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Abstract
The Gilbert–Varshamov (GV) bound is a classical existential result in coding theory. It implies that
a random linear binary code of rate ε2 has relative distance at least 1

2 − O(ε) with high probability.
However, it is a major challenge to construct explicit codes with similar parameters.

One hope to derandomize the Gilbert–Varshamov construction is with code concatenation: We
begin with a (hopefully explicit) outer code Cout over a large alphabet, and concatenate that with
a small binary random linear code Cin. It is known that when we use independent small codes for
each coordinate, then the result lies on the GV bound with high probability, but this still uses a
lot of randomness. In this paper, we consider the question of whether code concatenation with a
single random linear inner code Cin can lie on the GV bound; and if so what conditions on Cout are
sufficient for this.

We show that first, there do exist linear outer codes Cout that are “good” for concatenation in
this sense (in fact, most linear codes codes are good). We also provide two sufficient conditions for
Cout, so that if Cout satisfies these, Cout ◦ Cin will likely lie on the GV bound. We hope that these
conditions may inspire future work towards constructing explicit codes Cout.
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1 Introduction

An error correcting code (or just a code) is a subset C ⊆ Σn, for some alphabet Σ. We
think of a code C being used to encode messages in Σk for k = log|Σ| |C|. That is, for any
m ∈ Σk, we can identify m with a codeword C(m) ∈ C.1 The idea is that encoding m into the

1 Here and throughout the paper, we will abuse notation and use C both as the code itself (a subset of
Σn) and also as an encoding map C : Σk → Σn.
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53:2 When Do Concatenated Codes Approach The GV Bound?

codeword C(m) will introduce redundancy that can later be used to correct errors. In this
work we focus on linear codes C, which are codes where Σ = F is a finite field and C ⊆ Fn is
a linear subspace of Fn.

Two important properties of error correcting codes are the rate R and the relative distance
δ. For a code C ⊆ Σn, the rate is defined as R = log|Σ| |C|

n = k
n , and it quantifies how large the

code is. The rate is between 0 and 1, and typically we want it to be as close to 1 as possible;
this means that the encoding map does not introduce much redundancy. The (relative)
distance of C ⊆ Σn is defined as δ = 1

n minc̸=c′∈C ∆(c, c′), where ∆(·, ·) is Hamming distance.
Again, the relative distance is between 0 and 1, and again we typically want it to be as close
to 1 as possible; this means that the code can correct many worst-case errors.

These two quantities – rate and distance – are in tension. The larger the rate is, the
smaller the distance must be. For binary codes (that is, codes where Σ = F2), it is a major
open question to pin down the best trade-off possible between rate and distance. However,
we know that good trade-offs are possible: The best known possibility result in general is
the Gilbert–Varshamov (GV) bound (Theorem 2.1 in the full version).

In this paper we focus on low rate codes. In this parameter regime, the GV bound implies
that there exist binary linear codes with relative distance 1−ε

2 and rate Ω(ε2), for small ε > 0.
In fact, Varshamov’s proof shows that a random binary linear code achieves this with high
probability.

Constructing such codes explicitly, hopefully accompanied by an efficient decoding
algorithm, has been subject to extensive and fruitful research in the past decades (e.g., [24,
2, 3, 6, 11, 28, 7]), with several exciting breakthroughs in recent years. These breakthroughs
include explicit constructions of codes with distance δ = 1−ε

2 and rate R = Ω(ε2+o(1)), even
with efficient algorithms (see Section 1.1). However, there are still open questions. For
example, we do not know how to attain δ = 1−ε

2 and R = Ω(ε2) (without any o(1) term)
explicitly, and we do not have explicit constructions approaching the GV bound with rates
bounded away from zero. Motivated by these questions, we consider concatenated codes,
possibly with some randomness, which we discuss next.

Concatenated Codes, and Our Question

A natural candidate for explicit (for low randomness) codes on the GV bound are concatenated
linear codes. These codes are built out of two ingredients: a (hopefully explicit) linear outer
code Cout ⊆ Fn

q with dimension k for some large q; and a smaller inner binary linear code
Cin ⊆ Fn0

2 , with dimension k0 = log2 q. We define the concatenated code C = Cout◦Cin ⊆ Fn0·n
2

by first encoding a message m ∈ Fk
q (which can also be thought of as m ∈ Fk0·k

2 ) with Cout.
Then, we encode each symbol of the resulting codeword using Cin. That is, for a message m,

C(m) = (Cin(Cout(m)1), Cin(Cout(m)2), · · · , Cin(Cout(m)n)) ∈ Fn0·n
2 .

It is not hard to see that the rate of C is the product of the rates of Cin and Cout, and that
the distance of C is at least the product of the distances of Cin and Cout.

The natural approach to constructing a good concatenated code is to choose Cout and
Cin with the best known trade-offs: Since Cout is over a large alphabet, we know explicit
constructions of codes with optimal rate-distance trade-off2; and if n0 is sufficiently small,
we can find a Cin on the GV bound either deterministically by brute force or else with low
randomness, depending on the size of n0.

2 For codes over large alphabets, the best possible trade-off is the Singleton bound, or R = 1 − δ. This is
achievable, for example, by Reed–Solomon codes.
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However, in general this approach will not achieve the GV bound. If we do not assume
any additional properties of Cout and Cin, and simply use the concatenation properties, then
setting the parameters so that C = Cout ◦ Cin has distance 1−ε

2 , the rate of C will be at most
roughly ε3. This is known as the Zyablov bound [31] (see also [14]). As we discuss more in
Section 1.1, concatenation has been a popular approach to obtain fully explicit codes with
good rate-distance trade-offs, but none of these constructions are known to beat the Zyablov
bound.

Instead of using a single inner code, several works have focused on a related construction
originally due to Thommesen [29], which uses multiple inner codes. More precisely, this
construction uses i.i.d. random linear inner codes for each coordinate. It can be shown [29]
that the resulting code does lie on the GV bound with high probability, and if Cout is chosen
appropriately there are even efficient decoding algorithms for it [10, 27, 15]. However, this
approach relies heavily on the fact that the inner codes are independent, and as a result uses
a lot of randomness.

This state of affairs motivates the following question (also asked in the title of this paper):

▶ Question 1. Are there concatenated linear codes Cout ◦ Cin (with a single random linear
inner code Cin) that meet the GV bound with high probability over Cin?3 If so, are there
sufficient conditions on Cout that will guarantee this?

In this paper, we show that yes, there are concatenated codes that meet the GV bound,
and we also give two sufficient conditions on Cout for this to hold. Our existential result
is non-constructive, but it is our hope that our sufficient conditions will lead to explicit
constructions of appropriate Cout-s, which would lead to explicit (or at least pseudo-random,
depending on the alphabet size of Cout) concatenated codes on the GV bound.

▶ Remark 1 (Motivation for Question 1). Above, we have motivated Question 1 as an avenue
towards explicit or pseudo-random binary codes on the GV bound, and indeed this is our
original motivation. But we point out that Question 1 is also interesting in its own right.
Concatenated codes are a classical construction, going back to the 1960’s [9], and have been
used in many different settings over the decades. It seems like a fundamental question to
understand when these codes can attain the GV bound.

▶ Remark 2 (Focus on Linear Codes). In Question 1 and in this paper, we focus on linear
codes. This is because if we used, say, a uniformly random non-linear code as the inner code,
it would require exponentially more randomness than a random linear inner code, so this
does not seem like a hopeful avenue for derandomization. We note however that the question
is much easier for non-linear codes. For example, suppose that Cout is a Reed–Solomon code
of rate ε so that each symbol is additionally tagged with its evaluation point: that is, the
symbol corresponding to α ∈ Fq is (α, f(α)) ∈ F2

q. For the inner code, we use a completely
random (non-linear) code of rate ε. Then since all of the symbols in each outer codeword
are different by construction, each codeword is essentially uniformly random, and it is not
hard to show that the result is close to the GV bound in the sense that a code of rate O(ε2)
will have distance 1/2 − O(ε) with high probability. This same argument will not work
when Cin is linear, since the different symbols of codewords of Cout will still have F2-linear
relationships.

3 Of course, if the length of either the inner code or the outer code is 1, this question reduces to the
non-concatenated setting; we are interested in parameter regimes where n0 is non-trivial.

APPROX/RANDOM 2024



53:4 When Do Concatenated Codes Approach The GV Bound?

Our Contributions

Our main results are:
1. Existence of concatenated codes on the GV bound. We answer the first part of

Question 1: there are concatenated codes Cout ◦ Cin that achieve the GV bound, in a wide
variety of parameter regimes. In particular, we show that most codes Cout are actually
good:
▶ Theorem 3 (Informal; Theorem 4.2 in the full version). Suppose that Cout ⊆ Fn

q and
Cin ⊆ Fn0

2 are random linear codes of rate ε, so that q ≥ 2Ω(ε−3). Then C = Cout ◦ Cin has
rate ε2, and with high probability, the relative distance of C is at least 1/2 − O(ε).
While Theorem 3 seems intuitive (in the sense that a random linear code lies on the GV
bound with high probability, so why not concatenated random linear codes?), to the
best of our knowledge it has not appeared in the literature before, and the proof was
not obvious (to us).4 One challenge is that a codeword c ∈ Cout ◦ Cin is not uniformly
random in FN

2 . In particular, the natural strategy of “show that each non-zero codeword
has high weight with high probability and union bound” that is used to establish the
Gilbert–Varshamov bound will not work in this setting, as we do not have enough
concentration.

2. Sufficient conditions for Cout. Our existence result above uses a random linear code as
the outer code, which does not help in the quest for explicit constructions. However, our
proof techniques inspire two sufficient conditions on Cout. That is, if Cout satisfies these
conditions, then Cout ◦ Cin will meet the GV bound with high probability when Cin is a
random linear code. Our hope is that formalizing these will lead to explicit constructions
in the future.
We give an overview and intuition for our two sufficient conditions here. We note that
both conditions are only sufficient when the alphabet size q for Cout is suitably large
(exponential in 1/ poly(ε)); see Theorems 5.1 and 6.2 in the full version for details.

Sufficient Condition 1: A soft-decoding-like condition on C⊥
out. Our first

sufficient condition, formalized in Theorem 5.1 in the full version, is a soft-list-decoding-
like condition on C⊥

out. More precisely, we define a distribution D5 on the alphabet Fq;
the condition is that

Pr
x∼Dn

[x ∈ C⊥
out \ {0}] ≤ 1

qk
(1 + ∆) (1)

for some small ∆. Note that 1/qk is the probability that a completely random vector
is in C⊥

out, so this condition is saying that if the coordinates of x are drawn i.i.d. from
the same distribution D, then x not much more likely to be in C⊥ than in a uniformly
random vector. We show that if this holds, then Cout ◦ Cin lies on the GV bound with
high probability over the choice of a random linear inner code Cin.
It’s not hard to see (Remark 8 in the full version) that this condition holds in expectation
for a random linear code Cout, and in particular there exist linear codes Cout that have
this property.

4 We note that earlier work by Barg, Justesen and Thomessen [4] also addresses random linear outer codes
concatenated with an arbitrary (fixed) inner code, using very different techniques than we do. They do
not explicitly state a statement like Theorem 3 above, though it is plausible that their techniques could
be used to prove something similar. We discuss their techniques and the relationship to our work in
Section 1.1.

5 The distribution D is intuitively defined as follows. Let Cin be the inner code, and suppose that it has a
generator matrix G0 ∈ Fn0×k0

2 . Then to sample from D, we take a random sparse linear combination of
the rows of G0 (over F2), and interpret the result in Fk0

2 as an element of Fq, which we return.
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This condition is reminiscent of C⊥
out being list-decodable from soft information (e.g.,

[20]). In soft-list-decoding, one typically gets a distribution Di for each i ∈ [n],
interpreted as giving “soft information” about the i’th symbol. If one can show that a
vector drawn from D1 × · · · × Dn is unlikely to be in the code, this implies that there
are not too many codewords that are likely given the soft information we hare received.
However, there are several differences between existing work on soft list-decoding and
our work, notably that our distribution D is a particular one and is the same for all i,
and also there are some differences in the parameter settings.
This condition can also be seen as a soft form of list-recovery, where we have the same
list in each coordinate.6 In more detail, if the support of D is concentrated on a small
set S (which ours is for reasonable settings of n0, ε, see Remark 7 in the full version),
then the condition in Theorem 5.1 is related to asking that the number of codewords
that lie in the combinatorial rectangle given by S × S × · · · × S is about what it should
be. Unfortunately, the definition of “small” here does not seem to be small enough
for existing constructions of list-recoverable codes (for example folded RS codes or
multiplicity codes) to yield any results.
Sufficient Condition 2: Cout has good min-entropy. Our second sufficient
condition, formalized in Theorem 6.2, requires the codewords of Cout to be “smooth”,
meaning, roughly, that every nonzero codeword has a fairly uniform distribution of
symbols from Fq. To illustrate why a smoothness condition is desirable, let us consider
two extreme cases.
The bad extreme is when there exists a codeword c that is supported on very few
symbols, say even on a single symbol. If c = (σ, σ, . . . , σ) for some σ ∈ Fq, then
the relative weight of c ◦ Cin, for a random binary inner code Cin of rate ε, might be
1
2 − Ω(

√
ε), much worse than the 1

2 − O(ε) that we would want for the GV bound.
The good (possibly unrealistic) extreme is where each nonzero codeword of Cout has
a symbol distribution that is uniform over Fq. In this case it is not hard to see that
Cout ◦ Cin will be close to the GV bound with high probability over a random linear
code Cin. (For this, all we need is that Cin has about the “right” weight distribution,
which a random linear code will have with high probability).
The natural question is thus how smooth the codewords of Cout should be in order for
C to have distance 1

2 − O(ε). In Section 6 in the full version, we quantify this by the
smooth min-entropy of the codewords’ empirical distributions on symbols. We show
in Theorem 6.2 that if this smooth min-entropy is large enough for all c ∈ Cout, then
C = Cout ◦ Cin is likely to lie near the GV bound when Cin is a random linear binary
code.
How large is “large enough”? For this informal discussion, we give one example of
the parameter settings from Theorem 6.2: It is enough for every non-zero codeword
c ∈ Cout to have a symbol distribution that has Θ(εn) copies of the same symbol (say,
the zero symbol), while the remaining symbols in c are uniformly distributed over a
set of size only q1−ε. By some metrics this is still a fairly “spiky” distribution, but it
is “smooth enough” for our purposes.
Note that while our soft-decoding-like condition considers C⊥

out, our smooth min-entropy
condition here considers Cout itself.

6 Informally, a code C ⊆ Σn is said to be list-recoverable if for any small sets S1, . . . , Sn ⊆ Σ, there are
not too many codewords c ∈ C so that ci ∈ Si for many values of i.

APPROX/RANDOM 2024
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1.1 Related Work

Explicit Concatenated Codes

Concatenation (with a single inner code) has been a common approach to obtain explicit
codes close to the GV bound. Here we mention a few such places this comes up. Choosing
Cout to be the Reed–Solomon code, and Cin to be the Hadamard code, gets a code of length
O(k2/ε2) for any dimension k [3], and replacing Reed–Solomon with the Hermitian code gets
length O((k/ε)5/4) [6]. Choosing a different AG code for Cout can result in non-vanishing
rate and in fact approach rate ε3 (see [28]). Moreover, concatenating Reed–Solomon with the
Wozencraft ensemble gives the Justesen code [19], having constant relative rate and constant
relative distance. Note that none of these concatenation-based constructions thus far have
beat the Zyablov bound.

Concatenated Codes with Random Linear Cout

Relevant to Theorem 3, [4] studies a random linear code Cout concatenated with a fixed inner
code Cin. (See also [5], which applies the same techniques for an application in compressive
sensing). The work [4] derives bounds on the distance of Cout ◦ Cin in terms of (moments of)
the weight distribution of Cin. These bounds imply that Cout ◦ Cin approaches the GV bound
in some cases, but doesn’t seem to immediately imply Theorem 3.

Before discussing their techniques more, we note that the biggest difference between
[4] and our work is that their question is about the behavior of random linear codes, and
so naturally their approach crucially uses the fact that Cout is random. In contrast, the
motivation for our work is to find deterministic sufficient conditions on Cout, and we invoke
a random linear outer code as a proof of concept that our approach is realizable.

Next, we briefly describe the techniques and implications of [4], relative to Theorem 3.
The key result of [4] is an expression of the limiting trade-off between the rate R and the
distance δ of Cout ◦ Cin, in terms of the function ϕ(τ) = lnEX [eτX ], where X is the weight of
a random codeword from Cin and where τ ≤ 0 parameterizes the trade-off.7 They show that
this trade-off meets the GV bound when Cin is the identity (trivial) code, and investigate
how it behaves when Cin is a non-trivial code. Towards this, one can use their trade-off
to work out the Taylor series for R around δ = 1/2. It is not hard to see that under mild
conditions on Cin, the first two terms of this Taylor expansion vanish and hence we obtain
R = Θ(ε2) + OCin(ε3) when δ = 1/2 − ε, where the OCin(·) notation hides constants that
depend on Cin. This implies that if n0 is a constant, independent even of ε, then Cout ◦ Cin
approaches the GV bound. However, if n0 is growing relative to ε (which it is in our case,
as we take Cin to have rate ε), then the “constant” terms hiding in the OCin(ε3) term may
depend on n0, which in turn may depend on ε. It seems plausible that when Cin is a random
linear code, this dependence is mild8 and something like Theorem 3 could be established
with these techniques, but to the best of our knowledge such a proof has not appeared in the
literature and does not seem to follow immediately.

7 In more detail, this trade-off is given by R = 1
n0 ln(2) (τϕ′(τ) − ϕ(τ)) and δ = ϕ′(τ)

n0
, for τ ≤ 0.

8 In particular, as pointed out in [4], the first d⊥ − 1 terms of the Taylor series will agree with the GV
bound, where d⊥ is the dual distance of Cin, which for a random linear code Cin is quite large.
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Non-Concatenation-Based Explicit Constructions

As mentioned above, there have been several breakthroughs in the past few years obtaining
explicit constructions of binary codes near the GV bound, and even efficient algorithms
for them. In a breakthrough result, Ta-Shma [28] constructed explicit linear codes of
relative distance 1−ε

2 having rate ε2+o(1). Ta-Shma’s codes are also ε-balanced, i.e., ∆(x, y) ∈[ 1−ε
2 , 1+ε

2
]
, and thus give rise to explicit ε-biased sample spaces, which are ubiquitous in

pseudorandomness and derandomization. Works that followed gave efficient decoding of
Ta-Shma codes and their variants [1, 16, 17, 26, 18] (see also [7] for a different, randomized,
construction that slightly improves upon the rate of [28], and admits efficient decoding). We
note that these codes are graph-based, and do not in general have a concatenated structure.

Results with Multiple i.i.d. Inner Codes

Thommesen showed that when the outer code is a Reed–Solomon code, and it is concatenated
with n different random linear codes, one for each coordinate, chosen independently, then
the resulting code lies on the GV bound with high probability [29]. Guruswami and Indyk
devised efficient decoding algorithms for these codes, based on list-recoverability of the outer
code [10]. That work used a Reed–Solomon code as the outer code, which is list-recoverable
up to the Johnson bound. Later, Rudra [27] observed that the parameters could be improved
by swapping out the Reed–Solomon code for a code that can be list-recovered up to capacity,
for example a Folded Reed–Solomon code. Later work obtained nearly-linear-time decoding
algorithms by swapping out the outer code for a capacity-achieving list-recoverable code with
near-linear-time list-recovery algorithms [15, 21]. Codes with multiple i.i.d. inner codes have
also been studied in [32, 8].

We also mention the work of Guruswami and Rudra [13], who show that the same
construction (a list-recoverable code concatenated with n different i.i.d. random linear codes)
is list-decodable up to capacity with high probability. In the results [10, 27, 15, 21] mentioned
above, list-recovery of the outer code was needed for algorithms, not the combinatorial result
(which follows already from [29]). In contrast, in [13], the list-recoverability of the outer
code is needed for the combinatorial result itself. In that sense, the flavor is similar to our
sufficient condition in Section 5 in the full version, although the techniques are very different,
and in our work we only use one inner code.

Further Low-randomness Constructions of Binary Codes on GV Bound

If one’s goal is to explicitly construct a binary code that achieves that GV bound, at least
two types of partial results may be considered as subgoals. In the first class of results, one
seeks explicit codes whose rate vs. distance tradeoff is as close to the GV bound as possible.
This includes the works discussed in the first two paragraphs of Section 1.1 above. A second
path is to seek codes that fully attain the GV bound, and strive to minimize the amount of
randomness used in their construction.

Varshamov’s classic result [30] is that a random linear code likely achieves the GV bound.
Constructing such a code of length n and rate R requires sampling either a random generating
matrix or a random parity-check matrix, and thus O

(
min{R, 1 − R} · n2)

random bits are
needed. Two classical elementary constructions – the Wozencraft ensemble [22] and the
random Toeplitz Matrix construction (e.g., [14, Exercise 4.6]) – are able to reduce the needed
randomness to O(n).

So far, no codes achieving the GV bound using o(n) randomness are known. Moreover,
there is a certain natural obstacle, which we now describe, that needs to be tackled before
sublinear randomness can be achieved. Say that a random code C ⊆ Fn

2 is uniform if

APPROX/RANDOM 2024



53:8 When Do Concatenated Codes Approach The GV Bound?

every x ∈ Fn
2 \ {0} appears in the code with the same probability, namely, pR,n = 2Rn−1

2n−1 .
It is not hard to prove via a union bound that a uniform linear code achieves the GV
bound with high probability (this is exactly Varshamov’s observation). To the best of our
knowledge, every known GV-bound construction to date, including the linear randomness
constructions mentioned above, is uniform. Unfortunately, a uniform code ensemble with
sublinear randomness cannot exist as long as R is bounded away from 1. Indeed, to have
events that occur with probability pR,n, at least log2

1
pR,n

≈ (1 − R)n random bits are
required. Therefore, a code construction obtaining the GV bound with sublinear randomness
would have to do so without being uniform (see also [23, Section 5]). We have hope that our
sufficient conditions in Theorems 5.1 and 6.2 could be attained by non-uniform codes. For
example, as discussed above, the soft-decoding-like condition of Theorem 5.1 is reminiscent
of results on soft-list-decoding and soft-list-recovery, which in different parameter regimes
can even be achieved by deterministic codes.

A related line of work [12, 25, 23] attempts to construct codes that enjoy a broad class
of desirable combinatorial properties similar to those of random linear codes using as little
randomness as possible. Such properties include not just the GV bound, but also list
decodability up to the Elias bound (see [23]), list recoverability, and, more generally, local
similarity (see [23, Definition 2.14]) to a random linear code.

1.2 Technical Overview
In this section we give an overview of the main technical ideas. This section also serves as an
outline of the full version of the paper.

Section 3: A moment-based framework

In Section 3, we set up a framework that will be useful for the results in Section 4 and
Section 5. We describe this approach here.

Suppose that we are trying to encode a message m ∈ Fk
q with our concatenated code

C = Cout ◦ Cin, to obtain C(m) = w ∈ Fn·n0
2 . Each symbol of w is indexed by some α ∈ [n]

and some β ∈ [n0]; this symbol is equal to

(Cin(Cout(m)α))β = ⟨Cout(m)α, bβ⟩,

where bβ is the β’th row for a generator matrix G0 ∈ Fn0×k0
2 for Cin, and where the ⟨·, ·⟩

notation denotes the dot product over F2. This motivates the definition of a variable Xm ∈ R
defined by

Xm =
∑

α∈[n]

∑
β∈[n0]

(−1)⟨Cout(m)α,bβ⟩.

Indeed, Xm is the bias of w = C(m); the weight of w is at least 1
2 − O(εN) if and only if Xm

is at most O(εN). Thus, to show that the code C has distance at least 1
2 − O(εN), it suffices

to show that

max
m∈Fk

q \{0}
Xm = O(εN).

Our strategy will be to consider a large moment of Xm over the choice of a random
nonzero message m:

Em∼Fk
q \{0}[Xr

m]
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for some appropriate r. If we can show that this is smaller than (cεN)r/qk, then Markov’s
inequality will imply that

Pr
m∼Fk

q \{0}
[Xm ≥ cεN ] ≤

Em∼Fk
q \{0}[Xr

m]
(cεN)r

<
1
qk

,

and in particular that there are no messages m so that Xm ≥ cεN .
In Lemma 3.3, we take a Fourier transform in order to re-write E[Xr

m] as a quantity
involving C⊥

out. This quantity can be thought of as follows. For every integer-valued matrix9

V ∈ Zn0×n
≥0 with entries that sum to r, we consider a vector gV ∈ Fn

q defined by considering
the matrix GT

0 · V ∈ Fk0×n
2 and then treating it as a vector gV ∈ Fn

q by identifying each of
the columns in Fk0

2 with elements of Fq. Then the quantity in Lemma 3.3 has to do with the
number of these vectors gV that are in C⊥

out. The exact expression doesn’t matter too much
for this informal discussion; instead we explain below how we use this re-writing to prove
Theorem 4.2 and Theorem 5.1.

Section 4: Most codes Cout are good

Theorem 4.2 informally says that if Cout is a random linear code, then with high probability
Cout ◦ Cin is near the GV bound. In the proof, we use our framework from Section 3, and
show that with high probability over Cout, the moment Em[Xr

m] is small for an appropriate
r. To do this, we need to count the number of matrices V described above that are likely
to land in C⊥

out. Since Cout is a random linear code, so is C⊥
out, and so the probability of any

particular non-zero gV landing in it is small (about 1/qk), while of course the probability
that 0 is contained in C⊥

out is 1. Thus, the challenge is understanding how many gV -s are
actually zero. There are two ways that a matrix V as described above could lead to gV = 0:
Either V = 0 mod 2, or else V is non-zero mod 2 but GT

0 V = 0. The first case can be
counted straightforwardly. For the second, we leverage the weight distribution that the inner
code Cin is likely to have. We note that this is the only place (in any of our arguments) that
we need Cin to be a random linear code: We just need it to have approximately the “right”
weight distribution.

Section 5: A soft-decoding-like sufficient condition

The expression that we get for Em[Xm
r ] in Lemma 3.3 directly inspires our soft-decoding-like

sufficient condition in Theorem 5.1. One can view the task of counting the matrices V so
that gV ∈ C⊥

out as choosing a random V and asking about the probability that gV ∈ C⊥
out. If

the columns of V were independent, then this would be the same as choosing the coordinates
of gV i.i.d. from some distribution D. Thus we would get a requirement on Prx∼Dn [x ∈ C⊥

out],
similar to the condition in Equation (1) that we end up with.

Of course, the coordinates are not independent (because the total weight of V is fixed
to be r), but this can be solved. In more detail, we choose r to be a Poisson random
variable, which in this setting makes the columns of V independent. One hiccup is that
the “Poisson-ized” distribution turns out to be meaningfully different than the original
distribution, in the sense that it is much more likely that gV = 0 in the Poisson-ized version.
This means that the “natural” soft-decoding-like condition that one would get out of this is
not realizable: The probability that gV ∈ C⊥

out is much bigger than we want it to be, for any

9 In the actual quantity, the entries of this matrix are ordered, and we denote it V instead of V ; we ignore
the ordering in this discussion for simplicity.
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Cout, just because gV is too likely to be zero. Fortunately, this seems to be the only obstacle:
as in Equation (1), we separate out the gV = 0 term (using the analysis from Section 4) to
arrive at a condition that is realizable. We explain why the condition is realizable – that is,
why there exists a Cout that meets it – in Remark 8.

Section 6: A smoothness condition on Cout

For our second sufficient condition, we depart from our moment-based framework and work
from first principles. Our main theorem in Section 6 is Theorem 6.2, which informally says
that if the elements of Cout have “smooth” enough distributions of symbols, in the sense that
they each have large enough min-entropy, that C = Cout ◦ Cin will lie near the GV bound with
high probability. The basic idea is to consider a worst-case assignment of symbols in Fq to
codewords in Cin; this assignment need not be linear and can depend on a particular codeword
c ∈ Cout. Such a worst-case assignment would simply assign the lowest-weight codewords
in Cin to the most frequent symbols in a codeword c ∈ Cout. Using the weight distribution
that Cin is likely to have, along with the min-entropy assumption, we can show that this
worst-case assignment will still result in codewords w ∈ C of weight at least 1

2 − O(ε).
We note that, unlike our sufficient condition from Section 5, we don’t have a proof of

feasibility for our smoothness condition. That is, as far as we know, there may not be any
linear code Cout that is smooth in this sense. However, as a proof of concept we mention
in Remark 9 that a random linear code will have a similar property with high probability.
Moreover, we find it plausible that codewords of algebraically structured codes (say, Folded
Reed–Solomon codes, Folded Multiplicity, or even large sub-codes of plain Reed–Solomon
codes), would satisfy this property, even if a random code does not.
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