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Abstract
A central open question within meta-complexity is that of NP-hardness of problems such as MCSP
and MKtP. Despite a large body of work giving consequences of and barriers for NP-hardness of
these problems under (restricted) deterministic reductions, very little is known in the setting of
randomized reductions. In this work, we give consequences of randomized NP-hardness reductions
for both approximating and exactly computing time-bounded and time-unbounded Kolmogorov
complexity.

In the setting of approximate Kpoly complexity, our results are as follows.
1. Under a derandomization assumption, for any constant δ > 0, if approximating Kt complexity

within nδ additive error is hard for SAT under an honest randomized non-adaptive Turing
reduction running in time polynomially less than t, then NP = coNP.

2. Under the same assumptions, the worst-case hardness of NP is equivalent to the existence of
one-way functions.

Item 1 above may be compared with a recent work of Saks and Santhanam [39], which makes the
same assumptions except with ω(log n) additive error, obtaining the conclusion NE = coNE.

In the setting of exact Kpoly complexity, where the barriers of Item 1 and [39] do not apply, we
show:
3. If computing Kt complexity is hard for SAT under reductions as in Item 1, then the average-case

hardness of NP is equivalent to the existence of one-way functions. That is, “Pessiland” is
excluded.

Finally, we give consequences of NP-hardness of exact time-unbounded Kolmogorov complexity
under randomized reductions.
4. If computing Kolmogorov complexity is hard for SAT under a randomized many-one reduction

running in time tR and with failure probability at most 1/(tR)16, then coNP is contained in
non-interactive statistical zero-knowledge; thus NP ⊆ coAM. Also, the worst-case hardness of
NP is equivalent to the existence of one-way functions.

We further exploit the connection to NISZK along with a previous work of Allender et al. [7] to show
that hardness of K complexity under randomized many-one reductions is highly robust with respect
to failure probability, approximation error, output length, and threshold parameter.
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51:2 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

1 Introduction

Meta-complexity aims to determine the computational complexity of the tasks to compute
various intrinsic complexity measures of given binary strings. Two prominent examples of
such complexity measures are the minimum circuit size of a given truth table of a Boolean
function, and the minimum time-bounded Kolmogorov complexity (denoted Kt) of a given
binary string. The corresponding meta-complexity problems are the Minimum Circuit Size
Problem (MCSP):

given a binary string x ∈ {0, 1}2n and a parameter s ≤ 2n, decide if there is an n-input
boolean circuit of size at most s whose truth table equals x,

and the Minimum Kt Problem (MKtP):

given a binary string x ∈ {0, 1}n, and a parameter s ≤ n, decide if there is a binary
input w of length at most s such that some fixed universal Turing machine U on input
w prints x within t time steps.

The history of these two problems goes back to at least the 1950s and ’60s. In the
Soviet Union, during that period, those involved in “theoretical cybernetics” were keenly
interested in problems related to switching circuits and Kolmogorov’s new theory of the
complexity of strings. It was widely suspected that one could not avoid perebor (exhaustive
search) in the solution of the corresponding minimization problems. Levin’s interest in
perebor, culminating in his discovery of NP-completeness in the early 1970s, was motivated
in particular by questions about the complexity of time-bounded Kolmogorov complexity
[40]. Since then, both MCSP and MKtP have resisted categorization as efficiently decidable
or as NP-complete, a somewhat uncommon state of affairs for natural problems in NP.

In 2000, Kabanets and Cai took up the study of circuit minimization again, with a result
suggesting that NP-hardness of MCSP may be very difficult to resolve: if MCSP is NP-hard
under a deterministic many-one reduction such that output length depends only on input
length, then one gets the lower bound E ⊈ P/poly [32]. At least, if MCSP is NP-hard, then
showing its hardness would seem to require different techniques than those applied in the past,
barring any further major breakthroughs. A line of work has continued to push further in this
negative direction, progressively obtaining (1) “stronger” consequences, and (2) consequences
of NP-hardness under more powerful forms of reducibility. An example of the former is
a result of Murray and Williams, which obtains NP ⊈ P/poly from NP-hardness of MCSP
under log-time uniform AC0 reductions [35]. An example of the latter is a result of Hitchcock
and Pavan, which obtains EXP ̸= ZPP from NP-hardness of MCSP under deterministic
non-adaptive Turing reductions [27]. There are many more examples of this kind of work
relying essentially on the determinism of the reductions in question; see, e.g., [6, 38, 8, 26].1

In contrast to the negative line of work for deterministic reductions, there is a positive line
of work obtaining NP-hardness of variants of MCSP and MKtP that seem to come progressively
closer to the standard definitions of these problems. Examples include [29, 23, 30, 28]. A
common feature of these results is their employment of randomness in the NP-hardness
reductions. An impressive example of such a result is Hirahara’s recent proof of NP-hardness
of partial-function versions of MCSP and MKtP [23]. Additionally, from [5], MCSP is hard

1 One result of [26] deals with one-query randomized reductions to MCSPO working for every oracle
O, which may be seen as an exception. Other results of that work give consequences of deterministic
reductions to, for example, approximating circuit size and Levin’s Kt complexity.
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for SZK (statistical zero-knowledge) under randomized reductions, which is the strongest
unconditional hardness known for MCSP. All of this begs the question whether randomness
is the key ingredient for the hardness of problems in meta-complexity: most barriers apply to
deterministic reductions, whereas most progress has been made via randomized reductions.

As for the negative direction for randomized reductions, there has been far less headway.
In fact, prior to this work, only two such results were known for MCSP and MKtP. Murray and
Williams ruled out NP-hardness of MCSP in the very restrictive setting of poly-logarithmic-
time randomized projections [35]. More recently, Saks and Santhanam showed that NE =
coNE if approximating Kt-complexity is NP-hard under randomized non-adaptive polynomial-
time reductions (with some caveats, including a derandomization assumption and that
the time-bound t in the superscript of Kt must be greater than the running time of the
reduction) [39].

Of course, any NP-hardness of MKtP or MCSP would be a major breakthrough for
complexity theory, including hardness under a non-black-box reduction. In that sense, the
kind of reduction in question is hardly important in itself. That being said, obtaining
consequences of restricted forms of reduction can certainly help guide the “search for NP-
hardness”. For example, a recent work of Ilango proved that approximating Kt within Ω(n)
additive error is NP-hard in the random oracle model [29]. As mentioned in that paper, the
reduction circumvents the barrier of [39] by requiring more time than the superscript t. As
with much of complexity theory, one can always take negative results as putting into focus
the space for positive progress.

In this paper, we advance in the negative direction for randomized reductions, obtaining
results with stronger consequences and from reductions to harder problems compared to
prior work.

2 Main Results

We show a number of consequences of the assumptions that there exist restricted randomized
NP-hardness reductions for the exact and approximate variants of the problem to determine
the (time-bounded) Kolmogorov complexity of a given binary string.

In addition to the problem MKtP introduced above, we shall also consider its time-
unbounded version, MKP, where given a binary string x ∈ {0, 1}n and a threshold parameter
s ≤ n, one needs to decide if there is a string w ∈ {0, 1}≤s such that a fixed universal TM
U(w) outputs x. We also consider the probabilistic variant of Kt, denoted by pKt, where
pKt(x) is defined as the minimum length s such that, for each of at least 2/3 of random
strings r, there exists some input wr ∈ {0, 1}≤s such that U(wr, r) outputs x within t time
steps. The corresponding Minimum pKt Problem is denoted by MpKtP. For g : N → N
and µ ∈ {K, pK}, Approxg-µt refers to the problem of approximating µt complexity of a
given x ∈ {0, 1}n to within a g(n) additive error. Approxg-K[s] refers to the problem of
approximating K complexity except with threshold parameter fixed to s.

2.1 Consequences of showing the NP-hardness of an approximation to
pKt or Kt

Informally, our first results show that NP-hardness of Approxnδ -pKt under honest non-adaptive
randomized reductions with runtime sufficiently smaller than t implies that

NP ⊆ coAM (and hence, the polynomial-time hierarchy collapses [12]), and
if, in addition, no one-way functions exist, then NP ⊆ BPP;

APPROX/RANDOM 2024



51:4 Consequences of Randomized Reductions from SAT to Kolmogorov Complexity

here “honest” reductions are those that make queries of length at least some polynomial of the
input to the reduction. We also get a similar result for Approxnδ -Kt, under a derandomization
assumption that E requires exponential-size nondeterministic circuits.

More precisely, we show that under the same NP-hardness assumptions, there is a black-
box non-adaptive reduction from SAT to inverting an auxiliary input one-way function.2
Moreover, this reduction is of a restricted form in which the oracle only needs to invert the
function on auxiliary input φ, where φ is the input to SAT; this is called a “fixed-auxiliary-
input reduction” [9]. The “γ-honesty” condition below means that all queries q ∈ {0, 1}∗

made by the reduction are such that |q| ≥ nγ , where n is the length of the input to the
reduction.

▶ Theorem 1 (Collapsing the Polynomial Hierarchy). For any constants δ, γ > 0, there is a
polynomial p such that, for any t, tR : N → N satisfying p(tR(n)) ≤ t(n) for all n ∈ N, we
have the following.
1. If Approxnδ -pKt is hard for SAT under a γ-honest non-adaptive randomized reduction

running in time tR, then there is a black-box non-adaptive fixed-auxiliary-input reduction
from SAT to inverting an auxiliary-input OWF. The latter implies that

NP ⊆ coAM.

2. Assume E ⊈ io-NSIZE[2o(n)]. If Approxnδ -Kt is hard for SAT under an honest non-adaptive
randomized reduction running in time tR, then

NP = coNP.

As a consequence of the above non-adaptive black-box reduction from SAT to inverting
an auxiliary-input one-way function, we further obtain from the hypothesis of Theorem 1
that the existence of a standard one-way function can be based on the worst-case hardness of
NP. That is, proving NP-hardness of Approxnδ -Kt (under restricted randomized reductions)
is as hard as achieving the “holy grail of cryptography”.

We obtain both adaptive black-box and non-adaptive BPP-black-box3 reductions from
SAT to the problem of inverting a standard OWF. The former follows immediately from our
Theorem 1 and a recent work of Nanashima [36], and the latter is implicit in [24], though we
provide a short, self-contained proof building on Theorem 1.

▶ Theorem 2 (Excluding Pessiland and Heuristica). For any constants δ, γ > 0, there is a
polynomial p such that, for any tR, t : N → N satisfying p(tR(n)) ≤ t(n) for all n ∈ N, we
have the following.
1. If Approxnδ -pKt is hard for SAT under a γ-honest non-adaptive randomized reduction run-

ning in time tR, then there exist both (I) a black-box adaptive randomized polynomial-time
reduction, and (II) a BPP-black-box non-adaptive randomized polynomial-time reduction,
from SAT to inverting a OWF. As a consequence, we get

NP ⊈ BPP ⇐⇒ ∃ OWF.

2. Assume E ⊈ io-NSIZE[2o(n)]. If Approxnδ -Kt is hard for SAT under an honest non-adaptive
randomized reduction running in time tR, then

NP ̸= P ⇐⇒ ∃ OWF.

2 We consider auxiliary input functions f = {fφ}φ∈{0,1}∗ as defined in [37].
3 As defined by [18], a BPP-black-box reduction R from a problem L to a problem L′ is an efficient oracle

Turing machine that correctly decides L, given any oracle A ∈ BPP such that A decides L′.
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With a similar argument, we also get the following statement for Levin’s Kt complexity.

▶ Corollary 3. For any constant δ > 0, we have the following. Assume E ⊈ io-NSIZE[2o(n)].
If Approxnδ -Kt is hard for SAT under an honest non-adaptive randomized reduction, then
NP = coNP. Moreover, if no one-way functions exist, then NP = P.

2.2 Consequences of showing the NP-hardness of Kt

Though the conclusions of Theorems 1 and 2 are incomparable, one may find NP ⊆ coAM
unbelievable, in which case Theorem 2 would not appear to yield a promising route for
actually excluding Pessiland and Heuristica. Indeed, the earlier barrier result of [39] was
part of Hirahara’s motivation to introduce a harder “distributional” variant of Kt complexity
in a recent work [24], delineating an intact positive approach for excluding Impagliazzo’s
worlds via NP-hardness of meta-complexity.

As a counterpoint, building on a work of Liu and Pass [33], we show that NP-hardness of
exact Kt complexity would still suffice to exclude Pessiland while circumventing the barrier
of Theorem 1 (and [39]). As noted in [33], problems of exact and approximate Kt complexity
are qualitatively different: approximating Kt within ω(log n) additive error is unconditionally
easy on average (in the “error-prone” sense) over the uniform distribution, but the argument
fails in the setting of exact Kt. Thus, there is still room for optimism with regard to excluding
Pessiland via NP-hardness of standard Kt complexity.

▶ Theorem 4 (Excluding Pessiland). There is a polynomial p such that, for any t, tR : N → N
satisfying t(n) ≥ p(tR(n)) for all n ∈ N, we have the following.
1. If MpKtP is hard for SAT under an honest non-adaptive randomized reduction running

in time tR, then there is a black-box average-case reduction from SAT to inverting OWFs.
As a consequence, we get that

DistNP ⊈ HeurBPP ⇐⇒ ∃ OWF.

2. Assume E ⊈ io-NSIZE[2o(n)]. If MKtP is hard for SAT under an honest non-adaptive
randomized reduction running in time tR, then

DistNP ⊈ HeurP ⇐⇒ ∃ OWF.

2.3 Consequences of showing the NP-hardness of K
Finally, we show that NP-hardness of Kolmogorov complexity under randomized many-one
reductions would imply NP ⊆ coAM and a collapse of the polynomial hierarchy. To the
best of our knowledge, this is the first evidence against NP-hardness of exact Kolmogorov
complexity under randomized many-one reductions. We also get under the same assumption
that if NP ̸⊆ BPP then one-way functions exist.

▶ Theorem 5 (Collapsing the Polynomial Hierarchy). There is a polynomial p such that,
for any tR : N → N, we have the following. If MKP is hard for SAT under a randomized
polynomial time many-one reduction running in time tR(n) and with failure probability at
most 1/p(tR(n)), then

NP ⊆ coAM.

If, in addition, no one-way functions exist, then NP ⊆ BPP.

APPROX/RANDOM 2024
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2.4 Robustness of reductions to K
In fact, we can get a stronger result than that stated above: namely, we show that if a
decidable language L reduces to MKP as in Theorem 5, then L ⊆ NISZK, where NISZK is
the class of promise problems admitting non-interactive statistical zero-knowledge proofs. In
particular, we prove the following.

▶ Theorem 6. For any polynomial tR and decidable language L, if MKP is hard for L under
a randomized many-one reduction running in time tR(n) and with failure probability at most
1/tR(n)16, then L ⊆ NISZK.

Since it is known that NISZK ⊆ SZK ⊆ AM ∩ coAM [17, 14, 1], where SZK is the class of
problems admitting statistical zero-knowledge proofs, Theorem 6 captures Theorem 5. It
also improves on the following statement implicit in a previous work of Allender et al. [7].

▶ Theorem 7 ([7]). For any decidable language L, if Approxω(log n)-K[n/2] is hard for L

under an honest randomized many-one reduction with failure probability at most 1/nω(1),
then L ⊆ NISZK.

Note that Theorem 6 improves on Theorem 7 in three respects: we do not require the
reduction to be honest, we do not require an ω(log n) approximation term, and we do not
require the threshold parameter to be fixed.

Combining the above with a converse provided in [7], we show that hardness of MKP under
randomized many-one reductions (with sufficiently small failure probability) is remarkably
robust with respect to approximation error, failure probability, honesty, and threshold
parameter (fixed or unfixed). For instance, if MKP is NP-hard under a tR(n)-time many-one
reduction with failure probability 1/poly(tR(n)), then it is also NP-hard under a polynomial-
time many-one reduction with exponentially small failure probability. More specifically,

▶ Theorem 8. There is a polynomial p such that for any decidable language L and polynomial
tR, the following are equivalent.
1. L ⊆ NISZK;
2. MKP is hard for L under a randomized many-one reduction running in time tR(n) and

with two-sided failure probability at most 1/p(tR(n));
3. Approxno(1)-K[n/2] is hard for L under an honest randomized many-one reduction with

one-sided failure probability at most 2−poly(n).

3 Related Work

Saks and Santhanam obtain a barrier result similar to our Theorem 1, Item 2, for the regime
of super-logarithmic additive error. Specifically, they prove the following.

▶ Theorem 9 ([39]). Assume E ⊈ io-NSIZE[2o(n)]. There is a polynomial p satisfying the
following. For any t, tR : N → N such that p(tR(n)) ≤ t(n), if Approxω(log n)-Kt is hard for
SAT under an honest, fixed query length, non-adaptive randomized reduction running in time
tR, then NE = coNE.

Here, “fixed query length” means that the lengths of all queries made in the reduction
are identical and depend only on the length of the input to the reduction, independent of
randomness. In comparison, at the cost of increasing the approximation error term from
ω(log n) to nδ for any constant δ > 0, we obtain the stronger (and presumably less believable)
consequence NP = coNP. Moreover, we do not require that the reduction have fixed query
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length: in our case, the length of queries need not be the same, and they can depend on
the input and the randomness of the reduction. The honesty condition is identical in this
work and [39]. We also note that our proof techniques can be made to capture the regime of
ω(log n) additive error, in which case we recover the statement of [39] improved to reductions
without fixed query length.

Our Theorem 2 is related to a recent work of Hirahara [24], which introduces a “distribu-
tional” variant of Kt complexity, denoted dKt, defined as follows: for a string x ∈ {0, 1}∗, a
time bound t ∈ N, and a distribution D,

dKt(x | D) = min
s∈N

{
∃d ∈ {0, 1}s

∣∣∣ Pr
r∼D

[U(d, r) halts and outputs x within t steps] ≥ 2/3
}

.

Using the techniques of that work, it is possible to recover a part of our Theorem 2 exactly:
namely, the existence of a BPP-black-box non-adaptive reduction from SAT to inverting a
OWF. This is essentially due to the fact that if, for example, approximating Kt is NP-hard,
then approximating dKt is also NP-hard, since dKt captures Kt when the provided distribution
D always outputs the empty string. A probabilistic variant of dKt is also introduced in [24],
which similarly generalizes pKt.

However, our proof of Theorem 2 takes a partly different approach to that implicit in [24].
In particular, though both our proof and that work employ a non-black-box worst-case to
average-case reduction as in [19, 20, 16], the latter approach would use this kind of reduction
in two places: once to reduce NP to inverting an auxiliary-input one-way function, and once
to obtain NP ⊈ BPP =⇒ DistNP ⊈ AvgBPP. To accommodate the reduction to inverting an
auxiliary-input OWF, Hirahara introduces a new kind of mildly black-box reduction, which
is more restrictive than the standard notion of a class-specific black-box reduction [18]. In
contrast, as an intermediate step, we obtain a completely black-box non-adaptive reduction
from NP to inverting an auxiliary-input OWF. We employ a class-specific worst-to-average
reduction only to obtain NP ⊈ BPP =⇒ DistNP ⊈ AvgBPP.

As noted above, we could alternatively simply combine our Theorem 1 with [36] to obtain
the statement

NP ⊈ BPP =⇒ ∃OWF.

However, we provide in [15] a self-contained proof of a BPP-black-box non-adaptive reduction.
This is for completeness and to clarify the connection to Theorem 1.

Finally, we mention a few previous works related to our Theorem 5. Interestingly, by
Allender et al., computing Kolmogorov complexity is known to be hard for PSPACE under
deterministic adaptive Turing reductions [4]. This was improved by Hirahara to show that
Kolmogorov complexity is hard for EXPNP under deterministic adaptive Turing reductions and
hard for NEXP under randomized non-adaptive reductions [21]. Thus, Theorem 5 indicates a
sharp contrast between the power of randomized many-one reductions and more powerful
reductions with respect to the hardness of Kolmogorov complexity. Saks and Santhanam also
prove that NP-hardness of approximating Kolmogorov complexity within ω(log n) additive
error under honest randomized non-adaptive reductions would imply NP ⊆ coAM [39]. Note
that Theorem 5 does not assume honesty.

4 Techniques

In this section, we give an overview of the techniques used to prove our main results. Formal
details can be found in the full version of the paper [15].

APPROX/RANDOM 2024
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4.1 Proof sketch of Theorem 1
As a warm-up, first consider the case of a deterministic length-increasing many-one reduction.
In particular, let R be such a reduction from SAT to Approxnδ -Kt mapping inputs φ ∈ {0, 1}n

to outputs (x, 1s) with |x| ≥ n2/δ and with the superscript t greater than the running time
of R. It is easy to see that, for any output (x, 1s) of R(φ),

Kt(x) ≤ |φ| + O(log n)
≤ |x|δ

≤ s + |x|δ.

This follows from the procedure that, given φ hard-coded, simulates R(φ) and returns its
output. Accordingly, a reduction of this kind cannot exist: since all of its outputs are
Yes-instances, it would imply φ ∈ SAT for every formula φ.

When moving to the more general case of a randomized many-one reduction, one can
think of R(φ) as a distribution over instances of Approxnδ -Kt, and a given output x is made
with probability according to R(φ). Observe that in the deterministic case, it held trivially
that with high probability over x ∼ R(φ),

Kt(x) ≲ s ⇐⇒ Pr[R(φ) = x] > β,

for any choice of β ∈ (0, 1). We would like to show that something similar is true in the
randomized setting. That is, there is still a correspondence between the Kt complexity of
outputs and their probability under R(φ). This means that Approxnδ -Kt (and thereby SAT)
will reduce to a problem of probability estimation.

There exists unconditionally a coAM protocol A that, given (φ, x, β) as input, accepts iff
Pr[R(φ) = x] is roughly greater than β, with high probability over x ∼ R(φ) [14, 11]; see also
[25, Appendix A]. Under our derandomization assumption, A can be implemented in coNP.
For simplicity, assume that every output (x, 1s) of R has the same threshold parameter s ∈ N,
so we may omit this part of the outputs. Define a parameter

β = 1
2s · poly(n) .

We claim that for every φ ∈ {0, 1}n, A(φ, x, β) will work well at deciding Approxnδ -Kt on
outputs x of R(φ).

On one hand, we will show that with high probability over x ∼ R(φ), if Kt(x) ≤ s, then
Pr[R(φ) = x] > β. The idea is to use a counting argument, giving an upper bound on x such
that Kt(x) ≤ s, to show that R(φ) must be “concentrated” on these inputs. In particular,
the probability over x ∼ R(φ) that Kt(x) ≤ s and Pr[R(φ) = x] ≤ β is roughly at most

2s · β = 1
poly(n) .

So, with high probability over x ∼ R(φ), if x is a Yes-instance of Approxnδ -Kt, then
Pr[R(φ) = x] > β, in which case A(φ, x, β) correctly outputs 1.

On the other hand, we will show that if an output x has probability greater than β

under R(φ), then x must have Kt complexity roughly upper-bounded by s. In the realm of
time-unbounded Kolmogorov complexity, we could rely on the well-known Coding Theorem
to prove a statement of this kind. Namely, for any samplable distribution D, it holds that

K(x) ≤ log(1/D(x)) + O(log n).
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Similarly, if D is samplable given some non-uniform input φ, then

K(x) ≤ log(1/D(x)) + |φ| + O(log n).

Observe that our distribution R(φ) is samplable in polynomial time given φ as input. Thus,
if x is samplable with probability greater than β under R(φ), then it holds that

K(x) < log(1/β) + |φ| + O(log n)
≤ s + |φ| + O(log n)
≤ s + |x|δ.

Of course, bounding K-complexity does not suffice for our purposes. Instead, we apply a
recent work of Lu, Oliveira, and Zimand [34], which gives unconditionally a coding theorem
for probabilistic Kt complexity, denoted pKt. Specifically, we use a version of the coding
theorem for distributions samplable in polynomial time given an auxiliary non-uniform input.
For some polynomial psc and time-bound t0 = poly(n) at least the running time of R, this
yields

pKpsc(t0)(x) ≤ s + |φ| + O(log n).

Roughly speaking, pKt-complexity refers to the time-bounded Kolmogorov complexity
of a string in the presence of some uniform randomness. This notion is in some sense
intermediate between Kt complexity and K complexity. Moreover, under the derandomization
assumption E ⊈ io-NSIZE[2o(n)], pKt and Kt turn out to be nearly equal: for some polynomial
p0, Kp0(t)(x) ≤ pKt(x) + log p0(t) [16]. So, for t ≥ p0(psc(t0)), the above implies

Kt(x) ≤ s + |φ| + O(log n)
≤ s + |x|δ.

To summarize, with a sufficiently large t = poly(n) and a derandomization assumption, we
obtain an auxiliary-input coding theorem for Kt complexity. This yields the required converse,
namely, that high probability under R(φ) implies bounded Kt.4

We conclude that the coNP procedure A can be used to decide SAT. Therefore, NP ⊆
coAM = coNP.

To obtain Theorem 1 for honest reductions rather than polynomially length-increasing
reductions, we can simply rely on the “paddability” of SAT. That is, given a SAT-instance
φ ∈ {0, 1}n, it is trivial to append some terms to φ in a way that does not affect its
satisfiability but increases its length as desired. Since our assumed reduction R is honest, for
some constant γ > 0, for any query x of R(φ), it holds that |x| ≥ |φ|γ . If we let R′ be the
reduction that, on input φ ∈ {0, 1}n, pads to obtain φ′ ∈ {0, 1}nc/γ and then runs R(φ′) to
obtain x, we will now have |x| ≥ |φ′|γ = nc. To summarize, if there is an honest reduction
from SAT to some language L, then there is also a polynomially length-increasing reduction
from SAT to L.5

For the full statement of Theorem 1, we need techniques that can handle randomized
non-adaptive Turing reductions. We exploit the fact from [31] that the non-existence of
a one-way function would provide an algorithm A for probability estimation as described
above. In particular, for any distribution D ∈ PSAMP, for some poly-time computable

4 We note that the use of the coding theorem for pKt is the main reason why we need to require that the
runtime of our randomized NP-hardness reductions for Approxnδ -Kt must be polynomially smaller than
the parameter t.

5 A similar application of padding is in [24].
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function f , there is an oracle algorithm A such that AI(x) outputs an estimate of Pr[D = x]
with high probability over x ∼ D, where I is any inverter for f . Thus, in the presence of a
non-adaptive reduction from SAT to Approxnδ -Kt, we also get a non-adaptive reduction from
SAT to the inversion of a one-way function. It was shown in [2, 3], with the construction of
a sophisticated protocol building on techniques from [13, 11], that such a reduction would
imply SAT ∈ coAM. However, as mentioned above, our distributions of interest R(φ) are
not in PSAMP, but require φ as a non-uniform input. Luckily, a result of [9] transposes [2]
to this non-uniform setting. Specifically, we have a reduction from SAT to the inversion of
an auxiliary-input function f = {fφ}φ∈{0,1}∗ , where on input φ to SAT, the reduction only
needs to invert f on auxiliary input φ; given this, [9] yields SAT ∈ coAM. This completes
our overview of the proof of Theorem 1.

4.2 Proof Sketch of Theorem 2
Our proof of Theorem 2 builds on that of Theorem 1, making use of a few more ideas to
obtain a reduction from NP to inversion of a standard OWF. The first idea is the fact that
any inverter for an appropriate function can be used as an errorless average-case inverter
for a desired auxiliary-input function. In particular, let f = {fφ}φ∈N be an auxiliary-input
function, and define g to be the function that randomly samples φ from a distribution D′

and then applies fφ to a uniformly random input z. It is not hard to show by an averaging
argument that any inverter for g works as an inverter for fφ with high probability over
φ ∼ D′. Moreover, crucially, if the inverter fails to invert some fφ, then it can be made to
output a special failure symbol ⊥ when given the auxiliary input φ, with high probability.
This is due to the fact that successful inversion can be verified in poly-time: given a candidate
pre-image y of some string z under fφ, simply run fφ(y) to verify; see [24, Theorem 10.3].
This, along with a reduction from SAT to inverting an auxiliary-input OWF, yields an
errorless randomized heuristic for SAT over any distribution D′ ∈ PSAMP.

The final piece of Theorem 2 is a worst-case to average-case reduction. The goal is to
obtain

(SAT, D′) ∈ AvgBPP =⇒ SAT ∈ BPP,

which will complete the proof given the discussion above. To that end, we employ tools
from [19] and follow-up works. A difficulty is that, from (SAT, D′) ∈ AvgBPP, the available
worst-case to average-case reductions only yield

Gapτ,nδ pKt ∈ BPP.

The promise-problem Gapτ,nδ pKt is potentially easier than Approxnδ -pKt, since it involves a
polynomial gap τ between time-bounds in Yes-instances and No-instances. As a result, the
gap version may not be NP-hard, so its easiness would not yield SAT ∈ BPP. Fortunately, by
a different application of the coding theorem for pKt, we are able to show that NP-hardness
of Approxnδ -pKt implies NP-hardness of Gapτ,nδ pKt. Roughly, with high probability over
the randomness of the reduction from SAT to Approxnδ -pKt, the pKt complexity of queried
strings will be somewhat close to their time-unbounded K complexity. Thus, granted the
leeway of the nδ approximation term, the difference in time-bounds between t and τ(t) does
not affect the correctness of the (slightly modified) reduction when we use Gapτ,nδ pKt as an
oracle in lieu of Approxnδ -pKt.

To summarize, an outline of the proof is as follows.
1. Arguing as in Theorem 1, we get a black-box non-adaptive fixed-auxiliary input reduction

from SAT to inverting an auxiliary-input function, f = {fφ}φ∈{0,1}∗ .
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2. Under our assumption of the non-existence of OWFs, we get, for any polynomial-time
samplable distribution D, a PPT machine that inverts fφ with high probability over
φ ∼ D. Combined with step (1), this yields that (SAT, D) ∈ AvgBPP.

3. From the worst-case to average-case reduction of [19] (and subsequent works [22] and [16]),
for some distribution D′ ∈ PSAMP, there is a BPP-black-box non-adaptive randomized
polynomial-time reduction from Gapτ,O(log n)pKt to the average-case problem of solving
SAT over D′. That is,

(SAT, D′) ∈ AvgBPP =⇒ Gapτ,O(log n)pKt ∈ BPP

for a sufficiently large polynomial τ depending on the running time of the heuristic for
SAT. Combined with step (2), we get that Gapτ,O(log n)pKt ∈ BPP.

4. For a sufficiently large t, if Approxnδ -pKt is NP-hard, then Gapτ,O(log n)pKt is also NP-hard.
Combined with step (3), this yields NP ⊆ BPP.

4.3 Proof Sketch of Theorem 4
For the proof of Theorem 4 in the setting of exact pKt and Kt, the approach discussed above
does not work; recall that the approximation term nδ was critical at a number of points.
Thus, our starting point is the following statement from a recent work of Liu and Pass [33].

Assuming E ⊈ io-NSIZE[2o(n)], if {MKtP} × SAMP[tD(n)] ⊈ HeurP for some time
bound tD polynomially less than t, then one-way functions exist.

That is, the average-case hardness of MKtP with respect to any distribution samplable within
some polynomial running time smaller than t would suffice to imply one-way functions.

Our goal now is to show that if MKtP is NP-hard, then {MKtP}×SAMP[tD(n)] is “hard for
distributional NP”: namely, if MKtP is easy on average over every distribution D samplable
in time tD, then every distributional problem (L, D′) ∈ NP × PSAMP is likewise easy on
average. Combining this with the statement from [33], we would get

DistNP ⊈ HeurP =⇒ {MKtP} × SAMP[tD(n)] ⊈ HeurP
=⇒ ∃OWF.

To show the distributional NP-hardness of MKtP, we reduce from an arbitrary distributional
problem (L, D′) ∈ DistNP. Under the assumed NP-hardness of MKtP, there is a randomized
non-adaptive reduction R from L to MKtP. With a large enough choice of the polynomial t,
we can ensure that the reduction from L to MKtP runs in time polynomially less than t. In
particular, we get that the following distribution Q is samplable in time at most tD:

Sample x ∼ D′, and then output a sample from the query distribution of R(x).

From there, it is not too hard to show that, if H is a heuristic for MKtP working over Q, then
the algorithm RH (that simulates R and answers any oracle queries with H) is a heuristic
for L over D′. This yields the desired result.

4.4 Proof Sketch of Theorem 5
Finally, the proof of Theorem 5 proceeds along the lines of that of Theorem 1, but with
several important changes.6 The main challenge is that the Coding Theorem for K only gives
us an approximate equality between K(x) and log(1/D(x)) for x’s sampled from a distribution

6 As mentioned above, we actually give two different proofs of Theorem 5. We describe the first one here.
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D. This was not a problem for Theorem 1 as it dealt with an approximate version of Kt,
and we could absorb some slack of the Coding Theorem into an approximation error of Kt.
But Theorem 5 is for the exact version of K, and we cannot apply the same strategy here.
Instead, we show that this slack can be absorbed by a different argument, crucially relying
on the fact that the randomized reductions R in the assumption of Theorem 5 are many-one
and have the error probability inverse-polynomially small in their runtime tR.

Namely, for φ ∈ {0, 1}n, consider the distribution of queries (x, 1s) made by the reduction
R(φ). We call such a query “heavy” if its probability (according to R(φ)) is at least
1/(poly(tR(n)) · 2s).

Our SAT algorithm (using a probability estimation protocol as in Theorem 1) essentially
behaves as follows:

On input φ, sample a query (x, 1s) according to R(φ), and accept if (x, 1s) is heavy.

For φ ̸∈ SAT (which is the difficult case to analyze), heavy queries will cause our SAT
algorithm to make a mistake by incorrectly accepting φ. We bound the error probability of
our SAT algorithm by upperbounding the total probability mass of such heavy queries.

Roughly speaking, we upperbound the total probability mass of “heavy” queries (x, 1s)
by

poly(tR(n)) · Pr[K(x) ≤ s].

Note that, since φ ̸∈ SAT, we have by the condition of correctness of the many-one reduction
R that R(φ) must place a very small γ probability on its queries that are Yes-instances of
MKP, i.e., Pr[K(x) ≤ s] ≤ γ. Hence, the error probability of our SAT algorithm is at most
poly(tR(n)) ·γ, which can be made sufficiently small if the error probability γ of the reduction
R is inverse-polynomially small in the runtime tR(n).

5 NP-hardness of (Kt vs. K) and (Kt vs. K)∗

In this section, we examine promise problems of the form (Kt vs. Kt′), for time bounds
t, t′ ∈ N, in comparison with the “partial function” versions (Kt vs. Kt′)∗ recently shown
NP-complete by Hirahara [23]. While NP-hardness of (Kt vs. K) would imply NP ⊆ coAM
via our proof techniques above, the consequence does not seem to follow in the partial
setting, as we discuss further below. We then show that NP-hardness via deterministic
Turing reductions of either (Kt vs. Kt′) or (Kt vs. Kt′)∗ (with appropriate settings of t and
t′) would imply NP = P. It follows that these problems are NP-intermediate with respect to
deterministic Turing reductions, provided the existence of one-way functions.

5.1 Randomized Reductions
We start with formal definitions of the partial version of Kt complexity and the promise
problems mentioned above.

▶ Definition 10 (Partial (Time-bounded) Kolmogorov Complexity). For a time bound t ∈ N, a
string x ∈ {0, 1, ∗}∗, and a complexity measure µ ∈ {pKt, Kt, K}, the partial (t-time-bounded,
probabilistic) Kolmogorov complexity of x, denoted (µ)∗(x), is equal to

min {µ(x′) | x′ consistent with x} ,

where a string x′ ∈ {0, 1}∗ is said to be consistent with x ∈ {0, 1, ∗}∗ if |x′| = |x| and, for
every index i ∈ [|x|] such that x[i] ̸= ∗, it holds that x[i] = x′[i].
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▶ Definition 11 ((Kt vs. Kt′)). Let t, t′ : N → N. For µ1 ∈ {Kt, pKt} and µ2 ∈ {Kt′
, pKt′

, K},
(µ1 vs. µ2) is the following promise problem.

ΠY = {(x, 1s) | µ1(x) ≤ s}
ΠN = {(x, 1s) | µ2(x) > s}

(µ1 vs. µ2)∗ is defined analogously, with the partial complexity measures (µ1)∗ and (µ2)∗

in place of the standard (“complete function”) ones.

By a proof analogous to that of Theorem 5, we get the following statement.

▶ Lemma 12. Let t : N → N be arbitrary and tR : N → N a polynomial. If (Kt vs. K) is
NP-hard under a randomized many-one reduction running in time tR(n) and with failure
probability at most 1/(tR(n))7, then NP ⊆ coAM.

One may contrast Lemma 12 with Hirahara’s recent proof that (Kt vs. K)∗ is in fact NP-
hard under a randomized many-one reduction with the same properties. This suggests that
the techniques of [23] will not extend to the setting of standard (Kt vs. K) without leveraging
some more powerful notion of reducibility. Viewed another way, to obtain NP-hardness of
MKtP complexity under randomized many-one reductions, one would need techniques that
apply more narrowly to smaller-gap versions of the problem.

Note that the statement gives NP-hardness of MKtP∗ under a randomized reduction even
when t ∈ N is arbitrarily larger than the running time of the reduction. In the case of a
randomized reduction, it is not unreasonable to make the assumption that t ≫ tR, as is done
in [39] and in this work. This is because randomized reductions may easily sample strings
of maximum Kolmogorov complexity, so it is easy to generate No-instances of MKtP (or
MKtP∗) within time tR. Note that this would be impossible for a deterministic reduction.

▶ Lemma 13 (Implicit in [23]). There exists a polynomial tR : N → N such that for any
constant c ∈ N and any sufficiently large polynomial t : N → N, (Kt vs. K)∗ is NP-hard under
a randomized many-one reduction running in time tR(n) and with failure probability at most
1/tR(n)c.

Proof sketch. One needs to verify that the failure probability of the reduction is at most
1/nc for an arbitrary large constant c ∈ N. Recall that in the proof of [23] Lemma 8.3, the
reduction samples random strings fi ∼ {0, 1}λ·w(i) for i ∈ [n], where n ∈ N is the number
of variables in the input CMMSA instance, w : [n] → N is a weight function, and λ is some
fixed polynomial in n. The reduction succeeds provided, for every T ⊆ [n], for some constant
c ∈ N,

K(fT ) ≥ λ · w(T ) − c · |T | · log n. (1)

This is used in the “soundness” part of the proof to argue that the set B ⊆ [n] is not authorized.
In particular, one must prove that w(B) < θ from the fact that K(fB) ≤ o(λ · w(B)) + |M |,
where |M | is an arbitrary program of size λθ/2. To see that Eq. (1) is sufficient for this
purpose, observe that for any c ∈ N,

λ · w(B) − c · |B| · log n ≤ K(fB)
≤ o(λ · w(B)) + |M |

implies that

λ · w(B) ≤ c · |B| · log n + o(λ · w(B)) + |M |
≤ o(λ · w(B)) + |M |,
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since c · |B| · log n ≤ cn log n = o(λ). Thus,

w(B) · λ · (1 − o(1)) ≤ |M |
≤ λ · θ/2,

which implies that w(B) < θ, as desired.
Now we will show that, for any c ∈ N, Eq. (1) holds with probability at least 1 − 1/nc−2.

First observe that by a standard counting argument, with probability 1 − 1/nc−2,

K(f[n]) ≥ λ · w([n]) − (c − 2) · log n.

Moreover,

K(f[n]) ≤ K(fT ) + λ · w([n]\T ) + 2 · |T | · log n,

since one may describe f[n] by describing fT , hard-wiring f[n]\T , and describing the set
T ⊆ [n] itself. Thus,

K(fT ) ≥ K(f[n]) − λ · w([n]\T ) − 2 · |T | · log n

≥ λ · w([n]) − (c − 2) · log n − λ · w([n]\T ) − 2 · |T | · log n

≥ λ · w(T ) − c · |T | · log n,

so the reduction does not fail in this case. ◀

One may wonder why the barrier of Lemma 12 does not apply to the partial Kt setting.
The primary issue is that a correspondence between the compressibility of queries and their
probability under the query distribution Qφ appears to be missing. As a result, we cannot
apply our central proof technique of reducing meta-complexity to a problem of probability
estimation.

Roughly speaking, there is a difference between the Kolmogorov complexity K(z) of the
description of a query z := (x, 1s) with x ∈ {0, 1, ∗}∗ and the partial complexity K∗(x) of
x. By the Coding Theorem for K, we still have an approximate correspondence between
the logarithm of the inverse probability of (the description of the query) z output by the
randomized reduction and the complexity K(z). However, K∗(x) can differ significantly from
K(z). For example, consider a string y = 0n, and let y′ be a uniformly random string in
{0, ∗}n. Since y′ is a uniformly random string over the binary alphabet {0, ∗}, it’s almost
certainly true that K(y′) ≥ n − O(log n). On the other hand, K∗(y′) ≤ K(y) ≤ O(log n).

More concretely, for example, consider a reduction from SAT to the problem of approxim-
ating (Kt)∗ (with a fixed threshold parameter s ∈ N). Here, the queries x ∈ {0, 1, ∗}∗ may
contain unspecified “∗” positions. On one hand, we can use a standard coding theorem (adap-
ted appropriately) to show that a query x having probability greater than β ≈ 1/(2s ·poly(n))
under the query distribution Qφ would imply that (Kt)∗(x) ≲ s.

However, the converse does not seem to hold. Previously we showed that, for strings
queried in the reduction, it was unlikely for a string to be both of low complexity and low
probability. This followed from a counting argument and a union bound: there are roughly at
most 2s strings x ∈ {0, 1}∗ with Kt(x) ≤ s, so the cumulative probability of strings with both
this property and Qφ(x) ≤ β is at most 1/poly(n). In the case of partial Kt, it is no longer
true that there are “few” strings of low complexity. In particular, any one short description
d ∈ {0, 1}s can witness (Kt)∗(x) ≤ s for 2n distinct strings x ∈ {0, 1, ∗}n (unlike standard
Kt, where one description only “maps” to one string). Thus, partial Kt complexity is not
readily connected to probability under efficiently samplable distributions, which was the key
connection exploited in the previous sections.
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5.2 Deterministic Reductions
As another point of comparison, in Lemmas 15 and 16, we show that if either of (Kt vs. Kt′)
or (Kt vs. Kt′)∗ is NP-hard with respect to deterministic adaptive Turing reductions (for a
sufficiently large exponential function t′), then one obtains the stronger consequence that
NP = P. This implies that if one-way functions exist, (Kt vs. Kt′) and (Kt vs. Kt′)∗ are both
NP-intermediate with respect to deterministic Turing reductions.7

Note that Lemmas 15 and 16 hold for Turing reductions with arbitrary polynomial running
time (i.e., less than or greater than the time-bound t), and there is no honesty requirement.
After this, we show similar results for honest reductions and superpolynomial t′.

We will use the “dream-breaker” of Bogdanov et al. [10].

▶ Lemma 14 ([10]). Suppose NP ̸= P. There is an algorithm B and a universal constant
d with the following properties. Let A be any poly-time algorithm that attempts to solve
search-SAT and only errs by incorrectly outputting ⊥.8 For infinitely many n ∈ N, B(A, 1n)
outputs a formula φ ∈ {0, 1}n and a witness a such that φ(a) = 1 but A(φ) = ⊥. Moreover,
if A runs in time at most nb on inputs of length n, then B(A, 1n) runs in time at most (nb)d.

▶ Lemma 15. For every constant c, there is a constant c′ with the following property. Let
t, t′ : N → N be such that for all n ∈ N, t(n) ≤ nc and t′(n) ≥ 2c′n. Then (Kt vs. Kt′) is
NP-hard under deterministic polynomial-time Turing reductions iff NP = P.

Proof. Let M be a Turing reduction from search-SAT to (Kt vs. Kt′) running in time at
most nb on inputs of length n ∈ N. Define a machine M ′ that on input φ ∈ {0, 1}n simulates
M(φ) and answers its queries as follows. If the query (x, 1s) is such that s ≤ 4b log n and
s ≤ 2|x|, answer the query by brute force; otherwise simply accept the query. Note that M ′

runs in time at most n6bc.
Let B be the refuter of Lemma 14, and let n ∈ N and φ ∈ {0, 1}n be such that

B(M ′, 1n) = (φ, a) with M ′(φ) = ⊥ but φ(a) = 1.
Clearly, if a query (x, 1s) is such that s ≤ 4b log n or 2|x| < s, M ′ answers it correctly. We

now claim that for every query (x, 1s) of M ′(φ), it holds that Kt′(x) ≤ 4b log n. In particular,
one may compute x from advice (n, i), where x is the ith query of M ′(φ), in time at most(

n6bc
)d + n6bc < 2c′·|x|,

assuming 2|x| ≥ s > 4b log n and choosing c′ = 4cd, where d is the constant from Lemma 14.
For t′ : N → N such that t′(m) ≥ 2c′m, this implies

Kt′
(x) ≤ s.

Thus, M ′(φ) answers all of its queries correctly with respect to (Kt vs. Kt′), and

M ′(φ) = M (Kt vs. Kt′
)(φ) = search-SAT(φ),

a contradiction. ◀

The following statement for (Kt vs. Kt′)∗ indicates that Lemma 13 makes essential use of
randomness, unless NP = P.

7 Since either of these problems could be used to break a cryptographic PRG, the existence of OWFs
means they must not be efficiently decidable.

8 Note that any poly-time algorithm may be transformed into such an algorithm by verifying any candidate
satisfying assignment to the input before returning it.
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▶ Lemma 16. For every constant c, there is a constant c′ with the following property. Let
t, t′ : N → N be such that for all n ∈ N, t(n) ≤ nc and t′(n) ≥ 2c′n. Then (Kt vs. Kt′)∗ is
NP-hard under deterministic polynomial-time Turing reductions iff NP = P.

Proof sketch. The proof is nearly identical to that of Lemma 15. One may still compute a
string consistent with x from advice (n, i) by simulating the reduction, obtaining the query
x, and replacing any ∗’s in x with 0’s. Let x̃ be the string x with all *’s replaced by 0’s. It is
easy to verify that (Kt′)∗(x) ≤ Kt′(x̃) ≤ 4b log n. ◀

Note that we could prove the above lemmas for (Kt vs. K) and (Kt vs. K)∗ (that is, with
time-unbounded K and K∗ in ΠN ) without the use of a dreambreaker. If we additionally
assume that the NP-hardness reductions are honest, we obtain the same results but with t′

any superpolynomial function.

▶ Lemma 17. Let t : N → N be polynomial and t′ : N → N superpolynomial. (Kt vs. Kt′) is
NP-hard under honest deterministic polynomial-time Turing reductions iff NP = P.

Proof. Argue as in Lemma 15. Since the reduction is honest, we have

|x| ≥ nγ

for some constant γ > 0, for any string x queried in the reduction M . Recall that any such
x of M may be computed from advice (n, i) in time at most(

n6bc
)d + n6bc < n7bcd

≤ |x|7bcd/γ

< t′(|x|),

as desired. ◀

▶ Lemma 18. Let t : N → N be polynomial and t′ : N → N superpolynomial. (Kt vs. Kt′)∗ is
NP-hard under honest deterministic polynomial-time Turing reductions iff NP = P.

6 Open Questions

We have shown various consequences of (time-bounded) Kolmogorov complexity being NP-
hard under randomized notions of reducibility. Some of these consequences may be taken
optimistically (Theorem 4), while others may be viewed as barriers to the kinds of NP-
hardness in question (Theorems 1, 5), which include kinds of reduction that have previously
been used to show NP-hardness of variants of Kt complexity (e.g., [23]).

This work leaves open a number of directions; here, we indicate a few.
1. Can we remove the requirement, in Theorems 1, 2, and 4, that the time bound t in the

superscript be larger than the running time of the reduction? Recall that this requirement
was due to our use of the coding theorem for pKt.

2. Can we show consequences of randomized NP-hardness reductions to MKTP or MCSP
(i.e., minimization problems for Allender’s KT complexity or boolean circuit size)?

3. Can we extend Theorems 1, 2, or 4 to adaptive randomized Turing reductions? Note that
this kind of extension is unlikely in the case of Theorem 5, given the prior work discussed
in Section 3 [4, 21].

4. Can we improve Theorem 5 to hold for randomized many-one reductions with constant
failure probability? In particular, can we improve the “robustness” of many-one reductions
to K, as in Theorem 8, to hold for constant failure probability and exponentially small
failure probability?
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