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Abstract
We study information aggregation in networks when agents interact to learn a binary state of the
world. Initially each agent privately observes an independent signal which is correct with probability
1
2 + δ for some δ > 0. At each round, a node is selected uniformly at random to update their public
opinion to match the majority of their neighbours (breaking ties in favour of their initial private
signal). Our main result shows that for sparse and connected binomial random graphs G(n, p) the
process stabilizes in a correct consensus in O(n log2 n/ log log n) steps with high probability. In
fact, when log n/n ≪ p = o(1) the process terminates at time T̂ = (1 + o(1))n log n, where T̂ is
the first time when all nodes have been selected at least once. However, in dense binomial random
graphs with p = Ω(1), there is an information cascade where the process terminates in the incorrect
consensus with probability bounded away from zero.
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1 Introduction

Our opinions and actions we take as individuals are often influenced by both our private
knowledge of the world and the information we obtain through our interactions with others.
For example, a voter deciding which candidate’s economics policies would decrease inflation,
might have an initial belief based on her own past expenditure and later might be swayed
by her friends’ opinions. Now more than ever, with the advent of social media and online
platforms, our interactions have increased many folds and our social networks are massive.
Hence, an important research question is to understand if and how the structure of the social
network and the dynamics of the interactions impact the (mis)information propagated [35].
Do our social networks enable successful information aggregation and lead to social learning,
or do they amplify incorrect beliefs leading to an information cascade?

There has been extensive work modeling these opinion dynamics formally to study the
network effects on information aggregation; see Section 1.4. In this paper, we focus on the
model of asynchronous majority dynamics, where agents in a network (asynchronously) update
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5:2 Asynchronous Majority Dynamics on Binomial Random Graphs

their opinions to match the majority opinion amongst their neighbours. In particular, each
agent initially has a private belief over a binary state of the world and no publicly announced
opinion. At each time step, an agent is chosen uniformly at random to announce/update
her opinion and she does so by simply copying the majority of the neighbours’ current
announced opinions, breaking ties with her initial belief. Majority dynamics is clearly a naïve
learning model, as the agents do not reason about potential information redundancy due to
interaction between one’s neighbours. Such naïve learning (non-Bayesian) models are a more
faithful abstraction of everyday interactions between agents with bounded rationality (e.g.,
voters and consumers), while Bayesian models are a better abstraction of rational agents
or interactions about high-stakes information (e.g., traders and scientists). We consider
asynchronous updates which are more suitable to capture human decision making. Moreover,
asynchronous emergence of announcements also captures an initial information diffusion
phase before conventional social learning starts.

In our model, there is a correct opinion (i.e., the true state of the world) and each
agent’s initial private belief is independently drawn and is biased towards being correct (with
probability 1/2 + δ). So initially, in a large network, there is enough information so that an
omniscient central planner can infer the true state (with very high probability). However,
agents in the network are updating their opinions based on local heuristics, so the network
structure can crucially alter the final outcome of the dynamics. For example, in a complete
graph, with a constant probability all the nodes converge to the wrong opinion. On the other
hand, in a star graph with high probability all the nodes converge to the correct opinion.
This brings us to the main question of interest:

“What network structures enable efficient social learning, where the dynamics stabilizes
with every agent in the network reaching the correct opinion?”

Feldman et al. [20], who initiated the study of asynchronous majority dynamics, showed
that when the network is sparse (has bounded degree) and expansive, a correct consensus is
reached with high probability. More recently, Bahrani et al. [4] studied networks that have
certain tree structures (like preferential attachment trees and balanced m-ary trees) and
showed that the dynamics stabilizes in a correct majority. Both results heavily rely on these
particular assumptions on the network. For example, to even establish that a majority of the
nodes have the correct opinion at some point in the process, it is crucial that the network is
either a bounded degree graph or is a tree. In this paper, our goal is to extend the guarantees
of asynchronous majority dynamics beyond these assumptions and to develop techniques
applicable to more general networks formed through random graph models.

1.1 The Model
Consider any undirected graph G = (V, E) on n = |V | nodes. Individuals initially have
one of two private beliefs which we will refer to as “Correct” (or 1) and “Incorrect” (or
0). Formally, each v ∈ V (G) receives an independent private signal X(v) ∈ {0, 1}, and
Pr(X(v) = 1) = 1/2 + δ, for some universal constant δ ∈ (0, 1/2). Individuals also have a
publicly announced opinion which we will simply refer to as an announcement or opinion.
We define Ct(v) ∈ {⊥, 0, 1} to be the public announcement of v ∈ V at time t. Initially, no
announcement have been made, that is, C0(v) =⊥ for all v ∈ V . In each subsequent step,
a single node vt is chosen uniformly at random from V , independently from the history of
the process. In particular, as in the classical coupon collector problem, some nodes will be
chosen many times before others will get lucky to get chosen for the first time. In step t, vt

updates her announcement using majority dynamics, while announcements of other nodes
stay the same. To be specific, for any i ∈ {⊥, 0, 1} and v ∈ V , let N t

i (v) denotes the number
of neighbours of v that have opinion i at time t. Then,
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Ct(v) =


1 if N t−1

1 (v) > N t−1
0 (v) and v = vt,

0 if N t−1
1 (v) < N t−1

0 (v) and v = vt,

X(v) if N t−1
1 (v) = N t−1

0 (v) and v = vt,

Ct−1(v) if v ̸= vt.

Finally, for any i ∈ {⊥, 0, 1}, let Y t
i be the number of nodes that have opinion i at time t,

that is, Y t
i = |{v ∈ V : Ct(v) = i}|.

As shown in [20], it is easy to see that in any network this process stabilizes with high
probability in O(n2) steps. In fact, the process stabilizes in O(n log n + n · d(G)) where d(G)
is the diameter of the graph [4]. That is, the network reaches a state at some time T where
no node will want to change its announcement and thus the process terminates. Our goal
is to understand what fraction of nodes converges to the correct opinion, that is, what the
value of Y T

1 /n is.

1.2 Our Results
The main contribution of this paper is the proof that the asynchronous majority dynamics
on binomial random graph G(n, p) converges to the correct opinion, provided that the graph
is sparse (that is, the average degree np = o(n)) and connected (that is, np − log n ≫ 1). If
np ≫ log n, then the process converges to the correct opinion as quickly as it potentially
could.

▶ Theorem 1. Let δ ∈ (0, 1/10]. Let ω′ = ω′(n) = o(log n) be any function that tends
to infinity as n → ∞. Suppose that p = p(n) ≪ 1 and p ≫ log n/n, and consider the
asynchronous majority dynamics on G(n, p).

Then, asymptotically almost surely (a.a.s.) after n(log n + ω′) = (1 + o(1))n log n rounds
the process terminates with all nodes announcing the correct opinion. In fact, it happens
exactly at time T̂ , where T̂ is the first time when all nodes are selected at least once.

For sparser (but still connected) graphs, the process also converges to the correct opinion.
In this case, we do not aim to show that it happens at time T̂ and we only provide an upper
bound for the number of rounds. It remains an open problem to determine if the process
terminates at time T̂ or it needs more time to converge.

▶ Theorem 2. Let δ ∈ (0, 1/10]. Let ω′ = ω′(n) = o(log n) be any function that tends to
infinity as n → ∞. Suppose that p = p(n) ≤ ω′ log n/n and p ≥ (log n + ω′)/n, and consider
the asynchronous majority dynamics on G(n, p).

Then, a.a.s. after O(n(log n)2/(log log n)) rounds the process terminates with all nodes
announcing the correct opinion.

These results are best possible in the following sense. If p ≤ (log n − ω′)/n, then a.a.s.
G(n, p) is disconnected. In fact, a.a.s. there are at least ω′ isolated nodes which announce
their own private believes. As a result, a.a.s. some nodes announce the correct opinion but
some of them announce the incorrect one. Indeed, the probability that all isolated nodes
converge to the same opinion is at most o(1) + (1/2 + δ/2)ω′ + (1/2 − δ/2)ω′ = o(1). On the
other hand, if p ∈ (0, 1] is a constant separated from zero, then with positive probability the
process converges to the correct opinion and with positive probability it converges to the
incorrect opinion.

APPROX/RANDOM 2024
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▶ Theorem 3. Let δ ∈ (0, 1/2). Let ω′ = ω′(n) = o(log n) be any function that tends to
infinity as n → ∞. Suppose that p ∈ (0, 1] is a constant, and consider the asynchronous
majority dynamics on G(n, p).

Then, the following is true for i ∈ {0, 1}: with probability at least pi, after n(log n + ω′) =
(1 + o(1))n log n rounds the process terminates with all nodes announcing opinion i, where

p1 = (1/2 + δ) exp
(

− log(1/p)(1/p)
)

> 0

p0 = (1/2 − δ) exp
(

− log(1/p)(1/p)
)

> 0.

Finally, let us mention that for some technical reason, in Theorems 1 and 2 it is assumed
that δ ≤ 1/10. However, it is easy to couple the process with δ ≤ 1/10 with the one with
δ ∈ (1/10, 1/2) to show that the result holds for any δ ∈ (0, 1/2) – see Subsection 2.3 for
more details.

1.3 Future Directions
Let us highlight a few potential directions one might want to consider.

As already mentioned above, for very sparse graphs (np − log n → ∞ and np = O(log n)),
it would be interesting to determine if the process terminates at time T̂ or it needs more
time to converge to the correct opinion – see Theorem 2.
Theorem 2 holds as long as pn = log n + ω for some ω = ω(n) → ∞ as n → ∞. It is
known that if pn = log n + c for some constant c ∈ R, then with probability bounded
away from one and from zero the graphs is disconnected. As a result, there is no hope to
extend the result for this range of p. But it is plausible that a.a.s. it holds right at the
time the random graph process creates a connected graph. This would be an optimal
“hitting time” result.
For disconnected graphs (np − log n → −∞), it would be interesting to investigate the
process run on the giant component of G(n, p).
For dense graphs, it is not true that a.a.s. all nodes converge to the correct opinion – see
Theorem 3. Having said that, it is reasonable to expect that a.a.s. all nodes converge to
the same opinion (for example, [21] show that a consensus is reached in this case in a
synchronous setting). Is is true in our asynchronous setting? In any case, what is the
asymptotic value of the probability that all nodes converge to the correct opinion?
It would be interesting to investigate other random graph models that are able to generate
graphs with power-law degree distributions as the Chung-Lu model [16] or the classical
configuration model. More challenging, but an important and interesting, direction would
be to understand the learning process on a network with a community structure such as
the ABCD (Artificial Benchmark for Community Detection) model [30] which produces a
random graph with community structure and power-law distribution for both degrees
and community sizes. In this model, small communities might create echo chambers,
environments in which participants encounter beliefs that amplify or reinforce their
preexisting beliefs inside a community and insulated from rebuttal.

1.4 Related Work
In this section, we briefly discuss prior work on social learning mainly focusing on the setting
with a binary state of the world and the agents initially have a correct opinion independently
with probability 1/2 + δ. We refer to some recent surveys on social learning and opinion
dynamics [37, 8, 11] for a more detailed literature review.
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Majority dynamics falls under a wide class of naive or non-Bayesian models, where agents
use a simple local heuristic to update their opinions, to capture simple behaviours exhibited
by non-expert decision makers. Prior works have studied majority dynamics under a variety
of modeling assumptions, to understand when a consensus is possible and when there is
social learning – that is, the consensus (or the majority) is correct. These works study a
variety of networks such as k-regular trees [28, 32, 4], bounded degree graphs [20], random
regular graphs [23], “symmetric” graphs and expanders [39]. In [44], a different perspective
on social learning asks when is it possible to “recover the correct opinion” at the end of the
dynamics through any function (not just a consensus or majority vote). Prior work has also
considered models with different notions of bias towards correct opinion, for example, each
node updates to the correct opinion with some probability [3], or the initial configuration of
the network has some n/2 + δ correct opinions [45, 46].

Recently, there has been a series of work studying synchronous majority dynamics in
binomial random graphs [10, 21, 15], with a focus to showing that 99% of the nodes converge
to the same opinion (with high probability) for sparse random graphs, with p = Ω(log n/n3/5)
being the best known lower bound for the average degree. Moreover, [47] showed that a correct
consensus is reached with high probability for binomial random graphs with p = Ω(log n/n).
In contrast to these works, we focus on asynchronous dynamics and prove that a correct
consensus is reached with high probability for p = Ω(log n/n) and p = o(1). Binomial random
graphs are also studied under label propagation [34] which is a special case of synchronous
majority dynamics with non-binary opinion in [0, 1].

Many of the works mentioned above focus on synchronous updates, where all agents
update their opinions synchronously in each round. Majority dynamics with synchronous
updates leads to a correct consensus for all networks that are sufficiently connected [39],
whereas with asynchronous updates the network structure can have a huge impact on social
learning. This is best illustrated by the complete graph. With asynchronous updates, once
the first agent announces their opinion (which can be wrong with probability 1/2−δ) everyone
will copy this. Hence, with a probability bounded away from zero all the nodes converge to
the wrong opinion. In contrast, if all agents were to update synchronously, then the majority
of the round one updates will be correct with high probability, so there will be a correct
consensus in round two. Recent work [5], studies the DeGroot model with uninformed agents,
to capture the different phases of information diffusion and social learning, which is a key
phenomena that occurs in our asynchronous model.

Other non-Bayesian dynamics have also been extensively studied. In the Voter model,
agents choose a random neighbour and copy their opinion [17, 27]. A similar dynamics called
k-majority model are studied in the distributed computing literature, where agents choose
k-neighbours at random and copy their majority [9, 25, 24, 18, 1]. In the DeGroot Model, an
agent’s opinion lies in [0, 1] (as opposed to binary {0, 1}) and agents update to the average
of their neighbours [19, 26]. A key difference between these works and majority dynamics
is that in these models a consensus is reached with probability 1 for any connected graphs.
This is not the case in majority dynamics even with synchronous updates.

While our focus is in non-Bayesian dynamics, there has also been a long line of work
studying Bayesian models, where agents update their beliefs rationally given their (local)
observations exhibiting more sophisticated decision-making. Seminal works [7, 12] introduced
the study of Bayesian dynamics and identified conditions that lead to information cascades.
Here, the agents arrive sequentially and observe all the announcements (i.e., they form
a complete graph), and many other subsequent works consider Bayesian dynamics under
different assumptions and variations [43, 6, 14]. Bayesian dynamics in general social networks
were first studied in [2]. There is also a long line of work studying Bayesian learning with
repeated interactions [22, 42, 31, 41, 40, 38].

APPROX/RANDOM 2024
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2 Preliminaries

2.1 Notation
Let us first precisely define the G(n, p) binomial random graph. G(n, p) is a distribution over
the class of graphs with the set of nodes [n] := {1, . . . , n} in which every pair {i, j} ∈

([n]
2
)

appears independently as an edge in G with probability p. Note that p = p(n) may (and
usually does) tend to zero as n tends to infinity. We say that G(n, p) has some property
asymptotically almost surely or a.a.s. if the probability that G(n, p) has this property tends
to 1 as n goes to infinity. For more about this model see, for example, [13, 29, 33].

Given two functions f = f(n) and g = g(n), we will write f(n) = O(g(n)) if there
exists an absolute constant c ∈ R+ such that |f(n)| ≤ c|g(n)| for all n, f(n) = Ω(g(n))
if g(n) = O(f(n)), f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), and we
write f(n) = o(g(n)) or f(n) ≪ g(n) if limn→∞ f(n)/g(n) = 0. In addition, we write
f(n) ≫ g(n) if g(n) = o(f(n)) and we write f(n) ∼ g(n) if f(n) = (1 + o(1))g(n), that is,
limn→∞ f(n)/g(n) = 1.

2.2 Concentration Tools
In this section, we state a few specific instances of Chernoff’s bound that we will find useful.
Let (Z1, . . . , Zn) be a sequence of independent Bernoulli(p) random variables. For each
j ∈ [n], let Xj =

∑j
i=1 Zi. In particular, Xn ∈ Bin(n, p) is a random variable distributed

according to a Binomial distribution with parameters n and p. Then, a consequence of
Chernoff’s bound (see e.g. [29, Theorem 2.1]) is that for any t ≥ 0 we have

P(Xn − E[Xn] ≥ t) ≤ exp
(

− t2

2(E[Xn] + t/3)

)
(1)

P(E[Xn] − Xn ≥ t) ≤ exp
(

− t2

2E[Xn]

)
. (2)

Moreover, let us mention that the above bounds hold in a more general setting as well,
that is, for any sequence (Zj)1≤j≤n of independent random variables such that for every
j ∈ [n] we have Zj ∈ Bernoulli(pj) with (possibly) different pj-s (again, see e.g. [29] for more
details).

Finally, we note that Xn −E[Xn] in (1) can be replaced with max1≤j≤n(Xj −E[Xj ]) and
E[Xn] − Xn in (2) can be replaced with max1≤j≤n(E[Xj ] − Xj). That is, we have

P( max
1≤j≤n

(Xj − E[Xj ]) ≥ t) ≤ exp
(

− t2

2(E[Xn] + t/3)

)
(3)

P( max
1≤j≤n

(E[Xj ] − Xj) ≥ t) ≤ exp
(

− t2

2E[Xn]

)
. (4)

This is a consequence of a standard martingale bound (see e.g. [36] for more details).

2.3 Coupling
Suppose that at some point of the process, the public announcement is captured by Ct(v),
v ∈ V . Let Ĉt(v) be any sequence of opinions such that the following properties hold: (a) if
Ĉt(v) = 1, then Ct(v) = 1, (b) if Ĉt(v) = 0, then Ct(v) ∈ {0, 1, ⊥}, (c) if Ĉt(v) =⊥, then
Ct(v) =⊥. In other words, we get the auxiliary sequence Ĉt(v) by modifying some of the
opinions 1 and ⊥ in Ct(v) to 0. Hence, the process starting from Ct(v) can be coupled with
the auxiliary process starting from Ĉt(v) such that all the properties (a)–(c) are satisfied in
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every step of the process. In particular, if the auxiliary process converges to all nodes having
opinion 1, then so does the original process. This easy observation will turn out to be useful
in analyzing the process.

Similarly, suppose private beliefs in the auxiliary process are dominated by private beliefs
in the original process: for any v ∈ V , X̂(v) ≤ X(v). If the two processes are coupled,
then properties (a)–(c) hold again. As before, if the auxiliary process converges to all nodes
having opinion 1, then so does the original process. In particular, as mentioned above, the
assumption that δ ∈ (0, 1/10] in Theorems 1 and 2 can be relaxed to δ ∈ (0, 1/2).

3 Sparse Random Graphs

In this section, we consider sparse random graphs, that is, we will assume that p = o(1).
Let ω = ω(n) be a function that tends to infinity as n → ∞, arbitrarily slowly. In
particular, each time we refer to ω, we will assume that ω ≪ pn and ω ≪ (1/p)1/2 so that
1/p ≫ 1/(pω) ≫ 1/(pω2) ≫ 1.

We will consider a few phases. During the first phase (Subsection 3.1), most of the nodes
that are chosen have not yet announced their opinions (Ct−1(vt) =⊥) and none of their
neighbours have announced (N t−1

1 (vt) = N t−1
0 (vt) = 0). Hence, the announcement of vt

will typically coincide with its private belief. Moreover, most of the nodes selected will not
be chosen again during this phase. During the second phase (Subsection 3.2), it is still the
case that most selected nodes are selected for the first time but this time they might have
neighbours that announced their opinions. As a result, the argument is more involved but
the conclusion is that at the end of the second phase more nodes have correct opinion than
not.

The analysis of the first two phases can be applied for all sparse graphs, even below the
threshold for connectivity. The analysis of the final steps of the process is slightly more
involved. We first present an easy argument for not very sparse graphs (Subsection 3.3), that
is, when the asymptotic expected degree degree satisfies pn ≫ log n. Very sparse graphs
for which pn = Θ(log n) (but, of course, above the connectivity threshold) are considered in
Subsection 3.4.

Overview

A key phenomena in asynchronous dynamics is that the process involves both information
diffusion and conventional social learning. Intuitively, the process initially produces some
independent beliefs/opinions pop up sporadically throughout the network. These opinions
then diffuses in the network during the process as more nodes are selected to announce/update
their opinion by learning from their neighbours. With this in mind, our analysis considers
multiple phases of the process. We provide a brief description of the different phases below.

Phase 1. In the first few time steps, most nodes that are selected to announce have
not been selected earlier and, more importantly, do not have neighbours who have been
selected before. So almost all of the opinions in the network at the end of phase one are
just the independent private beliefs of the selected nodes. Since the private signals are
biased towards being correct, a strict majority of the opinions are correct at the end of
the first phase. In particular, we show that at time T1 = δ/2p, the number of nodes with
opinion 1 is at least (1/2 + 3δ/5)T1 and opinion 0 is represented at most (1/2 − 3δ/5)T1
times. Moreover, T1(1 − o(1)) nodes have made some announcement in this phase, that
is, very few nodes were selected more than once.

APPROX/RANDOM 2024
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Phase 2. In the second phase, again most nodes that are selected to announce have not
been selected earlier. In particular, we show that at any time t during the second phase
(i.e., after time T1 but before time T2 = n/ω), the number of nodes that were selected
twice before time t is o(t). Moreover, since a super majority of the opinions at the end of
the previous phase were correct, we prove that nodes that are selected to announce for
the first time are more likely to learn the correct opinion even if we pretend that the few
nodes that are selected again were to change their opinion to 0.
Phase 3 (a). For not very sparse graphs, we are able to show all nodes which were not
selected in the first two phases have more neighbours with opinion 1 than not. Again,
very few nodes who were selected before are selected again before time T3 = n/

√
ω, so

even if all of them announce 0 all nodes who make their first announcement between time
T2 and time T3 announce the correct opinion. Finally, even if all the nodes that were
selected before time T2 are to have opinion 0 and all nodes that were selected for the first
time between time T2 and time T3 have opinion 1, we show that a.a.s. all announcements
after time T3 are always correct.
Phase 3 (b). For very sparse graphs, the proof of the last phase is more involved as
there might be nodes whose degree is too small to guarantee that a majority of their
neighbours have opinion 1, even though there is a super majority of opinion 1 in the
network. However, we may bound the number of nodes with small degrees and show that
no large degree node has more than one small degree neighbour. With this in hand, we
show that after every batch of O(n log n) many time steps the number of large degree
nodes with opinion 0 shrinks by at least (log log n)1/4 factor. Hence, after o(log n) many
such batches all large nodes have opinion 1. Finally, we show that no two small degree
nodes are adjacent to each other, and hence all the small degree nodes will also switch to
opinion 1 by copying the opinions of their large degree neighbours.

We highlight a few simple techniques that help us in the analysis. Firstly, separating the
randomness of the graph, the node selection process and the opinion formation. For example,
we wait to reveal the edges adjacent to a node only when she is selected to announce for
the first time. Second, considering an auxiliary dynamics that is coupled with the actual
dynamics in order to ignore problematic but rare events such as the repeated nodes in the first
two phases. Finally, finding independent sequences of random variables that stochastically
dominate the opinion dynamics sequence in order to compute probability bounds more easily.

3.1 Phase 1: T1 = δ/(2p)

In the analysis of the process, it will be convenient to ignore opinions of a small fraction of
nodes, and consider the following auxiliary dynamics. We will use Dt(v) ∈ {⊥, ?, 0, 1} to
denote the auxiliary announcement of v ∈ V at time t. For any i ∈ {⊥, ?, 0, 1}, let Zt

i be the
number of nodes that have auxiliary opinion i at time t, that is, Zt

i = |{v ∈ V : Dt(v) = i}|.
We will explain how the values of Dt(v) are determined soon but the auxiliary dynamics
will be coupled with the original one and, in particular, we will make sure that the following
property holds.

▶ Property 4. If Dt(v) = i for some i ∈ {⊥, 0, 1} and time t, then Ct(v) = Dt(v). On
the other hand, if Dt(v) =?, then Ct(v) ∈ {0, 1}. As a result, for i ∈ {0, 1} and any time t

during the first phase, we have

Zt
i ≤ Y t

i ≤ Zt
i + Zt

?. (5)
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The first phase takes T1 = δ/(2p) = Θ(1/p) ≫ ω2 ≫ 1 rounds. In order to keep the
analysis easy, we postpone exposing edges of G(n, p) for as long as possible, and keep the
following useful property.

▶ Property 5. At any time t, only edges of G(n, p) with both endpoints in the set {v :
Dt(v) ̸=⊥} are exposed.

The auxiliary dynamics, coupled with the original one, that we aim to understand is
defined as follows. Consider a node vt chosen at time t. For all other nodes v ̸= vt we have
Dt(v) = Dt−1(v). For vt we have,

Dt(vt) =


? if Dt−1(vt) ̸=⊥,

? if ∃ node v such that v ∈ N(vt) and Dt−1(v) ̸=⊥,

X(vt) otherwise.

That is, if vt had announced her opinion at least once before time t (Dt−1(vt), Ct−1(vt) ̸=⊥),
then we fix Dt(vt) =?. On the other had, if vt has not announced her opinion yet (that
is, Dt−1(vt) = Ct−1(vt) =⊥), then we expose edges of G(n, p) between vt and the set
{v : Dt−1(v) ̸=⊥}. If no edge between vt and the set {v : Dt−1(v) ̸=⊥} is present, then
no neighbour of vt has an announced opinion and so Dt(vt) = Ct(vt) = X(vt) is fixed to
the private belief of vt. Otherwise (that is, at least one edge is present), then we simply
fix Dt(vt) =?. Let us note that, an alternative approach would be to investigate the value
of Ct(vt) and then fix Dt(vt) = Ct(vt). However, we expect at most pt ≤ pT1 = δ/2 edges
between vt and {v : Dt−1(v) ̸=⊥}, and so there will not be many nodes vt of this type. As a
result, we may simply ignore the announcements of such nodes, thus simplifying our analysis.

Moreover, a useful implication of this approach is that in order to estimate the values
of Zt

⊥ and Zt
? in this process, we do not need to uncover nodes’ private believes (X(v)’s).

Hence, we may postpone exposing private beliefs of nodes with Dt(v) ̸∈ {⊥, ?} to the very
end of this phase, and only then expose this information to determine how many nodes
satisfy DT1(v) = 1 and how many of them satisfy DT1(v) = 0. Finally, it is easy to see that
Property 4 is satisfied at time T1 and Property 5 is satisfied in any point of the process.

Here is the main result of this subsection.

▶ Proposition 6. Suppose that p = p(n) ≪ 1 and p ≫ 1/n. Set T1 = δ/(2p). Let
ω = ω(n) ≪ min{pn, (1/p)1/2} be any function that tends to infinity as n → ∞. Then, a.a.s.
the following holds:

ZT1
? ≤ δT1

4 (1 + O(1/ω)) (6)

ZT1
1 ≥ (1/2 + 3δ/5) T1 (7)

ZT1
? + ZT1

1 + ZT1
0 = T1 (1 − O(1/ω)) . (8)

As a result, by Property 4,

Y T1
1 ≥ (1/2 + 3δ/5) T1

Y T1
0 ≤ (1/2 − 3δ/5) T1

Y T1
1 + Y T1

0 = T1 (1 − O(1/ω)) .

Proof. Let us start with investigating ZT1
? . Recall that in our auxiliary dynamics, there

are two ways node vt could change its state to Dt(vt) =? at time t. Let It be the indicator
random variable that this happens because Dt−1(vt) ̸=⊥, and let I =

∑T1
t=1 It. Similarly, let

Jt be the indicator random variable that Dt−1(vt) =⊥ but there is an edge between vt and
the set {v : Dt−1(v) ̸=⊥}. Let J =

∑T1
t=1 Jt.
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Note that, at most t − 1 distinct nodes have made an announcement before round
t. In particular, at most one node can change its state from Dt−1(v) =⊥ to Dt(v) ̸=⊥,
deterministically, at any round t of the process. So, the number of nodes with Dt−1(v) ̸=⊥
is n − Zt−1

⊥ ≤ t − 1. We get that

Pr(It = 1) =
n − Zt−1

⊥
n

≤ t − 1
n

,

and so I can be stochastically upper bound by Î =
∑T1

t=1 Ît where (Ît)1≤t≤T1 are independent
variables and for every t ∈ [T1] we have Ît ∈ Bernoulli((t − 1)/n). Note that, since pn ≫ ω,

E[Î] =
T1∑

t=1

t − 1
n

= (T1 − 1)T1

2n
∼ δT1

4pn
≪ T1

ω
. (9)

It follows from Chernoff’s bound (Eq. (1)) (and the comment right after it) applied with
t = T1/ω = Θ(1/(pω)) ≫ ω ≫ 1 that

Pr(Î ≥ E[Î] + t) ≤ exp
(

− t2

(2/3 + o(1))t

)
= exp (−Θ(t)) = o(1).

So a.a.s. I ≤ Î = O(T1/ω). Similarly, since pt ≤ pT1 = δ/2 < 1/4,

Pr(Jt = 1) =
Zt−1

⊥
n

(
1 − (1 − p)n−Zt−1

⊥

)
≤ 1−(1−p)t = 1−

(
1 − pt + p2

(
t

2

)
− . . .

)
≤ pt.

As before, we stochastically upper bound J by Ĵ =
∑T1

t=1 Ĵt, where Ĵt ∈ Bernoulli(pt). We
get that

E[Ĵ ] =
T1∑

t=1
pt = p(T1 + 1)T1

2 = pT 2
1

2 (1 + O(1/T1)) = δT1

4 (1 + O(1/ω)) ,

and Chernoff’s bound (Eq. (1)) (applied with t = E[Ĵ ]/ω) implies that

Pr(Ĵ ≥ E[Ĵ ]+t) ≤ exp
(

− E[Ĵ ]
(2 + o(1))ω2

)
= exp

(
−Θ(T1/ω2)

)
= exp

(
−Θ(1/(pω2))

)
= o(1).

Hence, a.a.s. J ≤ Ĵ ≤ δT1
4 (1 + O(1/ω)) and so a.a.s. ZT1

? ≤ I + J ≤ δT1
4 (1 + O(1/ω)). This

proves (6).
It remains to investigate ZT1

0 and ZT1
1 . Let us summarize the situation at time T1. The

number of rounds when nodes were not chosen for the first time is at most I = O(T1/ω) a.a.s.
Hence, a.a.s. the number of nodes that were chosen at least once is equal to T1 − O(T1/ω).
This proves (8). Moreover, it implies that a.a.s. the number of nodes with DT1(v) ̸∈ {⊥, ?}
is equal to

ZT1
1 + ZT1

0 = T1 − O(T1/ω) − ZT1
? ≥ (1 − δ/4)T1 (1 + O(1/ω)) .

More importantly, as mentioned above, in the analysis so far we did not use their opinions
which are consistent with their private beliefs. We conveniently deferred this information up
to now. After exposing this information, we get that ZT1

1 is stochastically lower bounded by
the random variable Ẑ1 ∈ Bin((1 − δ/4)T1 − cT1/ω, 1/2 + δ), where c > 0 is a large enough
constant. After applying Chernoff’s bound (Eq. (2)) (with t = T1/ω) we get that

ZT1
1 ≥ Ẑ1 = (1/2 + δ)(1 − δ/4)T1(1 + O(1/ω))

≥ (1/2 + δ − δ/4)T1(1 + O(1/ω))
≥ (1/2 + 3δ/5)T1
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with probability at least

1 − exp(−Θ(T1/ω2)) = 1 − exp(−Θ(1/(pω2))) = 1 − o(1).

This proves (7).
The conclusion for Y T1

1 follows immediately from Property 4, and the bound for Y T1
0

is a trivial implication of the fact that Y T1
1 + Y T1

0 ≤ T1. The proof of the proposition is
finished. ◀

3.2 Phase 2: T2 = T2(n) such that ω/p ≤ T2 ≤ n/ω

By Proposition 6, since we aim for a statement that holds a.a.s., we may assume that at the
beginning of Phase 2,

Y T1
1 ≥ (1/2 + 3δ/5) T1

Y T1
0 ≤ (1/2 − 3δ/5) T1

Y T1
1 + Y T1

0 = T1 (1 + O(1/ω)) .

As in the previous phase, it will be convenient to ignore opinions of some problematic nodes
and assign auxiliary announcements Dt(v) =? to such nodes. We will continue using Zt

i to
denote the number of nodes that have auxiliary opinion i at time t. We fix DT1(v) = CT1(v)
for all v so, initially, auxiliary announcements coincide with the truth announcements.
However, this time we assign Dt(vt) =? only if Dt−1(vt) ̸=⊥ (that is, the node chosen at time
t has made an announcement in the past); otherwise, the auxiliary announcement Dt(vt) is
determined immediately pretending that all neighbours v of vt with Dt−1(v) =? announced 0.
More formally, for each node v and i ∈ {0, 1, ⊥, ?} let N̂ t

i (v) denote the number of neighbours
v′ of v with auxiliary opinion Dt(v′) = i at time t. Then we have,

Dt(vt) =


? if Dt−1(vt) ̸=⊥,

1 if N̂ t−1
1 (vt) > N̂ t−1

0 (vt) + N̂ t−1
? (vt),

0 if N̂ t−1
1 (vt) < N̂ t−1

0 (vt) + N̂ t−1
? (vt),

X(vt) if N̂ t−1
1 (vt) = N̂ t−1

0 (vt) + N̂ t−1
? (vt).

As a consequence, Dt(v) and Ct(v) are coupled so that the following property is satisfied.

▶ Property 7. If Dt(v) = i for some i ∈ {⊥, 1} and time t, then Ct(v) = Dt(v). On the
other hand, if Dt(v) = i for some i ∈ {0, ?}, then Ct(v) ∈ {0, 1}. As a result, for any time t

during the second phase, we have Y t
1 ≥ Zt

1.

As before, it is easy to see that Property 5 is also satisfied during this phase. Here is the
main result of this subsection.

▶ Proposition 8. Suppose that p = p(n) ≪ 1 and p ≫ 1/n. Let ω = ω(n) ≪
min{pn, (1/p)1/2} be any function that tends to infinity as n → ∞. Set T2 = T2(n) such that
ω/p ≤ T2 ≤ n/ω. Then, a.a.s. the following holds:

ZT2
? = O(T2/ω)

ZT2
1 ≥ (1/2 + δ/2) T2

ZT2
? + ZT2

1 + ZT2
0 = T2 (1 − O(1/ω)) .
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5:12 Asynchronous Majority Dynamics on Binomial Random Graphs

As a result, by Property 7,

Y T2
1 ≥ (1/2 + δ/2) T2

Y T2
0 ≤ (1/2 − δ/2) T2

Y T2
1 + Y T2

0 = T2 (1 − O(1/ω)) .

Before we move to the proof of this proposition, let us make some simple but useful
observations. First, note that only a negligible fraction of the nodes have opinion that we do
not control. The proof is deferred to the full version.

▶ Lemma 9. Suppose that p = p(n) ≪ 1 and p ≫ 1/n. Let ω = ω(n) ≪ min{pn, (1/p)1/2}
be any function that tends to infinity as n → ∞. Set T2 = T2(n) such that ω/p ≤ T2 ≤ n/ω.
Then, a.a.s., for any t such that T1 ≤ t ≤ T2, Zt

? ≤ 2t/ω.

Let us fix k ∈ N and consider random variable Xk ∈ Bin(k, 1/2 + δ/2). We will need to
understand the following sequence of constants (the connection to our problem will become
clear soon):

qk := P(Xk > k/2) + P(Xk = k/2) · (1/2 + δ). (10)

Clearly, q0 = 1/2 + δ and q1 = 1/2 + δ/2. For any other value of k ≥ 2, qk ≥ 1/2 + 51δ/100
as we show in the next technical lemma. The proof can be found in the full version.

▶ Lemma 10. Fix k ∈ N such that k ≥ 2, and δ ∈ (0, 1/10]. Then,

qk ≥ 1
2 + 51

100δ.

Now, we are ready to go back to analyzing the behaviour of the process during the second
phase.

Proof of Proposition 8. Our goal is to show that a.a.s. the following inequalities hold for
any t such that T1 ≤ t ≤ T2:

Zt
1

Zt
0 + Zt

?
≥ 1/2 + δ/2

1/2 − δ/2 (11)

Zt
? ≤ 2t/ω. (12)

Formally, we define the stopping time S to be the minimum value of t ≥ T1 such that
either (11) fails, (12) fails or t = T2. (A stopping time is any random variable S with
values in {T1, T1 + 1, . . . , T2} such that, for any time t̂, it is determined whether S = t̂ from
knowledge of the process up to and including time t̂.)

Property (12) is trivially satisfied at the beginning of the second phase as ZT1
? = 0. By

Proposition 6, since we aim for a statement that holds a.a.s., we may assume that (11) is
satisfied at the beginning of the second phase. In fact,

ZT1
1

ZT1
0 + ZT1

?
= Y T1

1

Y T1
0 + 0

≥ 1/2 + 101δ/200
1/2 − 101δ/200 ≥ 1/2 + δ/2

1/2 − δ/2 .

It will be convenient to define Zt = Zt
1 + Zt

0 + Zt
?; that is, Zt is the number of nodes that

announced their opinions by time t. If (12) is satisfied, then only a negligible fraction of
nodes were selected more than once and we get that Zt = t(1 − O(1/ω)) ∼ t.

Let us first show that if (11) and (12) are satisfied at time t and the node selected at
time t + 1 was not selected before (that is, Dt(vt+1) = Ct(vt+1) =⊥), then the probability
that vt+1 announces an auxiliary opinion 1 is at least 1/2 + 101/200δ.
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We first expose edges from vt+1 to the set {v : Dt(v) ̸=⊥} (see Property 5) and let us
define pk to be the probability that vt+1 has precisely k neighbours in that set. In particular,
we have

p1 = Ztp(1 − p)Zt−1 = λ(1 − p)λ/p−1

≤ λe−λ/(1 − p)
≤ 1/e + o(1) < 1/2, (13)

where λ = pZt = pt(1 − O(1/ω)) and the second inequality follows because xe−x ≤ e−1 and
p = o(1).

Now, condition on vt having exactly k neighbours that already announced their opinion.
Note that we did not expose the neighbours yet (only the number of them) so neighbours form
a random set of cardinality k from the set {v : Dt−1(v) ̸=⊥}. Let rk to be the probability
that vt announces auxiliary opinion 1 in this conditional probability space. It happens if
more than k/2 neighbours of vt have Dt−1(v) = 1. Moreover, if exactly k/2 neighbours have
this property, then vt announces opinion 1 with probability 1/2 + δ, which is the probability
that its private belief is 1. Since (11) holds, rk can be lower bounded by qk which we defined
in (10). It follows that the probability that vt announces 1 is asymptotic to

∑
k≥0

rk · pk ≥
∑
k≥0

qk · pk = q1p1 +
∑

k≥0,k ̸=1
qk · pk

≥
(

1
2 + δ

2

)
p1 +

(
1
2 + 51

100δ

)
(1 − p1)

=
(

1
2 + 51

100δ

)
− p1

(
1

100δ

)
≥ 1

2 + 101
200δ, (14)

where the second inequality follows from Lemma 10 and the last one from (13).
Let s be the number of rounds t in the second phase in which vt was not selected before, i.e.,

Dt−1(vt) =⊥, and let t1, t2, . . . , ts denote such round. Clearly, s ≤ T2 − T1 = T2(1 − O(1/ω))
but, in fact, a.a.s. we have s = T2(1 − O(1/ω)) by Lemma 9. For i ∈ [s], let Li be the
indicator random variable for the event that vti announced an auxiliary opinion 1, that is,
Li = Zti

1 − Zti−1
1 . If both (11) and (12) hold at time ti − 1, then P(Li = 1) ≥ 1/2 + 101δ/200

but, of course, we cannot condition on these two properties to hold. Instead, we will use a
small trick and consider an auxiliary sequence of random variables after the stopping time S

when one of the properties fails.
Fix p̂ = 1/2 + 101δ/200 and let M1, . . . , Ms be a sequence of independent Bernoulli

variables with parameter p̂. For each i ∈ [s], we define L′
i = Li if both (11) and (12) hold at

times t < ti and otherwise L′
i = Mi. That is, the process “stops” at our stopping time S

which, in our context, means that it simply follows part of the sequence (Mi)s
i=1 (namely,

(Mi)s
i=S+1) from that point on, ignoring the behaviour of the original process. Thus, defining

L′
≤j =

∑j
i=1 L′

i and M≤j =
∑j

i=1 Mi, (14) implies that one can couple L′
≤j and M≤j such

that L′
≤j ≥ M≤j for all j ∈ [s].

Note that E[M≤j ] = p̂j = (1/2 + 101δ/200)j for any j ∈ [s]. If follows from Chernoff’s
bound (4),
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P
(

∃1≤j≤s E[M≤j ] − M≤j ≥ δ

400(T1 + j)
)

≤
∑
a≥1

P
(

max
(2a−1−1)T1<j≤(2a−1)T1

(
E[M≤j ] − M≤j

)
≥ 2a−1 δ

400T1

)
≤
∑
a≥1

exp (−Θ(2aT1)) = exp (−Θ(T1)) = o(1),

since T1 = Θ(1/p) → ∞. In other words, a.a.s. for any j ∈ [s],

L′
≤j ≥ M≤j ≥

(
1
2 + 101

200δ

)
j − δ

400(T1 + j).

Since L≤j = L′
≤j for any j ∈ [s] such that tj < S, and Zt

1 can decrease by at most one in a
single round, a.a.s.

ZS
1 ≥ ZS−1

1 − 1
≥ ZT1

1 + L≤S−T1−O(S/ω) − O(S/ω)

≥
(

1
2 + 101

200δ

)
T1 +

(
1
2 + 101

200δ

)
(S − T1 − O(S/ω)) − δ

400(S − O(S/ω))−O(S/ω)

≥
(

1
2 + 201

400δ

)
S − O(S/ω)

≥
(

1
2 + δ

2

)
S,

implying that (11) holds at time S. Indeed, there were ZT1
1 nodes with auxiliary opinion 1

at the beginning of the second phase. By Lemma 9, S − T1 − O(S/ω) nodes were selected for
the first time before the stopping time and L≤S−T1−O(S/ω) of them announced 1 at that time.
Finally, at most O(S/ω) nodes that already announced their opinion were selected again. It
implies that a.a.s. the process does not “stop” because of (11) failing. By Lemma 9, a.a.s. it
also does not stop because of (12). Hence, a.a.s. S = T2 and the proof of the proposition is
finished. ◀

3.3 Not Very Sparse Random Graphs
In this subsection, we provide a relatively easy argument that works for random graphs with
pn ≫ log n. In particular, we show that a.a.s. after round T2 but before round T3 = n/

√
ω

all nodes that are selected for the first time announce 1. Moreover, after round T3 every
node selected announces 1 a.a.s.

Proof of Theorem 1. Let ω = ω(n) ≪ min{(pn/ log n)1/2, pn, (1/p)1/2} be any function
that tends to infinity as n → ∞. In particular, pn ≥ ω2 log n. Fix T2 = T2(n) = n/ω.
It follows from Proposition 8 that a.a.s. at the end of the second phase, there are Y T2

1 ≥
(1/2 + δ/2)T2 nodes that announced opinion 1, and so Y T2

0 ≤ (1/2 − δ/2)T2 nodes announced
opinion 0; moreover, Y T2

1 + Y T2
0 = T2(1 + O(1/ω)).

Let Vi = {v : Ct(v) = i} be the set of nodes with opinion i ∈ {0, 1} at time T2. Note
that, by Property 5, we may assume that only edges within V0 ∪ V1 are exposed at that stage
of the process. We will first show that a.a.s. all nodes v /∈ V0 ∪ V1 have substantially more
neighbours in V1 than in V0. Indeed, this is a simple consequence of the Chernoff bounds (1)
and (2): for any v /∈ V0 ∪ V1:
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P
(

|N(v) ∩ V1| ≤ |N(v) ∩ V0| + δT2p/2
)

≤ Pr
(

|N(v) ∩ V1| ≤ (1/2 − δ/4)T2p + δT2p/2 or |N(v) ∩ V0|≥(1/2−δ/4)T2p
)

≤ P
(

|N(v) ∩ V1| ≤ (1/2 + δ/4)T2p
)

+ P
(

|N(v) ∩ V0| ≥ (1/2 − δ/4)T2p
)

= P
(

Bin(|V1|, p) ≤ (1/2 + δ/4)T2p
)

+ P
(

Bin(|V0|, p) ≥ (1/2 − δ/4)T2p
)

≤ 2 exp
(

− Θ(T2p)
)

= 2 exp
(

−Ω
(

n

ω
· ω2 log n

n

))
= O(1/n2),

where the first inequality follows simply by observing that |N(v) ∩ V1| > c + δT2p/2 and
|N(v) ∩ V0| < c implies |N(v) ∩ V1| > |N(v) ∩ V0| + δT2p/2. The final inequality follows since
E[Bin(|V1|, p)] ≥ (1/2 + δ/2)T2p and E[Bin(|V0|, p)] ≤ (1/2 − δ/2)T2p. The desired property
holds by the union bound over all nodes v /∈ V0 ∪ V1.

Fix T3 = T3(n) = n/
√

ω. The third phase will last till time T3. Let V ′
1 ⊆ V1 be

the set of nodes from V1 that were selected during the third phase. Note that each node
from V1 is selected during the third phase with probability at most (T3 − T2)/n ≤ 1/

√
ω.

Hence, E[|V ′
1 |] ≤ |V1|/

√
ω and so a.a.s. |V ′

1 | ≤ |V1|/ω1/3 by Markov’s inequality. A simple
but important observation is that V ′

1 is determined exclusively by the selection process
(coupon collector process); in particular, it does not depend on the random graph nor the
opinion dynamics. Hence, we can use Chefnoff’s bound again to show that a.a.s. all nodes
v /∈ V0 ∪ V1 have very few neighbours in V ′

1 . Indeed, note that for any v /∈ V0 ∪ V1, the
number of neighbours of n in V ′

1 can be stochastically upper bounded by Bin(|V1|/ω1/3, p)
with expectation |V1|p/ω1/3 = Θ(np/ω4/3) = Ω(n2/3 log n) ≫ log n. Hence, |N(v) ∩ V ′

1 | =
O(|V1|p/ω1/3) = O(T2p/ω1/3) = o(T2p) with probability 1 − O(1/n2), and so a.a.s. all nodes
v /∈ V0 ∪ V1 satisfy this property.

Combining the two properties together, we get that a.a.s. for all nodes v /∈ V0 ∪ V1 we
have

|N(v) ∩ (V1 \ V ′
1)| > |N(v) ∩ (V0 ∪ V ′

1)|. (15)

Let W1 be the set of nodes outside of V0 ∪ V1 that were selected during the third phase
(possibly multiple times). If property (15) is satisfied, then (deterministically) all nodes in
W1 announce 1 in this phase. Indeed, even if all nodes from V ′

1 changed their opinion to 0 in
the meantime, nodes in V1 still have majority of their neighbours with opinion 1.

Let us summarize the situation at the beginning of the fourth (and the last) phase.
Recall that W1 consists of nodes that were selected for the first time during the third
phase. Let W0 = V0 ∪ V1 be the set of nodes that were selected before the third phase
(that is, during the first or the second phase). A.a.s. nodes in W1 have opinion 1 and
|W1| = (T3 − T2) + O(T 2

3 /n) ∼ T3. We may assume that nodes in W0 have opinion 0 and
a.a.s. |W0| = T2(1 + O(1/ω)) ∼ T2 = o(T3). Again, it is important to notice that W1 and W0
are determined exclusively by the selection process. (V1 and V0 do not posses this property
and that was the main reason we needed to consider the third phase.) We may then use
Chernoff’s bound again, on the number of neighbours in W1 and W0 of any given node, to
show that a.a.s. all nodes (not only outside of W1 ∪ W0!) have more neighbours in W1 than
in W0. It means that every node that is selected during this last phase announces opinion 1.
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Since a.a.s. every node is selected at least once during the next n(log n + ω′/2) rounds,
the process is over after at most that many rounds with everyone converging to opinion 1.
Hence, a.a.s. the entire process takes at most T3 + n(log n + ω′/2) ≤ n(log n + ω′) rounds.
In fact, the expected number of nodes that were selected before the last phase but were not
selected in the first T ′

4 = n(log n − log ω/4) rounds of the last phase is equal to

T3

(
1 − 1

n

)T ′
4

≤ n√
ω

exp(− log n + 1
4 log ω) = ω−1/4 = o(1),

and so a.a.s. all nodes selected before the last phase are selected again during the first T ′
4

rounds of the last phase. On the other hand, a.a.s. there are still some nodes not selected
at all after T3 + T ′

4 rounds. Indeed, this follows immediately from the well studied coupon
collector concentration bound for T̂ : P(T̂ < n log n − cn) < e−c. The conclusion is that a.a.s.
all nodes are selected at least once between round T3 and T̂ , and the proof is finished. ◀

3.4 Very Sparse Random Graphs
In this subsection, we investigate random graphs that are close to the threshold for connectivity
but are still connected, that is, we assume that pn ≤ ω log n and pn ≥ log n + ω for some
ω = ω(n) → ∞ as n → ∞.

First, we will show that at time T3 = T3(n) = 2n log n, every node announced its opinion
at least once, and only at most nω/ log n = o(n) nodes have opinion 0. The proof is deferred
to the full version.

▶ Proposition 11. Let ω = ω(n) = o(log n) be any function that tends to infinity (sufficiently
slowly) as n → ∞. Suppose that p = p(n) ≤ ω log n/n and p ≥ (log n + ω)/n. Set
T3 = T3(n) = 2n log n and s = s(n) = nω/ log n. Then, a.a.s. all nodes announced their
opinion at time T3, and at most s of them have opinion 0.

We will call a node v to be of small degree, if its degree is at most k = 5 log n/(log log n)1/2.
Nodes of degree larger than k will be called of large degree. Before we continue investigating
the process, we need to show a well-known fact that small degree nodes are not too close to
each other.

▶ Lemma 12. Let ω = ω(n) = o(log n) be any function that tends to infinity (sufficiently
slowly) as n → ∞. Suppose that p = p(n) ≤ ω log n/n and p ≥ (log n + ω)/n. Then, the
following property holds a.a.s. in G(n, p): any two small degree nodes are at distance at least
2 from each other.

Proof. Since np > log n and k = o(log n),
(

n
i

)
pi is an increasing sequence for 0 ≤ i ≤ k and

hence we have

P(deg(v) ≤ k) ≤
k∑

i=0

(
n

i

)
pi(1 − p)n−i ≤ (k + 1)

(
n

k

)
pk(1 − p)n−k.

We obtain the following upper bound on the probability that a node v has small degree:

P(deg(v) ≤ k) ≤ (k + 1)
(

n

k

)
pk(1 − p)n−k

≤ (k + 1)
(

en

k
· ω log n

n

)k

exp
(

− pn + pk)
)

≤ (k + 1)
(

ω(log log n)1/2
)k

exp
(

− log n − ω + o(1)
)

≤ (k + 1) exp
(

5 log n

(log log n)1/2 · log log log n − log n

)
= n−1+o(1).
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Hence, we expect no(1) small degree nodes and so a.a.s. we have only no(1) of them. More
importantly, using similar computations one can show that the expected number of small
degree nodes that are adjacent to each other is equal to(

n

2

)
· p ·

(
n−1+o(1)

)2
= n−1+o(1) = o(1).

Similarly, the expected number of small degree nodes that are at distance two from each
other is equal to(

n

2

)
· n · p2 ·

(
n−1+o(1)

)2
= n−1+o(1) = o(1).

Hence, a.a.s. any two nodes of small degree are at distance at least two from each other, and
the proof of the lemma is finished. ◀

Our next observation is that the number of large degree nodes that have opinion 0 is
decreasing. The proof is deferred to the full version.

▶ Proposition 13. Let ω = ω(n) = o(log n) be any function that tends to infinity (sufficiently
slowly) as n → ∞. Suppose that p = p(n) ≤ ω log n/n and p ≥ (log n + ω)/n. Then, the
following property holds a.a.s. for all phases.

Suppose that at the beginning of a phase, s = (nω/ log n) · (log log n)−(i−1)/4 large degree
nodes have opinion 0 for some i ∈ N. Then, after 2n log n rounds all nodes announced their
opinion at least once more, and at most u = s/(log log n)1/4 = (nω/ log n) · (log log n)−i/4

large degree nodes have opinion 0.

Finally, we are ready to show that all nodes eventually converge to opinion 1.

Proof of Theorem 2. The proof is an easy consequence of Propositions 11, 13, and Lemma 12.
Indeed, a.a.s. at time T3 = T3(n) = 2n log n, all but at most s = s(n) = nω/ log n nodes
have opinion 1 (Proposition 11). Most of them are of large degree but some of them may be
of small degree. By Proposition 13, the number of large degree nodes that have opinion 0
decreases: a.a.s. at time 2n log n · O(log n/ log log n) = O(n(log n)2/(log log n)) no large
degree node has opinion 0. There could possibly be still some nodes of small degree that have
opinion 0 but everyone converges to opinion 1 after additional O(n log n) rounds. Indeed,
every node is selected at least once during that time period a.a.s. Large degree nodes have
many neighbours but at most one neighbours of small degree (Lemma 12). So they will not
change their opinion and stay with opinion 1. On the other hand, by the same lemma, no
small degree node has a neighbour of small degree. Hence, such nodes will switch to opinion 1
once they are selected again. This finishes the proof of the theorem. ◀

4 Dense Random Graphs

In this section, we prove that for dense graphs (that is, when p ∈ (0, 1] is a constant) it is
not true that all nodes converge to the correct opinion a.a.s. On the contrary, there maybe
an information cascade where all the nodes converge to the wrong opinion with constant
probability.

Proof of Theorem 3. Fix any p ∈ (0, 1). We will consider the easy case p = 1 at the end.
Trivially, the first node announces its private belief, that is, it announces opinion 1 with

probability 1/2 + δ; otherwise, it announces 0. Since nodes are selected by the process
(“coupon collector”) independently of the graph, we may postpone exposing edges of the

APPROX/RANDOM 2024
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random graph till the first time a node is selected. Each time this happens, we expose edges
from vt to all nodes that already announced their opinion. If every single time at least one
edge is present, then all nodes are going to announce the opinion of the very first node. It
follows that

p1 ≥ (1/2 + δ)
n∏

i=1

(
1 − (1 − p)i

)
.

It is easy to see that for any x ∈ [0, 1 − p],

f(x) = 1 − x ≥ exp
(

− log(1/p)
1 − p

x

)
= g(x).

(Note that f(0) = g(0), f(1 − p) = g(1 − p), and g(x) is convex.) Hence,

p1 ≥ (1/2 + δ) exp
(

− log(1/p)
1 − p

n∑
i=1

(1 − p)i
)

≥ (1/2 + δ) exp
(

− log(1/p)
∞∑

i=0
(1 − p)i

)
= (1/2 + δ) exp

(
− log(1/p)(1/p)

)
.

The same argument works for p0 with the only difference that the probability of the first node
announcing 1 (1/2 + δ) needs to be replaced with the probability of announcing 0 (1/2 − δ).

Finally, note that if p = 1, then the graph is (deterministically) the complete graph and
(again, deterministically) all nodes are going to adopt the opinion of the very first node.
Thus, we immediately get p1 = 1/2 + δ and p0 = 1/2 − δ (which matches the general formula
that works for p ∈ (0, 1]). This finishes the proof of the theorem. ◀
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