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Abstract
In this paper, we study the problem of computing the majority function by low-depth monotone
circuits and a related problem of constructing low-depth sorting networks. We consider both the
classical setting with elementary operations of arity 2 and the generalized setting with operations of
arity k, where k is a parameter. For both problems and both settings, there are various constructions
known, the minimal known depth being logarithmic. However, there is currently no known efficient
deterministic construction that simultaneously achieves sub-log-squared depth, simplicity, and has a
potential to be used in practice. In this paper we make progress towards resolution of this problem.

For computing majority by standard monotone circuits (gates of arity 2) we provide an explicit
monotone circuit of depth O(log5/3

2 n). The construction is a combination of several known and
not too complicated ideas. Essentially, for this result we gradually derandomize the construction of
Valiant (1984).

As one of the intermediate steps in our result we need an efficient construction of a sorting
network with gates of arity k for arbitrary fixed k. For this we provide a new sorting network
architecture inspired by representation of inputs as a high-dimensional cube. As a result we obtain
a simple construction that improves previous upper bound of 4 log2

k n to 2 log2
k n. We prove the

similar bound for the depth of the circuit computing majority of n bits consisting of gates computing
majority of k bits. Note, that for both problems there is an explicit construction of depth O(logk n)
known, but the construction is complicated and the constant hidden in O-notation is huge.
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1 Introduction

More than 50 years ago, Foster and Stockton [10] devised, in modern terms, an O(log n)-depth
Boolean circuits (with AND and OR gates of fan-in 2 and also NOT gates) that, given n

input bits, computes the binary representation of their sum. Their construction is explicit,
that is, the circuit can be computed in deterministic nO(1)-time. Moreover, it is relatively
simple, where the main trick is to compute in constant depth, for any 3 numbers, given in
binary, 2 numbers with the same sum, also given in binary. In about log3/2 n steps, we get
from n input bits to just two numbers, both O(log n)-bit long. After that, one can compute
their sum in depth O(log n), say,by the grade school algorithm.
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An easy consequence of this [20] is that all symmetric Boolean functions (those whose
value is determined by the number of 1s in the input) are in the class NC1, that is, can be
computed by O(log n)-depth fan-in 2 Boolean circuits. It should be noted, however, that
in this construction, it is unavoidable to use NOT gates, even for symmetric functions that
are monotone, like the majority function, outputting 1 if and only if more than half of the
input bits are 1’s. This is because inside the construction we compute the sum of input bits
in binary, and the digits of this sum are non-monotone functions. Thus, if we want, say, a
monotone Boolean circuit (only fan-in 2 AND and OR gates with no NOT gates) for the
majority function that has depth O(log n), we need other ideas.

Monotone Boolean circuits of depth O(log n) for the majority function are known to exist,
but to this day, there is no explicit construction as simple as the construction of Foster and
Stockton. Namely, there are two constructions, one is extremely simple but randomized (due
to Valiant [32]), and the other is explicit but extremely involved (due to Ajtai, Komlós and
Szemerédy [1]).

One can represent the construction of Valiant as a ternary tree of depth C · log n, where
every node computes the majority of its three children [12]. As for the leafs, we simply put
a random input variable to every leaf in the tree, independently for different leafs. It is
relatively easy to show that, for every input x ∈ {0, 1}n and for a large enough absolute
constant C > 0, the probability that the tree computes the value of the majority function on
x is larger than 1 − 2−n. Thus, there exists a choice of putting input variables to leaves that
gives us a circuit, computing the majority function for all inputs.

Derandomizing the Valiant’s construction seems a tempting approach for constructing an
explicit O(log n)-depth monotone circuit for the majority function. Nevertheless, there has
been limited progress in this direction. Hoory, Magen and Pitassi [13] have improved the size
of the Valiant’s construction, but their construction is still randomized. In turn, Cohen et
al. [7] observed how to use hash functions to reduce the number of random bits to O(log n)
but at the cost of having the probability of error about 1/polylog(n), which is not enough
for the complete derandomization.

Using a completely different approach, Ajtai, Komlós and Szemerédy [1] constructed an
explicit (computable in deterministic polynomial time) O(log n)-depth monotone circuit for
the majority function. It is worth mentioning that the approach of [1] uses randomness
as well, however, they derandomize their construction on the later steps. In fact, they did
much more than that – they constructed an explicit sorting network with O(log n) layers. A
sorting network receives on input an array with n numbers and outputs the same array but
with numbers going in the non-decreasing order. In each layer, there is a fixed partition of
the entries of the array into pairs, where to each pair one applies a comparator, swapping
the numbers in a pair if they are not in the non-decreasing order. A sorting network can be
easily turned into a monotone circuit for the majority function whose depth is equal to the
number of layers of the network. This is because on binary inputs, the comparator can be
simulated with one AND gate and one OR gate. The value of the majority function then
can be found as the value of the median entry of the sorted array.

For sorting networks, there are several simple and practical constructions with Θ(log2 n)
layers [16, 2, 22]. The construction of Ajtai, Komlós and Szemerédy [1], usually referred to
as the AKS sorriting network, has O(log n) layers, which is asymptotically optimal. However,
despite some further simplifications by Paterson [24] and Seiferas [26], this construction is
famously very involved with a constant above 1000 before log n. As for the lower bounds,
there is a folklore (2 − o(1)) log2 n lower bound on the number of layers for networks sorting
n numbers. It was improved by Yao [34] and later by Kahale et al. [15] with the current
record about 3.27 log2 n.
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For constructing just an explicit O(log n)-depth monotone circuit for the majority function,
we do not necessarily have to construct a sorting network. This gives us a hope that the
difficulty of the AKS construction can be avoided. In this paper, we make a progress in
this direction, giving the first explicit monotone circuit for the majority function that has
sub-O(log2 n) depth while not using the AKS methodology at all.

▶ Theorem 1. There is a polynomial time constructable monotone circuit for MAJn of
polynomial size and depth O(log5/3 n).

Our proof combines several relatively simple steps. The principle component is a partial
derandomization of the Valiant’s construction, using some ideas of Cohen et al. [7] but with
different setting of parameters. Next, we repeatedly apply two operations to the resulting
randomized circuit. The first operation is a brute-force derandomization, that searches
through all possible random bits of the randomized circuit. The second one is a composition
with a circuit for MAJn that consists of MAJk gates and has depth O(log2

k n). Existence
of such circuits is known [23, 8], but in this paper, we also give a new simple construction,
based on alternative ideas and with better constant before log2

k n.

In fact, all known construction of such circuits, including a new one from this paper,
come from sorting networks with comparators that can simultaneously sort k > 2 positions
of the array. We will call them k-sorting networks. They appear in the literature since the
70s, the setting is mentioned already in the Knuth’s book [16, Problem 5.3.4.54], followed
by numerous works [30, 23, 3, 21, 8, 18, 28, 11, 35]. They are usually studied to better
understand the structure of ordinary sorting networks (for example, a version of AKS sorting
network with improved constant relies on k-sorting network in intermediate constructions [6]).
In particular, k-sorting networks are closely related to recursive constructions of sorting
networks. Having a good construction of a k-sorting network, one can apply it to its own
comparators, getting a construction with smaller k, until eventually k becomes 2, and we get
an ordinary sorting network.

Chvátal shows in his lecture notes [6], the AKS sorting network also generalizes to this
setting, giving a construction of depth O(logk n). However, as with the AKS sorting network
itself, this construction is complicated and impractical. In fact, even constructing a k-network
of depth O(log2

k n) is significantly harder for general k than just for k = 2. Standard O(log2
2 n)

constructions for 2-sorting networks are based on divide and conquer approach, in which we
first recursively sort parts of input and then merge sorted parts together. For the case of
k-sorting networks to get a network of depth O(log2

k n) with the same approach merging step
needs to merge many parts simultaneously and this task becomes non-trivial [19, 27, 25, 5].
We are aware of just two constructions like that: Cypher and Sanz [8] gave a simple and
potentially practical k-sorting network of depth ≤ 5 log2

k n (for k ≥ log4 n) and Parker and
Parbery [23] gave a construction of depth ≤ 4 log2

k n (in case when n is an integral power of
k). As for the lower bounds, any k-sorting network with n inputs must have depth at least
logk n because otherwise outputs cannot be connected to all n inputs. Dobokhotova-Maikova
et al. [9] improved this bound to roughly 2 logk n. They also found optimal values of k for
small values of depth d. More specifically, for sorting networks of depth d = 1, 2 they show
that k cannot be smaller than n, for d = 3 the optimal value is k =

⌈
n
2

⌉
and for d = 4 the

optimal value is k = Θ(n2/3). These results indicate that small depth k-sorting networks
are not enough for iterative approach to sub-log-squared sorting network and we need either
good k-sorting network constructions of depth greater than 4 or additional ideas.

Our second result is a new architecture for k-sorting networks. An application of this
architecture is a k-sorting network of depth 2 log2

k n, improving the constant compared to
the results of [8, 23]. More precisely, we prove the following theorem.

APPROX/RANDOM 2024
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▶ Theorem 2. For any n and for any k such that log k = ω(log log n) (or, to put it differently,
k is growing faster than any polylog(n)), there exists a k-sorting network of depth at most
(2 + o(1)) log2

k n. The sorting network can be computed in polynomial time.

The key idea behind this construction is to represent the input array as a hypercube of
high dimension and sort various sections of this cube. We note that the idea of representing
an array as a multidimensional structure is not new, for example, Leighton [19] in his
ColumnSort represented the array as a two dimensional table and Cypher and Sanz [8] use
a representation of larger dimension. In our construction it is important that we use the
dimension greater than 2 and that the sections of the cube that are used for sorting have
non-trivial intersection. On the conceptual level, the main novelty in our construction is the
notion of s-sorting. We call the array s-sorted if the whole array is sorted correctly apart
from some interval of length at most s. Most (if not all) log-squared-depth sorting network
constructions adopt the divide and conquer strategy. The O(log2

k n)-depth construction
in [23] is not an exception, to sort an array of size n, they split it into subarrays of size
n/k, sort them recursively and merge them afterward. However, merging k subarrays using
k-sorting network is relatively expensive. To improve over previous construction, we work
with s-sorted subarrays instead. We show how to merge them effectively (using the hypercube
idea) and then show how we can build a recursive construction based on them.

It is not hard to see that all outputs of a comparator with k inputs can be computed by
MAJ2k gates. This means that Theorem 2 yields an (2 + o(1)) log2

k n-depth circuit for MAJn,
consisting of MAJk gates, which is a final component for our construction in Theorem 1

To additionally illustrate applications of our construction, we consider constant depth
sorting networks and circuits for majority. We show that there is a depth-4 MAJk-circuit
for MAJn for k = O(n3/5). As another application we address the question of k-sorting
networks for k = O(n1/2). In [16] Knuth posed a problem of constructing a minimal depth
k-sorting network for the input of size k2. Parker and Parbery [23] gave a construction of
depth 9. We improve this to depth 8 at the cost of using comparators of size O(k) for k2

input size. The results of [9] show that the depth of such a network must be at least 5.
The rest of the paper is organized as follows. In Section 2 we provide necessary preliminary

information. In Section 3 we construct a monotone circuit for majority of depth O(log5/3 n).
In Section 4 we provide a new construction of k-sorting networks and deduce the corollaries.
In Section 5 we discuss some open problems.

2 Preliminaries

We use the standard notation [n] = {1, . . . , n}. We sometimes omit the base of the logarithms,
by default we assume that the base is 2.

2.1 Sorting Networks
A depth-d k-sorting network with n inputs consists of d + 1 arrays A1, . . . , Ad+1, each of
length n. Between any two arrays Ai and Ai+1 there is a layer of comparators (the first
layer is between A1 and A2, the second layer is between A2 and A3, and so on). A layer
of comparators is a partition of the set {1, 2, . . . , n} into subsets of size at most k called
comparators.

The input is given in an array A1 and all other arrays are computed by the network one
by one in the following way. If S ⊆ [n] is a comparator from the ith layer, then it is applied
to the entries {Ai[j] | j ∈ S}. It sorts their values in the non-decreasing order and puts the
results into the entries {Ai+1[j] ∈ Ai+1 | j ∈ S}. We say that a network is sorting if for any
input A1 the array Ad+1 is sorted.
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We reserve the name sorting network for 2-sorting networks.
It is well known that to check that the sorting network sorts all possible inputs, it is

enough to check that it sorts just 0/1-inputs.

▶ Lemma 3 (Zero-one principle [16]). A network with n inputs sorts all integer sequences in
the non-decreasing order if and only if it sorts all sequences from {0, 1}n in the non-decreasing
order.

By this principle, when constructing sorting networks, we can assume that each input
cell receives either 0 or 1.

The following simple observation will be useful to us.

▶ Lemma 4. If the t largest or the t smallest entries in the array are positioned correctly
(i.e., in the last t cells and in the first t cells, respectively), then after the application of
several comparators they are still positioned correctly.

Proof. We can show by induction on i that the smallest and the largest entries do not move
if they are already positioned correctly. The key observation is that if some of these entries
are inputted into one of the comparators S, they will not be moved. ◀

2.2 From Sorting Networks to Majority Circuits
We use the standard notion of Boolean circuits (see, e.g. [14]). As inputs, we allow Boolean
variables and Boolean constants 0 and 1. The size of the circuit is the number of gates in it.

Given a k-sorting network we can get a circuit computing majority from it. More
specifically, restrict the inputs to the network to {0, 1}n and consider one k-comparator S.
Note that its kth output is equal to 1 if and only if there is at least one 1 in the input. In
other words, the kth output is equal to OR of input bits. Its (k − 1)th output is equal to 1 if
and only if there are at least two 1s in the input. More generally, it is easy to see that the
(k − i)th output of the k-comparator outputs a threshold function

THRi
k(x) =

{
1 if |x| > i,

0 otherwise,

where |x| denotes the weight of the vector x ∈ {0, 1}k, that is, the number of 1s in it. We
reserve the notation MAJk(x) for the function THRk/2

k (x).
We can substitute each comparator in the network by k majority functions. Note that by

adding several constants 0 or 1 as inputs to the gate we can convert any THRi
k function into

MAJk′ with k′ ≤ 2k.
Now, it remains to observe that the median bit in the output array computes exactly

MAJn. Thus, as a result, we get the following lemma.

▶ Lemma 5. Any k-sorting network of depth d and size s can be effectively converted into
a circuit of depth d and size ks consisting of MAJ2k gates and computing majority. In the
case k = 2, we get just a monotone circuit consisting of AND and OR.

2.3 Approximate Majority
By ε-approximate majority function MAJε

n we denote the partial function that outputs
MAJn of its input but is defined only on the inputs where the fraction of ones in it is bounded
away by ε from 1/2.

We need the following result by Viola [33] which can be viewed as a derandomization of
the Sipser–Lautemann theorem [29, 17]

APPROX/RANDOM 2024
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▶ Theorem 6 ([33]). For any constant ε > 0, one can compute MAJε
n explicitly by a

monotone circuit of size poly(n) and depth O(log n).

(Monotonocity condition is implicit in [33] but easily observable from the construction).

2.4 t-Wise Independent Hash Functions
We need the notion of t-wise independent hash functions.

▶ Definition 7. For integers N and t such that t ≤ N , a family of function H =
{h : [N ] → [N ]} is t-wise independent if for all distinct x1, . . . , xt ∈ [N ] the random variables
h(x1), . . . , h(xt) are independent and uniformly distributed in [N ], when h ∈ H is drawn
uniformly.

▶ Theorem 8 ([31]). For every integer n and t such that t ≤ 2n there is a family of t-wise
independent functions H = {h : {0, 1}n → {0, 1}n} such that choosing a random function
from H takes nt random bits and evaluating a function from H takes time poly(n, t).

▶ Theorem 9 ([4]). Let X be the average of N t-wise independent random variables
X1, . . . , XN ∈ [0, 1] for even t. Then for any ε > 0 we have

Pr [|X − E[X]| ≥ ε] ≤ 1.1
(

t

Nε2

)t/2
.

3 Sub-log-squared Circuit for Majority

In this section, we provide a proof of Theorem 1.
Our goal is to compute MAJn by an explicit circuit of polynomial size and o(log2 n)

depth. We assume for convenience that n is odd (for even n we can consider a circuit for
n + 1 and substitute one variable by a constant). We start with some inferior circuit and
perform several operations that allow us to gradually improve the parameters. However, on
our way, we need to consider randomized circuits as well, and apart from size and depth,
we will also be interested in the number of random bits and the error probability. More
specifically, a circuit is an (s, d, r, err)-circuit for majority if its size is at most 2s, depth is at
most d, we can construct a circuit using at most r random bits and the error probability on
each input is at most 2−err. Here all parameters are functions in the number of inputs n (we
write err = ∞ when the circuit is correct with probability 1). All circuits we are going to
consider are effectively constructible: there is an algorithm that given the values of random
bits constructs a circuit in polynomial time in the size of the circuit.

Given a circuit with some parameters, we will use two operations to obtain new circuits.
We are introducing these operations in the next two lemmas. Their effect on the circuit is
summarized in the table below.

Initial circuit Brute-force derandomization Downward self-reduction

s(n) O(s(n) + r(n)) O(log n) + s(2k)

d(n) d(n) + O(r(n)) O

((
log2 n

log2 k

)2
d(2k)

)
r(n) 0 r(2k)

err(n) ∞ err(2k) − O(log n)
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▶ Lemma 10 (Brute-force derandomization). If there is an (s, d, r, 2)-circuit C, then there is
an (O(s + r), d + O(r), 0, ∞)-circuit.

This lemma allows us to get rid of randomness but increases the depth and the size of
the circuit if r is large.

Proof. Consider a randomized circuit Cy(x), where x ∈ {0, 1}n is an input and y ∈ {0, 1}r

is the sequence of random bits. Assume Cy(x) has the parameters, as in the statement of the
lemma. Consider circuits Cy(x) for all possible values of y and observe that for any x the
fraction of circuits that output MAJn(x) is at least 1 − 1/4 = 3/4. Thus, if we feed Cy(x)
for all y into a circuit from Theorem 6 computing MAJε

2r , the output is exactly MAJn(x).
The size of the resulting circuit is at most 2r ·2s+poly(2r), where the first term corresponds

to computing Cy(x) for all y and the second term corresponds to computing MAJε
2r . Thus,

the size is 2O(s+r). Since all Cy(x) can be computed in parallel, the depth of the circuit is at
most d + O(r). The resulting circuit does not use random bits and is always correct. ◀

▶ Lemma 11 (Downward self-reduction). If there is an (s(n), d(n), r(n), err(n))-circuit C, then
for any k < n there is an (O(log n)+s(2k), O(log2

k n ·d(2k)), r(2k), err(2k)−O(log n))-circuit.

This operation increases the depth (if d(n) is sub-log-squared), but allows to reduce other
parameters.

Proof. Consider a k-sorting network of depth O(log2
k n), given by [23] or by our Theorem 2

(the latter allows only for limited values of k, but the values we will actually use in the
construction below are within the limits). By Lemma 5 this network gives us a monotone
circuit with the same parameters consisting of MAJ2k gates computing MAJn, denote this
circuit by C(x), where x ∈ {0, 1}n.

Consider a (s(2k), d(2k), r(2k), err(2k))-circuit Cy on k inputs, where y ∈ {0, 1}r(2k). Fix
y and substitute each MAJ2k gate in C by Cy. Denote the resulting circuit by Dy(x). This is
a standard monotone Boolean circuit, its size is poly(n) · 2s(2k), its depth is O(log2

k n · d(2k))
and the number of random bits is r(2k).

It remains to show that the error probability is not too large. For this fix some input
x ∈ {0, 1}n. Consider all MAJ2k gates in C(x) and denote their inputs when x is fed to C

by z1, z2, . . . , zt. Here t is the size of C and is polynomial in n.
For each zi the probability over random y that Cy(zi) computes MAJ2k(zi) incorrectly

is at most 2−err(2k). By union bound, with probability at least 1 − t2−err(2k) we have
Cy(zi) = MAJk(zi) for all i and thus Dy(x) computes MAJn(x) correctly. Thus, the
probability of error of the resulting circuit is at most

t · 2−err(2k) = 2−err(2k)+O(log n). ◀

Now we describe our starting circuit. Interestingly, it is constructed as a partial deran-
domization of Valiant’s construction.

▶ Lemma 12. There is an explicit circuit for majority with parameters
(O(log n), O(log n), O(log3 n), Ω(log2 n)).

We provide the proof of Lemma 12 in Section 3.1 below, but before that, we explain how
to finish the construction of the desired circuit for MAJn.

Starting with the circuit provided by Lemma 12, we first apply downward self-reduction
with the parameter k satisfying log k = C

√
log n for some big enough constant C > 0, then

we apply brute-force derandomization, and then we apply downward self-reduction again
with k satisfying log k = log2/3 n. We summarize the changes in the parameters after each
step in the table below.

APPROX/RANDOM 2024
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Initial circuit Step 1 Step 2 Step 3

Self-reduction
with
log k =

√
log n

Brute-force
derandomization

Self-reduction
with
log k = log2/3 n

s(n) O(log n) O(log n) O(log3/2 n) O(log n)

d(n) O(log n) O(log3/2 n) O(log3/2 n) O(log5/3 n)

r(n) O(log3 n) O(log3/2 n) 0 0

err(n) Ω(log2 n) Ω(log n) ∞ ∞

▶ Remark 13. Note that with the two operations in hand, there are not that many options to
apply them to a given initial construction. It is not hard to check that applying downward
self-reduction two times in a row is not better than applying it once with the appropriate
value of k. Clearly, there is no need to apply the derandomization step twice. From this,
it is not hard to see that our sequence of operations is actually optimal. Once the optimal
sequence of operations is established, it is not hard to check that our choice of parameters in
downward self-reductions is optimal as well.

3.1 Proof of Lemma 12
In this subsection, we are going to prove Lemma 12. The high-level idea is to partially
derandomize Valiant’s construction. To make the presentation self-contained we first recall
the idea behind this construction.

Suppose we have independent random bits x, y, z that are equal to 1 with probability
p and consider MAJ3(x, y, z). It is not hard to see that it outputs 1 with probability
f(p) = p3 + 3p2(1 − p). Consider p = 1

2 + ε for some ε > 0 and denote ε′ = f(p) − 1
2 . Then

ε′ = f(p) − 1
2 = f(p) − f(1

2) = f ′(α)
(

p − 1
2

)
= f ′(α)ε

for some α ∈ [ 1
2 , p]. Note that f ′(p) = 6p − 6p2 = 6p(1 − p). It is easy to see that for

α ∈ [ 1
2 , 2

3 ] we have f ′(α) ≥ 4
3 . Thus, for ε ∈ [0, 1

6 ] we have ε′ ≥ 4
3 ε.

Now, we can use this in the following way. Consider MAJn for odd n and consider its
arbitrary input x. Without loss of generality, assume that MAJn(x) = 1. If we draw one
variable from x uniformly at random, it is equal to 1 with probability at least 1

2 + 1
n . Consider

a MAJ3 gate and feed to it three independently and uniformly drawn input variables. By
the analysis above the output of such a MAJ3 gate is equal to 1 with probability at least
1
2 + 4

3 · 1
n . Now we can repeat this: consider three such MAJ3 gates and feed their outputs

to another MAJ3 gates. The result is equal to 1 with probability 1
2 +

( 4
3
)2 1

n . After O(log n)
many iterations, we get a O(log n)-depth randomized circuit consisting of MAJ3 gates that
output the correct value with probability at least 2

3 . Valiant’s argument further improves
this probability, but we will not need this part of the argument.

The randomized circuit above uses too many random bits. Now we are going to modify
the construction in a way, that uses randomness more efficiently. We will use some ideas
from [7].
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Construct the following circuit consisting of MAJ3 gates. The circuit contains Θ(log n)
layers, each containing N = n3 gates. The bottom layer consists of input variables, each
repeated N

n = n2 times (it is redundant to copy variables several times, we do this exclusively
for the sake of uniformity of the construction). In other layers, each gate computes the
MAJ3 function of some gates from the previous layer. To assign the inputs to each gate, for
each layer j we draw three fresh (and independent of each other) t-wise independent hash
functions fj , gj , hj : [N ] → [N ] for t = Θ(log n). For a gate with number i in layer j we set
its inputs to be gates with numbers fj(i), gj(i) and hj(i) in layer (j − 1).

Before we finish the construction of the circuit, let us analyze the current part. Consider
some input x ∈ {0, 1}n, assume without loss of generality that MAJn(x) = 1. Denote by
1
2 + εi the fraction of gates on level i that output 1. For i = 1 we have ε1 ≥ 1

n .
Each gate on level i receives three independent inputs from the previous level. Thus, the

probability that it outputs 1 is at least 1
2 + 4

3 εi−1 (we have shown this above only for εi−1 ≤ 2
3 ,

but these values of εi−1 are enough for our construction as well). Thus, the expected fraction
of ones in level i is also at least 1

2 + 4
3 εi−1.

Now we would like to use concentration inequality to show that with high probability
the fraction of correct values is not much smaller than its expectation. Note that once the
outputs of the gates on level i − 1 are fixed, the outputs of the gates on level i are t-wise
independent.

Let ε = 1
6n and denote by Xi the output of i-th gate. Then by Theorem 9 we have

Pr
[∣∣∣∣∣∑

i

Xi/N − (1
2 + (4/3)εj−1)

∣∣∣∣∣ ≥ ε

]
≤ 1.1

(
t

Nε2

)t/2
= 2−Θ(log2 n).

By union bound the probability that on each level εj ≥ 4
3 εj−1 − ε is at least

1 − O(log n) · 2−Θ(log2 n) = 1 − 2−Θ(log2 n).

Thus, we can show by induction on j that with probability at least 1 − 2Θ(log2 n) we have

εj ≥ 4
3εj−1 − ε ≥ 7

6εj−1 + 1
6εj−1 − 1

6n
≥ 7

6εj−1,

where in the last inequality we use that by induction hypothesis we have εj−1 ≥
( 7

6
)j−1 ·ε1 ≥

1
n .

Thus, just like in Valiant’s argument, after O(log n) iterations, with probability 1 −
2−Θ(log2 n), we have εj ≥ 2

3 . At this point, it remains to apply to the last layer a circuit from
Theorem 6.

It is easy to see that the size of the resulting circuit is poly(n), the depth is O(log n),
error probability is 2−Θ(log2 n). As for the random bits, note that in the construction we
need O(log n) t-wise independent hash functions from [N ] to [N ]. By Theorem 8 there are
families of such functions defined using O(t log N) random bits. In total we need

O(log n) · O(t log N) = O(log3 n)

random bits.
This finishes the proof of Lemma 12.

▶ Remark 14. Instead of applying a circuit for Approximate Majority to the last layer,
we could do the following: sample m = O(log2 n) gates from the last layer uniformly at
random and then compute the majority on these m gates using some simple circuit of depth
O(log2 m). By Chernoff’s inequality, this adds at most 2−Ω(m) = 2−Θ(log2 n) to the error
probability, and we need O(log3 n) random bits. In turn, the increase in depth and size is
negligible.
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4 k-Sorting Network Construction

4.1 Proof Strategy
Before we proceed to the proof we would like to illustrate the idea considering some specific
value of k. For convenience, we assume that n is a perfect cube.

▶ Lemma 15. Assume that n = t3 for natural t. Then there is a depth-4 k-sorting network
with k = 2t2 = 2n2/3.

We present the proof using a geometric interpretation of an input array as a three-
dimensional cube. However, note that a similar result is implicit in [19] and it is essentially
the same construction, just stated in different terms. We also note that it is known that this
is the optimal (up to a constant factor) value of k for depth-4 sorting networks [9].

y

x

z

(a) Input array.

y

x

z

(b) Step 1: cut the cube into ver-
tical slices.

y

x

z

(c) Step 2: cut the cube into ver-
tical slices in the other direction.

y

x

z

(d) Step 3: cut the cube into horizontal slices
of width 2.

y

x

z

(e) Step 4: horizontal slices with a shift.

Figure 1 Sorting network for k = 2n2/3 (here n = 125, k = 50 and t = 5).

Proof.
Step 1 – construction. We represent entries of an input array as a 3-dimensional cube
with the side t (see Figure 1a). We place the first t2 entries of an array in the bottom layer
of the cube, the next t2 entries in the second layer of the cube and so on. In each layer the
entries are positioned row by row.

To be more precise, assume that the array A is enumerated as [a1, . . . , an]. We reenumerate
the same array as

[a111, a112, . . . , a11t, a121, . . . , a12t, . . . , attt].
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That is, entries of an array are enumerated by sequences (x, y, z) ∈ {1, . . . , t}3 in the
lexicographic order. In Figure 1 axyz corresponds to a subcube with coordinates (x, y, z).

In the first layer of the sorting network we split the cube into vertical slices of width 1 and
feed each slice to a t2-comparator (see Figure 1b). To be more precise, for each i = 1, . . . , t

we feed entries axyi for all x, y into one comparator. On the second layer of the network
we split the cube into vertical slices of width 1 in another direction and feed each slice to
a t2-comparator (see Figure 1c). In other works, for each i = 1, . . . , t we feed entries axiz

for all x, z into one comparator. On the third layer we split the cube into horizontal slices
of width 2 (for odd t the last slice is of width 1) and feed the slices to comparators of arity
at most 2t2 (see Figure 1d). Finally, on the fourth layer of the network we split the cube
into horizontal slices of width 2 again, but now the first slice is of width 1 (for even t the
last slice is of width 1 as well). Thus, the slices on this layer are shifted compared to the
previous one (see Figure 1e).
Step 2 – correctness. It remains to prove that this sorting network sorts correctly. Consider
any input x ∈ {0, 1}n. Note that the cube consists of t2 vertical columns with t entries in
each column: each column Ayz is obtained by fixing y and z in axyz and considering all
possible x. We are interested in the weight wyz of each column, that is the number of 1s
in it. For the input A the weights of the columns can be any numbers from 0 to t. Now
consider the array after the first layer of the network. Note that now each vertical slice of
the first layer of the network is sorted. This means that in each of these slices in the first
several rows (from bottom to top) there are only 0s, then there might be a row containing
both 0s and 1s, and then all remaining rows contain 1s. In particular, the weights of two
columns in the same slice differ by at most 1.

Now consider the second layer of the network and consider two different slices Si =
{ax,i,z | x, z ∈ [t]} and Sj = {ax,j,z | x, z ∈ [t]}. Note that each of them contains exactly one
column from each slice of the first layer. We know that the weights of the columns in the
same slice of the first layer differ by at most 1. Thus, in total, the number of 1s in two slices
of the second layer differ by at most t. In other words, for each z the first slice contains the
column Aiz and the second slice contains the column Ajz. We know that on the input of the
second layer of the network |wiz − wjz| ≤ 1. Thus,

|
∑

z

wiz −
∑

z

wjz| ≤ t.

Denote by ri the number of rows in slice Si that consists of only 1s after the second layer of
the network. We just showed that the slice Si can have one more extra row of 1s, one less
row of 1s or something in between. Overall, for the number rj of rows consisting of 1s in Sj

we have |ri − rj | ≤ 1. As a result, the weights of columns in slices Si and Sj can differ by at
most 2. Since this is true for any i and j, we have that the weights of all columns in the
cube after the second layer of the sorting network differ by at most 2.

To put it another way, there is a horizontal slice of width 2, such that below this slice we
have only 0s and above this slice we have only 1s. Thus it remains to sort entries of this slice.
Note that on layers 3 and 4 of the network there is a comparator that sorts exactly this slice.
Note that by Lemma 4 all other comparators of layers 3 and 4 do not harm the sorting. ◀

This argument can be extended to the cubes of arbitrary dimension d. More specifically,
for n = td and for k = (d−1)td−1 we can represent entries of an input array as a d-dimensional
cube with side d, sort “vertical” slices (we need to fix one of the coordinates in d-dimensional
space as vertical) in all d − 1 directions and then sort horizontal slices. This results into
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(d − 1) layers of the sorting network and for horizontal slices we need recursive calls for the
arrays of size approximately 2dtd−1. Actually, it is expensive to make two recursive calls for
horizontal layers, instead we use an additional trick to make just one recursive call.

Although our k-sorting network construction can be expressed in terms of high dimensional
hypercubes, we prefer to give a more general exposition, using a concept of s-sorted arrays.

4.2 Merging s-Sorted Arrays
The following definition plays a key role in our sorting network construction.

▶ Definition 16. A 0/1-array A of length n is s-sorted if there is an integer interval
I = {i, . . . , i + s − 1} ⊆ [n], such that A[j] = 0 for j < i and A[j] = 1 for j ≥ i + s. We call
I unsorted interval.

As an immediate corollary of Lemma 4, we get the following.

▶ Corollary 17. Suppose a sorting network gets an s-sorted array with unsorted interval I.
Then the output is also s-sorted with I as an unsorted interval.

We give a construction of a depth-1 sorting network that “merges” p arrays of length
n that are already s-sorted into one array which is (sp + O(np2/k))-sorted, where k is the
arity of the sorting network.

▶ Lemma 18. Assume that k ≥ tp for some integers t and p. Suppose we have p s-sorted
arrays of size n each. Assume additionally that n is divisible by t. Then there is a depth-1
k-sorting network that merges these arrays into one array of size np that is (sp + 2 np

t )-sorted.
If additionally we assume that s is divisible by n/t, then the resulting array is (sp+ np

t )-sorted.

Proof. Represent each array as a table with n
t columns and t rows. We assume the following

ordering on the entries of this table: to compare two entries, we first compare the indices of
their rows, and then the indices of their columns. Position the tables one under another in
a unified table with tp rows. Note that tp ≤ k and apply k-comparator to each column in
parallel. We claim that the resulting array in the large table is (sp + 2 np

t )-sorted.
To see that observe, that in each small table, an unsorted interval of length at most s

occupies at most
⌈

st
n

⌉
+ 1 rows (any other row either consists entirely of 0s or entirely of 1s).

In the large table, this gives us at most p
(⌈

st
n

⌉
+ 1

)
non-constant rows. After sorting each

column individually, 0-rows will move to the top, 1-rows will move to the bottom and all
other p

(⌈
st
n

⌉
+ 1

)
rows will be in between on them. They constitute an unsorted interval

and the size of it is at most

n

t
· p

(⌈
st

n

⌉
+ 1

)
.

For general s we can upper bound this as follows

n

t
· p

(⌈
st

n

⌉
+ 1

)
≤ n

t
· p

(
st

n
+ 2

)
= sp + 2np

t
.

If s is divisible by n/t, note that we can just drop the rounding operation and the size of
an unsorted interval is at most

n

t
· p

(⌈
st

n

⌉
+ 1

)
= n

t
· p

(
st

n
+ 1

)
= sp + np

t
. ◀

Applying previous lemma several times we get the following.
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▶ Lemma 19. Consider arbitrary n and k and denote t = ⌊
√

k⌋. Then there is a k-sorting
network of depth ⌈logt n⌉ − 1 that on any input outputs an s-sorted array for s ≤ 2⌈logt n⌉n

t .

Proof. Denote d = ⌈logt n⌉ and observe that n ≤ td. Introduce the following notation:

ni =
{

ti+1 for i = 1, . . . , d − 2,

td−1p for i = d − 1,

where p is such that td−1(p − 1) < n ≤ td−1p. In particular, since p ≥ 2, we have p − 1 ≥ p/2
and

n > td−1(p − 1) ≥ td−1p/2.

For the convenience of presentation, we add td−1p − n dummy inputs equal to 1 to the end
of the array to make the size of the input to be equal to td−1p. By Lemma 4 these inputs
will never change their position and can be removed from the sorting network.

We start with an unsorted array as an input. Applying Lemma 18 several times, we get
the array consisting of blocks that are s-sorted for some s. More specifically, after level i of
the network we get the blocks of size ni that are si sorted for

si =
{

(i − 1)ti for i = 1, . . . , d − 2,

(d − 2)td−2p for i = d − 1.

On the first step we split the input into blocks of size t2 and apply comparators to them, the
resulting blocks are 0-sorted.

On the i-th step for i = 2, . . . , d − 1 we already have blocks of size ni−1 = ti from the
previous step that are si−1-sorted for si−1 = (i − 2)ti−1. Note that ni−1 = ti is divisible by
t and si−1 is divisible by ni/t = ti−1. We apply Lemma 18 and for i < d − 1 get blocks of
size ni−1t = ni that are s-sorted for s = si−1t + ni−1 = (i − 1)ti. For i = d − 1 we have just
p subarrays to merge and after the step we get the whole array of size td−1p that is s-sorted
for s = (d − 3)td−2p + td−1p

t = (d − 2)td−2p.
Finally, observe that

s ≤ (d − 2)td−2p ≤ d
2n

t

as desired. ◀

4.3 Computing Majority
Before constructing a sorting network we solve a simpler task of computing majority function.

▶ Theorem 20. For any n and for any k such that log k = ω(log log n) (or, to put it
differently, k is growing faster than any polylog(n)), there exists a MAJk-circuit for MAJn

of depth at most (2 + o(1)) log2
k n.

The rest of the section is devoted to the proof of Theorem 20.
First observe that to compute MAJn correctly by a monotone circuit it is enough to

compute it correctly on minterm and maxterm inputs: the computation on other inputs
follows by monotonicity. Thus, we can assume in our construction that the input contains
almost the same number of 0s and 1s. We will construct a sorting network that sorts all such
inputs correctly. From the sorting network we get the circuit of the same depth.
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Suppose we need to sort an array of size n with approximately the same number of 0s
and 1s. We apply Lemma 19 to the array. This results in a Y -sorted array for Y = 2⌈logt n⌉n

t

for t = ⌊
√

k⌋. Since the number of 0s and 1s in the array is approximately equal, the smallest
n
2 − Y and the largest n

2 − Y elements are sorted correctly (otherwise, the length of the
unsorted interval is larger than Y ). Thus, it remains to sort a specific interval of length 2Y

and we can do this recursively.
Overall, we get the following recursive relation.

T (n) ≤ ⌈logt n⌉ − 1 + T (2Y ) ≤ logt n + T

(
4⌈logt n⌉n

t

)
.

To solve this recursive relation we use the following lemma.

▶ Lemma 21. Assume that log k = ω(log log n). Suppose that T (n) = const for n up to some
constant and

T (n) ≤ 2 logk n + C + T

(⌈
D(logk n)n√

k

⌉)
for some constants C and D > 0. Then T (n) ≤ (2 + o(1)) log2

k n.

Proof. To simplify the presentation, we ignore rounding of the argument of T first, and
address it later. Denote α =

√
k

D logk n .
We have

T (n) ≤ 2 logk n + C + T
( n

α

)
≤ 2 logk n + C + 2 logk

n

α
+ C + T

( n

α2

)
≤ 2

logα n∑
i=0

(
logk

n

αi
+ C

)
= 2 (logk n + (logk n − logk α) + (logk n − 2 logk α) + . . . + 0) + 2C logα n

≤ 2 logk n

logk α

logk n

2 + 2C logα n = log2
k n logα k + 2C logα n.

It is easy to see that the term 2C logα n is negligible, since α ≫ k1/3.
We analyze logα k factor separately:

logα k = log √
k

D logk n

k = log2 k

log2

√
k

D logk n

≤ log2 k
1
2 log2 k − D − log2 logk n

= log2 k
1
2 log2 k − D − log2 log2 n + log2 log2 k

.

For log k = ω(log log n) this term is 2 + o(1) and we have

T (n) ≤ (2 + o(1)) log2
k n.

To address the rounding operation, note that
⌈

n
α

⌉
≤ n

α + 1 ≤ 2n
α for n

α ≥ 1. Thus, in the
presence of rounding we will have

∑
i logk

2n
α in the calculation above instead of

∑
i logk

n
α .

This amounts to substituting D by 2D and does not change the result of the calculation
since D is an arbitrary constant. ◀
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4.4 Constructing Sorting Network
In this section, we finish the proof of Theorem 2.

We adopt the same strategy as for the computation of majority. More specifically, we
apply Lemma 19 recursively to get s-sorted array for smaller and smaller s. However, now
our task is more tricky. In the proof of Theorem 20 when we get to an s-sorted array we
know exactly where the unsorted interval is located (in the middle of the array). However,
now we need to sort arbitrary input arrays and an unsorted interval can be anywhere.

We construct the network recursively. We assume that at the beginning of each step, we
have an s-sorted array (at the beginning of the process s = n). Denote the unsorted interval
by A, |A| ≤ s. Split the array into consecutive blocks B1, . . . , Bp of size s (the last block Bp)
might be smaller.

The recursive step consists of two stages. In the first stage, we split the array into blocks
B1 ∪ B2, B3, ∪B4, and so on, each block of size 2s (one last block might be smaller). In the
second stage, we split the array into blocks B1, B2 ∪ B3, B4 ∪ B5, and so on (again the last
block might be smaller than 2s). Before describing each of the stages, observe that either in
the first stage or in the second stage (or in both) the interval A falls completely into one of
the blocks. Indeed, A can intersect with at most two consecutive blocks Bi, Bi+1 and in one
of the stages, they form a single block.

In the first stage, we apply Lemma 19 to each of the blocks B1 ∪B2, B3, ∪B4, . . . separately.
As a result, each block is s′-sorted for s′ ≤

4⌈log⌊
√

k⌋ n⌉s

⌊
√

k⌋
. Moreover, if the block consisted of

only 0s and 1s, then it does not change.
If A is contained in one of the blocks of the first stage, we are already done: there is only

one initially unsorted block that by Lemma 19 after the step is s′-sorted. By Corollary 17
this property remains true after the additional comparators we apply for the other case.

If A is split between two blocks of the first stage, then after the stage we have two
consecutive unsorted blocks, each of them is s′-sorted. Denote unsorted parts by C1, C2.
Note that by Corollary 17 C1, C2 ⊆ A and thus, C1 and C2 fall into one block of the second
stage. It is tempting to apply Lemma 19 to the blocks of the second stage as well. However,
this application is too expensive and will not result in the desired bound.

Instead we do the following. We represent each block of the second stage (of size at most
2s) as a table with p = ⌈2s/k⌉ columns and k rows, filled in row by row from top to bottom.
For convenience, if the last row is not complete, add dummy variables equal to 1 to complete
the row.

Each of the intervals C1, C2 occupy at most ⌈s′/p⌉ + 1 rows. There might be another row
that contain a switch between blocks Bi and Bi+1. Each other row consist either entirely of
0s, or entirely of 1s. Denote the number of all 0 rows by a and the number of all 1 rows by b.

We apply a comparator to each column separately. As a result, each column will contain
a zeros in the beginning, b ones in the end and some part in between. The number of rows
in the middle part is at most 2 ⌈s′/p⌉ + 3. The number of entries in these rows is at most

s′′ = p(2 ⌈s′/p⌉ + 3) ≤ 2s′ + 5p ≤ 3s′

for large enough input size. Thus, after the second stage we get s′′-sorted array and we are
done with the recursion step.

Thus, we get that s′′ ≤ 12 ⌈logt n⌉s
t and we get the following recursive relation

T (n) ≤ logt n + T

(
12⌈logt n⌉n

t

)
.

We apply Lemma 21 again to get T (n) ≤ (2 + o(1)) log2
k n.

This finishes the proof of Theorem 2.
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4.5 Other Applications
In this section we give two more examples of results that follow from our construction.

▶ Lemma 22. There is a MAJk-circuit of depth 4 computing MAJn for k = O(n3/5).

Proof. Denote r = ⌈n1/5⌉. For simplicity we pad the input with constants 0 and 1 to make
the size of the array r5 without changing the output of majority. We will use k-sorters for
k = 4r3.

As in the proof of Theorem 20 it is enough to compute MAJn on minterms and maxterms,
thus we can assume that there are approximately equal number of 0s and 1s in the input.

We will build a k-sorting network and the existence of the circuit follows. On the first
layer of the network we split the input into blocks of size r3 and sort them. On the second
layer we use Lemma 18 with p = r and t = r2. As a result we get blocks of size r4 that are
r2-sorted. On the third level we apply Lemma 18 again with the same values of p and t. As
a result we have that the whole input is now 2r3-sorted. On the last layer of the network
just as in the proof of Theorem 20 we apply 4r3-comparator to the middle of the array. ◀

In [16] Knuth posed a problem of constructing a minimal depth k-sorting network for the
input of size k2. Parker and Parbery [23] gave a construction of depth 9. Here we slightly
improve on this at the cost of using comparators of size O(k).

▶ Lemma 23. There is a k-sorting network of depth 8 that sorts an array of size n with
k = O(n1/2).

Proof. As usual pad an array with constants to make n = r4 for some integer r. Thus
k = O(r2).

We follow the same strategy as in Section 4.4. First we apply Lemma 19 that uses three
layers of network and results in a s-sorted array for s = O(r3). Then, we apply Lemma 19
again to the blocks of size O(r3) to get a network of depth 2 that results in each block being
O(r2)-sorted. Then we apply one more layer to merge unsorted intervals in different blocks
to get the array that is O(r2)-sorted. Finally, we again split the array into blocks, this time
of size O(r2) to complete the sorting using two layers. In total we use 3 + 2 + 1 + 2 = 8
layers. ◀

5 Conclusion

The obvious open problems are to come up with explicit constructions of sorting networks
and monotone circuits for majority of smaller depth. One specific problem is to extend our
O(log5/3 n) construction to sorting networks. The obstacle that we encountered is that there
is no randomized construction of a low-depth sorting network that we can use as a start.
Another interesting question is to extend our O(log5/3 n) construction to get a MAJk-circuit
for MAJn of depth O(log5/3

k n). Such a construction can be used instead of O(log2
k n)-depth

circuit in downward self-reduction to further improve the upper bound. Again, the obvious
obstacle is that it is not clear how to get a starting construction.
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