glauber dynamics is a Markov chain that

at each step, resamples a random coordinate conditioned on the other coordinates. We show that
k-Glauber dynamics, which resamples a random subset of k coordinates, mixes k times faster in
χ2-divergence, and assuming approximate tensorization of entropy, mixes k times faster in KL-
divergence. We apply this to obtain parallel algorithms in two settings: (1) For the Ising model
µJ,h(x) ∝ exp( 1

2 ⟨x, Jx⟩ + ⟨h, x⟩) with ∥J∥ < 1 − c (the regime where fast mixing is known), we
show that we can implement each step of ‹Θ(n/∥J∥F )-Glauber dynamics efficiently with a parallel
algorithm, resulting in a parallel algorithm with running time ‹O(∥J∥F ) = ‹O(

√
n). (2) For the mixed

p-spin model at high enough temperature, we show that with high probability we can implement
each step of ‹Θ(

√
n)-Glauber dynamics efficiently and obtain running time ‹O(

√
n).
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1 Introduction

A key problem in computer science and statistics is to sample from a probability distribution
given its probability mass function up to a constant of proportionality. The problem has
been studied both over discrete spaces (such as Ωn for a finite set Ω) and continuous spaces
(such as Rn); the goal is to give efficient algorithms for general classes of distributions, and in
particular, to obtain optimal scaling in the dimension n. In this work we focus on minimizing
the parallel running time, assuming a polynomial number of processors. In Rn, it is natural
to change multiple coordinates at a time using gradient-based algorithms such as Langevin
dynamics and Hamiltonian Monte Carlo; many results have given algorithms that require a
sublinear number of steps for log-concave distributions in various settings.

However, on discrete product spaces Ωn, the canonical algorithm, Glauber dynamics,
involves resampling coordinates one at a time, and hence requires at least n steps in general.
A natural attempt to speed up Glauber dynamics with parallel computation is to resample
k coordinates at a time. We establish that under general conditions, this simple idea does
indeed speed up Glauber dynamics by a factor of approximately k.

To obtain a parallel algorithm, the task remains to give a fast parallel method of resampling
k coordinates. We show that this can be done in the case of the Ising model µJ,h over {±1}n

when the interaction matrix J is bounded away from 1 in operator norm, ∥J∥ < 1− c, and
in the case of the mixed p-spin model at high enough temperature, both of which are known
to enjoy rapid mixing of standard Glauber dynamics.
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49:2 Parallelising Glauber Dynamics

The Ising model is a classical model from statistical physics which has probability mass
function on {±1}n given by

µJ,h(x) = 1
ZJ,h

exp
Å

1
2 ⟨x, Jx⟩+ ⟨h, x⟩

ã
, where ZJ,h =

∑
x∈{±1}n

exp
Å

1
2 ⟨x, Jx⟩+ ⟨h, x⟩

ã
.

The regime ∥J∥ < 1 is exactly where (based on information of the operator norm alone)
Glauber dynamics is known to have fast mixing [24, 8]. To sample k coordinates, we use
approximate rejection sampling with a product distribution and a further recursion for certain
“bad” sets. By taking k = ‹Θ(n/ ∥J∥F ), we obtain an algorithm with parallel running time‹O(∥J∥F ) = ‹O(

√
n).

The mixed p-spin model with coefficients β2, β3, . . . and external field h ∈ Rn is the
random measure on {±1}n given by1

µβ,g,h(x) ∝ exp(Hβ,g,h(x)),

where Hβ,g,h(x) =
∞∑

p=2

βp

√
p!

n
p−1

2

∑
1≤i1<···<ip≤n

gi1,··· ,ip
xi1 · · ·xip

+
n∑

i=1
hixi (1)

and gi1,...,ip
∼ N(0, 1). By taking k = Θ(

√
n), we obtain an algorithm with parallel running

time ‹O(
√

n).

1.1 Main results
Let µ be a distribution on

∏n
i=1 Ω′i. We define k-Glauber dynamics as the Markov chain which

given a sample x ∈
∏n

i=1 Ω′i, chooses a subset S ⊆ [n] uniformly at random among subsets of
size k, and resamples the coordinates in S conditional on coordinates in Sc, according to the
distribution of µ. Let Pµ,k denote its Markov kernel.

We show that under general conditions, k-Glauber dynamics mixes k times faster in both
χ2 and KL-divergence. We say that a Markov kernel P with stationary distribution µ satisfies
ρ-contraction in χ2-divergence if Dχ2(νP∥µ) ≤ ρDχ2(ν∥µ) and similarly for DKL; this can
be iterated to give a mixing time bound. See Section 2.2 for background on functional
inequalities (Poincaré inequality and approximate tensorization of entropy).

▶ Theorem 1.1 (k-Glauber mixes k times faster). Let µ be a distribution on Ω =
∏n

i=1 Ω′i,
and let 1 ≤ k ≤ n. Below, let C ≥ 1.
1. If µ satisfies a Poincaré inequality with constant Cn, then Pµ,k satisfies a Poincaré

inequality with constant O
(

Cn
k

)
, and satisfies (1− Ω

(
k

Cn

)
)-contraction in χ2-divergence.

2. If µ satisfies C-approximate tensorization of entropy (so that Pµ satisfies (1− Ω
( 1

Cn

)
)-

contraction in KL-divergence), then Pµ,k satisfies (1 − Ω
(

k
Cn

)
)-contraction in KL-

divergence.
Here, the O(·) and Ω(·) hide only universal constants. The Poincaré inequality is equivalent
to contraction in χ2-divergence, so part (1) gives a Ω(k)-factor speedup to mixing in χ2. The
analogue of the Poincaré inequality for KL is a modified log-Sobolev inequality. Although we
need the slightly stronger notion of approximate tensorization of entropy to prove a speedup
to mixing in KL, we note that many works that establish a modified log-Sobolev inequality
do so using tensorization of entropy [12, 8]. See Section 2 for relevant background on mixing
for Markov chains.

1 The factor
√

p! arises as we index only over increasing sequences.
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We prove Theorem 1.1 as Corollary 3.6 of the more general Theorem 3.5. We view k-
Glauber dynamics as randomly erasing k coordinates one by one, and then adding them back
one by one according to the right conditional distributions. This realizes k-Glauber dynamics
as a composition of down and up operators Dn→n−1 · · ·Dn−k+1→n−kUn−k→n−k+1 · · ·Un−1→n.
The assumptions give contraction of Dn→n−1, and our general theorem shows that the
contraction of each Dj→j−1 is at least as good as Dn→n−1 (except for an additive factor).
To do this, we realize Dj→j−1 as Dn→n−1 tensorized with erasure “noise” and projected, and
bound how the factor of contraction changes under these operations. We make an analogy
to bounding the Poincaré and log-Sobolev constants of a distribution µ on Rn convolved
with Gaussian noise, and the proximal sampler based on iteratively adding and removing
Gaussian noise (more specifically, sampling from the posterior distribution given a noisy
Gaussian observation of the sample from µ).

Algorithmically, the challenge with implementing k-Glauber dynamics is that naive
enumeration for the transition kernel takes 2k time, and hence we must find a way to use the
structure of the distribution to implement each step more efficiently. We show that in the case
of the Ising model, we can efficiently simulate k-Glauber dynamics for k = ‹O (n/

∥∥∥J�
∥∥∥

F

)
, to

obtain a parallel algorithm running in time ‹O (∥∥∥J�
∥∥∥

F

)
, where J� denotes J with diagonal

entries set to 02. Under the assumption that ∥J∥ < 1, this is always at most ‹O(
√

n).

▶ Theorem 1.2. Let c > 0. With appropriate choice of constants depending only on c, if J

is symmetric positive semi-definite with ∥J∥ ≤ 1− c, then ParallelIsingSampler (Algorithm 1)
with appropriate constants outputs a sample ε-close in TV distance from the Ising model
µJ,h and, with probability at least 1− ε, runs in time O

(
max

{∥∥∥J�
∥∥∥

F
, 1
}

poly log
(

n
ε

))
on

a parallel machine with poly(n) processors.

We note that our algorithm is a high-accuracy sampler: the only dependence on ε is a
poly-logarithmic dependence in the running time. Notably, the number of processors does
not depend on ε. We rely on the result [8] that gives optimal (O(n ln n)) mixing times for
the Ising model for ∥J∥ < 1 based on the theory of entropic independence.

The first attempt to implement k-Glauber dynamics is to approximate the conditional
distribution of k coordinates using a carefully chosen product distribution and use rejection
sampling. Using concentration results (the Hanson-Wright inequality), if

∥∥∥J�S×S

∥∥∥
F

is small
for the randomly chosen set S, then this succeeds with high probability. The complication
is that

∥∥∥J�S×S

∥∥∥
F

can sometimes be large. If this is the case, then we recurse on JS×S . By

controlling the expected size of
∥∥∥J�S×S

∥∥∥
F

, we show that the recursive calls form a subcritical
branching process and with high probability, add at most a polylogarithmic overhead to the
running time.

▶ Theorem 1.3. Consider the mixed p-spin model (1). There exists an absolute constant
δ > 0 such that if

∑
p≥2

√
p3 ln p · βp < δ and D(β) =

∑
p≥2

√
2pp3 ln p · βp <∞, then with

probability 1− exp(−Ω(n)) over g, given query access to Hβ,g,h, there is an algorithm which
outputs a sample ε-close in TV distance from µβ,g,h and, with probability at least 1− ε, runs
in time OD(β)

(√
n poly log

(
n
ε

))
on a parallel machine with poly

(
n
ε

)
processors.

2 While changing the diagonal entries of J does not change the Ising model, we need to allow J to have
nonzero diagonal entries in order to be positive semi-definite.

APPROX/RANDOM 2024



49:4 Parallelising Glauber Dynamics

Algorithm 1 Parallel Ising Sampler (ParallelIsingSampler).

1: Input: Interaction matrix J ∈ Rn×n, subset R of size m, external field h ∈ RR, error
parameter ε ∈ (0, 1

2 ).
2: Let εstep = ε

2nC4 .
3: if

∥∥∥J�R×R

∥∥∥
F
≤ c3

ln
(

2
εstep

)
+1

(J� denotes J with diagonal entries set to 0) then

4: y ←[ QuadraticApproxRejectionSampler
(

H(x)= 1
2 ⟨x, JR×Rx⟩+⟨h, x⟩ , c3

ln
Å

2
εstep

ã
+1

, εstep

)
.

(See Algorithm 2.)
5: else

6: Let s =

 c1m(
ln
(

2
εstep

)
+1
)

ln( n
ε )
∥∥∥∥J�

R×R

∥∥∥∥
F

.

7: Let T =
⌊
C2 ln

(
n
ε

)
m
s

⌋
.

8: Draw y from the product distribution ν0(x) ∝ e⟨h,x⟩.
9: for t from 1 to T do

10: Choose S ⊆ R a random subset of size s.
11: z ←[ ParallelIsingSampler(J, S, JS×R\SyR\S + hS , ε)
12: Set yS = z.
13: end for
14: end if
15: Output: y (Approximate sample from µJR×R,h).

Note that a recursion is not necessary in this algorithm. Intuitively, the mean-field nature
of the p-spin model ensures that with high probability all marginal distributions of O(

√
n)

coordinates are well-approximated by a product distribution. Though we do not investigate
this further, a recursive algorithm could potentially eliminate the poly(1/ε) dependence on
the number of processors as in Theorem 1.2. The proof of Theorem 1.3 is in Section 5 in the
full version.

We view our result on the Ising model and the p-spin model as proofs of concept for
parallelisation using k-Glauber dynamics, and hope it serves as a useful framework for
constructing parallel algorithms for other families of discrete distributions. As discussed in
the next section, using a different parallel algorithm, the work [35] obtains Theorem 1.2 but
not Theorem 1.3.

1.2 Related work
We note that our Theorem 1.1 can be viewed as a complement of “local-to-global” results for
mixing of the down-up walks [41, 1, 19], and is not implied by those results. Those results
aim to establish mixing of Glauber dynamics (or the down-up walk) from mixing of simpler
chains, while we start by assuming mixing of Glauber dynamics. In particular, [19] apply
the reverse strategy: for the spin systems on graphs they consider, they show that mixing of
θn-Glauber dynamics (for appropriate θ) implies mixing of Glauber dynamics.

When contraction of Glauber dynamics is derived directly from either spectral or entropic
independence using local-to-global arguments, then the same arguments can be used to
establish mixing of the k-Glauber (e.g., using k-uniform block factorization of entropy [19],
the analogue of approximate tensorization of entropy). However, this does not apply for
distributions for which mixing is established through other methods. The recent work [9]
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shows that a Poincaré inequality implies spectral independence, but the bound obtained for
k-Glauber through spectral independence is lossy (resulting in a power of n). Our work can
be seen as giving a general conceptual reason why mixing for Glauber must imply mixing for
k-Glauber.

1.2.1 Continuous sampling
For log-concave distributions on Rn, a long line of works on the underdamped Langevin
algorithm and Metropolis-adjusted Langevin algorithm have led to high-accuracy sampling
using ‹O(n1/2) steps [3]. The randomized midpoint method for underdamped Langevin
dynamics allows sampling in the weaker Wasserstein metric in ‹O(n1/3) steps [45], and
can furthermore be fully parallelised to obtain ε error with poly

(
n
ε

)
processors. These

dependencies are assuming the condition number is O(1).
We note that the Ising model for ∥J∥ < 1 can be decomposed as a log-concave mixture

of product distributions [30, 10, 32], so these algorithms give an alternative approach to
parallel algorithms for the Ising model. However, this decomposition is highly specific to the
Ising model. Moreover, the Wasserstein guarantee is incompatible with a TV guarantee, and
the complexity of our approach scales with ∥J∥F .

1.2.2 Parallel algorithms for discrete sampling
Recent work [6, 4, 7] has investigated the question of obtaining fast parallel algorithms for
approximate sampling in settings where fast parallel algorithms for approximate counting
(or computing a partition function) exist. In particular, for distributions satisfying transport
stability and where the log-Laplace transform can be efficiently calculated (e.g., using the
efficient algorithm for computing partition functions), [7] gives a poly log(n/ε)-time algorithm
with poly(n/ε) many processors (i.e., a RNC algorithm). This includes problems such as
determinantal point processes and Eulerian tours. Notably they use the continuous algorithm
(randomized midpoint method, discussed above) even though the problem is discrete.

In the setting of Ising models, however, we do not have a fast parallel algorithm for
counting. Several works [26, 35] have studied the problem assuming the associated Dobrushin
influence matrix has bounded norm. By using simultaneous updates, [35] obtains a factor- n

C

speedup for distributions whose Dobrushin influence matrix has norm bounded by C, in
particular giving RNC algorithms when C = O(1) and the mixing time is O(n ln n). The
result of [35] can also give Theorem 1.2 with a different algorithm, but cannot be used to
derive Theorem 1.3. See Appendix A in the full version for details.

On the practical side, designers of Markov chain Monte Carlo algorithms in discrete
spaces have taken inspiration from continuous algorithms, for example, by using gradient
information to inform the proposal distribution and allow updating multiple coordinates at
once [29, 50, 42]. Theoretical guarantees for these algorithms remain to be understood.

1.2.3 Diffusion models and the proximal sampler
Stochastic localization [23] is a measure-valued stochastic process that converges to a point
mass, which is distributed according to a desired distribution µ. As a technique, it gives a way
of decomposing probability distributions that has been useful in proving functional inequalities
and mixing time [17, 18], and more recently, in constructing new, time-inhomogeneous
algorithms for sampling [22, 39].

Diffusion models [46, 47, 48] are a successful paradigm for generative modeling in machine
learning, where the task is to learn and then generate samples from a distribution where only
samples are given. Though the details may differ, they consist of a forward process which

APPROX/RANDOM 2024



49:6 Parallelising Glauber Dynamics

adds noise to the data; reversing the process can then generate a sample from random noise.
It has been observed [38] that a stochastic localization process can be viewed as the reverse
process of a diffusion model.

Our analysis of k-Glauber dynamics is inspired by the analysis of the proximal sampler
[34, 16, 25], which does alternating Gibbs sampling by adding Gaussian noise to the current
sample, and then “de-noising” by sampling from the posterior distribution; this fits in the
framework discussed above. In their analysis, [16] show that proximal sampler mixes at
least as fast as Langevin in terms of χ2 and KL-divergence. [25] show a ‹O(n1/2) dimension
dependence using a carefully chosen Gaussian proposal distribution to implement the posterior
sampling step. We view the k-Glauber dynamics as a discrete analogue of the proximal
Langevin algorithm, where the noise consists of erasing k coordinates, and our proof follows
this analogy. In our application, we also require a careful choice of product distribution for
the proposal.

2 Preliminaries

While many of the notions are generalizable, we will restrict ourselves to finite state spaces,
and identify all measures with their probability mass functions. For more background on
Markov chains, see [40].

2.1 Markov kernels
For finite sets A and B, a Markov kernel K from A to B is a function A × B → R≥0 or
equivalently, a matrix RA×B

≥0 , where the rows sum to 1. If µ is a measure on A, then µK is a
measure on B; if f is a function B → R, then Kf is a function A → R; these correspond
to matrix-vector multiplication. Composition of kernels K1 from A to B and K2 from B

to C gives a kernel K1K2 from A to C, which corresponds to matrix multiplication. For
f, g functions on A and µ a measure on A, let ⟨f, g⟩µ =

∑
x∈A µ(x)f(x)g(x). For a kernel

K : A×B → R≥0, given measures µ1, µ2 on A and B respectively, we think of K as a linear
map L2(µ1)→ L2(µ2); then its adjoint K∗ : B ×A→ R≥0 is a linear map L2(µ2)→ L2(µ1)
satisfying ⟨f, Kg⟩µ1

= ⟨K∗f, g⟩µ2
for any f ∈ L2(µ1), g ∈ L2(µ2).

▶ Definition 2.1. k-Glauber dynamics with stationary distribution µ on Ω is the Markov
chain where at each step, if the current sample is x, we choose a subset S uniformly at random
in
(Ω

k

)
(subsets of size k), and resample the coordinates in S according to µ(XS |XSc = xSc).

Let Pµ,k denote the transition operator. For k = 1, we simply call it Glauber dynamics, and
let Pµ denote the Markov kernel.

▶ Definition 2.2. Let 0 ≤ ℓ ≤ k ≤ n. Let µ be a distribution on
([n]

k

)
. Define the

down operator Dk→ℓ and up operator Uℓ→k as Markov kernels
([n]

k

)
×
([n]

ℓ

)
→ R≥0 and([n]

ℓ

)
×
([n]

k

)
→ R≥0, respectively, with

Dk→ℓ(A, B) = 1B⊆A
1(
k
ℓ

) Uℓ→k(B, A) = 1B⊆A
µ(A)∑

A′⊇B µ(A′) .

Let µℓ = µDk→ℓ for 0 ≤ ℓ ≤ k, and define the k ↔ ℓ down-up walk and ℓ↔ k up-down
walk by

P▽
k↔ℓ = Dk→ℓUℓ→k P△ℓ↔k = Uℓ→kDk→ℓ.
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Note that Dk→ℓ does not depend on µ while Uℓ→k does; we suppress the dependency in
the notation. Note that Dk→ℓDℓ→m = Dk→m and Um→ℓUℓ→k = Um→k. As operators,
Dk→ℓ : L2(µℓ)→ L2(µk) and Uℓ→k : L2(µk)→ L2(µℓ) are adjoint.

▶ Definition 2.3. Let µ be a measure on Ω′ = Ω′1 × · · · × Ω′n. Define the homogenization
of µ to be the measure µhom over

(Ω
n

)
, where Ω =

⋃n
i=1 Ω′i × {i} and σ ∈ Ω′ is identified

with {(σ1, 1), . . . , (σn, n)}. (For short, we will write Ω =
⊔n

i=1 Ω′i in the following.) For any
property P defined for measures

(Ω
n

)
, we say that µ satisfies P if µhom satisfies P.

Under this identification, k-Glauber dynamics corresponds to the n↔ n−k down-up walk, as
the down step corresponds to erasing k coordinates and the up step corresponds to restoring
them with the correct conditional probabilities.

2.2 Functional inequalities
▶ Definition 2.4. Let M = (Ω, P ) be an ergodic, reversible Markov chain with stationary
distribution µ. Define the associated Dirichlet form as the inner product

EP (f, g) = ⟨f, (I − P )g⟩µ = 1
2

∑
x,y∈Ω

µ(x)P (x, y)(f(x)− f(y))(g(x)− g(y))

When µ is a distribution on Ω =
∏n

i=1 Ω′i, we write Eµ = EPµ
; we will similarly make other

such replacements without comment.

▶ Definition 2.5. Keeping the assumptions above, we say that P satisfies a Poincaré
inequality with constant C if for all f : Ω→ R,

Varµ(f) ≤ CEP (f, f).

We say µ satisfies a Poincaré inequality with constant C if the Glauber dynamics with
stationary distribution µ, Pµ, satisfies a Poincaré inequality with constant C.

When P is self-adjoint (M is reversible), this is the same as saying that λ2(P ) ≤ 1 − 1
C ,

where λk(·) denotes the kth largest eigenvalue.

▶ Definition 2.6. Let f : R≥0 → R≥0 be a strictly convex function with f(1) = 0. For
measures ν ≪ µ on Ω, define the f-divergence by

Df (ν∥µ) = Ex∼µf

Å
ν(x)
µ(x)

ã
.

In particular, define the χ2 and KL-divergences by Dχ2 = D(x−1)2 and DKL = Dx ln x.

▶ Definition 2.7. We say that Markov kernel P : Ω1 × Ω2 → R satisfies ρ-contraction in
f-divergence with respect to µ1 if for all ν1 ≪ µ1,

Df (ν1P∥µ1P ) ≤ ρDf (ν1∥µ1).

Contraction in χ2 and KL-divergence is also referred to as variance or entropy contraction,
respectively.

▶ Proposition 2.8. Let P : Ω1×Ω2 → R≥0 be a Markov kernel. The following are equivalent,
for C ≤ 1:
1. P satisfies (1− C)2-contraction in χ2-divergence with respect to µ.
2. For all f : Ω1 → R,

VarµP (Pf) ≤ (1− C)2 Varµ(f).

APPROX/RANDOM 2024



49:8 Parallelising Glauber Dynamics

3. (For Ω1 = Ω2, P reversible) P satisfies a Poincaré inequality with constant 1
C .

4. (For P of the form P = DD∗, e.g., P▽
k↔k−1 = Dk→k−1Uk−1→k) D satisfies (1 − C)-

contraction in χ2-divergence.
5. (For P = DD∗) D∗ satisfies (1− C)-contraction in χ2-divergence.
Here, the adjoint is with respect to the measures µ and µD.

Proof sketch. See full version. ◀

▶ Definition 2.9. A measure µ on
([n]

k

)
satisfies C-approximate tensorization of entropy

if Dk→k−1 satisfies
(
1− 1

Ck

)
-contraction in KL-divergence, i.e., for any ν ≪ µ,

DKL(νDk→k−1∥µDk→k−1) ≤
Å

1− 1
Ck

ã
DKL(ν∥µ).

We have the following alternate characterization for a measure defined on a product space.
Define the entropy of a function f on a probability space by Entµ[f ] = Eµ[f ln f ] −
Eµ[f ] lnEµ[f ].

▶ Proposition 2.10 ([19, Lemma 2.7]). Let µ be a measure on Ω = Ω′1 × · · · × Ω′n. Then µ

satisfies C-approximate tensorization of entropy iff for all f : Ω→ R≥0,

Entµ[f ] ≤ C

n∑
k=1

Eµ

[
Entµ(Xk=·|X∼k=x∼k)[f ]

]
,

where ∼ k denotes the coordinates besides k.

▶ Remark 2.11. Proposition 2.8 shows that for contraction in χ2-divergence, nothing is lost
if we consider P▽

k↔k−1 or Dk→k−1, Uk−1→k separately. However, the distinction is important
for KL, as contraction of P▽

k↔k−1 may not imply contraction of Dk→k−1 or Uk−1→k separately;
hence the definition of approximate tensorization of entropy. Approximate tensorization
of entropy is stronger than the modified log-Sobolev inequality (which implies mixing for
P▽

k↔k−1), but weaker than the log-Sobolev inequality.

2.3 Additional notation
For f :

∏n
i=1 Ω′i → R, and x ∈

∏
i∈Sc Ω′i, define the restriction fx :

∏
i∈S Ω′i by fx(y) = f(x, y)

with (x, y) treated as an element of
∏n

i=1 Ω′i.
Let xi←b denote x with xi set to b. For f : {±1}n, let Di f(x) := 1

2 [f(xi←1)− f(xi←−1)]
and define ∇f : {±1}n → Rn by

∇f(x) = (D1 f(x), . . . , Dn f(x))

and ∇2f : {±1}n → Rn×n by (∇2f(x))i,j = Di Dj f(x) (note (∇2f(x))i,i = 0).
For x ∈ {±1}n and S ⊆ [n], let xS denote

∏
i∈S xi. For a function f : {±1}n → R, we

denote the degree d part of f by f (d), and define f≥d =
∑

p≥d f (p), etc., so that we have the
decomposition

f(x) =
n∑

p=0
f (p)(x) =

n∑
p=0

∑
|I|=p

aIxI

for some coefficients aI . We take f
(d)
x to mean that we take the restriction first and then the

degree-d part.
For a scalar-valued function f and x ∈ Rn, we let f(x) denote coordinate-wise evaluation.
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3 k-Glauber mixes k times as fast

To show that k-Glauber mixes k times more quickly than Glauber dynamics, write Pµ =
Dn→n−1Un−1→n and Pµ,k = Dn→n−1 · · ·Dn−k+1→n−kUn−k→n−k+1 · · ·Un−1→n; the task is
then to show that Dj→j−1, j ≤ n are roughly at least as contractive as Dn→n−1. We note
that this is like the reverse of the usual “local-to-global” argument for high-dimensional
expanders [1] (and will be easier!). We also note this approach relates to inductive arguments
in prior work (e.g., [20, Lemma 11]).

Viewing the problem in this way, we note the similarity to the proximal sampler [16],
each step of which involves adding and removing Gaussian noise; they bound the contraction
in χ2 and KL-divergence of this process based on the Poincaré and log-Sobolev constants of
the original distribution.

As inspiration, we first recall the following fact, which bounds the Poincaré or log-Sobolev
constant of a convolution of two measures on Rn. (The convolution µ1 ∗ µ2 is defined as the
distribution of X + Y where X ∼ µ1 and Y ∼ µ2 are independent.) As we will not cover the
theory of functional inequalities over Rn, this is meant only as a suggestion of how we might
proceed. For details and generalizations, see [14].

▶ Lemma. Suppose that µ1, µ2 are distributions on Rn with Poincaré constants C1, C2,
respectively. Then µ1 ∗ µ2 has Poincaré constant bounded by C1 + C2. The same holds true
for the log-Sobolev constant. In particular, this holds true for µ2 being a Gaussian of variance
C1.

Proof sketch. Let Mm denote multiplication by m. Then µiM
−1
mi

has Poincaré constant
m2

i Ci. By tensorization, µ = µ1M−1
m1
⊗ µ2M−1

m2
has Poincaré constant max

{
C1m2

1, C2m2
2
}

.
Consider the projection π(x1, x2) = x1

m1
+ x2

m2
. When 1

m2
1

+ 1
m2

2
= 1, this can be realized as

projection onto the vector ( 1
m1

, 1
m2

), so the Poincaré constant does not increase: CP(µπ−1) ≤
CP(µ). Note that we exactly have µπ−1 = µ1 ∗ µ2. Choosing 1

m2
1

= C1
C1+C2

and 1
m2

2
= C2

C1+C2
gives the bound. The same argument works for the log-Sobolev constant. ◀

We will carry out the same steps as in this proof: define a tensorization operation which
preserves the Poincaré or approximate tensorization of entropy constant, and a projection
which can only improve it. As in the sketch above, it will help to weight the components
appropriately in the tensorization step.

To obtain the Dk→k−1 operator from the Dn→n−1 operator, we will tensorize with the
appropriate “noise” distribution, which in this case is that of erasing n− k coordiates. We
note that while bit-flip noise is the more natural analogue of gaussian noise, the “denoising”
step is more difficult to implement, while erasure noise connects more nicely with existing
notions.

3.1 Tensorization and projection
The following proposition is similar to classical results on preservation of functional inequalities
under tensorization, which corresponds to taking a product of Markov chains. However, we
need to work with operators between different spaces to obtain contraction for the down
operator, so we need the result given in Proposition 3.1 . As in Remark 2.11, nothing would be
lost for χ2-divergence if we considered the down-up walk – so we could use existing results – but
for KL we need to bound contraction for just the down operator. This is important because we
aim to bound contraction for P▽

n↔n−k = Dn→n−1 · · ·Dn−k+1→n−kUn−k→n−k+1 · · ·Un−1→n,
and in the case of KL, we cannot obtain this by bounding contraction for just operators of
the form P▽

k↔k−1 = Dk→k−1Uk−1→k.

APPROX/RANDOM 2024
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▶ Proposition 3.1 (Contraction under tensorization). Suppose that Pi is a Markov kernel
from Ωi to Ω′i, for i = 1, 2. Let Ii denote the identity kernel on Ωi and define P =
p(P1 ⊗ I2) + (1− p)(I1 ⊗ P2) as a Markov kernel from Ω1 × Ω2 to (Ω′1 × Ω2) ⊔ (Ω1 × Ω′2).

Let Df = DKL or Dχ2 . If Pi satisfies (1− κi)-contraction in f-divergence with respect
to µi, then P satisfies (1 − κ)-contraction in f-divergence with respect to µ1 ⊗ µ2, where
κ = min{pκ1, (1− p)κ2}. In particular, if p = κ2

κ1+κ2
, then κ = κ1κ2

κ1+κ2
= 1

κ−1
1 +κ−1

2
.

Proof. First consider KL-divergence. Let ν be a measure on Ω1 ×Ω2. Let Πi and Π′i denote
the projection kernels to Ωi and Ω′i respectively, for i = 1, 2 (i.e., taking marginals). We
calculate

B : = DKL(pν(P1 ⊗ I2) + (1− p)ν(I1 ⊗ P2)∥p(µ′1 × µ2) + (1− p)(µ1 × µ′2))
= pDKL(ν(P1 ⊗ I2)∥µ′1 × µ2) + (1− p)DKL(µ(I1 ⊗ P2)∥µ1 × µ′2), (2)

since the spaces Ω′1 × Ω2 and Ω1 × Ω′2 are disjoint. Now, by the chain rule of KL-divergence
and entropy contraction,

DKL(ν(P1 ⊗ I2)∥µ′
1 × µ2) = Ex2∼µ2DKL((ν(P1 ⊗ I2))(·|x2)∥µ′

1) +DKL(ν(P1 ⊗ I2)Π2∥µ2)
= Ex2∼µ2DKL(ν(·|x2)P1∥µ′

1) +DKL(νΠ2∥µ2)
≤ (1− κ1)Ex2∼µ2DKL(ν(·|x2)∥µ1) +DKL(νΠ2∥µ2).

By symmetry, the same calculation holds for the second term in (2), giving us

B ≤ p [(1− κ1)Ex2∼µ2DKL(ν(·|x2)∥µ1) +DKL(νΠ2∥µ2)]
+ (1− p) [(1− κ2)Ex1∼µ1DKL(ν(·|x1)∥µ2) +DKL(νΠ1∥µ1)] .

We wish to compare this with

A : = DKL(µ∥µ1 × µ2)
= Ex2∼µ2DKL(ν(·|x2)∥µ1)︸ ︷︷ ︸

C2,1

+DKL(νΠ2∥µ2)︸ ︷︷ ︸
C2

= Ex1∼µ1DKL(ν(·|x1)∥µ2)︸ ︷︷ ︸
C1,2

+DKL(νΠ1∥µ1)︸ ︷︷ ︸
C1

.

By convexity of KL-divergence, C1,2 ≥ C2 and C2,1 ≥ C1. Hence

B ≤ p((1− κ1)C2,1 + C2) + (1− p)((1− κ2)C1,2 + C1)
≤ max{(1− p)(1− κ2) + p, p(1− κ1) + (1− p)}[p(C2,1 + C2) + (1− p)(C1,2 + C1)]
= (1−min{(1− p)κ2, pκ1}) A.

Next consider χ2-divergence. It suffices to prove the following equivalent statement on
contraction of variance (Proposition 2.8): for any f : Ω1 × Ω2 → R, considering P ∗ =
p(P ∗1 ⊗ I2)⊕ (1− p)(I1 ⊗ P ∗2 ), we have

VarµP (P ∗f) ≤ (1− κ) Varµ(f),

which is equivalent to σ2(P ∗) ≤ 1− κ and hence to λ2(PP ∗)2 = σ2(PP ∗)2 ≤ (1− κ)2. Now
PP ∗ = p(P1P ∗1 ⊗ I2) + (1− p)(I1 ⊗ P2P ∗2 ) is exactly the transition matrix of the weighted
product of two Markov chains with λ2(PiP

∗
i ) ≤ 1− κi, so it is well-known that

λ2(PP ∗) ≤ max{p + (1− p)(1− κ2), (1− p) + p(1− κ1)} = 1−max{(1− p)κ2, pκ1}.

(A quick way to see this is as follows: if {fi} are the eigenvectors of P1P ∗1 and {gj} are
the eigenvectors of P2P ∗2 , then {figj} are the eigenvectors of P ∗P , and the second largest
eigenvalue is when fi = 1 or gi = 1.) ◀
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Though we do not do it here, the proofs can be put on the same footing and generalized
using the notion of f -entropy [14].

▶ Proposition 3.2 (Contraction under projection). Suppose that P is a Markov kernel from
Ω1 to Ω2, and µ1, µ2 are measures on Ω1, Ω2 such that µ1P = µ2. Let πi : Ωi → Ω′i be maps
and µ′i = µiπ

−1
i . Define the projected Markov kernel P ′ : Ω′1 × Ω′2 → R≥0 by

P ′(x′1, x′2) =
∑

x1 ∈ Ω1
π1(x1) = x′

1

∑
x2 ∈ Ω2

π2(x2) = x′
2

µ1(x1|π(x1) = x′1)P (x1, x2).

If P satisfies ρ-contraction in f-divergence with respect to µ1, then P ′ also satisfies ρ-
contraction in f -divergence with respect to µ′1.

In words, in the projected Markov chain, given x′1, we draw x1 projecting to x′1 from the
“prior”, move according to P , and then project back down; then the projected kernel always
has at least as much contraction as the original one. See e.g., [37] for the statement for the
Poincaré constant.

Proof. Let ν′1 ≪ µ′1 be a measure on Ω′1. Define ν1(x) = ν′1(π1(x))µ1(X = x|π1(X) = π1(x)).
Then Eµ1(·|π1(X)=x′

1)f
Ä

ν1(x)
µ1(x)

ä
= ν′

1(x′
1)

µ′
1(x′

1) , so

Df (ν′1∥µ′1) = Ex′
1∼µ′

1
f

Å
ν′1(x′1)
µ′1(x′1)

ã
= Df (ν1∥µ1).

By contraction of P and the data processing inequality,

Df ((ν1P )π−1
2 ∥µ′2) ≤ Df (ν1P∥µ2) ≤ ρDf (ν1∥µ1) = ρDf (ν′1∥µ′1).

Finally, note that (ν1P )π−1
2 = ν′1P ′ by definition of P ′. ◀

3.2 Contraction improves going down
We now show that for k < n, contraction in KL and χ2 for Dk→k−1 will only be better than
contraction of Dn→n−1, except up to an additive constant.

▶ Lemma 3.3. Let µ be the uniform distribution on
([n]

k

)
. Then Dk→k−1 has

(
1− 1

k

)
-

contraction in KL, and µ satisfies 1-approximate tensorization of entropy. Moreover, Dk→k−1
and Uk−1→k satisfy

Ä
1− n

k(n−k+1)

ä
-contraction in χ2.

We note that the down-up walk on the uniform distribution on
([n]

k

)
is a rescaling of the

Bernoulli-Laplace diffusion model, for which mixing and functional inequalities have been
extensively studied [21, 33, 27, 13, 43], and we have not attempted to find the best result for
KL.

Proof. Note that µ is log-concave, by the results of [5] and the fact that
([n]

k

)
is a matroid.

Then 1-approximate tensorization of entropy follows from [8, Theorem 5].
To note the improved bound for χ2, note first that the probability of staying at the

same set is 1
n−k+1 , so P▽

k↔k−1 = 1
n−k+1 I + n−k

n−k+1 P∨k↔k−1 where P∨k↔k−1 is the “non-lazy”
walk which swaps an occupied and non-occupied space at random. Hence I − P▽

k↔k−1 =
n−k

n−k+1 (I − P∨k↔k−1). This in turn satisfies

I − P∨k↔k−1 = n(n− 1)/2
k(n− k) ·

2
n− 1 · L

APPROX/RANDOM 2024
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where L is the generator of the Bernoulli-Laplace diffusion model with parameters (n, k) (a
random transposition occurs with rate 1). Here, the 2

n−1 is the scaling factor to convert to
a discrete-time walk and n(n−1)/2

k(n−k) takes into account that we are randomly choosing from
k(n−k) transpositions that move a particle to an unoccupied space, rather than an arbitrary
transposition. By [43], λmin(L) = 1. Hence the spectral gap for P▽

k↔k−1 is

n− k

n− k + 1 ·
n(n− 1)/2
k(n− k) ·

2
n− 1 = n

k(n− k + 1) . ◀

▶ Lemma 3.4. Let µ be a distribution on
∏n

i=1 Ω′i and µhom its homogenization on
(Ω

n

)
,

where Ω =
⊔n

i=1 Ω′i, and µm = µhomDn→m. Let Df = DKL or Dχ2 . For each k, let κk be
the largest number such that Dk := Dk→k−1 satisfies (1 − κk)-contraction in f-divergence
with respect to µk. Suppose that for the uniform distribution

([n]
k

)
that Dk→k−1 satisfies

(1− κBL,k)-contraction in f -divergence. Then

κk ≥
nκnκBL,k

nκn + kκBL,k
≥

{
nκn

k((n−k+1)κn+1) , Df = Dχ2

nκn

k(nκn+1) , Df = DKL.

Proof. Consider the kernel P = p(Dn ⊗ I([n]
k )) + (1 − p)(I(Ω

n) ⊗ Dk) from
(Ω

n

)
×
([n]

k

)
to( Ω

n−1
)
×
([n]

k

)
∪
(Ω

n

)
×
( [n]

k−1
)
, where Dk denotes the down operator

([n]
k

)
×
( [n]

k−1
)
→ R≥0. By

tensorization (Proposition 3.1), for p = κBL,k

κn+κBL,k
and κ = 1

κ−1
n +κ−1

BL,k

, P satisfies (1 − κ)-

contraction in f -divergence with respect to µn ⊗ Uniform
([n]

k

)
. Define the projections π1 :(Ω

n

)
×
([n]

k

)
→
(Ω

k

)
and π2 :

( Ω
n−1
)
×
([n]

k

)
∪
(Ω

n

)
×
( [n]

k−1
)
→
( Ω

k−1
)
∪
(Ω

k

)
both as

π(S, A) = S ∩
⋃
i∈A

Ωi,

i.e., if S corresponds to x ∈
∏n

i=1 Ω′i, we keep only the coordinates in the set A ∈
([n]

k

)
.

We claim the projected kernel as defined in Proposition 3.2 is

P ′ =
Å

1− p(n− k)
n

ã
Dk︸ ︷︷ ︸

(I)

+ p(n− k)
n

I︸ ︷︷ ︸
(II)

from
(Ω

k

)
to
( Ω

k−1
)
∪
(Ω

k

)
. To see this, we first identify xA ∈

∏i∈A

=1 Ω′i with its homogenization
in
( Ω
|A|
)

(Definition 2.3). Then µ1(·|π1(x1) = xA) is the distribution of (x, A) where xAc is
distributed as µ(XAc = xAc |XA = xA). Under the transition P :
1. With probability p, we remove a coordinate i of x. In this case,

a. with probability k
n , i ∈ A, and projection by π2 then gives xA\{i} for a random index i.

b. with probability n−k
n , i ̸∈ A, and projection by π2.

2. With probability 1− p, we remove an element i of A, and projection gives xA\{i} for a
random i ∈ A.

Then (1a) and (2) give the term (I) and (1b) gives the term (II).
Because

Df

Å
νP ′∥

Å
1− p(n− k)

n

ã
µk−1 + p(n− k)

n
µk

ã
=
Å

1− p(n− k)
n

ã
DKL(νDk∥µk−1) + p(n− k)

n
DKL(ν∥µk)
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(the component measures have disjoint support), we have that Dk satisfies (1−κk)-contraction
in f -divergence iff P ′ satisfies

Ä
1− κk

Ä
1− p(n−k)

n

ää
-contraction in f -divergence. Proposi-

tion 3.2 then gives us

κk

Å
1− κBL,k

κn + κBL,k
· n− k

n

ã
≥ 1

κ−1
n + κ−1

BL,k

=⇒ κk ≥
nκnκBL,k

nκn + kκBL,k
.

Plugging in the result of Lemma 3.3 then gives the result. ◀

▶ Theorem 3.5. Let µ be a distribution on Ω =
∏n

i=1 Ω′i, and consider the down and up
operators defined with respect to its homogenization µhom.
1. If Dn→n−1 satisfies (1 − 1

Cn )-contraction in χ2, then Dk→ℓ satisfies∏k
j=ℓ+1

Å
1− 1

j(C+ n−j+1
n )

ã
-contraction in χ2.

2. If Dn→n−1 satisfies (1 − 1
Cn )-contraction in KL (i.e., µ satisfies C-approximate tens-

orization of entropy), then Dk→ℓ and P▽
k↔ℓ satisfy

∏k
j=ℓ+1

Ä
1− 1

j(C+1)

ä
-contraction in

KL.
We note that our tensorization construction in Lemma 3.1 currently depends on µ being a
homogeneous distribution; it would be interesting to extend it beyond this case.

Proof. If Dn→n−1 satisfies
(
1− 1

Cn

)
-contraction in χ2-divergence, then by Lemma 3.4,

Dj→j−1 satisfies
Å

1− 1
j(C+ n−j+1

n )

ã
-contraction in χ2-divergence. If Dn→n−1 satisfies(

1− 1
Cn

)
-contraction in χ2-divergence, then we have

Ä
1− 1

j(C+1)

ä
-contraction in KL-

divergence. Because Dk→ℓ = Dk→k−1 · · ·Dℓ+1→ℓ, taking the product from ℓ + 1 to k

gives the result. ◀

From this, we can conclude that k-Glauber dynamics mixes at least Ω(k) times as fast
in χ2-divergence as Glauber dynamics, and assuming approximate tensorization of entropy,
mixes at least Ω(k) times as fast in KL-divergence.

▶ Corollary 3.6 (k-Glauber mixes k times as fast). Let µ be a distribution on Ω =
∏n

i=1 Ω′i.
1. If µ satisfies a Poincaré inequality with constant Cn, then

λ2(Pµ,k) ≤
Å

1− k

n + 1

ã 1
C+1

= 1− Ω
Å

max
ß

k

(C + 1)n, 1
™ã

and Pµ,k satisfies a Poincaré inequality with constant Ω
Ä

(C+1)n
k

ä
.

2. If µ satisfies C-approximate tensorization of entropy, then Pµ,k satisfies contraction in
KL-divergence with constantÅ

1− k

n + 1

ã 1
C+1

= 1− Ω
Å

max
ß

k

(C + 1)n, 1
™ã

.

Proof. Note that Pµ,k corresponds to P▽
n↔n−k after homogenization. For variance, we

recall Proposition 2.8 which relates the Poincaré constant of Pµ and Dn→n−1, and the
Poincaré constant of Pµ,k and Dn→n−k. The corollary then follows from Theorem 3.5 and
the calculation

APPROX/RANDOM 2024
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n∏
j=n−k+1

Å
1− 1

j(C + 1)

ã
≤ e
− 1

C+1

∑n

j=n−k+1
1
j ≤ e−

1
C+1 ln( n+1

n−k+1 )

=
Å

1− k

n + 1

ã 1
C+1

= 1− Ω
Å

k

(C + 1)n

ã
. ◀

Our theorem also implies contraction for D2→1; this forms a kind of converse to local-to-
global arguments that start with contraction of D2→1 [2].

▶ Corollary 3.7. Let µ be a distribution on Ω =
∏n

i=1 Ω′i, and consider the down and up
operators defined with respect to its homogenization µhom.
1. If Dn→n−1 satisfies (1 − 1

Cn )-contraction in χ2, then D2→1 satisfies
Ä
1− 1

2(C+1)

ä
-

contraction in χ2 and λ2(P△1↔2) ≤ 1− 1
2(C+1) .

2. If Dn→n−1 satisfies (1− 1
Cn )-contraction in KL (i.e., µ satisfies C-approximate tensoriz-

ation of entropy), then D2→1 satisfies
Ä
1− 1

2(C+1)

ä
-contraction in KL.

Proof. This follows from substituting k = 2, ℓ = 1 into Theorem 3.5, appealing to Proposi-
tion 2.8 for the χ2 result. ◀

4 Parallel sampling for Ising models

To apply Corollary 3.6 to the Ising model for ∥J∥ < 1, we use the fact that the Ising model
satisfies approximate tensorization of entropy.

▶ Theorem 4.1. Suppose ∥J∥ < 1. Then µJ,h satisfies approximate tensorization of entropy
with constant 1

1−∥J∥ .

The proof is in Section 4.1. We first introduce a generic guarantee for approximate
rejection sampling in Section 4.2, based on establishing concentration for the difference of
the log-pdfs. In Section 4.3, we show that using an approximating product distribution –
chosen as the solution to a variational problem – is sufficient as a proposal distribution for
µJ,h when ∥J∥F is small enough, using the Hanson-Wright inequality. We put everything
together in Section 4.4, combining the speedup of k-Glauber dynamics, known mixing for
the Ising model, guarantee on the approximate rejection sampler, with a careful analysis of
the recursion in the algorithm.

4.1 Approximate tensorization of entropy for the Ising model
For ∥J∥ < 1, we prove approximate tensorization of entropy for the Ising model µJ,h

(Theorem 4.1) by using the fact that it holds for rank-1 Ising models and using the needle
decomposition in [24]. This is the same way that the modified log-Sobolev inequality is
proved in [24].

▶ Proposition 4.2 ([8, Proposition 32]). Suppose ∥u∥ < 1. Then µuu⊤,h satisfies approximate
tensorization of entropy with constant 1

1−∥u∥2 .

▶ Theorem 4.3 (Needle decomposition of Ising measures [24]). Consider an Ising model
µ = µJ,h on {±1}n with J ⪰ 0. Let f : {±1}n → R be any function. There exists a mixture
decomposition (depending on f)

µ(x) =
ˆ

µu,v(x) dπ(u, v)

where π is a probability measure on R2n such that:
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1. π-almost surely, µu,v is a probability measure of the form

µu,v(x) = 1
Zu,v

exp
Å1

2 ⟨u, x⟩2 + ⟨v, x⟩
ã

,

i.e., a rank one Ising model (“needle”). Furthermore ∥u∥ ≤ ∥J∥.
2. Eµu,v f(X) = Eµf(X) π-almost surely.

Proof of Theorem 4.1. See full version. ◀

4.2 Approximate rejection sampling
Conditional distributions of the Ising model are again Ising models. We will show that with
large probability, if we pick a random subset of not-too-large size, then we can approximate
the distribution of those coordinates with a product distribution, and hence use the product
distribution as a proposal for approximate rejection sampling. We discuss further the choice
of product distribution (given in Algorithm 2) in Section 4.3.

First, we give a generic guarantee for the rejection sampling Algorithm 3, which can be
used whenever the log-ratio between desired and proposal distributions ln dP

dQ has sufficiently
decaying exponential tails. Note that because the normalizing constants are unknown,
we draw two samples and use one as a reference to decide whether to accept the other.
Lemma 4.4 appears as [25, Lemma 2] specialized to the distribution they consider, but holds
more generally. We give the proof for completeness.

Algorithm 2 Quadratic approximate rejection sampler (QuadraticApproxRejectionSampler).

1: Input: Hamiltonian H in the form H(x) = C + ⟨h, x⟩+ 1
2 ⟨x, Ax⟩+ H≥3(x), δ such that∥∥∥A�

∥∥∥
F
≤ δ < c3 and 0 ⪯ A ⪯ (1− c)I, error ε.

2: Let u0 = 0.
3: for t from 1 to T = Θ

Ä
1
c ln
Ä√

n
δ

ää
do

4: Let ut = A� tanh(h + ut−1).
5: end for
6: Let ĥ = uT .
7: Output: ApproxRejectionSampler(q(x) ∝ exp

(
⟨h + ĥ, x⟩, g(x) = H(x)− ⟨h + ĥ, x⟩,

( 2
ε

) δ
c3−δ

)
(See Algorithm 3.)

Algorithm 3 Approximate rejection sampler (ApproxRejectionSampler).

1: Input: Oracle for sampling from Q, function g such that dP
dQ ∝ eg, error parameter c.

2: repeat (For parallel implementation, run ⌈c⌉ times simultaneously and take the first
success.)

3: Draw X, Z ∼ Q.
4: Let R = exp(g(X)− g(Z)).
5: Draw U ∼ Uniform([0, 1]).
6: until U ≤ 1

c R

7: Output: X.

▶ Lemma 4.4. Let “P be the distribution of the output of Algorithm 3. Then

dP

dQ
(X) = E[R|X]

ER

d“P
dQ

(X) = E[min{R, c}|X]
E[min{R, c}] .
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The acceptance probability is paccept = 1
cEmin{R, c} = 1

c (ER− E[(R− c)1R≥c]) and the TV
distance is bounded by

DTV(“P , P ) ≤ E[(R− c)1R≥c]
ER

.

For c ≥ 1, the acceptance probability is at least 1
2c .

Proof. We calculate

E[R|X] = E[eg(X)−g(Z)|X] = eg(X)E[e−g(Z)]

E[R] = E[E[R|X]] = E[eg(X)]E[e−g(Z)],

so E[R|X]
E[R] = eg(X)

E[eg(X)] = dP
dQ (X). Note d“P

dQ (X) is the probability of acceptance given X divided
by the total probability of acceptance, which we calculate:

paccept(X) := P
ï
U ≤ 1

c
R|X
ò

= E
ï
min
ß

R

c
, 1
™
|X
ò

= 1
c
E[min{R, c}|X]

paccept = P
ï
U ≤ 1

c
R

ò
= E
ï
P
ï
U ≤ 1

c
R|X
òò

= 1
c
E[E[min{R, c}|X]] = 1

c
E[min{R, c}].

Dividing gives d“P
dQ = E[min{R,c}|X]

E[min{R,c}] . Then

DTV(“P , P ) ≤ EX∼Q max
®

0,
dP

dQ
(X)− d“P

dQ
(X)
´

≤ EX∼Q max
ß

0,
E[R|X]
ER

− E[min{R, c}|X]
cpaccept

™
≤ EX∼Q max

ß
0,

E[R|X]
ER

− E[min{R, c}|X]
ER

™
because cpaccept ≤ ER

≤ EX∼Q
E[(R− c)1R≥c|X]

ER
= E[(R− c)1R≥c]

ER
.

Finally, note that P(R ≥ 1) ≥ 1
2 by symmetry, so paccept ≥ 1

cP(R ≥ 1) ≥ 1
2c . ◀

4.3 Concentration
To obtain concentration of the ratio in Lemma 4.4, we need a version of the Hanson-Wright
inequality. We first state the classical inequality.

▶ Theorem 4.5 (Hanson-Wright Inequality, [49, Theorem 6.2.1]). There is a constant c such
that the following holds. Let X = (X1, . . . , Xn) ∈ Rn be a random vector with independent,
mean-zero, K-sub-gaussian coordinates. Let A ∈ Rn×n be a matrix. Then for every t ≥ 0,

P (| ⟨X, AX⟩ − E ⟨X, AX⟩ | ≥ t) ≤ 2 exp
ñ
−c min

®
t2

K4 ∥A∥2
F

,
t

K2 ∥A∥

´ô
.

We will use the following version, which is a consequence of [44, Corollary 2] (by taking
Γ(f) = ∥∇f∥ and noting that product distributions on {±1}n satisfy a uniform modified
log-Sobolev inequality) and allows a general function f .

▶ Theorem 4.6 ([44]). There is a constant c such that the following holds. Let X =
(X1, . . . , Xn) ∈ {±1}n be a random vector with independent coordinates. Let f : {±1}n → R
be a function. Then for every t ≥ 0,

P (|f(X)− Ef(X)| ≥ t) ≤ 2 exp
ñ
−c min

®
t2

E[∥∇f∥2]
,

t

maxx∈{±1}n ∥∇2f∥F

´ô
.
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Note the extra term E[∥∇f∥2] compared to Theorem 4.5 which requires the random variables
to be centered. This means that we cannot simply take Q = µh := µO,h and P = µJ,h for the
reason that E[∥∇x(⟨x, Ax⟩)∥2] can be Ω(n), while we need concentration to O(1). Instead,
in order to apply Theorem 4.6 for f = ln dP

dQ , we would like to ∇f to be centered, that is,
EQ∇f = 0. For this, we need to solve the variational problem

Eµh+h∗ A�x = h∗. (3)

We do this by fixed point iteration. Note this is a special case of “gradient” descent for
Lipschitz and strongly monotone operators [15, 36].

▶ Lemma 4.7 (Fixed point iteration). Let (X, d) be a metric space, c > 0, and suppose
F : X → X is (1−c)-Lipschitz (so it is a contraction mapping). Let x0 ∈ X and xt = F (t)(x0).
Then

d(F (xt), xt) ≤ (1− c)td(F (x0), x0)

and hence for t = Ω
Ä

1
c ln
Ä

d(F (x0),x0)
ε

ää
, we have d(F (xt), xt) ≤ ε.

Proof. We have d(F (xt), xt) = d(F (t+1)(x0), F (t)(x0)) ≤ (1− c)td(F (x0), x0) by induction.
Hence, it suffices to choose t such that t ln

Ä
1

1−c

ä
≥ ln

Ä
d(F (x0),x0)

ε

ä
, which gives the result. ◀

▶ Lemma 4.8. Suppose that A is symmetric positive semi-definite with A ⪯ (1− c)I. Let

F (u) = A� tanh(h + u).

Then for t = Ω
Ä

1
c log

Ä√
n

ε

ää
, we have that ĥ := F (t)(0) satisfies∥∥∥Eµ

h+“hA�x− ĥ
∥∥∥ ≤ ε. (4)

Proof. Note that all diagonal entries of A are contained in [0, 1− c], so −(1− c)I ⪯ A� ⪯
(1− c)I. Combining this with the fact that tanh is 1-Lipschitz, we obtain that F is (1− c)-
Lipschitz. Note that ∥F (0)− 0∥ ≤

√
n. The result then follows from Lemma 4.7 and the

fact that F (u) = Eµh+u
A�x. ◀

Using this, for small enough ∥A∥F , we can obtain the exponential tails necessary to bound
the TV-distance in Lemma 4.4. This fits in with the general fact that Ising models with small
∥J∥F are well-approximated by product distributions [31], giving approximation guarantees
for variational methods in this regime. We state the following lemma more generally with a
higher-order term, so that we can also apply it for the p-spin model.

▶ Lemma 4.9. There is a constant c3 such that the following holds. Suppose H(x) =
⟨h, x⟩+ 1

2 ⟨x, Ax⟩+ H≥3(x) where A is symmetric and H≥3(x) =
∑
|I|≥3 aIxI contains the

terms of degree ≥ 3. If δ < c3,

max
x∈{±1}n

∥∥∇2H(x)
∥∥

F
≤ δ and max

x∈{±1}n
∥∇H≥3(x)∥ ≤ δ,

then the output of QuadraticApproxRejectionSampler (Algorithm 2) is at most ε in TV distance
from µ, and the acceptance probability in the call to ApproxRejectionSampler is at least
1
2c = 1

2
(

ε
2
) δ

c3−δ .

In the special case that H≥3(x) = 0, the assumption simplifies to
∥∥∥A�

∥∥∥
F
≤ δ.
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Proof. Let

f(x) = H(x)−
¨
h + ĥ, x

∂
= 1

2 ⟨x, Ax⟩ −
¨
ĥ, x
∂

+ H≥3(x).

To use Theorem 4.6, we calculate E[∥∇f∥2]. First note that Ex∼Uniform({±1}n)∇2H≥3(x) = O

(because for any i, j ∈ [n] and |I| ≥ 3, we have Ex∼Uniform({±1}n)x
I\{i,j} = 0) so by Jensen’s

inequality∥∥∥A�
∥∥∥

F
=
∥∥∥A� + Ex∼Uniform({±1}n)∇2H≥3(x)

∥∥∥
F

≤ Ex∼Uniform({±1}n)

∥∥∥A� +∇2H≥3(x)
∥∥∥

F
≤ max

x∈{±1}n

∥∥∇2H(x)
∥∥

F
≤ δ.

Let x = Eµ
h+“hx. From Lemma 4.8 we have that the output ĥ of fixed point iteration satisfies∥∥∥A�x− ĥ
∥∥∥ ≤ δ. We then have

Eµ
h+“h [∥∇f∥2] = Eµ

h+“h ï∥∥∥A�x− ĥ +∇H≥3(x)
∥∥∥2
ò

≤ 2Eµ
h+“h ï∥∥∥A�(x− x) + A�x− ĥ

∥∥∥2
ò

+ 2Eµ
h+“h î∥∇H≥3(x)∥2ó

= 2Eµ
h+“h ï∥∥∥A�x− ĥ

∥∥∥2
+
∥∥∥A�(x− x)

∥∥∥2
+ ∥∇H≥3(x)∥2

ò
≤ 2
ï∥∥∥A�x− ĥ

∥∥∥2
+
∥∥∥A�

∥∥∥2

F
+ Eµ

h+“h ∥∇H≥3(x)∥2
ò
≤ 6δ2 (5)

using the fact that the entries of x− x are independent, mean 0, with variance at most 1.
Hence, by Theorem 4.6, f(X)− Ef(X) is O(δ)-sub-exponential, and so is f(Z)− f(X), and
there exists c3 so that

P (|f(Z)− f(X)| ≥ t) ≤ 2e−
c3t

δ .

Then for c =
( 2

ε

) δ
c3−δ ,

E[(R− c)1R≥c] ≤
ˆ ∞

ln c

et · P(f(Z)− f(X) ≥ t) dt

≤
ˆ ∞

ln c

et2e−
c3t

δ dt ≤ 2
ˆ ∞

ln c

e−( c3
δ −1)t dt = 2c−( c3

δ −1) = ε. (6)

Moreover, by Jensen’s inequality, ER ≥ eE[f(Z)−f(X)] = 1. Hence by Theorem 4.6, the output
is at most ε in TV distance from µ and the acceptance probability is at least 1

2c . ◀

4.4 Analysis of the Parallel Ising Sampler
▶ Lemma 4.10. Let S ⊆ [n], fix xSc ∈ {±1}Sc , and let P be the distribution on {±1}S with
mass function p(x) = µJ,h(XS = x|XSc = xSc), and let Q be the product distribution in on
{±1}S with mass function q(x) ∝ exp (⟨JS×ScxSc + hS , x⟩). Then the following hold.
1. dP

dQ (x) ∝ exp
( 1

2 ⟨x, JS×Sx⟩
)
.

2. DKL(P∥Q) ≤ ∥JS×S∥ · |S|.

Proof. Because xSc is constant, expanding the quadratic gives

µJ,h(XS = xS |XSc = xSc) ∝ exp
Å1

2(2 ⟨xS , JS×ScxSc⟩+ ⟨xS , JS×SxS⟩) + ⟨hS , x⟩
ã

.

Dividing by q(xS) gives (1).
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For (2), we note that for x ∈ {±1}S ,
∣∣ 1

2 ⟨x, JS×Sx⟩
∣∣ ≤ 1

2 ∥JS×S∥ ∥x∥2 ≤ 1
2 ∥JS×S∥ |S|.

Hence

dP

dQ
(x) =

exp
( 1

2 ⟨x, JS×Sx⟩
)

´
exp

( 1
2 ⟨x, JS×Sx⟩

)
dQ(x)

≤ e
1
2∥JS×S∥|S|

e−
1
2∥JS×S∥|S|

= e∥JS×S∥|S|

and DKL(P∥Q) = EP ln dP
dQ ≤ ∥JS×S∥ |S|. ◀

▶ Lemma 4.11 (Bernstein’s inequality for supermartingales [28, (1.6)]). Let Xn be a martingale
adapted to Fn. Suppose that |Xn+1−Xn| ≤ L and E[|Xn+1−Xn|2|Fn] ≤ σ2 with probability
1. Then

P(Xn −X0 ≥ t) ≤ exp
Å
− t2

2(tL + nσ2)

ã
.

We are now ready to prove our main theorem on the parallel Ising sampler.

Proof of Theorem 1.2. We first note that all lines in Algorithm 1 take logarithmic time
with poly(n) processors (e.g., by a parallel implementation of matrix-vector multiplication).
Note that a random subset of specified size s can be selected by generating a random number
for each index, using a parallel sorting algorithm [11], and then selecting the smallest s

elements. We will ignore logarithmic overhead for the rest of the proof.
Running time is bounded with high probability. We consider a tree associated with a run
of the algorithm, where each node is labeled with a set, constructed as follows. Each node
represents a time that ParallelIsingSampler is called, and each leaf node represents a time
that ApproxRejectionSampler. Start with a root node v1 labeled with S1 = [n]. A node has T

children, where T is the number calculated in line 7 of the algorithm. Each node is labeled
with subset of indices marking out the submatrix JS×S it is given.

Now consider exploring the tree in the following breadth-first manner. We will define a list
Bt which will contain the vertices at the boundary of explored territory and a filtration Ft.
Let B0 = (v1) and F0 be the trivial σ-algebra. Given Bt and Ft, if Bt is non-empty, define
Bt+1 and Ft+1 as follows. Let vt+1 be the first vertex in the list Bt, and let Bt+1 be defined
from Bt by removing vt+1 from Bt and adding its children. Let St+1 denote the set of indices
associated with vt+1, considered as a set-valued random variable, and Ft+1 = σ(Ft, St+1).
Let Mt = |Bt|. We have M1 =

⌊
C2 ln

(
n
ε

)
n
s

⌋
, and wish to bound the first time τ such that

Mτ = 0. We redefine Mτ+k = −k (for sake of making Mt a supermartingale, as we will show
below).

For t ≥ 2, consider Mt −Mt−1|Ft−1. Let v denote the parent of vt, and suppose v is

associated with the set R, with |R| = m. Then |St| = s :=

 c1m(
ln
(

2
εstep

)
+1
)

ln( n
ε )
∥∥∥∥J�

R×R

∥∥∥∥
F

.

(We choose c1 ≤ 1
2 c3 to ensure that we always have s ≤ m.) Let Dt be the number of new

children added. If
∥∥∥J�St×St

∥∥∥
F
≤ c3 or s = 1, then vt is a leaf and Dt = 0. Now consider∥∥∥J�St×St

∥∥∥
F

> c3. In the current call to the algorithm, s′ =

 c1s(
ln
(

2
εstep

)
+1
)

ln( n
ε )
∥∥∥∥J�

St×St

∥∥∥∥
F

.

Then Dt ≤ C2 ln
(

n
ε

)
s
s′ ≤

C2

(
ln
(

2
εstep

)
+1
)

ln( n
ε )2

∥∥∥∥J�
St×St

∥∥∥∥
F

c1
. In either case, Mt−Mt−1 = Dt−1.

We have that

Dt ≤
C2
Ä
ln
Ä

2
εstep

ä
+ 1
ä

ln
(

n
ε

)2
∥∥∥J�St×St

∥∥∥
F
1

[∥∥∥J�St×St

∥∥∥
F

> c3

]
c1

. (7)
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Hence, by Cauchy-Schwarz and Chebyshev’s inequality,

E[Dt|Ft−1] ≤
C2
Ä
ln
Ä

2
εstep

ä
+ 1
ä

ln
(

n
ε

)2

c1
E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò1/2
·

P

∥∥∥J�St×St

∥∥∥
F

>
c3

ln
Ä

2
εstep

ä
+ 1

∣∣∣Ft−1

1/2

≤
C2
Ä
ln
Ä

2
εstep

ä
+ 1
ä

ln
(

n
ε

)2

c1
E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò1/2
·
E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò1/2

c3/
Ä
ln
Ä

2
εstep

ä
+ 1
ä

=
C2
Ä
ln
Ä

2
εstep

ä
+ 1
ä2

ln
(

n
ε

)2

c1c3
E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò
. (8)

Now because St is uniformly chosen at random from subsets of R of size s,

E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò
= E

S∼Uniform(R
s)

ï∥∥∥J�S×S

∥∥∥2

F

ò
=

∑
i,j∈R,i̸=j

( s

m

)2
J2

ij =
( s

m

)2 ∥∥∥J�R×R

∥∥∥2

F
≤ 4c2

1Ä
ln
Ä

2
εstep

ä
+ 1
ä2

ln
(

n
ε

)2
, (9)

where we use the fact that J�ii = 0, all off-diagonal entries have probability
(

s
m

)2 of being
included in St, and s > 1. Combining (8) and (9) gives

E[Dt|Ft−1] ≤ 4C2c1

c3
.

Choosing c1 small enough (depending on C2, c3), we can ensure that E[Mt −Mt−1|Ft−1] =
E[Dt−1|Ft−1] ≤ − 1

2 , so that Mt + t
2 is a supermartingale for t ≥ 1. By Doob’s decomposition

we can write Mt = At + M ′
t where At+1 ≤ A1 − t

2 is a predictable decreasing sequence and
M ′

t is a martingale.
We now bound the variance. Using (7),

E[(M ′
t −M ′

t−1)2|Ft−1] ≤ E[D2
t |Ft−1]

≤
C2

2

Ä
ln
Ä

2
εstep

ä
+ 1
ä2

ln
(

n
ε

)4

c2
1

E
ï∥∥∥J�St×St

∥∥∥2

F
|Ft−1

ò
≤ 4C2

2 ln
(n

ε

)2
,

where we use the bound (9). Finally, |M ′
t+1 −M ′

t | ≤
C2

(
ln
(

2
εstep

)
+1
)

ln( n
ε )2

c1

∥∥∥J�
∥∥∥

F
with

probability 1. Let T0 be the T computed in line 7 in the first step of the algorithm. By
Bernstein’s inequality for martingales (Lemma 4.11), for t ≥ C ln4 (n

ε

)
max

{∥∥∥J�
∥∥∥

F
, 1
}
≥ T0

for an appropriate constant C (depending on C2, c1, C4),

P(Mt+1 > 0) = P ((Mt+1 −M1) > −T0) ≤ P
Å

M ′
t+1 −M ′

1 >
t

2 − T0

ã
≤ ε

2 .

This shows that with probability ≥ 1− ε
4 , there are at most tmax = C ln4 (n

ε

)
max{∥J∥F , 1}

nodes.
Finally, we note that in the call to ApproxRejectionSampler, the parameter needed to

obtain error εstep is
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c =
Å 2

εstep

ã δ
c3−δ

=
Å 2

εstep

ã 1
log(2/εstep)

= e

and the acceptance probability is ≥ 1
2c = 1

2e .
The number of tries until acceptance is a geometric random variable, which is subexpo-

nential, so standard concentration bounds show that the total number of tries is at most
O(ln

( 1
ε

)
) times the number of calls, with probability ≥ 1− ε

2 . Putting everything together,
we obtain O(max{∥J∥F , 1}poly log

(
n
ε

)
) running time with probability ≥ 1− ε.

Output is close in TV distance. Let A be a large constant to be determined.
Now consider coupling y = y(0) with a sequence of random variables y(1), . . ., defined

inductively as follows. Start with all vertices of the tree of recursive calls unmarked. Now
given y(t), choose a node (in a fixed manner) all of whose children are marked, and mark
it; then replace the output of that call to ParallelIsingSampler by a sample from the true
distribution. We now choose constants so that DTV(D(y(t)),D(y(t+1))) ≤ ε

nA . There are two
kinds of replacements to consider, a leaf node and a non-leaf node.

A leaf node corresponds to a call to ApproxRejectionSampler. If c3 is small enough and
C4 = A, then by Lemma 4.9 and 4.4, the output of ApproxRejectionSampler is within ε

nA of
the µJR×R,h.

A non-leaf node corresponds to T recursive calls to ParallelIsingSampler. Here we must
appeal to mixing for the Ising model. By Theorem 4.1, approximate tensorization of entropy
holds with constant 1

c . Hence by Theorem 3.6, there is a constant C ′0 such that if C0 = C ′0c,
then for any s, t · n

s steps of s-Glauber dynamics results in a distribution νt satisfying

DTV(νt∥µJ,h) ≤
…

1
2DKL(νt∥µJ,h) ≤

…
1
2DKL(ν0∥µJ,h)e−C0t.

With the product initialization, we have by Lemma 4.10(2) (applied to the whole matrix)
that DKL(ν0∥µJ,h) ≤ ∥J∥n ≤ 2n. Hence there exists a constant C ′2 such that if C2 = C ′2A/c,
then with T = C2 ln

(
n
ε

)
n
s steps, DTV(νT ∥µJ,h) ≤ ε

nA . By Lemma 4.10(1), for the Ising
model µJR×R,h the conditional distribution of XS given XR\S = yR\S is exactly the Ising
model µJS×S ,JS×R\SyR\S+hS

. Given that the conditional distributions are sampled exactly,
then the only error is that from not having fully mixed, which we set to be ε

nA .
This chain of coupled random variables establishes DTV(D(y),D(y(t))) ≤ tε

nA . Moreover,
for t > tmax, DTV(D(y(t)), µJ,h) ≤ ε

2 by our high-probability bound, as the root node in y(t)

will have been replaced with a perfect sample with probability ≥ 1− ε
2 . It remains to note

that tmax = C ln4 (n
ε

)
max{∥J∥F , 1} with C depending polynomially on A. Hence we can

choose A such that tmaxε
nA ≤ ε

2 , and this finishes the proof. ◀
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