
Trace Reconstruction from Local Statistical Queries
Xi Chen #

Columbia University, New York, NY, USA

Anindya De #

University of Pennsylvania, Philadelphia, PA, USA

Chin Ho Lee #

North Carolina State University, Raleigh, NC, USA

Rocco A. Servedio #

Columbia University, New York, NY, USA

Abstract
The goal of trace reconstruction is to reconstruct an unknown n-bit string x given only independent
random traces of x, where a random trace of x is obtained by passing x through a deletion channel.
A Statistical Query (SQ) algorithm for trace reconstruction is an algorithm which can only access
statistical information about the distribution of random traces of x rather than individual traces
themselves. Such an algorithm is said to be ℓ-local if each of its statistical queries corresponds to
an ℓ-junta function over some block of ℓ consecutive bits in the trace. Since several – but not all
– known algorithms for trace reconstruction fall under the local statistical query paradigm, it is
interesting to understand the abilities and limitations of local SQ algorithms for trace reconstruction.

In this paper we establish nearly-matching upper and lower bounds on local Statistical Query
algorithms for both worst-case and average-case trace reconstruction. For the worst-case problem,
we show that there is an Õ(n1/5)-local SQ algorithm that makes all its queries with tolerance
τ ≥ 2−Õ(n1/5), and also that any Õ(n1/5)-local SQ algorithm must make some query with tolerance
τ ≤ 2−Ω̃(n1/5). For the average-case problem, we show that there is an O(log n)-local SQ algorithm
that makes all its queries with tolerance τ ≥ 1/poly(n), and also that any O(log n)-local SQ algorithm
must make some query with tolerance τ ≤ 1/poly(n).

2012 ACM Subject Classification Mathematics of computing → Probabilistic inference problems

Keywords and phrases trace reconstruction, statistical queries, algorithmic statistics

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2024.52

Category RANDOM

Funding Xi Chen: Supported by NSF grants CCF-1703925, IIS-1838154, CCF-2106429 and CCF-
2107187.
Anindya De: Supported by NSF grants CCF-1926872, CCF-1910534 and CCF-2045128.
Chin Ho Lee: Supported by Madhu Sudan’s and Salil Vadhan’s Simons Investigator Awards while at
Harvard University.
Rocco A. Servedio: Supported by NSF grants IIS-1838154, CCF-2106429, CCF-2211238 and by the
Simons Collaboration on Algorithms and Geometry.

1 Introduction

In the trace reconstruction problem, the goal is to reconstruct an unknown string x ∈ {0, 1}n

given access to independent random traces of x, where a random trace of x is a string obtained
by passing x through a deletion channel that independently deletes each bit with probability
δ and concatenates the surviving bits. Trace reconstruction has been a well-studied problem
since the early 2000s [30, 29, 2], and some combinatorial variants of the problem were already
considered in the 1970s [26]. Over the past decade, a wide range of algorithmic results and
lower bounds have been established for many variants of the trace reconstruction problem,

© Xi Chen, Anindya De, Chin Ho Lee, and Rocco A. Servedio;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2024).
Editors: Amit Kumar and Noga Ron-Zewi; Article No. 52; pp. 52:1–52:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xichen@cs.columbia.edu
https://orcid.org/0000-0001-5661-515X
mailto:anindyad@cis.upenn.edu
https://orcid.org/0000-0001-6795-8211
mailto:chinho.lee@ncsu.edu
https://orcid.org/0000-0001-5072-8110
mailto:rocco@cs.columbia.edu
https://orcid.org/0000-0003-2407-543X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.52
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Trace Reconstruction from Local Statistical Queries

including worst-case [32, 19, 36, 22, 10, 11], average-case [37, 23, 24, 38], and smoothed
analysis [13] versions, the low deletion rate regime [12], approximate trace reconstruction
[18, 8, 9, 14], coded trace reconstruction [16, 6], variants in which different bits of the
source string have different deletion probabilities [21], circular trace reconstruction [35], trace
reconstruction on trees [17, 5], population recovery variants [1, 33, 34], connections to other
problems such as mixture distribution learning [28], and more [20, 39].

The original, and arguably most fundamental, versions of the problem are the “worst-case”
and “average-case” versions with constant deletion rate δ ∈ (0, 1). In the worst-case problem
the source string x is an arbitrary (worst-case) element of {0, 1}n, and in the average-case
problem the source string x is selected uniformly at random from {0, 1}n; equivalently, an
average-case algorithm is only required to succeed for a 1 − on(1) fraction of all 2n possible
source strings x ∈ {0, 1}n. These two problems are the focus of our work, so in the rest
of this paper we consider worst-case and average-case trace reconstruction and we always
assume that the deletion rate δ is an arbitrary (known) constant in (0, 1).

Despite much effort, there are mildly exponential gaps between the best known upper
bounds and lower bounds for both worst-case and average-case trace reconstruction. Improv-
ing on earlier 2Õ(n1/2)-trace and 2Õ(n1/3)-trace algorithms of [25, 19, 36], in [11] Chase gave
an algorithm for worst-case trace reconstruction that uses 2Õ(n1/5) traces. The best known
lower bound, also due to Chase [10], is Ω̃(n3/2) traces (improving on earlier Ω̃(n5/4) and Ω(n)
lower bounds [22, 2]). For the average-case problem, improving on earlier exp(O((log n)1/2))-
trace and exp(O((log n)1/3))-trace algorithms [37, 23, 24], Rubinstein [38] recently gave
an exp(Õ((log n)1/5))-trace algorithm. The best known average-case lower bound, due to
Chase [10], is Ω̃((log n)5/2) traces, improving on an earlier Ω̃((log n)9/4) lower bound [22].

These substantial gaps naturally suggest the study of restricted classes of algorithms for
trace reconstruction, with the hope that it may be possible to obtain sharper results. This is
the starting point of our work: we propose to study the trace reconstruction problem from
the vantage point of statistical query algorithms. As our main contribution we obtain fairly
sharp upper and lower bounds on local statistical query algorithms for trace reconstruction,
as described below.

Statistical Query trace reconstruction algorithms. The Statistical Query (SQ) model [27]
was first introduced by Kearns as a means to obtain PAC learning algorithms that can
tolerate random classification noise. In the decades since then, the SQ model has emerged as
a major topic of study in its own right in computational learning theory and related fields
such as differential privacy and optimization. An attractive feature of the SQ model is that
it is powerful enough to capture state-of-the-art algorithms in a variety of different settings,
yet it is also amenable to proving unconditional lower bounds.

SQ algorithms can only access data through noisy estimates of the expected values of user-
generated query functions. In the context of trace reconstruction, an SQ oracle takes as input
a bounded query function q : {0, 1}n → [−1, 1] and a tolerance parameter τ ∈ (0, 1) that are
provided by the reconstruction algorithm. It returns a value P̂q which satisfies |P̂q − Pq| ≤ τ ,
where Pq is the expected value of q on a random trace, i.e. Pq := Ey∼Delδ(x)[q(y)].1 Thus an
SQ algorithm for trace reconstruction does not receive any actual traces of x; rather, it can
only use aggregate statistical information about the overall distribution of traces.

1 Since the length of each trace is at most n, we view each trace y as padded with a suffix of n − |y| zeros,
so the argument to q is actually y0n−|y|. This is equivalent to assuming that the n-bit source string x
is padded with an infinite suffix of 0-bits.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:3

To the best of our knowledge, the current paper is among the first works that explicitly
considers the trace reconstruction problem from the perspective of statistical queries (see
also [15], which we discuss in more detail below). However, in hindsight the earliest nontrivial
algorithms for worst-case trace reconstruction [25, 19, 36] already made it evident that SQ
algorithms – in fact, SQ algorithms which use extremely simple query functions – could be
effective for trace reconstruction. The algorithms of [25, 19, 36] all work by using the traces
from Delδ(x) only to obtain high-accuracy estimates of the n values Ey∼Delδ(x)[yi] for i ∈ [n]
and then doing some subsequent computation on those estimated values; thus they correspond
to SQ algorithms in which each query function is simply a Boolean dictator function, i.e. a
1-junta. On the other hand, the highly efficient average-case trace reconstruction algorithms
of [37, 23, 24, 38], which use a sub-polynomial number of traces, involve various “alignment”
routines which attempt to identify locations in individual received traces that correspond
to specific locations in the source string. These algorithms seem to make essential use of
individual traces and do not seem to be compatible with the SQ model. So given that some,
but not all, known trace reconstruction algorithms correspond to SQ algorithms, it is of
interest to study both the abilities and limitations of SQ algorithms for trace reconstruction.

In this work we consider a natural class of SQ algorithms, which we call ℓ-local SQ
algorithms. An ℓ-local query function q : {0, 1}n → [−1, 1] is an ℓ-junta over some ℓ

consecutive bits of its input string, i.e. for all y, q satisfies q(y) = q′(yi, yi+1, . . . , yi+ℓ−1) for
some index i and some function q′ : {0, 1}ℓ → [−1, 1]. We say that an algorithm is an ℓ-local
SQ algorithm with tolerance τ0 if all of its calls to the SQ oracle are made with ℓ-local query
functions and the tolerance parameter for each call is at least τ0.

The results of [19, 36] already show that 1-local SQ algorithms with tolerance τ0 =
2−Õ(n1/3) can successfully perform worst-case trace reconstruction, and moreover [19, 36]
additionally show that tolerance τ0 = 2−Ω̃(n1/3) is required for any 1-local SQ worst-case
trace reconstruction algorithm. Thus, in analyzing the abilities and limitations of ℓ-local
algorithms for trace reconstruction for a particular value of ℓ, our goal is to determine the
tolerance which is necessary and sufficient for such algorithms to succeed in worst-case or
average-case trace reconstruction. A simple argument which we give in Section 2.1 shows that
any ℓ-local SQ algorithm (which may be adaptive) using tolerance τ0 can be converted to a
nonadaptive SQ algorithm that makes at most n2ℓ queries, all of which are ℓ-local “subword”
queries (defined in Section 2.1) of tolerance τ02−ℓ. Moreover, a standard argument shows
that any nonadaptive SQ algorithm which makes M statistical queries, each with tolerance
at least τ0, can be simulated in the obvious way by a standard trace reconstruction algorithm
that uses poly(log M, 1/τ0) independent traces from Delδ(x). Thus, we will be particularly
interested in identifying the value ℓ of the locality parameter for which tolerance (roughly)
2−ℓ is both necessary and sufficient for trace reconstruction. As we explain next, our main
results do precisely this, for both worst-case and average-case trace reconstruction.

1.1 Our results
We give upper and lower bounds on local SQ algorithms for both worst-case and average-case
trace reconstruction. Our upper and lower bounds match each other up to fairly small factors
for both the worst-case and average-case versions of the problem.

The worst-case problem. Our main lower bound is the following result, which gives a
lower bound on the tolerance for n1/5-local SQ algorithms performing worst-case trace
reconstruction:

APPROX/RANDOM 2024

52:4 Trace Reconstruction from Local Statistical Queries

▶ Theorem 1 (Worst-case lower bound, informal version of Theorem 6). Fix any constant
deletion rate 0 < δ < 1. For ℓ = Θ̃(n1/5), any ℓ-local SQ algorithm for worst-case trace
reconstruction must have tolerance τ0 = exp(−Ω̃(n1/5)).

Our algorithmic result for the worst-case problem shows that this lower bound is essentially
optimal:

▶ Theorem 2 (Worst-case upper bound, informal version of Theorem 15). Fix any constant
deletion rate 0 < δ < 1. There is a Õ(n1/5))-local SQ algorithm for the worst-case trace
reconstruction problem with tolerance τ0 = exp(−Õ(n1/5)).

The average-case problem. As mentioned earlier, the state-of-the-art average-case trace
reconstruction algorithms of [37, 23, 24, 38] do not seem to be compatible with the SQ model.
Recall that those algorithms use 2O((log n)c) traces, for c ∈ {1/5, 1/3, 1/2}, and thus any
SQ analogue of those algorithms would have tolerance ≈ 2−O((log n)c). We show that no
O(log n)-local (or even n0.49-local) SQ algorithm for average-case trace reconstruction can
succeed with such a coarse tolerance parameter:

▶ Theorem 3 (Average-case lower bound, informal version of Theorem 23). Fix any constant
deletion rate 0 < δ < 1. Any ℓ-local SQ algorithm for average-case trace reconstruction must
have tolerance τ0 ≤ ℓ/

√
n.

Finally, we give an average-case O(log n)-local SQ algorithm that has inverse polynomial
tolerance:

▶ Theorem 4 (Average-case upper bound, informal version of Theorem 25). Fix any constant
deletion rate 0 < δ < 1. There is an O(log n)-local SQ algorithm for average-case trace
reconstruction with tolerance τ0 = 1/poly(n).

Our results can be summarized as follows: As discussed immediately before Section 1.1, we
may say that an ℓ-local SQ algorithm with tolerance τ0 has overall complexity poly(n2ℓ, 1/τ0).
Theorems 1 and 2 together say that the optimal complexity of worst-case local SQ trace
reconstruction is 2Θ̃(n1/5), and Theorems 3 and 4 together say that the optimal complexity
of average-case local SQ trace reconstruction is nΘ(1).

1.2 Discussion and techniques
The worst-case setting. Theorem 1 and Theorem 2 should be contrasted with recent results
of Cheng et al. [15], which consider a restricted class of local SQ algorithms known as ℓ-mer
based algorithms. As defined by Mazooji and Shomorony [31], the ℓ-mer density map is a
certain vector of statistics about the frequency of length-ℓ subwords2 of the source string
x ∈ {0, 1}n. [31] gave an algorithm which, for constant deletion rate 0 < δ < 1/2, constructs
an ε-accurate (in ℓ∞ distance) estimate of the ℓ-mer density map using poly(n, 2ℓ, 1/ε) traces.
Cheng et al. [15] defined a trace reconstruction algorithm to be ℓ-mer based if it only uses the
ℓ-mer density map of x, and observed that the algorithm of [31] (see in particular Lemma 6
of [31] and its proof) only uses local statistical information about traces, and hence is a local
SQ algorithm.

2 Recall that a subword of x is a sequence of bits that occur consecutively in x, i.e. xixi+1 · · · xi+ℓ−1,
whereas a substring of x is a subsequence of bits that need not occur consecutively, i.e. xi1 xi2 · · · xiℓ .

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:5

The main result of Cheng et al. is a proof that any n1/5-mer based algorithm for worst-case
trace reconstruction must have tolerance τ0 = 2−Ω̃(n1/5). Our Theorem 1 generalizes this
result because it gives a lower bound for the entire class of n1/5-local SQ algorithms, which
includes the class of n1/5-mer based algorithms by the results described above. We remark
that Theorem 1 also has a shorter and simpler proof than Theorem 2 of [15].

At a high-level, we obtain Theorem 1 by a reduction to proving a 1-local SQ lower bound
on n-bit source strings that are “gappy.” These are strings in which every two 1s are separated
by ≫ n1/5 zeros (see Definition 8 for the precise definition). The intution here is that for a
gappy string, any n1/5-bit subword in its traces is very unlikely to contain two 1s, and so all
the useful information is contained in subword queries of Hamming weight at most 1, which
can then be further reduced to 1-bit queries. Then we can adapt the lower bound arguments
in [19] to gappy strings to obtain our lower bound.

Turning to Theorem 2, Cheng et al. observed that the 2Õ(n1/5)-trace algorithm of [11]
for worst-case trace reconstruction can be interpreted as a Õ(n1/5)-mer based algorithm
with tolerance τ0 = 2−Õ(n1/5). By the earlier observation of Cheng et al. mentioned in the
first paragraph and the [31] algorithm, which works provided that the deletion rate δ lies in
(0, 1/2), this means that Chase’s algorithm can be expressed as a Õ(n1/5)-local SQ algorithm
which has tolerance τ0 = 2−Õ(n1/5) when δ ∈ (0, 1/2). Our Theorem 15 is based on a similar
observation about Chase’s algorithm, but applied directly to the local SQ model without
going through the notion of k-mer statistics. Our approach is based on techniques and
arguments from [13]; using these techniques allows our argument to apply more generally to
the entire range of deletion rates δ ∈ (0, 1).

Average-case. The average-case lower bound of Theorem 3 is proved using a fairly simple
argument based on “hiding” a bit which might be either 0 or 1 in the middle of the source
string. We turn to the average-case upper bound.

The average-case SQ algorithm described in Theorem 4 is obtained by adapting an
algorithm for smoothed trace reconstruction to the SQ model. The [13] paper gives an
algorithm for “smoothed” trace reconstruction, which is a generalization of the average-case
trace reconstruction problem. While the algorithm of [13] only interacts with the input traces
by using them to form empirical estimates of subword frequencies in traces, it is not trivially
an SQ algorithm. This is because the [13] algorithm estimates these subword frequencies
across a range of different deletion probabilities δ, δ + ∆, δ + 2∆, . . . up to (δ + 1)/2. In the
usual (non-SQ) trace reconstruction setting where traces are available, it is trivial to simulate
access to Delδ′(x) given access to Delδ(x) for any δ′ > δ, simply by drawing y ∼ Delδ(x)
and deleting each bit of y independently with probability 1−δ′

1−δ . But in the SQ setting, we
only have access to statistical queries of traces drawn from Delδ(x) rather than individual
traces. We circumvent this issue by showing that any algorithm that makes ℓ-local statistical
queries with tolerance τ to Delδ′(x), for δ′ > δ, can be simulated by an algorithm that
makes only ℓ′-local statistical queries with tolerance τ ′ to Delδ(x), where (roughly speaking)
ℓ′ ≈ ℓ/(1 − δ′) and τ ′ = Θ(τ). With this ingredient in hand, the algorithm of [13] is easily
adapted to give Theorem 4.

1.3 Future work
Several natural questions suggest themselves for future work. Perhaps the foremost among
these is the following: Given Theorem 2, the current state-of-the-art unrestricted algorithm
for the general worst-case trace reconstruction problem is an Õ(n1/5)-local SQ algorithm.
Might it be the case that this is in fact an optimal algorithm for trace reconstruction? We

APPROX/RANDOM 2024

52:6 Trace Reconstruction from Local Statistical Queries

currently seem quite far from being able to resolve this (recall that the state of the art in
lower bounds for unrestricted worst-case trace reconstruction algorithms is only Ω̃(n3/2)
traces [11]).

A partial step towards answering the above bold question would be to establish lower
bounds on general SQ algorithms for worst-case trace reconstruction, i.e. SQ algorithms that
are not assumed to have bounded locality. It is difficult to imagine how queries that depend
on far-separated portions of an input trace could be useful, but proving this seems quite
challenging.

As a concrete first goal along these lines, a generalization of the notion of an ℓ-local SQ
is the notion of a size-s SQ. A size-s SQ is an SQ which asks for the expected value of some
s-junta function q′(yi1 , . . . , yis

) of a random trace y, but unlike an ℓ-local SQ the input bits
of the junta do not need to form a consecutive block of positions in y. Similar to Lemma 5, a
size-s SQ algorithm can be assumed without loss of generality to use only query functions of
the form 1 [yi1 , . . . , yis

] = w as (i1, . . . , is) ranges over
([n]

s

)
and w ranges over {0, 1}s. Even

the following goal appears to be quite challenging:

Show that any SQ algorithm for the worst-case trace reconstruction problem that
makes only size-2 queries must have tolerance τ = 1/nω(1).

We believe that this is an interesting target problem for future work.

2 Preliminaries

Notation. Given integers a ≤ b we write [a : b] to denote {a, . . . , b}. It will be convenient
for us to index a binary string x ∈ {0, 1}n using [0 : n − 1] as x = (x0, . . . , xn−1). We write
ln to denote natural logarithm and log to denote logarithm to the base 2. We write |x| to
denote the length of a string x.

We denote the set of non-negative integers by Z≥0. We write Dr(z) to denote the closed
disk in the complex plane of radius r centered at z ∈ C, and ∂Dr(z) to denote the circle
which is the boundary of that disk.

Subwords. Fix a string x ∈ {0, 1}n and an integer k ∈ [n]. A k-subword of x is a (contiguous)
subword of x of length k, given by (xa, xa+1, . . . , xa+k−1) for some a ∈ [0 : n − k]. Given
such a string x and integers 0 ≤ a < b ≤ n − 1, we write x[a : b] to denote the subword
(xa, xa+1, . . . , xb). For a string w ∈ {0, 1}k, let #(w, x) denote the number of occurrences of
w as a subword of x.

Distributions. We use bold font letters to denote probability distributions and random
variables, which should be clear from the context. We write “x ∼ X” to indicate that random
variable x is distributed according to distribution X.

Deletion channel and traces. Throughout this paper the parameter δ : 0 < δ < 1
denotes the deletion probability, and we write ρ to denote the retention probability ρ = 1 − δ.
Given a string x ∈ {0, 1}n, we write Delδ(x) to denote the distribution of the string
that results from passing x through the δ-deletion channel (so the distribution Delδ(x) is
supported on {0, 1}≤n), and we refer to a string drawn from Delδ(x) as a trace of x. Recall
that a random trace y ∼ Delδ(x) is obtained by independently deleting each bit of x with
probability δ and concatenating the surviving bits. 3

3 For simplicity in this work we assume that the deletion probability δ is known to the reconstruction
algorithm.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:7

For x ∈ {0, 1}n (recall that we index the bits of x as (x0, . . . , xn−1)) we view a draw of a
trace y ∼ Del(x) as corresponding to a ρ-biased random draw of a subset R ⊆ [0 : n − 1],
where the elements of R are the bits that are retained in x to obtain y. So if the sorted
elements of R are R = {r0 < r1 < · · · < rm−1} for some m ≤ n, then the bits of the trace
y = (y0, y1, . . . , ym−1) are y0 = xr0 , y1 = xr1 , and so on.

2.1 Local Statistical Query algorithms
As described earlier, an ℓ-local query function q : {0, 1}n → [−1, 1] is a function

q(y) = q′(yi, yi+1, . . . , yi+ℓ−1)

for some index i and some function q′ : {0, 1}ℓ → [−1, 1], i.e. a real-valued bounded ℓ-junta
over consecutive input variables. An algorithm is an ℓ-local SQ algorithm with tolerance τ0
if all of its calls to the SQ oracle are made with ℓ-local query functions and the tolerance
parameter for each call is at least τ0.

Let us say that an ℓ-local query function is a subword query if it is of the form

q′(y) = 1 [(yi, . . . , yi+ℓ−1) = w] (1)

for some string w ∈ {0, 1}ℓ. The following simple lemma shows that without loss of generality,
every ℓ-local SQ algorithm makes at most n2ℓ (non-adaptive) queries, corresponding to all
possible length-ℓ subword queries:

▶ Lemma 5. Let A be an ℓ-local SQ algorithm with tolerance τ0 (note that A may make any
number of calls to the SQ oracle and may be adaptive, i.e. the choice of later queries may
depend on the responses received on earlier queries). Then there is an algorithm A′ with the
same behavior as A which makes n2ℓ queries (all possible length-ℓ subword queries), each
with tolerance τ0/2ℓ.

Proof. The algorithm A′ makes all n2ℓ subword queries of the form given in Equation (1),
where i ranges over [n] and w ranges over {0, 1}ℓ. It makes each such subword query with
tolerance parameter τ0/2ℓ. Let pi,w = Pry∼Del(x)[(yi, . . . , yi+ℓ−1) = w] and let p̂i,w be the
value received from the SQ oracle in response to the query (1), so |p̂i,w − pi,w| ≤ τ0/2ℓ.

Let (q, τ0) be any (query function, tolerance) pair that A may make in the course of
its execution. We show that a ±τ0-accurate estimate P̂q of Pq can be computed from the
responses to the n2ℓ queries of A′. This is easily seen to imply the lemma.

Since A is ℓ-local, the expected value Pq is

Pq = E
y∼Delδ(x)

[q′(yi, . . . , yi+ℓ−1)]

for some q′ : {0, 1}ℓ → [−1, 1] and some i ∈ [n]. Since

Pq =
∑

w∈{0,1}ℓ

pi,w · q′(w),

by setting P̂q to be

Pq =
∑

w∈{0,1}ℓ

p̂i,w · q′(w),

APPROX/RANDOM 2024

52:8 Trace Reconstruction from Local Statistical Queries

recalling that |q′(w)| ≤ 1 for all w, the triangle inequality gives

|P̂q − Pq| =

∣∣∣∣∣∣
∑

w∈{0,1}ℓ

(p̂i,w − pi,w) · q′(w)

∣∣∣∣∣∣ ≤ max
w

|q′(w)| ·
∑

w

|p̂i,w − pi,w| ≤
∑

w

τ0/2ℓ ≤ τ0

as desired. ◀

3 Worst-case lower bounds

In this section we prove the following lower bound on local SQ algorithms for the worst-case
trace reconstruction problem:

▶ Theorem 6 (Worst-case lower bound). Fix any constant deletion rate 0 < δ < 1. For a
suitable absolute constant c0, any c0n1/5/(log n)2/5-local SQ algorithm for worst-case trace
reconstruction must have tolerance τ0 < exp(−Ω(n1/5/(log n)2/5)).

Setup. Fix any 0 < δ < 1. For notational clarity let us write ℓ := c0n1/5/(log n)2/5. Given
an n-bit source string x, an index i ∈ [0 : n − 1], and an ℓ-bit string w, we define the value

px,i,w := Pr
y∼Delδ(x)

[(yi, . . . , yi+ℓ−1) = w], (2)

so px,i,w is the probability that a random trace of x has w as the subword starting in position
i. We refer to the vector (px,i,w)i∈[0:n−1],w∈{0,1}ℓ as the ℓ-subword signature of x.

We will prove the following:

▶ Lemma 7. For a suitable absolute constant c0, there are distinct n-bit strings a ≠ a′ ∈
{0, 1}n whose ℓ-subword signatures are very close to each other in ℓ∞-distance: more precisely,

For all i ∈ [0 : n − 1], w ∈ {0, 1}ℓ, we have |pa,i,w −pa′,i,w| ≤ exp(−2c0n1/5/(log n)2/5). (3)

To see why Lemma 7 implies Theorem 6, let A be any ℓ-local SQ algorithm with tolerance
exp(−c0n1/5/(log n)2/5). By Lemma 5, there is an algorithm A′ with the same behavior as
A which makes only subword queries for subwords of length ℓ, where each query of A′ has
tolerance exp(−c0n1/5/(log n)2/5)/2ℓ > exp(−2c0n1/5/(log n)2/5). By Equation (3), a query
for the value of px,i,w can be answered with the value qi,w = pa,i,w+pa′,i,w

2 whether the source
string x is a or a′. But this means that it is impossible for A to be an algorithm which
successfully solves the worst-case trace reconstruction problem.

In the rest of this section, we focus on establishing Lemma 7.
We require the following simple definition:

▶ Definition 8. Given t > 1, we say that a string x ∈ {0, 1}n is t-gappy if it is of the form

x = b00t−1b10t−1 · · · bn/t−10t−1

for some string b0, b1, . . . , bn/t−1 ∈ {0, 1}n/t.

Recall ρ = 1 − δ. Fix

t := 100 log(n)ℓ
ρ

= Θ(n1/5(log n)3/5). (4)

The two strings a, a′ whose existence is asserted by Lemma 7 will both be t-gappy. (We note
that the argument of Cheng et al. [15] also used gappy strings.)

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:9

One reason that gappy strings are useful for us because they make it very easy to handle
almost all of the ℓ-bit strings w ∈ {0, 1}ℓ that we need to consider in order to establish
Lemma 7. To see this, observe that any string w containing at least two ones is very unlikely
to be a length-ℓ subword of a random trace y: since the source string is t-gappy, we expect
consecutive ones in a random trace y to be at least ρt ≫ ℓ positions apart from each other.
More precisely, we have the following lemma:

▶ Lemma 9. Let x ∈ {0, 1}n be any t-gappy string, and let w ∈ {0, 1}ℓ be any string with at
least two ones. Then for any i ∈ [0 : n − 1] we have px,i,w ≤ 1/n49ℓ.

Proof. Fix 0 ≤ α < β ≤ ℓ − 1 to be any two positions in w such that wα = wβ = 1, and let
y ∼ Delδ(x). Observe that we have px,i,w ≤ Pr[yi+α = yi+β = 1].

Let R = {r0 < r2 < · · · < rm−1} ⊆ [0 : n − 1] be the ρ-biased random subset of
[0 : n − 1] consisting of the indices that are retained in x to obtain y. We may view the draw
of R as being carried out sequentially in independent stages 0, 1, . . . , where in each stage
s the element s is included in R with probability ρ. Fix any outcome of stages 0, 1, . . . up
until ri+α has been included in R. Even supposing that xri+α

= 1 (so that yi+α = 1), the
probability that xri+β

= 1 (which equals Pr[yi+β = 1]) is at most (writing k for β − α)∑
j≥1

Pr[exactly k of the jt indices in ri+α + 1, . . . , ri+α + jt are retained] (5)

=
∑
j≥1

(
jt

k

)
ρkδjt−k

≤
∑
j≥1

(ρjt)k · δjt/2 = (ρt)k
∑
j≥1

jkδjt/2 (since k ≤ jt/2)

≤ (ρt)ℓ
∑
j≥1

jℓ(1 − ρ)jt/2 (using k ≤ ℓ)

≤ (100 log(n)ℓ)ℓ
∑
j≥1

jℓe−50 log(n)ℓj . (by the choice of t, and using (1 − ρ)1/ρ ≤ e−1)

When j = 1 the first term of the sum
∑

j≥1 jℓe−50 log(n)ℓj is e−50 log(n)ℓ. The ratio of
successive terms of the sum is

(j + 1)ℓe−50 log(n)ℓ(j+1)

jℓe−50 log(n)ℓj
≤ 2ℓe−50 log(n)ℓ = (2/n50)ℓ ≪ 1/2.

So the sum
∑

j≥1 jℓe−50 log(n)ℓj is at most 2e−50 log(n)ℓ = 2/n50ℓ, and since 100 log(n)ℓ < n

for n sufficiently large, we get that (5) ≤ 1/n49ℓ. It follows that px,i,w ≤ Pr[yi+α = yi+β =
1] ≤ 1/n49ℓ as claimed. ◀

Given Lemma 9 it remains to argue about the ℓ + 1 strings w ∈ {0, 1}ℓ of Hamming
weight 0 or 1. We handle the weight-1 strings by reducing their analysis to the analysis of
one-bit strings as follows: fix any α ∈ [0 : ℓ − 1] and let w = eα ∈ {0, 1}ℓ be the string with
a single 1 coordinate in position α. The following lemma, which we prove using Lemma 9,
shows that for any gappy source string x the value of px,i,eα

is very close to the expected
value of a single location in a random trace. (A sharper bound could be obtained with a bit
more work, but the bound given by Lemma 10 is sufficient for our purposes.)

▶ Lemma 10. Let x ∈ {0, 1}n be any t-gappy string, and let w = eα ∈ {0, 1}ℓ be the string
containing a single 1 in coordinate α. Then for any i ∈ [0 : n − 1] we have∣∣∣∣ Pr

y∼Delδ(x)
[yi+α = 1] − px,i,eα

∣∣∣∣ ≤ 2ℓ−1/n49ℓ.

APPROX/RANDOM 2024

52:10 Trace Reconstruction from Local Statistical Queries

Proof. We have

Pr
y∼Delδ(x)

[yi+α = 1] =
∑

w∈{0,1}ℓ:wα=1

px,i,w, so

0 ≤ Pr
y∼Delδ(x)

[yi+α = 1] − px,i,eα
=

∑
w∈{0,1}ℓ:wα=1,|w|≥2

px,i,w ≤ (2ℓ−1 − 1)/n49ℓ

where the inequality is Lemma 9. ◀

The one remaining ℓ-bit string to consider is w = 0ℓ. However, if all 2ℓ − 1 other strings
have been handled successfully then this string is automatically handled as well:

▶ Lemma 11. Fix a, a′ ∈ {0, 1}n and i ∈ [0 : n − 1]. Suppose that for all w ∈ {0, 1}ℓ \ {0ℓ}
we have |pa,i,w − pa′,i,w| ≤ κ. Then |pa,i,0ℓ − pa′,i,0ℓ | ≤ (2ℓ − 1)κ.

Proof. This is an immediate consequence of
∑

w∈{0,1}ℓ px,i,w = 1, which holds for every x

and i. ◀

Thus, it suffices to construct two t-gappy strings a, a′ whose one-bit statistics are very
close:

▶ Lemma 12. For x ∈ {0, 1}n and i ∈ [0 : n − 1] define

px,i := Pr
y∼Delδ(x)

[yi = 1]. (6)

Suppose that a ≠ a′ ∈ {0, 1}n are two t-gappy strings such that for each i ∈ [0 : n − 1] we
have |pa,i − pa′,i| ≤ exp(−Ω(n1/5/(log n)2/5)). Then for all i ∈ [0 : n − 1], w ∈ {0, 1}ℓ we
have

|pa,i,w − pa′,i,w| ≤ 2ℓ · exp(−Ω(n1/5/(log n)2/5)) + 4ℓ/n49ℓ ≤ exp(−2c0n1/5/(log n)2/5).

Proof. Lemma 9 gives |pa,i,w − pa′,i,w| ≤ 1/n49ℓ for |w| ≥ 2. Lemma 10 and the assumption
on |pa,i −pa′,i| gives |pa,i,w −pa′,i,w| ≤ exp(−Ω(n1/5/(log n)2/5))+2ℓ/n49ℓ for |w| = 1. Given
these bounds, Lemma 11 gives |pa,i,0ℓ −pa′,i,0ℓ | ≤ 2ℓ ·exp(−Ω(n1/5/(log n)2/5))+4ℓ/n49ℓ. ◀

3.1 Establishing closeness of one-bit statistics
Let us write px = (px,0, . . . , px,n−1) to denote the n-dimensional vector in [0, 1]n whose
coordinates are given by Equation (6). From the results in the previous subsection it suffice
to prove the following:

▶ Lemma 13. There are two distinct t-gappy strings a, a′ ∈ {0, 1}n such that for all
i ∈ [0 : n − 1] we have ∥pa − pa′∥∞ ≤ exp(−Ω(n1/5/(log n)2/5)).

This is very similar to the main lower bound statement that was established in the two
works [19, 36] (independently of each other); those papers considered “one-bit statistics”
which correspond precisely to our px,i quantities, and showed that there are two distinct
strings x, x′ ∈ {0, 1}n (not restricted to be gappy) such that |px,i − px′,i| ≤ exp(−Ω(n1/3))
for all i ∈ [0 : n − 1]. In what follows we adapt their techniques to deal with t-gappy source
strings.

Following [19], given a pair of source strings a, a′ ∈ {0, 1}n we define the corresponding
deletion-channel polynomial (over C) to be

Pa,a′(z) :=
n−1∑
i=0

(pa,i − pa′,i) · zi. (7)

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:11

We have

∥pa − pa′∥∞ ≤ ∥pa − pa′∥1 ≤
√

n max
z∈∂D1(0)

|Pa,a′(z)|, (8)

where the second inequality is by Proposition 3.5 of [19] (the proof is a simple and standard
computation about complex polynomials). Thus our goal is to establish the existence of two
distinct t-gappy strings a ̸= a′ ∈ {0, 1}n for which maxz∈∂D1(0) |Pa,a′(z)| is small. To do this,
we begin by observing that since bit j of a source string ends up in location i of a trace with
probability

(
j
i

)
ρi+1δj−i, we have

pa,i = Pr
y∼Delδ(a)

[yi = 1] =
n−1∑
j=0

(
j

i

)
ρi+1δj−iaj , and hence pa,i −pa′,i =

n−1∑
j=0

(aj −a′
j)
(

j

i

)
ρi+1δj−i.

Hence (following [19, 36]) we get

Pa,a′(z) =
n−1∑
i=0

n−1∑
j=0

(aj − a′
j)
(

j

i

)
ρi+1δj−i

 zi = ρ

n−1∑
j=0

(aj − a′
j)δj

n−1∑
i=0

(
j

i

)(ρz

δ

)i

= ρ

n−1∑
j=0

(aj − a′
j)wj (taking w = 1 − ρ + ρz) (9)

where the last line used the binomial theorem and δ = 1 − ρ. Now, let us write the t-gappy
strings a, a′ as

a := b00t−1b10t−1 · · · bn/t0t−1, a′ := b′
00t−1b′

10t−1 · · · b′
n/t0t−1 (10)

for some b, b′ ∈ {0, 1}n/t. From Equation (9) we get that

Pa,a′(z) = ρ ·
n/t−1∑

j=0
(bj − b′

j)wjt (11)

(the structure afforded by Equation (11) is another reason why t-gappy strings are useful for
us). Since 0 < ρ = 1 − δ < 1 is a constant, recalling Equation (8) our goal is to establish the
existence of a string 0n/t ̸= v = (v0, . . . , vn/t−1) ∈ {−1, 0, 1}n/t such that

max
θ∈(−π,π]

∣∣∣∣∣∣
n/t−1∑

j=0
vj

(
(1 − ρ + ρeiθ)t

)j

∣∣∣∣∣∣ (12)

is small.
As described in Theorem 6.2 of [19], a result of Borwein and Erdélyi [3] (specifically, the

first proof of Theorem 3.3 in the “special case” on p. 11 of [3]) establishes the following:

▶ Theorem 14 ([3]). There are universal constants c1, c2, c3 > 0 such that the following
holds: For all 0 < a ≤ c1 there exists an integer 2 ≤ k ≤ c2/a2 and a nonzero vector
u ∈ {−1, 0, 1}k+1 such that maxw∈D6a(1) |

∑k
j=0 ujwj | ≤ exp(−c3/a).

Let m = n1/5/(log n)2/5 = 1/a, so a = 1/m = (log n)2/5/n−1/5. Recalling Equation (4),
we have that c2/a2 = c2m2 ≪ n/(2t), so we get that there exists a vector 0n/(2t) ≠ u ∈
{−1, 0, 1}n/(2t) such that

max
w∈D6/m(1)

∣∣∣∣∣∣
n/(2t)−1∑

j=0
ujwj

∣∣∣∣∣∣ ≤ exp(−c3m). (13)

APPROX/RANDOM 2024

52:12 Trace Reconstruction from Local Statistical Queries

Routine geometry shows that if |θ| ≤ 1
mt then |1 − (1 − ρ + ρeiθ)t| ≤ 6/m, so we get that

max
|θ|≤1/(mt)

∣∣∣∣∣∣
n/(2t)−1∑

j=0
uj

(
(1 − ρ + ρeiθ)t

)j

∣∣∣∣∣∣ ≤ exp(−c3m). (14)

Now we can describe our final desired string v ∈ {−1, 0, 1}n/t: it is obtained by padding
u with a prefix of n/(2t) many zeros. We thus have

(12) = max
θ∈(−π,π]

n/t−1∑
j=0

vj

(
(1 − ρ + ρeiθ)t

)j

= max
θ∈(−π,π]


A︷ ︸︸ ︷

(1 − ρ + ρeiθ)n/2 ·

B︷ ︸︸ ︷
n/(2t)−1∑

j=0
uj

(
(1 − ρ + ρeiθ)t

)j

 . (15)

Since |1 − ρ + ρeiθ| ≤ 1 for all θ ∈ (−π, π], we have that |A| is always at most 1 and |B| is
always at most n/(2t). We bound Equation (15) by considering two possible ranges for |θ|. If
|θ| ≤ 1/(mt), then since |A| ≤ 1, from Equation (14) we have that (15) ≤ 1·|B| ≤ exp(−c3m).
On the other hand, if |θ| > 1/(mt) then since |B| ≤ n/(2t) and ρ is a constant between 0
and 1, we get that |1 − ρ + ρeiθ| ≤ 1 − cρ

(mt)2 , and hence

(15) ≤ n

2t
· |A| ≤ n

2t
·
(

1 − cρ

(mt)2

)n/2
≤ exp(−c′

ρn/(mt)2)

for two constants cρ, c′
ρ > 0 that depend only on ρ. Since m = n1/5/(log n)2/5 and n/(mt)2 =

Θ(n1/5/(log n)2/5), for all θ ∈ (−π, π] we have that (12) ≤ exp(−Ω(n1/5/(log n)2/5)), so the
proof of Lemma 13 and hence of Theorem 6 is complete.

4 Worst-case upper bounds

In this section we will give a local SQ algorithm for worst-case trace reconstruction, proving
Theorem 2.

▶ Theorem 15 (Worst-case upper bound). Fix any constant deletion rate 0 < δ < 1. There is
a worst-case SQ trace reconstruction algorithm that makes only (O(n1/5 log5 n))-local queries
with tolerance τ = 2−O(n1/5 log5 n).

Overview. As discussed in the introduction, [15] showed that the state-of-the-art worst-case
trace reconstruction algorithm of Chase [11] can be interpreted as a Õ(n1/5)-mer based
algorithm, and further observed that the work [31] implicitly showed that for deletion rate
δ < 1/2, any k-mer based algorithm only relies on local statistics of random traces. The
same observation can also be inferred from the work [13]; more generally, that work implicitly
showed that for any deletion rate 0 < δ < 1 (not just δ < 1/2), Chase’s algorithm can be
interpreted as a local SQ algorithm. We obtain Theorem 15 by making this interpretation
explicit, without going through the notion of k-mer statistics.

In the case of δ < 1/2, the observation in [13, 31] is the following. Chase’s algorithm
is based on estimating (from below) a certain univariate polynomial Qx(z0) at some point
z0 inside the shifted complex disc D := { z−δ

1−δ : |z| ≤ 1}. Moreover, the degree-ℓ coefficient
of Qx can be estimated using ℓ-local statistics. When δ is bounded away from 1/2, these

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:13

works observed that the magnitude of the degree-ℓ term of Qx decays exponentially in ℓ, and
so the contribution from the high-degree terms is negligible and can be truncated from the
evaluation.

In the case of δ ≥ 1/2, a point in D can have magnitude 1 or more, and so the high-degree
terms in Qx need not decay in magnitude. Instead of evaluating the polynomial on some
point in D, [13] applies a result by Borwein, Erdélyi, and Kós [4] (see Lemma 18 below)
which shows that there exists a value t0 in the real interval [δ, 1

4 + 3
4 δ] such that Qx(t0) is

almost as large as Qx(z0), and as a result, we can estimate the truncation of Qx(t0) instead.

We now proceed to a detailed proof of Theorem 15. Let ℓ := 2n1/5. Our (O(n1/5 log5 n))-
local SQ algorithm in Theorem 15 is based on the following two lemmas. (Throughout this
section, it will be more convenient for us to phrase various quantities in terms of the retention
rate ρ = 1 − δ.) For a source string x ∈ {0, 1}n and an ℓ-bit pattern w ∈ {0, 1}ℓ, let Px,w(z, t)
be the following bivariate polynomial:

Px,w(z, t) :=
∑

0≤i1<···<iℓ≤n−1

ℓ∏
k=1

1 [xik
= wk] zi1 · tiℓ−i1−(ℓ−1).

▶ Lemma 16. For every deletion rate δ ∈ (0, 1), there is a constant Cρ such that the following
holds. For every distinct pair of source strings x, x′ ∈ {0, 1}n, there is a pattern w ∈ {0, 1}ℓ,
a point z0 ∈ {eiθ : |θ| ≤ n−2/5} ∪ [1 − ρ, 1 − 3

4 ρ], and a real value t0 ∈ [1 − ρ, 1 − 3
4 ρ], such

that

|Px,w(z0, t0) − Px′,w(z0, t0)| ≥ exp
(
−Cρn1/5 log5 n

)
.

▶ Lemma 17. For every deletion rate δ ∈ (0, 1), there exists an SQ algorithm that makes
Cρn1/5 log5 n-local queries with tolerance exp(−Cρn1/5 log5 n) such that for every w ∈ {0, 1}ℓ,
z ∈ {eiθ : |θ| ≤ n−2/5}∪ [1−ρ, 1− 3

4 ρ], and t ∈ [1−ρ, 1− 3
4 ρ] it outputs an estimate P̂x,w(z, t)

of Px,w(z, t) that is accurate to within ±0.1 · exp(−Cρn1/5 log5 n).

Our ℓ-local SQ algorithm (Proof of Theorem 15 assuming Lemmas 16 and 17)

Given an unknown source string x ∈ {0, 1}n, our reconstruction algorithm enumerates every
pair of distinct strings x1 ̸= x2 ∈ {0, 1}n. For each such pair, it considers the triple (w, z0, t0)
for that pair whose existence is given by Lemma 16. (Hence there are at most 22n many
such triples (w, z0, t0) considered in total.) Then it uses the SQ algorithm in Lemma 17 to
obtain an accurate estimate P̂x,w(z0, t0) of Px,w(z0, t0) for each w within an additive factor
of ±0.1 · exp(−Cρn1/5 log5 n), and outputs the x′ such that P̂x,w(z0, t0) and Px′,w(z0, t0) are
±0.5 · exp(−Cρn1/5 log5 n)-close to each other for every w, z0, t0. The correctness follows
immediately from Lemma 16, because if x′ ≠ x, then by that lemma there is some (w, z0, t0)
such that by the triangle inequality we have

|P̂x,w(z0, t0) − Px′,w(z0, t0)| ≥ |Px,w(z0, t0) − Px′,w(z0, t0)| − |P̂x,w(z0, t0) − Px,w(z0, t0)|

≥ 0.9 · exp(−Cρn1/5 log5 n).

4.1 Proof of Lemma 16
In this subsection we prove Lemma 16. We first recall the following result from [4].

▶ Lemma 18 (Theorem 5.1 in [4]). There are constants c1, c2 > 0 such that for every analytic
function f on the open unit disc {z : |z| < 1} with |f(z)| < 1

1−|z| and every a ∈ (0, 1], we
have

|f(0)|
c1
a ≤ exp(c2/a) sup

t∈[1−a,1− 3
4 a]

|f(t)|.

APPROX/RANDOM 2024

52:14 Trace Reconstruction from Local Statistical Queries

Note that polynomials with coefficients bounded by 1 are clearly analytic and satisfy the
condition that |f(z)| < 1

1−|z| on the open unit disc {z : |z| < 1}.
We note that in the actual statement in [4, Theorem 5.1], the interval containing t is

[1 − a, 1]. However, a close inspection of the proof reveals that the interval can be restricted
to be [1 − a, 1 − 3

4 a]. Specifically, their Theorem 5.1 is based on their Corollary 5.3, which in
turn is based on their Corollary 5.2, where the interval is taken to be [1 − a, 1 − a + 1

4 a]. A
self-contained proof using essentially the same argument can also be found in [13, Theorem 9].

We further note that the difference between [1 − a, 1] and [1 − 3
4 a] is crucial in showing

that the contribution of the high-degree terms of the relevant polynomial (Equation (16)) is
negligible. Had t been 1, then t−(1−ρ)

ρ = 1 and there would have been no exponential decay
in the high-degree terms.

Lemma 16 follows from two cases below.

Case 1: xi ̸= x′
i for some 0 ≤ i ≤ ℓ − 1

In this case, we consider the ℓ-bit pattern w := x[0 : ℓ−1]. Note that Px,w(0, 0)−Px′,w(0, 0) =
1 [x[0 : ℓ − 1] = w] − 1 [x′[0 : ℓ − 1] = w] = 1. We now apply Lemma 18 twice. The first
application is to the polynomial Q1(z1) := Px,w(z1, 0) − Px′,w(z1, 0), which implies that there
exists some z0 ∈ [1 − ρ, 1 − 3

4 ρ] such that

|Q1(z0)| ≥ e−c2/ρ|Q1(0)|c1/ρ = e−c2/ρ|Px,w(0, 0) − Px′,w(0, 0)|c1/ρ = e−c2/ρ.

We now apply Lemma 18 again to the polynomial

Q2(z2) := Px,w(z0, z2) − Px′,w(z0, z2)(
n
ℓ

) .

Note that all coefficients in Q2 have magnitude at most 1. This implies the existence of some
t0 ∈ [1 − ρ, 1 − 3

4 ρ] such that

|Px,w(z0, t0)−Px′,w(z0, t0)|=
(

n

ℓ

)
|Q2(t0)| ≥

(
n

ℓ

)
e−c2/ρ|Q2(0)|c1/ρ =

(
n

ℓ

)
e−c2/ρ

(
|Q1(z0)|(

n
ℓ

))c1/ρ

≥ e
− c2

ρ
− c1c2

ρ2(
n
ℓ

) c1
ρ

−1
≥ e−Ωρ(ℓ log n) = e−Ωρ(n1/5 log n),

where the last inequality used
(

n
ℓ

)
≥ (n/ℓ)ℓ, and the last equality follows from our choice of

ℓ = 2n1/5. To conclude, there exists some (z0, t0) ∈ [1 − ρ, 1 − 3
4 ρ]2 such that |Px,w(z0, t0) −

Px′,w(z0, t0)| ≥ Ωρ(
(

n
ℓ

)−c1/ρ).

Case 2: xi = x′
i for all 0 ≤ i ≤ ℓ − 1

For this case, [11, Corollary 6.1] (with the interval [1 − 2ρ, 1] replaced with [1 − ρ, 1 − 3
4 ρ])

can be restated, using Lemma 18 in a similar fashion as Case 1, as follows:

▶ Lemma 19 (Corollary 6.1 in [11], slightly rephrased and refined). For every ρ > 0, there exists
a constant Cρ such that the following holds. Let ℓ = 2n1/5. For every distinct x, x′ ∈ {0, 1}n

where xi = x′
i for every 0 ≤ i < ℓ − 1, there exists a pattern w ∈ {0, 1}ℓ, a z0 = eiθ for some

θ ∈ [−n−2/5, n−2/5] and a t0 ∈ [1 − ρ, 1 − 3
4 ρ] such that

|
∑

0≤i1<···<iℓ≤n−1

(ℓ∏
k=1

1 [xik = wk] −
ℓ∏

k=1

1
[
x′

ik
= wk

])
zi1

0 · t
iℓ−i1−(ℓ−1)
0 | ≥ exp

(
−Cρn1/5 log5 n

)
.

Combining the two cases proves Lemma 16.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:15

4.2 Proof of Lemma 17
We now prove Lemma 17. We first state the following identity relating two multivariate
polynomials, each of which is defined in terms of an arbitrary f : {0, 1}ℓ → C. One of these
involves the evaluation of f on the ℓ-bit (not necessarily consecutive) substrings of the source
string x, and the other involves the expectation of f evaluated on the ℓ-bit substrings of a
random trace y ∼ Delδ(x). This identity has now appeared in several places such as [13, 11]
(see [13, Section 5.2] for a proof).

▶ Fact 20. For every f : {0, 1}ℓ → C, x ∈ {0, 1}n, ρ ∈ [0, 1], and z ∈ Cℓ,

ρℓ
∑

0≤i1<···<iℓ≤n−1
f(xi1 , . . . , xiℓ

)
(
(1 − ρ) + ρz1

)i1
ℓ∏

k=2

(
(1 − ρ) + ρzk

)ik−ik−1−1

=
∑

0≤j1<···<jℓ≤n−1
E

y∼Del1−ρ(x)

[
f(yj1 , . . . , yjℓ

)
]
zj1

1

ℓ∏
k=2

z
jk−jk−1−1
k .

Letting f(u1, . . . , uℓ) be the indicator function 1 [u = w] for some pattern w ∈ {0, 1}ℓ,
then performing a simple change of variable zi 7→ zi−(1−ρ)

ρ , and then identifying the variables
z3, . . . , zℓ with the variable z2, we obtain the following corollary.

▶ Corollary 21. For every ρ ∈ (0, 1], x ∈ {0, 1}n, w ∈ {0, 1}ℓ, and (z1, z2) ∈ C2,

Px,w(z1, z2) =

ρ−ℓ
∑

0≤j1<···<jℓ≤n−1

E
y∼Del1−ρ(x)

[ℓ∏
k=1

1
[
yjk

= wk

]](z1 − (1 − ρ)
ρ

)j1(z2 − (1 − ρ)
ρ

)jℓ−j1−(ℓ−1)
.

(16)

Let Q(z1, z2) be the bivariate polynomial on the right hand side of Equation (16). Observe
that for every fixed z1, viewing Q(z1, z2) as a univariate polynomial in z2, its z2-coefficient
of degree d (a univariate polynomial in z1) can be estimated using d-local SQs. We will first
prove that Q, as a univariate polynomial in the second variable z2, is close to its low-degree
truncation Q≤d (for a suitable choice of d), defined by

Q≤d(z1, z2) :=

ρ−ℓ
∑

0≤j1<···<jℓ≤n−1:
jℓ−j1−(ℓ−1)≤d

E
y

[ℓ∏
k=1

1
[
yjk

= wk

]](z1 − (1 − ρ)
ρ

)j1(z2 − (1 − ρ)
ρ

)jℓ−j1−(ℓ−1)
, (17)

when both z1, z2 belong to the domain in Lemma 16.

▷ Claim 22. Let C ′′
ρ be a constant, and d0 ≥ C ′′

ρ (ℓ + n1/5) + 2 log n. For every z ∈ {eiθ :
|θ| ≤ n−2/5}∪ [1−ρ, 1− 3

4 ρ] and t ∈ [1−ρ, 1− 3
4 ρ], we have |Q≤d0(z, t)−Q(z, t)| ≤ 4 ·2−d0/2.

Proof. It suffices to show that for every d ≥ d0, the homogeneous degree-d (in the variable t)
term of Q, that is,

ρ−ℓ
∑

0≤j1<···<jℓ≤n−1
0≤jℓ−j1−(ℓ−1)=d

E
[ℓ∏

k=1
1
[
yjk

= wk

]](z − (1 − ρ)
ρ

)j1(t − (1 − ρ)
ρ

)jℓ−j1−(ℓ−1)
, (18)

is bounded by 2−d/2, as then we have |Q(z, t) − Q≤d0(z, t)| ≤
∑

d>d0
2−d/2 = 4 · 2−d0/2, as

desired.

APPROX/RANDOM 2024

52:16 Trace Reconstruction from Local Statistical Queries

We now bound Equation (18) as follows. First, the expectation in each term of the
summation can be bounded by 1. Second, writing z as eiθ for some |θ| ≤ n−2/5, and using
|cos θ| ≥ 1 − θ2/2, we have

|z − (1 − ρ)|2 =
(
cos θ − (1 − ρ)

)2 + sin2 θ = 1 − 2(1 − ρ) cos θ + (1 − ρ)2

= 2(1 − ρ)(1 − cos θ) + ρ2 ≤ (1 − ρ)θ2 + ρ2.

Using |θ| ≤ n−2/5 and j1 ≤ n, when z = eiθ for some |θ| ≤ n−2/5 we have that

∣∣∣z − (1 − ρ)
ρ

∣∣∣j1
≤
(

1 + (1 − ρ)
(θ

ρ

)2
)j1/2

≤ eC′
ρn1/5

(19)

for some constant C ′
ρ. And when z ∈ [1 − ρ, 1 − 3

4 ρ] we have 0 ≤ z−(1−ρ)
ρ ≤ 1/4 and so

Equation (19) is again satisfied (with room to spare). Similarly, for t ∈ [1 − ρ, 1 − 3
4 ρ] we

have 0 ≤ t−(1−ρ)
ρ ≤ 1/4, and so |

(
t−(1−ρ)

ρ

)d

| ≤ 4−d.
Finally, the number of indices 0 ≤ j1 < · · · < jℓ ≤ n − 1 with jℓ − j1 − (ℓ − 1) = d is at

most n ·
((ℓ−2)+d

ℓ−2
)

≤ n · 2d+(ℓ−2). So the degree-d term (18) can be bounded by

ρ−ℓ · n · 2d+ℓ−2 · eC′
ρn1/5

· 4−d ≤ n · (2/ρ)ℓ · eC′
ρn1/5

· 2−d,

which is at most 2−d/2 whenever d ≥ C ′′
ρ (ℓ + n1/5) + 2 log n, for some constant C ′′

ρ . ◁

We now describe our local SQ algorithm to approximate the low-degree polynomial
Q≤d(z, t), for any (z, t) ∈ {eiθ : |θ| ≤ n−2/5} ∪ [1 − ρ, 1 − 3

4 ρ] × [1 − ρ, 1 − 3
4 ρ]. Set

d0 := C ′′
ρ n1/5 log5 n ≥ C ′′

ρ (ℓ + n1/5) + 2 log n. Our d0-local algorithm makes the following
d0-local queries:

E
y∼Del1−ρ(x)

[
1 [y[j : j + d0 − 1] = u]

]
for every u ∈ {0, 1}d0 and j ∈ {0, . . . , n − 1}.

Let p̂u,j be the estimate of E[1 [y[j : j + d0 − 1] = u]] that is received as a response to the
query. For every fixed tuple 0 ≤ j1 < · · · < jℓ ≤ n − 1 such that jℓ − j1 − (ℓ − 1) ≤ d0, using
the identity

E
[ℓ∏

k=1
1
[
yjk

= wk

]]
=

∑
u∈{0,1}d0 :∀k∈[ℓ]:ujk−j1+1=wk

E
[
1 [y[j1 : j1 + d0 − 1] = u]

]
,

which is a sum of 2d0−ℓ terms, the algorithm computes the estimate ̂pu,j1,...,jℓ
of

E
[∏ℓ

k=1 1
[
yjk

= wk

]]
(using the estimates p̂u,j1 of E[1 [y[j1 : j1 + d0 − 1] = u]]) by

̂pw,j1,...,jℓ
:=

∑
u∈{0,1}d0 :∀k∈[ℓ]:ujk−j1+1=wk

p̂u,j1 ,

for each w ∈ {0, 1}ℓ and tuple of indices 0 ≤ j1 < · · · < jℓ ≤ n−1 such that jℓ−j1−(ℓ−1) ≤ d0.
If the tolerance for each query is τ0, then the error of each estimate ̂pw,j1,...,jℓ

is ±2d0−ℓ · τ0.
Finally, the algorithm computes the estimate Q̂≤d0(z, t) of Q≤d0(z, t) using Equation (17), as

Q̂≤d0(z, t) := ρ−ℓ
∑

0≤j1<···<jℓ≤n−1:
jℓ−j1−(ℓ−1)≤d0

̂pw,j1,...,jℓ

(z − (1 − ρ)
ρ

)j1(t − (1 − ρ)
ρ

)jℓ−j1−(ℓ−1)
.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:17

There are at most n ·
(

d0+(ℓ−1)
ℓ−1

)
≤ n · 2d0+(ℓ−1) such tuples. So the total error is n · 2d0+(ℓ−1) ·

2d0−ℓ · τ0 ≤ n · 22d0 · τ0.
By Claim 22, we have that for every (z, t) in the domain specified in Lemma 17

|Q̂≤d0(z, t) − Px,w(z, t)| = |Q̂≤d0(z, t) − Q(z, t)|

≤ |Q̂≤d0(z, t) − Q≤d0(z, t)| + |Q≤d0(z, t) − Q(z, t)|

≤ n · 22d0 · τ0 + 4 · 2−d0/2

= 22C′′
ρ n1/5 log5 nτ0 + exp(−C ′′

ρ n1/5 log5 n).

Setting the tolerance parameter τ0 to be exp(−Cρn1/5 log5 n) proves Lemma 17.

5 Average-case lower bounds

▶ Theorem 23 (Average-case lower bound). Fix any constant deletion rate 0 < δ < 1. Any
ℓ-local SQ algorithm for average-case trace reconstruction must have tolerance τ0 ≤ O(ℓ/

√
n).

Let x be an arbitrary fixed string in {0, 1}n and let x′ be the string obtained from x by
flipping the bit xn/2 in the middle. Let q : {0, 1}n → [−1, 1] be any ℓ-junta query (which is
not necessarily ℓ-local), i.e., there are 0 ≤ i1 < . . . < iℓ < n such that q(x) = q′(xi1 , . . . , xiℓ

)
for some q′ : {0, 1}ℓ → [−1, 1]. We will prove the following claim:

▷ Claim 24. Let Pq := Ey∼Delδ(x)[q(y)] and P ′
q := Ey∼Delδ(x′)[q(y)]. Then |Pq − P ′

q| ≤
O(ℓ/

√
n).

Proof. Let R be a ρ-biased random draw of a subset of [0 : n−1] with R = {r0, r1, . . . , rm−1}
for some m ≤ n. Given that the only difference between x and x′ is the middle bit, we have∣∣Pq − P ′

q

∣∣ ≤ 2 · PrR
[
rij

= n/2 for some j ∈ [ℓ]
]

≤ 2
∑
j∈[ℓ]

PrR
[
rij

= n/2
]

.

Since δ ∈ (0, 1) is a constant, PrR[ri = n/2] ≤ O(1/
√

n) for any i, from which the claim
follows. ◁

We now prove Theorem 23:

Proof. (of Theorem 23) Indeed we will show that any SQ algorithm for average-case trace
reconstruction that uses ℓ-junta queries with tolerance τ must satisfy τ ≤ O(ℓ/

√
n). To

see this, consider any SQ algorithm for trace reconstruction that uses ℓ-junta queries with
tolerance τ that is larger than the O(ℓ/

√
n) in Claim 24. It follows from Claim 24 that, for

any string x ∈ {0, 1}n, such an algorithm cannot distinguish between x and x′. As a result,
such an algorithm fails to reconstruct x ∼ {0, 1}n with probability at least 1/2. ◀

6 Average-case upper bounds

▶ Theorem 25 (Average-case upper bound). Fix any constant deletion rate 0 < δ < 1. There
is an SQ algorithm for average-case trace reconstruction that uses ℓ = O(log n)-local queries
with tolerance τ = 1/poly(n).

We will prove Theorem 25 by showing that the algorithm in [14] can be simulated with
local SQ queries. To do so, we will need to recall the smoothed analysis model.

APPROX/RANDOM 2024

52:18 Trace Reconstruction from Local Statistical Queries

▶ Definition 26. Let xworst be an unknown and arbitrary string in {0, 1}n and 0 < σ < 1 be
a “smoothening parameter.” Let x be generated by flipping every bit of xworst independently
with probability σ.

For parameters η, τ > 0, a (T, η, τ)-trace reconstruction algorithm in the smoothed
analysis model (with smoothening parameter σ) has the following guarantee: With probability
at least 1 − η (over the random generation of x from xworst), it is the case that the algorithm,
given access to independent traces drawn from Delδ(x), outputs the string x with probability
at least 1 − τ (over the random traces drawn from Delδ(x)). The time complexity as well as
the number of traces is bounded by T .

Observe that the average case trace reconstruction setting corresponds to the smoothed
analysis setting with σ = 1/2 and xworst set to the all zeros string (though any fixed choice of
xworst works equally well).

[14] gave a polynomial-time algorithm for trace reconstruction in the smoothed analysis
setting. Taking σ = 1/2, the main result of [14] gives the following:

▶ Theorem 27 (Theorem 1 in [14]). There is an algorithm for trace reconstruction which for
any η, τ and δ > 0, has the following guarantee: With probability 1−η over x drawn uniformly
at random from {0, 1}n, it is the case that the algorithm, given access to independent traces
drawn from Delδ(x), outputs the string x with probability at least 1 − τ (over the random
traces drawn from Delδ(x)). Its running time and sample complexity are upper bounded by

T =
(

n

η

)O
(

1
(1−δ) ·log

(
2

(1−δ)

))
.

We begin with a short description of the algorithm in [14] (page 27 of the Arxiv version of
[14]), giving only the level of detail necessary for the current paper. We set the following
parameters:

k = O(log(n/η)), κ =
(

1
n

·
(

1 − δ

2

)k)O(1/(1−δ))
, θ = (1 − δ)2/2,

d = C

θ

(
ln n + k ln C

θ

)
, ∆ = κ

2d2 · n ·
(

d+k−2
k−2

) . (20)

Set L to be the largest integer such that δ + L · δ ≤ (1 + δ)/2.
Given two strings x ∈ {0, 1}n and w ∈ {0, 1}k, [14] define a univariate polynomial

SWx,w(·). The precise formal definition of this polynomial is not important for us; rather,
the following relation (Equation 6 in the Arxiv version of [14]) is sufficient for our purposes:

E
y∼Delδ′ (x)

[#(w, y)] = (1 − δ′)k · SWx,w(δ′), (21)

where #(w, y) is the number of times w appears a subword of y. We remark to the reader
that #(w, y) is a sum of k-local query functions (we will elaborate on this shortly). The
algorithm in [14] proceeds as follows:
1. Define set S := {δ, δ + ∆, δ + 2∆, . . . , δ + L∆}.
2. For every w ∈ {0, 1}k and δ′ ∈ S, the algorithm computes ±κ-accurate estimates of

SWx,w(δ′), using Equation (21).
3. With these estimates of SWx,w(δ′) (for δ′ ∈ S and w ∈ {0, 1}k), the algorithm runs a

linear program followed by a greedy algorithm to reconstruct the original string.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:19

In particular, excluding the part of Step (2) in which the estimates of SWx,w(δ′) are computed,
the rest of the reconstruction algorithm is deterministic and does not use the traces. Note
that the reason why the [14] algorithm does not immediately translate to a local SQ algorithm
for us is the following: in our model the permissible statistical queries are with respect to
y ∼ Delδ(x), whereas the [14] algorithm, as sketched above, uses estimates of probabilities
corresponding to statistical queries over y ∼ Delδ′(x) for various values of δ′ > δ.

Thus, to obtain a local SQ algorithm, it suffices to show that the values
{SWx,w(δ′)}δ′∈S, w∈{0,1}k can be estimated using local SQ queries corresponding to Delδ(x).
More precisely, we have the following claim whose proof is immediate from the description of
the above algorithm and (21).

▷ Claim 28. For any δ′ ∈ S, to compute SWx,w(δ′) to error κ, it is sufficient to estimate
the value of Ey∼Delδ′ (x)[#(w, y)] up to error τ ′, where

τ ′ :=
(

1
n

(
1 − δ

2

)k)O(1/(1−δ))
. (22)

Proof. We need to compute SWx,w(δ′) for δ′ ∈ S to error κ. By (21), it suffices to compute
Ey∼Delδ′ (x)[#(w, y)] to error κ · (1 − δ′)k; noting that δ′ ≤ (1 + δ)/2, the claim follows. ◁

The main technical lemma of this section is the following.

▶ Lemma 29. For the parameters defined as above, the following holds: Given the values
of all subword queries of length ℓ with tolerance τ ′/2 (with τ ′ defined in (22)) corresponding
to Delδ(x), we can compute SWx,w(δ′) for all δ′ ∈ S and w ∈ {0, 1}k to within error ±κ.
Here ℓ is defined to be

ℓ = Θ
(

k

1 − δ
· ln
(

2
1 − δ

)
+ ln n

(1 − δ)

)
.

Before proving this lemma, we observe that Theorem 25 follows immediately from the lemma:

Proof. (of Theorem 25) For any constant 0 < δ < 1 and η = n−Θ(1), by our choice of
parameters we have k = O(log n) (see (20)). With this choice, ℓ = O(log n) and τ ′ = n−Θ(1).
By Lemma 29, using the values of all subword queries of length ℓ (with tolerance τ ′/2), we
can compute SWx,w(δ′) for all δ′ ∈ S and w ∈ {0, 1}k to within error ±κ. By the guarantee
of the algorithm in [14], this suffices to recover x. Thus, we get Theorem 25. ◀

6.1 Proof of Lemma 29
We start with the following observation.

▶ Fact 30. For δ′ ≥ δ, let 0 ≤ βr = (1 − δ′)/(1 − δ) ≤ 1. Then Delδ′(x) = Delβr
(Delδ(x)).

In other words, we can simulate traces from the deletion channel Delδ′(·) by first getting a
trace from Delδ(·) and then passing it through the deletion channel Delβr

.

As stated earlier, we will assume that our original string x is padded with infinitely many
0-symbols to its right. This means that for any i, the ith position of the trace is well-defined.
We now consider the process of getting a trace y from Delδ′(x) given a trace z ∼ Delδ(x).
We will do this by thinking of Delβr (·) as a “selector process”. We start with the following
definition.

APPROX/RANDOM 2024

52:20 Trace Reconstruction from Local Statistical Queries

▶ Definition 31. For a parameter p ∈ (0, 1) and integers k > 0 and ℓ ≥ 0, we define the
distribution Hypernb(p, k, ℓ) as follows: Define an infinite random string w = (w0, . . .) in
{0, 1}∗ where each bit is independently 0 with probability p and 1 with probability (1 − p).
Let is be the location of the sth one in w. Then a sample from Hypernb(p, k, ℓ) is given by
(ik, . . . , ik+ℓ−1).

Finally, we say that an outcome from Hypernb(p, k, ℓ) is t-bounded if |ik+ℓ−1 − ik| ≤ t.

We note that for any fixed s, the process generating is is memoryless, in the sense that
for any fixed r and s (with r ≥ s), the random variable ir − is is distributed as a negative
binomial random variable.

With the above definition, we can now state the following claim:

▷ Claim 32. Fix δ′ ≥ δ, k ≥ 1, and ℓ ≥ 0. Let y ∼ Delδ′(x) and z ∼ Delδ(x). For
βr = (1 − δ′)/(1 − δ), let (ik, . . . , ik+ℓ−1) ∼ Hypernb(βr, k, ℓ). Then the distribution of
(yk, . . . , yk+ℓ−1) is identical to the distribution of (zik

, . . . , zik+ℓ−1).

Proof. The proof is essentially obvious from Fact 30 and Definition 31. In particular,
from Fact 30, given z ∼ Delδ(x), to get y ∼ Delδ′(x), we need to simulate the deletion
channel Delβr

on the string z. By definition of the deletion channel Delβr
, the location

of the positions (k, . . . , k + ℓ − 1) is given by (ik, . . . , ik+ℓ−1) sampled from Hypernb(p, k, ℓ).
This finishes the proof. ◁

We next need a lower bound on the probability that Hypernb(p, k, ℓ) is bounded. To
obtain this, we first state a tail bound on negative binomial random variables:

▷ Claim 33 ([7]). Let Negbin(m, p) be a negative binomially distributed random variable with
parameters m and p, i.e. it is the number of trials needed to get m heads from independent
coin tosses with heads probability p. Then E[Negbin(m, p)] = m/p and furthermore, for any
t > 1,

Pr
[
Negbin(m, p) > tm/p

]
≤ exp

(
− tm(1 − 1/t)2

2

)
.

From this we can obtain the following claim which lower bounds the probability that
Hypernb(βr, k, ℓ) is s-bounded.

▷ Claim 34. For any k, an outcome (ik, . . . , ik+ℓ−1) ∼ Hypernb(βr, k, ℓ) is s-bounded with
probability at least 1 − ξ for s = t(ℓ − 1)/βr, where ξ = exp(−t(ℓ − 1)/8) for t ≥ 2.

Proof. The gap ik+ℓ−1 − ik is a negative binomial random variable which is distributed as
Negbin(ℓ − 1, βr). Thus, by Claim 33, it follows that

Pr
[
ik+ℓ−1 − ik >

t(ℓ − 1)
βr

]
≤ exp

(
−t(ℓ − 1)(1 − 1/t)2

2

)
.

For t ≥ 2, we can simplify the upper bound as

Pr
[
ik+ℓ−1 − ik >

t(ℓ − 1)
βr

]
≤ exp

(
−t(ℓ − 1)

8

)
.

Defining ξ as exp(−t(ℓ−1)
8), we get the claim. ◁

We now state the following technical claim.

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:21

▷ Claim 35. Given the value of all ℓ-local subword queries for deletion channel Delδ(x)
with tolerance η, we can compute the value of all ℓ′-local subword queries for Delδ′(x) with
tolerance τ ′ where

η = τ ′/2; ℓ = C ·
(

ℓ′

1 − δ′ · ln
(

2
1 − δ

)
+ ln n

(1 − δ′)

)
, for a suitably large constant C.

Proof. Fix any w ∈ {0, 1}ℓ′ and consider the quantity

p′
x,k,w := Pr

y∼Delδ′ (x)
[(yk, . . . , yk+ℓ′−1) = w].

Then, by Claim 32, it follows that

p′
x,k,w := Pr

z∼Delδ(x),(ik,...,ik+ℓ′−1)∼Hypernb(βr,k,ℓ′)
[zi1 , . . . , zik+ℓ′−1 = w], (23)

where βr = (1 − δ′)/(1 − δ). Define the parameter t = C ·
(

1
1−δ · ln

(
2

1−δ

)
+ ln n

ℓ′(1−δ)

)
, where

the constant C is set so that exp
(

t(ℓ′−1)
8

)
= τ ′

2 . As ℓ = t(ℓ′ − 1)/βr, by Claim 34 we have

Pr[iℓ′+k−1 − iℓ′ > ℓ] ≤ exp
(

t(ℓ′ − 1)
8

)
= τ ′

2 . (24)

Now, define E as the event (over the samples (ik, . . . , ik+ℓ′−1)) that |ik+ℓ′−1 − ik| ≤ ℓ. We
now re-express

p′
x,k,w = Pr

z∼Delδ(x),(ik,...,ik+ℓ′−1)

[
zi1 , . . . , zik+ℓ′−1 = w ∧ E

]
+ Pr

z∼Delδ(x),(ik,...,ik+ℓ′−1)

[
zi1 , . . . , zik+ℓ′−1 = w ∧ E

]
.

From the bound (24), the second term is at most τ ′/2 in magnitude and thus,∣∣∣p′
x,k,w − Pr

z∼Delδ(x),(ik,...,ik+ℓ′−1)

[
zi1 , . . . , zik+ℓ′−1 = w ∧ E

]∣∣∣ ≤ τ ′/2.

Furthermore, for any particular outcome of (ik, . . . , ik+ℓ′−1) for which event E happens, the
quantity Prz∼Delδ(x)[zi1 , . . . , zik+ℓ′−1 = w] is a ℓ-local subword query. Since we have the
value of all ℓ-local subword queries up to error τ ′/2, we can compute p′

x,k,w to error τ ′. ◁

Proof. (of Lemma 29) By Claim 32, to compute SWx,w(δ′) to error ±κ, it suffices to compute
Ey∼Delδ′ (x)[#(w, y)] for every w ∈ {0, 1}ℓ′ up to error ±τ ′ where τ ′ is defined in (22). Now,
by Claim 35, for any given δ′ ≥ δ, to compute Ey∼Delδ′ (x)[#(w, y)] to error τ , it suffices to
have the value of all ℓ-local subword queries to error τ ′/2 where

ℓ = C ·
(

ℓ′

1 − δ′ · ln
(

2
1 − δ

)
+ ln n

(1 − δ′)

)
.

Since δ′ ≤ (1 + δ)/2, it follows that

ℓ ≤ C ·
(

2ℓ′

1 − δ
· ln
(

2
1 − δ

)
+ 2 ln n

(1 − δ)

)
.

Thus, if we have the value of all k-local subword queries to error τ ′/2, where k is set to

k = Θ
(

ℓ′

1 − δ
· ln
(

2
1 − δ

)
+ ln n

(1 − δ)

)
,

we can recover x. This finishes the proof. ◀

APPROX/RANDOM 2024

52:22 Trace Reconstruction from Local Statistical Queries

References
1 Frank Ban, Xi Chen, Adam Freilich, Rocco A. Servedio, and Sandip Sinha. Beyond trace

reconstruction: Population recovery from the deletion channel. In 60th IEEE Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 745–768. IEEE Computer Society,
2019.

2 Tuǧkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing
strings from random traces. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, pages 910–918, 2004.

3 Peter Borwein and Tamás Erdélyi. Littlewood-type polynomials on subarcs of the unit circle.
Indiana University Mathematics Journal, 46(4):1323–1346, 1997.

4 Peter Borwein, Tamás Erdélyi, and Géza Kós. Littlewood-type problems on [0, 1]. Proc.
London Math. Soc. (3), 79(1):22–46, 1999. doi:10.1112/S0024611599011831.

5 Tatiana Brailovskaya and Miklós Z. Rácz. Tree trace reconstruction using subtraces. J. Appl.
Probab., 60(2):629–641, 2023. doi:10.1017/jpr.2022.81.

6 Joshua Brakensiek, Ray Li, and Bruce Spang. Coded trace reconstruction in a constant
number of traces. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 482–493, 2020. doi:10.1109/FOCS46700.2020.00052.

7 Daniel G. Brown. How I wasted too long finding a concentration inequality for sums
of geometric variables. Available at https://uwspace.uwaterloo.ca/bitstream/handle/
10012/17210/negbin.pdf?sequence=1, 2011.

8 Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Approximate trace reconstruc-
tion via median string (in average-case). In 41st IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), volume 213 of LIPIcs,
pages 11:1–11:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

9 Z. Chase and Y. Peres. Approximate trace reconstruction of random strings from a constant
number of traces. Available at arXiv:2107.06454, 2021.

10 Zachary Chase. New lower bounds for trace reconstruction. Ann. Inst. H. Poincaré Probab.
Statist., 57(2):627–643, 2021.

11 Zachary Chase. Separating words and trace reconstruction. In STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages
21–31. ACM, 2021.

12 Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Polynomial-time
trace reconstruction in the low deletion rate regime. In 12th Innovations in Theoretical
Computer Science Conference, volume 185, pages 20:1–20:20, 2021.

13 Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Polynomial-time
trace reconstruction in the smoothed complexity model. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, pages 54–73, 2021.

14 Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Near-optimal
average-case approximate trace reconstruction from few traces. In Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pages 779–821, 2022.

15 Kuan Cheng, Elena Grigorescu, Xin Li, Madhu Sudan, and Minshen Zhu. On k-mer-based and
maximum likelihood estimation algorithms for trace reconstruction. CoRR, abs/2308.14993,
2023. doi:10.48550/arXiv.2308.14993.

16 Mahdi Cheraghchi, Ryan Gabrys, Olgica Milenkovic, and João Ribeiro. Coded trace reconstruc-
tion. IEEE Trans. Inform. Theory, 66(10):6084–6103, 2020. doi:10.1109/TIT.2020.2996377.

17 Sami Davies, Miklós Z. Rácz, and Cyrus Rashtchian. Reconstructing trees from traces. In
Alina Beygelzimer and Daniel Hsu, editors, Conference on Learning Theory, COLT 2019,
25-28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine Learning Research,
pages 961–978. PMLR, 2019. URL: http://proceedings.mlr.press/v99/davies19a.html.

18 Sami Davies, Miklos Z. Rácz, Cyrus Rashtchian, and Benjamin G. Schiffer. Approximate trace
reconstruction: Algorithms. In IEEE International Symposium on Information Theory, 2021.

https://doi.org/10.1112/S0024611599011831
https://doi.org/10.1017/jpr.2022.81
https://doi.org/10.1109/FOCS46700.2020.00052
https://uwspace.uwaterloo.ca/bitstream/handle/10012/17210/negbin.pdf?sequence=1
https://uwspace.uwaterloo.ca/bitstream/handle/10012/17210/negbin.pdf?sequence=1
https://arxiv.org/abs/2107.06454
https://doi.org/10.48550/arXiv.2308.14993
https://doi.org/10.1109/TIT.2020.2996377
http://proceedings.mlr.press/v99/davies19a.html

X. Chen, A. De, C. H. Lee, and R. A. Servedio 52:23

19 Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for
trace reconstruction. In Proceedings of the 49th ACM Symposium on Theory of Computing
(STOC), pages 1047–1056, 2017.

20 Elena Grigorescu, Madhu Sudan, and Minshen Zhu. Limitations of mean-based algorithms
for trace reconstruction at small distance. In IEEE International Symposium on Information
Theory, 2021.

21 Lisa Hartung, Nina Holden, and Yuval Peres. Trace reconstruction with varying deletion proba-
bilities. In Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Combinatorics,
ANALCO 2018, New Orleans, LA, USA, January 8-9, 2018., pages 54–61, 2018.

22 Nina Holden and Russell Lyons. Lower bounds for trace reconstruction. Ann. Appl. Probab.,
30(2):503–525, 2020. doi:10.1214/19-AAP1506.

23 Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction for
random strings and arbitrary deletion probability. In Conference On Learning Theory, COLT
2018, Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceedings of Machine Learning
Research, pages 1799–1840. PMLR, 2018.

24 Nina Holden, Robin Pemantle, Yuval Peres, and Alex Zhai. Subpolynomial trace reconstruction
for random strings and arbitrary deletion probability. Mathematical Statistics and Learning,
2(3/4):275–309, 2019.

25 Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace reconstruc-
tion with constant deletion probability and related results. In Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pages 389–398, 2008.

26 V. V. Kalashnik. Reconstruction of a word from its fragments. Computational Mathematics
and Computer Science (Vychislitel’naya matematika i vychislitel’naya tekhnika), Kharkov,
4:56–57, 1973.

27 M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

28 Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and Soumyabrata Pal. Trace
reconstruction: Generalized and parameterized. In 27th Annual European Symposium on
Algorithms, ESA 2019, volume 144 of LIPIcs, pages 68:1–68:25. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019.

29 Vladimir Levenshtein. Efficient reconstruction of sequences. IEEE Transactions on Information
Theory, 47(1):2–22, 2001.

30 Vladimir Levenshtein. Efficient reconstruction of sequences from their subsequences or
supersequences. Journal of Combinatorial Theory Series A, 93(2):310–332, 2001.

31 Kayvon Mazooji and Ilan Shomorony. Substring density estimation from traces. In IEEE
International Symposium on Information Theory, ISIT 2023, Taipei, Taiwan, June 25-30,
2023, pages 803–808. IEEE, 2023. doi:10.1109/ISIT54713.2023.10206758.

32 Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction revisited. In
Proceedings of the 22nd Annual European Symposium on Algorithms, pages 689–700, 2014.

33 Shyam Narayanan. Population recovery from the deletion channel: Nearly matching trace
reconstruction bounds. CoRR, abs/2004.06828, 2020.

34 Shyam Narayanan. Improved algorithms for population recovery from the deletion channel.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, pages 1259–1278. SIAM, 2021. doi:10.1137/1.
9781611976465.77.

35 Shyam Narayanan and Michael Ren. Circular Trace Reconstruction. In 12th Innovations in
Theoretical Computer Science Conference (ITCS 2021), pages 18:1–18:18, 2021.

36 Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(O(n1/3)) samples. In Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
pages 1042–1046, 2017.

37 Yuval Peres and Alex Zhai. Average-case reconstruction for the deletion channel: Subpolynomi-
ally many traces suffice. In 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 228–239. IEEE Computer Society,
2017.

APPROX/RANDOM 2024

https://doi.org/10.1214/19-AAP1506
https://doi.org/10.1109/ISIT54713.2023.10206758
https://doi.org/10.1137/1.9781611976465.77
https://doi.org/10.1137/1.9781611976465.77

52:24 Trace Reconstruction from Local Statistical Queries

38 Ittai Rubinstein. Average-case to (shifted) worst-case reduction for the trace reconstruction
problem. In 50th International Colloquium on Automata, Languages, and Programming,
volume 261 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 102, 20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/lipics.icalp.2023.102.

39 Jin Sima and Jehoshua Bruck. Trace reconstruction with bounded edit distance. In IEEE Inter-
national Symposium on Information Theory, 2021. Manuscript, available at arXiv:2102.05372.

https://doi.org/10.4230/lipics.icalp.2023.102
https://arxiv.org/abs/2102.05372

	1 Introduction
	1.1 Our results
	1.2 Discussion and techniques
	1.3 Future work

	2 Preliminaries
	2.1 Local Statistical Query algorithms

	3 Worst-case lower bounds
	3.1 Establishing closeness of one-bit statistics

	4 Worst-case upper bounds
	4.1 Proof of Lemma 16
	4.2 Proof of Lemma 17

	5 Average-case lower bounds
	6 Average-case upper bounds
	6.1 Proof of Lemma 29

